url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
case _ c3 => apply h1 tauto
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : isFreeIn v phi c1 : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c2 : Β¬v = x c3 : ¬σ v = x ⊒ V' v = V (Οƒ v)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
obtain s1 := Sub.Var.All.Rec.Fresh.freeVarSet_sub_eq_freeVarSet_image (Function.updateITE Οƒ x x) c phi
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : isFreeIn v phi c1 : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c2 : Β¬v = x c3 : Οƒ v = x ⊒ V' v = d
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : isFreeIn v phi c1 : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c2 : Β¬v = x c3 : Οƒ v = x s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ V' v = d
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [← c3] at c1
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : isFreeIn v phi c1 : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c2 : Β¬v = x c3 : Οƒ v = x s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ V' v = d
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : isFreeIn v phi c2 : Β¬v = x c3 : Οƒ v = x s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V' v = d
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [Finset.mem_union] at c1
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : isFreeIn v phi c2 : Β¬v = x c3 : Οƒ v = x s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V' v = d
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : isFreeIn v phi c2 : Β¬v = x c3 : Οƒ v = x s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1 : Β¬(Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ∨ Οƒ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) ⊒ V' v = d
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [isFreeIn_iff_mem_freeVarSet] at a1
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : isFreeIn v phi c2 : Β¬v = x c3 : Οƒ v = x s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1 : Β¬(Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ∨ Οƒ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) ⊒ V' v = d
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName c2 : Β¬v = x c3 : Οƒ v = x s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1 : Β¬(Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ∨ Οƒ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) a1 : v ∈ phi.freeVarSet ⊒ V' v = d
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
obtain s2 := Finset.mem_image_of_mem (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) a1
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName c2 : Β¬v = x c3 : Οƒ v = x s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1 : Β¬(Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ∨ Οƒ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) a1 : v ∈ phi.freeVarSet ⊒ V' v = d
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName c2 : Β¬v = x c3 : Οƒ v = x s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1 : Β¬(Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ∨ Οƒ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) a1 : v ∈ phi.freeVarSet s2 : Function.updateITE Οƒ (Οƒ v) (Οƒ v) v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ⊒ V' v = d
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [Function.updateITE] at s2
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName c2 : Β¬v = x c3 : Οƒ v = x s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1 : Β¬(Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ∨ Οƒ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) a1 : v ∈ phi.freeVarSet s2 : Function.updateITE Οƒ (Οƒ v) (Οƒ v) v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ⊒ V' v = d
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName c2 : Β¬v = x c3 : Οƒ v = x s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1 : Β¬(Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ∨ Οƒ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) a1 : v ∈ phi.freeVarSet s2 : (if v = Οƒ v then Οƒ v else Οƒ v) ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ⊒ V' v = d
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [ite_self] at s2
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName c2 : Β¬v = x c3 : Οƒ v = x s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1 : Β¬(Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ∨ Οƒ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) a1 : v ∈ phi.freeVarSet s2 : (if v = Οƒ v then Οƒ v else Οƒ v) ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ⊒ V' v = d
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName c2 : Β¬v = x c3 : Οƒ v = x s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1 : Β¬(Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ∨ Οƒ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) a1 : v ∈ phi.freeVarSet s2 : Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ⊒ V' v = d
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
exfalso
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName c2 : Β¬v = x c3 : Οƒ v = x s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1 : Β¬(Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ∨ Οƒ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) a1 : v ∈ phi.freeVarSet s2 : Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ⊒ V' v = d
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName c2 : Β¬v = x c3 : Οƒ v = x s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1 : Β¬(Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ∨ Οƒ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) a1 : v ∈ phi.freeVarSet s2 : Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ⊒ False
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
apply c1
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName c2 : Β¬v = x c3 : Οƒ v = x s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1 : Β¬(Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ∨ Οƒ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) a1 : v ∈ phi.freeVarSet s2 : Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ⊒ False
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName c2 : Β¬v = x c3 : Οƒ v = x s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1 : Β¬(Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ∨ Οƒ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) a1 : v ∈ phi.freeVarSet s2 : Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ⊒ Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ∨ Οƒ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
left
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName c2 : Β¬v = x c3 : Οƒ v = x s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1 : Β¬(Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ∨ Οƒ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) a1 : v ∈ phi.freeVarSet s2 : Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ⊒ Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ∨ Οƒ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)
case h D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName c2 : Β¬v = x c3 : Οƒ v = x s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1 : Β¬(Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ∨ Οƒ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) a1 : v ∈ phi.freeVarSet s2 : Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ⊒ Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
exact s2
case h D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName c2 : Β¬v = x c3 : Οƒ v = x s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1 : Β¬(Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ∨ Οƒ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) a1 : v ∈ phi.freeVarSet s2 : Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet ⊒ Οƒ v ∈ Finset.image (Function.updateITE Οƒ (Οƒ v) (Οƒ v)) phi.freeVarSet
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
apply h1
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : isFreeIn v phi c1 : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c2 : Β¬v = x c3 : ¬σ v = x ⊒ V' v = V (Οƒ v)
case a D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : isFreeIn v phi c1 : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c2 : Β¬v = x c3 : ¬σ v = x ⊒ Β¬v = x ∧ isFreeIn v phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
tauto
case a D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : isFreeIn v phi c1 : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c2 : Β¬v = x c3 : ¬σ v = x ⊒ Β¬v = x ∧ isFreeIn v phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
intro v a1
case h.h2 D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D ⊒ βˆ€ x_1 ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x_1 = Function.updateITE V (if x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) then fresh x c (Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) else x) d x_1
case h.h2 D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = Function.updateITE V (if x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) then fresh x c (Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) else x) d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
split_ifs
case h.h2 D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = Function.updateITE V (if x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) then fresh x c (Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) else x) d v
case pos D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) h✝ : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = Function.updateITE V (fresh x c (Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„))) d v case neg D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) h✝ : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = Function.updateITE V x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
case _ c1 => simp only [Function.updateITE] split_ifs case _ c2 => obtain s1 := Sub.Var.All.Rec.Fresh.freeVarSet_sub_eq_freeVarSet_image (Function.updateITE Οƒ x x) c phi simp only [← s1] at c2 obtain s2 := fresh_not_mem x c ((freeVarSet (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi)) βˆͺ (Finset.biUnion (predVarSet phi) (predVarFreeVarSet Ο„))) simp only [← c2] at s2 simp only [Finset.mem_union] at s2 push_neg at s2 cases s2 case _ s2_left s2_right => contradiction case _ c2 => exact h2 v a1
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = Function.updateITE V (fresh x c (Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„))) d v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
case _ c1 => simp only [Finset.mem_union] at c1 push_neg at c1 cases c1 case _ c1_left c1_right => have s1 : Β¬ v = x intro contra apply c1_right subst contra exact a1 simp only [Function.updateITE] simp only [if_neg s1] exact h2 v a1
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = Function.updateITE V x d v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [Function.updateITE]
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = Function.updateITE V (fresh x c (Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„))) d v
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = if v = fresh x c (Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) then d else V v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
split_ifs
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = if v = fresh x c (Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) then d else V v
case pos D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) h✝ : v = fresh x c (Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) ⊒ V'' v = d case neg D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) h✝ : Β¬v = fresh x c (Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) ⊒ V'' v = V v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
case _ c2 => obtain s1 := Sub.Var.All.Rec.Fresh.freeVarSet_sub_eq_freeVarSet_image (Function.updateITE Οƒ x x) c phi simp only [← s1] at c2 obtain s2 := fresh_not_mem x c ((freeVarSet (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi)) βˆͺ (Finset.biUnion (predVarSet phi) (predVarFreeVarSet Ο„))) simp only [← c2] at s2 simp only [Finset.mem_union] at s2 push_neg at s2 cases s2 case _ s2_left s2_right => contradiction
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c2 : v = fresh x c (Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) ⊒ V'' v = d
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
case _ c2 => exact h2 v a1
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c2 : Β¬v = fresh x c (Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) ⊒ V'' v = V v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
obtain s1 := Sub.Var.All.Rec.Fresh.freeVarSet_sub_eq_freeVarSet_image (Function.updateITE Οƒ x x) c phi
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c2 : v = fresh x c (Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) ⊒ V'' v = d
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c2 : v = fresh x c (Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ V'' v = d
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [← s1] at c2
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c2 : v = fresh x c (Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ V'' v = d
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c2 : v = fresh x c ((Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) ⊒ V'' v = d
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
obtain s2 := fresh_not_mem x c ((freeVarSet (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi)) βˆͺ (Finset.biUnion (predVarSet phi) (predVarFreeVarSet Ο„)))
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c2 : v = fresh x c ((Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) ⊒ V'' v = d
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c2 : v = fresh x c ((Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) s2 : fresh x c ((Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) βˆ‰ (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = d
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [← c2] at s2
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c2 : v = fresh x c ((Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) s2 : fresh x c ((Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) βˆ‰ (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = d
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c2 : v = fresh x c ((Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) s2 : v βˆ‰ (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = d
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [Finset.mem_union] at s2
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c2 : v = fresh x c ((Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) s2 : v βˆ‰ (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = d
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c2 : v = fresh x c ((Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) s2 : Β¬(v ∈ (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet ∨ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) ⊒ V'' v = d
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
push_neg at s2
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c2 : v = fresh x c ((Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) s2 : Β¬(v ∈ (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet ∨ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) ⊒ V'' v = d
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c2 : v = fresh x c ((Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) s2 : v βˆ‰ (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet ∧ v βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = d
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
cases s2
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c2 : v = fresh x c ((Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) s2 : v βˆ‰ (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet ∧ v βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = d
case intro D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c2 : v = fresh x c ((Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) left✝ : v βˆ‰ (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet right✝ : v βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = d
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
case _ s2_left s2_right => contradiction
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c2 : v = fresh x c ((Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) s2_left : v βˆ‰ (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet s2_right : v βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = d
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
contradiction
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet = Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c2 : v = fresh x c ((Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) s2_left : v βˆ‰ (Var.All.Rec.Fresh.sub (Function.updateITE Οƒ x x) c phi).freeVarSet s2_right : v βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = d
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
exact h2 v a1
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c2 : Β¬v = fresh x c (Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) ⊒ V'' v = V v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [Finset.mem_union] at c1
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet βˆͺ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = Function.updateITE V x d v
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : Β¬(x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ∨ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) ⊒ V'' v = Function.updateITE V x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
push_neg at c1
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : Β¬(x ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ∨ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„)) ⊒ V'' v = Function.updateITE V x d v
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ∧ x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = Function.updateITE V x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
cases c1
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1 : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ∧ x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = Function.updateITE V x d v
case intro D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) left✝ : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet right✝ : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = Function.updateITE V x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
case _ c1_left c1_right => have s1 : Β¬ v = x intro contra apply c1_right subst contra exact a1 simp only [Function.updateITE] simp only [if_neg s1] exact h2 v a1
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = Function.updateITE V x d v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
have s1 : Β¬ v = x
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ V'' v = Function.updateITE V x d v
case s1 D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ Β¬v = x D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : Β¬v = x ⊒ V'' v = Function.updateITE V x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
intro contra
case s1 D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ Β¬v = x D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : Β¬v = x ⊒ V'' v = Function.updateITE V x d v
case s1 D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) contra : v = x ⊒ False D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : Β¬v = x ⊒ V'' v = Function.updateITE V x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
apply c1_right
case s1 D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) contra : v = x ⊒ False D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : Β¬v = x ⊒ V'' v = Function.updateITE V x d v
case s1 D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) contra : v = x ⊒ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : Β¬v = x ⊒ V'' v = Function.updateITE V x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
subst contra
case s1 D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) contra : v = x ⊒ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : Β¬v = x ⊒ V'' v = Function.updateITE V x d v
case s1 D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) h1 : βˆ€ (x : VarName), Β¬x = v ∧ isFreeIn x phi β†’ V' x = V (Οƒ x) c1_left : v βˆ‰ Finset.image (Function.updateITE Οƒ v v) phi.freeVarSet c1_right : v βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : Β¬v = x ⊒ V'' v = Function.updateITE V x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
exact a1
case s1 D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) h1 : βˆ€ (x : VarName), Β¬x = v ∧ isFreeIn x phi β†’ V' x = V (Οƒ x) c1_left : v βˆ‰ Finset.image (Function.updateITE Οƒ v v) phi.freeVarSet c1_right : v βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) ⊒ v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : Β¬v = x ⊒ V'' v = Function.updateITE V x d v
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : Β¬v = x ⊒ V'' v = Function.updateITE V x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [Function.updateITE]
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : Β¬v = x ⊒ V'' v = Function.updateITE V x d v
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : Β¬v = x ⊒ V'' v = if v = x then d else V v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [if_neg s1]
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : Β¬v = x ⊒ V'' v = if v = x then d else V v
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : Β¬v = x ⊒ V'' v = V v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
exact h2 v a1
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x phi β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E Ο„) V' E phi ↔ Holds D I V E (subAux c Ο„ Οƒ phi)) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x_1 : VarName), Β¬x_1 = x ∧ isFreeIn x_1 phi β†’ V' x_1 = V (Οƒ x_1) h2 : βˆ€ x ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x d : D v : VarName a1 : v ∈ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) c1_left : x βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet c1_right : x βˆ‰ phi.predVarSet.biUnion (predVarFreeVarSet Ο„) s1 : Β¬v = x ⊒ V'' v = V v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [subAux]
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x ⊒ Holds D (I' D I V'' E Ο„) V' E (def_ X xs) ↔ Holds D I V E (subAux c Ο„ Οƒ (def_ X xs))
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x ⊒ Holds D (I' D I V'' E Ο„) V' E (def_ X xs) ↔ Holds D I V E (def_ X (List.map Οƒ xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
induction E generalizing V V' Οƒ
D : Type I : Interpretation D V'' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x ⊒ Holds D (I' D I V'' E Ο„) V' E (def_ X xs) ↔ Holds D I V E (def_ X (List.map Οƒ xs))
case nil D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x ⊒ Holds D (I' D I V'' [] Ο„) V' [] (def_ X xs) ↔ Holds D I V [] (def_ X (List.map Οƒ xs)) case cons D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' tail✝ Ο„) V' tail✝ (def_ X xs) ↔ Holds D I V tail✝ (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x ⊒ Holds D (I' D I V'' (head✝ :: tail✝) Ο„) V' (head✝ :: tail✝) (def_ X xs) ↔ Holds D I V (head✝ :: tail✝) (def_ X (List.map Οƒ xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
case nil => simp only [Holds]
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x ⊒ Holds D (I' D I V'' [] Ο„) V' [] (def_ X xs) ↔ Holds D I V [] (def_ X (List.map Οƒ xs))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [Holds]
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x ⊒ Holds D (I' D I V'' [] Ο„) V' [] (def_ X xs) ↔ Holds D I V [] (def_ X (List.map Οƒ xs))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [isFreeIn] at h1
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' (E_hd :: E_tl) (def_ X xs) ↔ Holds D I V (E_hd :: E_tl) (def_ X (List.map Οƒ xs))
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' (E_hd :: E_tl) (def_ X xs) ↔ Holds D I V (E_hd :: E_tl) (def_ X (List.map Οƒ xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [Holds]
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' (E_hd :: E_tl) (def_ X xs) ↔ Holds D I V (E_hd :: E_tl) (def_ X (List.map Οƒ xs))
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x ⊒ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map V' xs)) E_tl E_hd.q else Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs)) ↔ if X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
have s1 : (List.map V' xs) = (List.map (V ∘ Οƒ) xs)
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x ⊒ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map V' xs)) E_tl E_hd.q else Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs)) ↔ if X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))
case s1 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x ⊒ List.map V' xs = List.map (V ∘ Οƒ) xs D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x s1 : List.map V' xs = List.map (V ∘ Οƒ) xs ⊒ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map V' xs)) E_tl E_hd.q else Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs)) ↔ if X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [List.map_eq_map_iff]
case s1 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x ⊒ List.map V' xs = List.map (V ∘ Οƒ) xs D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x s1 : List.map V' xs = List.map (V ∘ Οƒ) xs ⊒ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map V' xs)) E_tl E_hd.q else Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs)) ↔ if X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))
case s1 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x ⊒ βˆ€ x ∈ xs, V' x = (V ∘ Οƒ) x D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x s1 : List.map V' xs = List.map (V ∘ Οƒ) xs ⊒ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map V' xs)) E_tl E_hd.q else Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs)) ↔ if X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
intro x a1
case s1 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x ⊒ βˆ€ x ∈ xs, V' x = (V ∘ Οƒ) x D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x s1 : List.map V' xs = List.map (V ∘ Οƒ) xs ⊒ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map V' xs)) E_tl E_hd.q else Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs)) ↔ if X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))
case s1 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x x : VarName a1 : x ∈ xs ⊒ V' x = (V ∘ Οƒ) x D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x s1 : List.map V' xs = List.map (V ∘ Οƒ) xs ⊒ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map V' xs)) E_tl E_hd.q else Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs)) ↔ if X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
exact h1 x a1
case s1 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x x : VarName a1 : x ∈ xs ⊒ V' x = (V ∘ Οƒ) x D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x s1 : List.map V' xs = List.map (V ∘ Οƒ) xs ⊒ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map V' xs)) E_tl E_hd.q else Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs)) ↔ if X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x s1 : List.map V' xs = List.map (V ∘ Οƒ) xs ⊒ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map V' xs)) E_tl E_hd.q else Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs)) ↔ if X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [s1]
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x s1 : List.map V' xs = List.map (V ∘ Οƒ) xs ⊒ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map V' xs)) E_tl E_hd.q else Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs)) ↔ if X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x s1 : List.map V' xs = List.map (V ∘ Οƒ) xs ⊒ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q else Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs)) ↔ if X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
clear s1
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x s1 : List.map V' xs = List.map (V ∘ Οƒ) xs ⊒ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q else Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs)) ↔ if X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x ⊒ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q else Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs)) ↔ if X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
split_ifs
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x ⊒ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q else Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs)) ↔ if X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))
case pos D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x h✝¹ : X = E_hd.name ∧ xs.length = E_hd.args.length h✝ : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q case neg D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x h✝¹ : X = E_hd.name ∧ xs.length = E_hd.args.length h✝ : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs)) case pos D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x h✝¹ : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) h✝ : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs) ↔ Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q case neg D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x h✝¹ : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) h✝ : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
case _ c1 c2 => simp only [List.length_map] at c2 contradiction
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
case _ c1 c2 => simp only [List.length_map] at c2 contradiction
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs) ↔ Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
have s2 : Holds D I (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q
case s2 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length ⊒ Holds D I (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length s2 : Holds D I (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
apply Holds_coincide_Var
case s2 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length ⊒ Holds D I (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length s2 : Holds D I (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q
case s2.h1 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length ⊒ βˆ€ (v : VarName), isFreeIn v E_hd.q β†’ Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs) v = Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs) v D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length s2 : Holds D I (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
intro x a1
case s2.h1 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length ⊒ βˆ€ (v : VarName), isFreeIn v E_hd.q β†’ Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs) v = Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs) v D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length s2 : Holds D I (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q
case s2.h1 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length x : VarName a1 : isFreeIn x E_hd.q ⊒ Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs) x = Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs) x D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length s2 : Holds D I (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
apply Function.updateListITE_map_mem_ext
case s2.h1 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length x : VarName a1 : isFreeIn x E_hd.q ⊒ Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs) x = Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs) x D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length s2 : Holds D I (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q
case s2.h1.h1 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length x : VarName a1 : isFreeIn x E_hd.q ⊒ βˆ€ y ∈ xs, (V ∘ Οƒ) y = (V ∘ Οƒ) y case s2.h1.h2 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length x : VarName a1 : isFreeIn x E_hd.q ⊒ E_hd.args.length = xs.length case s2.h1.h3 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length x : VarName a1 : isFreeIn x E_hd.q ⊒ x ∈ E_hd.args D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length s2 : Holds D I (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length s2 : Holds D I (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length s2 : Holds D I (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [← s2]
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length s2 : Holds D I (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length s2 : Holds D I (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
clear s2
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length s2 : Holds D I (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
apply Holds_coincide_PredVar
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q
case h1 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length ⊒ (I' D I V'' (E_hd :: E_tl) Ο„).pred_const_ = I.pred_const_ case h2 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), predVarOccursIn P ds.length E_hd.q β†’ ((I' D I V'' (E_hd :: E_tl) Ο„).pred_var_ P ds ↔ I.pred_var_ P ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp
case s2.h1.h1 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length x : VarName a1 : isFreeIn x E_hd.q ⊒ βˆ€ y ∈ xs, (V ∘ Οƒ) y = (V ∘ Οƒ) y
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
tauto
case s2.h1.h2 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length x : VarName a1 : isFreeIn x E_hd.q ⊒ E_hd.args.length = xs.length
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [isFreeIn_iff_mem_freeVarSet] at a1
case s2.h1.h3 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length x : VarName a1 : isFreeIn x E_hd.q ⊒ x ∈ E_hd.args
case s2.h1.h3 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length x : VarName a1 : x ∈ E_hd.q.freeVarSet ⊒ x ∈ E_hd.args
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [← List.mem_toFinset]
case s2.h1.h3 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length x : VarName a1 : x ∈ E_hd.q.freeVarSet ⊒ x ∈ E_hd.args
case s2.h1.h3 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length x : VarName a1 : x ∈ E_hd.q.freeVarSet ⊒ x ∈ E_hd.args.toFinset
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
apply Finset.mem_of_subset E_hd.h1 a1
case s2.h1.h3 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length x : VarName a1 : x ∈ E_hd.q.freeVarSet ⊒ x ∈ E_hd.args.toFinset
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [I']
case h1 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length ⊒ (I' D I V'' (E_hd :: E_tl) Ο„).pred_const_ = I.pred_const_
case h1 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length ⊒ (Interpretation.usingPred D I fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V'' ((Ο„ X ds.length).get β‹―).1 ds) (E_hd :: E_tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds).pred_const_ = I.pred_const_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [Interpretation.usingPred]
case h1 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length ⊒ (Interpretation.usingPred D I fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V'' ((Ο„ X ds.length).get β‹―).1 ds) (E_hd :: E_tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds).pred_const_ = I.pred_const_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
intro P ds a1
case h2 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), predVarOccursIn P ds.length E_hd.q β†’ ((I' D I V'' (E_hd :: E_tl) Ο„).pred_var_ P ds ↔ I.pred_var_ P ds)
case h2 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length P : PredName ds : List D a1 : predVarOccursIn P ds.length E_hd.q ⊒ (I' D I V'' (E_hd :: E_tl) Ο„).pred_var_ P ds ↔ I.pred_var_ P ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [predVarOccursIn_iff_mem_predVarSet] at a1
case h2 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length P : PredName ds : List D a1 : predVarOccursIn P ds.length E_hd.q ⊒ (I' D I V'' (E_hd :: E_tl) Ο„).pred_var_ P ds ↔ I.pred_var_ P ds
case h2 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length P : PredName ds : List D a1 : (P, ds.length) ∈ E_hd.q.predVarSet ⊒ (I' D I V'' (E_hd :: E_tl) Ο„).pred_var_ P ds ↔ I.pred_var_ P ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [E_hd.h2] at a1
case h2 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length P : PredName ds : List D a1 : (P, ds.length) ∈ E_hd.q.predVarSet ⊒ (I' D I V'' (E_hd :: E_tl) Ο„).pred_var_ P ds ↔ I.pred_var_ P ds
case h2 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length P : PredName ds : List D a1 : (P, ds.length) ∈ βˆ… ⊒ (I' D I V'' (E_hd :: E_tl) Ο„).pred_var_ P ds ↔ I.pred_var_ P ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp at a1
case h2 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length P : PredName ds : List D a1 : (P, ds.length) ∈ βˆ… ⊒ (I' D I V'' (E_hd :: E_tl) Ο„).pred_var_ P ds ↔ I.pred_var_ P ds
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [List.length_map] at c2
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
contradiction
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : X = E_hd.name ∧ xs.length = E_hd.args.length c2 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) (Function.updateListITE V' E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [List.length_map] at c2
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs) ↔ Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : X = E_hd.name ∧ xs.length = E_hd.args.length ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs) ↔ Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
contradiction
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : X = E_hd.name ∧ xs.length = E_hd.args.length ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs) ↔ Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
obtain s2 := E_ih V V' Οƒ
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) s2 : (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [isFreeIn] at s2
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) s2 : (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) s2 : (βˆ€ x ∈ xs, V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
specialize s2 h1 h2
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) s2 : (βˆ€ x ∈ xs, V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) s2 : Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs)) ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [← s2]
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) s2 : Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs)) ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) s2 : Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs)) ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs) ↔ Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
apply Holds_coincide_PredVar
D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) s2 : Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs)) ⊒ Holds D (I' D I V'' (E_hd :: E_tl) Ο„) V' E_tl (def_ X xs) ↔ Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs)
case h1 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) s2 : Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs)) ⊒ (I' D I V'' (E_hd :: E_tl) Ο„).pred_const_ = (I' D I V'' E_tl Ο„).pred_const_ case h2 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) s2 : Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs)) ⊒ βˆ€ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ X xs) β†’ ((I' D I V'' (E_hd :: E_tl) Ο„).pred_var_ P ds ↔ (I' D I V'' E_tl Ο„).pred_var_ P ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [I']
case h1 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) s2 : Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs)) ⊒ (I' D I V'' (E_hd :: E_tl) Ο„).pred_const_ = (I' D I V'' E_tl Ο„).pred_const_
case h1 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) s2 : Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs)) ⊒ (Interpretation.usingPred D I fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V'' ((Ο„ X ds.length).get β‹―).1 ds) (E_hd :: E_tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds).pred_const_ = (Interpretation.usingPred D I fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V'' ((Ο„ X ds.length).get β‹―).1 ds) E_tl ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds).pred_const_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [Interpretation.usingPred]
case h1 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) s2 : Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs)) ⊒ (Interpretation.usingPred D I fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V'' ((Ο„ X ds.length).get β‹―).1 ds) (E_hd :: E_tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds).pred_const_ = (Interpretation.usingPred D I fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V'' ((Ο„ X ds.length).get β‹―).1 ds) E_tl ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds).pred_const_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
intro P ds a1
case h2 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) s2 : Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs)) ⊒ βˆ€ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ X xs) β†’ ((I' D I V'' (E_hd :: E_tl) Ο„).pred_var_ P ds ↔ (I' D I V'' E_tl Ο„).pred_var_ P ds)
case h2 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) s2 : Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs)) P : PredName ds : List D a1 : predVarOccursIn P ds.length (def_ X xs) ⊒ (I' D I V'' (E_hd :: E_tl) Ο„).pred_var_ P ds ↔ (I' D I V'' E_tl Ο„).pred_var_ P ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
[123, 1]
[434, 44]
simp only [predVarOccursIn] at a1
case h2 D : Type I : Interpretation D V'' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName E_hd : Definition E_tl : List Definition E_ih : βˆ€ (V V' : VarAssignment D) (Οƒ : VarName β†’ VarName), (βˆ€ (x : VarName), isFreeIn x (def_ X xs) β†’ V' x = V (Οƒ x)) β†’ (βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x) β†’ (Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs))) V V' : VarAssignment D Οƒ : VarName β†’ VarName h1 : βˆ€ x ∈ xs, V' x = V (Οƒ x) h2 : βˆ€ x ∈ (def_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο„), V'' x = V x c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) c2 : Β¬(X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length) s2 : Holds D (I' D I V'' E_tl Ο„) V' E_tl (def_ X xs) ↔ Holds D I V E_tl (def_ X (List.map Οƒ xs)) P : PredName ds : List D a1 : predVarOccursIn P ds.length (def_ X xs) ⊒ (I' D I V'' (E_hd :: E_tl) Ο„).pred_var_ P ds ↔ (I' D I V'' E_tl Ο„).pred_var_ P ds
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem
[437, 1]
[449, 9]
apply substitution_theorem_aux
D : Type I : Interpretation D V : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) F : Formula ⊒ Holds D (I' D I V E Ο„) V E F ↔ Holds D I V E (sub c Ο„ F)
case h1 D : Type I : Interpretation D V : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) F : Formula ⊒ βˆ€ (x : VarName), isFreeIn x F β†’ V x = V (id x) case h2 D : Type I : Interpretation D V : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) F : Formula ⊒ βˆ€ x ∈ F.predVarSet.biUnion (predVarFreeVarSet Ο„), V x = V x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem
[437, 1]
[449, 9]
simp
case h1 D : Type I : Interpretation D V : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) F : Formula ⊒ βˆ€ (x : VarName), isFreeIn x F β†’ V x = V (id x)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem
[437, 1]
[449, 9]
simp
case h2 D : Type I : Interpretation D V : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) F : Formula ⊒ βˆ€ x ∈ F.predVarSet.biUnion (predVarFreeVarSet Ο„), V x = V x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_is_valid
[452, 1]
[464, 11]
simp only [IsValid] at h1
c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) F : Formula h1 : F.IsValid ⊒ (sub c Ο„ F).IsValid
c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ (sub c Ο„ F).IsValid
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_is_valid
[452, 1]
[464, 11]
simp only [IsValid]
c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ (sub c Ο„ F).IsValid
c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (sub c Ο„ F)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_is_valid
[452, 1]
[464, 11]
intro D I V E
c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (sub c Ο„ F)
c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I V E (sub c Ο„ F)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_is_valid
[452, 1]
[464, 11]
simp only [← substitution_theorem]
c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I V E (sub c Ο„ F)
c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D (I' D I V E Ο„) V E F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_is_valid
[452, 1]
[464, 11]
apply h1
c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D (I' D I V E Ο„) V E F
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Permutation.lean
invertible_id
[8, 1]
[15, 19]
have : isInv (id : Ξ± β†’ Ξ±) id := by apply And.intro . intro x simp . intro y simp
α : Sort u_1 ⊒ invertible id
α : Sort u_1 this : isInv id id ⊒ invertible id