File size: 14,803 Bytes
faa56b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
# ------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
# ------------------------------------------------------------------------------------------
import math
from typing import List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from .layers import LoRALayer
class SVDLinear(nn.Linear, LoRALayer):
# SVD-based adaptation implemented in a dense layer
def __init__(
self,
in_features: int,
out_features: int,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.,
fan_in_fan_out: bool = False,
merge_weights: bool = True,
**kwargs
):
nn.Linear.__init__(self, in_features, out_features, **kwargs)
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
merge_weights=merge_weights)
self.fan_in_fan_out = fan_in_fan_out
# Actual trainable parameters
if r > 0:
self.lora_A = nn.Parameter(
self.weight.new_zeros((r, in_features))
)
self.lora_E = nn.Parameter(
self.weight.new_zeros(r, 1)
)
self.lora_B = nn.Parameter(
self.weight.new_zeros((out_features, r))
)
self.ranknum = nn.Parameter(
self.weight.new_zeros(1), requires_grad=False
)
self.ranknum.data.fill_(float(self.r))
self.scaling = self.lora_alpha if self.lora_alpha>0 else float(self.r)
# Freezing the pre-trained weight matrix
self.weight.requires_grad = False
self.ranknum.requires_grad = False
self.reset_parameters()
if fan_in_fan_out:
self.weight.data = self.weight.data.T
def reset_parameters(self):
nn.Linear.reset_parameters(self)
if hasattr(self, 'lora_A'):
# initialize A,B the same way as the default for nn.Linear
# and E (singular values) for zero
nn.init.zeros_(self.lora_E)
nn.init.normal_(self.lora_A, mean=0.0, std=0.02)
nn.init.normal_(self.lora_B, mean=0.0, std=0.02)
def train(self, mode: bool = True):
def T(w):
return w.T if self.fan_in_fan_out else w
nn.Linear.train(self, mode)
if self.merge_weights and self.merged:
# Make sure that the weights are not merged
if self.r > 0:
self.weight.data -= T(
self.lora_B @ (self.lora_A*self.lora_E)
) * self.scaling / (self.ranknum+1e-5)
self.merged = False
def eval(self):
def T(w):
return w.T if self.fan_in_fan_out else w
nn.Linear.eval(self)
if self.merge_weights and not self.merged:
# Merge the weights and mark it
if self.r > 0:
self.weight.data += T(
self.lora_B @ (self.lora_A * self.lora_E)
) * self.scaling / (self.ranknum+1e-5)
self.merged = True
def forward(self, x: torch.Tensor):
def T(w):
return w.T if self.fan_in_fan_out else w
if self.r > 0 and not self.merged:
result = F.linear(x, T(self.weight), bias=self.bias)
if self.r > 0:
result += (
self.lora_dropout(x) @ (self.lora_A * self.lora_E).T @ self.lora_B.T
) * self.scaling / (self.ranknum+1e-5)
return result
else:
return F.linear(x, T(self.weight), bias=self.bias)
class RankAllocator(object):
"""
The RankAllocator for AdaLoRA Model that will be called every training step.
Paper: https://openreview.net/pdf?id=lq62uWRJjiY
Args:
model: the model that we apply AdaLoRA to.
lora_r (`int`): The initial rank for each incremental matrix.
target_rank (`int`): The target average rank of incremental matrix.
init_warmup (`int`): The steps of initial fine-tuning warmup.
final_warmup (`int`): The step of final fine-tuning.
mask_interval (`int`): The time internval between two budget allocations.
beta1 (`float`): The hyperparameter of EMA for sensitivity smoothing.
beta2 (`float`): The hyperparameter of EMA for undertainty quantification.
total_step (`int`): The total training steps, correctly configured before training.
target_total_rank (`Optinal[int]`): The speficified final total rank.
tb_writter (`SummaryWriter`): Tensorboard SummaryWriter.
tb_writter_loginterval (`int`): The logging interval of SummaryWriter.
"""
def __init__(
self, model,
lora_r:int,
target_rank:int,
init_warmup:int,
final_warmup:int,
mask_interval:int,
beta1:float,
beta2:float,
total_step:Optional[int]=None,
target_total_rank:Optional[int]=None,
tb_writter=None,
tb_writter_loginterval:int=500,
):
self.ave_target_rank = target_rank
self.target_rank = target_total_rank
self.lora_init_rank = lora_r
self.initial_warmup = init_warmup
self.final_warmup = final_warmup
self.mask_interval = mask_interval
self.beta1 = beta1
self.beta2 = beta2
self.total_step = total_step
self.model = model
self.ipt = {}
self.exp_avg_ipt = {}
self.exp_avg_unc = {}
self.cat_ipt = {}
self.rank_pattern = {}
self.get_lora_param_name()
self.tb_writter = tb_writter
self.log_interval = tb_writter_loginterval
assert (self.beta1<1 and self.beta1>0)
assert (self.beta2<1 and self.beta2>0)
def set_total_step(self, total_step:int):
# Set total step number
self.total_step = total_step
assert self.total_step>self.initial_warmup+self.final_warmup
def get_rank_pattern(self):
# Return rank pattern
return self.rank_pattern
def get_lora_param_name(self):
# Prepare the budget scheduler
self.name_set = set()
self.total_rank = 0
self.shape_dict = {}
for n,p in self.model.named_parameters():
if "lora_A" in n:
name_mat = n.replace("lora_A", "%s")
self.name_set.add(name_mat)
self.total_rank += p.size(0)
self.shape_dict[n] = p.shape
if "lora_B" in n:
self.shape_dict[n] = p.shape
self.name_set = list(sorted(self.name_set))
if self.target_rank is None:
self.target_rank = self.ave_target_rank * len(self.name_set)
def schedule_threshold(self, step:int):
# Global budget schedule
mask_ind = False
target_rank = self.target_rank
initial_warmup = self.initial_warmup
final_warmup = self.final_warmup
total_step = self.total_step
self.global_step = step
if step <= initial_warmup:
# Initial warmup
curr_rank = self.total_rank
mask_ind = False
elif step > total_step - final_warmup:
# Final fine-tuning
curr_rank = self.target_rank
# Fix the rank pattern by
# always masking the same unimportant singluar values
mask_ind = True
else:
# Budget decreasing
mul_coeff = 1-(step-initial_warmup)/(total_step-final_warmup-initial_warmup)
curr_rank = target_rank + (self.total_rank-target_rank)*(mul_coeff**3)
curr_rank = int(curr_rank)
mask_ind = True if step % self.mask_interval == 0 else False
return curr_rank, mask_ind
def update_ipt(self, model):
for n,p in model.named_parameters():
if "lora_" in n:
if n not in self.ipt:
self.ipt[n] = torch.zeros_like(p)
self.exp_avg_ipt[n] = torch.zeros_like(p)
self.exp_avg_unc[n] = torch.zeros_like(p)
with torch.no_grad():
# Calculate sensitivity
self.ipt[n] = (p * p.grad).abs().detach()
# Update sensitivity
self.exp_avg_ipt[n] = self.beta1 * self.exp_avg_ipt[n] + \
(1-self.beta1)*self.ipt[n]
# Update uncertainty
self.exp_avg_unc[n] = self.beta2 * self.exp_avg_unc[n] + \
(1-self.beta2)*(self.ipt[n]-self.exp_avg_ipt[n]).abs()
def calculate_score(self, n, p=None, metric="ipt"):
if metric == "ipt":
# Combine the senstivity and uncertainty
ipt_score = self.exp_avg_ipt[n] * self.exp_avg_unc[n]
elif metric == "mag":
ipt_score = p.abs().detach().clone()
else:
raise ValueError("Unexcptected Metric: %s"%metric)
return ipt_score
def _combine_ipt(self, ipt_E, ipt_AB):
ipt_AB = ipt_AB.sum(dim=1, keepdim=False)
sum_ipt = ipt_E.view(-1) + ipt_AB.view(-1)
return sum_ipt
def mask_to_target_rank(self, model, curr_rank):
is_dict = {}
combine_dict = {}
singular_dict = {}
# Calculate the importance score for each sub matrix
for n,p in model.named_parameters():
if "lora_A" in n:
rdim, hdim_a = p.shape
ipt_score = self.calculate_score(n, metric="ipt")
comb_ipt = torch.mean(ipt_score, dim=1, keepdim=True)
name_mat = n.replace("lora_A", "%s")
if name_mat not in combine_dict:
combine_dict[name_mat] = [comb_ipt]
else:
combine_dict[name_mat].append(comb_ipt)
if "lora_B" in n:
hdim_b, rdim = p.shape
ipt_score = self.calculate_score(n, metric="ipt")
comb_ipt = torch.mean(ipt_score, dim=0, keepdim=False).view(-1, 1)
name_mat = n.replace("lora_B", "%s")
if name_mat not in combine_dict:
combine_dict[name_mat] = [comb_ipt]
else:
combine_dict[name_mat].append(comb_ipt)
if "lora_E" in n:
ipt_score = self.calculate_score(n, p=p, metric="ipt")
name_mat = n.replace("lora_E", "%s")
singular_dict[name_mat] = ipt_score
# Combine the importance scores
all_is = []
for name_mat in combine_dict:
ipt_E = singular_dict[name_mat]
ipt_AB = torch.cat(combine_dict[name_mat], dim=1)
sum_ipt = self._combine_ipt(ipt_E, ipt_AB)
name_E = name_mat%"lora_E"
is_dict[name_E] = sum_ipt.view(-1, 1)
all_is.append(sum_ipt.view(-1))
# Calculate the masking threshold
mask_threshold = torch.kthvalue(torch.cat(all_is), (self.total_rank-curr_rank))[0].item()
# Mask out unimportant singular values
with torch.no_grad():
curr_sum_rank = 0
sum_param = 0
for n,p in model.named_parameters():
if "lora_E" in n:
p.data.masked_fill_(is_dict[n]<=mask_threshold, 0.0)
ranknum = (is_dict[n]>mask_threshold).sum().item()
if self.tb_writter is not None and self.global_step%self.log_interval==0:
self.tb_writter.add_scalar("Ranknum/%s"%(n,), ranknum, self.global_step)
self.rank_pattern[n] = ranknum
curr_sum_rank += ranknum
sum_param += ranknum*self.shape_dict[n.replace("lora_E", "lora_A")][1]
sum_param += ranknum*self.shape_dict[n.replace("lora_E", "lora_B")][0]
if self.tb_writter is not None and self.global_step%self.log_interval==0:
self.tb_writter.add_scalar("Budget/total_rank", curr_sum_rank, self.global_step)
self.tb_writter.add_scalar("Budget/mask_threshold", mask_threshold, self.global_step)
self.tb_writter.add_scalar("Budget/sum_param", sum_param, self.global_step)
return mask_threshold
def update_and_mask(self, model, global_step):
if global_step<self.total_step-self.final_warmup:
# Update importance scores element-wise
self.update_ipt(model)
# do not update ipt during final fine-tuning
# Budget schedule
curr_rank, mask_ind = self.schedule_threshold(global_step)
if mask_ind:
# Mask to target budget
mask_threshold = self.mask_to_target_rank(model, curr_rank)
else:
mask_threshold = None
self._maybe_tb_writter_log(model)
return curr_rank, mask_threshold
def _maybe_tb_writter_log(self, model):
if self.tb_writter is not None and self.global_step%self.log_interval==0:
with torch.no_grad():
regu_loss = []
for n,p in model.named_parameters():
if "lora_A" in n or "lora_B" in n:
mat = p.data.detach().clone()
mat_cov = mat @ mat.T if "lora_A" in n else mat.T @ mat
I = torch.eye(*mat_cov.size(), out=torch.empty_like(mat_cov))
I.requires_grad = False
orth_regu = torch.norm(mat_cov-I, p="fro")
regu_loss.append(orth_regu.item())
self.tb_writter.add_scalar(
"Orth_regu_loss/%s"%n, orth_regu.item(), self.global_step
)
self.tb_writter.add_scalar(
"train/orth_regu_loss", sum(regu_loss)/len(regu_loss), self.global_step
)
def compute_orth_regu(model, regu_weight=0.1):
# The function to compute orthongonal regularization for SVDLinear in `model`.
regu_loss, num_param = 0., 0
for n,p in model.named_parameters():
if "lora_A" in n or "lora_B" in n:
para_cov = p @ p.T if "lora_A" in n else p.T @ p
I = torch.eye(*para_cov.size(), out=torch.empty_like(para_cov))
I.requires_grad = False
regu_loss += torch.norm(para_cov-I, p="fro")
num_param += 1
return regu_weight*regu_loss/num_param |