File size: 5,640 Bytes
5ad11ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import matplotlib.pyplot as plt
import numpy as np
import skimage.io as skio
from glob import glob
import click
import os
from skimage import registration
import scipy.ndimage as ndi
from skimage.exposure import equalize_adapthist
import re
import cv2
from reliability.Other_functions import crosshairs
@click.group()
def cli():
pass
refPt = []
@cli.command('makeBarcodeWithBead')
@click.argument('img647_dir',type=click.Path(exists=True))
@click.argument('img750_dir',type=click.Path(exists=True))
@click.argument('bead_dir',type=click.Path(exists=True))
@click.option('--n_ref',default=0,type=int,help='The index of the file that will be used as datum for image registration (Default: 0)')
@click.option('--pattern',default=None,type=str,help='The glob pattern to be used for file extraction (Default: "*.TIFF")')
@click.option('--circle_size',default=15,type=int,help='The approximate diameter of a probe (Default: 15)')
@click.option('--thresh',default=0.995,type=float,help='Local percentile for intensity extraction (Default: 0.995)')
@click.option('--window_size',default=100,type=int,help='Size of the window used for local percentile extraction (Default: 100)')
@click.option('--img_scale',default=1.0,type=float,help='Multiplier for image values to make it viewable (Default: 1)')
def makeBarcodeWithBead(img647_dir:str,img750_dir:str,bead_dir:str,n_ref:int,pattern:str,circle_size:int,thresh:float,window_size:int,img_scale:float):
global refPt
if pattern is None:
pattern = "*.TIFF"
pattern647 = os.path.join(img647_dir,pattern)
pattern750 = os.path.join(img750_dir,pattern)
file_list_647 = glob(pattern647)
file_list_750 = glob(pattern750)
file_list_647.sort(key=lambda f: int(re.sub('\D', '', f)))
file_list_750.sort(key=lambda f: int(re.sub('\D', '', f)))
bead_dir_pattern = os.path.join(bead_dir,pattern)
bead_file_list = glob(bead_dir_pattern)
bead_file_list.sort(key=lambda f: int(re.sub('\D', '', f)))
#Register the beads
bead_imgs = dict()
for idx,fn in enumerate(bead_file_list):
img = skio.imread(fn)
bead_imgs[idx]=img
#load images
imgs = dict()
file_list = file_list_647+file_list_750
for idx,fn in enumerate(file_list):
_img = skio.imread(fn)
imgs[idx]=equalize_adapthist(_img, clip_limit=0.03)
for idx in range(1,len(bead_imgs)):
shift,_,_ = registration.phase_cross_correlation(bead_imgs[n_ref],bead_imgs[idx])
imgs[idx] = ndi.shift(imgs[idx],shift)
#Window size
window_Size =window_size
ref_img = imgs[n_ref]
ref_img = ref_img*img_scale
fig,ax = plt.subplots(num=1)
cid = fig.canvas.mpl_connect('button_release_event', recordClickLoc_mpl)
ax.imshow(ref_img,cmap='gray')
crosshairs()
plt.show()
while True:
if len(refPt)<2:
if not plt.fignum_exists(num=1):
fig,ax = plt.subplots(num=1)
cid = fig.canvas.mpl_connect('button_release_event', recordClickLoc_mpl)
ax.imshow(ref_img,cmap='gray')
crosshairs()
plt.show()
continue
else:
print('Accepted')
print(refPt)
break
#load and register all the images based on the bead registration
#Draw a circle of a certain radius in the image
img_circle = dict()
n_cols = 3
n_rows = int(np.ceil(len(imgs)/n_cols))
plt.rcParams.update({'font.size': 22})
f,ax = plt.subplots(n_rows,n_cols,figsize=(20,20),dpi=200)
ax = ax.flatten()
for idx in range(len(imgs)):
img = imgs[idx]
spot_thresh = calcSpotThresh(img,thresh_percent=thresh)
canvas = np.zeros((img.shape[0],img.shape[1],3))
circle_mask = cv2.circle(canvas,tuple(refPt),circle_size//2,(1,1,1),-1)
circle_test = circleTest(img,circle_mask,spot_thresh)
img_circle[idx] = centreCrop(cv2.circle(img,tuple(refPt),circle_size//2,(0,255,255),1),
refPt,
window_Size)
ax[idx].imshow(img_circle[idx]*img_scale,vmin=0,cmap='gray')#,vmax=np.max(img[idx]),)
ax[idx].axis('off')
ax[idx].set_title(circle_test)
plt.tight_layout()
plt.savefig('./barcode_bead_example.png')
def recordClickLoc_mpl(event):
global refPt
refPt=[int(event.xdata),int(event.ydata)]
def centreCrop(img,centrePt,window_size):
h=window_size//2
y = np.maximum(centrePt[1] - h,0)
x = np.maximum(centrePt[0] - h,0)
crop_img = img[int(y):int(y+window_size), int(x):int(x+window_size)]
return crop_img
def circleTest(img,circle_mask, thresh):
res = np.multiply(img[:,:,np.newaxis].copy(),circle_mask)[:,:]
test = res[res>thresh].sum()
if test>0:
return 1
else:
return 0
def calcSpotThresh(img:np.ndarray,thresh_percent:float = 0.9)->float:
_img = img[:,:].flatten()
sorted_img = np.sort(_img)
idx = np.floor(thresh_percent*sorted_img.size).astype(int)
_thresh = sorted_img[idx]
return _thresh
#create histogram of the image
#find the threshpercentile. i.e. sort the list, and then find the thresh_percent*len(list)
if __name__=='__main__':
cli()
# img647_dir = '/Volumes/shahidsWORK/647nm, Raw'
# img750_dir = '/Volumes/shahidsWORK/750nm, Raw'
# beads_dir = '/Volumes/shahidsWORK/561nm, Raw'
# makeBarcodeWithBead(img647_dir,img750_dir,beads_dir,n_ref=0,pattern="merFISH_*_002_01.TIFF",circle_size=9,thresh=0.995,window_size=50,img_scale=1)
|