|
|
|
|
|
|
|
|
|
import math |
|
from typing import List, Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .layers import LoRALayer |
|
|
|
|
|
class SVDLinear(nn.Linear, LoRALayer): |
|
|
|
def __init__( |
|
self, |
|
in_features: int, |
|
out_features: int, |
|
r: int = 0, |
|
lora_alpha: int = 1, |
|
lora_dropout: float = 0., |
|
fan_in_fan_out: bool = False, |
|
merge_weights: bool = True, |
|
**kwargs |
|
): |
|
nn.Linear.__init__(self, in_features, out_features, **kwargs) |
|
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, |
|
merge_weights=merge_weights) |
|
|
|
self.fan_in_fan_out = fan_in_fan_out |
|
|
|
if r > 0: |
|
self.lora_A = nn.Parameter( |
|
self.weight.new_zeros((r, in_features)) |
|
) |
|
self.lora_E = nn.Parameter( |
|
self.weight.new_zeros(r, 1) |
|
) |
|
self.lora_B = nn.Parameter( |
|
self.weight.new_zeros((out_features, r)) |
|
) |
|
self.ranknum = nn.Parameter( |
|
self.weight.new_zeros(1), requires_grad=False |
|
) |
|
self.ranknum.data.fill_(float(self.r)) |
|
self.scaling = self.lora_alpha if self.lora_alpha>0 else float(self.r) |
|
|
|
self.weight.requires_grad = False |
|
self.ranknum.requires_grad = False |
|
self.reset_parameters() |
|
if fan_in_fan_out: |
|
self.weight.data = self.weight.data.T |
|
|
|
def reset_parameters(self): |
|
nn.Linear.reset_parameters(self) |
|
if hasattr(self, 'lora_A'): |
|
|
|
|
|
nn.init.zeros_(self.lora_E) |
|
nn.init.normal_(self.lora_A, mean=0.0, std=0.02) |
|
nn.init.normal_(self.lora_B, mean=0.0, std=0.02) |
|
|
|
def train(self, mode: bool = True): |
|
def T(w): |
|
return w.T if self.fan_in_fan_out else w |
|
nn.Linear.train(self, mode) |
|
if self.merge_weights and self.merged: |
|
|
|
if self.r > 0: |
|
self.weight.data -= T( |
|
self.lora_B @ (self.lora_A*self.lora_E) |
|
) * self.scaling / (self.ranknum+1e-5) |
|
self.merged = False |
|
|
|
def eval(self): |
|
def T(w): |
|
return w.T if self.fan_in_fan_out else w |
|
nn.Linear.eval(self) |
|
if self.merge_weights and not self.merged: |
|
|
|
if self.r > 0: |
|
self.weight.data += T( |
|
self.lora_B @ (self.lora_A * self.lora_E) |
|
) * self.scaling / (self.ranknum+1e-5) |
|
self.merged = True |
|
|
|
def forward(self, x: torch.Tensor): |
|
def T(w): |
|
return w.T if self.fan_in_fan_out else w |
|
if self.r > 0 and not self.merged: |
|
result = F.linear(x, T(self.weight), bias=self.bias) |
|
if self.r > 0: |
|
result += ( |
|
self.lora_dropout(x) @ (self.lora_A * self.lora_E).T @ self.lora_B.T |
|
) * self.scaling / (self.ranknum+1e-5) |
|
return result |
|
else: |
|
return F.linear(x, T(self.weight), bias=self.bias) |
|
|
|
|
|
class RankAllocator(object): |
|
""" |
|
The RankAllocator for AdaLoRA Model that will be called every training step. |
|
Paper: https://openreview.net/pdf?id=lq62uWRJjiY |
|
|
|
Args: |
|
model: the model that we apply AdaLoRA to. |
|
lora_r (`int`): The initial rank for each incremental matrix. |
|
target_rank (`int`): The target average rank of incremental matrix. |
|
init_warmup (`int`): The steps of initial fine-tuning warmup. |
|
final_warmup (`int`): The step of final fine-tuning. |
|
mask_interval (`int`): The time internval between two budget allocations. |
|
beta1 (`float`): The hyperparameter of EMA for sensitivity smoothing. |
|
beta2 (`float`): The hyperparameter of EMA for undertainty quantification. |
|
total_step (`int`): The total training steps, correctly configured before training. |
|
target_total_rank (`Optinal[int]`): The speficified final total rank. |
|
tb_writter (`SummaryWriter`): Tensorboard SummaryWriter. |
|
tb_writter_loginterval (`int`): The logging interval of SummaryWriter. |
|
""" |
|
def __init__( |
|
self, model, |
|
lora_r:int, |
|
target_rank:int, |
|
init_warmup:int, |
|
final_warmup:int, |
|
mask_interval:int, |
|
beta1:float, |
|
beta2:float, |
|
total_step:Optional[int]=None, |
|
target_total_rank:Optional[int]=None, |
|
tb_writter=None, |
|
tb_writter_loginterval:int=500, |
|
): |
|
self.ave_target_rank = target_rank |
|
self.target_rank = target_total_rank |
|
self.lora_init_rank = lora_r |
|
self.initial_warmup = init_warmup |
|
self.final_warmup = final_warmup |
|
self.mask_interval = mask_interval |
|
self.beta1 = beta1 |
|
self.beta2 = beta2 |
|
self.total_step = total_step |
|
|
|
self.model = model |
|
self.ipt = {} |
|
self.exp_avg_ipt = {} |
|
self.exp_avg_unc = {} |
|
self.cat_ipt = {} |
|
self.rank_pattern = {} |
|
self.get_lora_param_name() |
|
|
|
self.tb_writter = tb_writter |
|
self.log_interval = tb_writter_loginterval |
|
|
|
assert (self.beta1<1 and self.beta1>0) |
|
assert (self.beta2<1 and self.beta2>0) |
|
|
|
def set_total_step(self, total_step:int): |
|
|
|
self.total_step = total_step |
|
assert self.total_step>self.initial_warmup+self.final_warmup |
|
|
|
def get_rank_pattern(self): |
|
|
|
return self.rank_pattern |
|
|
|
def get_lora_param_name(self): |
|
|
|
self.name_set = set() |
|
self.total_rank = 0 |
|
self.shape_dict = {} |
|
for n,p in self.model.named_parameters(): |
|
if "lora_A" in n: |
|
name_mat = n.replace("lora_A", "%s") |
|
self.name_set.add(name_mat) |
|
self.total_rank += p.size(0) |
|
self.shape_dict[n] = p.shape |
|
if "lora_B" in n: |
|
self.shape_dict[n] = p.shape |
|
self.name_set = list(sorted(self.name_set)) |
|
if self.target_rank is None: |
|
self.target_rank = self.ave_target_rank * len(self.name_set) |
|
|
|
def schedule_threshold(self, step:int): |
|
|
|
mask_ind = False |
|
target_rank = self.target_rank |
|
initial_warmup = self.initial_warmup |
|
final_warmup = self.final_warmup |
|
total_step = self.total_step |
|
self.global_step = step |
|
if step <= initial_warmup: |
|
|
|
curr_rank = self.total_rank |
|
mask_ind = False |
|
elif step > total_step - final_warmup: |
|
|
|
curr_rank = self.target_rank |
|
|
|
|
|
mask_ind = True |
|
else: |
|
|
|
mul_coeff = 1-(step-initial_warmup)/(total_step-final_warmup-initial_warmup) |
|
curr_rank = target_rank + (self.total_rank-target_rank)*(mul_coeff**3) |
|
curr_rank = int(curr_rank) |
|
mask_ind = True if step % self.mask_interval == 0 else False |
|
return curr_rank, mask_ind |
|
|
|
|
|
def update_ipt(self, model): |
|
for n,p in model.named_parameters(): |
|
if "lora_" in n: |
|
if n not in self.ipt: |
|
self.ipt[n] = torch.zeros_like(p) |
|
self.exp_avg_ipt[n] = torch.zeros_like(p) |
|
self.exp_avg_unc[n] = torch.zeros_like(p) |
|
with torch.no_grad(): |
|
|
|
self.ipt[n] = (p * p.grad).abs().detach() |
|
|
|
self.exp_avg_ipt[n] = self.beta1 * self.exp_avg_ipt[n] + \ |
|
(1-self.beta1)*self.ipt[n] |
|
|
|
self.exp_avg_unc[n] = self.beta2 * self.exp_avg_unc[n] + \ |
|
(1-self.beta2)*(self.ipt[n]-self.exp_avg_ipt[n]).abs() |
|
|
|
def calculate_score(self, n, p=None, metric="ipt"): |
|
if metric == "ipt": |
|
|
|
ipt_score = self.exp_avg_ipt[n] * self.exp_avg_unc[n] |
|
elif metric == "mag": |
|
ipt_score = p.abs().detach().clone() |
|
else: |
|
raise ValueError("Unexcptected Metric: %s"%metric) |
|
return ipt_score |
|
|
|
def _combine_ipt(self, ipt_E, ipt_AB): |
|
ipt_AB = ipt_AB.sum(dim=1, keepdim=False) |
|
sum_ipt = ipt_E.view(-1) + ipt_AB.view(-1) |
|
return sum_ipt |
|
|
|
def mask_to_target_rank(self, model, curr_rank): |
|
is_dict = {} |
|
combine_dict = {} |
|
singular_dict = {} |
|
|
|
for n,p in model.named_parameters(): |
|
if "lora_A" in n: |
|
rdim, hdim_a = p.shape |
|
ipt_score = self.calculate_score(n, metric="ipt") |
|
comb_ipt = torch.mean(ipt_score, dim=1, keepdim=True) |
|
name_mat = n.replace("lora_A", "%s") |
|
if name_mat not in combine_dict: |
|
combine_dict[name_mat] = [comb_ipt] |
|
else: |
|
combine_dict[name_mat].append(comb_ipt) |
|
if "lora_B" in n: |
|
hdim_b, rdim = p.shape |
|
ipt_score = self.calculate_score(n, metric="ipt") |
|
comb_ipt = torch.mean(ipt_score, dim=0, keepdim=False).view(-1, 1) |
|
name_mat = n.replace("lora_B", "%s") |
|
if name_mat not in combine_dict: |
|
combine_dict[name_mat] = [comb_ipt] |
|
else: |
|
combine_dict[name_mat].append(comb_ipt) |
|
if "lora_E" in n: |
|
ipt_score = self.calculate_score(n, p=p, metric="ipt") |
|
name_mat = n.replace("lora_E", "%s") |
|
singular_dict[name_mat] = ipt_score |
|
|
|
|
|
all_is = [] |
|
for name_mat in combine_dict: |
|
ipt_E = singular_dict[name_mat] |
|
ipt_AB = torch.cat(combine_dict[name_mat], dim=1) |
|
sum_ipt = self._combine_ipt(ipt_E, ipt_AB) |
|
name_E = name_mat%"lora_E" |
|
is_dict[name_E] = sum_ipt.view(-1, 1) |
|
all_is.append(sum_ipt.view(-1)) |
|
|
|
|
|
mask_threshold = torch.kthvalue(torch.cat(all_is), (self.total_rank-curr_rank))[0].item() |
|
|
|
|
|
with torch.no_grad(): |
|
curr_sum_rank = 0 |
|
sum_param = 0 |
|
for n,p in model.named_parameters(): |
|
if "lora_E" in n: |
|
p.data.masked_fill_(is_dict[n]<=mask_threshold, 0.0) |
|
ranknum = (is_dict[n]>mask_threshold).sum().item() |
|
|
|
if self.tb_writter is not None and self.global_step%self.log_interval==0: |
|
self.tb_writter.add_scalar("Ranknum/%s"%(n,), ranknum, self.global_step) |
|
self.rank_pattern[n] = ranknum |
|
curr_sum_rank += ranknum |
|
sum_param += ranknum*self.shape_dict[n.replace("lora_E", "lora_A")][1] |
|
sum_param += ranknum*self.shape_dict[n.replace("lora_E", "lora_B")][0] |
|
|
|
if self.tb_writter is not None and self.global_step%self.log_interval==0: |
|
self.tb_writter.add_scalar("Budget/total_rank", curr_sum_rank, self.global_step) |
|
self.tb_writter.add_scalar("Budget/mask_threshold", mask_threshold, self.global_step) |
|
self.tb_writter.add_scalar("Budget/sum_param", sum_param, self.global_step) |
|
|
|
return mask_threshold |
|
|
|
|
|
def update_and_mask(self, model, global_step): |
|
if global_step<self.total_step-self.final_warmup: |
|
|
|
self.update_ipt(model) |
|
|
|
|
|
curr_rank, mask_ind = self.schedule_threshold(global_step) |
|
if mask_ind: |
|
|
|
mask_threshold = self.mask_to_target_rank(model, curr_rank) |
|
else: |
|
mask_threshold = None |
|
self._maybe_tb_writter_log(model) |
|
return curr_rank, mask_threshold |
|
|
|
def _maybe_tb_writter_log(self, model): |
|
if self.tb_writter is not None and self.global_step%self.log_interval==0: |
|
with torch.no_grad(): |
|
regu_loss = [] |
|
for n,p in model.named_parameters(): |
|
if "lora_A" in n or "lora_B" in n: |
|
mat = p.data.detach().clone() |
|
mat_cov = mat @ mat.T if "lora_A" in n else mat.T @ mat |
|
I = torch.eye(*mat_cov.size(), out=torch.empty_like(mat_cov)) |
|
I.requires_grad = False |
|
orth_regu = torch.norm(mat_cov-I, p="fro") |
|
regu_loss.append(orth_regu.item()) |
|
self.tb_writter.add_scalar( |
|
"Orth_regu_loss/%s"%n, orth_regu.item(), self.global_step |
|
) |
|
self.tb_writter.add_scalar( |
|
"train/orth_regu_loss", sum(regu_loss)/len(regu_loss), self.global_step |
|
) |
|
|
|
|
|
def compute_orth_regu(model, regu_weight=0.1): |
|
|
|
regu_loss, num_param = 0., 0 |
|
for n,p in model.named_parameters(): |
|
if "lora_A" in n or "lora_B" in n: |
|
para_cov = p @ p.T if "lora_A" in n else p.T @ p |
|
I = torch.eye(*para_cov.size(), out=torch.empty_like(para_cov)) |
|
I.requires_grad = False |
|
regu_loss += torch.norm(para_cov-I, p="fro") |
|
num_param += 1 |
|
return regu_weight*regu_loss/num_param |