|
from .BaseReport import BaseReport |
|
|
|
from utils import imgproc |
|
|
|
import skimage.exposure as ske |
|
import numpy as np |
|
|
|
import matplotlib.pyplot as plt |
|
from mpl_toolkits.axes_grid1.inset_locator import inset_axes |
|
|
|
|
|
|
|
|
|
class BrightnessReport(BaseReport): |
|
def __init__(self,imgstack_file,coord_info,fov,z): |
|
super().__init__(imgstack_file,coord_info) |
|
|
|
self.fov_name = fov |
|
self.z_name = z |
|
self.imgstack = self.imgstack |
|
self.contrast_tape = np.zeros((self.imgstack.shape[2], |
|
self.imgstack.shape[3])) |
|
|
|
|
|
|
|
|
|
|
|
def calc_HS_metric(self,img): |
|
''' |
|
https://ieeexplore.ieee.org/document/6108900 |
|
''' |
|
vals = np.percentile(img.ravel(),[75,25]) |
|
max_val = np.max(img) |
|
min_val = np.min(img) |
|
|
|
return (vals[0]-vals[1])/(max_val-min_val) |
|
def calc_HF_metric(self,img): |
|
''' |
|
https://ieeexplore.ieee.org/document/6108900 |
|
''' |
|
|
|
hist,_ = np.histogram(img.flatten(),bins = int(img.max()//2),range=(0,img.max())) |
|
|
|
return np.power(np.prod(hist),1/len(hist)) / hist.sum() * len(hist) |
|
|
|
|
|
def ski_is_low_contrast(self,img,fraction_threshold = 0.25): |
|
return ske.is_low_contrast(img,fraction_threshold=fraction_threshold) |
|
|
|
def contrast_test(self,img,threshold=0.25,method='ski'): |
|
if method=='ski': |
|
return self.ski_is_low_contrast(img,threshold) |
|
elif method =='HS': |
|
res = self.calc_HS_metric(img) |
|
return res>threshold |
|
elif method =='HF': |
|
res = self.calc_HF_metric(img) |
|
return res>threshold |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def preview_images(self): |
|
max_wv_val = self.imgstack.max(axis=0).max(axis=0).max(axis=1) |
|
val_range = max_wv_val*0.9 |
|
f,ax = plt.subplots(nrows=len(self.coords['irs']),ncols=len(self.coords['wvs']),sharex=True,sharey=True,figsize=(len(self.coords['wvs'])*4,len(self.coords['irs'])*4)) |
|
plt.suptitle(f'FOV: {self.fov_name}; Z: {self.z_name}') |
|
if not isinstance(ax,np.ndarray): |
|
ax = np.array([ax]) |
|
if len(ax.shape)==1: |
|
if len(self.coords['irs'])==1: |
|
ax=ax[np.newaxis,:] |
|
elif len(self.coords['wvs'])==1: |
|
ax=ax[:,np.newaxis] |
|
for iwv,wv in enumerate(self.coords['wvs']): |
|
for iir,ir in enumerate(self.coords['irs']): |
|
img = self.imgstack[:,:,iwv,iir] |
|
ax[iir,iwv].imshow(img,vmax=val_range[iwv],cmap='gray') |
|
if iwv==0: |
|
ax[iir,iwv].set_ylabel(f'ir:{ir}') |
|
if iir==0: |
|
ax[iir,iwv].set_title(f'channel: {wv}nm') |
|
|
|
plt.tight_layout() |
|
self.pdf.savefig() |
|
plt.close(f) |
|
|
|
|
|
def brightness_infov_z(self): |
|
largest = self.imgstack.max() |
|
f,ax = plt.subplots(nrows=len(self.coords['irs']),ncols=len(self.coords['wvs']),sharex=True,sharey=True,figsize=(len(self.coords['wvs'])*4,len(self.coords['irs'])*4)) |
|
if not isinstance(ax,np.ndarray): |
|
ax = np.array([ax]) |
|
if len(ax.shape)==1: |
|
if len(self.coords['irs'])==1: |
|
ax=ax[np.newaxis,:] |
|
elif len(self.coords['wvs'])==1: |
|
ax=ax[:,np.newaxis] |
|
plt.suptitle(f'FOV: {self.fov_name}; Z: {self.z_name}') |
|
|
|
for iwv,wv in enumerate(self.coords['wvs']): |
|
for iir,ir in enumerate(self.coords['irs']): |
|
bin_num = int(largest//2) |
|
|
|
data = self.imgstack[:,:,iwv,iir] |
|
self.contrast_tape[iwv,iir] = self.calc_HS_metric(data) |
|
flat_data = data.ravel() |
|
|
|
ax[iir,iwv].hist(flat_data,bins=bin_num,range=(0,largest),log=True,histtype='step') |
|
ax[iir,iwv].text(0.5, 0.5, f'HS:{self.contrast_tape[iwv,iir]}', |
|
ha="center", va="center", |
|
transform=ax[iir,iwv].transAxes) |
|
if iwv==0: |
|
ax[iir,iwv].set_ylabel(f'ir:{ir}') |
|
if iir==0: |
|
ax[iir,iwv].set_title(f'channel: {wv}nm') |
|
|
|
plt.tight_layout() |
|
self.pdf.savefig() |
|
plt.close(f) |
|
|
|
def brightness_on_images(self): |
|
|
|
|
|
max_wv_val = self.imgstack.max(axis=0).max(axis=0).max(axis=1) |
|
val_range = max_wv_val*0.9 |
|
largest = self.imgstack.max() |
|
f,ax = plt.subplots(nrows=len(self.coords['irs']),ncols=len(self.coords['wvs']),sharex=True,sharey=True,figsize=(len(self.coords['wvs'])*4,len(self.coords['irs'])*4)) |
|
plt.suptitle(f'FOV: {self.fov_name}; Z: {self.z_name}') |
|
if not isinstance(ax,np.ndarray): |
|
ax = np.array([ax]) |
|
if len(ax.shape)==1: |
|
if len(self.coords['irs'])==1: |
|
ax=ax[np.newaxis,:] |
|
elif len(self.coords['wvs'])==1: |
|
ax=ax[:,np.newaxis] |
|
for iwv,wv in enumerate(self.coords['wvs']): |
|
for iir,ir in enumerate(self.coords['irs']): |
|
img = self.imgstack[:,:,iwv,iir] |
|
bin_num = int(largest//2) |
|
ax[iir,iwv].imshow(img,vmax=val_range[iwv],cmap='gray') |
|
|
|
axins = inset_axes(ax[iir,iwv], width="25%", height="25%", loc=4, borderpad=1) |
|
data = img.ravel() |
|
axins.hist(data,bins=bin_num,range=(0,largest),log=True,histtype='step') |
|
axins.tick_params(labelleft=False, labelbottom=False) |
|
if iwv==0: |
|
ax[iir,iwv].set_ylabel(f'ir:{ir}') |
|
if iir==0: |
|
ax[iir,iwv].set_title(f'channel: {wv}nm') |
|
|
|
plt.tight_layout() |
|
self.pdf.savefig() |
|
plt.close(f) |
|
|
|
def contrast_heatmap(self): |
|
|
|
f,ax = plt.subplots() |
|
|
|
ims = ax.imshow(self.contrast_tape) |
|
ax.set_yticks(np.arange(len(self.coords['wvs'])), self.coords['wvs']) |
|
ax.set_xticks(np.arange(len(self.coords['irs'])), self.coords['irs']) |
|
ax.set_ylabel("Wavelength (nm)") |
|
ax.set_xlabel("Imaging Round") |
|
|
|
ax.set_title(f'FOV: {self.fov_name}; Z: {self.z_name}') |
|
plt.colorbar(ims) |
|
plt.tight_layout() |
|
self.pdf.savefig() |
|
plt.close(f) |
|
|
|
def _brightness_through_z(self): |
|
"""This is deprecated. |
|
""" |
|
|
|
mip_z_stack = self.imgstack.max(axis=4) |
|
|
|
largest = mip_z_stack.max() |
|
f,ax = plt.subplots(nrows=len(self.coords['irs']),ncols=len(self.coords['wvs']),sharex=True,sharey=True,figsize=(len(self.coords['wvs'])*4,len(self.coords['irs'])*4)) |
|
if not isinstance(ax,np.ndarray): |
|
ax = np.array([ax]) |
|
if len(ax.shape)==1: |
|
if len(self.coords['irs'])==1: |
|
ax=ax[np.newaxis,:] |
|
elif len(self.coords['wvs'])==1: |
|
ax=ax[:,np.newaxis] |
|
plt.suptitle(f'FOV: {self.fov_name}') |
|
for iwv,wv in enumerate(self.coords['wvs']): |
|
for iir,ir in enumerate(self.coords['irs']): |
|
bin_num = int(largest//2) |
|
|
|
data = mip_z_stack[:,:,iwv,iir] |
|
self.contrast_tape[iwv,iir] = self.calc_HS_metric(data) |
|
flat_data = data.ravel() |
|
|
|
ax[iir,iwv].hist(flat_data,bins=bin_num,range=(0,largest),log=True,histtype='step') |
|
ax[iir,iwv].text(0.5, 0.5, f'HS:{self.contrast_tape[iwv,iir]}', |
|
ha="center", va="center", |
|
transform=ax[iir,iwv].transAxes) |
|
if iwv==0: |
|
ax[iir,iwv].set_ylabel(f'ir:{ir}') |
|
if iir==0: |
|
ax[iir,iwv].set_title(f'channel: {wv}nm') |
|
|
|
plt.tight_layout() |
|
self.pdf.savefig() |
|
plt.close(f) |
|
|
|
|
|
def _brightness_through_z_on_images(self): |
|
"""This is Deprecated. |
|
""" |
|
mip_z_stack = self.imgstack.max(axis=4) |
|
|
|
max_wv_val = self.imgstack.max(axis=0).max(axis=0).max(axis=1).max(axis=1) |
|
val_range = max_wv_val*0.9 |
|
largest = mip_z_stack.max() |
|
f,ax = plt.subplots(nrows=len(self.coords['irs']),ncols=len(self.coords['wvs']),sharex=True,sharey=True,figsize=(len(self.coords['wvs'])*4,len(self.coords['irs'])*4)) |
|
plt.suptitle(f'FOV: {self.fov_name}') |
|
if not isinstance(ax,np.ndarray): |
|
ax = np.array([ax]) |
|
if len(ax.shape)==1: |
|
if len(self.coords['irs'])==1: |
|
ax=ax[np.newaxis,:] |
|
elif len(self.coords['wvs'])==1: |
|
ax=ax[:,np.newaxis] |
|
for iwv,wv in enumerate(self.coords['wvs']): |
|
for iir,ir in enumerate(self.coords['irs']): |
|
img = mip_z_stack[:,:,iwv,iir] |
|
bin_num = int(largest//2) |
|
ax[iir,iwv].imshow(img,vmax=val_range[iwv],cmap='gray') |
|
|
|
axins = inset_axes(ax[iir,iwv], width="25%", height="25%", loc=4, borderpad=1) |
|
data = img.flatten() |
|
axins.hist(data,bins=bin_num,range=(0,largest),log=True,histtype='step') |
|
axins.tick_params(labelleft=False, labelbottom=False) |
|
if iwv==0: |
|
ax[iir,iwv].set_ylabel(f'ir:{ir}') |
|
if iir==0: |
|
ax[iir,iwv].set_title(f'channel: {wv}nm') |
|
|
|
plt.tight_layout() |
|
self.pdf.savefig() |
|
plt.close(f) |
|
|
|
|
|
|
|
def _preview_images(self): |
|
"""This is deprecated. |
|
""" |
|
mip_z_stack = self.imgstack.max(axis=4) |
|
max_wv_val = self.imgstack.max(axis=0).max(axis=0).max(axis=1).max(axis=1) |
|
val_range = max_wv_val*0.9 |
|
|
|
f,ax = plt.subplots(nrows=len(self.coords['irs']),ncols=len(self.coords['wvs']),sharex=True,sharey=True,figsize=(len(self.coords['wvs'])*4,len(self.coords['irs'])*4)) |
|
plt.suptitle(f'FOV: {self.fov_name}') |
|
if not isinstance(ax,np.ndarray): |
|
ax = np.array([ax]) |
|
if len(ax.shape)==1: |
|
if len(self.coords['irs'])==1: |
|
ax=ax[np.newaxis,:] |
|
elif len(self.coords['wvs'])==1: |
|
ax=ax[:,np.newaxis] |
|
for iwv,wv in enumerate(self.coords['wvs']): |
|
for iir,ir in enumerate(self.coords['irs']): |
|
img = mip_z_stack[:,:,iwv,iir] |
|
ax[iir,iwv].imshow(img,vmax=val_range[iwv],cmap='gray') |
|
if iwv==0: |
|
ax[iir,iwv].set_ylabel(f'ir:{ir}') |
|
if iir==0: |
|
ax[iir,iwv].set_title(f'channel: {wv}nm') |
|
|
|
plt.tight_layout() |
|
self.pdf.savefig() |
|
plt.close(f) |
|
|