url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
selectColumns2_spec4
[385, 1]
[390, 24]
simp only [nrows, selectColumns2, Schema.length_eq_List_length]
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch ns : List (Fin (ncols t)) ⊢ nrows (selectColumns2 t ns) = nrows t
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch ns : List (Fin (ncols t)) ⊢ List.length (List.map (Row.nths ns) t.rows) = List.length t.rows
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
selectColumns2_spec4
[385, 1]
[390, 24]
apply List.length_map
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch ns : List (Fin (ncols t)) ⊢ List.length (List.map (Row.nths ns) t.rows) = List.length t.rows
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
selectColumns3_spec1
[394, 1]
[405, 16]
intros t cs
η : Type u_η dec_η : DecidableEq η sch : Schema ⊢ ∀ (t : Table sch) (cs : List (CertifiedHeader sch)), header (selectColumns3 t cs) = List.map (Prod.fst ∘ Sigma.fst) cs
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch cs : List (CertifiedHeader sch) ⊢ header (selectColumns3 t cs) = List.map (Prod.fst ∘ Sigma.fst) cs
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
selectColumns3_spec1
[394, 1]
[405, 16]
simp only [header, selectColumns3, Schema.names]
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch cs : List (CertifiedHeader sch) ⊢ header (selectColumns3 t cs) = List.map (Prod.fst ∘ Sigma.fst) cs
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch cs : List (CertifiedHeader sch) ⊢ List.map Prod.fst (Schema.fromCHeaders cs) = List.map (Prod.fst ∘ Sigma.fst) cs
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
selectColumns3_spec1
[394, 1]
[405, 16]
induction cs with | nil => simp only [Schema.pick, List.map] | cons c cs ih => simp only [Schema.pick, List.map, List.cons.injEq] apply And.intro . simp only [Function.comp, Schema.lookup_fst_eq_nm, CertifiedName.val] . exact ih
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch cs : List (CertifiedHeader sch) ⊢ List.map Prod.fst (Schema.fromCHeaders cs) = List.map (Prod.fst ∘ Sigma.fst) cs
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
selectColumns3_spec1
[394, 1]
[405, 16]
simp only [Schema.pick, List.map]
case nil η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch ⊢ List.map Prod.fst (Schema.fromCHeaders []) = List.map (Prod.fst ∘ Sigma.fst) []
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
selectColumns3_spec1
[394, 1]
[405, 16]
simp only [Schema.pick, List.map, List.cons.injEq]
case cons η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch c : CertifiedHeader sch cs : List (CertifiedHeader sch) ih : List.map Prod.fst (Schema.fromCHeaders cs) = List.map (Prod.fst ∘ Sigma.fst) cs ⊢ List.map Prod.fst (Schema.fromCHeaders (c :: cs)) = List.map (Prod.fst ∘ Sigma.fst) (c :: cs)
case cons η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch c : CertifiedHeader sch cs : List (CertifiedHeader sch) ih : List.map Prod.fst (Schema.fromCHeaders cs) = List.map (Prod.fst ∘ Sigma.fst) cs ⊢ c.fst.fst = (Prod.fst ∘ Sigma.fst) c ∧ List.map Prod.fst (Schema.map Sigma.fst cs) = List.map (Prod.fst ∘ Sigma.fst) cs
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
selectColumns3_spec1
[394, 1]
[405, 16]
apply And.intro
case cons η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch c : CertifiedHeader sch cs : List (CertifiedHeader sch) ih : List.map Prod.fst (Schema.fromCHeaders cs) = List.map (Prod.fst ∘ Sigma.fst) cs ⊢ c.fst.fst = (Prod.fst ∘ Sigma.fst) c ∧ List.map Prod.fst (Schema.map Sigma.fst cs) = List.map (Prod.fst ∘ Sigma.fst) cs
case cons.left η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch c : CertifiedHeader sch cs : List (CertifiedHeader sch) ih : List.map Prod.fst (Schema.fromCHeaders cs) = List.map (Prod.fst ∘ Sigma.fst) cs ⊢ c.fst.fst = (Prod.fst ∘ Sigma.fst) c case cons.right η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch c : CertifiedHeader sch cs : List (CertifiedHeader sch) ih : List.map Prod.fst (Schema.fromCHeaders cs) = List.map (Prod.fst ∘ Sigma.fst) cs ⊢ List.map Prod.fst (Schema.map Sigma.fst cs) = List.map (Prod.fst ∘ Sigma.fst) cs
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
selectColumns3_spec1
[394, 1]
[405, 16]
. simp only [Function.comp, Schema.lookup_fst_eq_nm, CertifiedName.val]
case cons.left η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch c : CertifiedHeader sch cs : List (CertifiedHeader sch) ih : List.map Prod.fst (Schema.fromCHeaders cs) = List.map (Prod.fst ∘ Sigma.fst) cs ⊢ c.fst.fst = (Prod.fst ∘ Sigma.fst) c case cons.right η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch c : CertifiedHeader sch cs : List (CertifiedHeader sch) ih : List.map Prod.fst (Schema.fromCHeaders cs) = List.map (Prod.fst ∘ Sigma.fst) cs ⊢ List.map Prod.fst (Schema.map Sigma.fst cs) = List.map (Prod.fst ∘ Sigma.fst) cs
case cons.right η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch c : CertifiedHeader sch cs : List (CertifiedHeader sch) ih : List.map Prod.fst (Schema.fromCHeaders cs) = List.map (Prod.fst ∘ Sigma.fst) cs ⊢ List.map Prod.fst (Schema.map Sigma.fst cs) = List.map (Prod.fst ∘ Sigma.fst) cs
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
selectColumns3_spec1
[394, 1]
[405, 16]
. exact ih
case cons.right η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch c : CertifiedHeader sch cs : List (CertifiedHeader sch) ih : List.map Prod.fst (Schema.fromCHeaders cs) = List.map (Prod.fst ∘ Sigma.fst) cs ⊢ List.map Prod.fst (Schema.map Sigma.fst cs) = List.map (Prod.fst ∘ Sigma.fst) cs
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
selectColumns3_spec1
[394, 1]
[405, 16]
simp only [Function.comp, Schema.lookup_fst_eq_nm, CertifiedName.val]
case cons.left η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch c : CertifiedHeader sch cs : List (CertifiedHeader sch) ih : List.map Prod.fst (Schema.fromCHeaders cs) = List.map (Prod.fst ∘ Sigma.fst) cs ⊢ c.fst.fst = (Prod.fst ∘ Sigma.fst) c
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
selectColumns3_spec1
[394, 1]
[405, 16]
exact ih
case cons.right η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch c : CertifiedHeader sch cs : List (CertifiedHeader sch) ih : List.map Prod.fst (Schema.fromCHeaders cs) = List.map (Prod.fst ∘ Sigma.fst) cs ⊢ List.map Prod.fst (Schema.map Sigma.fst cs) = List.map (Prod.fst ∘ Sigma.fst) cs
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
selectColumns3_spec2
[407, 1]
[417, 44]
intro t cs c
η : Type u_η dec_η : DecidableEq η sch : Schema ⊢ ∀ (t : Table sch) (cs : List (CertifiedHeader sch)) (c : CertifiedName (schema (selectColumns3 t cs))), Schema.lookupType (schema t) { fst := c.fst, snd := Schema.hasNameOfFromCHeaders c.snd } = Schema.lookupType (schema (selectColumns3 t cs)) c
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch cs : List (CertifiedHeader sch) c : CertifiedName (schema (selectColumns3 t cs)) ⊢ Schema.lookupType (schema t) { fst := c.fst, snd := Schema.hasNameOfFromCHeaders c.snd } = Schema.lookupType (schema (selectColumns3 t cs)) c
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
selectColumns3_spec2
[407, 1]
[417, 44]
unfold schema
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch cs : List (CertifiedHeader sch) c : CertifiedName (schema (selectColumns3 t cs)) ⊢ Schema.lookupType (schema t) { fst := c.fst, snd := Schema.hasNameOfFromCHeaders c.snd } = Schema.lookupType (schema (selectColumns3 t cs)) c
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch cs : List (CertifiedHeader sch) c : CertifiedName (schema (selectColumns3 t cs)) ⊢ Schema.lookupType sch { fst := c.fst, snd := Schema.hasNameOfFromCHeaders c.snd } = Schema.lookupType (Schema.fromCHeaders cs) c
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
selectColumns3_spec2
[407, 1]
[417, 44]
unfold Schema.fromCHeaders
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch cs : List (CertifiedHeader sch) c : CertifiedName (schema (selectColumns3 t cs)) ⊢ Schema.lookupType sch { fst := c.fst, snd := Schema.hasNameOfFromCHeaders c.snd } = Schema.lookupType (Schema.fromCHeaders cs) c
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch cs : List (CertifiedHeader sch) c : CertifiedName (schema (selectColumns3 t cs)) ⊢ Schema.lookupType sch { fst := c.fst, snd := Schema.hasNameOfFromCHeaders c.snd } = Schema.lookupType (Schema.map Sigma.fst cs) c
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
selectColumns3_spec2
[407, 1]
[417, 44]
simp only [schema] at c
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch cs : List (CertifiedHeader sch) c : CertifiedName (schema (selectColumns3 t cs)) ⊢ Schema.lookupType sch { fst := c.fst, snd := Schema.hasNameOfFromCHeaders c.snd } = Schema.lookupType (Schema.map Sigma.fst cs) c
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch cs : List (CertifiedHeader sch) c : CertifiedName (Schema.fromCHeaders cs) ⊢ Schema.lookupType sch { fst := c.fst, snd := Schema.hasNameOfFromCHeaders c.snd } = Schema.lookupType (Schema.map Sigma.fst cs) c
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
selectColumns3_spec2
[407, 1]
[417, 44]
apply Schema.lookupTypeFromCHeadersUnique
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch cs : List (CertifiedHeader sch) c : CertifiedName (Schema.fromCHeaders cs) ⊢ Schema.lookupType sch { fst := c.fst, snd := Schema.hasNameOfFromCHeaders c.snd } = Schema.lookupType (Schema.map Sigma.fst cs) c
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
selectColumns3_spec3
[419, 1]
[424, 24]
intro t cs
η : Type u_η dec_η : DecidableEq η sch : Schema ⊢ ∀ (t : Table sch) (cs : List (CertifiedHeader sch)), nrows (selectColumns3 t cs) = nrows t
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch cs : List (CertifiedHeader sch) ⊢ nrows (selectColumns3 t cs) = nrows t
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
selectColumns3_spec3
[419, 1]
[424, 24]
simp only [nrows, selectColumns3, Schema.length_eq_List_length]
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch cs : List (CertifiedHeader sch) ⊢ nrows (selectColumns3 t cs) = nrows t
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch cs : List (CertifiedHeader sch) ⊢ List.length (List.map (fun r => Row.pick r cs) t.rows) = List.length t.rows
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
selectColumns3_spec3
[419, 1]
[424, 24]
apply List.length_map
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch cs : List (CertifiedHeader sch) ⊢ List.length (List.map (fun r => Row.pick r cs) t.rows) = List.length t.rows
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec2
[433, 1]
[450, 15]
intros t z h
η : Type u_η dec_η : DecidableEq η sch : Schema ⊢ ∀ (t : Table sch) (z : { z // Int.abs z < nrows t }), z.val ≥ 0 → Int.ofNat (nrows (head t z.val)) = z.val
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : { z // Int.abs z < nrows t } h : z.val ≥ 0 ⊢ Int.ofNat (nrows (head t z.val)) = z.val
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec2
[433, 1]
[450, 15]
cases z with | mk z prop => simp only [head] have h_not_neg : ¬ (z < 0) := by intro hcontra cases z with | ofNat n => contradiction | negSucc n => contradiction simp only [ite_false, h_not_neg] simp only [List.take, nrows, Schema.length_eq_List_length] rw [List.length_take] . exact Int.toNat_of_ofNat_inj z h . unfold nrows at prop rw [Int.abs_of_nonneg_eq_toNat] at prop . exact Schema.length_eq_List_length ▸ prop . exact h
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : { z // Int.abs z < nrows t } h : z.val ≥ 0 ⊢ Int.ofNat (nrows (head t z.val)) = z.val
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec2
[433, 1]
[450, 15]
simp only [head]
case mk η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val ≥ 0 ⊢ Int.ofNat (nrows (head t { val := z, property := prop }.val)) = { val := z, property := prop }.val
case mk η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val ≥ 0 ⊢ Int.ofNat (nrows { rows := if z < 0 then List.dropLastN (Int.abs z) t.rows else List.take (Int.toNat z) t.rows }) = z
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec2
[433, 1]
[450, 15]
have h_not_neg : ¬ (z < 0) := by intro hcontra cases z with | ofNat n => contradiction | negSucc n => contradiction
case mk η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val ≥ 0 ⊢ Int.ofNat (nrows { rows := if z < 0 then List.dropLastN (Int.abs z) t.rows else List.take (Int.toNat z) t.rows }) = z
case mk η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ Int.ofNat (nrows { rows := if z < 0 then List.dropLastN (Int.abs z) t.rows else List.take (Int.toNat z) t.rows }) = z
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec2
[433, 1]
[450, 15]
simp only [ite_false, h_not_neg]
case mk η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ Int.ofNat (nrows { rows := if z < 0 then List.dropLastN (Int.abs z) t.rows else List.take (Int.toNat z) t.rows }) = z
case mk η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ Int.ofNat (nrows { rows := List.take (Int.toNat z) t.rows }) = z
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec2
[433, 1]
[450, 15]
simp only [List.take, nrows, Schema.length_eq_List_length]
case mk η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ Int.ofNat (nrows { rows := List.take (Int.toNat z) t.rows }) = z
case mk η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ Int.ofNat (List.length (List.take (Int.toNat z) t.rows)) = z
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec2
[433, 1]
[450, 15]
rw [List.length_take]
case mk η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ Int.ofNat (List.length (List.take (Int.toNat z) t.rows)) = z
case mk η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ Int.ofNat (Int.toNat z) = z case mk.h η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ Int.toNat z < List.length t.rows
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec2
[433, 1]
[450, 15]
. exact Int.toNat_of_ofNat_inj z h
case mk η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ Int.ofNat (Int.toNat z) = z case mk.h η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ Int.toNat z < List.length t.rows
case mk.h η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ Int.toNat z < List.length t.rows
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec2
[433, 1]
[450, 15]
. unfold nrows at prop rw [Int.abs_of_nonneg_eq_toNat] at prop . exact Schema.length_eq_List_length ▸ prop . exact h
case mk.h η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ Int.toNat z < List.length t.rows
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec2
[433, 1]
[450, 15]
intro hcontra
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val ≥ 0 ⊢ ¬z < 0
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val ≥ 0 hcontra : z < 0 ⊢ False
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec2
[433, 1]
[450, 15]
cases z with | ofNat n => contradiction | negSucc n => contradiction
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val ≥ 0 hcontra : z < 0 ⊢ False
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec2
[433, 1]
[450, 15]
contradiction
case ofNat η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch n : Nat prop : Int.abs (Int.ofNat n) < nrows t h : { val := Int.ofNat n, property := prop }.val ≥ 0 hcontra : Int.ofNat n < 0 ⊢ False
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec2
[433, 1]
[450, 15]
contradiction
case negSucc η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch n : Nat prop : Int.abs (Int.negSucc n) < nrows t h : { val := Int.negSucc n, property := prop }.val ≥ 0 hcontra : Int.negSucc n < 0 ⊢ False
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec2
[433, 1]
[450, 15]
exact Int.toNat_of_ofNat_inj z h
case mk η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ Int.ofNat (Int.toNat z) = z
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec2
[433, 1]
[450, 15]
unfold nrows at prop
case mk.h η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ Int.toNat z < List.length t.rows
case mk.h η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < Schema.length t.rows h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ Int.toNat z < List.length t.rows
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec2
[433, 1]
[450, 15]
rw [Int.abs_of_nonneg_eq_toNat] at prop
case mk.h η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < Schema.length t.rows h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ Int.toNat z < List.length t.rows
case mk.h η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop✝ : Int.abs z < Schema.length t.rows prop : Int.toNat z < Schema.length t.rows h : { val := z, property := prop✝ }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ Int.toNat z < List.length t.rows case mk.h.a η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < Schema.length t.rows h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ z ≥ 0
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec2
[433, 1]
[450, 15]
. exact Schema.length_eq_List_length ▸ prop
case mk.h η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop✝ : Int.abs z < Schema.length t.rows prop : Int.toNat z < Schema.length t.rows h : { val := z, property := prop✝ }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ Int.toNat z < List.length t.rows case mk.h.a η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < Schema.length t.rows h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ z ≥ 0
case mk.h.a η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < Schema.length t.rows h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ z ≥ 0
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec2
[433, 1]
[450, 15]
. exact h
case mk.h.a η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < Schema.length t.rows h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ z ≥ 0
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec2
[433, 1]
[450, 15]
exact Schema.length_eq_List_length ▸ prop
case mk.h η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop✝ : Int.abs z < Schema.length t.rows prop : Int.toNat z < Schema.length t.rows h : { val := z, property := prop✝ }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ Int.toNat z < List.length t.rows
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec2
[433, 1]
[450, 15]
exact h
case mk.h.a η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < Schema.length t.rows h : { val := z, property := prop }.val ≥ 0 h_not_neg : ¬z < 0 ⊢ z ≥ 0
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec3
[455, 1]
[466, 13]
intros t z h
η : Type u_η dec_η : DecidableEq η sch : Schema ⊢ ∀ (t : Table sch) (z : { z // Int.abs z < nrows t }), z.val < 0 → nrows (head t z.val) = nrows t - Int.abs z.val
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : { z // Int.abs z < nrows t } h : z.val < 0 ⊢ nrows (head t z.val) = nrows t - Int.abs z.val
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec3
[455, 1]
[466, 13]
cases z with | mk z prop => simp only at h simp only [nrows, Schema.length_eq_List_length] at prop simp only [head, nrows, List.dropLastN, Function.comp, h, Schema.length_eq_List_length, ite_true] rw [List.length_reverse, List.length_drop, List.length_reverse] rw [List.length_reverse] exact prop
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : { z // Int.abs z < nrows t } h : z.val < 0 ⊢ nrows (head t z.val) = nrows t - Int.abs z.val
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec3
[455, 1]
[466, 13]
simp only at h
case mk η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : { val := z, property := prop }.val < 0 ⊢ nrows (head t { val := z, property := prop }.val) = nrows t - Int.abs { val := z, property := prop }.val
case mk η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : z < 0 ⊢ nrows (head t { val := z, property := prop }.val) = nrows t - Int.abs { val := z, property := prop }.val
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec3
[455, 1]
[466, 13]
simp only [nrows, Schema.length_eq_List_length] at prop
case mk η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop : Int.abs z < nrows t h : z < 0 ⊢ nrows (head t { val := z, property := prop }.val) = nrows t - Int.abs { val := z, property := prop }.val
case mk η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop✝ : Int.abs z < nrows t h : z < 0 prop : Int.abs z < List.length t.rows ⊢ nrows (head t { val := z, property := prop✝ }.val) = nrows t - Int.abs { val := z, property := prop✝ }.val
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec3
[455, 1]
[466, 13]
simp only [head, nrows, List.dropLastN, Function.comp, h, Schema.length_eq_List_length, ite_true]
case mk η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop✝ : Int.abs z < nrows t h : z < 0 prop : Int.abs z < List.length t.rows ⊢ nrows (head t { val := z, property := prop✝ }.val) = nrows t - Int.abs { val := z, property := prop✝ }.val
case mk η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop✝ : Int.abs z < nrows t h : z < 0 prop : Int.abs z < List.length t.rows ⊢ List.length (List.reverse (List.drop (Int.abs z) (List.reverse t.rows))) = List.length t.rows - Int.abs z
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec3
[455, 1]
[466, 13]
rw [List.length_reverse, List.length_drop, List.length_reverse]
case mk η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop✝ : Int.abs z < nrows t h : z < 0 prop : Int.abs z < List.length t.rows ⊢ List.length (List.reverse (List.drop (Int.abs z) (List.reverse t.rows))) = List.length t.rows - Int.abs z
case mk.a η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop✝ : Int.abs z < nrows t h : z < 0 prop : Int.abs z < List.length t.rows ⊢ Int.abs z < List.length (List.reverse t.rows)
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec3
[455, 1]
[466, 13]
rw [List.length_reverse]
case mk.a η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop✝ : Int.abs z < nrows t h : z < 0 prop : Int.abs z < List.length t.rows ⊢ Int.abs z < List.length (List.reverse t.rows)
case mk.a η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop✝ : Int.abs z < nrows t h : z < 0 prop : Int.abs z < List.length t.rows ⊢ Int.abs z < List.length t.rows
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
head_spec3
[455, 1]
[466, 13]
exact prop
case mk.a η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch z : Int prop✝ : Int.abs z < nrows t h : z < 0 prop : Int.abs z < List.length t.rows ⊢ Int.abs z < List.length t.rows
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec1
[476, 1]
[480, 24]
intros
η : Type u_η dec_η : DecidableEq η sch : Schema ⊢ ∀ (t : Table sch) (c : η) (hc : Schema.HasName c sch), nrows (dropColumn t c) = nrows t
η : Type u_η dec_η : DecidableEq η sch : Schema t✝ : Table sch c✝ : η hc✝ : Schema.HasName c✝ sch ⊢ nrows (dropColumn t✝ c✝) = nrows t✝
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec1
[476, 1]
[480, 24]
simp only [nrows, dropColumn, Schema.length_eq_List_length]
η : Type u_η dec_η : DecidableEq η sch : Schema t✝ : Table sch c✝ : η hc✝ : Schema.HasName c✝ sch ⊢ nrows (dropColumn t✝ c✝) = nrows t✝
η : Type u_η dec_η : DecidableEq η sch : Schema t✝ : Table sch c✝ : η hc✝ : Schema.HasName c✝ sch ⊢ List.length (List.map (Row.removeColumn hc✝) t✝.rows) = List.length t✝.rows
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec1
[476, 1]
[480, 24]
apply List.length_map
η : Type u_η dec_η : DecidableEq η sch : Schema t✝ : Table sch c✝ : η hc✝ : Schema.HasName c✝ sch ⊢ List.length (List.map (Row.removeColumn hc✝) t✝.rows) = List.length t✝.rows
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
intro hsch t c hc
η : Type u_η dec_η : DecidableEq η sch : Schema ⊢ Schema.Unique sch → ∀ (t : Table sch) (c : η) (hc : Schema.HasName c sch), header (dropColumn t c) = List.removeAllEq (header t) [c]
η : Type u_η dec_η : DecidableEq η sch : Schema hsch : Schema.Unique sch t : Table sch c : η hc : Schema.HasName c sch ⊢ header (dropColumn t c) = List.removeAllEq (header t) [c]
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
simp only [List.removeAllEq, header]
η : Type u_η dec_η : DecidableEq η sch : Schema hsch : Schema.Unique sch t : Table sch c : η hc : Schema.HasName c sch ⊢ header (dropColumn t c) = List.removeAllEq (header t) [c]
η : Type u_η dec_η : DecidableEq η sch : Schema hsch : Schema.Unique sch t : Table sch c : η hc : Schema.HasName c sch ⊢ Schema.names (Schema.removeName sch hc) = List.filter (fun x => decide ¬x ∈ [c]) (Schema.names sch)
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
unfold Schema.Unique at hsch
η : Type u_η dec_η : DecidableEq η sch : Schema hsch : Schema.Unique sch t : Table sch c : η hc : Schema.HasName c sch ⊢ Schema.names (Schema.removeName sch hc) = List.filter (fun x => decide ¬x ∈ [c]) (Schema.names sch)
η : Type u_η dec_η : DecidableEq η sch : Schema hsch : List.Unique (Schema.names sch) t : Table sch c : η hc : Schema.HasName c sch ⊢ Schema.names (Schema.removeName sch hc) = List.filter (fun x => decide ¬x ∈ [c]) (Schema.names sch)
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
induction hc with | @hd nm s' τ => simp only [List.filter, List.notElem, List.elem] cases hsch with | cons hnmem hu => simp only at hnmem have : (decide (nm ∉ [nm])) = false := by simp only [decide_not, List.mem_singleton_iff, decide_True, decide_False, not] rw [this] simp only simp only [Schema.names, List.map] have : List.filter (λ x => x ∉ [nm]) (List.map Prod.fst s') = List.removeAllEq (List.map Prod.fst s') [nm] := rfl rw [this] rw [List.removeAllEq_singleton_nonelem_eq] exact hnmem | @tl hdr nm s' h ih => simp only [Schema.names, List.map] cases hdr with | mk nm₁ τ₁ => cases Decidable.em (nm₁ = nm) with | inl heq => rw [heq] at hsch cases hsch with | cons hnmem hu => simp only at hnmem have := Schema.map_eq_List_map ▸ Schema.mem_map_of_HasName _ _ h contradiction | inr hneq => rw [←List.removeAllEq] rw [List.removeAllEq_singleton_hd_neq] . congr apply ih . cases hsch; assumption . exact Table.mk [] . exact hneq
η : Type u_η dec_η : DecidableEq η sch : Schema hsch : List.Unique (Schema.names sch) t : Table sch c : η hc : Schema.HasName c sch ⊢ Schema.names (Schema.removeName sch hc) = List.filter (fun x => decide ¬x ∈ [c]) (Schema.names sch)
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
simp only [List.filter, List.notElem, List.elem]
case hd η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 hsch : List.Unique (Schema.names ((nm, τ) :: s')) t : Table ((nm, τ) :: s') ⊢ Schema.names (Schema.removeName ((nm, τ) :: s') Schema.HasName.hd) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names ((nm, τ) :: s'))
case hd η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 hsch : List.Unique (Schema.names ((nm, τ) :: s')) t : Table ((nm, τ) :: s') ⊢ Schema.names (Schema.removeName ((nm, τ) :: s') Schema.HasName.hd) = match decide ¬nm ∈ [nm] with | true => nm :: List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s') | false => List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s')
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
cases hsch with | cons hnmem hu => simp only at hnmem have : (decide (nm ∉ [nm])) = false := by simp only [decide_not, List.mem_singleton_iff, decide_True, decide_False, not] rw [this] simp only simp only [Schema.names, List.map] have : List.filter (λ x => x ∉ [nm]) (List.map Prod.fst s') = List.removeAllEq (List.map Prod.fst s') [nm] := rfl rw [this] rw [List.removeAllEq_singleton_nonelem_eq] exact hnmem
case hd η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 hsch : List.Unique (Schema.names ((nm, τ) :: s')) t : Table ((nm, τ) :: s') ⊢ Schema.names (Schema.removeName ((nm, τ) :: s') Schema.HasName.hd) = match decide ¬nm ∈ [nm] with | true => nm :: List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s') | false => List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s')
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
simp only at hnmem
case hd.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 t : Table ((nm, τ) :: s') hu : List.Unique (List.map Prod.fst s') hnmem : ¬(nm, τ).fst ∈ List.map Prod.fst s' ⊢ Schema.names (Schema.removeName ((nm, τ) :: s') Schema.HasName.hd) = match decide ¬nm ∈ [nm] with | true => nm :: List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s') | false => List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s')
case hd.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 t : Table ((nm, τ) :: s') hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' ⊢ Schema.names (Schema.removeName ((nm, τ) :: s') Schema.HasName.hd) = match decide ¬nm ∈ [nm] with | true => nm :: List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s') | false => List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s')
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
have : (decide (nm ∉ [nm])) = false := by simp only [decide_not, List.mem_singleton_iff, decide_True, decide_False, not]
case hd.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 t : Table ((nm, τ) :: s') hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' ⊢ Schema.names (Schema.removeName ((nm, τ) :: s') Schema.HasName.hd) = match decide ¬nm ∈ [nm] with | true => nm :: List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s') | false => List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s')
case hd.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 t : Table ((nm, τ) :: s') hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' this : (decide ¬nm ∈ [nm]) = false ⊢ Schema.names (Schema.removeName ((nm, τ) :: s') Schema.HasName.hd) = match decide ¬nm ∈ [nm] with | true => nm :: List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s') | false => List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s')
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
rw [this]
case hd.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 t : Table ((nm, τ) :: s') hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' this : (decide ¬nm ∈ [nm]) = false ⊢ Schema.names (Schema.removeName ((nm, τ) :: s') Schema.HasName.hd) = match decide ¬nm ∈ [nm] with | true => nm :: List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s') | false => List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s')
case hd.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 t : Table ((nm, τ) :: s') hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' this : (decide ¬nm ∈ [nm]) = false ⊢ Schema.names (Schema.removeName ((nm, τ) :: s') Schema.HasName.hd) = match false with | true => nm :: List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s') | false => List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s')
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
simp only
case hd.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 t : Table ((nm, τ) :: s') hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' this : (decide ¬nm ∈ [nm]) = false ⊢ Schema.names (Schema.removeName ((nm, τ) :: s') Schema.HasName.hd) = match false with | true => nm :: List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s') | false => List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s')
case hd.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 t : Table ((nm, τ) :: s') hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' this : (decide ¬nm ∈ [nm]) = false ⊢ Schema.names (Schema.removeName ((nm, τ) :: s') Schema.HasName.hd) = List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s')
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
simp only [Schema.names, List.map]
case hd.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 t : Table ((nm, τ) :: s') hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' this : (decide ¬nm ∈ [nm]) = false ⊢ Schema.names (Schema.removeName ((nm, τ) :: s') Schema.HasName.hd) = List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s')
case hd.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 t : Table ((nm, τ) :: s') hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' this : (decide ¬nm ∈ [nm]) = false ⊢ List.map Prod.fst (Schema.removeName ((nm, τ) :: s') Schema.HasName.hd) = List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s')
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
have : List.filter (λ x => x ∉ [nm]) (List.map Prod.fst s') = List.removeAllEq (List.map Prod.fst s') [nm] := rfl
case hd.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 t : Table ((nm, τ) :: s') hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' this : (decide ¬nm ∈ [nm]) = false ⊢ List.map Prod.fst (Schema.removeName ((nm, τ) :: s') Schema.HasName.hd) = List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s')
case hd.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 t : Table ((nm, τ) :: s') hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' this✝ : (decide ¬nm ∈ [nm]) = false this : List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s') = List.removeAllEq (List.map Prod.fst s') [nm] ⊢ List.map Prod.fst (Schema.removeName ((nm, τ) :: s') Schema.HasName.hd) = List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s')
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
rw [this]
case hd.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 t : Table ((nm, τ) :: s') hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' this✝ : (decide ¬nm ∈ [nm]) = false this : List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s') = List.removeAllEq (List.map Prod.fst s') [nm] ⊢ List.map Prod.fst (Schema.removeName ((nm, τ) :: s') Schema.HasName.hd) = List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s')
case hd.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 t : Table ((nm, τ) :: s') hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' this✝ : (decide ¬nm ∈ [nm]) = false this : List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s') = List.removeAllEq (List.map Prod.fst s') [nm] ⊢ List.map Prod.fst (Schema.removeName ((nm, τ) :: s') Schema.HasName.hd) = List.removeAllEq (List.map Prod.fst s') [nm]
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
rw [List.removeAllEq_singleton_nonelem_eq]
case hd.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 t : Table ((nm, τ) :: s') hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' this✝ : (decide ¬nm ∈ [nm]) = false this : List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s') = List.removeAllEq (List.map Prod.fst s') [nm] ⊢ List.map Prod.fst (Schema.removeName ((nm, τ) :: s') Schema.HasName.hd) = List.removeAllEq (List.map Prod.fst s') [nm]
case hd.cons.a η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 t : Table ((nm, τ) :: s') hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' this✝ : (decide ¬nm ∈ [nm]) = false this : List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s') = List.removeAllEq (List.map Prod.fst s') [nm] ⊢ ¬nm ∈ List.map Prod.fst s'
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
exact hnmem
case hd.cons.a η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 t : Table ((nm, τ) :: s') hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' this✝ : (decide ¬nm ∈ [nm]) = false this : List.filter (fun x => decide ¬x ∈ [nm]) (List.map Prod.fst s') = List.removeAllEq (List.map Prod.fst s') [nm] ⊢ ¬nm ∈ List.map Prod.fst s'
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
simp only [decide_not, List.mem_singleton_iff, decide_True, decide_False, not]
η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema τ : Type u_1 t : Table ((nm, τ) :: s') hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' ⊢ (decide ¬nm ∈ [nm]) = false
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
simp only [Schema.names, List.map]
case tl η : Type u_η dec_η : DecidableEq η sch : Schema c : η hdr : Header nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') hsch : List.Unique (Schema.names (hdr :: s')) t : Table (hdr :: s') ⊢ Schema.names (Schema.removeName (hdr :: s') (Schema.HasName.tl h)) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names (hdr :: s'))
case tl η : Type u_η dec_η : DecidableEq η sch : Schema c : η hdr : Header nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') hsch : List.Unique (Schema.names (hdr :: s')) t : Table (hdr :: s') ⊢ hdr.fst :: List.map Prod.fst (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (hdr.fst :: List.map Prod.fst s')
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
cases hdr with | mk nm₁ τ₁ => cases Decidable.em (nm₁ = nm) with | inl heq => rw [heq] at hsch cases hsch with | cons hnmem hu => simp only at hnmem have := Schema.map_eq_List_map ▸ Schema.mem_map_of_HasName _ _ h contradiction | inr hneq => rw [←List.removeAllEq] rw [List.removeAllEq_singleton_hd_neq] . congr apply ih . cases hsch; assumption . exact Table.mk [] . exact hneq
case tl η : Type u_η dec_η : DecidableEq η sch : Schema c : η hdr : Header nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') hsch : List.Unique (Schema.names (hdr :: s')) t : Table (hdr :: s') ⊢ hdr.fst :: List.map Prod.fst (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (hdr.fst :: List.map Prod.fst s')
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
cases Decidable.em (nm₁ = nm) with | inl heq => rw [heq] at hsch cases hsch with | cons hnmem hu => simp only at hnmem have := Schema.map_eq_List_map ▸ Schema.mem_map_of_HasName _ _ h contradiction | inr hneq => rw [←List.removeAllEq] rw [List.removeAllEq_singleton_hd_neq] . congr apply ih . cases hsch; assumption . exact Table.mk [] . exact hneq
case tl.mk η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') ⊢ (nm₁, τ₁).fst :: List.map Prod.fst (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) ((nm₁, τ₁).fst :: List.map Prod.fst s')
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
rw [heq] at hsch
case tl.mk.inl η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') heq : nm₁ = nm ⊢ (nm₁, τ₁).fst :: List.map Prod.fst (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) ((nm₁, τ₁).fst :: List.map Prod.fst s')
case tl.mk.inl η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') heq : nm₁ = nm ⊢ (nm₁, τ₁).fst :: List.map Prod.fst (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) ((nm₁, τ₁).fst :: List.map Prod.fst s')
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
cases hsch with | cons hnmem hu => simp only at hnmem have := Schema.map_eq_List_map ▸ Schema.mem_map_of_HasName _ _ h contradiction
case tl.mk.inl η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') heq : nm₁ = nm ⊢ (nm₁, τ₁).fst :: List.map Prod.fst (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) ((nm₁, τ₁).fst :: List.map Prod.fst s')
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
simp only at hnmem
case tl.mk.inl.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 t : Table ((nm₁, τ₁) :: s') heq : nm₁ = nm hu : List.Unique (List.map Prod.fst s') hnmem : ¬(nm, τ₁).fst ∈ List.map Prod.fst s' ⊢ (nm₁, τ₁).fst :: List.map Prod.fst (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) ((nm₁, τ₁).fst :: List.map Prod.fst s')
case tl.mk.inl.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 t : Table ((nm₁, τ₁) :: s') heq : nm₁ = nm hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' ⊢ (nm₁, τ₁).fst :: List.map Prod.fst (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) ((nm₁, τ₁).fst :: List.map Prod.fst s')
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
have := Schema.map_eq_List_map ▸ Schema.mem_map_of_HasName _ _ h
case tl.mk.inl.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 t : Table ((nm₁, τ₁) :: s') heq : nm₁ = nm hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' ⊢ (nm₁, τ₁).fst :: List.map Prod.fst (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) ((nm₁, τ₁).fst :: List.map Prod.fst s')
case tl.mk.inl.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 t : Table ((nm₁, τ₁) :: s') heq : nm₁ = nm hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' this : nm ∈ List.map Prod.fst s' ⊢ (nm₁, τ₁).fst :: List.map Prod.fst (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) ((nm₁, τ₁).fst :: List.map Prod.fst s')
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
contradiction
case tl.mk.inl.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 t : Table ((nm₁, τ₁) :: s') heq : nm₁ = nm hu : List.Unique (List.map Prod.fst s') hnmem : ¬nm ∈ List.map Prod.fst s' this : nm ∈ List.map Prod.fst s' ⊢ (nm₁, τ₁).fst :: List.map Prod.fst (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) ((nm₁, τ₁).fst :: List.map Prod.fst s')
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
rw [←List.removeAllEq]
case tl.mk.inr η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ (nm₁, τ₁).fst :: List.map Prod.fst (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) ((nm₁, τ₁).fst :: List.map Prod.fst s')
case tl.mk.inr η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ (nm₁, τ₁).fst :: List.map Prod.fst (Schema.removeName s' h) = List.removeAllEq ((nm₁, τ₁).fst :: List.map Prod.fst s') [nm]
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
rw [List.removeAllEq_singleton_hd_neq]
case tl.mk.inr η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ (nm₁, τ₁).fst :: List.map Prod.fst (Schema.removeName s' h) = List.removeAllEq ((nm₁, τ₁).fst :: List.map Prod.fst s') [nm]
case tl.mk.inr η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ (nm₁, τ₁).fst :: List.map Prod.fst (Schema.removeName s' h) = (nm₁, τ₁).fst :: List.removeAllEq (List.map Prod.fst s') [nm] case tl.mk.inr.a η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ (nm₁, τ₁).fst ≠ nm
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
. congr apply ih . cases hsch; assumption . exact Table.mk []
case tl.mk.inr η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ (nm₁, τ₁).fst :: List.map Prod.fst (Schema.removeName s' h) = (nm₁, τ₁).fst :: List.removeAllEq (List.map Prod.fst s') [nm] case tl.mk.inr.a η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ (nm₁, τ₁).fst ≠ nm
case tl.mk.inr.a η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ (nm₁, τ₁).fst ≠ nm
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
. exact hneq
case tl.mk.inr.a η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ (nm₁, τ₁).fst ≠ nm
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
congr
case tl.mk.inr η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ (nm₁, τ₁).fst :: List.map Prod.fst (Schema.removeName s' h) = (nm₁, τ₁).fst :: List.removeAllEq (List.map Prod.fst s') [nm]
case tl.mk.inr.e_tail η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ List.map Prod.fst (Schema.removeName s' h) = List.removeAllEq (List.map Prod.fst s') [nm]
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
apply ih
case tl.mk.inr.e_tail η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ List.map Prod.fst (Schema.removeName s' h) = List.removeAllEq (List.map Prod.fst s') [nm]
case tl.mk.inr.e_tail.hsch η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ List.Unique (Schema.names s') case tl.mk.inr.e_tail.t η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ Table s'
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
. cases hsch; assumption
case tl.mk.inr.e_tail.hsch η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ List.Unique (Schema.names s') case tl.mk.inr.e_tail.t η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ Table s'
case tl.mk.inr.e_tail.t η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ Table s'
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
. exact Table.mk []
case tl.mk.inr.e_tail.t η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ Table s'
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
cases hsch
case tl.mk.inr.e_tail.hsch η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ List.Unique (Schema.names s')
case tl.mk.inr.e_tail.hsch.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm a✝¹ : List.Unique (List.map Prod.fst s') a✝ : ¬(nm₁, τ₁).fst ∈ List.map Prod.fst s' ⊢ List.Unique (Schema.names s')
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
assumption
case tl.mk.inr.e_tail.hsch.cons η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm a✝¹ : List.Unique (List.map Prod.fst s') a✝ : ¬(nm₁, τ₁).fst ∈ List.map Prod.fst s' ⊢ List.Unique (Schema.names s')
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
exact Table.mk []
case tl.mk.inr.e_tail.t η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ Table s'
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumn_spec2_unique
[488, 1]
[527, 19]
exact hneq
case tl.mk.inr.a η : Type u_η dec_η : DecidableEq η sch : Schema c nm : η s' : Schema h : Schema.HasName nm s' ih : List.Unique (Schema.names s') → Table s' → Schema.names (Schema.removeName s' h) = List.filter (fun x => decide ¬x ∈ [nm]) (Schema.names s') nm₁ : η τ₁ : Type u_1 hsch : List.Unique (Schema.names ((nm₁, τ₁) :: s')) t : Table ((nm₁, τ₁) :: s') hneq : ¬nm₁ = nm ⊢ (nm₁, τ₁).fst ≠ nm
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumns_spec1
[535, 1]
[540, 24]
intro t cs
η : Type u_η dec_η : DecidableEq η sch : Schema ⊢ ∀ (t : Table sch) (cs : ActionList Schema.removeCertifiedName sch), nrows (dropColumns t cs) = nrows t
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch cs : ActionList Schema.removeCertifiedName sch ⊢ nrows (dropColumns t cs) = nrows t
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumns_spec1
[535, 1]
[540, 24]
simp only [nrows, dropColumns, Schema.length_eq_List_length]
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch cs : ActionList Schema.removeCertifiedName sch ⊢ nrows (dropColumns t cs) = nrows t
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch cs : ActionList Schema.removeCertifiedName sch ⊢ List.length (List.map (Row.removeColumns cs) t.rows) = List.length t.rows
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
dropColumns_spec1
[535, 1]
[540, 24]
apply List.length_map
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch cs : ActionList Schema.removeCertifiedName sch ⊢ List.length (List.map (Row.removeColumns cs) t.rows) = List.length t.rows
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
tsort_spec1
[562, 1]
[570, 43]
intro τ _ t b c hc
η : Type u_η dec_η : DecidableEq η sch : Schema ⊢ ∀ {τ : Type u} [inst : Ord τ] (t : Table sch) (b : Bool) (c : η) (hc : Schema.HasCol (c, τ) sch), nrows (tsort t c b) = nrows t
η : Type u_η dec_η : DecidableEq η sch : Schema τ : Type u inst✝ : Ord τ t : Table sch b : Bool c : η hc : Schema.HasCol (c, τ) sch ⊢ nrows (tsort t c b) = nrows t
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
tsort_spec1
[562, 1]
[570, 43]
simp only [nrows, Schema.length_eq_List_length]
η : Type u_η dec_η : DecidableEq η sch : Schema τ : Type u inst✝ : Ord τ t : Table sch b : Bool c : η hc : Schema.HasCol (c, τ) sch ⊢ nrows (tsort t c b) = nrows t
η : Type u_η dec_η : DecidableEq η sch : Schema τ : Type u inst✝ : Ord τ t : Table sch b : Bool c : η hc : Schema.HasCol (c, τ) sch ⊢ List.length (tsort t c b).rows = List.length t.rows
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
tsort_spec1
[562, 1]
[570, 43]
exact List.length_mergeSortWith _ t.rows
η : Type u_η dec_η : DecidableEq η sch : Schema τ : Type u inst✝ : Ord τ t : Table sch b : Bool c : η hc : Schema.HasCol (c, τ) sch ⊢ List.length (tsort t c b).rows = List.length t.rows
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
sortByColumns_spec1
[582, 1]
[593, 43]
intros t hs
η : Type u_η dec_η : DecidableEq η sch : Schema ⊢ ∀ (t : Table sch) (hs : List ((h : Header) × Schema.HasCol h sch × Ord h.snd)), nrows (sortByColumns t hs) = nrows t
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch hs : List ((h : Header) × Schema.HasCol h sch × Ord h.snd) ⊢ nrows (sortByColumns t hs) = nrows t
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
sortByColumns_spec1
[582, 1]
[593, 43]
simp only [nrows, sortByColumns]
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch hs : List ((h : Header) × Schema.HasCol h sch × Ord h.snd) ⊢ nrows (sortByColumns t hs) = nrows t
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch hs : List ((h : Header) × Schema.HasCol h sch × Ord h.snd) ⊢ Schema.length (List.foldr (fun ohdr acc => tsort acc ohdr.fst.fst true) t hs).rows = Schema.length t.rows
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
sortByColumns_spec1
[582, 1]
[593, 43]
apply List.foldr_invariant (λ x => nrows x = nrows t)
η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch hs : List ((h : Header) × Schema.HasCol h sch × Ord h.snd) ⊢ Schema.length (List.foldr (fun ohdr acc => tsort acc ohdr.fst.fst true) t hs).rows = Schema.length t.rows
case a η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch hs : List ((h : Header) × Schema.HasCol h sch × Ord h.snd) ⊢ nrows t = nrows t case a η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch hs : List ((h : Header) × Schema.HasCol h sch × Ord h.snd) ⊢ ∀ (x : (h : Header) × Schema.HasCol h sch × Ord h.snd) (a : Table sch), nrows a = nrows t → nrows (tsort a x.fst.fst true) = nrows t
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
sortByColumns_spec1
[582, 1]
[593, 43]
. rfl
case a η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch hs : List ((h : Header) × Schema.HasCol h sch × Ord h.snd) ⊢ nrows t = nrows t case a η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch hs : List ((h : Header) × Schema.HasCol h sch × Ord h.snd) ⊢ ∀ (x : (h : Header) × Schema.HasCol h sch × Ord h.snd) (a : Table sch), nrows a = nrows t → nrows (tsort a x.fst.fst true) = nrows t
case a η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch hs : List ((h : Header) × Schema.HasCol h sch × Ord h.snd) ⊢ ∀ (x : (h : Header) × Schema.HasCol h sch × Ord h.snd) (a : Table sch), nrows a = nrows t → nrows (tsort a x.fst.fst true) = nrows t
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
sortByColumns_spec1
[582, 1]
[593, 43]
. intros x acc h rw [←h] apply tsort_spec1 (inst := x.snd.snd)
case a η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch hs : List ((h : Header) × Schema.HasCol h sch × Ord h.snd) ⊢ ∀ (x : (h : Header) × Schema.HasCol h sch × Ord h.snd) (a : Table sch), nrows a = nrows t → nrows (tsort a x.fst.fst true) = nrows t
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
sortByColumns_spec1
[582, 1]
[593, 43]
rfl
case a η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch hs : List ((h : Header) × Schema.HasCol h sch × Ord h.snd) ⊢ nrows t = nrows t
no goals
https://github.com/jrr6/lean-tables.git
7dfa8308e13cb7b15296cc63fa2cbd26c0d0f712
Table/Proofs.lean
sortByColumns_spec1
[582, 1]
[593, 43]
intros x acc h
case a η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch hs : List ((h : Header) × Schema.HasCol h sch × Ord h.snd) ⊢ ∀ (x : (h : Header) × Schema.HasCol h sch × Ord h.snd) (a : Table sch), nrows a = nrows t → nrows (tsort a x.fst.fst true) = nrows t
case a η : Type u_η dec_η : DecidableEq η sch : Schema t : Table sch hs : List ((h : Header) × Schema.HasCol h sch × Ord h.snd) x : (h : Header) × Schema.HasCol h sch × Ord h.snd acc : Table sch h : nrows acc = nrows t ⊢ nrows (tsort acc x.fst.fst true) = nrows t