|
import numpy as np |
|
from functools import partial |
|
from skimage import restoration,filters |
|
import skimage.io as skio |
|
from skimage.exposure import equalize_adapthist |
|
import skimage |
|
from skimage import registration |
|
import scipy.ndimage as ndi |
|
import pandas as pd |
|
def read_table(file): |
|
""" |
|
Reads a file into a data frame based on it's extension |
|
:param file: the file to read |
|
:return: the pandas DataFrame |
|
""" |
|
ext = file.split(".")[-1] |
|
if ext == "csv": |
|
df = pd.read_csv(file) |
|
elif ext == "tsv": |
|
df = pd.read_csv(file, '\t') |
|
elif ext in {"xls", "xlsx", "xlsm", "xlsb"}: |
|
df = pd.read_excel(file) |
|
else: |
|
raise ValueError("Unexpected file extension") |
|
return df |
|
|
|
def load_data_organization(data_org_file): |
|
"""Loads the data organization file as a list of dictionaries |
|
based on the extension |
|
|
|
Args: |
|
data_org_file: a path to a data organaization in the standard format |
|
|
|
Returns: |
|
data_org: a list of ditionaries containing each imaging rounds information |
|
""" |
|
return read_table(data_org_file).to_dict("records") |
|
|
|
def warp_image(data_org, image_stack,bit_num): |
|
|
|
warped_image_stack = [] |
|
for bit_num in range(bit_num): |
|
data_org_row = data_org[bit_num] |
|
wv_idx =int(data_org_row["frame"]) - 1 |
|
ir_idx = int(data_org_row["imagingRound"]) |
|
im = image_stack[:,:,wv_idx,ir_idx] |
|
|
|
warped_image_stack.append(im) |
|
|
|
warped_imgs = np.stack(warped_image_stack,axis=0) |
|
|
|
return warped_imgs |
|
|
|
|
|
def register_stack(image_stack): |
|
|
|
|
|
|
|
fiducial_wv = 1 |
|
ref_img = image_stack[:,:,fiducial_wv,0] |
|
registered_images = image_stack.copy() |
|
for ir_idx in range(1,image_stack.shape[3]): |
|
img = image_stack[:,:,fiducial_wv,ir_idx] |
|
shift, _, _ = registration.phase_cross_correlation( |
|
ref_img, img, upsample_factor=100 |
|
) |
|
for wv_idx in range(image_stack.shape[2]): |
|
_img = image_stack[:,:,wv_idx,ir_idx] |
|
registered_images[:,:,wv_idx,ir_idx] = ndi.shift(_img,shift) |
|
return registered_images |
|
|
|
|
|
def _deconvolute(image_stack,out_file): |
|
""" Deconvolutes image to sharpen features with filtering and richardson lucy restoration |
|
Args: |
|
raw_image: 2D image |
|
dtype: the dtype of the raw_image being passed in |
|
|
|
Returns: |
|
img: filtered and restored image. This image maintains the original dtype |
|
""" |
|
|
|
_imgstack = np.load(image_stack) |
|
d_imgstack = _imgstack.copy() |
|
for iir in range(_imgstack.shape[3]): |
|
for iwv in range(_imgstack.shape[2]): |
|
if iwv==1: |
|
continue |
|
raw_image = _imgstack[:,:,iwv,iir] |
|
|
|
img = raw_image.astype("uint16") |
|
|
|
filt = ( |
|
filters.gaussian( |
|
img, sigma=3, mode="nearest", truncate=2, preserve_range=True |
|
) |
|
.round() |
|
.astype("uint16") |
|
) |
|
img = np.subtract(img, filt, where=img > filt, out=np.zeros_like(img)) |
|
|
|
|
|
psf = _gaussian_kernel((10, 10), 2) |
|
|
|
np.where(img == np.nan, 0, img) |
|
img = restoration.richardson_lucy(img, psf, iterations=20, clip=False) |
|
|
|
|
|
img = filters.gaussian( |
|
img, |
|
sigma=1, |
|
output=None, |
|
cval=0, |
|
multichannel=False, |
|
preserve_range=True, |
|
truncate=4.0, |
|
) |
|
|
|
d_imgstack[:,:,iwv,iir] = img |
|
|
|
np.save(out_file,d_imgstack) |
|
|
|
|
|
def _get_psf(sigma): |
|
""" Gets a point spread function for a gaussian kernel |
|
Args: |
|
sigma: variance |
|
|
|
Returns: |
|
gaussian_kernel |
|
""" |
|
kernel_size = int(2 * np.ceil(2 * sigma) + 1) |
|
return _gaussian_kernel(shape=(kernel_size, kernel_size), sigma=sigma) |
|
|
|
|
|
def _gaussian_kernel(shape=(3, 3), sigma=0.5): |
|
""" Generates a gaussian kernel |
|
Args: |
|
shape: kernel dimensions |
|
sigma: variance |
|
|
|
Returns: |
|
kernel: a gaussian kernel |
|
""" |
|
m, n = [int((ss - 1.0) / 2.0) for ss in shape] |
|
y, x = np.ogrid[-m : m + 1, -n : n + 1] |
|
kernel = np.exp(-(x * x + y * y) / (2.0 * sigma * sigma)) |
|
kernel[kernel < np.finfo(kernel.dtype).eps * kernel.max()] = 0 |
|
sumh = kernel.sum() |
|
if sumh != 0: |
|
kernel /= sumh |
|
return kernel |
|
|
|
|
|
|
|
|
|
def deconvolve_img(img,psf=None): |
|
|
|
if psf is None: |
|
psf = getPSF() |
|
|
|
|
|
|
|
|
|
|
|
|
|
deconvolved_RL = restoration.richardson_lucy(img, psf, num_iter=10) |
|
|
|
return deconvolved_RL |
|
|
|
def equalize_hist(img): |
|
|
|
|
|
clip_limit=0.05 |
|
kernel_size = 10 |
|
|
|
_img = equalize_adapthist(img,kernel_size=kernel_size,clip_limit=clip_limit) |
|
|
|
return _img |
|
|
|
def getPSF(sig=None,size=5): |
|
if sig is None: |
|
sig = size/6 |
|
|
|
x,y = np.mgrid[-int(size//2):int(size//2), |
|
-int(size//2):int(size//2)] |
|
|
|
|
|
return gaussianPSF(x,y,sig) |
|
|
|
|
|
def gaussianPSF(x,y,sig): |
|
t = np.array([[x],[y]]) |
|
|
|
if not isinstance(sig,np.array): |
|
sigma = np.array([[sig]]) |
|
else: |
|
sigma = sig |
|
|
|
if sigma.shape[0] != sigma.shape[1] or len(sigma.shape)!=2: |
|
print('sigma is baddddd') |
|
|
|
t = -0.5*[email protected](sigma)@t |
|
|
|
return np.exp(t) |
|
|
|
|
|
|
|
def maskImages(d_img_file,out_mask,percentile=98.5): |
|
d_imgstack = np.load(d_img_file) |
|
mask_imgstack = np.zeros_like(d_imgstack) |
|
for iir in range(d_imgstack.shape[2]): |
|
for iwv in range(d_imgstack.shape[3]): |
|
_img = d_imgstack[:,:,iir,iwv] |
|
clip = np.percentile(_img,percentile) |
|
mask_imgstack[:,:,iir,iwv] = np.where(_img>clip,1,0) |
|
|
|
np.save(out_mask,mask_imgstack) |