url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma0 | [121, 1] | [131, 52] | apply HEq.symm | case h
C : Container
x : M C
n : Nat
i : B C (Approx.node (approx x (Nat.succ n)))
j : B C (destruct x).fst
heq : HEq i j
this : B C (destruct x).fst = B C (Approx.node (approx x (Nat.succ n)))
⊢ HEq j i | case h.h
C : Container
x : M C
n : Nat
i : B C (Approx.node (approx x (Nat.succ n)))
j : B C (destruct x).fst
heq : HEq i j
this : B C (destruct x).fst = B C (Approx.node (approx x (Nat.succ n)))
⊢ HEq i j |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma0 | [121, 1] | [131, 52] | assumption | case h.h
C : Container
x : M C
n : Nat
i : B C (Approx.node (approx x (Nat.succ n)))
j : B C (destruct x).fst
heq : HEq i j
this : B C (destruct x).fst = B C (Approx.node (approx x (Nat.succ n)))
⊢ HEq i j | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | intro x y n h₁ | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
⊢ ∀ (x y : M C) (n : Nat), R x y → approx x n = approx y n | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
x y : M C
n : Nat
h₁ : R x y
⊢ approx x n = approx y n |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | induction n generalizing x y | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
x y : M C
n : Nat
h₁ : R x y
⊢ approx x n = approx y n | case zero
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
x y : M C
h₁ : R x y
⊢ approx x Nat.zero = approx y Nat.zero
case succ
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n✝ : Nat
n_ih✝ : ∀ (x y : M C), R x y → approx x n✝ = approx y n✝
x y : M C
h₁ : R x y
⊢ approx x (Nat.succ n✝) = approx y (Nat.succ n✝) |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | case zero =>
cases x.approx 0
cases y.approx 0
rfl | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
x y : M C
h₁ : R x y
⊢ approx x Nat.zero = approx y Nat.zero | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | case succ n h =>
have h₂ := x.node_thm n
have h₃ := y.node_thm n
cases h₄: x.approx (.succ n) with
| MStep nodex cx =>
cases h₅: y.approx (.succ n) with
| MStep nodey cy =>
have ⟨node, k₁, k₂, eq₁, eq₂, kR⟩ := h₀ _ _ h₁
have h₂ : (Approx.MStep nodex cx).node = node := by
have := congrArg (λ x => x.1) eq₁
simp only [destruct] at this
rw [h₄] at h₂
rw [←this]
exact h₂
have h₃ : (Approx.MStep nodey cy).node = node := by
have := congrArg (λ x => x.1) eq₂
simp only [destruct] at this
rw [h₅] at h₃
rw [←this]
exact h₃
simp [Approx.node] at h₂ h₃
have h₂ := Eq.symm h₂
have h₃ := Eq.symm h₃
have h₆ := bisim.lemma0 x n
have h₇ := bisim.lemma0 y n
rw [h₄] at h₆
rw [h₅] at h₇
simp only [Approx.children] at h₇ h₆
induction h₂
induction h₃
suffices h₈ : ∀ i: C.B node, cx i = cy i by
have : cx = cy := by
funext i
apply h₈
rw [this]
intro i
have h₆ : ∀ i, cx i = (k₁ i).approx n := by
have h : ∀ i j, HEq i j → (x.destruct.snd i) = k₁ j := by
rw [eq₁]
intro i j heq
cases heq
rfl
intro i
rw [h₆ i (cast (by simp [congrArg (λ x => x.1) eq₁]) i)]
. rw [h]
apply cast_heq
. apply HEq.symm
apply cast_heq
have h₇ : ∀ i, cy i = (k₂ i).approx n := by
have h : ∀ i j, HEq i j → (y.destruct.snd i) = k₂ j := by
rw [eq₂]
intro i j heq
cases heq
rfl
intro i
rw [h₇ i (cast (by simp [congrArg (λ x => x.1) eq₂]) i)]
. rw [h]
apply cast_heq
. apply HEq.symm
apply cast_heq
rw [h₆, h₇]
apply h
apply kR | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
⊢ approx x (Nat.succ n) = approx y (Nat.succ n) | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | cases x.approx 0 | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
x y : M C
h₁ : R x y
⊢ approx x Nat.zero = approx y Nat.zero | case MStop
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
x y : M C
h₁ : R x y
⊢ Approx.MStop = approx y Nat.zero |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | cases y.approx 0 | case MStop
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
x y : M C
h₁ : R x y
⊢ Approx.MStop = approx y Nat.zero | case MStop.MStop
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
x y : M C
h₁ : R x y
⊢ Approx.MStop = Approx.MStop |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | rfl | case MStop.MStop
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
x y : M C
h₁ : R x y
⊢ Approx.MStop = Approx.MStop | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | have h₂ := x.node_thm n | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
⊢ approx x (Nat.succ n) = approx y (Nat.succ n) | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂ : Approx.node (approx x (Nat.succ n)) = node x
⊢ approx x (Nat.succ n) = approx y (Nat.succ n) |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | have h₃ := y.node_thm n | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂ : Approx.node (approx x (Nat.succ n)) = node x
⊢ approx x (Nat.succ n) = approx y (Nat.succ n) | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂ : Approx.node (approx x (Nat.succ n)) = node x
h₃ : Approx.node (approx y (Nat.succ n)) = node y
⊢ approx x (Nat.succ n) = approx y (Nat.succ n) |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | cases h₄: x.approx (.succ n) with
| MStep nodex cx =>
cases h₅: y.approx (.succ n) with
| MStep nodey cy =>
have ⟨node, k₁, k₂, eq₁, eq₂, kR⟩ := h₀ _ _ h₁
have h₂ : (Approx.MStep nodex cx).node = node := by
have := congrArg (λ x => x.1) eq₁
simp only [destruct] at this
rw [h₄] at h₂
rw [←this]
exact h₂
have h₃ : (Approx.MStep nodey cy).node = node := by
have := congrArg (λ x => x.1) eq₂
simp only [destruct] at this
rw [h₅] at h₃
rw [←this]
exact h₃
simp [Approx.node] at h₂ h₃
have h₂ := Eq.symm h₂
have h₃ := Eq.symm h₃
have h₆ := bisim.lemma0 x n
have h₇ := bisim.lemma0 y n
rw [h₄] at h₆
rw [h₅] at h₇
simp only [Approx.children] at h₇ h₆
induction h₂
induction h₃
suffices h₈ : ∀ i: C.B node, cx i = cy i by
have : cx = cy := by
funext i
apply h₈
rw [this]
intro i
have h₆ : ∀ i, cx i = (k₁ i).approx n := by
have h : ∀ i j, HEq i j → (x.destruct.snd i) = k₁ j := by
rw [eq₁]
intro i j heq
cases heq
rfl
intro i
rw [h₆ i (cast (by simp [congrArg (λ x => x.1) eq₁]) i)]
. rw [h]
apply cast_heq
. apply HEq.symm
apply cast_heq
have h₇ : ∀ i, cy i = (k₂ i).approx n := by
have h : ∀ i j, HEq i j → (y.destruct.snd i) = k₂ j := by
rw [eq₂]
intro i j heq
cases heq
rfl
intro i
rw [h₇ i (cast (by simp [congrArg (λ x => x.1) eq₂]) i)]
. rw [h]
apply cast_heq
. apply HEq.symm
apply cast_heq
rw [h₆, h₇]
apply h
apply kR | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂ : Approx.node (approx x (Nat.succ n)) = node x
h₃ : Approx.node (approx y (Nat.succ n)) = node y
⊢ approx x (Nat.succ n) = approx y (Nat.succ n) | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | cases h₅: y.approx (.succ n) with
| MStep nodey cy =>
have ⟨node, k₁, k₂, eq₁, eq₂, kR⟩ := h₀ _ _ h₁
have h₂ : (Approx.MStep nodex cx).node = node := by
have := congrArg (λ x => x.1) eq₁
simp only [destruct] at this
rw [h₄] at h₂
rw [←this]
exact h₂
have h₃ : (Approx.MStep nodey cy).node = node := by
have := congrArg (λ x => x.1) eq₂
simp only [destruct] at this
rw [h₅] at h₃
rw [←this]
exact h₃
simp [Approx.node] at h₂ h₃
have h₂ := Eq.symm h₂
have h₃ := Eq.symm h₃
have h₆ := bisim.lemma0 x n
have h₇ := bisim.lemma0 y n
rw [h₄] at h₆
rw [h₅] at h₇
simp only [Approx.children] at h₇ h₆
induction h₂
induction h₃
suffices h₈ : ∀ i: C.B node, cx i = cy i by
have : cx = cy := by
funext i
apply h₈
rw [this]
intro i
have h₆ : ∀ i, cx i = (k₁ i).approx n := by
have h : ∀ i j, HEq i j → (x.destruct.snd i) = k₁ j := by
rw [eq₁]
intro i j heq
cases heq
rfl
intro i
rw [h₆ i (cast (by simp [congrArg (λ x => x.1) eq₁]) i)]
. rw [h]
apply cast_heq
. apply HEq.symm
apply cast_heq
have h₇ : ∀ i, cy i = (k₂ i).approx n := by
have h : ∀ i j, HEq i j → (y.destruct.snd i) = k₂ j := by
rw [eq₂]
intro i j heq
cases heq
rfl
intro i
rw [h₇ i (cast (by simp [congrArg (λ x => x.1) eq₂]) i)]
. rw [h]
apply cast_heq
. apply HEq.symm
apply cast_heq
rw [h₆, h₇]
apply h
apply kR | case MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂ : Approx.node (approx x (Nat.succ n)) = node x
h₃ : Approx.node (approx y (Nat.succ n)) = node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
⊢ Approx.MStep nodex cx = approx y (Nat.succ n) | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | have ⟨node, k₁, k₂, eq₁, eq₂, kR⟩ := h₀ _ _ h₁ | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂ : Approx.node (approx x (Nat.succ n)) = node x
h₃ : Approx.node (approx y (Nat.succ n)) = node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | have h₂ : (Approx.MStep nodex cx).node = node := by
have := congrArg (λ x => x.1) eq₁
simp only [destruct] at this
rw [h₄] at h₂
rw [←this]
exact h₂ | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂ : Approx.node (Approx.MStep nodex cx) = node
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | have h₃ : (Approx.MStep nodey cy).node = node := by
have := congrArg (λ x => x.1) eq₂
simp only [destruct] at this
rw [h₅] at h₃
rw [←this]
exact h₃ | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂ : Approx.node (Approx.MStep nodex cx) = node
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂ : Approx.node (Approx.MStep nodex cx) = node
h₃ : Approx.node (Approx.MStep nodey cy) = node
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | simp [Approx.node] at h₂ h₃ | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂ : Approx.node (Approx.MStep nodex cx) = node
h₃ : Approx.node (Approx.MStep nodey cy) = node
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂ : nodex = node
h₃ : nodey = node
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | have h₂ := Eq.symm h₂ | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂ : nodex = node
h₃ : nodey = node
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝¹ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂✝ : nodex = node
h₃ : nodey = node
h₂ : node = nodex
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | have h₃ := Eq.symm h₃ | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝¹ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂✝ : nodex = node
h₃ : nodey = node
h₂ : node = nodex
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝¹ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝¹ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂✝ : nodex = node
h₃✝ : nodey = node
h₂ : node = nodex
h₃ : node = nodey
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | have h₆ := bisim.lemma0 x n | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝¹ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝¹ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂✝ : nodex = node
h₃✝ : nodey = node
h₂ : node = nodex
h₃ : node = nodey
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝¹ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝¹ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂✝ : nodex = node
h₃✝ : nodey = node
h₂ : node = nodex
h₃ : node = nodey
h₆ :
∀ (i : B C (Approx.node (approx x (Nat.succ n)))) (j : B C (destruct x).fst),
HEq i j → Approx.children (approx x (Nat.succ n)) i = approx (PSigma.snd (destruct x) j) n
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | have h₇ := bisim.lemma0 y n | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝¹ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝¹ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂✝ : nodex = node
h₃✝ : nodey = node
h₂ : node = nodex
h₃ : node = nodey
h₆ :
∀ (i : B C (Approx.node (approx x (Nat.succ n)))) (j : B C (destruct x).fst),
HEq i j → Approx.children (approx x (Nat.succ n)) i = approx (PSigma.snd (destruct x) j) n
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝¹ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝¹ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂✝ : nodex = node
h₃✝ : nodey = node
h₂ : node = nodex
h₃ : node = nodey
h₆ :
∀ (i : B C (Approx.node (approx x (Nat.succ n)))) (j : B C (destruct x).fst),
HEq i j → Approx.children (approx x (Nat.succ n)) i = approx (PSigma.snd (destruct x) j) n
h₇ :
∀ (i : B C (Approx.node (approx y (Nat.succ n)))) (j : B C (destruct y).fst),
HEq i j → Approx.children (approx y (Nat.succ n)) i = approx (PSigma.snd (destruct y) j) n
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | rw [h₄] at h₆ | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝¹ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝¹ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂✝ : nodex = node
h₃✝ : nodey = node
h₂ : node = nodex
h₃ : node = nodey
h₆ :
∀ (i : B C (Approx.node (approx x (Nat.succ n)))) (j : B C (destruct x).fst),
HEq i j → Approx.children (approx x (Nat.succ n)) i = approx (PSigma.snd (destruct x) j) n
h₇ :
∀ (i : B C (Approx.node (approx y (Nat.succ n)))) (j : B C (destruct y).fst),
HEq i j → Approx.children (approx y (Nat.succ n)) i = approx (PSigma.snd (destruct y) j) n
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝¹ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝¹ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂✝ : nodex = node
h₃✝ : nodey = node
h₂ : node = nodex
h₃ : node = nodey
h₆ :
∀ (i : B C (Approx.node (Approx.MStep nodex cx))) (j : B C (destruct x).fst),
HEq i j → Approx.children (Approx.MStep nodex cx) i = approx (PSigma.snd (destruct x) j) n
h₇ :
∀ (i : B C (Approx.node (approx y (Nat.succ n)))) (j : B C (destruct y).fst),
HEq i j → Approx.children (approx y (Nat.succ n)) i = approx (PSigma.snd (destruct y) j) n
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | rw [h₅] at h₇ | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝¹ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝¹ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂✝ : nodex = node
h₃✝ : nodey = node
h₂ : node = nodex
h₃ : node = nodey
h₆ :
∀ (i : B C (Approx.node (Approx.MStep nodex cx))) (j : B C (destruct x).fst),
HEq i j → Approx.children (Approx.MStep nodex cx) i = approx (PSigma.snd (destruct x) j) n
h₇ :
∀ (i : B C (Approx.node (approx y (Nat.succ n)))) (j : B C (destruct y).fst),
HEq i j → Approx.children (approx y (Nat.succ n)) i = approx (PSigma.snd (destruct y) j) n
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝¹ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝¹ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂✝ : nodex = node
h₃✝ : nodey = node
h₂ : node = nodex
h₃ : node = nodey
h₆ :
∀ (i : B C (Approx.node (Approx.MStep nodex cx))) (j : B C (destruct x).fst),
HEq i j → Approx.children (Approx.MStep nodex cx) i = approx (PSigma.snd (destruct x) j) n
h₇ :
∀ (i : B C (Approx.node (Approx.MStep nodey cy))) (j : B C (destruct y).fst),
HEq i j → Approx.children (Approx.MStep nodey cy) i = approx (PSigma.snd (destruct y) j) n
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | simp only [Approx.children] at h₇ h₆ | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝¹ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝¹ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂✝ : nodex = node
h₃✝ : nodey = node
h₂ : node = nodex
h₃ : node = nodey
h₆ :
∀ (i : B C (Approx.node (Approx.MStep nodex cx))) (j : B C (destruct x).fst),
HEq i j → Approx.children (Approx.MStep nodex cx) i = approx (PSigma.snd (destruct x) j) n
h₇ :
∀ (i : B C (Approx.node (Approx.MStep nodey cy))) (j : B C (destruct y).fst),
HEq i j → Approx.children (Approx.MStep nodey cy) i = approx (PSigma.snd (destruct y) j) n
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝¹ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝¹ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂✝ : nodex = node
h₃✝ : nodey = node
h₂ : node = nodex
h₃ : node = nodey
h₆ :
∀ (i : B C (Approx.node (Approx.MStep nodex cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
h₇ :
∀ (i : B C (Approx.node (Approx.MStep nodey cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | induction h₂ | case MStep.MStep
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝¹ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝¹ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂✝ : nodex = node
h₃✝ : nodey = node
h₂ : node = nodex
h₃ : node = nodey
h₆ :
∀ (i : B C (Approx.node (Approx.MStep nodex cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
h₇ :
∀ (i : B C (Approx.node (Approx.MStep nodey cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
⊢ Approx.MStep nodex cx = Approx.MStep nodey cy | case MStep.MStep.refl
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝¹ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₃✝ : nodey = node
h₃ : node = nodey
h₇ :
∀ (i : B C (Approx.node (Approx.MStep nodey cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
⊢ Approx.MStep node cx = Approx.MStep nodey cy |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | induction h₃ | case MStep.MStep.refl
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝¹ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₃✝ : nodey = node
h₃ : node = nodey
h₇ :
∀ (i : B C (Approx.node (Approx.MStep nodey cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
⊢ Approx.MStep node cx = Approx.MStep nodey cy | case MStep.MStep.refl.refl
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
⊢ Approx.MStep node cx = Approx.MStep node cy |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | suffices h₈ : ∀ i: C.B node, cx i = cy i by
have : cx = cy := by
funext i
apply h₈
rw [this] | case MStep.MStep.refl.refl
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
⊢ Approx.MStep node cx = Approx.MStep node cy | case MStep.MStep.refl.refl
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
⊢ ∀ (i : B C node), cx i = cy i |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | intro i | case MStep.MStep.refl.refl
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
⊢ ∀ (i : B C node), cx i = cy i | case MStep.MStep.refl.refl
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
⊢ cx i = cy i |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | have h₆ : ∀ i, cx i = (k₁ i).approx n := by
have h : ∀ i j, HEq i j → (x.destruct.snd i) = k₁ j := by
rw [eq₁]
intro i j heq
cases heq
rfl
intro i
rw [h₆ i (cast (by simp [congrArg (λ x => x.1) eq₁]) i)]
. rw [h]
apply cast_heq
. apply HEq.symm
apply cast_heq | case MStep.MStep.refl.refl
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
⊢ cx i = cy i | case MStep.MStep.refl.refl
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
⊢ cx i = cy i |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | have h₇ : ∀ i, cy i = (k₂ i).approx n := by
have h : ∀ i j, HEq i j → (y.destruct.snd i) = k₂ j := by
rw [eq₂]
intro i j heq
cases heq
rfl
intro i
rw [h₇ i (cast (by simp [congrArg (λ x => x.1) eq₂]) i)]
. rw [h]
apply cast_heq
. apply HEq.symm
apply cast_heq | case MStep.MStep.refl.refl
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
⊢ cx i = cy i | case MStep.MStep.refl.refl
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇✝ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h₇ : ∀ (i : B C node), cy i = approx (k₂ i) n
⊢ cx i = cy i |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | rw [h₆, h₇] | case MStep.MStep.refl.refl
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇✝ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h₇ : ∀ (i : B C node), cy i = approx (k₂ i) n
⊢ cx i = cy i | case MStep.MStep.refl.refl
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇✝ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h₇ : ∀ (i : B C node), cy i = approx (k₂ i) n
⊢ approx (k₁ i) n = approx (k₂ i) n |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | apply h | case MStep.MStep.refl.refl
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇✝ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h₇ : ∀ (i : B C node), cy i = approx (k₂ i) n
⊢ approx (k₁ i) n = approx (k₂ i) n | case MStep.MStep.refl.refl.h₁
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇✝ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h₇ : ∀ (i : B C node), cy i = approx (k₂ i) n
⊢ R (k₁ i) (k₂ i) |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | apply kR | case MStep.MStep.refl.refl.h₁
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇✝ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h₇ : ∀ (i : B C node), cy i = approx (k₂ i) n
⊢ R (k₁ i) (k₂ i) | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | have := congrArg (λ x => x.1) eq₁ | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
⊢ Approx.node (Approx.MStep nodex cx) = node | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
this : (fun x => x.fst) (destruct x) = (fun x => x.fst) { fst := node, snd := k₁ }
⊢ Approx.node (Approx.MStep nodex cx) = node |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | simp only [destruct] at this | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
this : (fun x => x.fst) (destruct x) = (fun x => x.fst) { fst := node, snd := k₁ }
⊢ Approx.node (Approx.MStep nodex cx) = node | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
this : Container.M.node x = node
⊢ Approx.node (Approx.MStep nodex cx) = node |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | rw [h₄] at h₂ | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
this : Container.M.node x = node
⊢ Approx.node (Approx.MStep nodex cx) = node | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₃ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₂ : Approx.node (Approx.MStep nodex cx) = Container.M.node x
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
this : Container.M.node x = node
⊢ Approx.node (Approx.MStep nodex cx) = node |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | rw [←this] | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₃ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₂ : Approx.node (Approx.MStep nodex cx) = Container.M.node x
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
this : Container.M.node x = node
⊢ Approx.node (Approx.MStep nodex cx) = node | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₃ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₂ : Approx.node (Approx.MStep nodex cx) = Container.M.node x
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
this : Container.M.node x = node
⊢ Approx.node (Approx.MStep nodex cx) = Container.M.node x |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | exact h₂ | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₃ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₂ : Approx.node (Approx.MStep nodex cx) = Container.M.node x
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
this : Container.M.node x = node
⊢ Approx.node (Approx.MStep nodex cx) = Container.M.node x | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | have := congrArg (λ x => x.1) eq₂ | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂ : Approx.node (Approx.MStep nodex cx) = node
⊢ Approx.node (Approx.MStep nodey cy) = node | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂ : Approx.node (Approx.MStep nodex cx) = node
this : (fun x => x.fst) (destruct y) = (fun x => x.fst) { fst := node, snd := k₂ }
⊢ Approx.node (Approx.MStep nodey cy) = node |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | simp only [destruct] at this | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂ : Approx.node (Approx.MStep nodex cx) = node
this : (fun x => x.fst) (destruct y) = (fun x => x.fst) { fst := node, snd := k₂ }
⊢ Approx.node (Approx.MStep nodey cy) = node | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂ : Approx.node (Approx.MStep nodex cx) = node
this : Container.M.node y = node
⊢ Approx.node (Approx.MStep nodey cy) = node |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | rw [h₅] at h₃ | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂ : Approx.node (Approx.MStep nodex cx) = node
this : Container.M.node y = node
⊢ Approx.node (Approx.MStep nodey cy) = node | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₃ : Approx.node (Approx.MStep nodey cy) = Container.M.node y
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂ : Approx.node (Approx.MStep nodex cx) = node
this : Container.M.node y = node
⊢ Approx.node (Approx.MStep nodey cy) = node |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | rw [←this] | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₃ : Approx.node (Approx.MStep nodey cy) = Container.M.node y
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂ : Approx.node (Approx.MStep nodex cx) = node
this : Container.M.node y = node
⊢ Approx.node (Approx.MStep nodey cy) = node | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₃ : Approx.node (Approx.MStep nodey cy) = Container.M.node y
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂ : Approx.node (Approx.MStep nodex cx) = node
this : Container.M.node y = node
⊢ Approx.node (Approx.MStep nodey cy) = Container.M.node y |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | exact h₃ | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
nodex : C.A
cx : B C nodex → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep nodex cx
nodey : C.A
cy : B C nodey → Approx C n
h₃ : Approx.node (Approx.MStep nodey cy) = Container.M.node y
h₅ : approx y (Nat.succ n) = Approx.MStep nodey cy
node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
h₂ : Approx.node (Approx.MStep nodex cx) = node
this : Container.M.node y = node
⊢ Approx.node (Approx.MStep nodey cy) = Container.M.node y | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | have : cx = cy := by
funext i
apply h₈ | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
h₈ : ∀ (i : B C node), cx i = cy i
⊢ Approx.MStep node cx = Approx.MStep node cy | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
h₈ : ∀ (i : B C node), cx i = cy i
this : cx = cy
⊢ Approx.MStep node cx = Approx.MStep node cy |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | rw [this] | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
h₈ : ∀ (i : B C node), cx i = cy i
this : cx = cy
⊢ Approx.MStep node cx = Approx.MStep node cy | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | funext i | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
h₈ : ∀ (i : B C node), cx i = cy i
⊢ cx = cy | case h
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
h₈ : ∀ (i : B C node), cx i = cy i
i : B C node
⊢ cx i = cy i |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | apply h₈ | case h
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
h₈ : ∀ (i : B C node), cx i = cy i
i : B C node
⊢ cx i = cy i | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | have h : ∀ i j, HEq i j → (x.destruct.snd i) = k₁ j := by
rw [eq₁]
intro i j heq
cases heq
rfl | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
⊢ ∀ (i : B C node), cx i = approx (k₁ i) n | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
h : ∀ (i : B C (destruct x).fst) (j : B C node), HEq i j → PSigma.snd (destruct x) i = k₁ j
⊢ ∀ (i : B C node), cx i = approx (k₁ i) n |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | intro i | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
h : ∀ (i : B C (destruct x).fst) (j : B C node), HEq i j → PSigma.snd (destruct x) i = k₁ j
⊢ ∀ (i : B C node), cx i = approx (k₁ i) n | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h : ∀ (i : B C (destruct x).fst) (j : B C node), HEq i j → PSigma.snd (destruct x) i = k₁ j
i : B C node
⊢ cx i = approx (k₁ i) n |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | rw [h₆ i (cast (by simp [congrArg (λ x => x.1) eq₁]) i)] | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h : ∀ (i : B C (destruct x).fst) (j : B C node), HEq i j → PSigma.snd (destruct x) i = k₁ j
i : B C node
⊢ cx i = approx (k₁ i) n | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h : ∀ (i : B C (destruct x).fst) (j : B C node), HEq i j → PSigma.snd (destruct x) i = k₁ j
i : B C node
⊢ approx (PSigma.snd (destruct x) (cast (_ : B C node = B C (destruct x).fst) i)) n = approx (k₁ i) n
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h : ∀ (i : B C (destruct x).fst) (j : B C node), HEq i j → PSigma.snd (destruct x) i = k₁ j
i : B C node
⊢ HEq i (cast (_ : B C node = B C (destruct x).fst) i) |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | . rw [h]
apply cast_heq | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h : ∀ (i : B C (destruct x).fst) (j : B C node), HEq i j → PSigma.snd (destruct x) i = k₁ j
i : B C node
⊢ approx (PSigma.snd (destruct x) (cast (_ : B C node = B C (destruct x).fst) i)) n = approx (k₁ i) n
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h : ∀ (i : B C (destruct x).fst) (j : B C node), HEq i j → PSigma.snd (destruct x) i = k₁ j
i : B C node
⊢ HEq i (cast (_ : B C node = B C (destruct x).fst) i) | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h : ∀ (i : B C (destruct x).fst) (j : B C node), HEq i j → PSigma.snd (destruct x) i = k₁ j
i : B C node
⊢ HEq i (cast (_ : B C node = B C (destruct x).fst) i) |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | . apply HEq.symm
apply cast_heq | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h : ∀ (i : B C (destruct x).fst) (j : B C node), HEq i j → PSigma.snd (destruct x) i = k₁ j
i : B C node
⊢ HEq i (cast (_ : B C node = B C (destruct x).fst) i) | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | rw [eq₁] | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
⊢ ∀ (i : B C (destruct x).fst) (j : B C node), HEq i j → PSigma.snd (destruct x) i = k₁ j | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
⊢ ∀ (i : B C { fst := node, snd := k₁ }.fst) (j : B C node), HEq i j → PSigma.snd { fst := node, snd := k₁ } i = k₁ j |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | intro i j heq | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
⊢ ∀ (i : B C { fst := node, snd := k₁ }.fst) (j : B C node), HEq i j → PSigma.snd { fst := node, snd := k₁ } i = k₁ j | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
i : B C { fst := node, snd := k₁ }.fst
j : B C node
heq : HEq i j
⊢ PSigma.snd { fst := node, snd := k₁ } i = k₁ j |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | cases heq | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
i : B C { fst := node, snd := k₁ }.fst
j : B C node
heq : HEq i j
⊢ PSigma.snd { fst := node, snd := k₁ } i = k₁ j | case refl
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
i : B C { fst := node, snd := k₁ }.fst
⊢ PSigma.snd { fst := node, snd := k₁ } i = k₁ i |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | rfl | case refl
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
i : B C { fst := node, snd := k₁ }.fst
⊢ PSigma.snd { fst := node, snd := k₁ } i = k₁ i | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | simp [congrArg (λ x => x.1) eq₁] | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h : ∀ (i : B C (destruct x).fst) (j : B C node), HEq i j → PSigma.snd (destruct x) i = k₁ j
i : B C node
⊢ B C node = B C (destruct x).fst | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | rw [h] | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h : ∀ (i : B C (destruct x).fst) (j : B C node), HEq i j → PSigma.snd (destruct x) i = k₁ j
i : B C node
⊢ approx (PSigma.snd (destruct x) (cast (_ : B C node = B C (destruct x).fst) i)) n = approx (k₁ i) n | case a
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h : ∀ (i : B C (destruct x).fst) (j : B C node), HEq i j → PSigma.snd (destruct x) i = k₁ j
i : B C node
⊢ HEq (cast (_ : B C node = B C (destruct x).fst) i) i |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | apply cast_heq | case a
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h : ∀ (i : B C (destruct x).fst) (j : B C node), HEq i j → PSigma.snd (destruct x) i = k₁ j
i : B C node
⊢ HEq (cast (_ : B C node = B C (destruct x).fst) i) i | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | apply HEq.symm | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h : ∀ (i : B C (destruct x).fst) (j : B C node), HEq i j → PSigma.snd (destruct x) i = k₁ j
i : B C node
⊢ HEq i (cast (_ : B C node = B C (destruct x).fst) i) | case h
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h : ∀ (i : B C (destruct x).fst) (j : B C node), HEq i j → PSigma.snd (destruct x) i = k₁ j
i : B C node
⊢ HEq (cast (_ : B C node = B C (destruct x).fst) i) i |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | apply cast_heq | case h
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h : ∀ (i : B C (destruct x).fst) (j : B C node), HEq i j → PSigma.snd (destruct x) i = k₁ j
i : B C node
⊢ HEq (cast (_ : B C node = B C (destruct x).fst) i) i | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | have h : ∀ i j, HEq i j → (y.destruct.snd i) = k₂ j := by
rw [eq₂]
intro i j heq
cases heq
rfl | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
⊢ ∀ (i : B C node), cy i = approx (k₂ i) n | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h : ∀ (i : B C (destruct y).fst) (j : B C node), HEq i j → PSigma.snd (destruct y) i = k₂ j
⊢ ∀ (i : B C node), cy i = approx (k₂ i) n |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | intro i | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h : ∀ (i : B C (destruct y).fst) (j : B C node), HEq i j → PSigma.snd (destruct y) i = k₂ j
⊢ ∀ (i : B C node), cy i = approx (k₂ i) n | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h : ∀ (i : B C (destruct y).fst) (j : B C node), HEq i j → PSigma.snd (destruct y) i = k₂ j
i : B C node
⊢ cy i = approx (k₂ i) n |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | rw [h₇ i (cast (by simp [congrArg (λ x => x.1) eq₂]) i)] | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h : ∀ (i : B C (destruct y).fst) (j : B C node), HEq i j → PSigma.snd (destruct y) i = k₂ j
i : B C node
⊢ cy i = approx (k₂ i) n | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h : ∀ (i : B C (destruct y).fst) (j : B C node), HEq i j → PSigma.snd (destruct y) i = k₂ j
i : B C node
⊢ approx (PSigma.snd (destruct y) (cast (_ : B C node = B C (destruct y).fst) i)) n = approx (k₂ i) n
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h : ∀ (i : B C (destruct y).fst) (j : B C node), HEq i j → PSigma.snd (destruct y) i = k₂ j
i : B C node
⊢ HEq i (cast (_ : B C node = B C (destruct y).fst) i) |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | . rw [h]
apply cast_heq | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h : ∀ (i : B C (destruct y).fst) (j : B C node), HEq i j → PSigma.snd (destruct y) i = k₂ j
i : B C node
⊢ approx (PSigma.snd (destruct y) (cast (_ : B C node = B C (destruct y).fst) i)) n = approx (k₂ i) n
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h : ∀ (i : B C (destruct y).fst) (j : B C node), HEq i j → PSigma.snd (destruct y) i = k₂ j
i : B C node
⊢ HEq i (cast (_ : B C node = B C (destruct y).fst) i) | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h : ∀ (i : B C (destruct y).fst) (j : B C node), HEq i j → PSigma.snd (destruct y) i = k₂ j
i : B C node
⊢ HEq i (cast (_ : B C node = B C (destruct y).fst) i) |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | . apply HEq.symm
apply cast_heq | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h : ∀ (i : B C (destruct y).fst) (j : B C node), HEq i j → PSigma.snd (destruct y) i = k₂ j
i : B C node
⊢ HEq i (cast (_ : B C node = B C (destruct y).fst) i) | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | rw [eq₂] | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
⊢ ∀ (i : B C (destruct y).fst) (j : B C node), HEq i j → PSigma.snd (destruct y) i = k₂ j | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
⊢ ∀ (i : B C { fst := node, snd := k₂ }.fst) (j : B C node), HEq i j → PSigma.snd { fst := node, snd := k₂ } i = k₂ j |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | intro i j heq | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
⊢ ∀ (i : B C { fst := node, snd := k₂ }.fst) (j : B C node), HEq i j → PSigma.snd { fst := node, snd := k₂ } i = k₂ j | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
i : B C { fst := node, snd := k₂ }.fst
j : B C node
heq : HEq i j
⊢ PSigma.snd { fst := node, snd := k₂ } i = k₂ j |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | cases heq | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
i : B C { fst := node, snd := k₂ }.fst
j : B C node
heq : HEq i j
⊢ PSigma.snd { fst := node, snd := k₂ } i = k₂ j | case refl
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
i : B C { fst := node, snd := k₂ }.fst
⊢ PSigma.snd { fst := node, snd := k₂ } i = k₂ i |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | rfl | case refl
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
i : B C { fst := node, snd := k₂ }.fst
⊢ PSigma.snd { fst := node, snd := k₂ } i = k₂ i | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | simp [congrArg (λ x => x.1) eq₂] | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h : ∀ (i : B C (destruct y).fst) (j : B C node), HEq i j → PSigma.snd (destruct y) i = k₂ j
i : B C node
⊢ B C node = B C (destruct y).fst | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | rw [h] | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h : ∀ (i : B C (destruct y).fst) (j : B C node), HEq i j → PSigma.snd (destruct y) i = k₂ j
i : B C node
⊢ approx (PSigma.snd (destruct y) (cast (_ : B C node = B C (destruct y).fst) i)) n = approx (k₂ i) n | case a
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h : ∀ (i : B C (destruct y).fst) (j : B C node), HEq i j → PSigma.snd (destruct y) i = k₂ j
i : B C node
⊢ HEq (cast (_ : B C node = B C (destruct y).fst) i) i |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | apply cast_heq | case a
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h : ∀ (i : B C (destruct y).fst) (j : B C node), HEq i j → PSigma.snd (destruct y) i = k₂ j
i : B C node
⊢ HEq (cast (_ : B C node = B C (destruct y).fst) i) i | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | apply HEq.symm | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h : ∀ (i : B C (destruct y).fst) (j : B C node), HEq i j → PSigma.snd (destruct y) i = k₂ j
i : B C node
⊢ HEq i (cast (_ : B C node = B C (destruct y).fst) i) | case h
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h : ∀ (i : B C (destruct y).fst) (j : B C node), HEq i j → PSigma.snd (destruct y) i = k₂ j
i : B C node
⊢ HEq (cast (_ : B C node = B C (destruct y).fst) i) i |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim.lemma1 | [136, 1] | [219, 17] | apply cast_heq | case h
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
n : Nat
h✝ : ∀ (x y : M C), R x y → approx x n = approx y n
x y : M C
h₁ : R x y
h₂✝ : Approx.node (approx x (Nat.succ n)) = Container.M.node x
h₃✝ : Approx.node (approx y (Nat.succ n)) = Container.M.node y
nodex nodey node : C.A
k₁ k₂ : B C node → M C
eq₁ : destruct x = { fst := node, snd := k₁ }
eq₂ : destruct y = { fst := node, snd := k₂ }
kR : ∀ (i : B C node), R (k₁ i) (k₂ i)
cx : B C node → Approx C n
h₄ : approx x (Nat.succ n) = Approx.MStep node cx
h₂ : node = node
h₆✝ :
∀ (i : B C (Approx.node (Approx.MStep node cx))) (j : B C (destruct x).fst),
HEq i j → cx i = approx (PSigma.snd (destruct x) j) n
cy : B C node → Approx C n
h₅ : approx y (Nat.succ n) = Approx.MStep node cy
h₃ : node = node
h₇ :
∀ (i : B C (Approx.node (Approx.MStep node cy))) (j : B C (destruct y).fst),
HEq i j → cy i = approx (PSigma.snd (destruct y) j) n
i✝ : B C node
h₆ : ∀ (i : B C node), cx i = approx (k₁ i) n
h : ∀ (i : B C (destruct y).fst) (j : B C node), HEq i j → PSigma.snd (destruct y) i = k₂ j
i : B C node
⊢ HEq (cast (_ : B C node = B C (destruct y).fst) i) i | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim | [221, 1] | [232, 35] | intro x y h₁ | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
⊢ ∀ (x y : M C), R x y → x = y | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
x y : M C
h₁ : R x y
⊢ x = y |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim | [221, 1] | [232, 35] | suffices h₂: x.approx = y.approx by
cases x
cases y
simp only at h₂
simp [h₂] | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
x y : M C
h₁ : R x y
⊢ x = y | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
x y : M C
h₁ : R x y
⊢ x.approx = y.approx |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim | [221, 1] | [232, 35] | funext n | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
x y : M C
h₁ : R x y
⊢ x.approx = y.approx | case h
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
x y : M C
h₁ : R x y
n : Nat
⊢ approx x n = approx y n |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim | [221, 1] | [232, 35] | apply bisim.lemma1 R h₀ x y n h₁ | case h
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
x y : M C
h₁ : R x y
n : Nat
⊢ approx x n = approx y n | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim | [221, 1] | [232, 35] | cases x | C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
x y : M C
h₁ : R x y
h₂ : x.approx = y.approx
⊢ x = y | case mk
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
y : M C
approx✝ : (n : Nat) → Approx C n
agrees✝ : ∀ (n : Nat), Agree (approx✝ n) (approx✝ (Nat.succ n))
h₁ : R { approx := approx✝, agrees := agrees✝ } y
h₂ : { approx := approx✝, agrees := agrees✝ }.approx = y.approx
⊢ { approx := approx✝, agrees := agrees✝ } = y |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim | [221, 1] | [232, 35] | cases y | case mk
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
y : M C
approx✝ : (n : Nat) → Approx C n
agrees✝ : ∀ (n : Nat), Agree (approx✝ n) (approx✝ (Nat.succ n))
h₁ : R { approx := approx✝, agrees := agrees✝ } y
h₂ : { approx := approx✝, agrees := agrees✝ }.approx = y.approx
⊢ { approx := approx✝, agrees := agrees✝ } = y | case mk.mk
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
approx✝¹ : (n : Nat) → Approx C n
agrees✝¹ : ∀ (n : Nat), Agree (approx✝¹ n) (approx✝¹ (Nat.succ n))
approx✝ : (n : Nat) → Approx C n
agrees✝ : ∀ (n : Nat), Agree (approx✝ n) (approx✝ (Nat.succ n))
h₁ : R { approx := approx✝¹, agrees := agrees✝¹ } { approx := approx✝, agrees := agrees✝ }
h₂ : { approx := approx✝¹, agrees := agrees✝¹ }.approx = { approx := approx✝, agrees := agrees✝ }.approx
⊢ { approx := approx✝¹, agrees := agrees✝¹ } = { approx := approx✝, agrees := agrees✝ } |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim | [221, 1] | [232, 35] | simp only at h₂ | case mk.mk
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
approx✝¹ : (n : Nat) → Approx C n
agrees✝¹ : ∀ (n : Nat), Agree (approx✝¹ n) (approx✝¹ (Nat.succ n))
approx✝ : (n : Nat) → Approx C n
agrees✝ : ∀ (n : Nat), Agree (approx✝ n) (approx✝ (Nat.succ n))
h₁ : R { approx := approx✝¹, agrees := agrees✝¹ } { approx := approx✝, agrees := agrees✝ }
h₂ : { approx := approx✝¹, agrees := agrees✝¹ }.approx = { approx := approx✝, agrees := agrees✝ }.approx
⊢ { approx := approx✝¹, agrees := agrees✝¹ } = { approx := approx✝, agrees := agrees✝ } | case mk.mk
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
approx✝¹ : (n : Nat) → Approx C n
agrees✝¹ : ∀ (n : Nat), Agree (approx✝¹ n) (approx✝¹ (Nat.succ n))
approx✝ : (n : Nat) → Approx C n
agrees✝ : ∀ (n : Nat), Agree (approx✝ n) (approx✝ (Nat.succ n))
h₁ : R { approx := approx✝¹, agrees := agrees✝¹ } { approx := approx✝, agrees := agrees✝ }
h₂ : approx✝¹ = approx✝
⊢ { approx := approx✝¹, agrees := agrees✝¹ } = { approx := approx✝, agrees := agrees✝ } |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/M.lean | Container.M.bisim | [221, 1] | [232, 35] | simp [h₂] | case mk.mk
C : Container
R : M C → M C → Prop
h₀ :
∀ (x y : M C),
R x y →
∃ node k₁ k₂,
destruct x = { fst := node, snd := k₁ } ∧
destruct y = { fst := node, snd := k₂ } ∧ ∀ (i : B C node), R (k₁ i) (k₂ i)
approx✝¹ : (n : Nat) → Approx C n
agrees✝¹ : ∀ (n : Nat), Agree (approx✝¹ n) (approx✝¹ (Nat.succ n))
approx✝ : (n : Nat) → Approx C n
agrees✝ : ∀ (n : Nat), Agree (approx✝ n) (approx✝ (Nat.succ n))
h₁ : R { approx := approx✝¹, agrees := agrees✝¹ } { approx := approx✝, agrees := agrees✝ }
h₂ : approx✝¹ = approx✝
⊢ { approx := approx✝¹, agrees := agrees✝¹ } = { approx := approx✝, agrees := agrees✝ } | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/QPF/FreeMonads.lean | Free.by_cases | [106, 15] | [113, 17] | intro x | F : Type u → Type u
inst : QPF F
R : Type u
motive : Free F R → Sort u_1
pure : (r : R) → motive (Pure.pure r)
free : (f : F (Free F R)) → motive (Free.free f)
⊢ (x : Free F R) → motive x | F : Type u → Type u
inst : QPF F
R : Type u
motive : Free F R → Sort u_1
pure : (r : R) → motive (Pure.pure r)
free : (f : F (Free F R)) → motive (Free.free f)
x : Free F R
⊢ motive x |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/QPF/FreeMonads.lean | Free.by_cases | [106, 15] | [113, 17] | rw [←construct_destruct x] | F : Type u → Type u
inst : QPF F
R : Type u
motive : Free F R → Sort u_1
pure : (r : R) → motive (Pure.pure r)
free : (f : F (Free F R)) → motive (Free.free f)
x : Free F R
⊢ motive x | F : Type u → Type u
inst : QPF F
R : Type u
motive : Free F R → Sort u_1
pure : (r : R) → motive (Pure.pure r)
free : (f : F (Free F R)) → motive (Free.free f)
x : Free F R
⊢ motive (construct (destruct x)) |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/QPF/FreeMonads.lean | Free.by_cases | [106, 15] | [113, 17] | cases destruct x with
| Pure r =>
exact pure r
| Free f =>
exact free f | F : Type u → Type u
inst : QPF F
R : Type u
motive : Free F R → Sort u_1
pure : (r : R) → motive (Pure.pure r)
free : (f : F (Free F R)) → motive (Free.free f)
x : Free F R
⊢ motive (construct (destruct x)) | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/QPF/FreeMonads.lean | Free.by_cases | [106, 15] | [113, 17] | exact pure r | case Pure
F : Type u → Type u
inst : QPF F
R : Type u
motive : Free F R → Sort u_1
pure : (r : R) → motive (Pure.pure r)
free : (f : F (Free F R)) → motive (Free.free f)
x : Free F R
r : R
⊢ motive (construct (FreeF.Pure r)) | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/QPF/FreeMonads.lean | Free.by_cases | [106, 15] | [113, 17] | exact free f | case Free
F : Type u → Type u
inst : QPF F
R : Type u
motive : Free F R → Sort u_1
pure : (r : R) → motive (Pure.pure r)
free : (f : F (Free F R)) → motive (Free.free f)
x : Free F R
f : F (Free F R)
⊢ motive (construct (FreeF.Free f)) | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/QPF/FreeMonads.lean | Free.destruct_pure | [115, 9] | [116, 34] | simp [pure, destruct_construct] | F : Type u → Type u
inst : QPF F
R : Type u
r : R
⊢ destruct (pure r) = FreeF.Pure r | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/QPF/FreeMonads.lean | Free.destruct_free | [118, 9] | [119, 34] | simp [free, destruct_construct] | F : Type u → Type u
inst : QPF F
R : Type u
f : F (Free F R)
⊢ destruct (free f) = FreeF.Free f | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/QPF/FreeMonads.lean | Free.bind_inr.internal | [186, 1] | [205, 10] | apply QPF.M.bisim (λ x y => corec (bind.automaton k) (.inr x) = y) | F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
⊢ ∀ (x y : Free F S), corec (bind.automaton k) (Sum.inr x) = y → x = y | F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
⊢ ∀ (x y : QPF.M (FreeF F S)),
corec (bind.automaton k) (Sum.inr x) = y →
QPF.M.liftr (FreeF F S) (fun x y => corec (bind.automaton k) (Sum.inr x) = y) (QPF.M.destruct x)
(QPF.M.destruct y) |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/QPF/FreeMonads.lean | Free.bind_inr.internal | [186, 1] | [205, 10] | . intro x y h₁
induction h₁
rw [corec, QPF.M.destruct_corec]
conv =>
congr
. skip
. skip
. rhs
simp only [bind.automaton]
exists (λ x => ⟨⟨x, corec (bind.automaton k) (.inr x)⟩, by rfl⟩) <$> destruct x
rw [destruct]
constructor
. simp only [←QPF.map_comp, Function.comp]
apply Eq.trans _ (QPF.map_id _)
rfl
. simp only [←QPF.map_comp, Function.comp]
rfl | F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
⊢ ∀ (x y : QPF.M (FreeF F S)),
corec (bind.automaton k) (Sum.inr x) = y →
QPF.M.liftr (FreeF F S) (fun x y => corec (bind.automaton k) (Sum.inr x) = y) (QPF.M.destruct x)
(QPF.M.destruct y) | no goals |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/QPF/FreeMonads.lean | Free.bind_inr.internal | [186, 1] | [205, 10] | intro x y h₁ | F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
⊢ ∀ (x y : QPF.M (FreeF F S)),
corec (bind.automaton k) (Sum.inr x) = y →
QPF.M.liftr (FreeF F S) (fun x y => corec (bind.automaton k) (Sum.inr x) = y) (QPF.M.destruct x)
(QPF.M.destruct y) | F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
x y : QPF.M (FreeF F S)
h₁ : corec (bind.automaton k) (Sum.inr x) = y
⊢ QPF.M.liftr (FreeF F S) (fun x y => corec (bind.automaton k) (Sum.inr x) = y) (QPF.M.destruct x) (QPF.M.destruct y) |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/QPF/FreeMonads.lean | Free.bind_inr.internal | [186, 1] | [205, 10] | induction h₁ | F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
x y : QPF.M (FreeF F S)
h₁ : corec (bind.automaton k) (Sum.inr x) = y
⊢ QPF.M.liftr (FreeF F S) (fun x y => corec (bind.automaton k) (Sum.inr x) = y) (QPF.M.destruct x) (QPF.M.destruct y) | case refl
F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
x y : QPF.M (FreeF F S)
⊢ QPF.M.liftr (FreeF F S) (fun x y => corec (bind.automaton k) (Sum.inr x) = y) (QPF.M.destruct x)
(QPF.M.destruct (corec (bind.automaton k) (Sum.inr x))) |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/QPF/FreeMonads.lean | Free.bind_inr.internal | [186, 1] | [205, 10] | rw [corec, QPF.M.destruct_corec] | case refl
F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
x y : QPF.M (FreeF F S)
⊢ QPF.M.liftr (FreeF F S) (fun x y => corec (bind.automaton k) (Sum.inr x) = y) (QPF.M.destruct x)
(QPF.M.destruct (corec (bind.automaton k) (Sum.inr x))) | case refl
F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
x y : QPF.M (FreeF F S)
⊢ QPF.M.liftr (FreeF F S) (fun x y => QPF.M.corec (bind.automaton k) (Sum.inr x) = y) (QPF.M.destruct x)
((fun x => QPF.M.corec (bind.automaton k) x) <$> bind.automaton k (Sum.inr x)) |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/QPF/FreeMonads.lean | Free.bind_inr.internal | [186, 1] | [205, 10] | conv =>
congr
. skip
. skip
. rhs
simp only [bind.automaton] | case refl
F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
x y : QPF.M (FreeF F S)
⊢ QPF.M.liftr (FreeF F S) (fun x y => QPF.M.corec (bind.automaton k) (Sum.inr x) = y) (QPF.M.destruct x)
((fun x => QPF.M.corec (bind.automaton k) x) <$> bind.automaton k (Sum.inr x)) | case refl
F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
x y : QPF.M (FreeF F S)
⊢ QPF.M.liftr (FreeF F S) (fun x y => QPF.M.corec (bind.automaton k) (Sum.inr x) = y) (QPF.M.destruct x)
((fun x => QPF.M.corec (bind.automaton k) x) <$> Sum.inr <$> destruct x) |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/QPF/FreeMonads.lean | Free.bind_inr.internal | [186, 1] | [205, 10] | exists (λ x => ⟨⟨x, corec (bind.automaton k) (.inr x)⟩, by rfl⟩) <$> destruct x | case refl
F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
x y : QPF.M (FreeF F S)
⊢ QPF.M.liftr (FreeF F S) (fun x y => QPF.M.corec (bind.automaton k) (Sum.inr x) = y) (QPF.M.destruct x)
((fun x => QPF.M.corec (bind.automaton k) x) <$> Sum.inr <$> destruct x) | case refl
F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
x y : QPF.M (FreeF F S)
⊢ (fun x => (↑x).fst) <$>
(fun x =>
{ val := (x, corec (bind.automaton k) (Sum.inr x)),
property :=
(_ :
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst) =
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst)) }) <$>
destruct x =
QPF.M.destruct x ∧
(fun x => (↑x).snd) <$>
(fun x =>
{ val := (x, corec (bind.automaton k) (Sum.inr x)),
property :=
(_ :
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst) =
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst)) }) <$>
destruct x =
(fun x => QPF.M.corec (bind.automaton k) x) <$> Sum.inr <$> destruct x |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/QPF/FreeMonads.lean | Free.bind_inr.internal | [186, 1] | [205, 10] | rw [destruct] | case refl
F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
x y : QPF.M (FreeF F S)
⊢ (fun x => (↑x).fst) <$>
(fun x =>
{ val := (x, corec (bind.automaton k) (Sum.inr x)),
property :=
(_ :
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst) =
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst)) }) <$>
destruct x =
QPF.M.destruct x ∧
(fun x => (↑x).snd) <$>
(fun x =>
{ val := (x, corec (bind.automaton k) (Sum.inr x)),
property :=
(_ :
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst) =
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst)) }) <$>
destruct x =
(fun x => QPF.M.corec (bind.automaton k) x) <$> Sum.inr <$> destruct x | case refl
F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
x y : QPF.M (FreeF F S)
⊢ (fun x => (↑x).fst) <$>
(fun x =>
{ val := (x, corec (bind.automaton k) (Sum.inr x)),
property :=
(_ :
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst) =
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst)) }) <$>
QPF.M.destruct x =
QPF.M.destruct x ∧
(fun x => (↑x).snd) <$>
(fun x =>
{ val := (x, corec (bind.automaton k) (Sum.inr x)),
property :=
(_ :
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst) =
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst)) }) <$>
QPF.M.destruct x =
(fun x => QPF.M.corec (bind.automaton k) x) <$> Sum.inr <$> QPF.M.destruct x |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/QPF/FreeMonads.lean | Free.bind_inr.internal | [186, 1] | [205, 10] | constructor | case refl
F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
x y : QPF.M (FreeF F S)
⊢ (fun x => (↑x).fst) <$>
(fun x =>
{ val := (x, corec (bind.automaton k) (Sum.inr x)),
property :=
(_ :
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst) =
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst)) }) <$>
QPF.M.destruct x =
QPF.M.destruct x ∧
(fun x => (↑x).snd) <$>
(fun x =>
{ val := (x, corec (bind.automaton k) (Sum.inr x)),
property :=
(_ :
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst) =
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst)) }) <$>
QPF.M.destruct x =
(fun x => QPF.M.corec (bind.automaton k) x) <$> Sum.inr <$> QPF.M.destruct x | case refl.left
F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
x y : QPF.M (FreeF F S)
⊢ (fun x => (↑x).fst) <$>
(fun x =>
{ val := (x, corec (bind.automaton k) (Sum.inr x)),
property :=
(_ :
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst) =
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst)) }) <$>
QPF.M.destruct x =
QPF.M.destruct x
case refl.right
F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
x y : QPF.M (FreeF F S)
⊢ (fun x => (↑x).snd) <$>
(fun x =>
{ val := (x, corec (bind.automaton k) (Sum.inr x)),
property :=
(_ :
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst) =
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst)) }) <$>
QPF.M.destruct x =
(fun x => QPF.M.corec (bind.automaton k) x) <$> Sum.inr <$> QPF.M.destruct x |
https://github.com/RemyCiterin/LeanCoInd.git | 69d305ae769624f460f9c1ee6a0351917f4b74cf | CoInd/QPF/FreeMonads.lean | Free.bind_inr.internal | [186, 1] | [205, 10] | . simp only [←QPF.map_comp, Function.comp]
apply Eq.trans _ (QPF.map_id _)
rfl | case refl.left
F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
x y : QPF.M (FreeF F S)
⊢ (fun x => (↑x).fst) <$>
(fun x =>
{ val := (x, corec (bind.automaton k) (Sum.inr x)),
property :=
(_ :
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst) =
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst)) }) <$>
QPF.M.destruct x =
QPF.M.destruct x
case refl.right
F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
x y : QPF.M (FreeF F S)
⊢ (fun x => (↑x).snd) <$>
(fun x =>
{ val := (x, corec (bind.automaton k) (Sum.inr x)),
property :=
(_ :
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst) =
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst)) }) <$>
QPF.M.destruct x =
(fun x => QPF.M.corec (bind.automaton k) x) <$> Sum.inr <$> QPF.M.destruct x | case refl.right
F : Type u → Type u
inst : QPF F
R S : Type u
k : R → Free F S
x y : QPF.M (FreeF F S)
⊢ (fun x => (↑x).snd) <$>
(fun x =>
{ val := (x, corec (bind.automaton k) (Sum.inr x)),
property :=
(_ :
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst) =
QPF.M.corec (bind.automaton k) (Sum.inr (x, corec (bind.automaton k) (Sum.inr x)).fst)) }) <$>
QPF.M.destruct x =
(fun x => QPF.M.corec (bind.automaton k) x) <$> Sum.inr <$> QPF.M.destruct x |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.