url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab8Solution.lean
LoVe.List.length_add
[31, 1]
[48, 18]
cases hsame
x : ℤ xs : List ℤ hsame : List.length (x :: xs) = List.length [] ⊢ List.length (add (x :: xs) []) = List.length (x :: xs)
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab8Solution.lean
LoVe.List.add.comm
[64, 1]
[72, 31]
rfl
⊢ add [] [] = add [] []
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab8Solution.lean
LoVe.List.add.comm
[64, 1]
[72, 31]
simp [List.add, add_comm]
x : ℤ xs : List ℤ y : ℤ ys : List ℤ ⊢ add (x :: xs) (y :: ys) = add (y :: ys) (x :: xs)
x : ℤ xs : List ℤ y : ℤ ys : List ℤ ⊢ add xs ys = add ys xs
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab8Solution.lean
LoVe.List.add.comm
[64, 1]
[72, 31]
exact List.add.comm xs ys
x : ℤ xs : List ℤ y : ℤ ys : List ℤ ⊢ add xs ys = add ys xs
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab8Solution.lean
LoVe.List.add.comm
[64, 1]
[72, 31]
rfl
y : ℤ ys : List ℤ ⊢ add [] (y :: ys) = add (y :: ys) []
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab8Solution.lean
LoVe.List.add.comm
[64, 1]
[72, 31]
rfl
x : ℤ xs : List ℤ ⊢ add (x :: xs) [] = add [] (x :: xs)
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab8Solution.lean
LoVe.Vector.add.comm
[74, 1]
[79, 24]
apply Subtype.eq
n : ℕ u v : Vector ℤ n ⊢ add u v = add v u
case a n : ℕ u v : Vector ℤ n ⊢ ↑(add u v) = ↑(add v u)
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab8Solution.lean
LoVe.Vector.add.comm
[74, 1]
[79, 24]
simp [Vector.add]
case a n : ℕ u v : Vector ℤ n ⊢ ↑(add u v) = ↑(add v u)
case a n : ℕ u v : Vector ℤ n ⊢ List.add ↑u ↑v = List.add ↑v ↑u
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab8Solution.lean
LoVe.Vector.add.comm
[74, 1]
[79, 24]
apply List.add.comm
case a n : ℕ u v : Vector ℤ n ⊢ List.add ↑u ↑v = List.add ↑v ↑u
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab8Solution.lean
LoVe.Int.neg_eq
[109, 1]
[111, 9]
rfl
p n : ℕ ⊢ neg (Quotient.mk Setoid (p, n)) = Quotient.mk Setoid (n, p)
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab8Solution.lean
LoVe.int.neg_neg
[113, 1]
[119, 35]
induction a using Quotient.inductionOn with | h pn => cases pn with | mk p n => apply Int.neg_eq
a : Int ⊢ Int.neg (Int.neg a) = a
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab8Solution.lean
LoVe.int.neg_neg
[113, 1]
[119, 35]
cases pn with | mk p n => apply Int.neg_eq
case h pn : ℕ × ℕ ⊢ Int.neg (Int.neg (Quotient.mk Int.Setoid pn)) = Quotient.mk Int.Setoid pn
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab8Solution.lean
LoVe.int.neg_neg
[113, 1]
[119, 35]
apply Int.neg_eq
case h.mk p n : ℕ ⊢ Int.neg (Int.neg (Quotient.mk Int.Setoid (p, n))) = Quotient.mk Int.Setoid (p, n)
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Homework/Homework9.lean
LoVe.quarter_pos
[34, 1]
[38, 28]
have hx2 : 0 < x / 2 := half_pos hx
x : ℚ hx : 0 < x ⊢ 0 < x / 4
x : ℚ hx : 0 < x hx2 : 0 < x / 2 ⊢ 0 < x / 4
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Homework/Homework9.lean
LoVe.quarter_pos
[34, 1]
[38, 28]
calc 0 < (x / 2) / 2 := half_pos hx2 _ = x / 4 := by ring
x : ℚ hx : 0 < x hx2 : 0 < x / 2 ⊢ 0 < x / 4
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Homework/Homework9.lean
LoVe.quarter_pos
[34, 1]
[38, 28]
ring
x : ℚ hx : 0 < x hx2 : 0 < x / 2 ⊢ x / 2 / 2 = x / 4
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/TacticStrategies.lean
normalize_correct
[62, 1]
[75, 10]
induction b with | atom a => cases' a <;> simp [normalize, interp] | and a b iha ihb => simp [normalize, interp, *] | or a b iha ihb => simp [normalize, interp, *] | not b ih => simp [normalize, interp] rw [Bool.eq_false_iff] tauto | imp a b iha ihb => simp [normalize, interp, ← iha, ← ihb] rw [Bool.eq_false_iff] tauto
b : bexpr ⊢ normalize b = true ↔ interp b
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/TacticStrategies.lean
normalize_correct
[62, 1]
[75, 10]
cases' a <;> simp [normalize, interp]
case atom a : Bool ⊢ normalize (atom a) = true ↔ interp (atom a)
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/TacticStrategies.lean
normalize_correct
[62, 1]
[75, 10]
simp [normalize, interp, *]
case and a b : bexpr iha : normalize a = true ↔ interp a ihb : normalize b = true ↔ interp b ⊢ normalize (bexpr.and a b) = true ↔ interp (bexpr.and a b)
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/TacticStrategies.lean
normalize_correct
[62, 1]
[75, 10]
simp [normalize, interp, *]
case or a b : bexpr iha : normalize a = true ↔ interp a ihb : normalize b = true ↔ interp b ⊢ normalize (bexpr.or a b) = true ↔ interp (bexpr.or a b)
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/TacticStrategies.lean
normalize_correct
[62, 1]
[75, 10]
simp [normalize, interp]
case not b : bexpr ih : normalize b = true ↔ interp b ⊢ normalize (bexpr.not b) = true ↔ interp (bexpr.not b)
case not b : bexpr ih : normalize b = true ↔ interp b ⊢ normalize b = false ↔ ¬interp b
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/TacticStrategies.lean
normalize_correct
[62, 1]
[75, 10]
rw [Bool.eq_false_iff]
case not b : bexpr ih : normalize b = true ↔ interp b ⊢ normalize b = false ↔ ¬interp b
case not b : bexpr ih : normalize b = true ↔ interp b ⊢ normalize b ≠ true ↔ ¬interp b
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/TacticStrategies.lean
normalize_correct
[62, 1]
[75, 10]
tauto
case not b : bexpr ih : normalize b = true ↔ interp b ⊢ normalize b ≠ true ↔ ¬interp b
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/TacticStrategies.lean
normalize_correct
[62, 1]
[75, 10]
simp [normalize, interp, ← iha, ← ihb]
case imp a b : bexpr iha : normalize a = true ↔ interp a ihb : normalize b = true ↔ interp b ⊢ normalize (imp a b) = true ↔ interp (imp a b)
case imp a b : bexpr iha : normalize a = true ↔ interp a ihb : normalize b = true ↔ interp b ⊢ normalize a = false ∨ normalize b = true ↔ normalize a = true → normalize b = true
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/TacticStrategies.lean
normalize_correct
[62, 1]
[75, 10]
rw [Bool.eq_false_iff]
case imp a b : bexpr iha : normalize a = true ↔ interp a ihb : normalize b = true ↔ interp b ⊢ normalize a = false ∨ normalize b = true ↔ normalize a = true → normalize b = true
case imp a b : bexpr iha : normalize a = true ↔ interp a ihb : normalize b = true ↔ interp b ⊢ normalize a ≠ true ∨ normalize b = true ↔ normalize a = true → normalize b = true
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/TacticStrategies.lean
normalize_correct
[62, 1]
[75, 10]
tauto
case imp a b : bexpr iha : normalize a = true ↔ interp a ihb : normalize b = true ↔ interp b ⊢ normalize a ≠ true ∨ normalize b = true ↔ normalize a = true → normalize b = true
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/Complex.lean
new.to_and_from
[85, 1]
[102, 38]
cases' p with pangle pmag
p : Polar hpmag : p.magnitude > 0 hpangle1 : -(Real.pi / 2) < p.angle hpangle2 : p.angle < Real.pi / 2 ⊢ Complex.toPolar (Polar.toComplex p) = p
case mk pangle pmag : ℝ hpmag : { angle := pangle, magnitude := pmag }.magnitude > 0 hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 ⊢ Complex.toPolar (Polar.toComplex { angle := pangle, magnitude := pmag }) = { angle := pangle, magnitude := pmag }
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/Complex.lean
new.to_and_from
[85, 1]
[102, 38]
simp at hpmag
case mk pangle pmag : ℝ hpmag : { angle := pangle, magnitude := pmag }.magnitude > 0 hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 ⊢ Complex.toPolar (Polar.toComplex { angle := pangle, magnitude := pmag }) = { angle := pangle, magnitude := pmag }
case mk pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ Complex.toPolar (Polar.toComplex { angle := pangle, magnitude := pmag }) = { angle := pangle, magnitude := pmag }
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/Complex.lean
new.to_and_from
[85, 1]
[102, 38]
simp [Complex.toPolar, Polar.toComplex]
case mk pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ Complex.toPolar (Polar.toComplex { angle := pangle, magnitude := pmag }) = { angle := pangle, magnitude := pmag }
case mk pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ Real.arctan (pmag * Real.sin pangle / (pmag * Real.cos pangle)) = pangle ∧ Real.sqrt ((pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2) = pmag
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/Complex.lean
new.to_and_from
[85, 1]
[102, 38]
constructor
case mk pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ Real.arctan (pmag * Real.sin pangle / (pmag * Real.cos pangle)) = pangle ∧ Real.sqrt ((pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2) = pmag
case mk.left pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ Real.arctan (pmag * Real.sin pangle / (pmag * Real.cos pangle)) = pangle case mk.right pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ Real.sqrt ((pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2) = pmag
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/Complex.lean
new.to_and_from
[85, 1]
[102, 38]
{ rw [mul_div_mul_left] rw [← Real.tan_eq_sin_div_cos] rw [Real.arctan_tan] all_goals aesop }
case mk.left pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ Real.arctan (pmag * Real.sin pangle / (pmag * Real.cos pangle)) = pangle case mk.right pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ Real.sqrt ((pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2) = pmag
case mk.right pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ Real.sqrt ((pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2) = pmag
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/Complex.lean
new.to_and_from
[85, 1]
[102, 38]
{ suffices : (pmag * Real.cos pangle)^2 + (pmag * Real.sin pangle)^2 = pmag^2 rw [this] rw [Real.sqrt_sq] linarith have h : (Real.sin pangle)^2 + (Real.cos pangle)^2 = 1 := Real.sin_sq_add_cos_sq pangle linear_combination pmag ^ 2 * h }
case mk.right pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ Real.sqrt ((pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2) = pmag
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/Complex.lean
new.to_and_from
[85, 1]
[102, 38]
rw [mul_div_mul_left]
case mk.left pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ Real.arctan (pmag * Real.sin pangle / (pmag * Real.cos pangle)) = pangle
case mk.left pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ Real.arctan (Real.sin pangle / Real.cos pangle) = pangle case mk.left.hc pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ pmag ≠ 0
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/Complex.lean
new.to_and_from
[85, 1]
[102, 38]
rw [← Real.tan_eq_sin_div_cos]
case mk.left pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ Real.arctan (Real.sin pangle / Real.cos pangle) = pangle case mk.left.hc pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ pmag ≠ 0
case mk.left pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ Real.arctan (Real.tan pangle) = pangle case mk.left.hc pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ pmag ≠ 0
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/Complex.lean
new.to_and_from
[85, 1]
[102, 38]
rw [Real.arctan_tan]
case mk.left pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ Real.arctan (Real.tan pangle) = pangle case mk.left.hc pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ pmag ≠ 0
case mk.left.hx₁ pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ -(Real.pi / 2) < pangle case mk.left.hx₂ pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ pangle < Real.pi / 2 case mk.left.hc pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ pmag ≠ 0
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/Complex.lean
new.to_and_from
[85, 1]
[102, 38]
all_goals aesop
case mk.left.hx₁ pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ -(Real.pi / 2) < pangle case mk.left.hx₂ pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ pangle < Real.pi / 2 case mk.left.hc pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ pmag ≠ 0
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/Complex.lean
new.to_and_from
[85, 1]
[102, 38]
aesop
case mk.left.hc pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ pmag ≠ 0
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/Complex.lean
new.to_and_from
[85, 1]
[102, 38]
suffices : (pmag * Real.cos pangle)^2 + (pmag * Real.sin pangle)^2 = pmag^2
case mk.right pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ Real.sqrt ((pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2) = pmag
case mk.right pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag this : (pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2 = pmag ^ 2 ⊢ Real.sqrt ((pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2) = pmag case this pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ (pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2 = pmag ^ 2
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/Complex.lean
new.to_and_from
[85, 1]
[102, 38]
rw [this]
case mk.right pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag this : (pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2 = pmag ^ 2 ⊢ Real.sqrt ((pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2) = pmag case this pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ (pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2 = pmag ^ 2
case mk.right pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag this : (pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2 = pmag ^ 2 ⊢ Real.sqrt (pmag ^ 2) = pmag case this pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ (pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2 = pmag ^ 2
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/Complex.lean
new.to_and_from
[85, 1]
[102, 38]
rw [Real.sqrt_sq]
case mk.right pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag this : (pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2 = pmag ^ 2 ⊢ Real.sqrt (pmag ^ 2) = pmag case this pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ (pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2 = pmag ^ 2
case mk.right pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag this : (pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2 = pmag ^ 2 ⊢ 0 ≤ pmag case this pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ (pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2 = pmag ^ 2
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/Complex.lean
new.to_and_from
[85, 1]
[102, 38]
linarith
case mk.right pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag this : (pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2 = pmag ^ 2 ⊢ 0 ≤ pmag case this pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ (pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2 = pmag ^ 2
case this pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ (pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2 = pmag ^ 2
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/Complex.lean
new.to_and_from
[85, 1]
[102, 38]
have h : (Real.sin pangle)^2 + (Real.cos pangle)^2 = 1 := Real.sin_sq_add_cos_sq pangle
case this pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag ⊢ (pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2 = pmag ^ 2
case this pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag h : Real.sin pangle ^ 2 + Real.cos pangle ^ 2 = 1 ⊢ (pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2 = pmag ^ 2
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Lectures/Complex.lean
new.to_and_from
[85, 1]
[102, 38]
linear_combination pmag ^ 2 * h
case this pangle pmag : ℝ hpangle1 : -(Real.pi / 2) < { angle := pangle, magnitude := pmag }.angle hpangle2 : { angle := pangle, magnitude := pmag }.angle < Real.pi / 2 hpmag : 0 < pmag h : Real.sin pangle ^ 2 + Real.cos pangle ^ 2 = 1 ⊢ (pmag * Real.cos pangle) ^ 2 + (pmag * Real.sin pangle) ^ 2 = pmag ^ 2
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.I
[24, 1]
[28, 13]
intro ha
a : Prop ⊢ a → a
a : Prop ha : a ⊢ a
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.I
[24, 1]
[28, 13]
exact ha
a : Prop ha : a ⊢ a
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.K
[30, 1]
[34, 13]
intro ha hb
a b : Prop ⊢ a → b → b
a b : Prop ha : a hb : b ⊢ b
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.K
[30, 1]
[34, 13]
exact hb
a b : Prop ha : a hb : b ⊢ b
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.C
[36, 1]
[42, 13]
intro hg hb ha
a b c : Prop ⊢ (a → b → c) → b → a → c
a b c : Prop hg : a → b → c hb : b ha : a ⊢ c
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.C
[36, 1]
[42, 13]
apply hg
a b c : Prop hg : a → b → c hb : b ha : a ⊢ c
case a a b c : Prop hg : a → b → c hb : b ha : a ⊢ a case a a b c : Prop hg : a → b → c hb : b ha : a ⊢ b
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.C
[36, 1]
[42, 13]
exact ha
case a a b c : Prop hg : a → b → c hb : b ha : a ⊢ a case a a b c : Prop hg : a → b → c hb : b ha : a ⊢ b
case a a b c : Prop hg : a → b → c hb : b ha : a ⊢ b
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.C
[36, 1]
[42, 13]
exact hb
case a a b c : Prop hg : a → b → c hb : b ha : a ⊢ b
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.proj_fst
[44, 1]
[48, 13]
intro ha ha'
a : Prop ⊢ a → a → a
a : Prop ha ha' : a ⊢ a
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.proj_fst
[44, 1]
[48, 13]
exact ha
a : Prop ha ha' : a ⊢ a
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.proj_snd
[52, 1]
[56, 14]
intro ha ha'
a : Prop ⊢ a → a → a
a : Prop ha ha' : a ⊢ a
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.proj_snd
[52, 1]
[56, 14]
exact ha'
a : Prop ha ha' : a ⊢ a
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.some_nonsense
[58, 1]
[64, 13]
intro hg ha hf hb
a b c : Prop ⊢ (a → b → c) → a → (a → c) → b → c
a b c : Prop hg : a → b → c ha : a hf : a → c hb : b ⊢ c
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.some_nonsense
[58, 1]
[64, 13]
apply hg
a b c : Prop hg : a → b → c ha : a hf : a → c hb : b ⊢ c
case a a b c : Prop hg : a → b → c ha : a hf : a → c hb : b ⊢ a case a a b c : Prop hg : a → b → c ha : a hf : a → c hb : b ⊢ b
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.some_nonsense
[58, 1]
[64, 13]
exact ha
case a a b c : Prop hg : a → b → c ha : a hf : a → c hb : b ⊢ a case a a b c : Prop hg : a → b → c ha : a hf : a → c hb : b ⊢ b
case a a b c : Prop hg : a → b → c ha : a hf : a → c hb : b ⊢ b
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.some_nonsense
[58, 1]
[64, 13]
exact hb
case a a b c : Prop hg : a → b → c ha : a hf : a → c hb : b ⊢ b
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.contrapositive
[68, 1]
[74, 13]
intro hab hnb ha
a b : Prop ⊢ (a → b) → ¬b → ¬a
a b : Prop hab : a → b hnb : ¬b ha : a ⊢ False
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.contrapositive
[68, 1]
[74, 13]
apply hnb
a b : Prop hab : a → b hnb : ¬b ha : a ⊢ False
a b : Prop hab : a → b hnb : ¬b ha : a ⊢ b
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.contrapositive
[68, 1]
[74, 13]
apply hab
a b : Prop hab : a → b hnb : ¬b ha : a ⊢ b
a b : Prop hab : a → b hnb : ¬b ha : a ⊢ a
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.contrapositive
[68, 1]
[74, 13]
apply ha
a b : Prop hab : a → b hnb : ¬b ha : a ⊢ a
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.forall_and
[82, 1]
[97, 30]
apply Iff.intro
α : Type p q : α → Prop ⊢ (∀ (x : α), p x ∧ q x) ↔ (∀ (x : α), p x) ∧ ∀ (x : α), q x
case mp α : Type p q : α → Prop ⊢ (∀ (x : α), p x ∧ q x) → (∀ (x : α), p x) ∧ ∀ (x : α), q x case mpr α : Type p q : α → Prop ⊢ ((∀ (x : α), p x) ∧ ∀ (x : α), q x) → ∀ (x : α), p x ∧ q x
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.forall_and
[82, 1]
[97, 30]
{ intro h apply And.intro { intro x apply And.left apply h } { intro x apply And.right apply h } }
case mp α : Type p q : α → Prop ⊢ (∀ (x : α), p x ∧ q x) → (∀ (x : α), p x) ∧ ∀ (x : α), q x case mpr α : Type p q : α → Prop ⊢ ((∀ (x : α), p x) ∧ ∀ (x : α), q x) → ∀ (x : α), p x ∧ q x
case mpr α : Type p q : α → Prop ⊢ ((∀ (x : α), p x) ∧ ∀ (x : α), q x) → ∀ (x : α), p x ∧ q x
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.forall_and
[82, 1]
[97, 30]
{ intro h x apply And.intro { apply And.left h } { apply And.right h } }
case mpr α : Type p q : α → Prop ⊢ ((∀ (x : α), p x) ∧ ∀ (x : α), q x) → ∀ (x : α), p x ∧ q x
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.forall_and
[82, 1]
[97, 30]
intro h
case mp α : Type p q : α → Prop ⊢ (∀ (x : α), p x ∧ q x) → (∀ (x : α), p x) ∧ ∀ (x : α), q x
case mp α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x ⊢ (∀ (x : α), p x) ∧ ∀ (x : α), q x
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.forall_and
[82, 1]
[97, 30]
apply And.intro
case mp α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x ⊢ (∀ (x : α), p x) ∧ ∀ (x : α), q x
case mp.left α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x ⊢ ∀ (x : α), p x case mp.right α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x ⊢ ∀ (x : α), q x
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.forall_and
[82, 1]
[97, 30]
{ intro x apply And.left apply h }
case mp.left α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x ⊢ ∀ (x : α), p x case mp.right α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x ⊢ ∀ (x : α), q x
case mp.right α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x ⊢ ∀ (x : α), q x
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.forall_and
[82, 1]
[97, 30]
{ intro x apply And.right apply h }
case mp.right α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x ⊢ ∀ (x : α), q x
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.forall_and
[82, 1]
[97, 30]
intro x
case mp.left α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x ⊢ ∀ (x : α), p x
case mp.left α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x x : α ⊢ p x
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.forall_and
[82, 1]
[97, 30]
apply And.left
case mp.left α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x x : α ⊢ p x
case mp.left.self α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x x : α ⊢ p x ∧ ?mp.left.b case mp.left.b α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x x : α ⊢ Prop
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.forall_and
[82, 1]
[97, 30]
apply h
case mp.left.self α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x x : α ⊢ p x ∧ ?mp.left.b case mp.left.b α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x x : α ⊢ Prop
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.forall_and
[82, 1]
[97, 30]
intro x
case mp.right α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x ⊢ ∀ (x : α), q x
case mp.right α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x x : α ⊢ q x
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.forall_and
[82, 1]
[97, 30]
apply And.right
case mp.right α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x x : α ⊢ q x
case mp.right.self α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x x : α ⊢ ?mp.right.a ∧ q x case mp.right.a α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x x : α ⊢ Prop
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.forall_and
[82, 1]
[97, 30]
apply h
case mp.right.self α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x x : α ⊢ ?mp.right.a ∧ q x case mp.right.a α : Type p q : α → Prop h : ∀ (x : α), p x ∧ q x x : α ⊢ Prop
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.forall_and
[82, 1]
[97, 30]
intro h x
case mpr α : Type p q : α → Prop ⊢ ((∀ (x : α), p x) ∧ ∀ (x : α), q x) → ∀ (x : α), p x ∧ q x
case mpr α : Type p q : α → Prop h : (∀ (x : α), p x) ∧ ∀ (x : α), q x x : α ⊢ p x ∧ q x
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.forall_and
[82, 1]
[97, 30]
apply And.intro
case mpr α : Type p q : α → Prop h : (∀ (x : α), p x) ∧ ∀ (x : α), q x x : α ⊢ p x ∧ q x
case mpr.left α : Type p q : α → Prop h : (∀ (x : α), p x) ∧ ∀ (x : α), q x x : α ⊢ p x case mpr.right α : Type p q : α → Prop h : (∀ (x : α), p x) ∧ ∀ (x : α), q x x : α ⊢ q x
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.forall_and
[82, 1]
[97, 30]
{ apply And.left h }
case mpr.left α : Type p q : α → Prop h : (∀ (x : α), p x) ∧ ∀ (x : α), q x x : α ⊢ p x case mpr.right α : Type p q : α → Prop h : (∀ (x : α), p x) ∧ ∀ (x : α), q x x : α ⊢ q x
case mpr.right α : Type p q : α → Prop h : (∀ (x : α), p x) ∧ ∀ (x : α), q x x : α ⊢ q x
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.forall_and
[82, 1]
[97, 30]
{ apply And.right h }
case mpr.right α : Type p q : α → Prop h : (∀ (x : α), p x) ∧ ∀ (x : α), q x x : α ⊢ q x
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.forall_and
[82, 1]
[97, 30]
apply And.left h
case mpr.left α : Type p q : α → Prop h : (∀ (x : α), p x) ∧ ∀ (x : α), q x x : α ⊢ p x
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.forall_and
[82, 1]
[97, 30]
apply And.right h
case mpr.right α : Type p q : α → Prop h : (∀ (x : α), p x) ∧ ∀ (x : α), q x x : α ⊢ q x
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.mul_zero
[107, 1]
[112, 40]
induction n with | zero => rfl | succ n' ih => simp only [mul, ih]
n : ℕ ⊢ mul 0 n = 0
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.mul_zero
[107, 1]
[112, 40]
rfl
case zero ⊢ mul 0 Nat.zero = 0
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.mul_zero
[107, 1]
[112, 40]
simp only [mul, ih]
case succ n' : ℕ ih : mul 0 n' = 0 ⊢ mul 0 (Nat.succ n') = 0
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.mul_succ
[115, 1]
[120, 66]
induction n with | zero => rfl | succ n' ih => simp only [add, add_succ, add_assoc, mul, ih]
m n : ℕ ⊢ mul (Nat.succ m) n = add (mul m n) n
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.mul_succ
[115, 1]
[120, 66]
rfl
case zero m : ℕ ⊢ mul (Nat.succ m) Nat.zero = add (mul m Nat.zero) Nat.zero
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.mul_succ
[115, 1]
[120, 66]
simp only [add, add_succ, add_assoc, mul, ih]
case succ m n' : ℕ ih : mul (Nat.succ m) n' = add (mul m n') n' ⊢ mul (Nat.succ m) (Nat.succ n') = add (mul m (Nat.succ n')) (Nat.succ n')
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.mul_comm
[125, 1]
[132, 13]
induction m with | zero => simp only [mul, mul_zero] | succ m' ih => simp only [mul_succ, ih] ac_rfl
m n : ℕ ⊢ mul m n = mul n m
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.mul_comm
[125, 1]
[132, 13]
simp only [mul, mul_zero]
case zero n : ℕ ⊢ mul Nat.zero n = mul n Nat.zero
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.mul_comm
[125, 1]
[132, 13]
simp only [mul_succ, ih]
case succ n m' : ℕ ih : mul m' n = mul n m' ⊢ mul (Nat.succ m') n = mul n (Nat.succ m')
case succ n m' : ℕ ih : mul m' n = mul n m' ⊢ add (mul n m') n = mul n (Nat.succ m')
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.mul_comm
[125, 1]
[132, 13]
ac_rfl
case succ n m' : ℕ ih : mul m' n = mul n m' ⊢ add (mul n m') n = mul n (Nat.succ m')
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.mul_assoc
[134, 1]
[139, 49]
induction n with | zero => rfl | succ n' ih => simp only [mul, mul_add, ih]
l m n : ℕ ⊢ mul (mul l m) n = mul l (mul m n)
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.mul_assoc
[134, 1]
[139, 49]
rfl
case zero l m : ℕ ⊢ mul (mul l m) Nat.zero = mul l (mul m Nat.zero)
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.mul_assoc
[134, 1]
[139, 49]
simp only [mul, mul_add, ih]
case succ l m n' : ℕ ih : mul (mul l m) n' = mul l (mul m n') ⊢ mul (mul l m) (Nat.succ n') = mul l (mul m (Nat.succ n'))
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.add_mul
[145, 1]
[149, 17]
rw [mul_comm _ n]
l m n : ℕ ⊢ mul (add l m) n = add (mul n l) (mul n m)
l m n : ℕ ⊢ mul n (add l m) = add (mul n l) (mul n m)
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.add_mul
[145, 1]
[149, 17]
rw [mul_add]
l m n : ℕ ⊢ mul n (add l m) = add (mul n l) (mul n m)
no goals
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.Peirce_of_EM
[182, 1]
[197, 19]
rw [ExcludedMiddle]
⊢ ExcludedMiddle → Peirce
⊢ (∀ (a : Prop), a ∨ ¬a) → Peirce
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.Peirce_of_EM
[182, 1]
[197, 19]
rw [Peirce]
⊢ (∀ (a : Prop), a ∨ ¬a) → Peirce
⊢ (∀ (a : Prop), a ∨ ¬a) → ∀ (a b : Prop), ((a → b) → a) → a
https://github.com/BrownCS1951x/fpv2023.git
9aaf6b5c454aa9a70fc4e6807adf3123b001ea66
LoVe/Labs/Lab2Solution.lean
LoVe.BackwardProofs.Peirce_of_EM
[182, 1]
[197, 19]
intro hem
⊢ (∀ (a : Prop), a ∨ ¬a) → ∀ (a b : Prop), ((a → b) → a) → a
hem : ∀ (a : Prop), a ∨ ¬a ⊢ ∀ (a b : Prop), ((a → b) → a) → a