url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | apply Nat.mul_le_mul | case h.hβ
n : β
hn : 2 < n
β’ (β x in Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3), x ^ β(Nat.factorization (Nat.centralBinom n)) x) *
β x in Finset.Ioc (2 * n / 3) (2 * n), x ^ β(Nat.factorization (Nat.centralBinom n)) x β€
4 ^ Nat.pred (2 * n / 3) * β p in primes (Finset.Ioc n (2 * n)), p | case h.hβ.hβ
n : β
hn : 2 < n
β’ β x in Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3), x ^ β(Nat.factorization (Nat.centralBinom n)) x β€
4 ^ Nat.pred (2 * n / 3)
case h.hβ.hβ
n : β
hn : 2 < n
β’ β x in Finset.Ioc (2 * n / 3) (2 * n), x ^ β(Nat.factorization (Nat.centralBinom n)) x β€
β p in primes (Finset.Ioc n (2 * n)), p |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | . apply le_trans FactorizationCentralBinom.prodIocSqrtPowLeProdPrimes
apply le_trans _ (@prodPrimesLePowFour (2*n/3))
rw [prodPrimes, Finset.range_eq_Ico, Nat.Ico_succ_right]
apply Finset.prod_le_prod_of_subset_of_one_le' <;> rw [primes]
. apply Finset.monotone_filter_left
exact Finset.Ioc_subset_Iic_self
. intro p hp _
simp at hp
replace hp := Nat.Prime.one_lt hp.right
linarith | case h.hβ.hβ
n : β
hn : 2 < n
β’ β x in Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3), x ^ β(Nat.factorization (Nat.centralBinom n)) x β€
4 ^ Nat.pred (2 * n / 3)
case h.hβ.hβ
n : β
hn : 2 < n
β’ β x in Finset.Ioc (2 * n / 3) (2 * n), x ^ β(Nat.factorization (Nat.centralBinom n)) x β€
β p in primes (Finset.Ioc n (2 * n)), p | case h.hβ.hβ
n : β
hn : 2 < n
β’ β x in Finset.Ioc (2 * n / 3) (2 * n), x ^ β(Nat.factorization (Nat.centralBinom n)) x β€
β p in primes (Finset.Ioc n (2 * n)), p |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | . conv => lhs; rw [β Finset.prod_Ioc_consecutive _ (mulDivLeSelf (by norm_num)) (by linarith : n β€ 2*n)]
apply mulRightLeOfLeOne
. apply le_of_eq
apply Finset.prod_eq_one
intro x hx
simp at hx
rw [Nat.factorization_centralBinom_of_two_mul_self_lt_three_mul hn hx.right]
. simp
. apply @Nat.lt_of_div_lt_div _ _ 3
simp
exact hx.left
. apply FactorizationCentralBinom.prodIocSqrtLePowLeProdPrimes
exact sqrtTwoMulLeSelf (le_of_lt hn) | case h.hβ.hβ
n : β
hn : 2 < n
β’ β x in Finset.Ioc (2 * n / 3) (2 * n), x ^ β(Nat.factorization (Nat.centralBinom n)) x β€
β p in primes (Finset.Ioc n (2 * n)), p | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | repeat rw [β Nat.Ico_succ_succ] | case hs
n : β
hn : 2 < n
β’ Finset.Ioc (Nat.sqrt (2 * n)) (2 * n) β Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3) βͺ Finset.Ioc (2 * n / 3) (2 * n) | case hs
n : β
hn : 2 < n
β’ Finset.Ico (Nat.succ (Nat.sqrt (2 * n))) (Nat.succ (2 * n)) β
Finset.Ico (Nat.succ (Nat.sqrt (2 * n))) (Nat.succ (2 * n / 3)) βͺ
Finset.Ico (Nat.succ (2 * n / 3)) (Nat.succ (2 * n)) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | apply Finset.Ico_subset_Ico_union_Ico | case hs
n : β
hn : 2 < n
β’ Finset.Ico (Nat.succ (Nat.sqrt (2 * n))) (Nat.succ (2 * n)) β
Finset.Ico (Nat.succ (Nat.sqrt (2 * n))) (Nat.succ (2 * n / 3)) βͺ
Finset.Ico (Nat.succ (2 * n / 3)) (Nat.succ (2 * n)) | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | rw [β Nat.Ico_succ_succ] | case hs
n : β
hn : 2 < n
β’ Finset.Ico (Nat.succ (Nat.sqrt (2 * n))) (Nat.succ (2 * n)) β
Finset.Ico (Nat.succ (Nat.sqrt (2 * n))) (Nat.succ (2 * n / 3)) βͺ Finset.Ioc (2 * n / 3) (2 * n) | case hs
n : β
hn : 2 < n
β’ Finset.Ico (Nat.succ (Nat.sqrt (2 * n))) (Nat.succ (2 * n)) β
Finset.Ico (Nat.succ (Nat.sqrt (2 * n))) (Nat.succ (2 * n / 3)) βͺ
Finset.Ico (Nat.succ (2 * n / 3)) (Nat.succ (2 * n)) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | apply le_trans FactorizationCentralBinom.prodIocSqrtPowLeProdPrimes | case h.hβ.hβ
n : β
hn : 2 < n
β’ β x in Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3), x ^ β(Nat.factorization (Nat.centralBinom n)) x β€
4 ^ Nat.pred (2 * n / 3) | case h.hβ.hβ
n : β
hn : 2 < n
β’ β p in primes (Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3)), p β€ 4 ^ Nat.pred (2 * n / 3) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | apply le_trans _ (@prodPrimesLePowFour (2*n/3)) | case h.hβ.hβ
n : β
hn : 2 < n
β’ β p in primes (Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3)), p β€ 4 ^ Nat.pred (2 * n / 3) | n : β
hn : 2 < n
β’ β p in primes (Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3)), p β€ prodPrimes (2 * n / 3) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | rw [prodPrimes, Finset.range_eq_Ico, Nat.Ico_succ_right] | n : β
hn : 2 < n
β’ β p in primes (Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3)), p β€ prodPrimes (2 * n / 3) | n : β
hn : 2 < n
β’ β p in primes (Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3)), p β€ β p in primes (Finset.Icc 0 (2 * n / 3)), p |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | apply Finset.prod_le_prod_of_subset_of_one_le' <;> rw [primes] | n : β
hn : 2 < n
β’ β p in primes (Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3)), p β€ β p in primes (Finset.Icc 0 (2 * n / 3)), p | case h
n : β
hn : 2 < n
β’ Finset.filter Nat.Prime (Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3)) β
Finset.filter Nat.Prime (Finset.Icc 0 (2 * n / 3))
case hf
n : β
hn : 2 < n
β’ β (i : β),
i β Finset.filter Nat.Prime (Finset.Icc 0 (2 * n / 3)) β
Β¬i β Finset.filter Nat.Prime (Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3)) β 1 β€ i |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | . apply Finset.monotone_filter_left
exact Finset.Ioc_subset_Iic_self | case h
n : β
hn : 2 < n
β’ Finset.filter Nat.Prime (Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3)) β
Finset.filter Nat.Prime (Finset.Icc 0 (2 * n / 3))
case hf
n : β
hn : 2 < n
β’ β (i : β),
i β Finset.filter Nat.Prime (Finset.Icc 0 (2 * n / 3)) β
Β¬i β Finset.filter Nat.Prime (Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3)) β 1 β€ i | case hf
n : β
hn : 2 < n
β’ β (i : β),
i β Finset.filter Nat.Prime (Finset.Icc 0 (2 * n / 3)) β
Β¬i β Finset.filter Nat.Prime (Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3)) β 1 β€ i |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | . intro p hp _
simp at hp
replace hp := Nat.Prime.one_lt hp.right
linarith | case hf
n : β
hn : 2 < n
β’ β (i : β),
i β Finset.filter Nat.Prime (Finset.Icc 0 (2 * n / 3)) β
Β¬i β Finset.filter Nat.Prime (Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3)) β 1 β€ i | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | apply Finset.monotone_filter_left | case h
n : β
hn : 2 < n
β’ Finset.filter Nat.Prime (Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3)) β
Finset.filter Nat.Prime (Finset.Icc 0 (2 * n / 3)) | case h.a
n : β
hn : 2 < n
β’ Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3) β€ Finset.Icc 0 (2 * n / 3) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | exact Finset.Ioc_subset_Iic_self | case h.a
n : β
hn : 2 < n
β’ Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3) β€ Finset.Icc 0 (2 * n / 3) | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | intro p hp _ | case hf
n : β
hn : 2 < n
β’ β (i : β),
i β Finset.filter Nat.Prime (Finset.Icc 0 (2 * n / 3)) β
Β¬i β Finset.filter Nat.Prime (Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3)) β 1 β€ i | case hf
n : β
hn : 2 < n
p : β
hp : p β Finset.filter Nat.Prime (Finset.Icc 0 (2 * n / 3))
aβ : Β¬p β Finset.filter Nat.Prime (Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3))
β’ 1 β€ p |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | simp at hp | case hf
n : β
hn : 2 < n
p : β
hp : p β Finset.filter Nat.Prime (Finset.Icc 0 (2 * n / 3))
aβ : Β¬p β Finset.filter Nat.Prime (Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3))
β’ 1 β€ p | case hf
n : β
hn : 2 < n
p : β
aβ : Β¬p β Finset.filter Nat.Prime (Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3))
hp : p β€ 2 * n / 3 β§ Nat.Prime p
β’ 1 β€ p |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | replace hp := Nat.Prime.one_lt hp.right | case hf
n : β
hn : 2 < n
p : β
aβ : Β¬p β Finset.filter Nat.Prime (Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3))
hp : p β€ 2 * n / 3 β§ Nat.Prime p
β’ 1 β€ p | case hf
n : β
hn : 2 < n
p : β
aβ : Β¬p β Finset.filter Nat.Prime (Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3))
hp : 1 < p
β’ 1 β€ p |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | linarith | case hf
n : β
hn : 2 < n
p : β
aβ : Β¬p β Finset.filter Nat.Prime (Finset.Ioc (Nat.sqrt (2 * n)) (2 * n / 3))
hp : 1 < p
β’ 1 β€ p | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | conv => lhs; rw [β Finset.prod_Ioc_consecutive _ (mulDivLeSelf (by norm_num)) (by linarith : n β€ 2*n)] | case h.hβ.hβ
n : β
hn : 2 < n
β’ β x in Finset.Ioc (2 * n / 3) (2 * n), x ^ β(Nat.factorization (Nat.centralBinom n)) x β€
β p in primes (Finset.Ioc n (2 * n)), p | case h.hβ.hβ
n : β
hn : 2 < n
β’ (β i in Finset.Ioc (2 * n / 3) n, i ^ β(Nat.factorization (Nat.centralBinom n)) i) *
β i in Finset.Ioc n (2 * n), i ^ β(Nat.factorization (Nat.centralBinom n)) i β€
β p in primes (Finset.Ioc n (2 * n)), p |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | apply mulRightLeOfLeOne | case h.hβ.hβ
n : β
hn : 2 < n
β’ (β i in Finset.Ioc (2 * n / 3) n, i ^ β(Nat.factorization (Nat.centralBinom n)) i) *
β i in Finset.Ioc n (2 * n), i ^ β(Nat.factorization (Nat.centralBinom n)) i β€
β p in primes (Finset.Ioc n (2 * n)), p | case h.hβ.hβ.h1
n : β
hn : 2 < n
β’ β i in Finset.Ioc (2 * n / 3) n, i ^ β(Nat.factorization (Nat.centralBinom n)) i β€ 1
case h.hβ.hβ.h
n : β
hn : 2 < n
β’ β i in Finset.Ioc n (2 * n), i ^ β(Nat.factorization (Nat.centralBinom n)) i β€ β p in primes (Finset.Ioc n (2 * n)), p |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | . apply le_of_eq
apply Finset.prod_eq_one
intro x hx
simp at hx
rw [Nat.factorization_centralBinom_of_two_mul_self_lt_three_mul hn hx.right]
. simp
. apply @Nat.lt_of_div_lt_div _ _ 3
simp
exact hx.left | case h.hβ.hβ.h1
n : β
hn : 2 < n
β’ β i in Finset.Ioc (2 * n / 3) n, i ^ β(Nat.factorization (Nat.centralBinom n)) i β€ 1
case h.hβ.hβ.h
n : β
hn : 2 < n
β’ β i in Finset.Ioc n (2 * n), i ^ β(Nat.factorization (Nat.centralBinom n)) i β€ β p in primes (Finset.Ioc n (2 * n)), p | case h.hβ.hβ.h
n : β
hn : 2 < n
β’ β i in Finset.Ioc n (2 * n), i ^ β(Nat.factorization (Nat.centralBinom n)) i β€ β p in primes (Finset.Ioc n (2 * n)), p |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | . apply FactorizationCentralBinom.prodIocSqrtLePowLeProdPrimes
exact sqrtTwoMulLeSelf (le_of_lt hn) | case h.hβ.hβ.h
n : β
hn : 2 < n
β’ β i in Finset.Ioc n (2 * n), i ^ β(Nat.factorization (Nat.centralBinom n)) i β€ β p in primes (Finset.Ioc n (2 * n)), p | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | norm_num | n : β
hn : 2 < n
β’ 2 β€ 3 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | linarith | n : β
hn : 2 < n
β’ n β€ 2 * n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | apply le_of_eq | case h.hβ.hβ.h1
n : β
hn : 2 < n
β’ β i in Finset.Ioc (2 * n / 3) n, i ^ β(Nat.factorization (Nat.centralBinom n)) i β€ 1 | case h.hβ.hβ.h1.a
n : β
hn : 2 < n
β’ β i in Finset.Ioc (2 * n / 3) n, i ^ β(Nat.factorization (Nat.centralBinom n)) i = 1 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | apply Finset.prod_eq_one | case h.hβ.hβ.h1.a
n : β
hn : 2 < n
β’ β i in Finset.Ioc (2 * n / 3) n, i ^ β(Nat.factorization (Nat.centralBinom n)) i = 1 | case h.hβ.hβ.h1.a.h
n : β
hn : 2 < n
β’ β (x : β), x β Finset.Ioc (2 * n / 3) n β x ^ β(Nat.factorization (Nat.centralBinom n)) x = 1 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | intro x hx | case h.hβ.hβ.h1.a.h
n : β
hn : 2 < n
β’ β (x : β), x β Finset.Ioc (2 * n / 3) n β x ^ β(Nat.factorization (Nat.centralBinom n)) x = 1 | case h.hβ.hβ.h1.a.h
n : β
hn : 2 < n
x : β
hx : x β Finset.Ioc (2 * n / 3) n
β’ x ^ β(Nat.factorization (Nat.centralBinom n)) x = 1 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | simp at hx | case h.hβ.hβ.h1.a.h
n : β
hn : 2 < n
x : β
hx : x β Finset.Ioc (2 * n / 3) n
β’ x ^ β(Nat.factorization (Nat.centralBinom n)) x = 1 | case h.hβ.hβ.h1.a.h
n : β
hn : 2 < n
x : β
hx : 2 * n / 3 < x β§ x β€ n
β’ x ^ β(Nat.factorization (Nat.centralBinom n)) x = 1 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | rw [Nat.factorization_centralBinom_of_two_mul_self_lt_three_mul hn hx.right] | case h.hβ.hβ.h1.a.h
n : β
hn : 2 < n
x : β
hx : 2 * n / 3 < x β§ x β€ n
β’ x ^ β(Nat.factorization (Nat.centralBinom n)) x = 1 | case h.hβ.hβ.h1.a.h
n : β
hn : 2 < n
x : β
hx : 2 * n / 3 < x β§ x β€ n
β’ x ^ 0 = 1
case h.hβ.hβ.h1.a.h
n : β
hn : 2 < n
x : β
hx : 2 * n / 3 < x β§ x β€ n
β’ 2 * n < 3 * x |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | . simp | case h.hβ.hβ.h1.a.h
n : β
hn : 2 < n
x : β
hx : 2 * n / 3 < x β§ x β€ n
β’ x ^ 0 = 1
case h.hβ.hβ.h1.a.h
n : β
hn : 2 < n
x : β
hx : 2 * n / 3 < x β§ x β€ n
β’ 2 * n < 3 * x | case h.hβ.hβ.h1.a.h
n : β
hn : 2 < n
x : β
hx : 2 * n / 3 < x β§ x β€ n
β’ 2 * n < 3 * x |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | . apply @Nat.lt_of_div_lt_div _ _ 3
simp
exact hx.left | case h.hβ.hβ.h1.a.h
n : β
hn : 2 < n
x : β
hx : 2 * n / 3 < x β§ x β€ n
β’ 2 * n < 3 * x | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | simp | case h.hβ.hβ.h1.a.h
n : β
hn : 2 < n
x : β
hx : 2 * n / 3 < x β§ x β€ n
β’ x ^ 0 = 1 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | apply @Nat.lt_of_div_lt_div _ _ 3 | case h.hβ.hβ.h1.a.h
n : β
hn : 2 < n
x : β
hx : 2 * n / 3 < x β§ x β€ n
β’ 2 * n < 3 * x | case h.hβ.hβ.h1.a.h
n : β
hn : 2 < n
x : β
hx : 2 * n / 3 < x β§ x β€ n
β’ 2 * n / 3 < 3 * x / 3 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | simp | case h.hβ.hβ.h1.a.h
n : β
hn : 2 < n
x : β
hx : 2 * n / 3 < x β§ x β€ n
β’ 2 * n / 3 < 3 * x / 3 | case h.hβ.hβ.h1.a.h
n : β
hn : 2 < n
x : β
hx : 2 * n / 3 < x β§ x β€ n
β’ 2 * n / 3 < x |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | exact hx.left | case h.hβ.hβ.h1.a.h
n : β
hn : 2 < n
x : β
hx : 2 * n / 3 < x β§ x β€ n
β’ 2 * n / 3 < x | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | apply FactorizationCentralBinom.prodIocSqrtLePowLeProdPrimes | case h.hβ.hβ.h
n : β
hn : 2 < n
β’ β i in Finset.Ioc n (2 * n), i ^ β(Nat.factorization (Nat.centralBinom n)) i β€ β p in primes (Finset.Ioc n (2 * n)), p | case h.hβ.hβ.h.ha
n : β
hn : 2 < n
β’ Nat.sqrt (2 * n) β€ n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/CentralBinom.lean | fourPowLeMulProdPrimes | [162, 1] | [216, 45] | exact sqrtTwoMulLeSelf (le_of_lt hn) | case h.hβ.hβ.h.ha
n : β
hn : 2 < n
β’ Nat.sqrt (2 * n) β€ n | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | generic_recursor | [31, 1] | [52, 12] | let A := {x : N0 | motive x} | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
β’ motive x | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
β’ motive x |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | generic_recursor | [31, 1] | [52, 12] | have hzmem : z β A := by
simp only [Set.mem_setOf_eq]
exact hz | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
β’ motive x | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
β’ motive x |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | generic_recursor | [31, 1] | [52, 12] | have hind : (β n : N0, n β A β (S n) β A) := by
intros n hel
simp only [Set.mem_setOf_eq]
simp only [Set.mem_setOf_eq] at hel
specialize hs n
exact hs hel | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
β’ motive x | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
hind : β n β A, S n β A
β’ motive x |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | generic_recursor | [31, 1] | [52, 12] | have heq := p3 A β¨hzmem, hindβ© | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
hind : β n β A, S n β A
β’ motive x | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
hind : β n β A, S n β A
heq : Subtype.val '' A = N0
β’ motive x |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | generic_recursor | [31, 1] | [52, 12] | simp [A, Set.ext_iff] at heq | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
hind : β n β A, S n β A
heq : Subtype.val '' A = N0
β’ motive x | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
hind : β n β A, S n β A
heq : β (x : Ξ±), (β (x_1 : x β N0), motive { val := x, property := (_ : x β N0) }) β x β N0
β’ motive x |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | generic_recursor | [31, 1] | [52, 12] | specialize heq x | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
hind : β n β A, S n β A
heq : β (x : Ξ±), (β (x_1 : x β N0), motive { val := x, property := (_ : x β N0) }) β x β N0
β’ motive x | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
hind : β n β A, S n β A
heq : (β (x_1 : βx β N0), motive { val := βx, property := (_ : βx β N0) }) β βx β N0
β’ motive x |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | generic_recursor | [31, 1] | [52, 12] | simp only [Subtype.coe_eta, Subtype.coe_prop, exists_const, iff_true] at heq | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
hind : β n β A, S n β A
heq : (β (x_1 : βx β N0), motive { val := βx, property := (_ : βx β N0) }) β βx β N0
β’ motive x | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
hind : β n β A, S n β A
heq : motive x
β’ motive x |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | generic_recursor | [31, 1] | [52, 12] | exact heq | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
hind : β n β A, S n β A
heq : motive x
β’ motive x | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | generic_recursor | [31, 1] | [52, 12] | simp only [Set.mem_setOf_eq] | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
β’ z β A | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
β’ motive z |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | generic_recursor | [31, 1] | [52, 12] | exact hz | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
β’ motive z | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | generic_recursor | [31, 1] | [52, 12] | intros n hel | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
β’ β n β A, S n β A | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
n : βN0
hel : n β A
β’ S n β A |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | generic_recursor | [31, 1] | [52, 12] | simp only [Set.mem_setOf_eq] | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
n : βN0
hel : n β A
β’ S n β A | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
n : βN0
hel : n β A
β’ motive (S n) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | generic_recursor | [31, 1] | [52, 12] | simp only [Set.mem_setOf_eq] at hel | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
n : βN0
hel : n β A
β’ motive (S n) | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
n : βN0
hel : motive n
β’ motive (S n) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | generic_recursor | [31, 1] | [52, 12] | specialize hs n | motive : βN0 β Prop
hz : motive z
hs : β (n : βN0), motive n β motive (S n)
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
n : βN0
hel : motive n
β’ motive (S n) | motive : βN0 β Prop
hz : motive z
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
n : βN0
hel : motive n
hs : motive n β motive (S n)
β’ motive (S n) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | generic_recursor | [31, 1] | [52, 12] | exact hs hel | motive : βN0 β Prop
hz : motive z
x : βN0
A : Set βN0 := {x | motive x}
hzmem : z β A
n : βN0
hel : motive n
hs : motive n β motive (S n)
β’ motive (S n) | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | zero_plus_x_eq_eq | [57, 1] | [63, 19] | apply generic_recursor | β’ β (x : βN0), plus (z, x) = x | case hz
β’ plus (z, z) = z
case hs
β’ β (n : βN0), plus (z, n) = n β plus (z, S n) = S n |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | zero_plus_x_eq_eq | [57, 1] | [63, 19] | exact zplus z | case hz
β’ plus (z, z) = z | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | zero_plus_x_eq_eq | [57, 1] | [63, 19] | intros n hi | case hs
β’ β (n : βN0), plus (z, n) = n β plus (z, S n) = S n | case hs
n : βN0
hi : plus (z, n) = n
β’ plus (z, S n) = S n |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | zero_plus_x_eq_eq | [57, 1] | [63, 19] | rw [splus, hi] | case hs
n : βN0
hi : plus (z, n) = n
β’ plus (z, S n) = S n | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | plus_assoc | [66, 1] | [74, 33] | apply generic_recursor | β’ β (c a b : βN0), plus (a, plus (b, c)) = plus (plus (a, b), c) | case hz
β’ β (a b : βN0), plus (a, plus (b, z)) = plus (plus (a, b), z)
case hs
β’ β (n : βN0),
(β (a b : βN0), plus (a, plus (b, n)) = plus (plus (a, b), n)) β
β (a b : βN0), plus (a, plus (b, S n)) = plus (plus (a, b), S n) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | plus_assoc | [66, 1] | [74, 33] | intro a b | case hz
β’ β (a b : βN0), plus (a, plus (b, z)) = plus (plus (a, b), z) | case hz
a b : βN0
β’ plus (a, plus (b, z)) = plus (plus (a, b), z) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | plus_assoc | [66, 1] | [74, 33] | rw [zplus, zplus] | case hz
a b : βN0
β’ plus (a, plus (b, z)) = plus (plus (a, b), z) | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | plus_assoc | [66, 1] | [74, 33] | intro c hi a b | case hs
β’ β (n : βN0),
(β (a b : βN0), plus (a, plus (b, n)) = plus (plus (a, b), n)) β
β (a b : βN0), plus (a, plus (b, S n)) = plus (plus (a, b), S n) | case hs
c : βN0
hi : β (a b : βN0), plus (a, plus (b, c)) = plus (plus (a, b), c)
a b : βN0
β’ plus (a, plus (b, S c)) = plus (plus (a, b), S c) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | plus_assoc | [66, 1] | [74, 33] | specialize hi a b | case hs
c : βN0
hi : β (a b : βN0), plus (a, plus (b, c)) = plus (plus (a, b), c)
a b : βN0
β’ plus (a, plus (b, S c)) = plus (plus (a, b), S c) | case hs
c a b : βN0
hi : plus (a, plus (b, c)) = plus (plus (a, b), c)
β’ plus (a, plus (b, S c)) = plus (plus (a, b), S c) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | plus_assoc | [66, 1] | [74, 33] | rw [splus, splus, hi, splus] | case hs
c a b : βN0
hi : plus (a, plus (b, c)) = plus (plus (a, b), c)
β’ plus (a, plus (b, S c)) = plus (plus (a, b), S c) | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | mul_distrib_add | [76, 1] | [84, 43] | apply generic_recursor | β’ β (c a b : βN0), mul (a, plus (b, c)) = plus (mul (a, b), mul (a, c)) | case hz
β’ β (a b : βN0), mul (a, plus (b, z)) = plus (mul (a, b), mul (a, z))
case hs
β’ β (n : βN0),
(β (a b : βN0), mul (a, plus (b, n)) = plus (mul (a, b), mul (a, n))) β
β (a b : βN0), mul (a, plus (b, S n)) = plus (mul (a, b), mul (a, S n)) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | mul_distrib_add | [76, 1] | [84, 43] | intro a b | case hz
β’ β (a b : βN0), mul (a, plus (b, z)) = plus (mul (a, b), mul (a, z)) | case hz
a b : βN0
β’ mul (a, plus (b, z)) = plus (mul (a, b), mul (a, z)) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | mul_distrib_add | [76, 1] | [84, 43] | rw [zplus, zmul, zplus] | case hz
a b : βN0
β’ mul (a, plus (b, z)) = plus (mul (a, b), mul (a, z)) | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | mul_distrib_add | [76, 1] | [84, 43] | intro c hi a b | case hs
β’ β (n : βN0),
(β (a b : βN0), mul (a, plus (b, n)) = plus (mul (a, b), mul (a, n))) β
β (a b : βN0), mul (a, plus (b, S n)) = plus (mul (a, b), mul (a, S n)) | case hs
c : βN0
hi : β (a b : βN0), mul (a, plus (b, c)) = plus (mul (a, b), mul (a, c))
a b : βN0
β’ mul (a, plus (b, S c)) = plus (mul (a, b), mul (a, S c)) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | mul_distrib_add | [76, 1] | [84, 43] | specialize hi a b | case hs
c : βN0
hi : β (a b : βN0), mul (a, plus (b, c)) = plus (mul (a, b), mul (a, c))
a b : βN0
β’ mul (a, plus (b, S c)) = plus (mul (a, b), mul (a, S c)) | case hs
c a b : βN0
hi : mul (a, plus (b, c)) = plus (mul (a, b), mul (a, c))
β’ mul (a, plus (b, S c)) = plus (mul (a, b), mul (a, S c)) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | mul_distrib_add | [76, 1] | [84, 43] | rw [splus, smul, smul, hi, plus_assoc] | case hs
c a b : βN0
hi : mul (a, plus (b, c)) = plus (mul (a, b), mul (a, c))
β’ mul (a, plus (b, S c)) = plus (mul (a, b), mul (a, S c)) | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | mul_assoc' | [86, 1] | [94, 41] | apply generic_recursor | β’ β (c a b : βN0), mul (mul (a, b), c) = mul (a, mul (b, c)) | case hz
β’ β (a b : βN0), mul (mul (a, b), z) = mul (a, mul (b, z))
case hs
β’ β (n : βN0),
(β (a b : βN0), mul (mul (a, b), n) = mul (a, mul (b, n))) β
β (a b : βN0), mul (mul (a, b), S n) = mul (a, mul (b, S n)) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | mul_assoc' | [86, 1] | [94, 41] | intro a b | case hz
β’ β (a b : βN0), mul (mul (a, b), z) = mul (a, mul (b, z)) | case hz
a b : βN0
β’ mul (mul (a, b), z) = mul (a, mul (b, z)) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | mul_assoc' | [86, 1] | [94, 41] | rw [zmul, zmul, zmul] | case hz
a b : βN0
β’ mul (mul (a, b), z) = mul (a, mul (b, z)) | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | mul_assoc' | [86, 1] | [94, 41] | intro c hi a b | case hs
β’ β (n : βN0),
(β (a b : βN0), mul (mul (a, b), n) = mul (a, mul (b, n))) β
β (a b : βN0), mul (mul (a, b), S n) = mul (a, mul (b, S n)) | case hs
c : βN0
hi : β (a b : βN0), mul (mul (a, b), c) = mul (a, mul (b, c))
a b : βN0
β’ mul (mul (a, b), S c) = mul (a, mul (b, S c)) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | mul_assoc' | [86, 1] | [94, 41] | specialize hi a b | case hs
c : βN0
hi : β (a b : βN0), mul (mul (a, b), c) = mul (a, mul (b, c))
a b : βN0
β’ mul (mul (a, b), S c) = mul (a, mul (b, S c)) | case hs
c a b : βN0
hi : mul (mul (a, b), c) = mul (a, mul (b, c))
β’ mul (mul (a, b), S c) = mul (a, mul (b, S c)) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | mul_assoc' | [86, 1] | [94, 41] | rw [smul, smul, hi, mul_distrib_add] | case hs
c a b : βN0
hi : mul (mul (a, b), c) = mul (a, mul (b, c))
β’ mul (mul (a, b), S c) = mul (a, mul (b, S c)) | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | exp_add_eq_mul_exp_exp | [96, 1] | [104, 43] | apply generic_recursor | β’ β (r m n : βN0), exp (m, plus (n, r)) = mul (exp (m, n), exp (m, r)) | case hz
β’ β (m n : βN0), exp (m, plus (n, z)) = mul (exp (m, n), exp (m, z))
case hs
β’ β (n : βN0),
(β (m n_1 : βN0), exp (m, plus (n_1, n)) = mul (exp (m, n_1), exp (m, n))) β
β (m n_1 : βN0), exp (m, plus (n_1, S n)) = mul (exp (m, n_1), exp (m, S n)) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | exp_add_eq_mul_exp_exp | [96, 1] | [104, 43] | intros m n | case hz
β’ β (m n : βN0), exp (m, plus (n, z)) = mul (exp (m, n), exp (m, z)) | case hz
m n : βN0
β’ exp (m, plus (n, z)) = mul (exp (m, n), exp (m, z)) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | exp_add_eq_mul_exp_exp | [96, 1] | [104, 43] | rw [zplus, zexp, smul, zmul, zero_plus_x_eq_eq] | case hz
m n : βN0
β’ exp (m, plus (n, z)) = mul (exp (m, n), exp (m, z)) | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | exp_add_eq_mul_exp_exp | [96, 1] | [104, 43] | intros r hi m n | case hs
β’ β (n : βN0),
(β (m n_1 : βN0), exp (m, plus (n_1, n)) = mul (exp (m, n_1), exp (m, n))) β
β (m n_1 : βN0), exp (m, plus (n_1, S n)) = mul (exp (m, n_1), exp (m, S n)) | case hs
r : βN0
hi : β (m n : βN0), exp (m, plus (n, r)) = mul (exp (m, n), exp (m, r))
m n : βN0
β’ exp (m, plus (n, S r)) = mul (exp (m, n), exp (m, S r)) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | exp_add_eq_mul_exp_exp | [96, 1] | [104, 43] | specialize hi m n | case hs
r : βN0
hi : β (m n : βN0), exp (m, plus (n, r)) = mul (exp (m, n), exp (m, r))
m n : βN0
β’ exp (m, plus (n, S r)) = mul (exp (m, n), exp (m, S r)) | case hs
r m n : βN0
hi : exp (m, plus (n, r)) = mul (exp (m, n), exp (m, r))
β’ exp (m, plus (n, S r)) = mul (exp (m, n), exp (m, S r)) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | exp_add_eq_mul_exp_exp | [96, 1] | [104, 43] | rw [splus, sexp, sexp, hi, mul_assoc'] | case hs
r m n : βN0
hi : exp (m, plus (n, r)) = mul (exp (m, n), exp (m, r))
β’ exp (m, plus (n, S r)) = mul (exp (m, n), exp (m, S r)) | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | exp_assoc | [107, 1] | [115, 48] | apply generic_recursor | β’ β (r m n : βN0), exp (exp (m, n), r) = exp (m, mul (n, r)) | case hz
β’ β (m n : βN0), exp (exp (m, n), z) = exp (m, mul (n, z))
case hs
β’ β (n : βN0),
(β (m n_1 : βN0), exp (exp (m, n_1), n) = exp (m, mul (n_1, n))) β
β (m n_1 : βN0), exp (exp (m, n_1), S n) = exp (m, mul (n_1, S n)) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | exp_assoc | [107, 1] | [115, 48] | intros m n | case hz
β’ β (m n : βN0), exp (exp (m, n), z) = exp (m, mul (n, z)) | case hz
m n : βN0
β’ exp (exp (m, n), z) = exp (m, mul (n, z)) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | exp_assoc | [107, 1] | [115, 48] | rw [zexp, zmul, zexp] | case hz
m n : βN0
β’ exp (exp (m, n), z) = exp (m, mul (n, z)) | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | exp_assoc | [107, 1] | [115, 48] | intros r hi m n | case hs
β’ β (n : βN0),
(β (m n_1 : βN0), exp (exp (m, n_1), n) = exp (m, mul (n_1, n))) β
β (m n_1 : βN0), exp (exp (m, n_1), S n) = exp (m, mul (n_1, S n)) | case hs
r : βN0
hi : β (m n : βN0), exp (exp (m, n), r) = exp (m, mul (n, r))
m n : βN0
β’ exp (exp (m, n), S r) = exp (m, mul (n, S r)) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | exp_assoc | [107, 1] | [115, 48] | specialize hi m n | case hs
r : βN0
hi : β (m n : βN0), exp (exp (m, n), r) = exp (m, mul (n, r))
m n : βN0
β’ exp (exp (m, n), S r) = exp (m, mul (n, S r)) | case hs
r m n : βN0
hi : exp (exp (m, n), r) = exp (m, mul (n, r))
β’ exp (exp (m, n), S r) = exp (m, mul (n, S r)) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | exp_assoc | [107, 1] | [115, 48] | rw [smul, sexp, exp_add_eq_mul_exp_exp, hi] | case hs
r m n : βN0
hi : exp (exp (m, n), r) = exp (m, mul (n, r))
β’ exp (exp (m, n), S r) = exp (m, mul (n, S r)) | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | succ_zero_mul_eq_self' | [120, 1] | [126, 32] | apply generic_recursor | β’ β (x : βN0), mul (S z, x) = x | case hz
β’ mul (S z, z) = z
case hs
β’ β (n : βN0), mul (S z, n) = n β mul (S z, S n) = S n |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | succ_zero_mul_eq_self' | [120, 1] | [126, 32] | rw [zmul] | case hz
β’ mul (S z, z) = z | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | succ_zero_mul_eq_self' | [120, 1] | [126, 32] | intros x hi | case hs
β’ β (n : βN0), mul (S z, n) = n β mul (S z, S n) = S n | case hs
x : βN0
hi : mul (S z, x) = x
β’ mul (S z, S x) = S x |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | succ_zero_mul_eq_self' | [120, 1] | [126, 32] | rw [smul, hi, splus, zplus] | case hs
x : βN0
hi : mul (S z, x) = x
β’ mul (S z, S x) = S x | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | zero_mul_eq_zero | [128, 1] | [134, 37] | apply generic_recursor | β’ β (x : βN0), mul (z, x) = z | case hz
β’ mul (z, z) = z
case hs
β’ β (n : βN0), mul (z, n) = z β mul (z, S n) = z |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | zero_mul_eq_zero | [128, 1] | [134, 37] | rw [zmul] | case hz
β’ mul (z, z) = z | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | zero_mul_eq_zero | [128, 1] | [134, 37] | intro x hi | case hs
β’ β (n : βN0), mul (z, n) = z β mul (z, S n) = z | case hs
x : βN0
hi : mul (z, x) = z
β’ mul (z, S x) = z |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | zero_mul_eq_zero | [128, 1] | [134, 37] | rw [smul, hi, zero_plus_x_eq_eq] | case hs
x : βN0
hi : mul (z, x) = z
β’ mul (z, S x) = z | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | succ_plus_eq_succ_plus | [136, 1] | [144, 27] | apply generic_recursor | β’ β (b a : βN0), plus (S a, b) = S (plus (a, b)) | case hz
β’ β (a : βN0), plus (S a, z) = S (plus (a, z))
case hs
β’ β (n : βN0), (β (a : βN0), plus (S a, n) = S (plus (a, n))) β β (a : βN0), plus (S a, S n) = S (plus (a, S n)) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | succ_plus_eq_succ_plus | [136, 1] | [144, 27] | intro a | case hz
β’ β (a : βN0), plus (S a, z) = S (plus (a, z)) | case hz
a : βN0
β’ plus (S a, z) = S (plus (a, z)) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | succ_plus_eq_succ_plus | [136, 1] | [144, 27] | rw [zplus, zplus] | case hz
a : βN0
β’ plus (S a, z) = S (plus (a, z)) | no goals |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | succ_plus_eq_succ_plus | [136, 1] | [144, 27] | intro b hi a | case hs
β’ β (n : βN0), (β (a : βN0), plus (S a, n) = S (plus (a, n))) β β (a : βN0), plus (S a, S n) = S (plus (a, S n)) | case hs
b : βN0
hi : β (a : βN0), plus (S a, b) = S (plus (a, b))
a : βN0
β’ plus (S a, S b) = S (plus (a, S b)) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | succ_plus_eq_succ_plus | [136, 1] | [144, 27] | specialize hi a | case hs
b : βN0
hi : β (a : βN0), plus (S a, b) = S (plus (a, b))
a : βN0
β’ plus (S a, S b) = S (plus (a, S b)) | case hs
b a : βN0
hi : plus (S a, b) = S (plus (a, b))
β’ plus (S a, S b) = S (plus (a, S b)) |
https://github.com/aronerben/lean4-playground.git | 5efced915ecee24cd723d28d00aa63f9c7ea0a9c | meetings/ex6.lean | succ_plus_eq_succ_plus | [136, 1] | [144, 27] | rw [splus, hi, βsplus] | case hs
b a : βN0
hi : plus (S a, b) = S (plus (a, b))
β’ plus (S a, S b) = S (plus (a, S b)) | no goals |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.