|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import skimage.io as skio |
|
from glob import glob |
|
import click |
|
import os |
|
from skimage import registration |
|
import scipy.ndimage as ndi |
|
from skimage.exposure import equalize_adapthist |
|
import re |
|
import cv2 |
|
from reliability.Other_functions import crosshairs |
|
|
|
@click.group() |
|
def cli(): |
|
pass |
|
|
|
refPt = [] |
|
@cli.command('makeBarcodeWithBead') |
|
@click.argument('img647_dir',type=click.Path(exists=True)) |
|
@click.argument('img750_dir',type=click.Path(exists=True)) |
|
@click.argument('bead_dir',type=click.Path(exists=True)) |
|
@click.option('--n_ref',default=0,type=int,help='The index of the file that will be used as datum for image registration (Default: 0)') |
|
@click.option('--pattern',default=None,type=str,help='The glob pattern to be used for file extraction (Default: "*.TIFF")') |
|
@click.option('--circle_size',default=15,type=int,help='The approximate diameter of a probe (Default: 15)') |
|
@click.option('--thresh',default=0.995,type=float,help='Local percentile for intensity extraction (Default: 0.995)') |
|
@click.option('--window_size',default=100,type=int,help='Size of the window used for local percentile extraction (Default: 100)') |
|
@click.option('--img_scale',default=1.0,type=float,help='Multiplier for image values to make it viewable (Default: 1)') |
|
def makeBarcodeWithBead(img647_dir:str,img750_dir:str,bead_dir:str,n_ref:int,pattern:str,circle_size:int,thresh:float,window_size:int,img_scale:float): |
|
|
|
|
|
|
|
|
|
global refPt |
|
if pattern is None: |
|
pattern = "*.TIFF" |
|
pattern647 = os.path.join(img647_dir,pattern) |
|
pattern750 = os.path.join(img750_dir,pattern) |
|
file_list_647 = glob(pattern647) |
|
file_list_750 = glob(pattern750) |
|
|
|
file_list_647.sort(key=lambda f: int(re.sub('\D', '', f))) |
|
file_list_750.sort(key=lambda f: int(re.sub('\D', '', f))) |
|
|
|
bead_dir_pattern = os.path.join(bead_dir,pattern) |
|
bead_file_list = glob(bead_dir_pattern) |
|
bead_file_list.sort(key=lambda f: int(re.sub('\D', '', f))) |
|
|
|
|
|
bead_imgs = dict() |
|
for idx,fn in enumerate(bead_file_list): |
|
img = skio.imread(fn) |
|
bead_imgs[idx]=img |
|
|
|
imgs = dict() |
|
file_list = file_list_647+file_list_750 |
|
for idx,fn in enumerate(file_list): |
|
|
|
_img = skio.imread(fn) |
|
|
|
imgs[idx]=equalize_adapthist(_img, clip_limit=0.03) |
|
|
|
|
|
for idx in range(1,len(bead_imgs)): |
|
shift,_,_ = registration.phase_cross_correlation(bead_imgs[n_ref],bead_imgs[idx]) |
|
|
|
imgs[idx] = ndi.shift(imgs[idx],shift) |
|
|
|
|
|
|
|
window_Size =window_size |
|
|
|
ref_img = imgs[n_ref] |
|
ref_img = ref_img*img_scale |
|
|
|
fig,ax = plt.subplots(num=1) |
|
cid = fig.canvas.mpl_connect('button_release_event', recordClickLoc_mpl) |
|
ax.imshow(ref_img,cmap='gray') |
|
crosshairs() |
|
plt.show() |
|
while True: |
|
|
|
if len(refPt)<2: |
|
if not plt.fignum_exists(num=1): |
|
fig,ax = plt.subplots(num=1) |
|
cid = fig.canvas.mpl_connect('button_release_event', recordClickLoc_mpl) |
|
ax.imshow(ref_img,cmap='gray') |
|
crosshairs() |
|
plt.show() |
|
continue |
|
else: |
|
print('Accepted') |
|
print(refPt) |
|
break |
|
|
|
|
|
|
|
|
|
|
|
img_circle = dict() |
|
|
|
n_cols = 3 |
|
n_rows = int(np.ceil(len(imgs)/n_cols)) |
|
plt.rcParams.update({'font.size': 22}) |
|
f,ax = plt.subplots(n_rows,n_cols,figsize=(20,20),dpi=200) |
|
ax = ax.flatten() |
|
|
|
for idx in range(len(imgs)): |
|
img = imgs[idx] |
|
spot_thresh = calcSpotThresh(img,thresh_percent=thresh) |
|
canvas = np.zeros((img.shape[0],img.shape[1],3)) |
|
circle_mask = cv2.circle(canvas,tuple(refPt),circle_size//2,(1,1,1),-1) |
|
circle_test = circleTest(img,circle_mask,spot_thresh) |
|
img_circle[idx] = centreCrop(cv2.circle(img,tuple(refPt),circle_size//2,(0,255,255),1), |
|
refPt, |
|
window_Size) |
|
ax[idx].imshow(img_circle[idx]*img_scale,vmin=0,cmap='gray') |
|
ax[idx].axis('off') |
|
ax[idx].set_title(circle_test) |
|
plt.tight_layout() |
|
|
|
plt.savefig('./barcode_bead_example.png') |
|
|
|
|
|
|
|
|
|
|
|
|
|
def recordClickLoc_mpl(event): |
|
global refPt |
|
refPt=[int(event.xdata),int(event.ydata)] |
|
|
|
def centreCrop(img,centrePt,window_size): |
|
h=window_size//2 |
|
|
|
|
|
y = np.maximum(centrePt[1] - h,0) |
|
x = np.maximum(centrePt[0] - h,0) |
|
|
|
crop_img = img[int(y):int(y+window_size), int(x):int(x+window_size)] |
|
return crop_img |
|
|
|
def circleTest(img,circle_mask, thresh): |
|
res = np.multiply(img[:,:,np.newaxis].copy(),circle_mask)[:,:] |
|
test = res[res>thresh].sum() |
|
if test>0: |
|
return 1 |
|
else: |
|
return 0 |
|
|
|
def calcSpotThresh(img:np.ndarray,thresh_percent:float = 0.9)->float: |
|
_img = img[:,:].flatten() |
|
|
|
sorted_img = np.sort(_img) |
|
|
|
idx = np.floor(thresh_percent*sorted_img.size).astype(int) |
|
|
|
_thresh = sorted_img[idx] |
|
|
|
return _thresh |
|
|
|
|
|
|
|
if __name__=='__main__': |
|
cli() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|