url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
apply Exists.intro []
case right α : Type inst✝ : DecidableEq α a : α r s : RegExp α r_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a r) ↔ a :: w ∈ RegExp.languageOf α r s_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a s) ↔ a :: w ∈ RegExp.languageOf α s w xs : List α a2_left : xs ∈ RegExp.languageOf α r ys : List α a3_left : ys ∈ RegExp.languageOf α s a3_right : xs ++ ys = a :: w c1 : [] ∈ RegExp.languageOf α r ⊢ ∃ s_1 ∈ RegExp.languageOf α s, a :: w ++ s_1 = w
case right α : Type inst✝ : DecidableEq α a : α r s : RegExp α r_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a r) ↔ a :: w ∈ RegExp.languageOf α r s_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a s) ↔ a :: w ∈ RegExp.languageOf α s w xs : List α a2_left : xs ∈ RegExp.languageOf α r ys : List α a3_left : ys ∈ RegExp.languageOf α s a3_right : xs ++ ys = a :: w c1 : [] ∈ RegExp.languageOf α r ⊢ [] ∈ RegExp.languageOf α s ∧ a :: w ++ [] = w
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
sorry
case right α : Type inst✝ : DecidableEq α a : α r s : RegExp α r_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a r) ↔ a :: w ∈ RegExp.languageOf α r s_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a s) ↔ a :: w ∈ RegExp.languageOf α s w xs : List α a2_left : xs ∈ RegExp.languageOf α r ys : List α a3_left : ys ∈ RegExp.languageOf α s a3_right : xs ++ ys = a :: w c1 : [] ∈ RegExp.languageOf α r ⊢ [] ∈ RegExp.languageOf α s ∧ a :: w ++ [] = w
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
simp only [RegExp.languageOf]
α : Type inst✝ : DecidableEq α a : α r s : RegExp α r_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a r) ↔ a :: w ∈ RegExp.languageOf α r s_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a s) ↔ a :: w ∈ RegExp.languageOf α s w : List α c1 : ¬r.is_nullable ⊢ w ∈ RegExp.languageOf α (r.delta.concat (RegExp.derivative a s)) ↔ a :: w ∈ RegExp.languageOf α (r.concat s)
α : Type inst✝ : DecidableEq α a : α r s : RegExp α r_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a r) ↔ a :: w ∈ RegExp.languageOf α r s_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a s) ↔ a :: w ∈ RegExp.languageOf α s w : List α c1 : ¬r.is_nullable ⊢ w ∈ {x | ∃ r_1 ∈ RegExp.languageOf α r.delta, ∃ s_1 ∈ RegExp.languageOf α (RegExp.derivative a s), r_1 ++ s_1 = x} ↔ a :: w ∈ {x | ∃ r_1 ∈ RegExp.languageOf α r, ∃ s_1 ∈ RegExp.languageOf α s, r_1 ++ s_1 = x}
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
simp
α : Type inst✝ : DecidableEq α a : α r s : RegExp α r_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a r) ↔ a :: w ∈ RegExp.languageOf α r s_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a s) ↔ a :: w ∈ RegExp.languageOf α s w : List α c1 : ¬r.is_nullable ⊢ w ∈ {x | ∃ r_1 ∈ RegExp.languageOf α r.delta, ∃ s_1 ∈ RegExp.languageOf α (RegExp.derivative a s), r_1 ++ s_1 = x} ↔ a :: w ∈ {x | ∃ r_1 ∈ RegExp.languageOf α r, ∃ s_1 ∈ RegExp.languageOf α s, r_1 ++ s_1 = x}
α : Type inst✝ : DecidableEq α a : α r s : RegExp α r_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a r) ↔ a :: w ∈ RegExp.languageOf α r s_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a s) ↔ a :: w ∈ RegExp.languageOf α s w : List α c1 : ¬r.is_nullable ⊢ (∃ r_1 ∈ RegExp.languageOf α r.delta, ∃ s_1 ∈ RegExp.languageOf α (RegExp.derivative a s), r_1 ++ s_1 = w) ↔ ∃ r_1 ∈ RegExp.languageOf α r, ∃ s_1 ∈ RegExp.languageOf α s, r_1 ++ s_1 = a :: w
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
constructor
α : Type inst✝ : DecidableEq α a : α r s : RegExp α r_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a r) ↔ a :: w ∈ RegExp.languageOf α r s_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a s) ↔ a :: w ∈ RegExp.languageOf α s w : List α c1 : ¬r.is_nullable ⊢ (∃ r_1 ∈ RegExp.languageOf α r.delta, ∃ s_1 ∈ RegExp.languageOf α (RegExp.derivative a s), r_1 ++ s_1 = w) ↔ ∃ r_1 ∈ RegExp.languageOf α r, ∃ s_1 ∈ RegExp.languageOf α s, r_1 ++ s_1 = a :: w
case mp α : Type inst✝ : DecidableEq α a : α r s : RegExp α r_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a r) ↔ a :: w ∈ RegExp.languageOf α r s_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a s) ↔ a :: w ∈ RegExp.languageOf α s w : List α c1 : ¬r.is_nullable ⊢ (∃ r_1 ∈ RegExp.languageOf α r.delta, ∃ s_1 ∈ RegExp.languageOf α (RegExp.derivative a s), r_1 ++ s_1 = w) → ∃ r_1 ∈ RegExp.languageOf α r, ∃ s_1 ∈ RegExp.languageOf α s, r_1 ++ s_1 = a :: w case mpr α : Type inst✝ : DecidableEq α a : α r s : RegExp α r_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a r) ↔ a :: w ∈ RegExp.languageOf α r s_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a s) ↔ a :: w ∈ RegExp.languageOf α s w : List α c1 : ¬r.is_nullable ⊢ (∃ r_1 ∈ RegExp.languageOf α r, ∃ s_1 ∈ RegExp.languageOf α s, r_1 ++ s_1 = a :: w) → ∃ r_1 ∈ RegExp.languageOf α r.delta, ∃ s_1 ∈ RegExp.languageOf α (RegExp.derivative a s), r_1 ++ s_1 = w
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
intro a1
case mp α : Type inst✝ : DecidableEq α a : α r s : RegExp α r_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a r) ↔ a :: w ∈ RegExp.languageOf α r s_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a s) ↔ a :: w ∈ RegExp.languageOf α s w : List α c1 : ¬r.is_nullable ⊢ (∃ r_1 ∈ RegExp.languageOf α r.delta, ∃ s_1 ∈ RegExp.languageOf α (RegExp.derivative a s), r_1 ++ s_1 = w) → ∃ r_1 ∈ RegExp.languageOf α r, ∃ s_1 ∈ RegExp.languageOf α s, r_1 ++ s_1 = a :: w
case mp α : Type inst✝ : DecidableEq α a : α r s : RegExp α r_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a r) ↔ a :: w ∈ RegExp.languageOf α r s_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a s) ↔ a :: w ∈ RegExp.languageOf α s w : List α c1 : ¬r.is_nullable a1 : ∃ r_1 ∈ RegExp.languageOf α r.delta, ∃ s_1 ∈ RegExp.languageOf α (RegExp.derivative a s), r_1 ++ s_1 = w ⊢ ∃ r_1 ∈ RegExp.languageOf α r, ∃ s_1 ∈ RegExp.languageOf α s, r_1 ++ s_1 = a :: w
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
apply Exists.elim a1
case mp α : Type inst✝ : DecidableEq α a : α r s : RegExp α r_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a r) ↔ a :: w ∈ RegExp.languageOf α r s_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a s) ↔ a :: w ∈ RegExp.languageOf α s w : List α c1 : ¬r.is_nullable a1 : ∃ r_1 ∈ RegExp.languageOf α r.delta, ∃ s_1 ∈ RegExp.languageOf α (RegExp.derivative a s), r_1 ++ s_1 = w ⊢ ∃ r_1 ∈ RegExp.languageOf α r, ∃ s_1 ∈ RegExp.languageOf α s, r_1 ++ s_1 = a :: w
case mp α : Type inst✝ : DecidableEq α a : α r s : RegExp α r_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a r) ↔ a :: w ∈ RegExp.languageOf α r s_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a s) ↔ a :: w ∈ RegExp.languageOf α s w : List α c1 : ¬r.is_nullable a1 : ∃ r_1 ∈ RegExp.languageOf α r.delta, ∃ s_1 ∈ RegExp.languageOf α (RegExp.derivative a s), r_1 ++ s_1 = w ⊢ ∀ (a_1 : List α), (a_1 ∈ RegExp.languageOf α r.delta ∧ ∃ s_1 ∈ RegExp.languageOf α (RegExp.derivative a s), a_1 ++ s_1 = w) → ∃ r_1 ∈ RegExp.languageOf α r, ∃ s_1 ∈ RegExp.languageOf α s, r_1 ++ s_1 = a :: w
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
intro xs a2
case mp α : Type inst✝ : DecidableEq α a : α r s : RegExp α r_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a r) ↔ a :: w ∈ RegExp.languageOf α r s_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a s) ↔ a :: w ∈ RegExp.languageOf α s w : List α c1 : ¬r.is_nullable a1 : ∃ r_1 ∈ RegExp.languageOf α r.delta, ∃ s_1 ∈ RegExp.languageOf α (RegExp.derivative a s), r_1 ++ s_1 = w ⊢ ∀ (a_1 : List α), (a_1 ∈ RegExp.languageOf α r.delta ∧ ∃ s_1 ∈ RegExp.languageOf α (RegExp.derivative a s), a_1 ++ s_1 = w) → ∃ r_1 ∈ RegExp.languageOf α r, ∃ s_1 ∈ RegExp.languageOf α s, r_1 ++ s_1 = a :: w
case mp α : Type inst✝ : DecidableEq α a : α r s : RegExp α r_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a r) ↔ a :: w ∈ RegExp.languageOf α r s_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a s) ↔ a :: w ∈ RegExp.languageOf α s w : List α c1 : ¬r.is_nullable a1 : ∃ r_1 ∈ RegExp.languageOf α r.delta, ∃ s_1 ∈ RegExp.languageOf α (RegExp.derivative a s), r_1 ++ s_1 = w xs : List α a2 : xs ∈ RegExp.languageOf α r.delta ∧ ∃ s_1 ∈ RegExp.languageOf α (RegExp.derivative a s), xs ++ s_1 = w ⊢ ∃ r_1 ∈ RegExp.languageOf α r, ∃ s_1 ∈ RegExp.languageOf α s, r_1 ++ s_1 = a :: w
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
clear a1
case mp α : Type inst✝ : DecidableEq α a : α r s : RegExp α r_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a r) ↔ a :: w ∈ RegExp.languageOf α r s_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a s) ↔ a :: w ∈ RegExp.languageOf α s w : List α c1 : ¬r.is_nullable a1 : ∃ r_1 ∈ RegExp.languageOf α r.delta, ∃ s_1 ∈ RegExp.languageOf α (RegExp.derivative a s), r_1 ++ s_1 = w xs : List α a2 : xs ∈ RegExp.languageOf α r.delta ∧ ∃ s_1 ∈ RegExp.languageOf α (RegExp.derivative a s), xs ++ s_1 = w ⊢ ∃ r_1 ∈ RegExp.languageOf α r, ∃ s_1 ∈ RegExp.languageOf α s, r_1 ++ s_1 = a :: w
case mp α : Type inst✝ : DecidableEq α a : α r s : RegExp α r_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a r) ↔ a :: w ∈ RegExp.languageOf α r s_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a s) ↔ a :: w ∈ RegExp.languageOf α s w : List α c1 : ¬r.is_nullable xs : List α a2 : xs ∈ RegExp.languageOf α r.delta ∧ ∃ s_1 ∈ RegExp.languageOf α (RegExp.derivative a s), xs ++ s_1 = w ⊢ ∃ r_1 ∈ RegExp.languageOf α r, ∃ s_1 ∈ RegExp.languageOf α s, r_1 ++ s_1 = a :: w
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
sorry
case mp α : Type inst✝ : DecidableEq α a : α r s : RegExp α r_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a r) ↔ a :: w ∈ RegExp.languageOf α r s_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a s) ↔ a :: w ∈ RegExp.languageOf α s w : List α c1 : ¬r.is_nullable xs : List α a2 : xs ∈ RegExp.languageOf α r.delta ∧ ∃ s_1 ∈ RegExp.languageOf α (RegExp.derivative a s), xs ++ s_1 = w ⊢ ∃ r_1 ∈ RegExp.languageOf α r, ∃ s_1 ∈ RegExp.languageOf α s, r_1 ++ s_1 = a :: w
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
sorry
case mpr α : Type inst✝ : DecidableEq α a : α r s : RegExp α r_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a r) ↔ a :: w ∈ RegExp.languageOf α r s_ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a s) ↔ a :: w ∈ RegExp.languageOf α s w : List α c1 : ¬r.is_nullable ⊢ (∃ r_1 ∈ RegExp.languageOf α r, ∃ s_1 ∈ RegExp.languageOf α s, r_1 ++ s_1 = a :: w) → ∃ r_1 ∈ RegExp.languageOf α r.delta, ∃ s_1 ∈ RegExp.languageOf α (RegExp.derivative a s), r_1 ++ s_1 = w
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
simp only [RegExp.derivative]
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w : List α ⊢ w ∈ RegExp.languageOf α (RegExp.derivative a e.closure) ↔ a :: w ∈ RegExp.languageOf α e.closure
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w : List α ⊢ w ∈ RegExp.languageOf α ((RegExp.derivative a e).concat e.closure) ↔ a :: w ∈ RegExp.languageOf α e.closure
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
simp only [RegExp.languageOf]
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w : List α ⊢ w ∈ RegExp.languageOf α ((RegExp.derivative a e).concat e.closure) ↔ a :: w ∈ RegExp.languageOf α e.closure
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w : List α ⊢ w ∈ {x | ∃ r ∈ RegExp.languageOf α (RegExp.derivative a e), ∃ s ∈ {l | ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = l}, r ++ s = x} ↔ a :: w ∈ {l | ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = l}
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
simp
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w : List α ⊢ w ∈ {x | ∃ r ∈ RegExp.languageOf α (RegExp.derivative a e), ∃ s ∈ {l | ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = l}, r ++ s = x} ↔ a :: w ∈ {l | ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = l}
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w : List α ⊢ (∃ r ∈ RegExp.languageOf α (RegExp.derivative a e), ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ r ++ a.join = w) ↔ ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
constructor
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w : List α ⊢ (∃ r ∈ RegExp.languageOf α (RegExp.derivative a e), ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ r ++ a.join = w) ↔ ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
case mp α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w : List α ⊢ (∃ r ∈ RegExp.languageOf α (RegExp.derivative a e), ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ r ++ a.join = w) → ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w case mpr α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w : List α ⊢ (∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w) → ∃ r ∈ RegExp.languageOf α (RegExp.derivative a e), ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ r ++ a.join = w
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
sorry
case mpr α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w : List α ⊢ (∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w) → ∃ r ∈ RegExp.languageOf α (RegExp.derivative a e), ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ r ++ a.join = w
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
intro a1
case mp α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w : List α ⊢ (∃ r ∈ RegExp.languageOf α (RegExp.derivative a e), ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ r ++ a.join = w) → ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
case mp α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w : List α a1 : ∃ r ∈ RegExp.languageOf α (RegExp.derivative a e), ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ r ++ a.join = w ⊢ ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
apply Exists.elim a1
case mp α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w : List α a1 : ∃ r ∈ RegExp.languageOf α (RegExp.derivative a e), ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ r ++ a.join = w ⊢ ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
case mp α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w : List α a1 : ∃ r ∈ RegExp.languageOf α (RegExp.derivative a e), ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ r ++ a.join = w ⊢ ∀ (a_1 : List α), (a_1 ∈ RegExp.languageOf α (RegExp.derivative a e) ∧ ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ a_1 ++ a.join = w) → ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
intro xs a2
case mp α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w : List α a1 : ∃ r ∈ RegExp.languageOf α (RegExp.derivative a e), ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ r ++ a.join = w ⊢ ∀ (a_1 : List α), (a_1 ∈ RegExp.languageOf α (RegExp.derivative a e) ∧ ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ a_1 ++ a.join = w) → ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
case mp α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w : List α a1 : ∃ r ∈ RegExp.languageOf α (RegExp.derivative a e), ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ r ++ a.join = w xs : List α a2 : xs ∈ RegExp.languageOf α (RegExp.derivative a e) ∧ ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ xs ++ a.join = w ⊢ ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
clear a1
case mp α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w : List α a1 : ∃ r ∈ RegExp.languageOf α (RegExp.derivative a e), ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ r ++ a.join = w xs : List α a2 : xs ∈ RegExp.languageOf α (RegExp.derivative a e) ∧ ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ xs ++ a.join = w ⊢ ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
case mp α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w xs : List α a2 : xs ∈ RegExp.languageOf α (RegExp.derivative a e) ∧ ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ xs ++ a.join = w ⊢ ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
cases a2
case mp α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w xs : List α a2 : xs ∈ RegExp.languageOf α (RegExp.derivative a e) ∧ ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ xs ++ a.join = w ⊢ ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
case mp.intro α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w xs : List α left✝ : xs ∈ RegExp.languageOf α (RegExp.derivative a e) right✝ : ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ xs ++ a.join = w ⊢ ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
case _ a2_left a2_right => apply Exists.elim a2_right intro ys a3 clear a2_right cases a3 case _ a3_left a3_right => apply Exists.intro [(a :: w)] simp simp only [← ih] sorry
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w xs : List α a2_left : xs ∈ RegExp.languageOf α (RegExp.derivative a e) a2_right : ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ xs ++ a.join = w ⊢ ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
apply Exists.elim a2_right
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w xs : List α a2_left : xs ∈ RegExp.languageOf α (RegExp.derivative a e) a2_right : ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ xs ++ a.join = w ⊢ ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w xs : List α a2_left : xs ∈ RegExp.languageOf α (RegExp.derivative a e) a2_right : ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ xs ++ a.join = w ⊢ ∀ (a_1 : List (List α)), (∀ r ∈ a_1, r ∈ RegExp.languageOf α e) ∧ xs ++ a_1.join = w → ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
intro ys a3
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w xs : List α a2_left : xs ∈ RegExp.languageOf α (RegExp.derivative a e) a2_right : ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ xs ++ a.join = w ⊢ ∀ (a_1 : List (List α)), (∀ r ∈ a_1, r ∈ RegExp.languageOf α e) ∧ xs ++ a_1.join = w → ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w xs : List α a2_left : xs ∈ RegExp.languageOf α (RegExp.derivative a e) a2_right : ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ xs ++ a.join = w ys : List (List α) a3 : (∀ r ∈ ys, r ∈ RegExp.languageOf α e) ∧ xs ++ ys.join = w ⊢ ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
clear a2_right
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w xs : List α a2_left : xs ∈ RegExp.languageOf α (RegExp.derivative a e) a2_right : ∃ a, (∀ r ∈ a, r ∈ RegExp.languageOf α e) ∧ xs ++ a.join = w ys : List (List α) a3 : (∀ r ∈ ys, r ∈ RegExp.languageOf α e) ∧ xs ++ ys.join = w ⊢ ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w xs : List α a2_left : xs ∈ RegExp.languageOf α (RegExp.derivative a e) ys : List (List α) a3 : (∀ r ∈ ys, r ∈ RegExp.languageOf α e) ∧ xs ++ ys.join = w ⊢ ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
cases a3
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w xs : List α a2_left : xs ∈ RegExp.languageOf α (RegExp.derivative a e) ys : List (List α) a3 : (∀ r ∈ ys, r ∈ RegExp.languageOf α e) ∧ xs ++ ys.join = w ⊢ ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
case intro α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w xs : List α a2_left : xs ∈ RegExp.languageOf α (RegExp.derivative a e) ys : List (List α) left✝ : ∀ r ∈ ys, r ∈ RegExp.languageOf α e right✝ : xs ++ ys.join = w ⊢ ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
case _ a3_left a3_right => apply Exists.intro [(a :: w)] simp simp only [← ih] sorry
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w xs : List α a2_left : xs ∈ RegExp.languageOf α (RegExp.derivative a e) ys : List (List α) a3_left : ∀ r ∈ ys, r ∈ RegExp.languageOf α e a3_right : xs ++ ys.join = w ⊢ ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
apply Exists.intro [(a :: w)]
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w xs : List α a2_left : xs ∈ RegExp.languageOf α (RegExp.derivative a e) ys : List (List α) a3_left : ∀ r ∈ ys, r ∈ RegExp.languageOf α e a3_right : xs ++ ys.join = w ⊢ ∃ rs, (∀ r ∈ rs, r ∈ RegExp.languageOf α e) ∧ rs.join = a :: w
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w xs : List α a2_left : xs ∈ RegExp.languageOf α (RegExp.derivative a e) ys : List (List α) a3_left : ∀ r ∈ ys, r ∈ RegExp.languageOf α e a3_right : xs ++ ys.join = w ⊢ (∀ r ∈ [a :: w], r ∈ RegExp.languageOf α e) ∧ [a :: w].join = a :: w
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
simp
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w xs : List α a2_left : xs ∈ RegExp.languageOf α (RegExp.derivative a e) ys : List (List α) a3_left : ∀ r ∈ ys, r ∈ RegExp.languageOf α e a3_right : xs ++ ys.join = w ⊢ (∀ r ∈ [a :: w], r ∈ RegExp.languageOf α e) ∧ [a :: w].join = a :: w
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w xs : List α a2_left : xs ∈ RegExp.languageOf α (RegExp.derivative a e) ys : List (List α) a3_left : ∀ r ∈ ys, r ∈ RegExp.languageOf α e a3_right : xs ++ ys.join = w ⊢ a :: w ∈ RegExp.languageOf α e
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
simp only [← ih]
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w xs : List α a2_left : xs ∈ RegExp.languageOf α (RegExp.derivative a e) ys : List (List α) a3_left : ∀ r ∈ ys, r ∈ RegExp.languageOf α e a3_right : xs ++ ys.join = w ⊢ a :: w ∈ RegExp.languageOf α e
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w xs : List α a2_left : xs ∈ RegExp.languageOf α (RegExp.derivative a e) ys : List (List α) a3_left : ∀ r ∈ ys, r ∈ RegExp.languageOf α e a3_right : xs ++ ys.join = w ⊢ w ∈ RegExp.languageOf α (RegExp.derivative a e)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Brzozowski.lean
derivative_def
[295, 1]
[407, 12]
sorry
α : Type inst✝ : DecidableEq α a : α e : RegExp α ih : ∀ (w : List α), w ∈ RegExp.languageOf α (RegExp.derivative a e) ↔ a :: w ∈ RegExp.languageOf α e w xs : List α a2_left : xs ∈ RegExp.languageOf α (RegExp.derivative a e) ys : List (List α) a3_left : ∀ r ∈ ys, r ∈ RegExp.languageOf α e a3_right : xs ++ ys.join = w ⊢ w ∈ RegExp.languageOf α (RegExp.derivative a e)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux
[217, 1]
[240, 10]
induction F generalizing binders
F : Formula v u : VarName binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders F ⊢ fastAdmitsAux v u binders F
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (pred_const_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (pred_var_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (eq_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (eq_ a✝¹ a✝) case true_ v u : VarName binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders true_ ⊢ fastAdmitsAux v u binders true_ case false_ v u : VarName binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders false_ ⊢ fastAdmitsAux v u binders false_ case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders a✝.not_ ⊢ fastAdmitsAux v u binders a✝.not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (a✝¹.imp_ a✝) ⊢ fastAdmitsAux v u binders (a✝¹.imp_ a✝) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (a✝¹.and_ a✝) ⊢ fastAdmitsAux v u binders (a✝¹.and_ a✝) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (a✝¹.or_ a✝) ⊢ fastAdmitsAux v u binders (a✝¹.or_ a✝) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (a✝¹.iff_ a✝) ⊢ fastAdmitsAux v u binders (a✝¹.iff_ a✝) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (forall_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (forall_ a✝¹ a✝) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (exists_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (exists_ a✝¹ a✝) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (def_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux
[217, 1]
[240, 10]
all_goals simp only [admitsAux] at h2 simp only [fastAdmitsAux]
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (pred_const_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (pred_var_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (eq_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (eq_ a✝¹ a✝) case true_ v u : VarName binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders true_ ⊢ fastAdmitsAux v u binders true_ case false_ v u : VarName binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders false_ ⊢ fastAdmitsAux v u binders false_ case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders a✝.not_ ⊢ fastAdmitsAux v u binders a✝.not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (a✝¹.imp_ a✝) ⊢ fastAdmitsAux v u binders (a✝¹.imp_ a✝) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (a✝¹.and_ a✝) ⊢ fastAdmitsAux v u binders (a✝¹.and_ a✝) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (a✝¹.or_ a✝) ⊢ fastAdmitsAux v u binders (a✝¹.or_ a✝) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (a✝¹.iff_ a✝) ⊢ fastAdmitsAux v u binders (a✝¹.iff_ a✝) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (forall_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (forall_ a✝¹ a✝) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (exists_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (exists_ a✝¹ a✝) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (def_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝)
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders h2 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders ⊢ v ∈ a✝ → u ∉ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders h2 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders ⊢ v ∈ a✝ → u ∉ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v ∉ binders h2 : (v = a✝¹ ∨ v = a✝) ∧ v ∉ binders → u ∉ binders ⊢ v = a✝¹ ∨ v = a✝ → u ∉ binders case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders a✝ ⊢ fastAdmitsAux v u binders a✝ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ ⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ ⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ ⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ ⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u (binders ∪ {a✝¹}) a✝ ⊢ v = a✝¹ ∨ fastAdmitsAux v u (binders ∪ {a✝¹}) a✝ case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u (binders ∪ {a✝¹}) a✝ ⊢ v = a✝¹ ∨ fastAdmitsAux v u (binders ∪ {a✝¹}) a✝ case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders h2 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders ⊢ v ∈ a✝ → u ∉ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux
[217, 1]
[240, 10]
all_goals tauto
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders h2 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders ⊢ v ∈ a✝ → u ∉ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders h2 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders ⊢ v ∈ a✝ → u ∉ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v ∉ binders h2 : (v = a✝¹ ∨ v = a✝) ∧ v ∉ binders → u ∉ binders ⊢ v = a✝¹ ∨ v = a✝ → u ∉ binders case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders a✝ ⊢ fastAdmitsAux v u binders a✝ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ ⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ ⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ ⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ ⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders h2 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders ⊢ v ∈ a✝ → u ∉ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux
[217, 1]
[240, 10]
simp only [admitsAux] at h2
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u binders (def_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝)
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders h2 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders ⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux
[217, 1]
[240, 10]
simp only [fastAdmitsAux]
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders h2 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders ⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝)
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders h2 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders ⊢ v ∈ a✝ → u ∉ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux
[217, 1]
[240, 10]
by_cases c1 : v = x
v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u (binders ∪ {x}) phi ⊢ v = x ∨ fastAdmitsAux v u (binders ∪ {x}) phi
case pos v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u (binders ∪ {x}) phi c1 : v = x ⊢ v = x ∨ fastAdmitsAux v u (binders ∪ {x}) phi case neg v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u (binders ∪ {x}) phi c1 : ¬v = x ⊢ v = x ∨ fastAdmitsAux v u (binders ∪ {x}) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux
[217, 1]
[240, 10]
left
case pos v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u (binders ∪ {x}) phi c1 : v = x ⊢ v = x ∨ fastAdmitsAux v u (binders ∪ {x}) phi
case pos.h v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u (binders ∪ {x}) phi c1 : v = x ⊢ v = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux
[217, 1]
[240, 10]
exact c1
case pos.h v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u (binders ∪ {x}) phi c1 : v = x ⊢ v = x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux
[217, 1]
[240, 10]
right
case neg v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u (binders ∪ {x}) phi c1 : ¬v = x ⊢ v = x ∨ fastAdmitsAux v u (binders ∪ {x}) phi
case neg.h v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u (binders ∪ {x}) phi c1 : ¬v = x ⊢ fastAdmitsAux v u (binders ∪ {x}) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux
[217, 1]
[240, 10]
apply phi_ih
case neg.h v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u (binders ∪ {x}) phi c1 : ¬v = x ⊢ fastAdmitsAux v u (binders ∪ {x}) phi
case neg.h.h1 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u (binders ∪ {x}) phi c1 : ¬v = x ⊢ v ∉ binders ∪ {x} case neg.h.h2 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u (binders ∪ {x}) phi c1 : ¬v = x ⊢ admitsAux v u (binders ∪ {x}) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux
[217, 1]
[240, 10]
simp
case neg.h.h1 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u (binders ∪ {x}) phi c1 : ¬v = x ⊢ v ∉ binders ∪ {x}
case neg.h.h1 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u (binders ∪ {x}) phi c1 : ¬v = x ⊢ v ∉ binders ∧ ¬v = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux
[217, 1]
[240, 10]
tauto
case neg.h.h1 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u (binders ∪ {x}) phi c1 : ¬v = x ⊢ v ∉ binders ∧ ¬v = x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux
[217, 1]
[240, 10]
exact h2
case neg.h.h2 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi binders : Finset VarName h1 : v ∉ binders h2 : admitsAux v u (binders ∪ {x}) phi c1 : ¬v = x ⊢ admitsAux v u (binders ∪ {x}) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux
[217, 1]
[240, 10]
tauto
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders h2 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders ⊢ v ∈ a✝ → u ∉ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.mem_binders_imp_admitsAux
[243, 1]
[259, 10]
induction F generalizing binders
F : Formula v u : VarName binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders F
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (pred_const_ a✝¹ a✝) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (pred_var_ a✝¹ a✝) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (eq_ a✝¹ a✝) case true_ v u : VarName binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders true_ case false_ v u : VarName binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders false_ case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders a✝.not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (a✝¹.imp_ a✝) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (a✝¹.and_ a✝) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (a✝¹.or_ a✝) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (a✝¹.iff_ a✝) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (forall_ a✝¹ a✝) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (exists_ a✝¹ a✝) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.mem_binders_imp_admitsAux
[243, 1]
[259, 10]
all_goals simp only [admitsAux]
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (pred_const_ a✝¹ a✝) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (pred_var_ a✝¹ a✝) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (eq_ a✝¹ a✝) case true_ v u : VarName binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders true_ case false_ v u : VarName binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders false_ case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders a✝.not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (a✝¹.imp_ a✝) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (a✝¹.and_ a✝) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (a✝¹.or_ a✝) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (a✝¹.iff_ a✝) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (forall_ a✝¹ a✝) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (exists_ a✝¹ a✝) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (def_ a✝¹ a✝)
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ binders ⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ binders ⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v ∈ binders ⊢ (v = a✝¹ ∨ v = a✝) ∧ v ∉ binders → u ∉ binders case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders a✝ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u (binders ∪ {a✝¹}) a✝ case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u (binders ∪ {a✝¹}) a✝ case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ binders ⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.mem_binders_imp_admitsAux
[243, 1]
[259, 10]
case forall_ x phi phi_ih | exists_ x phi phi_ih => apply phi_ih simp left exact h1
v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders phi binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u (binders ∪ {x}) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.mem_binders_imp_admitsAux
[243, 1]
[259, 10]
all_goals tauto
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ binders ⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ binders ⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v ∈ binders ⊢ (v = a✝¹ ∨ v = a✝) ∧ v ∉ binders → u ∉ binders case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders a✝ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝ binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ binders ⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.mem_binders_imp_admitsAux
[243, 1]
[259, 10]
simp only [admitsAux]
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u binders (def_ a✝¹ a✝)
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ binders ⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.mem_binders_imp_admitsAux
[243, 1]
[259, 10]
apply phi_ih
v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders phi binders : Finset VarName h1 : v ∈ binders ⊢ admitsAux v u (binders ∪ {x}) phi
case h1 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders phi binders : Finset VarName h1 : v ∈ binders ⊢ v ∈ binders ∪ {x}
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.mem_binders_imp_admitsAux
[243, 1]
[259, 10]
simp
case h1 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders phi binders : Finset VarName h1 : v ∈ binders ⊢ v ∈ binders ∪ {x}
case h1 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders phi binders : Finset VarName h1 : v ∈ binders ⊢ v ∈ binders ∨ v = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.mem_binders_imp_admitsAux
[243, 1]
[259, 10]
left
case h1 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders phi binders : Finset VarName h1 : v ∈ binders ⊢ v ∈ binders ∨ v = x
case h1.h v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders phi binders : Finset VarName h1 : v ∈ binders ⊢ v ∈ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.mem_binders_imp_admitsAux
[243, 1]
[259, 10]
exact h1
case h1.h v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders phi binders : Finset VarName h1 : v ∈ binders ⊢ v ∈ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.mem_binders_imp_admitsAux
[243, 1]
[259, 10]
tauto
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ binders ⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux
[262, 1]
[284, 10]
induction F generalizing binders
F : Formula v u : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders F ⊢ admitsAux v u binders F
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) ⊢ admitsAux v u binders (pred_const_ a✝¹ a✝) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) ⊢ admitsAux v u binders (pred_var_ a✝¹ a✝) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (eq_ a✝¹ a✝) ⊢ admitsAux v u binders (eq_ a✝¹ a✝) case true_ v u : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders true_ ⊢ admitsAux v u binders true_ case false_ v u : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders false_ ⊢ admitsAux v u binders false_ case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders a✝.not_ ⊢ admitsAux v u binders a✝.not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders (a✝¹.imp_ a✝) ⊢ admitsAux v u binders (a✝¹.imp_ a✝) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders (a✝¹.and_ a✝) ⊢ admitsAux v u binders (a✝¹.and_ a✝) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders (a✝¹.or_ a✝) ⊢ admitsAux v u binders (a✝¹.or_ a✝) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders (a✝¹.iff_ a✝) ⊢ admitsAux v u binders (a✝¹.iff_ a✝) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders (forall_ a✝¹ a✝) ⊢ admitsAux v u binders (forall_ a✝¹ a✝) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders (exists_ a✝¹ a✝) ⊢ admitsAux v u binders (exists_ a✝¹ a✝) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (def_ a✝¹ a✝) ⊢ admitsAux v u binders (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux
[262, 1]
[284, 10]
all_goals simp only [fastAdmitsAux] at h1 simp only [admitsAux]
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) ⊢ admitsAux v u binders (pred_const_ a✝¹ a✝) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) ⊢ admitsAux v u binders (pred_var_ a✝¹ a✝) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (eq_ a✝¹ a✝) ⊢ admitsAux v u binders (eq_ a✝¹ a✝) case true_ v u : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders true_ ⊢ admitsAux v u binders true_ case false_ v u : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders false_ ⊢ admitsAux v u binders false_ case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders a✝.not_ ⊢ admitsAux v u binders a✝.not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders (a✝¹.imp_ a✝) ⊢ admitsAux v u binders (a✝¹.imp_ a✝) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders (a✝¹.and_ a✝) ⊢ admitsAux v u binders (a✝¹.and_ a✝) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders (a✝¹.or_ a✝) ⊢ admitsAux v u binders (a✝¹.or_ a✝) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders (a✝¹.iff_ a✝) ⊢ admitsAux v u binders (a✝¹.iff_ a✝) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders (forall_ a✝¹ a✝) ⊢ admitsAux v u binders (forall_ a✝¹ a✝) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders (exists_ a✝¹ a✝) ⊢ admitsAux v u binders (exists_ a✝¹ a✝) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (def_ a✝¹ a✝) ⊢ admitsAux v u binders (def_ a✝¹ a✝)
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ → u ∉ binders ⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ → u ∉ binders ⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v = a✝¹ ∨ v = a✝ → u ∉ binders ⊢ (v = a✝¹ ∨ v = a✝) ∧ v ∉ binders → u ∉ binders case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders a✝ ⊢ admitsAux v u binders a✝ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : v = a✝¹ ∨ fastAdmitsAux v u (binders ∪ {a✝¹}) a✝ ⊢ admitsAux v u (binders ∪ {a✝¹}) a✝ case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : v = a✝¹ ∨ fastAdmitsAux v u (binders ∪ {a✝¹}) a✝ ⊢ admitsAux v u (binders ∪ {a✝¹}) a✝ case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ → u ∉ binders ⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux
[262, 1]
[284, 10]
case forall_ x phi phi_ih | exists_ x phi phi_ih => cases h1 case inl h1 => apply mem_binders_imp_admitsAux subst h1 simp case inr h1 => apply phi_ih exact h1
v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi binders : Finset VarName h1 : v = x ∨ fastAdmitsAux v u (binders ∪ {x}) phi ⊢ admitsAux v u (binders ∪ {x}) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux
[262, 1]
[284, 10]
all_goals tauto
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ → u ∉ binders ⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ → u ∉ binders ⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v = a✝¹ ∨ v = a✝ → u ∉ binders ⊢ (v = a✝¹ ∨ v = a✝) ∧ v ∉ binders → u ∉ binders case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders a✝ ⊢ admitsAux v u binders a✝ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝ binders : Finset VarName h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ → u ∉ binders ⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux
[262, 1]
[284, 10]
simp only [fastAdmitsAux] at h1
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (def_ a✝¹ a✝) ⊢ admitsAux v u binders (def_ a✝¹ a✝)
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ → u ∉ binders ⊢ admitsAux v u binders (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux
[262, 1]
[284, 10]
simp only [admitsAux]
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ → u ∉ binders ⊢ admitsAux v u binders (def_ a✝¹ a✝)
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ → u ∉ binders ⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux
[262, 1]
[284, 10]
cases h1
v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi binders : Finset VarName h1 : v = x ∨ fastAdmitsAux v u (binders ∪ {x}) phi ⊢ admitsAux v u (binders ∪ {x}) phi
case inl v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi binders : Finset VarName h✝ : v = x ⊢ admitsAux v u (binders ∪ {x}) phi case inr v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi binders : Finset VarName h✝ : fastAdmitsAux v u (binders ∪ {x}) phi ⊢ admitsAux v u (binders ∪ {x}) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux
[262, 1]
[284, 10]
case inl h1 => apply mem_binders_imp_admitsAux subst h1 simp
v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi binders : Finset VarName h1 : v = x ⊢ admitsAux v u (binders ∪ {x}) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux
[262, 1]
[284, 10]
case inr h1 => apply phi_ih exact h1
v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi binders : Finset VarName h1 : fastAdmitsAux v u (binders ∪ {x}) phi ⊢ admitsAux v u (binders ∪ {x}) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux
[262, 1]
[284, 10]
apply mem_binders_imp_admitsAux
v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi binders : Finset VarName h1 : v = x ⊢ admitsAux v u (binders ∪ {x}) phi
case h1 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi binders : Finset VarName h1 : v = x ⊢ v ∈ binders ∪ {x}
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux
[262, 1]
[284, 10]
subst h1
case h1 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi binders : Finset VarName h1 : v = x ⊢ v ∈ binders ∪ {x}
case h1 v u : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi binders : Finset VarName ⊢ v ∈ binders ∪ {v}
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux
[262, 1]
[284, 10]
simp
case h1 v u : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi binders : Finset VarName ⊢ v ∈ binders ∪ {v}
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux
[262, 1]
[284, 10]
apply phi_ih
v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi binders : Finset VarName h1 : fastAdmitsAux v u (binders ∪ {x}) phi ⊢ admitsAux v u (binders ∪ {x}) phi
case h1 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi binders : Finset VarName h1 : fastAdmitsAux v u (binders ∪ {x}) phi ⊢ fastAdmitsAux v u (binders ∪ {x}) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux
[262, 1]
[284, 10]
exact h1
case h1 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi binders : Finset VarName h1 : fastAdmitsAux v u (binders ∪ {x}) phi ⊢ fastAdmitsAux v u (binders ∪ {x}) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux
[262, 1]
[284, 10]
tauto
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ → u ∉ binders ⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admits_iff_fastAdmits
[287, 1]
[297, 46]
simp only [admits]
F : Formula v u : VarName ⊢ admits v u F ↔ fastAdmits v u F
F : Formula v u : VarName ⊢ admitsAux v u ∅ F ↔ fastAdmits v u F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admits_iff_fastAdmits
[287, 1]
[297, 46]
simp only [fastAdmits]
F : Formula v u : VarName ⊢ admitsAux v u ∅ F ↔ fastAdmits v u F
F : Formula v u : VarName ⊢ admitsAux v u ∅ F ↔ fastAdmitsAux v u ∅ F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admits_iff_fastAdmits
[287, 1]
[297, 46]
constructor
F : Formula v u : VarName ⊢ admitsAux v u ∅ F ↔ fastAdmitsAux v u ∅ F
case mp F : Formula v u : VarName ⊢ admitsAux v u ∅ F → fastAdmitsAux v u ∅ F case mpr F : Formula v u : VarName ⊢ fastAdmitsAux v u ∅ F → admitsAux v u ∅ F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admits_iff_fastAdmits
[287, 1]
[297, 46]
apply admitsAux_imp_fastAdmitsAux
case mp F : Formula v u : VarName ⊢ admitsAux v u ∅ F → fastAdmitsAux v u ∅ F
case mp.h1 F : Formula v u : VarName ⊢ v ∉ ∅
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admits_iff_fastAdmits
[287, 1]
[297, 46]
simp
case mp.h1 F : Formula v u : VarName ⊢ v ∉ ∅
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admits_iff_fastAdmits
[287, 1]
[297, 46]
exact fastAdmitsAux_imp_admitsAux F v u ∅
case mpr F : Formula v u : VarName ⊢ fastAdmitsAux v u ∅ F → admitsAux v u ∅ F
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self
[302, 1]
[321, 10]
induction F generalizing binders
F : Formula v : VarName binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders F
case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (pred_const_ a✝¹ a✝) case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (pred_var_ a✝¹ a✝) case eq_ v a✝¹ a✝ : VarName binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (eq_ a✝¹ a✝) case true_ v : VarName binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders true_ case false_ v : VarName binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders false_ case not_ v : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (exists_ a✝¹ a✝) case def_ v : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self
[302, 1]
[321, 10]
all_goals simp only [fastAdmitsAux]
case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (pred_const_ a✝¹ a✝) case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (pred_var_ a✝¹ a✝) case eq_ v a✝¹ a✝ : VarName binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (eq_ a✝¹ a✝) case true_ v : VarName binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders true_ case false_ v : VarName binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders false_ case not_ v : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (exists_ a✝¹ a✝) case def_ v : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (def_ a✝¹ a✝)
case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders ⊢ v ∈ a✝ → v ∉ binders case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders ⊢ v ∈ a✝ → v ∉ binders case eq_ v a✝¹ a✝ : VarName binders : Finset VarName h1 : v ∉ binders ⊢ v = a✝¹ ∨ v = a✝ → v ∉ binders case not_ v : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders a✝ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders a✝¹ ∧ fastAdmitsAux v v binders a✝ case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders a✝¹ ∧ fastAdmitsAux v v binders a✝ case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders a✝¹ ∧ fastAdmitsAux v v binders a✝ case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders a✝¹ ∧ fastAdmitsAux v v binders a✝ case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ v = a✝¹ ∨ fastAdmitsAux v v (binders ∪ {a✝¹}) a✝ case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ v = a✝¹ ∨ fastAdmitsAux v v (binders ∪ {a✝¹}) a✝ case def_ v : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders ⊢ v ∈ a✝ → v ∉ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self
[302, 1]
[321, 10]
all_goals tauto
case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders ⊢ v ∈ a✝ → v ∉ binders case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders ⊢ v ∈ a✝ → v ∉ binders case eq_ v a✝¹ a✝ : VarName binders : Finset VarName h1 : v ∉ binders ⊢ v = a✝¹ ∨ v = a✝ → v ∉ binders case not_ v : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders a✝ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders a✝¹ ∧ fastAdmitsAux v v binders a✝ case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders a✝¹ ∧ fastAdmitsAux v v binders a✝ case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders a✝¹ ∧ fastAdmitsAux v v binders a✝ case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝ binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders a✝¹ ∧ fastAdmitsAux v v binders a✝ case def_ v : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders ⊢ v ∈ a✝ → v ∉ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self
[302, 1]
[321, 10]
simp only [fastAdmitsAux]
case def_ v : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders ⊢ fastAdmitsAux v v binders (def_ a✝¹ a✝)
case def_ v : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders ⊢ v ∈ a✝ → v ∉ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self
[302, 1]
[321, 10]
by_cases c1 : v = x
v x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi binders : Finset VarName h1 : v ∉ binders ⊢ v = x ∨ fastAdmitsAux v v (binders ∪ {x}) phi
case pos v x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi binders : Finset VarName h1 : v ∉ binders c1 : v = x ⊢ v = x ∨ fastAdmitsAux v v (binders ∪ {x}) phi case neg v x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi binders : Finset VarName h1 : v ∉ binders c1 : ¬v = x ⊢ v = x ∨ fastAdmitsAux v v (binders ∪ {x}) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self
[302, 1]
[321, 10]
left
case pos v x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi binders : Finset VarName h1 : v ∉ binders c1 : v = x ⊢ v = x ∨ fastAdmitsAux v v (binders ∪ {x}) phi
case pos.h v x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi binders : Finset VarName h1 : v ∉ binders c1 : v = x ⊢ v = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self
[302, 1]
[321, 10]
exact c1
case pos.h v x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi binders : Finset VarName h1 : v ∉ binders c1 : v = x ⊢ v = x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self
[302, 1]
[321, 10]
right
case neg v x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi binders : Finset VarName h1 : v ∉ binders c1 : ¬v = x ⊢ v = x ∨ fastAdmitsAux v v (binders ∪ {x}) phi
case neg.h v x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi binders : Finset VarName h1 : v ∉ binders c1 : ¬v = x ⊢ fastAdmitsAux v v (binders ∪ {x}) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self
[302, 1]
[321, 10]
apply phi_ih
case neg.h v x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi binders : Finset VarName h1 : v ∉ binders c1 : ¬v = x ⊢ fastAdmitsAux v v (binders ∪ {x}) phi
case neg.h.h1 v x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi binders : Finset VarName h1 : v ∉ binders c1 : ¬v = x ⊢ v ∉ binders ∪ {x}
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self
[302, 1]
[321, 10]
simp
case neg.h.h1 v x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi binders : Finset VarName h1 : v ∉ binders c1 : ¬v = x ⊢ v ∉ binders ∪ {x}
case neg.h.h1 v x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi binders : Finset VarName h1 : v ∉ binders c1 : ¬v = x ⊢ v ∉ binders ∧ ¬v = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self
[302, 1]
[321, 10]
tauto
case neg.h.h1 v x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi binders : Finset VarName h1 : v ∉ binders c1 : ¬v = x ⊢ v ∉ binders ∧ ¬v = x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self
[302, 1]
[321, 10]
tauto
case def_ v : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ binders ⊢ v ∈ a✝ → v ∉ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmits_self
[324, 1]
[331, 7]
simp only [fastAdmits]
F : Formula v : VarName ⊢ fastAdmits v v F
F : Formula v : VarName ⊢ fastAdmitsAux v v ∅ F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmits_self
[324, 1]
[331, 7]
apply fastAdmitsAux_self
F : Formula v : VarName ⊢ fastAdmitsAux v v ∅ F
case h1 F : Formula v : VarName ⊢ v ∉ ∅
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmits_self
[324, 1]
[331, 7]
simp
case h1 F : Formula v : VarName ⊢ v ∉ ∅
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_fastAdmitsAux
[335, 1]
[348, 10]
induction F generalizing binders
F : Formula v u : VarName binders : Finset VarName h1 : ¬isFreeIn v F ⊢ fastAdmitsAux v u binders F
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : ¬isFreeIn v (pred_const_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : ¬isFreeIn v (pred_var_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : ¬isFreeIn v (eq_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (eq_ a✝¹ a✝) case true_ v u : VarName binders : Finset VarName h1 : ¬isFreeIn v true_ ⊢ fastAdmitsAux v u binders true_ case false_ v u : VarName binders : Finset VarName h1 : ¬isFreeIn v false_ ⊢ fastAdmitsAux v u binders false_ case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isFreeIn v a✝.not_ ⊢ fastAdmitsAux v u binders a✝.not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isFreeIn v (a✝¹.imp_ a✝) ⊢ fastAdmitsAux v u binders (a✝¹.imp_ a✝) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isFreeIn v (a✝¹.and_ a✝) ⊢ fastAdmitsAux v u binders (a✝¹.and_ a✝) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isFreeIn v (a✝¹.or_ a✝) ⊢ fastAdmitsAux v u binders (a✝¹.or_ a✝) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isFreeIn v (a✝¹.iff_ a✝) ⊢ fastAdmitsAux v u binders (a✝¹.iff_ a✝) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isFreeIn v (forall_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (forall_ a✝¹ a✝) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isFreeIn v (exists_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (exists_ a✝¹ a✝) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : ¬isFreeIn v (def_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_fastAdmitsAux
[335, 1]
[348, 10]
all_goals simp only [isFreeIn] at h1 simp only [fastAdmitsAux]
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : ¬isFreeIn v (pred_const_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : ¬isFreeIn v (pred_var_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : ¬isFreeIn v (eq_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (eq_ a✝¹ a✝) case true_ v u : VarName binders : Finset VarName h1 : ¬isFreeIn v true_ ⊢ fastAdmitsAux v u binders true_ case false_ v u : VarName binders : Finset VarName h1 : ¬isFreeIn v false_ ⊢ fastAdmitsAux v u binders false_ case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isFreeIn v a✝.not_ ⊢ fastAdmitsAux v u binders a✝.not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isFreeIn v (a✝¹.imp_ a✝) ⊢ fastAdmitsAux v u binders (a✝¹.imp_ a✝) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isFreeIn v (a✝¹.and_ a✝) ⊢ fastAdmitsAux v u binders (a✝¹.and_ a✝) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isFreeIn v (a✝¹.or_ a✝) ⊢ fastAdmitsAux v u binders (a✝¹.or_ a✝) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isFreeIn v (a✝¹.iff_ a✝) ⊢ fastAdmitsAux v u binders (a✝¹.iff_ a✝) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isFreeIn v (forall_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (forall_ a✝¹ a✝) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isFreeIn v (exists_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (exists_ a✝¹ a✝) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : ¬isFreeIn v (def_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝)
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∉ a✝ ⊢ v ∈ a✝ → u ∉ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∉ a✝ ⊢ v ∈ a✝ → u ∉ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : ¬(v = a✝¹ ∨ v = a✝) ⊢ v = a✝¹ ∨ v = a✝ → u ∉ binders case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isFreeIn v a✝ ⊢ fastAdmitsAux v u binders a✝ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝) ⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝) ⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝) ⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝) ⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬(¬v = a✝¹ ∧ isFreeIn v a✝) ⊢ v = a✝¹ ∨ fastAdmitsAux v u (binders ∪ {a✝¹}) a✝ case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬(¬v = a✝¹ ∧ isFreeIn v a✝) ⊢ v = a✝¹ ∨ fastAdmitsAux v u (binders ∪ {a✝¹}) a✝ case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ a✝ ⊢ v ∈ a✝ → u ∉ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_fastAdmitsAux
[335, 1]
[348, 10]
all_goals tauto
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∉ a✝ ⊢ v ∈ a✝ → u ∉ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∉ a✝ ⊢ v ∈ a✝ → u ∉ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : ¬(v = a✝¹ ∨ v = a✝) ⊢ v = a✝¹ ∨ v = a✝ → u ∉ binders case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isFreeIn v a✝ ⊢ fastAdmitsAux v u binders a✝ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝) ⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝) ⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝) ⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝) ⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬(¬v = a✝¹ ∧ isFreeIn v a✝) ⊢ v = a✝¹ ∨ fastAdmitsAux v u (binders ∪ {a✝¹}) a✝ case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬(¬v = a✝¹ ∧ isFreeIn v a✝) ⊢ v = a✝¹ ∨ fastAdmitsAux v u (binders ∪ {a✝¹}) a✝ case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ a✝ ⊢ v ∈ a✝ → u ∉ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_fastAdmitsAux
[335, 1]
[348, 10]
simp only [isFreeIn] at h1
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : ¬isFreeIn v (def_ a✝¹ a✝) ⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝)
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ a✝ ⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_fastAdmitsAux
[335, 1]
[348, 10]
simp only [fastAdmitsAux]
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ a✝ ⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝)
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ a✝ ⊢ v ∈ a✝ → u ∉ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_fastAdmitsAux
[335, 1]
[348, 10]
tauto
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∉ a✝ ⊢ v ∈ a✝ → u ∉ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_fastAdmits
[351, 1]
[358, 50]
simp only [fastAdmits]
F : Formula v u : VarName h1 : ¬isFreeIn v F ⊢ fastAdmits v u F
F : Formula v u : VarName h1 : ¬isFreeIn v F ⊢ fastAdmitsAux v u ∅ F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_fastAdmits
[351, 1]
[358, 50]
exact not_isFreeIn_imp_fastAdmitsAux F v u ∅ h1
F : Formula v u : VarName h1 : ¬isFreeIn v F ⊢ fastAdmitsAux v u ∅ F
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_fastAdmitsAux
[362, 1]
[385, 10]
induction F generalizing binders
F : Formula v u : VarName binders : Finset VarName h1 : ¬isBoundIn u F h2 : u ∉ binders ⊢ fastAdmitsAux v u binders F
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : ¬isBoundIn u (pred_const_ a✝¹ a✝) h2 : u ∉ binders ⊢ fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : ¬isBoundIn u (pred_var_ a✝¹ a✝) h2 : u ∉ binders ⊢ fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : ¬isBoundIn u (eq_ a✝¹ a✝) h2 : u ∉ binders ⊢ fastAdmitsAux v u binders (eq_ a✝¹ a✝) case true_ v u : VarName binders : Finset VarName h1 : ¬isBoundIn u true_ h2 : u ∉ binders ⊢ fastAdmitsAux v u binders true_ case false_ v u : VarName binders : Finset VarName h1 : ¬isBoundIn u false_ h2 : u ∉ binders ⊢ fastAdmitsAux v u binders false_ case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isBoundIn u a✝.not_ h2 : u ∉ binders ⊢ fastAdmitsAux v u binders a✝.not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isBoundIn u (a✝¹.imp_ a✝) h2 : u ∉ binders ⊢ fastAdmitsAux v u binders (a✝¹.imp_ a✝) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isBoundIn u (a✝¹.and_ a✝) h2 : u ∉ binders ⊢ fastAdmitsAux v u binders (a✝¹.and_ a✝) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isBoundIn u (a✝¹.or_ a✝) h2 : u ∉ binders ⊢ fastAdmitsAux v u binders (a✝¹.or_ a✝) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → fastAdmitsAux v u binders a✝¹ a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isBoundIn u (a✝¹.iff_ a✝) h2 : u ∉ binders ⊢ fastAdmitsAux v u binders (a✝¹.iff_ a✝) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isBoundIn u (forall_ a✝¹ a✝) h2 : u ∉ binders ⊢ fastAdmitsAux v u binders (forall_ a✝¹ a✝) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : ¬isBoundIn u (exists_ a✝¹ a✝) h2 : u ∉ binders ⊢ fastAdmitsAux v u binders (exists_ a✝¹ a✝) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : ¬isBoundIn u (def_ a✝¹ a✝) h2 : u ∉ binders ⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝)