File size: 7,785 Bytes
e0d0d76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))


import time
import math
import hydra
from config.config import cs
from omegaconf import DictConfig, OmegaConf

import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp

from Model.Transformer.model import TransformerLR, Transformer
from scripts.preprocess import make_counter, make_transforms, make_dataloader
from Utils.utils import tally_parameters, EarlyStopping, AverageMeter, accuracy, torch_fix_seed

import datetime
date = datetime.datetime.now().strftime('%Y%m%d')

torch_fix_seed()

def train(cfg):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    num = 1
    while True:
        ckpt_dir = hydra.utils.get_original_cwd()+f'/ckpts/checkpoints_{date}_{num}'
        if os.path.isdir(ckpt_dir):
            num += 1
            continue
        else:
            os.makedirs(ckpt_dir, exist_ok=True)
            break
    print(f'{ckpt_dir} was created.')
    
    data_dict = make_counter(src_train_path=hydra.utils.get_original_cwd()+cfg['train']['src_train'],
                             tgt_train_path=hydra.utils.get_original_cwd()+cfg['train']['tgt_train'],
                             src_valid_path=hydra.utils.get_original_cwd()+cfg['train']['src_valid'],
                             tgt_valid_path=hydra.utils.get_original_cwd()+cfg['train']['tgt_valid']
                             )
    print('making dataloader...')
    src_transforms, tgt_transforms, v = make_transforms(data_dict=data_dict, make_vocab=True, vocab_load_path=None)
    train_dataloader, valid_dataloader = make_dataloader(datasets=data_dict['datasets'], src_transforms=src_transforms,
                                                         tgt_transforms=tgt_transforms,batch_size=cfg['train']['batch_size'])
    print('max length of src sentence:', data_dict['src_max_len'])
    d_model = cfg['model']['dim_model']
    nhead = cfg['model']['nhead']
    dropout = cfg['model']['dropout']
    dim_ff = cfg['model']['dim_ff']
    num_encoder_layers = cfg['model']['num_encoder_layers']
    num_decoder_layers = cfg['model']['num_decoder_layers']
    model = Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers,
                        dim_feedforward=dim_ff,vocab=v, dropout=dropout, device=device).to(device)
    cudnn.benchmark = True
    if device == 'cuda':
        model = torch.nn.DataParallel(model) # make parallel
        torch.backends.cudnn.benchmark = True
    
    # count the number of parameters.
    n_params, enc, dec = tally_parameters(model)
    print('encoder: %d' % enc)
    print('decoder: %d' % dec)
    print('* number of parameters: %d' % n_params)
    
    lr = cfg['train']['lr']
    betas = cfg['train']['betas']
    patience = cfg['train']['patience']
    optimizer = optim.Adam(model.parameters(), lr=lr, betas=betas)
    scheduler = TransformerLR(optimizer, warmup_epochs=8000)
    label_smoothing = cfg['train']['label_smoothing']
    criterion = nn.CrossEntropyLoss(label_smoothing=label_smoothing,
                                    reduction='none',
                                    ignore_index=v['<pad>']
                                    )
    earlystopping = EarlyStopping(patience=patience, ckpt_dir=ckpt_dir)
    
    step_num = cfg['train']['step_num']
    log_interval_step = cfg['train']['log_interval']
    valid_interval_steps = cfg['train']['val_interval']
    save_interval_steps = cfg['train']['save_interval']
    accum_count = 1
    
    valid_len = 0
    for _, d in enumerate(valid_dataloader):
        valid_len += len(d[0])
    
    step = 0
    tgt_mask = nn.Transformer.generate_square_subsequent_mask(data_dict['tgt_max_len']-1).to(device)
    scaler = torch.cuda.amp.GradScaler()
    total_loss = 0
    accum_loss = 0
    model.train()
    start_time = time.time()
    print('start training...')
    while step < step_num:
        for i, data in enumerate(train_dataloader):
            src, tgt = data[0].to(device).permute(1, 0), data[1].to(device).permute(1, 0)
            tgt_input = tgt[:-1, :] # (seq, batch)
            tgt_output = tgt[1:, :] # shifted right
            with torch.amp.autocast('cuda'):
                outputs = model(src=src, tgt=tgt_input, tgt_mask=tgt_mask,
                                src_pad_mask=True, tgt_pad_mask=True, memory_pad_mask=True) # out: (seq_length, batch_size, vocab_size)
                loss = (criterion(outputs.reshape(-1, v.__len__()), tgt_output.reshape(-1)).sum() / len(data[0])) / accum_count
            scaler.scale(loss).backward()
            accum_loss += loss.detach().item()
            if ((i + 1) % accum_count == 0) or ((i + 1) == len(train_dataloader)):
                scaler.unscale_(optimizer)
                torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
                scaler.step(optimizer)
                scaler.update()
                scheduler.step()
                optimizer.zero_grad()
                step += 1
                total_loss += accum_loss
                accum_loss = 0
            
            if (step + 1) % log_interval_step == 0:
                lr = scheduler.get_last_lr()[0]
                cur_loss = total_loss / log_interval_step
                ppl = math.exp(cur_loss)
                end_time = time.time()
                print(f'| step {step+1} | lr {lr:03.5f} | loss {cur_loss:5.5f} | ppl {ppl:8.5f} | time per {log_interval_step} step {end_time - start_time:3.1f}|')
                total_loss = 0
                start_time = time.time()
            
            # validation step
            if (step + 1) % valid_interval_steps == 0:
                model.eval()
                top1 = AverageMeter()
                perfect_acc_top1 = AverageMeter()
                eval_total_loss = 0.
                with torch.no_grad():
                    for val_i, val_data in enumerate(valid_dataloader):
                        src, tgt = val_data[0].to(device).permute(1, 0), val_data[1].to(device).permute(1, 0)
                        tgt_input = tgt[:-1, :]
                        tgt_output = tgt[1:, :]
                        outputs = model(src=src, tgt=tgt_input, tgt_mask=tgt_mask,
                                        src_pad_mask=True, tgt_pad_mask=True, memory_pad_mask=True)
                        tmp_eval_loss = criterion(outputs.reshape(-1, v.__len__()), tgt_output.reshape(-1)).sum() / len(val_data[0])
                        eval_total_loss += tmp_eval_loss.detach().item()
                        partial_top1, perfect_acc = accuracy(outputs.reshape(-1, v.__len__()), tgt_output.reshape(-1), batch_size=tgt_output.size(1), v=v)
                        top1.update(partial_top1, src.size(1))
                        perfect_acc_top1.update(perfect_acc, src.size(1))
                    eval_loss = eval_total_loss / (val_i + 1)
                    print(f'validation step {step+1} | validation loss {eval_loss:5.5f} | partial top1 accuracy {top1.avg:.3f} | perfect top1 accuracy {perfect_acc_top1.avg:.3f}')
                    if (step + 1) % save_interval_steps == 0:
                        earlystopping(val_loss=eval_loss, step=step, optimizer=optimizer, cur_loss=cur_loss, model=model)
                model.train()
                start_time = time.time()
            if earlystopping.early_stop:
                print('Early Stopping!')
                break
        if earlystopping.early_stop:
            break
            
@hydra.main(config_path=None, config_name='config', version_base=None)
def main(cfg: DictConfig):
    train(cfg)


if __name__ == '__main__':
    main()