File size: 10,947 Bytes
5ad11ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
from .BaseReport import BaseReport

from utils import imgproc

import skimage.exposure as ske
import numpy as np

import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.inset_locator import inset_axes




class BrightnessReport(BaseReport):
    def __init__(self,imgstack_file,coord_info,fov,z):
        super().__init__(imgstack_file,coord_info)
        
        self.fov_name = fov
        self.z_name = z
        self.imgstack = self.imgstack # (y,x,wvs,irs)
        self.contrast_tape = np.zeros((self.imgstack.shape[2],
                                    self.imgstack.shape[3]))




    #Helper----------------------------------------------
    def calc_HS_metric(self,img):
        '''
        https://ieeexplore.ieee.org/document/6108900
        '''
        vals = np.percentile(img.ravel(),[75,25])
        max_val = np.max(img)
        min_val = np.min(img)

        return (vals[0]-vals[1])/(max_val-min_val)
    def calc_HF_metric(self,img):
        '''
        https://ieeexplore.ieee.org/document/6108900
        '''

        hist,_ = np.histogram(img.flatten(),bins = int(img.max()//2),range=(0,img.max()))

        return np.power(np.prod(hist),1/len(hist)) / hist.sum() * len(hist)

        
    def ski_is_low_contrast(self,img,fraction_threshold = 0.25):
        return ske.is_low_contrast(img,fraction_threshold=fraction_threshold)

    def contrast_test(self,img,threshold=0.25,method='ski'):
        if method=='ski':
            return self.ski_is_low_contrast(img,threshold)
        elif method =='HS':
            res = self.calc_HS_metric(img)
            return res>threshold
        elif method =='HF':
            res = self.calc_HF_metric(img)
            return res>threshold

        



    #Reports----------------------------------------------
    
    def preview_images(self):
        max_wv_val = self.imgstack.max(axis=0).max(axis=0).max(axis=1)
        val_range = max_wv_val*0.9#self.imgstack.max()*0.90
        f,ax = plt.subplots(nrows=len(self.coords['irs']),ncols=len(self.coords['wvs']),sharex=True,sharey=True,figsize=(len(self.coords['wvs'])*4,len(self.coords['irs'])*4))
        plt.suptitle(f'FOV: {self.fov_name}; Z: {self.z_name}')
        if not isinstance(ax,np.ndarray):
            ax = np.array([ax])
        if len(ax.shape)==1:
            if len(self.coords['irs'])==1:
                ax=ax[np.newaxis,:]
            elif len(self.coords['wvs'])==1:
                ax=ax[:,np.newaxis]
        for iwv,wv in enumerate(self.coords['wvs']):
            for iir,ir in enumerate(self.coords['irs']):
                img = self.imgstack[:,:,iwv,iir]
                ax[iir,iwv].imshow(img,vmax=val_range[iwv],cmap='gray')
                if iwv==0:
                    ax[iir,iwv].set_ylabel(f'ir:{ir}')
                if iir==0:
                    ax[iir,iwv].set_title(f'channel: {wv}nm')

        plt.tight_layout()
        self.pdf.savefig()
        plt.close(f)


    def brightness_infov_z(self):
        largest = self.imgstack.max()
        f,ax = plt.subplots(nrows=len(self.coords['irs']),ncols=len(self.coords['wvs']),sharex=True,sharey=True,figsize=(len(self.coords['wvs'])*4,len(self.coords['irs'])*4))
        if not isinstance(ax,np.ndarray):
            ax = np.array([ax])
        if len(ax.shape)==1:
            if len(self.coords['irs'])==1:
                ax=ax[np.newaxis,:]
            elif len(self.coords['wvs'])==1:
                ax=ax[:,np.newaxis]
        plt.suptitle(f'FOV: {self.fov_name}; Z: {self.z_name}')
        
        for iwv,wv in enumerate(self.coords['wvs']):
            for iir,ir in enumerate(self.coords['irs']):
                bin_num = int(largest//2)

                data = self.imgstack[:,:,iwv,iir]
                self.contrast_tape[iwv,iir] = self.calc_HS_metric(data)
                flat_data = data.ravel()

                ax[iir,iwv].hist(flat_data,bins=bin_num,range=(0,largest),log=True,histtype='step')
                ax[iir,iwv].text(0.5, 0.5, f'HS:{self.contrast_tape[iwv,iir]}',
                                ha="center", va="center",
                                transform=ax[iir,iwv].transAxes)
                if iwv==0:
                    ax[iir,iwv].set_ylabel(f'ir:{ir}')
                if iir==0:
                    ax[iir,iwv].set_title(f'channel: {wv}nm')

        plt.tight_layout()
        self.pdf.savefig()
        plt.close(f)
    
    def brightness_on_images(self):


        max_wv_val = self.imgstack.max(axis=0).max(axis=0).max(axis=1)
        val_range = max_wv_val*0.9
        largest = self.imgstack.max()
        f,ax = plt.subplots(nrows=len(self.coords['irs']),ncols=len(self.coords['wvs']),sharex=True,sharey=True,figsize=(len(self.coords['wvs'])*4,len(self.coords['irs'])*4))
        plt.suptitle(f'FOV: {self.fov_name}; Z: {self.z_name}')
        if not isinstance(ax,np.ndarray):
            ax = np.array([ax])
        if len(ax.shape)==1:
            if len(self.coords['irs'])==1:
                ax=ax[np.newaxis,:]
            elif len(self.coords['wvs'])==1:
                ax=ax[:,np.newaxis]
        for iwv,wv in enumerate(self.coords['wvs']):
            for iir,ir in enumerate(self.coords['irs']):
                img = self.imgstack[:,:,iwv,iir]
                bin_num = int(largest//2)
                ax[iir,iwv].imshow(img,vmax=val_range[iwv],cmap='gray')
                # Add histogram to the corner of the image
                axins = inset_axes(ax[iir,iwv], width="25%", height="25%", loc=4, borderpad=1)
                data = img.ravel()
                axins.hist(data,bins=bin_num,range=(0,largest),log=True,histtype='step')
                axins.tick_params(labelleft=False, labelbottom=False)
                if iwv==0:
                    ax[iir,iwv].set_ylabel(f'ir:{ir}')
                if iir==0:
                    ax[iir,iwv].set_title(f'channel: {wv}nm')

        plt.tight_layout()
        self.pdf.savefig()
        plt.close(f)
    
    def contrast_heatmap(self):

        f,ax = plt.subplots()

        ims = ax.imshow(self.contrast_tape)
        ax.set_yticks(np.arange(len(self.coords['wvs'])), self.coords['wvs'])
        ax.set_xticks(np.arange(len(self.coords['irs'])), self.coords['irs'])
        ax.set_ylabel("Wavelength (nm)")
        ax.set_xlabel("Imaging Round")

        ax.set_title(f'FOV: {self.fov_name}; Z: {self.z_name}')
        plt.colorbar(ims)
        plt.tight_layout()
        self.pdf.savefig()
        plt.close(f)
        
    def _brightness_through_z(self):
        """This is deprecated.
        """
        #Take the image stack and do a max projection from all the pixels through z
        mip_z_stack = self.imgstack.max(axis=4)

        largest = mip_z_stack.max()
        f,ax = plt.subplots(nrows=len(self.coords['irs']),ncols=len(self.coords['wvs']),sharex=True,sharey=True,figsize=(len(self.coords['wvs'])*4,len(self.coords['irs'])*4))
        if not isinstance(ax,np.ndarray):
            ax = np.array([ax])
        if len(ax.shape)==1:
            if len(self.coords['irs'])==1:
                ax=ax[np.newaxis,:]
            elif len(self.coords['wvs'])==1:
                ax=ax[:,np.newaxis]
        plt.suptitle(f'FOV: {self.fov_name}')
        for iwv,wv in enumerate(self.coords['wvs']):
            for iir,ir in enumerate(self.coords['irs']):
                bin_num = int(largest//2)

                data = mip_z_stack[:,:,iwv,iir]
                self.contrast_tape[iwv,iir] = self.calc_HS_metric(data)
                flat_data = data.ravel()

                ax[iir,iwv].hist(flat_data,bins=bin_num,range=(0,largest),log=True,histtype='step')
                ax[iir,iwv].text(0.5, 0.5, f'HS:{self.contrast_tape[iwv,iir]}',
                                ha="center", va="center",
                                transform=ax[iir,iwv].transAxes)
                if iwv==0:
                    ax[iir,iwv].set_ylabel(f'ir:{ir}')
                if iir==0:
                    ax[iir,iwv].set_title(f'channel: {wv}nm')

        plt.tight_layout()
        self.pdf.savefig()
        plt.close(f)


    def _brightness_through_z_on_images(self):
        """This is Deprecated.
        """
        mip_z_stack = self.imgstack.max(axis=4)

        max_wv_val = self.imgstack.max(axis=0).max(axis=0).max(axis=1).max(axis=1)
        val_range = max_wv_val*0.9
        largest = mip_z_stack.max()
        f,ax = plt.subplots(nrows=len(self.coords['irs']),ncols=len(self.coords['wvs']),sharex=True,sharey=True,figsize=(len(self.coords['wvs'])*4,len(self.coords['irs'])*4))
        plt.suptitle(f'FOV: {self.fov_name}')
        if not isinstance(ax,np.ndarray):
            ax = np.array([ax])
        if len(ax.shape)==1:
            if len(self.coords['irs'])==1:
                ax=ax[np.newaxis,:]
            elif len(self.coords['wvs'])==1:
                ax=ax[:,np.newaxis]
        for iwv,wv in enumerate(self.coords['wvs']):
            for iir,ir in enumerate(self.coords['irs']):
                img = mip_z_stack[:,:,iwv,iir]
                bin_num = int(largest//2)
                ax[iir,iwv].imshow(img,vmax=val_range[iwv],cmap='gray')
                # Add histogram to the corner of the image
                axins = inset_axes(ax[iir,iwv], width="25%", height="25%", loc=4, borderpad=1)
                data = img.flatten()
                axins.hist(data,bins=bin_num,range=(0,largest),log=True,histtype='step')
                axins.tick_params(labelleft=False, labelbottom=False)
                if iwv==0:
                    ax[iir,iwv].set_ylabel(f'ir:{ir}')
                if iir==0:
                    ax[iir,iwv].set_title(f'channel: {wv}nm')

        plt.tight_layout()
        self.pdf.savefig()
        plt.close(f)


        
    def _preview_images(self):
        """This is deprecated.
        """
        mip_z_stack = self.imgstack.max(axis=4)
        max_wv_val = self.imgstack.max(axis=0).max(axis=0).max(axis=1).max(axis=1)
        val_range = max_wv_val*0.9#self.imgstack.max()*0.90

        f,ax = plt.subplots(nrows=len(self.coords['irs']),ncols=len(self.coords['wvs']),sharex=True,sharey=True,figsize=(len(self.coords['wvs'])*4,len(self.coords['irs'])*4))
        plt.suptitle(f'FOV: {self.fov_name}')
        if not isinstance(ax,np.ndarray):
            ax = np.array([ax])
        if len(ax.shape)==1:
            if len(self.coords['irs'])==1:
                ax=ax[np.newaxis,:]
            elif len(self.coords['wvs'])==1:
                ax=ax[:,np.newaxis]
        for iwv,wv in enumerate(self.coords['wvs']):
            for iir,ir in enumerate(self.coords['irs']):
                img = mip_z_stack[:,:,iwv,iir]
                ax[iir,iwv].imshow(img,vmax=val_range[iwv],cmap='gray')
                if iwv==0:
                    ax[iir,iwv].set_ylabel(f'ir:{ir}')
                if iir==0:
                    ax[iir,iwv].set_title(f'channel: {wv}nm')

        plt.tight_layout()
        self.pdf.savefig()
        plt.close(f)