File size: 12,964 Bytes
faa56b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import torch
from torch import nn
from torch.nn import functional as F

__version__ = "0.5.1"
from .utils import (BlockArgs, BlockDecoder, GlobalParams,
                    MemoryEfficientSwish, Swish, drop_connect, efficientnet,
                    efficientnet_params, get_model_params,
                    get_same_padding_conv2d, gram_matrix,
                    load_pretrained_weights, round_filters, round_repeats)


class MBConvBlock(nn.Module):
    """

    Mobile Inverted Residual Bottleneck Block



    Args:

        block_args (namedtuple): BlockArgs, see above

        global_params (namedtuple): GlobalParam, see above



    Attributes:

        has_se (bool): Whether the block contains a Squeeze and Excitation layer.

    """

    def __init__(self, block_args, global_params):
        super().__init__()
        self._block_args = block_args
        self._bn_mom = 1 - global_params.batch_norm_momentum
        self._bn_eps = global_params.batch_norm_epsilon
        self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1)
        self.id_skip = block_args.id_skip  # skip connection and drop connect

        # Get static or dynamic convolution depending on image size
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # Expansion phase
        inp = self._block_args.input_filters  # number of input channels
        oup = self._block_args.input_filters * self._block_args.expand_ratio  # number of output channels
        if self._block_args.expand_ratio != 1:
            self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
            self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)

        # Depthwise convolution phase
        k = self._block_args.kernel_size
        s = self._block_args.stride
        self._depthwise_conv = Conv2d(
            in_channels=oup, out_channels=oup, groups=oup,  # groups makes it depthwise
            kernel_size=k, stride=s, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)

        # Squeeze and Excitation layer, if desired
        if self.has_se:
            num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio))
            self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
            self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)

        # Output phase
        final_oup = self._block_args.output_filters
        self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
        self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)
        self._swish = MemoryEfficientSwish()

    def forward(self, inputs, drop_connect_rate=None):
        """

        :param inputs: input tensor

        :param drop_connect_rate: drop connect rate (float, between 0 and 1)

        :return: output of block

        """

        # Expansion and Depthwise Convolution
        x = inputs
        if self._block_args.expand_ratio != 1:
            x = self._swish(self._bn0(self._expand_conv(inputs)))
        x = self._swish(self._bn1(self._depthwise_conv(x)))

        # Squeeze and Excitation
        if self.has_se:
            x_squeezed = F.adaptive_avg_pool2d(x, 1)
            x_squeezed = self._se_expand(self._swish(self._se_reduce(x_squeezed)))
            x = torch.sigmoid(x_squeezed) * x

        x = self._bn2(self._project_conv(x))

        # Skip connection and drop connect
        input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters
        if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters:
            if drop_connect_rate:
                x = drop_connect(x, p=drop_connect_rate, training=self.training)
            x = x + inputs  # skip connection
        return x

    def set_swish(self, memory_efficient=True):
        """Sets swish function as memory efficient (for training) or standard (for export)"""
        self._swish = MemoryEfficientSwish() if memory_efficient else Swish()


class EfficientNet(nn.Module):
    """

    An EfficientNet model. Most easily loaded with the .from_name or .from_pretrained methods



    Args:

        blocks_args (list): A list of BlockArgs to construct blocks

        global_params (namedtuple): A set of GlobalParams shared between blocks



    Example:

        model = EfficientNet.from_pretrained('efficientnet-b0')



    """

    def __init__(self, type, blocks_args=None, global_params=None):
        super().__init__()
        assert isinstance(blocks_args, list), 'blocks_args should be a list'
        assert len(blocks_args) > 0, 'block args must be greater than 0'
        self._global_params = global_params
        self._blocks_args = blocks_args
        self.type = type
        # Get static or dynamic convolution depending on image size
        Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)

        # Batch norm parameters
        bn_mom = 1 - self._global_params.batch_norm_momentum
        bn_eps = self._global_params.batch_norm_epsilon

        # Stem
        in_channels = 5  # rgb
        out_channels = round_filters(32, self._global_params)  # number of output channels
        self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
        self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        # Build blocks
        self._blocks = nn.ModuleList([])
        for block_args in self._blocks_args:

            # Update block input and output filters based on depth multiplier.
            block_args = block_args._replace(
                input_filters=round_filters(block_args.input_filters, self._global_params),
                output_filters=round_filters(block_args.output_filters, self._global_params),
                num_repeat=round_repeats(block_args.num_repeat, self._global_params)
            )

            # The first block needs to take care of stride and filter size increase.
            self._blocks.append(MBConvBlock(block_args, self._global_params))
            if block_args.num_repeat > 1:
                block_args = block_args._replace(input_filters=block_args.output_filters, stride=1)
            for _ in range(block_args.num_repeat - 1):
                self._blocks.append(MBConvBlock(block_args, self._global_params))

        # Head
        in_channels = block_args.output_filters  # output of final block
        out_channels = round_filters(1280, self._global_params)
        self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        # Final linear layer
        self._avg_pooling = nn.AdaptiveAvgPool2d(1)
        self._dropout = nn.Dropout(self._global_params.dropout_rate)
        self._fc = nn.Linear(out_channels, 1)
        self._swish = MemoryEfficientSwish()
        self.conv_reg = nn.Conv2d(1792, 1, 1)
        if self.type == 'big_map' or self.type == 'img':
            self.conv_transe1 = nn.Conv2d(1792, 448, 1)
            self.bn_transe1 = nn.BatchNorm2d(num_features=448, momentum=bn_mom, eps=bn_eps)
            self.conv_transe2 = nn.Conv2d(448, 112, 1)
            self.bn_transe2 = nn.BatchNorm2d(num_features=112, momentum=bn_mom, eps=bn_eps)
            if self.type == 'big_map':
                self.conv_transe_mask = nn.Conv2d(112, 1, 1)
                self.deconv_big = nn.ConvTranspose2d(1792, 1, 5, stride=4)  ##transpose
            if self.type == 'img':
                self.conv_transe3 = nn.Conv2d(112, 3, 1)
                self.deconv_img = nn.ConvTranspose2d(1792, 3, 5, stride=4)  ##transpose
        elif self.type == 'deconv_map' or self.type == 'deconv_img':
            self.conv_big_reg = nn.ConvTranspose2d(1792, 1, 5, stride=4)  ##transpose
            self.conv_img = nn.ConvTranspose2d(1792, 3, 5, stride=4)  ##transpose
        else:
            self.conv_reg = nn.Conv2d(1792, 1, 1)

        self.relu = nn.ReLU()
        self.up_double = nn.Upsample(scale_factor=2, mode='bilinear')
        self.sig = nn.Sigmoid()

    def set_swish(self, memory_efficient=True):
        """Sets swish function as memory efficient (for training) or standard (for export)"""
        self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
        for block in self._blocks:
            block.set_swish(memory_efficient)

    def extract_features(self, inputs):
        """ Returns output of the final convolution layer """

        # Stem
        x = self._swish(self._bn0(self._conv_stem(inputs)))

        # Blocks
        for idx, block in enumerate(self._blocks):
            drop_connect_rate = self._global_params.drop_connect_rate
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / len(self._blocks)
            x = block(x, drop_connect_rate=drop_connect_rate)

        # Head
        x = self._swish(self._bn1(self._conv_head(x)))

        return x

    def forward(self, seg, label, natural):
        label = label.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand(seg.size())

        x = torch.cat((label, natural, seg), 1)  # concated input
        bs = seg.size(0)
        # Convolution layers
        x = self.extract_features(x)
        if self.type == 'map':
            reg = self.conv_reg(x)
            reg = self.sig(reg)
        elif self.type == 'big_map':
            reg = self.up_double(x)  # 12*14
            reg = self.relu(reg)
            reg = self.conv_transe1(reg)  # 448
            reg = self.bn_transe1(reg)

            reg = self.up_double(reg)  # 24*28
            reg = self.relu(reg)
            reg = self.conv_transe2(reg)  # 112
            reg = self.bn_transe2(reg)

            reg = self.conv_transe_mask(reg)  # 1
            reg = self.sig(reg)
        elif self.type == 'img':
            reg = self.up_double(x)  # 12*14
            reg = self.relu(reg)
            reg = self.conv_transe1(reg)  # 448
            reg = self.bn_transe1(reg)

            reg = self.up_double(reg)  # 24*28
            reg = self.relu(reg)
            reg = self.conv_transe2(reg)  # 112
            reg = self.bn_transe2(reg)

            reg = self.conv_transe3(reg)  # 3
            reg = self.sig(reg)
        elif self.type == 'deconv_map':
            reg = self.conv_big_reg(x)
            reg = self.sig(reg)
        elif self.type == 'deconv_img':
            reg = self.conv_img(x)
            reg = self.sig(reg)
        elif self.type == 'feature':
            reg = gram_matrix(x - x.mean(0, True))

        return reg

    @classmethod
    def from_name(cls, model_name, type, override_params=None):
        cls._check_model_name_is_valid(model_name)
        blocks_args, global_params = get_model_params(model_name, override_params)
        return cls(type, blocks_args, global_params)

    @classmethod
    def from_pretrained(cls, model_name, num_classes=1000, in_channels=3):
        model = cls.from_name(model_name, override_params={'num_classes': num_classes})
        load_pretrained_weights(model, model_name, load_fc=(num_classes == 1000))
        if in_channels != 3:
            Conv2d = get_same_padding_conv2d(image_size=model._global_params.image_size)
            out_channels = round_filters(32, model._global_params)
            model._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
        return model

    @classmethod
    def from_pretrained(cls, model_name, num_classes=1000):
        model = cls.from_name(model_name, override_params={'num_classes': num_classes})
        load_pretrained_weights(model, model_name, load_fc=(num_classes == 1000))

        return model

    @classmethod
    def get_image_size(cls, model_name):
        cls._check_model_name_is_valid(model_name)
        _, _, res, _ = efficientnet_params(model_name)
        return res

    @classmethod
    def _check_model_name_is_valid(cls, model_name, also_need_pretrained_weights=False):
        """ Validates model name. None that pretrained weights are only available for

        the first four models (efficientnet-b{i} for i in 0,1,2,3) at the moment. """
        num_models = 4 if also_need_pretrained_weights else 8
        valid_models = ['efficientnet-b' + str(i) for i in range(num_models)]
        if model_name not in valid_models:
            raise ValueError('model_name should be one of: ' + ', '.join(valid_models))