File size: 6,106 Bytes
5ad11ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import numpy as np
from functools import partial
from skimage import restoration,filters
import skimage.io as skio
from skimage.exposure import equalize_adapthist
import skimage
from skimage import registration
import scipy.ndimage as ndi
import pandas as pd
def read_table(file):
"""
Reads a file into a data frame based on it's extension
:param file: the file to read
:return: the pandas DataFrame
"""
ext = file.split(".")[-1]
if ext == "csv":
df = pd.read_csv(file)
elif ext == "tsv":
df = pd.read_csv(file, '\t')
elif ext in {"xls", "xlsx", "xlsm", "xlsb"}:
df = pd.read_excel(file)
else:
raise ValueError("Unexpected file extension")
return df
def load_data_organization(data_org_file):
"""Loads the data organization file as a list of dictionaries
based on the extension
Args:
data_org_file: a path to a data organaization in the standard format
Returns:
data_org: a list of ditionaries containing each imaging rounds information
"""
return read_table(data_org_file).to_dict("records")
def warp_image(data_org, image_stack,bit_num):
warped_image_stack = []
for bit_num in range(bit_num):
data_org_row = data_org[bit_num]
wv_idx =int(data_org_row["frame"]) - 1
ir_idx = int(data_org_row["imagingRound"])
im = image_stack[:,:,wv_idx,ir_idx]
warped_image_stack.append(im)
warped_imgs = np.stack(warped_image_stack,axis=0)
return warped_imgs
def register_stack(image_stack):
# image stack is a 4d numpy array
# (x,y,wv,ir)
# take out the 2nd wavelength [should be 561] and then register all the images with respect to the first imaging round
fiducial_wv = 1 # wavelength index for beads channel
ref_img = image_stack[:,:,fiducial_wv,0]
registered_images = image_stack.copy()
for ir_idx in range(1,image_stack.shape[3]):
img = image_stack[:,:,fiducial_wv,ir_idx]
shift, _, _ = registration.phase_cross_correlation(
ref_img, img, upsample_factor=100
)
for wv_idx in range(image_stack.shape[2]):
_img = image_stack[:,:,wv_idx,ir_idx]
registered_images[:,:,wv_idx,ir_idx] = ndi.shift(_img,shift)
return registered_images
# Deconvolute Images
def _deconvolute(image_stack,out_file):
""" Deconvolutes image to sharpen features with filtering and richardson lucy restoration
Args:
raw_image: 2D image
dtype: the dtype of the raw_image being passed in
Returns:
img: filtered and restored image. This image maintains the original dtype
"""
_imgstack = np.load(image_stack) #(y,x,wv,ir)
d_imgstack = _imgstack.copy()
for iir in range(_imgstack.shape[3]):
for iwv in range(_imgstack.shape[2]):
if iwv==1:
continue
raw_image = _imgstack[:,:,iwv,iir]
img = raw_image.astype("uint16")
# High pass filtering
filt = (
filters.gaussian(
img, sigma=3, mode="nearest", truncate=2, preserve_range=True
)
.round()
.astype("uint16")
)
img = np.subtract(img, filt, where=img > filt, out=np.zeros_like(img))
# Point spread function deconvolution
psf = _gaussian_kernel((10, 10), 2)
np.where(img == np.nan, 0, img)
img = restoration.richardson_lucy(img, psf, iterations=20, clip=False)
# Low pass filtering
img = filters.gaussian(
img,
sigma=1,
output=None,
cval=0,
multichannel=False,
preserve_range=True,
truncate=4.0,
)
d_imgstack[:,:,iwv,iir] = img
np.save(out_file,d_imgstack)
def _get_psf(sigma):
""" Gets a point spread function for a gaussian kernel
Args:
sigma: variance
Returns:
gaussian_kernel
"""
kernel_size = int(2 * np.ceil(2 * sigma) + 1)
return _gaussian_kernel(shape=(kernel_size, kernel_size), sigma=sigma)
def _gaussian_kernel(shape=(3, 3), sigma=0.5):
""" Generates a gaussian kernel
Args:
shape: kernel dimensions
sigma: variance
Returns:
kernel: a gaussian kernel
"""
m, n = [int((ss - 1.0) / 2.0) for ss in shape]
y, x = np.ogrid[-m : m + 1, -n : n + 1]
kernel = np.exp(-(x * x + y * y) / (2.0 * sigma * sigma))
kernel[kernel < np.finfo(kernel.dtype).eps * kernel.max()] = 0
sumh = kernel.sum()
if sumh != 0:
kernel /= sumh
return kernel
def deconvolve_img(img,psf=None):
if psf is None:
psf = getPSF()
#perform high pass filtering first
deconvolved_RL = restoration.richardson_lucy(img, psf, num_iter=10)
return deconvolved_RL
def equalize_hist(img):
clip_limit=0.05
kernel_size = 10
_img = equalize_adapthist(img,kernel_size=kernel_size,clip_limit=clip_limit)
return _img
def getPSF(sig=None,size=5):
if sig is None:
sig = size/6
x,y = np.mgrid[-int(size//2):int(size//2),
-int(size//2):int(size//2)]
return gaussianPSF(x,y,sig)
def gaussianPSF(x,y,sig):
t = np.array([[x],[y]])
if not isinstance(sig,np.array):
sigma = np.array([[sig]])
else:
sigma = sig
if sigma.shape[0] != sigma.shape[1] or len(sigma.shape)!=2:
print('sigma is baddddd')
t = -0.5*[email protected](sigma)@t
return np.exp(t)
def maskImages(d_img_file,out_mask,percentile=98.5):
d_imgstack = np.load(d_img_file)
mask_imgstack = np.zeros_like(d_imgstack)
for iir in range(d_imgstack.shape[2]):
for iwv in range(d_imgstack.shape[3]):
_img = d_imgstack[:,:,iir,iwv]
clip = np.percentile(_img,percentile)
mask_imgstack[:,:,iir,iwv] = np.where(_img>clip,1,0)
np.save(out_mask,mask_imgstack) |