url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
apply phi_ih
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ Holds D I (Function.updateITE (Function.updateITE h1_V h1_x h1_d) x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE (Function.updateITE h1_V' h1_y h1_d) y d) (head✝ :: tail✝) phi'
case h1 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ AlphaEqvVarAssignment D ?binders (Function.updateITE (Function.updateITE h1_V h1_x h1_d) x d) (Function.updateITE (Function.updateITE h1_V' h1_y h1_d) y d) case h2 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ isAlphaEqvAux ?binders phi phi' case binders D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ List (VarName × VarName)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
apply AlphaEqvVarAssignment.cons
case h1 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ AlphaEqvVarAssignment D ?binders (Function.updateITE (Function.updateITE h1_V h1_x h1_d) x d) (Function.updateITE (Function.updateITE h1_V' h1_y h1_d) y d)
case h1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ AlphaEqvVarAssignment D ?h1.binders (Function.updateITE h1_V h1_x h1_d) (Function.updateITE h1_V' h1_y h1_d) case h1.binders D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ List (VarName × VarName)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
apply AlphaEqvVarAssignment.cons
case h1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ AlphaEqvVarAssignment D ?h1.binders (Function.updateITE h1_V h1_x h1_d) (Function.updateITE h1_V' h1_y h1_d) case h1.binders D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ List (VarName × VarName)
case h1.a.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ AlphaEqvVarAssignment D ?h1.a.binders h1_V h1_V' case h1.a.binders D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ List (VarName × VarName)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
exact h1_1
case h1.a.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ AlphaEqvVarAssignment D ?h1.a.binders h1_V h1_V' case h1.a.binders D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ List (VarName × VarName)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
exact h2
case h2 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi'
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [Holds]
D : Type I : Interpretation D a✝³ : DefName a✝² : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' a✝¹ : DefName a✝ : List VarName h2 : a✝³ = a✝¹ ∧ isAlphaEqvVarList binders a✝² a✝ ⊢ Holds D I V [] (def_ a✝³ a✝²) ↔ Holds D I V' [] (def_ a✝¹ a✝)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [Holds]
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys ⊢ Holds D I V (hd :: tl) (def_ X xs) ↔ Holds D I V' (hd :: tl) (def_ Y ys)
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys ⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)) ↔ if Y = hd.name ∧ ys.length = hd.args.length then Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q else Holds D I V' tl (def_ Y ys)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
split_ifs
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys ⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)) ↔ if Y = hd.name ∧ ys.length = hd.args.length then Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q else Holds D I V' tl (def_ Y ys)
case pos D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys h✝¹ : X = hd.name ∧ xs.length = hd.args.length h✝ : Y = hd.name ∧ ys.length = hd.args.length ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q case neg D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys h✝¹ : X = hd.name ∧ xs.length = hd.args.length h✝ : ¬(Y = hd.name ∧ ys.length = hd.args.length) ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ Y ys) case pos D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys h✝¹ : ¬(X = hd.name ∧ xs.length = hd.args.length) h✝ : Y = hd.name ∧ ys.length = hd.args.length ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q case neg D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys h✝¹ : ¬(X = hd.name ∧ xs.length = hd.args.length) h✝ : ¬(Y = hd.name ∧ ys.length = hd.args.length) ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ Y ys)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
case _ c1 c2 => cases h2 case intro h2_left h2_right => simp only [isAlphaEqvVarList_length binders xs ys h2_right] at c1 subst h2_left contradiction
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys c1 : X = hd.name ∧ xs.length = hd.args.length c2 : ¬(Y = hd.name ∧ ys.length = hd.args.length) ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ Y ys)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
case _ c1 c2 => cases h2 case intro h2_left h2_right => simp only [← isAlphaEqvVarList_length binders xs ys h2_right] at c2 subst h2_left contradiction
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) c2 : Y = hd.name ∧ ys.length = hd.args.length ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
case _ c1 c2 => exact ih V V' (def_ X xs) (def_ Y ys) binders h1 h2
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) c2 : ¬(Y = hd.name ∧ ys.length = hd.args.length) ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ Y ys)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
cases h2
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
case intro D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length left✝ : X = Y right✝ : isAlphaEqvVarList binders xs ys ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
apply Holds_coincide_Var
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys ⊢ ∀ (v : VarName), isFreeIn v hd.q → Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' ys) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
intro v a1
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys ⊢ ∀ (v : VarName), isFreeIn v hd.q → Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' ys) v
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' ys) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [aux_2 D binders xs ys V V' h1 h2_right]
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' ys) v
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ Function.updateListITE V hd.args (List.map V' ys) v = Function.updateListITE V' hd.args (List.map V' ys) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
apply Function.updateListITE_mem_eq_len
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ Function.updateListITE V hd.args (List.map V' ys) v = Function.updateListITE V' hd.args (List.map V' ys) v
case h1.h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ v ∈ hd.args case h1.h2 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ hd.args.length = (List.map V' ys).length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [isFreeIn_iff_mem_freeVarSet] at a1
case h1.h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ v ∈ hd.args
case h1.h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : v ∈ hd.q.freeVarSet ⊢ v ∈ hd.args
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [← List.mem_toFinset]
case h1.h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : v ∈ hd.q.freeVarSet ⊢ v ∈ hd.args
case h1.h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : v ∈ hd.q.freeVarSet ⊢ v ∈ hd.args.toFinset
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
apply Finset.mem_of_subset hd.h1 a1
case h1.h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : v ∈ hd.q.freeVarSet ⊢ v ∈ hd.args.toFinset
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp
case h1.h2 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ hd.args.length = (List.map V' ys).length
case h1.h2 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ hd.args.length = ys.length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [eq_comm]
case h1.h2 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ hd.args.length = ys.length
case h1.h2 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ ys.length = hd.args.length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
cases c2
case h1.h2 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ ys.length = hd.args.length
case h1.h2.intro D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q left✝ : Y = hd.name right✝ : ys.length = hd.args.length ⊢ ys.length = hd.args.length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
case intro c2_left c2_right => exact c2_right
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q c2_left : Y = hd.name c2_right : ys.length = hd.args.length ⊢ ys.length = hd.args.length
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
exact c2_right
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q c2_left : Y = hd.name c2_right : ys.length = hd.args.length ⊢ ys.length = hd.args.length
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
cases h2
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys c1 : X = hd.name ∧ xs.length = hd.args.length c2 : ¬(Y = hd.name ∧ ys.length = hd.args.length) ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ Y ys)
case intro D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : ¬(Y = hd.name ∧ ys.length = hd.args.length) left✝ : X = Y right✝ : isAlphaEqvVarList binders xs ys ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ Y ys)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
case intro h2_left h2_right => simp only [isAlphaEqvVarList_length binders xs ys h2_right] at c1 subst h2_left contradiction
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : ¬(Y = hd.name ∧ ys.length = hd.args.length) h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ Y ys)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [isAlphaEqvVarList_length binders xs ys h2_right] at c1
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : ¬(Y = hd.name ∧ ys.length = hd.args.length) h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ Y ys)
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c2 : ¬(Y = hd.name ∧ ys.length = hd.args.length) h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys c1 : X = hd.name ∧ ys.length = hd.args.length ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ Y ys)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
subst h2_left
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c2 : ¬(Y = hd.name ∧ ys.length = hd.args.length) h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys c1 : X = hd.name ∧ ys.length = hd.args.length ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ Y ys)
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' ys : List VarName h2_right : isAlphaEqvVarList binders xs ys c1 : X = hd.name ∧ ys.length = hd.args.length c2 : ¬(X = hd.name ∧ ys.length = hd.args.length) ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ X ys)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
contradiction
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' ys : List VarName h2_right : isAlphaEqvVarList binders xs ys c1 : X = hd.name ∧ ys.length = hd.args.length c2 : ¬(X = hd.name ∧ ys.length = hd.args.length) ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ X ys)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
cases h2
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) c2 : Y = hd.name ∧ ys.length = hd.args.length ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
case intro D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) c2 : Y = hd.name ∧ ys.length = hd.args.length left✝ : X = Y right✝ : isAlphaEqvVarList binders xs ys ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
case intro h2_left h2_right => simp only [← isAlphaEqvVarList_length binders xs ys h2_right] at c2 subst h2_left contradiction
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [← isAlphaEqvVarList_length binders xs ys h2_right] at c2
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys c2 : Y = hd.name ∧ xs.length = hd.args.length ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
subst h2_left
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys c2 : Y = hd.name ∧ xs.length = hd.args.length ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' ys : List VarName c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) h2_right : isAlphaEqvVarList binders xs ys c2 : X = hd.name ∧ xs.length = hd.args.length ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
contradiction
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' ys : List VarName c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) h2_right : isAlphaEqvVarList binders xs ys c2 : X = hd.name ∧ xs.length = hd.args.length ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
exact ih V V' (def_ X xs) (def_ Y ys) binders h1 h2
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) c2 : ¬(Y = hd.name ∧ ys.length = hd.args.length) ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ Y ys)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isalphaEqv_Holds
[737, 1]
[748, 76]
simp only [isAlphaEqv] at h1
D : Type I : Interpretation D V : VarAssignment D E : Env F F' : Formula h1 : isAlphaEqv F F' ⊢ Holds D I V E F ↔ Holds D I V E F'
D : Type I : Interpretation D V : VarAssignment D E : Env F F' : Formula h1 : isAlphaEqvAux [] F F' ⊢ Holds D I V E F ↔ Holds D I V E F'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isalphaEqv_Holds
[737, 1]
[748, 76]
exact isAlphaEqv_Holds_aux D I V V E F F' [] AlphaEqvVarAssignment.nil h1
D : Type I : Interpretation D V : VarAssignment D E : Env F F' : Formula h1 : isAlphaEqvAux [] F F' ⊢ Holds D I V E F ↔ Holds D I V E F'
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_prime
[136, 1]
[146, 8]
induction F
F : Formula V : VarBoolAssignment h1 : F.IsPrime ⊢ evalPrime V F = (V F = true)
case pred_const_ V : VarBoolAssignment a✝¹ : PredName a✝ : List VarName h1 : (pred_const_ a✝¹ a✝).IsPrime ⊢ evalPrime V (pred_const_ a✝¹ a✝) = (V (pred_const_ a✝¹ a✝) = true) case pred_var_ V : VarBoolAssignment a✝¹ : PredName a✝ : List VarName h1 : (pred_var_ a✝¹ a✝).IsPrime ⊢ evalPrime V (pred_var_ a✝¹ a✝) = (V (pred_var_ a✝¹ a✝) = true) case eq_ V : VarBoolAssignment a✝¹ a✝ : VarName h1 : (eq_ a✝¹ a✝).IsPrime ⊢ evalPrime V (eq_ a✝¹ a✝) = (V (eq_ a✝¹ a✝) = true) case true_ V : VarBoolAssignment h1 : true_.IsPrime ⊢ evalPrime V true_ = (V true_ = true) case false_ V : VarBoolAssignment h1 : false_.IsPrime ⊢ evalPrime V false_ = (V false_ = true) case not_ V : VarBoolAssignment a✝ : Formula a_ih✝ : a✝.IsPrime → evalPrime V a✝ = (V a✝ = true) h1 : a✝.not_.IsPrime ⊢ evalPrime V a✝.not_ = (V a✝.not_ = true) case imp_ V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : a✝¹.IsPrime → evalPrime V a✝¹ = (V a✝¹ = true) a_ih✝ : a✝.IsPrime → evalPrime V a✝ = (V a✝ = true) h1 : (a✝¹.imp_ a✝).IsPrime ⊢ evalPrime V (a✝¹.imp_ a✝) = (V (a✝¹.imp_ a✝) = true) case and_ V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : a✝¹.IsPrime → evalPrime V a✝¹ = (V a✝¹ = true) a_ih✝ : a✝.IsPrime → evalPrime V a✝ = (V a✝ = true) h1 : (a✝¹.and_ a✝).IsPrime ⊢ evalPrime V (a✝¹.and_ a✝) = (V (a✝¹.and_ a✝) = true) case or_ V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : a✝¹.IsPrime → evalPrime V a✝¹ = (V a✝¹ = true) a_ih✝ : a✝.IsPrime → evalPrime V a✝ = (V a✝ = true) h1 : (a✝¹.or_ a✝).IsPrime ⊢ evalPrime V (a✝¹.or_ a✝) = (V (a✝¹.or_ a✝) = true) case iff_ V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : a✝¹.IsPrime → evalPrime V a✝¹ = (V a✝¹ = true) a_ih✝ : a✝.IsPrime → evalPrime V a✝ = (V a✝ = true) h1 : (a✝¹.iff_ a✝).IsPrime ⊢ evalPrime V (a✝¹.iff_ a✝) = (V (a✝¹.iff_ a✝) = true) case forall_ V : VarBoolAssignment a✝¹ : VarName a✝ : Formula a_ih✝ : a✝.IsPrime → evalPrime V a✝ = (V a✝ = true) h1 : (forall_ a✝¹ a✝).IsPrime ⊢ evalPrime V (forall_ a✝¹ a✝) = (V (forall_ a✝¹ a✝) = true) case exists_ V : VarBoolAssignment a✝¹ : VarName a✝ : Formula a_ih✝ : a✝.IsPrime → evalPrime V a✝ = (V a✝ = true) h1 : (exists_ a✝¹ a✝).IsPrime ⊢ evalPrime V (exists_ a✝¹ a✝) = (V (exists_ a✝¹ a✝) = true) case def_ V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName h1 : (def_ a✝¹ a✝).IsPrime ⊢ evalPrime V (def_ a✝¹ a✝) = (V (def_ a✝¹ a✝) = true)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_prime
[136, 1]
[146, 8]
case true_ | false_ | not_ | imp_ | and_ | or_ | iff_ => simp only [Formula.IsPrime] at h1
V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : a✝¹.IsPrime → evalPrime V a✝¹ = (V a✝¹ = true) a_ih✝ : a✝.IsPrime → evalPrime V a✝ = (V a✝ = true) h1 : (a✝¹.iff_ a✝).IsPrime ⊢ evalPrime V (a✝¹.iff_ a✝) = (V (a✝¹.iff_ a✝) = true)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_prime
[136, 1]
[146, 8]
case pred_const_ | pred_var_ | eq_ | forall_ | exists_ | def_ => rfl
V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName h1 : (def_ a✝¹ a✝).IsPrime ⊢ evalPrime V (def_ a✝¹ a✝) = (V (def_ a✝¹ a✝) = true)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_prime
[136, 1]
[146, 8]
simp only [Formula.IsPrime] at h1
V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : a✝¹.IsPrime → evalPrime V a✝¹ = (V a✝¹ = true) a_ih✝ : a✝.IsPrime → evalPrime V a✝ = (V a✝ = true) h1 : (a✝¹.iff_ a✝).IsPrime ⊢ evalPrime V (a✝¹.iff_ a✝) = (V (a✝¹.iff_ a✝) = true)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_prime
[136, 1]
[146, 8]
rfl
V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName h1 : (def_ a✝¹ a✝).IsPrime ⊢ evalPrime V (def_ a✝¹ a✝) = (V (def_ a✝¹ a✝) = true)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
induction F
F : Formula σ : Formula → Formula V : VarBoolAssignment ⊢ evalPrime V (substPrime σ F) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) F
case pred_const_ σ : Formula → Formula V : VarBoolAssignment a✝¹ : PredName a✝ : List VarName ⊢ evalPrime V (substPrime σ (pred_const_ a✝¹ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (pred_const_ a✝¹ a✝) case pred_var_ σ : Formula → Formula V : VarBoolAssignment a✝¹ : PredName a✝ : List VarName ⊢ evalPrime V (substPrime σ (pred_var_ a✝¹ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (pred_var_ a✝¹ a✝) case eq_ σ : Formula → Formula V : VarBoolAssignment a✝¹ a✝ : VarName ⊢ evalPrime V (substPrime σ (eq_ a✝¹ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (eq_ a✝¹ a✝) case true_ σ : Formula → Formula V : VarBoolAssignment ⊢ evalPrime V (substPrime σ true_) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) true_ case false_ σ : Formula → Formula V : VarBoolAssignment ⊢ evalPrime V (substPrime σ false_) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) false_ case not_ σ : Formula → Formula V : VarBoolAssignment a✝ : Formula a_ih✝ : evalPrime V (substPrime σ a✝) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝ ⊢ evalPrime V (substPrime σ a✝.not_) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝.not_ case imp_ σ : Formula → Formula V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : evalPrime V (substPrime σ a✝¹) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝¹ a_ih✝ : evalPrime V (substPrime σ a✝) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝ ⊢ evalPrime V (substPrime σ (a✝¹.imp_ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (a✝¹.imp_ a✝) case and_ σ : Formula → Formula V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : evalPrime V (substPrime σ a✝¹) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝¹ a_ih✝ : evalPrime V (substPrime σ a✝) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝ ⊢ evalPrime V (substPrime σ (a✝¹.and_ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (a✝¹.and_ a✝) case or_ σ : Formula → Formula V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : evalPrime V (substPrime σ a✝¹) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝¹ a_ih✝ : evalPrime V (substPrime σ a✝) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝ ⊢ evalPrime V (substPrime σ (a✝¹.or_ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (a✝¹.or_ a✝) case iff_ σ : Formula → Formula V : VarBoolAssignment a✝¹ a✝ : Formula a_ih✝¹ : evalPrime V (substPrime σ a✝¹) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝¹ a_ih✝ : evalPrime V (substPrime σ a✝) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝ ⊢ evalPrime V (substPrime σ (a✝¹.iff_ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (a✝¹.iff_ a✝) case forall_ σ : Formula → Formula V : VarBoolAssignment a✝¹ : VarName a✝ : Formula a_ih✝ : evalPrime V (substPrime σ a✝) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝ ⊢ evalPrime V (substPrime σ (forall_ a✝¹ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (forall_ a✝¹ a✝) case exists_ σ : Formula → Formula V : VarBoolAssignment a✝¹ : VarName a✝ : Formula a_ih✝ : evalPrime V (substPrime σ a✝) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) a✝ ⊢ evalPrime V (substPrime σ (exists_ a✝¹ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (exists_ a✝¹ a✝) case def_ σ : Formula → Formula V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName ⊢ evalPrime V (substPrime σ (def_ a✝¹ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
case pred_const_ | pred_var_ | eq_ | forall_ | exists_ | def_ => simp only [Formula.substPrime] simp only [Formula.evalPrime] simp
σ : Formula → Formula V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName ⊢ evalPrime V (substPrime σ (def_ a✝¹ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (def_ a✝¹ a✝)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
case true_ | false_ => rfl
σ : Formula → Formula V : VarBoolAssignment ⊢ evalPrime V (substPrime σ false_) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) false_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
case not_ phi phi_ih => simp only [Formula.substPrime] simp only [Formula.evalPrime] congr! 1
σ : Formula → Formula V : VarBoolAssignment phi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi ⊢ evalPrime V (substPrime σ phi.not_) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi.not_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
case imp_ phi psi phi_ih psi_ih | and_ phi psi phi_ih psi_ih | or_ phi psi phi_ih psi_ih | iff_ phi psi phi_ih psi_ih => simp only [Formula.substPrime] simp only [Formula.evalPrime] congr! 1
σ : Formula → Formula V : VarBoolAssignment phi psi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi psi_ih : evalPrime V (substPrime σ psi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) psi ⊢ evalPrime V (substPrime σ (phi.iff_ psi)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (phi.iff_ psi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
simp only [Formula.substPrime]
σ : Formula → Formula V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName ⊢ evalPrime V (substPrime σ (def_ a✝¹ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (def_ a✝¹ a✝)
σ : Formula → Formula V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName ⊢ evalPrime V (σ (def_ a✝¹ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
simp only [Formula.evalPrime]
σ : Formula → Formula V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName ⊢ evalPrime V (σ (def_ a✝¹ a✝)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (def_ a✝¹ a✝)
σ : Formula → Formula V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName ⊢ evalPrime V (σ (def_ a✝¹ a✝)) ↔ decide (evalPrime V (σ (def_ a✝¹ a✝))) = true
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
simp
σ : Formula → Formula V : VarBoolAssignment a✝¹ : DefName a✝ : List VarName ⊢ evalPrime V (σ (def_ a✝¹ a✝)) ↔ decide (evalPrime V (σ (def_ a✝¹ a✝))) = true
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
rfl
σ : Formula → Formula V : VarBoolAssignment ⊢ evalPrime V (substPrime σ false_) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) false_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
simp only [Formula.substPrime]
σ : Formula → Formula V : VarBoolAssignment phi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi ⊢ evalPrime V (substPrime σ phi.not_) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi.not_
σ : Formula → Formula V : VarBoolAssignment phi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi ⊢ evalPrime V (substPrime σ phi).not_ ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi.not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
simp only [Formula.evalPrime]
σ : Formula → Formula V : VarBoolAssignment phi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi ⊢ evalPrime V (substPrime σ phi).not_ ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi.not_
σ : Formula → Formula V : VarBoolAssignment phi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi ⊢ ¬evalPrime V (substPrime σ phi) ↔ ¬evalPrime (fun H => decide (evalPrime V (σ H))) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
congr! 1
σ : Formula → Formula V : VarBoolAssignment phi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi ⊢ ¬evalPrime V (substPrime σ phi) ↔ ¬evalPrime (fun H => decide (evalPrime V (σ H))) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
simp only [Formula.substPrime]
σ : Formula → Formula V : VarBoolAssignment phi psi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi psi_ih : evalPrime V (substPrime σ psi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) psi ⊢ evalPrime V (substPrime σ (phi.iff_ psi)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (phi.iff_ psi)
σ : Formula → Formula V : VarBoolAssignment phi psi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi psi_ih : evalPrime V (substPrime σ psi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) psi ⊢ evalPrime V ((substPrime σ phi).iff_ (substPrime σ psi)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (phi.iff_ psi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
simp only [Formula.evalPrime]
σ : Formula → Formula V : VarBoolAssignment phi psi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi psi_ih : evalPrime V (substPrime σ psi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) psi ⊢ evalPrime V ((substPrime σ phi).iff_ (substPrime σ psi)) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) (phi.iff_ psi)
σ : Formula → Formula V : VarBoolAssignment phi psi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi psi_ih : evalPrime V (substPrime σ psi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) psi ⊢ (evalPrime V (substPrime σ phi) ↔ evalPrime V (substPrime σ psi)) ↔ (evalPrime (fun H => decide (evalPrime V (σ H))) phi ↔ evalPrime (fun H => decide (evalPrime V (σ H))) psi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.evalPrime_substPrime_eq_evalPrime_evalPrime
[193, 1]
[218, 13]
congr! 1
σ : Formula → Formula V : VarBoolAssignment phi psi : Formula phi_ih : evalPrime V (substPrime σ phi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) phi psi_ih : evalPrime V (substPrime σ psi) ↔ evalPrime (fun H => decide (evalPrime V (σ H))) psi ⊢ (evalPrime V (substPrime σ phi) ↔ evalPrime V (substPrime σ psi)) ↔ (evalPrime (fun H => decide (evalPrime V (σ H))) phi ↔ evalPrime (fun H => decide (evalPrime V (σ H))) psi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.isTautoPrime_imp_isTautoPrime_substPrime
[221, 1]
[232, 11]
simp only [Formula.IsTautoPrime] at h1
P : Formula h1 : P.IsTautoPrime σ : Formula → Formula ⊢ (substPrime σ P).IsTautoPrime
P : Formula h1 : ∀ (V : VarBoolAssignment), evalPrime V P σ : Formula → Formula ⊢ (substPrime σ P).IsTautoPrime
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.isTautoPrime_imp_isTautoPrime_substPrime
[221, 1]
[232, 11]
simp only [Formula.IsTautoPrime]
P : Formula h1 : ∀ (V : VarBoolAssignment), evalPrime V P σ : Formula → Formula ⊢ (substPrime σ P).IsTautoPrime
P : Formula h1 : ∀ (V : VarBoolAssignment), evalPrime V P σ : Formula → Formula ⊢ ∀ (V : VarBoolAssignment), evalPrime V (substPrime σ P)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.isTautoPrime_imp_isTautoPrime_substPrime
[221, 1]
[232, 11]
intro V
P : Formula h1 : ∀ (V : VarBoolAssignment), evalPrime V P σ : Formula → Formula ⊢ ∀ (V : VarBoolAssignment), evalPrime V (substPrime σ P)
P : Formula h1 : ∀ (V : VarBoolAssignment), evalPrime V P σ : Formula → Formula V : VarBoolAssignment ⊢ evalPrime V (substPrime σ P)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.isTautoPrime_imp_isTautoPrime_substPrime
[221, 1]
[232, 11]
simp only [evalPrime_substPrime_eq_evalPrime_evalPrime P σ V]
P : Formula h1 : ∀ (V : VarBoolAssignment), evalPrime V P σ : Formula → Formula V : VarBoolAssignment ⊢ evalPrime V (substPrime σ P)
P : Formula h1 : ∀ (V : VarBoolAssignment), evalPrime V P σ : Formula → Formula V : VarBoolAssignment ⊢ evalPrime (fun H => decide (evalPrime V (σ H))) P
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.isTautoPrime_imp_isTautoPrime_substPrime
[221, 1]
[232, 11]
apply h1
P : Formula h1 : ∀ (V : VarBoolAssignment), evalPrime V P σ : Formula → Formula V : VarBoolAssignment ⊢ evalPrime (fun H => decide (evalPrime V (σ H))) P
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_5
[253, 1]
[265, 30]
simp only [IsProof]
P : Formula ⊢ IsProof (P.imp_ P)
P : Formula ⊢ IsDeduct ∅ (P.imp_ P)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_5
[253, 1]
[265, 30]
apply IsDeduct.mp_ (P.imp_ (P.imp_ P))
P : Formula ⊢ IsDeduct ∅ (P.imp_ P)
case a P : Formula ⊢ IsDeduct ∅ ((P.imp_ (P.imp_ P)).imp_ (P.imp_ P)) case a P : Formula ⊢ IsDeduct ∅ (P.imp_ (P.imp_ P))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_5
[253, 1]
[265, 30]
apply IsDeduct.mp_ (P.imp_ ((P.imp_ P).imp_ P))
case a P : Formula ⊢ IsDeduct ∅ ((P.imp_ (P.imp_ P)).imp_ (P.imp_ P))
case a.a P : Formula ⊢ IsDeduct ∅ ((P.imp_ ((P.imp_ P).imp_ P)).imp_ ((P.imp_ (P.imp_ P)).imp_ (P.imp_ P))) case a.a P : Formula ⊢ IsDeduct ∅ (P.imp_ ((P.imp_ P).imp_ P))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_5
[253, 1]
[265, 30]
apply IsDeduct.axiom_
case a.a P : Formula ⊢ IsDeduct ∅ ((P.imp_ ((P.imp_ P).imp_ P)).imp_ ((P.imp_ (P.imp_ P)).imp_ (P.imp_ P)))
case a.a.a P : Formula ⊢ IsAxiom ((P.imp_ ((P.imp_ P).imp_ P)).imp_ ((P.imp_ (P.imp_ P)).imp_ (P.imp_ P)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_5
[253, 1]
[265, 30]
exact IsAxiom.prop_2_ P (P.imp_ P) P
case a.a.a P : Formula ⊢ IsAxiom ((P.imp_ ((P.imp_ P).imp_ P)).imp_ ((P.imp_ (P.imp_ P)).imp_ (P.imp_ P)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_5
[253, 1]
[265, 30]
apply IsDeduct.axiom_
case a.a P : Formula ⊢ IsDeduct ∅ (P.imp_ ((P.imp_ P).imp_ P))
case a.a.a P : Formula ⊢ IsAxiom (P.imp_ ((P.imp_ P).imp_ P))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_5
[253, 1]
[265, 30]
exact IsAxiom.prop_1_ P (P.imp_ P)
case a.a.a P : Formula ⊢ IsAxiom (P.imp_ ((P.imp_ P).imp_ P))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_5
[253, 1]
[265, 30]
apply IsDeduct.axiom_
case a P : Formula ⊢ IsDeduct ∅ (P.imp_ (P.imp_ P))
case a.a P : Formula ⊢ IsAxiom (P.imp_ (P.imp_ P))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_5
[253, 1]
[265, 30]
exact IsAxiom.prop_1_ P P
case a.a P : Formula ⊢ IsAxiom (P.imp_ (P.imp_ P))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsDeduct.mp_ (P.not_.imp_ (Q.not_.imp_ P.not_))
P Q : Formula ⊢ IsProof (P.not_.imp_ (P.imp_ Q))
case a P Q : Formula ⊢ IsDeduct ∅ ((P.not_.imp_ (Q.not_.imp_ P.not_)).imp_ (P.not_.imp_ (P.imp_ Q))) case a P Q : Formula ⊢ IsDeduct ∅ (P.not_.imp_ (Q.not_.imp_ P.not_))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsDeduct.mp_ (P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q)))
case a P Q : Formula ⊢ IsDeduct ∅ ((P.not_.imp_ (Q.not_.imp_ P.not_)).imp_ (P.not_.imp_ (P.imp_ Q)))
case a.a P Q : Formula ⊢ IsDeduct ∅ ((P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))).imp_ ((P.not_.imp_ (Q.not_.imp_ P.not_)).imp_ (P.not_.imp_ (P.imp_ Q)))) case a.a P Q : Formula ⊢ IsDeduct ∅ (P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsDeduct.axiom_
case a.a P Q : Formula ⊢ IsDeduct ∅ ((P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))).imp_ ((P.not_.imp_ (Q.not_.imp_ P.not_)).imp_ (P.not_.imp_ (P.imp_ Q))))
case a.a.a P Q : Formula ⊢ IsAxiom ((P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))).imp_ ((P.not_.imp_ (Q.not_.imp_ P.not_)).imp_ (P.not_.imp_ (P.imp_ Q))))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsAxiom.prop_2_
case a.a.a P Q : Formula ⊢ IsAxiom ((P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))).imp_ ((P.not_.imp_ (Q.not_.imp_ P.not_)).imp_ (P.not_.imp_ (P.imp_ Q))))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsDeduct.mp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))
case a.a P Q : Formula ⊢ IsDeduct ∅ (P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q)))
case a.a.a P Q : Formula ⊢ IsDeduct ∅ (((Q.not_.imp_ P.not_).imp_ (P.imp_ Q)).imp_ (P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q)))) case a.a.a P Q : Formula ⊢ IsDeduct ∅ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsDeduct.axiom_
case a.a.a P Q : Formula ⊢ IsDeduct ∅ (((Q.not_.imp_ P.not_).imp_ (P.imp_ Q)).imp_ (P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))))
case a.a.a.a P Q : Formula ⊢ IsAxiom (((Q.not_.imp_ P.not_).imp_ (P.imp_ Q)).imp_ (P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsAxiom.prop_1_
case a.a.a.a P Q : Formula ⊢ IsAxiom (((Q.not_.imp_ P.not_).imp_ (P.imp_ Q)).imp_ (P.not_.imp_ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsDeduct.axiom_
case a.a.a P Q : Formula ⊢ IsDeduct ∅ ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))
case a.a.a.a P Q : Formula ⊢ IsAxiom ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsAxiom.prop_3_
case a.a.a.a P Q : Formula ⊢ IsAxiom ((Q.not_.imp_ P.not_).imp_ (P.imp_ Q))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsDeduct.axiom_
case a P Q : Formula ⊢ IsDeduct ∅ (P.not_.imp_ (Q.not_.imp_ P.not_))
case a.a P Q : Formula ⊢ IsAxiom (P.not_.imp_ (Q.not_.imp_ P.not_))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_13_6_no_deduct
[270, 1]
[284, 26]
apply IsAxiom.prop_1_
case a.a P Q : Formula ⊢ IsAxiom (P.not_.imp_ (Q.not_.imp_ P.not_))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
intro Γ
F : Formula Δ : Set Formula h1 : IsDeduct Δ F ⊢ ∀ (Γ : Set Formula), IsDeduct (Δ ∪ Γ) F
F : Formula Δ : Set Formula h1 : IsDeduct Δ F Γ : Set Formula ⊢ IsDeduct (Δ ∪ Γ) F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
induction h1
F : Formula Δ : Set Formula h1 : IsDeduct Δ F Γ : Set Formula ⊢ IsDeduct (Δ ∪ Γ) F
case axiom_ F : Formula Δ Γ : Set Formula phi✝ : Formula a✝ : IsAxiom phi✝ ⊢ IsDeduct (Δ ∪ Γ) phi✝ case assume_ F : Formula Δ Γ : Set Formula phi✝ : Formula a✝ : phi✝ ∈ Δ ⊢ IsDeduct (Δ ∪ Γ) phi✝ case mp_ F : Formula Δ Γ : Set Formula phi✝ psi✝ : Formula a✝¹ : IsDeduct Δ (phi✝.imp_ psi✝) a✝ : IsDeduct Δ phi✝ a_ih✝¹ : IsDeduct (Δ ∪ Γ) (phi✝.imp_ psi✝) a_ih✝ : IsDeduct (Δ ∪ Γ) phi✝ ⊢ IsDeduct (Δ ∪ Γ) psi✝
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
case axiom_ h1_phi h1_1 => apply IsDeduct.axiom_ exact h1_1
F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsDeduct (Δ ∪ Γ) h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
case assume_ h1_phi h1_1 => apply IsDeduct.assume_ simp left exact h1_1
F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsDeduct (Δ ∪ Γ) h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
apply IsDeduct.axiom_
F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsDeduct (Δ ∪ Γ) h1_phi
case a F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsAxiom h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
exact h1_1
case a F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsAxiom h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
apply IsDeduct.assume_
F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsDeduct (Δ ∪ Γ) h1_phi
case a F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ h1_phi ∈ Δ ∪ Γ
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
simp
case a F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ h1_phi ∈ Δ ∪ Γ
case a F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ h1_phi ∈ Δ ∨ h1_phi ∈ Γ
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
left
case a F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ h1_phi ∈ Δ ∨ h1_phi ∈ Γ
case a.h F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ h1_phi ∈ Δ
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
exact h1_1
case a.h F : Formula Δ Γ : Set Formula h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ h1_phi ∈ Δ
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
apply IsDeduct.mp_ h1_phi
F : Formula Δ Γ : Set Formula h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct (Δ ∪ Γ) (h1_phi.imp_ h1_psi) h1_ih_2 : IsDeduct (Δ ∪ Γ) h1_phi ⊢ IsDeduct (Δ ∪ Γ) h1_psi
case a F : Formula Δ Γ : Set Formula h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct (Δ ∪ Γ) (h1_phi.imp_ h1_psi) h1_ih_2 : IsDeduct (Δ ∪ Γ) h1_phi ⊢ IsDeduct (Δ ∪ Γ) (h1_phi.imp_ h1_psi) case a F : Formula Δ Γ : Set Formula h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct (Δ ∪ Γ) (h1_phi.imp_ h1_psi) h1_ih_2 : IsDeduct (Δ ∪ Γ) h1_phi ⊢ IsDeduct (Δ ∪ Γ) h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
exact h1_ih_1
case a F : Formula Δ Γ : Set Formula h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct (Δ ∪ Γ) (h1_phi.imp_ h1_psi) h1_ih_2 : IsDeduct (Δ ∪ Γ) h1_phi ⊢ IsDeduct (Δ ∪ Γ) (h1_phi.imp_ h1_psi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10
[287, 1]
[306, 20]
exact h1_ih_2
case a F : Formula Δ Γ : Set Formula h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct (Δ ∪ Γ) (h1_phi.imp_ h1_psi) h1_ih_2 : IsDeduct (Δ ∪ Γ) h1_phi ⊢ IsDeduct (Δ ∪ Γ) h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10_comm
[309, 1]
[316, 23]
simp only [Set.union_comm]
Q : Formula Δ : Set Formula h1 : IsDeduct Δ Q ⊢ ∀ (Γ : Set Formula), IsDeduct (Γ ∪ Δ) Q
Q : Formula Δ : Set Formula h1 : IsDeduct Δ Q ⊢ ∀ (Γ : Set Formula), IsDeduct (Δ ∪ Γ) Q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.T_14_10_comm
[309, 1]
[316, 23]
exact T_14_10 Q Δ h1
Q : Formula Δ : Set Formula h1 : IsDeduct Δ Q ⊢ ∀ (Γ : Set Formula), IsDeduct (Δ ∪ Γ) Q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.C_14_11
[319, 1]
[327, 11]
intro Δ
P : Formula h1 : IsProof P ⊢ ∀ (Δ : Set Formula), IsDeduct Δ P
P : Formula h1 : IsProof P Δ : Set Formula ⊢ IsDeduct Δ P
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.C_14_11
[319, 1]
[327, 11]
obtain s1 := T_14_10 P ∅ h1 Δ
P : Formula h1 : IsProof P Δ : Set Formula ⊢ IsDeduct Δ P
P : Formula h1 : IsProof P Δ : Set Formula s1 : IsDeduct (∅ ∪ Δ) P ⊢ IsDeduct Δ P
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Prop.lean
FOL.NV.C_14_11
[319, 1]
[327, 11]
simp at s1
P : Formula h1 : IsProof P Δ : Set Formula s1 : IsDeduct (∅ ∪ Δ) P ⊢ IsDeduct Δ P
P : Formula h1 : IsProof P Δ : Set Formula s1 : IsDeduct Δ P ⊢ IsDeduct Δ P