url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
simp only [isBoundIn] at h2
U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v (h1_P.imp_ h1_Q) β†’ v ∈ l ⊒ IsProof ((Forall_ l (U.iff_ V)).imp_ ((h1_P.imp_ h1_Q).iff_ (h1_P'.imp_ h1_Q')))
U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l ⊒ IsProof ((Forall_ l (U.iff_ V)).imp_ ((h1_P.imp_ h1_Q).iff_ (h1_P'.imp_ h1_Q')))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
apply IsDeduct.mp_ ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l ⊒ IsProof ((Forall_ l (U.iff_ V)).imp_ ((h1_P.imp_ h1_Q).iff_ (h1_P'.imp_ h1_Q')))
case a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l ⊒ IsDeduct βˆ… (((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')).imp_ ((Forall_ l (U.iff_ V)).imp_ ((h1_P.imp_ h1_Q).iff_ (h1_P'.imp_ h1_Q')))) case a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l ⊒ IsDeduct βˆ… ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
apply IsDeduct.mp_ ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
case a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l ⊒ IsDeduct βˆ… (((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')).imp_ ((Forall_ l (U.iff_ V)).imp_ ((h1_P.imp_ h1_Q).iff_ (h1_P'.imp_ h1_Q'))))
case a.a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l ⊒ IsDeduct βˆ… (((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')).imp_ (((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')).imp_ ((Forall_ l (U.iff_ V)).imp_ ((h1_P.imp_ h1_Q).iff_ (h1_P'.imp_ h1_Q'))))) case a.a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l ⊒ IsDeduct βˆ… ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
simp only [def_iff_]
case a.a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l ⊒ IsDeduct βˆ… (((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')).imp_ (((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')).imp_ ((Forall_ l (U.iff_ V)).imp_ ((h1_P.imp_ h1_Q).iff_ (h1_P'.imp_ h1_Q')))))
case a.a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l ⊒ IsDeduct βˆ… (((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ ((h1_Q.imp_ h1_Q').and_ (h1_Q'.imp_ h1_Q))).imp_ (((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ ((h1_P.imp_ h1_P').and_ (h1_P'.imp_ h1_P))).imp_ ((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ (((h1_P.imp_ h1_Q).imp_ (h1_P'.imp_ h1_Q')).and_ ((h1_P'.imp_ h1_Q').imp_ (h1_P.imp_ h1_Q))))))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
simp only [def_and_]
case a.a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l ⊒ IsDeduct βˆ… (((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ ((h1_Q.imp_ h1_Q').and_ (h1_Q'.imp_ h1_Q))).imp_ (((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ ((h1_P.imp_ h1_P').and_ (h1_P'.imp_ h1_P))).imp_ ((Forall_ l ((U.imp_ V).and_ (V.imp_ U))).imp_ (((h1_P.imp_ h1_Q).imp_ (h1_P'.imp_ h1_Q')).and_ ((h1_P'.imp_ h1_Q').imp_ (h1_P.imp_ h1_Q))))))
case a.a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l ⊒ IsDeduct βˆ… (((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_ ((h1_Q.imp_ h1_Q').imp_ (h1_Q'.imp_ h1_Q).not_).not_).imp_ (((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_ ((h1_P.imp_ h1_P').imp_ (h1_P'.imp_ h1_P).not_).not_).imp_ ((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_ (((h1_P.imp_ h1_Q).imp_ (h1_P'.imp_ h1_Q')).imp_ ((h1_P'.imp_ h1_Q').imp_ (h1_P.imp_ h1_Q)).not_).not_)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
SC
case a.a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l ⊒ IsDeduct βˆ… (((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_ ((h1_Q.imp_ h1_Q').imp_ (h1_Q'.imp_ h1_Q).not_).not_).imp_ (((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_ ((h1_P.imp_ h1_P').imp_ (h1_P'.imp_ h1_P).not_).not_).imp_ ((Forall_ l ((U.imp_ V).imp_ (V.imp_ U).not_).not_).imp_ (((h1_P.imp_ h1_Q).imp_ (h1_P'.imp_ h1_Q')).imp_ ((h1_P'.imp_ h1_Q').imp_ (h1_P.imp_ h1_Q)).not_).not_)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
apply h1_ih_2
case a.a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l ⊒ IsDeduct βˆ… ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q'))
case a.a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l ⊒ βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
intro v a2
case a.a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l ⊒ βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l
case a.a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l v : VarName a2 : (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q ⊒ v ∈ l
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
apply h2 v
case a.a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l v : VarName a2 : (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q ⊒ v ∈ l
case a.a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l v : VarName a2 : (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q ⊒ (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
tauto
case a.a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l v : VarName a2 : (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q ⊒ (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
apply h1_ih_1
case a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l ⊒ IsDeduct βˆ… ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
case a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l ⊒ βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
intro v a1
case a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l ⊒ βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l
case a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l v : VarName a1 : (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P ⊒ v ∈ l
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
apply h2 v
case a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l v : VarName a1 : (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P ⊒ v ∈ l
case a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l v : VarName a1 : (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P ⊒ (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
cases a1
case a U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l v : VarName a1 : (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P ⊒ (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q)
case a.intro U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l v : VarName left✝ : isFreeIn v U ∨ isFreeIn v V right✝ : isBoundIn v h1_P ⊒ (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
constructor
U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l v : VarName a1_left : isFreeIn v U ∨ isFreeIn v V a1_right : isBoundIn v h1_P ⊒ (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q)
case left U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l v : VarName a1_left : isFreeIn v U ∨ isFreeIn v V a1_right : isBoundIn v h1_P ⊒ isFreeIn v U ∨ isFreeIn v V case right U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l v : VarName a1_left : isFreeIn v U ∨ isFreeIn v V a1_right : isBoundIn v h1_P ⊒ isBoundIn v h1_P ∨ isBoundIn v h1_Q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
exact a1_left
case left U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l v : VarName a1_left : isFreeIn v U ∨ isFreeIn v V a1_right : isBoundIn v h1_P ⊒ isFreeIn v U ∨ isFreeIn v V
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
left
case right U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l v : VarName a1_left : isFreeIn v U ∨ isFreeIn v V a1_right : isBoundIn v h1_P ⊒ isBoundIn v h1_P ∨ isBoundIn v h1_Q
case right.h U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l v : VarName a1_left : isFreeIn v U ∨ isFreeIn v V a1_right : isBoundIn v h1_P ⊒ isBoundIn v h1_P
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
exact a1_right
case right.h U V P_U P_V : Formula l : List VarName h1_P h1_Q h1_P' h1_Q' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_2 : IsReplOfFormulaInFormula U V h1_Q h1_Q' h1_ih_1 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h1_ih_2 : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_Q β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_Q.iff_ h1_Q')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (isBoundIn v h1_P ∨ isBoundIn v h1_Q) β†’ v ∈ l v : VarName a1_left : isFreeIn v U ∨ isFreeIn v V a1_right : isBoundIn v h1_P ⊒ isBoundIn v h1_P
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
simp only [isBoundIn] at h2
U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v (forall_ h1_x h1_P) β†’ v ∈ l ⊒ IsProof ((Forall_ l (U.iff_ V)).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (v = h1_x ∨ isBoundIn v h1_P) β†’ v ∈ l ⊒ IsProof ((Forall_ l (U.iff_ V)).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
simp at h2
U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ (v = h1_x ∨ isBoundIn v h1_P) β†’ v ∈ l ⊒ IsProof ((Forall_ l (U.iff_ V)).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ IsProof ((Forall_ l (U.iff_ V)).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
apply deduction_theorem
U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ IsProof ((Forall_ l (U.iff_ V)).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
case h1 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ IsDeduct (βˆ… βˆͺ {Forall_ l (U.iff_ V)}) ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P'))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
simp
case h1 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ IsDeduct (βˆ… βˆͺ {Forall_ l (U.iff_ V)}) ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P'))
case h1 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ IsDeduct {Forall_ l (U.iff_ V)} ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P'))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
apply IsDeduct.mp_ (forall_ h1_x (h1_P.iff_ h1_P'))
case h1 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ IsDeduct {Forall_ l (U.iff_ V)} ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P'))
case h1.a U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ IsDeduct {Forall_ l (U.iff_ V)} ((forall_ h1_x (h1_P.iff_ h1_P')).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P'))) case h1.a U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ IsDeduct {Forall_ l (U.iff_ V)} (forall_ h1_x (h1_P.iff_ h1_P'))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
apply proof_imp_deduct
case h1.a U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ IsDeduct {Forall_ l (U.iff_ V)} ((forall_ h1_x (h1_P.iff_ h1_P')).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
case h1.a.h1 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ IsProof ((forall_ h1_x (h1_P.iff_ h1_P')).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
apply T_18_1
case h1.a.h1 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ IsProof ((forall_ h1_x (h1_P.iff_ h1_P')).imp_ ((forall_ h1_x h1_P).iff_ (forall_ h1_x h1_P')))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
apply generalization
case h1.a U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ IsDeduct {Forall_ l (U.iff_ V)} (forall_ h1_x (h1_P.iff_ h1_P'))
case h1.a.h1 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ IsDeduct {Forall_ l (U.iff_ V)} (h1_P.iff_ h1_P') case h1.a.h2 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ βˆ€ H ∈ {Forall_ l (U.iff_ V)}, Β¬isFreeIn h1_x H
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
apply IsDeduct.mp_ (Forall_ l (U.iff_ V))
case h1.a.h1 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ IsDeduct {Forall_ l (U.iff_ V)} (h1_P.iff_ h1_P')
case h1.a.h1.a U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ IsDeduct {Forall_ l (U.iff_ V)} ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) case h1.a.h1.a U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ IsDeduct {Forall_ l (U.iff_ V)} (Forall_ l (U.iff_ V))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
apply proof_imp_deduct
case h1.a.h1.a U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ IsDeduct {Forall_ l (U.iff_ V)} ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
case h1.a.h1.a.h1 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
apply h1_ih
case h1.a.h1.a.h1 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P'))
case h1.a.h1.a.h1 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
intro v a1
case h1.a.h1.a.h1 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l
case h1.a.h1.a.h1 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l v : VarName a1 : (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P ⊒ v ∈ l
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
cases a1
case h1.a.h1.a.h1 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l v : VarName a1 : (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P ⊒ v ∈ l
case h1.a.h1.a.h1.intro U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l v : VarName left✝ : isFreeIn v U ∨ isFreeIn v V right✝ : isBoundIn v h1_P ⊒ v ∈ l
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
case _ a1_left a1_right => apply h2 v a1_left right apply a1_right
U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l v : VarName a1_left : isFreeIn v U ∨ isFreeIn v V a1_right : isBoundIn v h1_P ⊒ v ∈ l
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
apply h2 v a1_left
U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l v : VarName a1_left : isFreeIn v U ∨ isFreeIn v V a1_right : isBoundIn v h1_P ⊒ v ∈ l
U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l v : VarName a1_left : isFreeIn v U ∨ isFreeIn v V a1_right : isBoundIn v h1_P ⊒ v = h1_x ∨ isBoundIn v h1_P
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
right
U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l v : VarName a1_left : isFreeIn v U ∨ isFreeIn v V a1_right : isBoundIn v h1_P ⊒ v = h1_x ∨ isBoundIn v h1_P
case h U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l v : VarName a1_left : isFreeIn v U ∨ isFreeIn v V a1_right : isBoundIn v h1_P ⊒ isBoundIn v h1_P
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
apply a1_right
case h U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l v : VarName a1_left : isFreeIn v U ∨ isFreeIn v V a1_right : isBoundIn v h1_P ⊒ isBoundIn v h1_P
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
apply IsDeduct.assume_
case h1.a.h1.a U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ IsDeduct {Forall_ l (U.iff_ V)} (Forall_ l (U.iff_ V))
case h1.a.h1.a.a U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ Forall_ l (U.iff_ V) ∈ {Forall_ l (U.iff_ V)}
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
simp
case h1.a.h1.a.a U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ Forall_ l (U.iff_ V) ∈ {Forall_ l (U.iff_ V)}
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
intro H a1
case h1.a.h2 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ βˆ€ H ∈ {Forall_ l (U.iff_ V)}, Β¬isFreeIn h1_x H
case h1.a.h2 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l H : Formula a1 : H ∈ {Forall_ l (U.iff_ V)} ⊒ Β¬isFreeIn h1_x H
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
simp at a1
case h1.a.h2 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l H : Formula a1 : H ∈ {Forall_ l (U.iff_ V)} ⊒ Β¬isFreeIn h1_x H
case h1.a.h2 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l H : Formula a1 : H = Forall_ l (U.iff_ V) ⊒ Β¬isFreeIn h1_x H
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
subst a1
case h1.a.h2 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l H : Formula a1 : H = Forall_ l (U.iff_ V) ⊒ Β¬isFreeIn h1_x H
case h1.a.h2 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ Β¬isFreeIn h1_x (Forall_ l (U.iff_ V))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
simp only [Forall_isFreeIn]
case h1.a.h2 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ Β¬isFreeIn h1_x (Forall_ l (U.iff_ V))
case h1.a.h2 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ Β¬(h1_x βˆ‰ l ∧ isFreeIn h1_x (U.iff_ V))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
simp only [def_iff_]
case h1.a.h2 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ Β¬(h1_x βˆ‰ l ∧ isFreeIn h1_x (U.iff_ V))
case h1.a.h2 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ Β¬(h1_x βˆ‰ l ∧ isFreeIn h1_x ((U.imp_ V).and_ (V.imp_ U)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
simp only [def_and_]
case h1.a.h2 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ Β¬(h1_x βˆ‰ l ∧ isFreeIn h1_x ((U.imp_ V).and_ (V.imp_ U)))
case h1.a.h2 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ Β¬(h1_x βˆ‰ l ∧ isFreeIn h1_x ((U.imp_ V).imp_ (V.imp_ U).not_).not_)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
simp only [isFreeIn]
case h1.a.h2 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ Β¬(h1_x βˆ‰ l ∧ isFreeIn h1_x ((U.imp_ V).imp_ (V.imp_ U).not_).not_)
case h1.a.h2 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ Β¬(h1_x βˆ‰ l ∧ ((isFreeIn h1_x U ∨ isFreeIn h1_x V) ∨ isFreeIn h1_x V ∨ isFreeIn h1_x U))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
sorry
case h1.a.h2 U V P_U P_V : Formula l : List VarName h1_x : VarName h1_P h1_P' : Formula h1_1 : IsReplOfFormulaInFormula U V h1_P h1_P' h1_ih : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v h1_P β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (h1_P.iff_ h1_P')) h2 : βˆ€ (v : VarName), isFreeIn v U ∨ isFreeIn v V β†’ v = h1_x ∨ isBoundIn v h1_P β†’ v ∈ l ⊒ Β¬(h1_x βˆ‰ l ∧ ((isFreeIn h1_x U ∨ isFreeIn h1_x V) ∨ isFreeIn h1_x V ∨ isFreeIn h1_x U))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_2
[802, 1]
[886, 10]
sorry
case exists_ U V P_U P_V : Formula l : List VarName x✝ : VarName P_u✝ P_v✝ : Formula a✝ : IsReplOfFormulaInFormula U V P_u✝ P_v✝ a_ih✝ : (βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v P_u✝ β†’ v ∈ l) β†’ IsProof ((Forall_ l (U.iff_ V)).imp_ (P_u✝.iff_ P_v✝)) h2 : βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v (exists_ x✝ P_u✝) β†’ v ∈ l ⊒ IsProof ((Forall_ l (U.iff_ V)).imp_ ((exists_ x✝ P_u✝).iff_ (exists_ x✝ P_v✝)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_3
[889, 1]
[913, 13]
apply IsDeduct.mp_ (Forall_ ((U.freeVarSet βˆͺ V.freeVarSet) ∩ P_U.boundVarSet).toList (U.iff_ V))
U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) ⊒ IsProof (P_U.iff_ P_V)
case a U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) ⊒ IsDeduct βˆ… ((Forall_ ((U.freeVarSet βˆͺ V.freeVarSet) ∩ P_U.boundVarSet).toList (U.iff_ V)).imp_ (P_U.iff_ P_V)) case a U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) ⊒ IsDeduct βˆ… (Forall_ ((U.freeVarSet βˆͺ V.freeVarSet) ∩ P_U.boundVarSet).toList (U.iff_ V))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_3
[889, 1]
[913, 13]
apply T_18_2 U V P_U P_V ((U.freeVarSet βˆͺ V.freeVarSet) ∩ P_U.boundVarSet).toList h1
case a U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) ⊒ IsDeduct βˆ… ((Forall_ ((U.freeVarSet βˆͺ V.freeVarSet) ∩ P_U.boundVarSet).toList (U.iff_ V)).imp_ (P_U.iff_ P_V))
case a U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) ⊒ βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v P_U β†’ v ∈ ((U.freeVarSet βˆͺ V.freeVarSet) ∩ P_U.boundVarSet).toList
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_3
[889, 1]
[913, 13]
intro v a1
case a U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) ⊒ βˆ€ (v : VarName), (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v P_U β†’ v ∈ ((U.freeVarSet βˆͺ V.freeVarSet) ∩ P_U.boundVarSet).toList
case a U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) v : VarName a1 : (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v P_U ⊒ v ∈ ((U.freeVarSet βˆͺ V.freeVarSet) ∩ P_U.boundVarSet).toList
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_3
[889, 1]
[913, 13]
simp
case a U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) v : VarName a1 : (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v P_U ⊒ v ∈ ((U.freeVarSet βˆͺ V.freeVarSet) ∩ P_U.boundVarSet).toList
case a U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) v : VarName a1 : (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v P_U ⊒ (v ∈ U.freeVarSet ∨ v ∈ V.freeVarSet) ∧ v ∈ P_U.boundVarSet
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_3
[889, 1]
[913, 13]
simp only [isFreeIn_iff_mem_freeVarSet] at a1
case a U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) v : VarName a1 : (isFreeIn v U ∨ isFreeIn v V) ∧ isBoundIn v P_U ⊒ (v ∈ U.freeVarSet ∨ v ∈ V.freeVarSet) ∧ v ∈ P_U.boundVarSet
case a U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) v : VarName a1 : (v ∈ U.freeVarSet ∨ v ∈ V.freeVarSet) ∧ isBoundIn v P_U ⊒ (v ∈ U.freeVarSet ∨ v ∈ V.freeVarSet) ∧ v ∈ P_U.boundVarSet
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_3
[889, 1]
[913, 13]
simp only [isBoundIn_iff_mem_boundVarSet] at a1
case a U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) v : VarName a1 : (v ∈ U.freeVarSet ∨ v ∈ V.freeVarSet) ∧ isBoundIn v P_U ⊒ (v ∈ U.freeVarSet ∨ v ∈ V.freeVarSet) ∧ v ∈ P_U.boundVarSet
case a U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) v : VarName a1 : (v ∈ U.freeVarSet ∨ v ∈ V.freeVarSet) ∧ v ∈ P_U.boundVarSet ⊒ (v ∈ U.freeVarSet ∨ v ∈ V.freeVarSet) ∧ v ∈ P_U.boundVarSet
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_3
[889, 1]
[913, 13]
exact a1
case a U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) v : VarName a1 : (v ∈ U.freeVarSet ∨ v ∈ V.freeVarSet) ∧ v ∈ P_U.boundVarSet ⊒ (v ∈ U.freeVarSet ∨ v ∈ V.freeVarSet) ∧ v ∈ P_U.boundVarSet
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_3
[889, 1]
[913, 13]
simp only [Formula.Forall_]
case a U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) ⊒ IsDeduct βˆ… (Forall_ ((U.freeVarSet βˆͺ V.freeVarSet) ∩ P_U.boundVarSet).toList (U.iff_ V))
case a U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) ⊒ IsDeduct βˆ… (List.foldr forall_ (U.iff_ V) ((U.freeVarSet βˆͺ V.freeVarSet) ∩ P_U.boundVarSet).toList)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_3
[889, 1]
[913, 13]
induction ((U.freeVarSet βˆͺ V.freeVarSet) ∩ P_U.boundVarSet).toList
case a U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) ⊒ IsDeduct βˆ… (List.foldr forall_ (U.iff_ V) ((U.freeVarSet βˆͺ V.freeVarSet) ∩ P_U.boundVarSet).toList)
case a.nil U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) ⊒ IsDeduct βˆ… (List.foldr forall_ (U.iff_ V) []) case a.cons U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) head✝ : VarName tail✝ : List VarName tail_ih✝ : IsDeduct βˆ… (List.foldr forall_ (U.iff_ V) tail✝) ⊒ IsDeduct βˆ… (List.foldr forall_ (U.iff_ V) (head✝ :: tail✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_3
[889, 1]
[913, 13]
case _ => simp exact h2
U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) ⊒ IsDeduct βˆ… (List.foldr forall_ (U.iff_ V) [])
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_3
[889, 1]
[913, 13]
simp
U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) ⊒ IsDeduct βˆ… (List.foldr forall_ (U.iff_ V) [])
U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) ⊒ IsDeduct βˆ… (U.iff_ V)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_3
[889, 1]
[913, 13]
exact h2
U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) ⊒ IsDeduct βˆ… (U.iff_ V)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_3
[889, 1]
[913, 13]
simp
U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) hd : VarName tl : List VarName ih : IsDeduct βˆ… (List.foldr forall_ (U.iff_ V) tl) ⊒ IsDeduct βˆ… (List.foldr forall_ (U.iff_ V) (hd :: tl))
U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) hd : VarName tl : List VarName ih : IsDeduct βˆ… (List.foldr forall_ (U.iff_ V) tl) ⊒ IsDeduct βˆ… (forall_ hd (List.foldr forall_ (U.iff_ V) tl))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_3
[889, 1]
[913, 13]
apply generalization
U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) hd : VarName tl : List VarName ih : IsDeduct βˆ… (List.foldr forall_ (U.iff_ V) tl) ⊒ IsDeduct βˆ… (forall_ hd (List.foldr forall_ (U.iff_ V) tl))
case h1 U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) hd : VarName tl : List VarName ih : IsDeduct βˆ… (List.foldr forall_ (U.iff_ V) tl) ⊒ IsDeduct βˆ… (List.foldr forall_ (U.iff_ V) tl) case h2 U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) hd : VarName tl : List VarName ih : IsDeduct βˆ… (List.foldr forall_ (U.iff_ V) tl) ⊒ βˆ€ H ∈ βˆ…, Β¬isFreeIn hd H
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_3
[889, 1]
[913, 13]
exact ih
case h1 U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) hd : VarName tl : List VarName ih : IsDeduct βˆ… (List.foldr forall_ (U.iff_ V) tl) ⊒ IsDeduct βˆ… (List.foldr forall_ (U.iff_ V) tl)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_3
[889, 1]
[913, 13]
simp
case h2 U V P_U P_V : Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) hd : VarName tl : List VarName ih : IsDeduct βˆ… (List.foldr forall_ (U.iff_ V) tl) ⊒ βˆ€ H ∈ βˆ…, Β¬isFreeIn hd H
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_4
[917, 1]
[935, 13]
apply IsDeduct.mp_ P_U
U V P_U P_V : Formula Ξ” : Set Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) h3 : IsDeduct Ξ” P_U ⊒ IsDeduct Ξ” P_V
case a U V P_U P_V : Formula Ξ” : Set Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) h3 : IsDeduct Ξ” P_U ⊒ IsDeduct Ξ” (P_U.imp_ P_V) case a U V P_U P_V : Formula Ξ” : Set Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) h3 : IsDeduct Ξ” P_U ⊒ IsDeduct Ξ” P_U
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_4
[917, 1]
[935, 13]
apply IsDeduct.mp_ (P_U.iff_ P_V)
case a U V P_U P_V : Formula Ξ” : Set Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) h3 : IsDeduct Ξ” P_U ⊒ IsDeduct Ξ” (P_U.imp_ P_V)
case a.a U V P_U P_V : Formula Ξ” : Set Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) h3 : IsDeduct Ξ” P_U ⊒ IsDeduct Ξ” ((P_U.iff_ P_V).imp_ (P_U.imp_ P_V)) case a.a U V P_U P_V : Formula Ξ” : Set Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) h3 : IsDeduct Ξ” P_U ⊒ IsDeduct Ξ” (P_U.iff_ P_V)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_4
[917, 1]
[935, 13]
simp only [def_iff_]
case a.a U V P_U P_V : Formula Ξ” : Set Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) h3 : IsDeduct Ξ” P_U ⊒ IsDeduct Ξ” ((P_U.iff_ P_V).imp_ (P_U.imp_ P_V))
case a.a U V P_U P_V : Formula Ξ” : Set Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) h3 : IsDeduct Ξ” P_U ⊒ IsDeduct Ξ” (((P_U.imp_ P_V).and_ (P_V.imp_ P_U)).imp_ (P_U.imp_ P_V))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_4
[917, 1]
[935, 13]
simp only [def_and_]
case a.a U V P_U P_V : Formula Ξ” : Set Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) h3 : IsDeduct Ξ” P_U ⊒ IsDeduct Ξ” (((P_U.imp_ P_V).and_ (P_V.imp_ P_U)).imp_ (P_U.imp_ P_V))
case a.a U V P_U P_V : Formula Ξ” : Set Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) h3 : IsDeduct Ξ” P_U ⊒ IsDeduct Ξ” (((P_U.imp_ P_V).imp_ (P_V.imp_ P_U).not_).not_.imp_ (P_U.imp_ P_V))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_4
[917, 1]
[935, 13]
SC
case a.a U V P_U P_V : Formula Ξ” : Set Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) h3 : IsDeduct Ξ” P_U ⊒ IsDeduct Ξ” (((P_U.imp_ P_V).imp_ (P_V.imp_ P_U).not_).not_.imp_ (P_U.imp_ P_V))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_4
[917, 1]
[935, 13]
apply proof_imp_deduct
case a.a U V P_U P_V : Formula Ξ” : Set Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) h3 : IsDeduct Ξ” P_U ⊒ IsDeduct Ξ” (P_U.iff_ P_V)
case a.a.h1 U V P_U P_V : Formula Ξ” : Set Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) h3 : IsDeduct Ξ” P_U ⊒ IsProof (P_U.iff_ P_V)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_4
[917, 1]
[935, 13]
exact C_18_3 U V P_U P_V h1 h2
case a.a.h1 U V P_U P_V : Formula Ξ” : Set Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) h3 : IsDeduct Ξ” P_U ⊒ IsProof (P_U.iff_ P_V)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.C_18_4
[917, 1]
[935, 13]
exact h3
case a U V P_U P_V : Formula Ξ” : Set Formula h1 : IsReplOfFormulaInFormula U V P_U P_V h2 : IsProof (U.iff_ V) h3 : IsDeduct Ξ” P_U ⊒ IsDeduct Ξ” P_U
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
simp only [def_exists_]
P : Formula v : VarName ⊒ IsProof ((forall_ v P).iff_ (exists_ v P.not_).not_)
P : Formula v : VarName ⊒ IsProof ((forall_ v P).iff_ (forall_ v P.not_.not_).not_.not_)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
apply C_18_4 P P.not_.not_ ((forall_ v P).iff_ (forall_ v P).not_.not_)
P : Formula v : VarName ⊒ IsProof ((forall_ v P).iff_ (forall_ v P.not_.not_).not_.not_)
case h1 P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ ((forall_ v P).iff_ (forall_ v P).not_.not_) ((forall_ v P).iff_ (forall_ v P.not_.not_).not_.not_) case h2 P : Formula v : VarName ⊒ IsProof (P.iff_ P.not_.not_) case h3 P : Formula v : VarName ⊒ IsDeduct βˆ… ((forall_ v P).iff_ (forall_ v P).not_.not_)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
simp only [def_iff_]
case h1 P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ ((forall_ v P).iff_ (forall_ v P).not_.not_) ((forall_ v P).iff_ (forall_ v P.not_.not_).not_.not_)
case h1 P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (((forall_ v P).imp_ (forall_ v P).not_.not_).and_ ((forall_ v P).not_.not_.imp_ (forall_ v P))) (((forall_ v P).imp_ (forall_ v P.not_.not_).not_.not_).and_ ((forall_ v P.not_.not_).not_.not_.imp_ (forall_ v P)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
simp only [def_and_]
case h1 P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (((forall_ v P).imp_ (forall_ v P).not_.not_).and_ ((forall_ v P).not_.not_.imp_ (forall_ v P))) (((forall_ v P).imp_ (forall_ v P.not_.not_).not_.not_).and_ ((forall_ v P.not_.not_).not_.not_.imp_ (forall_ v P)))
case h1 P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (((forall_ v P).imp_ (forall_ v P).not_.not_).imp_ ((forall_ v P).not_.not_.imp_ (forall_ v P)).not_).not_ (((forall_ v P).imp_ (forall_ v P.not_.not_).not_.not_).imp_ ((forall_ v P.not_.not_).not_.not_.imp_ (forall_ v P)).not_).not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
apply IsReplOfFormulaInFormula.not_
case h1 P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (((forall_ v P).imp_ (forall_ v P).not_.not_).imp_ ((forall_ v P).not_.not_.imp_ (forall_ v P)).not_).not_ (((forall_ v P).imp_ (forall_ v P.not_.not_).not_.not_).imp_ ((forall_ v P.not_.not_).not_.not_.imp_ (forall_ v P)).not_).not_
case h1.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (((forall_ v P).imp_ (forall_ v P).not_.not_).imp_ ((forall_ v P).not_.not_.imp_ (forall_ v P)).not_) (((forall_ v P).imp_ (forall_ v P.not_.not_).not_.not_).imp_ ((forall_ v P.not_.not_).not_.not_.imp_ (forall_ v P)).not_)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
apply IsReplOfFormulaInFormula.imp_
case h1.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (((forall_ v P).imp_ (forall_ v P).not_.not_).imp_ ((forall_ v P).not_.not_.imp_ (forall_ v P)).not_) (((forall_ v P).imp_ (forall_ v P.not_.not_).not_.not_).imp_ ((forall_ v P.not_.not_).not_.not_.imp_ (forall_ v P)).not_)
case h1.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ ((forall_ v P).imp_ (forall_ v P).not_.not_) ((forall_ v P).imp_ (forall_ v P.not_.not_).not_.not_) case h1.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ ((forall_ v P).not_.not_.imp_ (forall_ v P)).not_ ((forall_ v P.not_.not_).not_.not_.imp_ (forall_ v P)).not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
apply IsReplOfFormulaInFormula.imp_
case h1.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ ((forall_ v P).imp_ (forall_ v P).not_.not_) ((forall_ v P).imp_ (forall_ v P.not_.not_).not_.not_)
case h1.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (forall_ v P) (forall_ v P) case h1.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (forall_ v P).not_.not_ (forall_ v P.not_.not_).not_.not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
apply IsReplOfFormulaInFormula.same_
case h1.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (forall_ v P) (forall_ v P)
case h1.a.a.a.a P : Formula v : VarName ⊒ forall_ v P = forall_ v P
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
rfl
case h1.a.a.a.a P : Formula v : VarName ⊒ forall_ v P = forall_ v P
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
apply IsReplOfFormulaInFormula.not_
case h1.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (forall_ v P).not_.not_ (forall_ v P.not_.not_).not_.not_
case h1.a.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (forall_ v P).not_ (forall_ v P.not_.not_).not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
apply IsReplOfFormulaInFormula.not_
case h1.a.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (forall_ v P).not_ (forall_ v P.not_.not_).not_
case h1.a.a.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (forall_ v P) (forall_ v P.not_.not_)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
apply IsReplOfFormulaInFormula.forall_
case h1.a.a.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (forall_ v P) (forall_ v P.not_.not_)
case h1.a.a.a.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ P P.not_.not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
apply IsReplOfFormulaInFormula.diff_
case h1.a.a.a.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ P P.not_.not_
case h1.a.a.a.a.a.a.a P : Formula v : VarName ⊒ P = P case h1.a.a.a.a.a.a.a P : Formula v : VarName ⊒ P.not_.not_ = P.not_.not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
rfl
case h1.a.a.a.a.a.a.a P : Formula v : VarName ⊒ P = P
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
rfl
case h1.a.a.a.a.a.a.a P : Formula v : VarName ⊒ P.not_.not_ = P.not_.not_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
apply IsReplOfFormulaInFormula.not_
case h1.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ ((forall_ v P).not_.not_.imp_ (forall_ v P)).not_ ((forall_ v P.not_.not_).not_.not_.imp_ (forall_ v P)).not_
case h1.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ ((forall_ v P).not_.not_.imp_ (forall_ v P)) ((forall_ v P.not_.not_).not_.not_.imp_ (forall_ v P))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
apply IsReplOfFormulaInFormula.imp_
case h1.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ ((forall_ v P).not_.not_.imp_ (forall_ v P)) ((forall_ v P.not_.not_).not_.not_.imp_ (forall_ v P))
case h1.a.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (forall_ v P).not_.not_ (forall_ v P.not_.not_).not_.not_ case h1.a.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (forall_ v P) (forall_ v P)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
apply IsReplOfFormulaInFormula.not_
case h1.a.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (forall_ v P).not_.not_ (forall_ v P.not_.not_).not_.not_
case h1.a.a.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (forall_ v P).not_ (forall_ v P.not_.not_).not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
apply IsReplOfFormulaInFormula.not_
case h1.a.a.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (forall_ v P).not_ (forall_ v P.not_.not_).not_
case h1.a.a.a.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (forall_ v P) (forall_ v P.not_.not_)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
apply IsReplOfFormulaInFormula.forall_
case h1.a.a.a.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (forall_ v P) (forall_ v P.not_.not_)
case h1.a.a.a.a.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ P P.not_.not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
apply IsReplOfFormulaInFormula.diff_
case h1.a.a.a.a.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ P P.not_.not_
case h1.a.a.a.a.a.a.a.a P : Formula v : VarName ⊒ P = P case h1.a.a.a.a.a.a.a.a P : Formula v : VarName ⊒ P.not_.not_ = P.not_.not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
rfl
case h1.a.a.a.a.a.a.a.a P : Formula v : VarName ⊒ P = P
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
rfl
case h1.a.a.a.a.a.a.a.a P : Formula v : VarName ⊒ P.not_.not_ = P.not_.not_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
apply IsReplOfFormulaInFormula.same_
case h1.a.a.a.a P : Formula v : VarName ⊒ IsReplOfFormulaInFormula P P.not_.not_ (forall_ v P) (forall_ v P)
case h1.a.a.a.a.a P : Formula v : VarName ⊒ forall_ v P = forall_ v P
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
rfl
case h1.a.a.a.a.a P : Formula v : VarName ⊒ forall_ v P = forall_ v P
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
simp only [def_iff_]
case h2 P : Formula v : VarName ⊒ IsProof (P.iff_ P.not_.not_)
case h2 P : Formula v : VarName ⊒ IsProof ((P.imp_ P.not_.not_).and_ (P.not_.not_.imp_ P))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
simp only [def_and_]
case h2 P : Formula v : VarName ⊒ IsProof ((P.imp_ P.not_.not_).and_ (P.not_.not_.imp_ P))
case h2 P : Formula v : VarName ⊒ IsProof ((P.imp_ P.not_.not_).imp_ (P.not_.not_.imp_ P).not_).not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
SC
case h2 P : Formula v : VarName ⊒ IsProof ((P.imp_ P.not_.not_).imp_ (P.not_.not_.imp_ P).not_).not_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
simp only [def_iff_]
case h3 P : Formula v : VarName ⊒ IsDeduct βˆ… ((forall_ v P).iff_ (forall_ v P).not_.not_)
case h3 P : Formula v : VarName ⊒ IsDeduct βˆ… (((forall_ v P).imp_ (forall_ v P).not_.not_).and_ ((forall_ v P).not_.not_.imp_ (forall_ v P)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_18_5
[938, 1]
[980, 7]
simp only [def_and_]
case h3 P : Formula v : VarName ⊒ IsDeduct βˆ… (((forall_ v P).imp_ (forall_ v P).not_.not_).and_ ((forall_ v P).not_.not_.imp_ (forall_ v P)))
case h3 P : Formula v : VarName ⊒ IsDeduct βˆ… (((forall_ v P).imp_ (forall_ v P).not_.not_).imp_ ((forall_ v P).not_.not_.imp_ (forall_ v P)).not_).not_