File size: 4,995 Bytes
2d6bfa0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
.. _object_segmentation:
Object Segmentation
===================
.. _3d_object_segmentation:
3D object segmentation
-------------------------
Our scene segmentation works with the assumption that the table has to be parallel
to the ground as we use
`SampleConsensusModelPerpendicularPlane <https://pointclouds.org/documentation/classpcl_1_1_sample_consensus_model_perpendicular_plane.html>`_
from PCL library. We keep points which are perpendicular to `z` axis.
There are two packages you can launch in order to segment table top point clouds:
*mir_object_segmentation* package
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
`mir_object_segmentation <https://github.com/b-it-bots/mas_industrial_robotics/tree/melodic/mir_perception/mir_object_segmentation>`_
package can be used to accumulate clouds from different views (if necessary),
register them, and then segment the objects above the table.
**Usage**
* Find plane height
To find the object height, you have to send the following messages to `event_in`
topic:
.. code-block:: bash
rostopic pub /mir_perception/scene_segmentation/event_in std_msgs/String e_start
rostopic pub /mir_perception/scene_segmentation/event_in std_msgs/String e_add_cloud_start
rostopic pub /mir_perception/scene_segmentation/event_in std_msgs/String e_find_plane
The plane height will be published to `workspace_height` topic:
.. code-block:: bash
/mir_perception/scene_segmentation/output/workspace_height
* Segment objects from one view point
.. code-block:: bash
rostopic pub /mir_perception/scene_segmentation/event_in std_msgs/String e_start
rostopic pub /mir_perception/scene_segmentation/event_in std_msgs/String e_add_cloud_start
rostopic pub /mir_perception/scene_segmentation/event_in std_msgs/String e_segment
rostopic pub /mir_perception/scene_segmentation/event_in std_msgs/String e_stop
* Segment objects from one view point
You can segment table top objects from multiple viewpoints. You can do this by
manually moving the camera position to a new view point, and then register
the cloud with the existing ones.
.. code-block:: bash
# accumulate point cloud from the 1st view point
rostopic pub /mir_perception/scene_segmentation/event_in std_msgs/String e_start
rostopic pub /mir_perception/scene_segmentation/event_in std_msgs/String e_add_cloud_start
rostopic pub /mir_perception/scene_segmentation/event_in std_msgs/String e_add_cloud_stop
# accumulate point cloud from the 2nd view point
rostopic pub /mir_perception/scene_segmentation/event_in std_msgs/String e_add_cloud_start
rostopic pub /mir_perception/scene_segmentation/event_in std_msgs/String e_add_cloud_stop
# segment accumulated cloud and stop segmentation
rostopic pub /mir_perception/scene_segmentation/event_in std_msgs/String e_segment
rostopic pub /mir_perception/scene_segmentation/event_in std_msgs/String e_stop
.. hint:: Published msgs from mir_object_segmentation
* Object list
.. code-block:: bash
/mir_perception/scene_segmentation/output/object_list
* Bounding Boxes (for visualization in Rviz)
.. code-block:: bash
/mir_perception/scene_segmentation/output/bounding_boxes
* Object labels (for visualization in Rviz)
.. code-block:: bash
/mir_perception/scene_segmentation/output/labels
* Debug pointcloud (shows filtered input to plane segmentation)
.. code-block:: bash
/mir_perception/scene_segmentation/output/debug_cloud
* Object clusters: segmented point clouds
.. code-block:: bash
/mir_perception/scene_segmentation/output/tabletop_clusters
* Workspace height:
.. code-block:: bash
/mir_perception/scene_segmentation/output/workspace_height
*mir_object_recognition* package
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
`mir_object_recognition` uses the same `scene_segmentation` method
as in `mir_object_segmentation`, but it does not accumulate point clouds. It only
takes one view and then segment table top objects.
**Usage**
* Segment objects
.. code-block:: bash
rostopic pub /mir_perception/multimodal_object_recognition/event_in std_msgs/String e_start
**Published messages**
.. code-block:: bash
/mcr_perception/object_detector/object_list
/mir_perception/multimodal_object_recognition/output/bounding_boxes
/mir_perception/multimodal_object_recognition/output/debug_cloud_plane
/mir_perception/multimodal_object_recognition/output/pc_labels
/mir_perception/multimodal_object_recognition/output/pc_object_pose_array
/mir_perception/multimodal_object_recognition/output/rgb_labels
/mir_perception/multimodal_object_recognition/output/rgb_object_pose_array
/mir_perception/multimodal_object_recognition/output/tabletop_cluster_pc
/mir_perception/multimodal_object_recognition/output/tabletop_cluster_rgb
/mir_perception/multimodal_object_recognition/output/workspace_height
|