Merfishreportpipeline / data /utils /helper_functions.py
introvoyz041's picture
Migrated from GitHub
5ad11ec verified
import os
import numpy as np
from typing import List
from sklearn.neighbors import NearestNeighbors
def check_dirs(files: List[str]) -> None:
"""Checks to see if the directories for the files in the list exist. If they dont, then make those directories
Args:
files (list[str]): the list of files whose directory paths to create. Needs to be the full, not relative paths
"""
if not type(files) == list:
d = os.path.dirname(files)
if not os.path.isdir(d):
# print(files+'files' + d +'Does not exist')
os.makedirs(d)
else:
for f in files:
d = os.path.dirname(f)
if d != "" and not os.path.isdir(d):
# print(f+'files' + d +'Does not exist')
os.makedirs(d)
def identity(img):
return img
def transformWarpedImages(warped_images, transform, clip_thresh):
pp_wi = list()
filtered_wi = list()
for wi in range(warped_images.shape[0]):
_img = transform(warped_images[wi, :, :])
pp_wi.append(_img)
for wi in pp_wi:
_img = np.where(wi > np.percentile(wi, clip_thresh), 1, 0)
filtered_wi.append(_img)
filtered_wi = np.stack(np.array(filtered_wi), axis=0)
return filtered_wi
def getBrightPixelCount(filtered_warped_images):
bright_pix_count = filtered_warped_images.sum(axis=0)
return bright_pix_count
def getBarcodesFromPixelStack(codebook, pixel_stack, filtered_wi):
codebook_bits = np.array(codebook.barcode_arrays)
nbrs = NearestNeighbors(n_neighbors=1, algorithm="ball_tree", p=1).fit(
codebook_bits
)
pixel_stack = pixel_stack[np.newaxis, :, :]
bit_map = dict()
barcode_map = dict()
dist_map = dict()
bit_vector_map = dict()
print(f"Pixel Stack Shape={pixel_stack.shape}")
print(f"Filtered WI Shape={filtered_wi.shape}")
bit_map[3] = np.multiply(pixel_stack == 3, filtered_wi)
bit_map[4] = np.multiply(pixel_stack == 4, filtered_wi)
bit_map[5] = np.multiply(pixel_stack == 5, filtered_wi)
print(f"Bitmap 5 Shape={bit_map[5].shape}")
bit_vector_map[3] = np.reshape(bit_map[3], (16, -1)).T
bit_vector_map[4] = np.reshape(bit_map[4], (16, -1)).T
bit_vector_map[5] = np.reshape(bit_map[5], (16, -1)).T
# Look at distances for 3 pixel barcodes
dist_map[3], barcode_map[3] = nbrs.kneighbors(bit_vector_map[3])
dist_map[4], barcode_map[4] = nbrs.kneighbors(bit_vector_map[4])
dist_map[5], barcode_map[5] = nbrs.kneighbors(bit_vector_map[5])
return bit_map, bit_vector_map, dist_map, barcode_map, codebook_bits
def filterDetections(barcode_ids, distances, filter_val):
return barcode_ids[distances == filter_val]
def findErrorBits(bright_pix, codebook_bits, dist, barcode_ids, filter_val=0):
barcode_subset = barcode_ids[dist == filter_val]
bright_pix_subset = bright_pix[np.where(dist == filter_val)[0], :]
codebook_subset = codebook_bits[barcode_subset]
error_bit_locs = np.argmax(np.abs(bright_pix_subset - codebook_subset), axis=1)
return error_bit_locs
def performDumbExtraction(warped_images, codebook, clip_thresh=98.5):
transform = identity
filtered_warped_images = transformWarpedImages(
warped_images, transform, clip_thresh
)
bright_pixel_count = getBrightPixelCount(filtered_warped_images)
(
bit_map,
bit_vector_map,
dist_map,
barcode_map,
codebook_bits,
) = getBarcodesFromPixelStack(codebook, bright_pixel_count, filtered_warped_images)
error_bit_map = dict()
error_bit_map[3] = findErrorBits(
bit_vector_map[3], codebook_bits, dist_map[3], barcode_map[3], filter_val=1
)
error_bit_map[4] = findErrorBits(
bit_vector_map[4], codebook_bits, dist_map[4], barcode_map[4], filter_val=0
)
error_bit_map[5] = findErrorBits(
bit_vector_map[5], codebook_bits, dist_map[5], barcode_map[5], filter_val=1
)
detection_number_map = dict()
detection_number_map[3] = dist_map[3][dist_map[3] == 1].sum()
detection_number_map[4] = (1 + dist_map[4][dist_map[4] == 0]).sum()
detection_number_map[5] = dist_map[5][dist_map[5] == 1].sum()
return (
filtered_warped_images,
bright_pixel_count,
bit_map,
bit_vector_map,
dist_map,
barcode_map,
error_bit_map,
detection_number_map,
codebook_bits,
)