File size: 4,459 Bytes
5ad11ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import numpy as np
from typing import List
from sklearn.neighbors import NearestNeighbors


def check_dirs(files: List[str]) -> None:
    """Checks to see if the directories for the files in the list exist. If they dont, then make those directories

    Args:
        files (list[str]): the list of files whose directory paths to create. Needs to be the full, not relative paths
        
    """
    if not type(files) == list:
        d = os.path.dirname(files)
        if not os.path.isdir(d):
            # print(files+'files' + d +'Does not exist')
            os.makedirs(d)
    else:
        for f in files:

            d = os.path.dirname(f)
            if d != "" and not os.path.isdir(d):
                # print(f+'files' + d +'Does not exist')
                os.makedirs(d)


def identity(img):
    return img


def transformWarpedImages(warped_images, transform, clip_thresh):

    pp_wi = list()
    filtered_wi = list()
    for wi in range(warped_images.shape[0]):
        _img = transform(warped_images[wi, :, :])

        pp_wi.append(_img)

    for wi in pp_wi:
        _img = np.where(wi > np.percentile(wi, clip_thresh), 1, 0)

        filtered_wi.append(_img)

    filtered_wi = np.stack(np.array(filtered_wi), axis=0)

    return filtered_wi


def getBrightPixelCount(filtered_warped_images):

    bright_pix_count = filtered_warped_images.sum(axis=0)

    return bright_pix_count


def getBarcodesFromPixelStack(codebook, pixel_stack, filtered_wi):

    codebook_bits = np.array(codebook.barcode_arrays)
    nbrs = NearestNeighbors(n_neighbors=1, algorithm="ball_tree", p=1).fit(
        codebook_bits
    )
    pixel_stack = pixel_stack[np.newaxis, :, :]
    bit_map = dict()
    barcode_map = dict()
    dist_map = dict()
    bit_vector_map = dict()
    print(f"Pixel Stack Shape={pixel_stack.shape}")
    print(f"Filtered WI Shape={filtered_wi.shape}")

    bit_map[3] = np.multiply(pixel_stack == 3, filtered_wi)
    bit_map[4] = np.multiply(pixel_stack == 4, filtered_wi)
    bit_map[5] = np.multiply(pixel_stack == 5, filtered_wi)
    print(f"Bitmap 5 Shape={bit_map[5].shape}")
    bit_vector_map[3] = np.reshape(bit_map[3], (16, -1)).T
    bit_vector_map[4] = np.reshape(bit_map[4], (16, -1)).T
    bit_vector_map[5] = np.reshape(bit_map[5], (16, -1)).T

    # Look at distances for 3 pixel barcodes
    dist_map[3], barcode_map[3] = nbrs.kneighbors(bit_vector_map[3])
    dist_map[4], barcode_map[4] = nbrs.kneighbors(bit_vector_map[4])
    dist_map[5], barcode_map[5] = nbrs.kneighbors(bit_vector_map[5])

    return bit_map, bit_vector_map, dist_map, barcode_map, codebook_bits


def filterDetections(barcode_ids, distances, filter_val):
    return barcode_ids[distances == filter_val]


def findErrorBits(bright_pix, codebook_bits, dist, barcode_ids, filter_val=0):

    barcode_subset = barcode_ids[dist == filter_val]
    bright_pix_subset = bright_pix[np.where(dist == filter_val)[0], :]
    codebook_subset = codebook_bits[barcode_subset]
    error_bit_locs = np.argmax(np.abs(bright_pix_subset - codebook_subset), axis=1)

    return error_bit_locs


def performDumbExtraction(warped_images, codebook, clip_thresh=98.5):
    transform = identity

    filtered_warped_images = transformWarpedImages(
        warped_images, transform, clip_thresh
    )

    bright_pixel_count = getBrightPixelCount(filtered_warped_images)

    (
        bit_map,
        bit_vector_map,
        dist_map,
        barcode_map,
        codebook_bits,
    ) = getBarcodesFromPixelStack(codebook, bright_pixel_count, filtered_warped_images)

    error_bit_map = dict()
    error_bit_map[3] = findErrorBits(
        bit_vector_map[3], codebook_bits, dist_map[3], barcode_map[3], filter_val=1
    )

    error_bit_map[4] = findErrorBits(
        bit_vector_map[4], codebook_bits, dist_map[4], barcode_map[4], filter_val=0
    )

    error_bit_map[5] = findErrorBits(
        bit_vector_map[5], codebook_bits, dist_map[5], barcode_map[5], filter_val=1
    )

    detection_number_map = dict()
    detection_number_map[3] = dist_map[3][dist_map[3] == 1].sum()
    detection_number_map[4] = (1 + dist_map[4][dist_map[4] == 0]).sum()
    detection_number_map[5] = dist_map[5][dist_map[5] == 1].sum()

    return (
        filtered_warped_images,
        bright_pixel_count,
        bit_map,
        bit_vector_map,
        dist_map,
        barcode_map,
        error_bit_map,
        detection_number_map,
        codebook_bits,
    )