File size: 8,494 Bytes
e0d0d76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import operator
import torch
import torchtext.vocab.vocab as Vocab
import rdkit.Chem as Chem
import hydra
from config.config import cs
from omegaconf import DictConfig

from Model.Transformer.model import Transformer
from scripts.preprocess import make_counter ,make_transforms

import itertools
import os

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

class BeamSearchNode(object):
    def __init__(self, previousNode, decoder_input, logProb, length):
        self.prevNode = previousNode
        self.dec_in = decoder_input.to('cpu')
        self.logp = logProb
        self.leng = length

    def eval(self, alpha=0.6):
        return self.logp / (((5 + self.leng) / (5 + 1)) ** alpha)


def beam_decode(cfg: DictConfig, v:Vocab, model=None, input_tokens=None, Temp=1):
    global beam_width, nbest
    SOS_token = v['<bos>']
    EOS_token = v['<eos>']
    beam_width = cfg['translate']['beam_size']
    nbest = cfg['translate']['nbest']
    inf_max_len = cfg['translate']['inf_max_len']
    
    # A batch of one input for Encoder
    encoder_input = input_tokens

    # Generate encoded features
    with torch.no_grad():
        encoder_input = encoder_input.unsqueeze(-1) # (seq, 1), batch_size=1
        encoder_output, memory_pad_mask = model.encode(encoder_input, src_pad_mask=True) # encoder_output.shape: (seq, 1, d_model)

    # Start with the start of the sentence token
    decoder_input = torch.tensor([[SOS_token]]).to(device) # (1,1)

    # Starting node
    counter = itertools.count()
    
    node = BeamSearchNode(previousNode=None,
                          decoder_input=decoder_input,
                          logProb=0, length=0)
    
    with torch.no_grad():
        tgt_mask = torch.nn.Transformer.generate_square_subsequent_mask(decoder_input.size(1)).to(device)
        logits = model.decode(memory=encoder_output, tgt=decoder_input.permute(1, 0), tgt_mask=tgt_mask, memory_pad_mask=memory_pad_mask)
        logits = logits.permute(1, 0, 2) # logits: (seq, 1, vocab) -> (1, seq, vocab), batch=1になってる
        decoder_output = torch.log_softmax(logits[:, -1, :]/Temp, dim=1) # 最後のseqだけ取り出してlog_softmax, (1, vocab)
    
    
    tmp_beam_width = min(beam_width, decoder_output.size(1))
    log_prob, indexes = torch.topk(decoder_output, tmp_beam_width) # (tmp_beam_with,)
    nextnodes = []
    for new_k in range(tmp_beam_width):
        decoded_t = indexes[0][new_k].view(1, -1).to('cpu') # indexを取得, shape: (1,1)
        log_p = log_prob[0][new_k].item() # logpを取得
        next_decoder_input = torch.cat([node.dec_in, decoded_t],dim=1) # dec_in:(1, seq)
        nn = BeamSearchNode(previousNode=node,
                                decoder_input=next_decoder_input,
                                logProb=node.logp + log_p,
                                length=node.leng + 1)
        score = -nn.eval()
        count = next(counter)
        nextnodes.append((score, count, nn))
    
    # start beam search
    for i in range(inf_max_len - 1):
        # fetch the best node
        if i == 0:
            current_nodes = sorted(nextnodes)[:tmp_beam_width]
        else:
            current_nodes = sorted(nextnodes)[:beam_width]
        
        nextnodes=[]
        # current_nodes = [(score, count, node), (score, count, node)...], shape:(beam_width,)
        scores, counts, nodes, decoder_inputs = [], [], [], []
        for score, count, node in current_nodes:
            if node.dec_in[0][-1].item() == EOS_token:
                nextnodes.append((score, count, node))
            else:
                scores.append(score)
                counts.append(count)
                nodes.append(node)
                decoder_inputs.append(node.dec_in)
        if not bool(decoder_inputs):
            break
        
        decoder_inputs = torch.vstack(decoder_inputs) # (batch=beam, seq)

        # adjust batch_size
        enc_out = encoder_output.repeat(1, decoder_inputs.size(0), 1)
        mask = memory_pad_mask.repeat(decoder_inputs.size(0), 1)
        
        with torch.no_grad():
            tgt_mask = torch.nn.Transformer.generate_square_subsequent_mask(decoder_inputs.size(1)).to(device)
            logits = model.decode(memory=enc_out, tgt=decoder_inputs.permute(1, 0).to(device), tgt_mask=tgt_mask, memory_pad_mask=mask)
            logits = logits.permute(1, 0, 2) # logits: (seq, batch, vocab) -> (batch, seq, vocab)
            decoder_output = torch.log_softmax(logits[:, -1, :]/Temp, dim=1) # extract log_softmax of last token
            # decoder_output.shape = (batch, vocab)
            
        for beam, score in enumerate(scores):
            for token in range(EOS_token, decoder_output.size(-1)): # indexを取得, unk, pad, bosは最初から捨てる
                decoded_t = torch.tensor([[token]])
                log_p = decoder_output[beam, token].item()
                next_decoder_input = torch.cat([nodes[beam].dec_in, decoded_t],dim=1)
                node = BeamSearchNode(previousNode=nodes[beam],
                                    decoder_input=next_decoder_input,
                                    logProb=nodes[beam].logp + log_p,
                                    length=nodes[beam].leng + 1)
                score = -node.eval()
                count = next(counter)
                nextnodes.append((score, count, node))

    outputs = []
    for score, _, n in sorted(nextnodes, key=operator.itemgetter(0))[:nbest]:
        # endnodes = [(score, node), (score, node)...] なのでitemgetter(0)でscoreをkeyに指定している
        output = n.dec_in.squeeze(0).tolist()[1:-1] # bosとeos削除
        output = v.lookup_tokens(output)
        output = ' '.join(output)
        outputs.append(output)

    return outputs


def translation(cfg:DictConfig):
    # make transforms and vocabulary
    src_train_path = hydra.utils.get_original_cwd()+cfg['translate']['src_train']
    tgt_train_path = hydra.utils.get_original_cwd()+cfg['translate']['tgt_train']
    src_valid_path = hydra.utils.get_original_cwd()+cfg['translate']['src_valid']
    tgt_valid_path = hydra.utils.get_original_cwd()+cfg['translate']['tgt_valid']
    data_dict = make_counter(src_train_path=src_train_path,
                             tgt_train_path=tgt_train_path,
                             src_valid_path=src_valid_path,
                             tgt_valid_path=tgt_valid_path
                             )
    src_transforms, _, v = make_transforms(data_dict=data_dict, make_vocab=True, vocab_load_path=None)
    
    # load model
    d_model = cfg['model']['dim_model']
    num_encoder_layers = cfg['model']['num_encoder_layers']
    num_decoder_layers = cfg['model']['num_decoder_layers']
    nhead = cfg['model']['nhead']
    dropout = cfg['model']['dropout']
    dim_ff = cfg['model']['dim_ff']
    model = Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers,
                        dim_feedforward=dim_ff,vocab=v, dropout=dropout, device=device).to(device)
    ckpt = torch.load(hydra.utils.get_original_cwd() + cfg['model']['ckpt'], map_location=device)
    model.load_state_dict(ckpt['model_state_dict'])
    
    # make dataset
    src = []
    src_test_path = hydra.utils.get_original_cwd() + cfg['translate']['src_test_path']
    with open(src_test_path,'r') as f:
        for line in f:
            src.append(line.rstrip().split(' '))
    src = src_transforms(src).to(device)

    rsmis =[]
    for i, input_tokens in enumerate(src):
        outputs = beam_decode(cfg=cfg, v=v, model=model, input_tokens=input_tokens)
        input_tokens = input_tokens.tolist()
        input_smi = input_tokens[0:input_tokens.index(v['<pad>'])]
        input_smi = v.lookup_tokens(input_smi)
        input_smi = ' '.join(input_smi)
        for output in outputs:
            rsmis.append(input_smi + ' >> ' + output)
        
    out_dir = cfg['translate']['out_dir']
    filename = cfg['translate']['filename']
    
# set output file name
    os.makedirs(hydra.utils.get_original_cwd() + out_dir, exist_ok=True)
    with open(hydra.utils.get_original_cwd() + f'{out_dir}/out_beam{beam_width}_best{nbest}_file_{filename}.txt','w') as f:
        for rsmi in rsmis:
            f.write(rsmi + '\n')
        f.close()

@hydra.main(config_path=None, config_name='config', version_base=None)
def main(cfg: DictConfig):
    translation(cfg)

if __name__ == '__main__':
    main()