Tracer / data /scripts /gcn_train.py
introvoyz041's picture
Migrated from GitHub
e0d0d76 verified
import os
import torch
from torch_geometric.data import DataLoader
import torch.nn.functional as F
from Model.GCN import mol2graph
from Model.GCN.callbacks import EarlyStopping
from Model.GCN.network import MolecularGCN
from Model.GCN.utils import get_data
import hydra
import datetime
from config.config import cs
from omegaconf import DictConfig, OmegaConf
from tqdm.auto import tqdm
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
date = datetime.datetime.now().strftime('%Y%m%d')
def train(model, optimizer, loader):
model.train()
loss_all = 0
for data in loader:
optimizer.zero_grad()
data = data.to(device)
output = model.forward(data.x, data.edge_index, data.batch).squeeze(1)
loss = F.cross_entropy(output, data.y)
loss.backward()
loss_all += loss.item() * data.num_graphs
optimizer.step()
return loss_all / len(loader)
def eval(model, loader, ks=None):
model.eval()
score_list = []
with torch.no_grad():
loss_all = 0
for data in loader:
data = data.to(device)
output = model.forward(data.x, data.edge_index, data.batch) # output.shape = (batch_size, vocab_size)
loss = F.cross_entropy(output, data.y)
loss_all += loss.item() * data.num_graphs
if ks is not None:
for k in ks:
score_list.append(topk_accuracy(data, output, k))
return loss_all/len(loader), score_list
def topk_accuracy(data, output, k: int):
_, pred = output.topk(k, 1, True, True) # (k, dim=1, largest=True, sorted=True)
pred = pred.t() # (batch, maxk) -> (maxk, batch)
correct = pred.eq(data.y.unsqueeze(0).expand_as(pred)) # target:(batch,) -> (1, batch) -> (maxk, batch)
# Tensor.eq: compute element-wise equality, correct: bool matrix
score = correct.float().sum() / len(data)
score = score.detach().item()
return score
@hydra.main(config_path=None, config_name='config', version_base=None)
def main(cfg: DictConfig):
print('Loading data...')
train_path = cfg['GCN_train']['train']
valid_path = cfg['GCN_train']['valid']
test_path = cfg['GCN_train']['test']
batch_size = cfg['GCN_train']['batch_size']
dim = cfg['GCN_train']['dim']
n_conv_hidden = cfg['GCN_train']['n_conv_hidden']
n_mlp_hidden = cfg['GCN_train']['n_mlp_hidden']
dropout = cfg['GCN_train']['dropout']
lr = cfg['GCN_train']['lr']
epochs = cfg['GCN_train']['epochs']
patience = cfg['GCN_train']['patience']
save_path = cfg['GCN_train']['save_path']
ks = [1, 3, 5, 10]
mols_train, y_train = get_data(hydra.utils.get_original_cwd() + train_path)
mols_valid, y_valid = get_data(hydra.utils.get_original_cwd() + valid_path)
print('-'*100)
print('Training: ', mols_train.shape)
print('Validation: ', mols_valid.shape)
print('-'*100)
labels = y_train.tolist() + y_valid.tolist()
# Mol to Graph
print('Converting mol to graph...')
X_train = [mol2graph.mol2vec(m) for m in tqdm(mols_train.tolist())]
for i, data in enumerate(X_train):
data.y = torch.LongTensor([y_train[i]]).to(device)
X_valid = [mol2graph.mol2vec(m) for m in tqdm(mols_valid.tolist())]
for i, data in enumerate(X_valid):
data.y = torch.LongTensor([y_valid[i]]).to(device)
train_loader = DataLoader(X_train, batch_size=batch_size, shuffle=True, drop_last=True)
valid_loader = DataLoader(X_valid, batch_size=batch_size, shuffle=True, drop_last=True)
print('completed.')
print('-'*100)
num = 1
while True:
ckpt_dir = hydra.utils.get_original_cwd()+f'{save_path}/checkpoints_{date}_{num}'
try:
if any(os.scandir(ckpt_dir)):
num +=1
continue
else:
break
except:
os.makedirs(ckpt_dir, exist_ok=True)
break
train_path = cfg['GCN_train']['train']
valid_path = cfg['GCN_train']['valid']
test_path = cfg['GCN_train']['test']
batch_size = cfg['GCN_train']['batch_size']
dim = cfg['GCN_train']['dim']
n_conv_hidden = cfg['GCN_train']['n_conv_hidden']
n_mlp_hidden = cfg['GCN_train']['n_mlp_hidden']
dropout = cfg['GCN_train']['dropout']
lr = cfg['GCN_train']['lr']
epochs = cfg['GCN_train']['epochs']
patience = cfg['GCN_train']['patience']
# Model instance construction
print('Model instance construction')
model = MolecularGCN(
dim = dim,
n_conv_hidden = n_conv_hidden,
n_mlp_hidden = n_mlp_hidden,
dropout = dropout
).to(device)
print(model)
print('-'*100)
# Training
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
earlystopping = EarlyStopping(patience=patience, path=ckpt_dir + '/ckpt.pth', verbose=True)
for epoch in range(1, epochs+1):
# training
train_loss = train(model, optimizer, train_loader)
# performance evaluation
loss_train, _ = eval(model, train_loader)
loss_valid, score_list = eval(model, valid_loader, ks=ks)
top1acc = score_list[0]
top3acc = score_list[1]
top5acc = score_list[2]
top10acc = score_list[3]
print(f'Epoch: {epoch}/{epochs}, loss_train: {loss_train:.5}, loss_valid: {loss_valid:.5}')
print(f'top k accuracy: top1={top1acc:.2}, top3={top3acc:.2}, top5={top5acc:.2}, top10={top10acc:.2}')
# early stopping detection
earlystopping(loss_valid, model)
if earlystopping.early_stop:
print('Early Stopping!')
print('-'*100)
break
if __name__ == '__main__':
main()