url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_free_in_fastReplaceFree_self
[258, 1]
[290, 10]
simp only [fastReplaceFree]
case def_ v t : VarName a✝¹ : DefName a✝ : List VarName h1 : v ∉ a✝ ⊢ fastReplaceFree v t (def_ a✝¹ a✝) = def_ a✝¹ a✝
case def_ v t : VarName a✝¹ : DefName a✝ : List VarName h1 : v ∉ a✝ ⊢ def_ a✝¹ (List.map (fun x => if v = x then t else x) a✝) = def_ a✝¹ a✝
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_free_in_fastReplaceFree_self
[258, 1]
[290, 10]
simp
v t : VarName X : DefName xs : List VarName h1 : v ∉ xs ⊢ def_ X (List.map (fun x => if v = x then t else x) xs) = def_ X xs
v t : VarName X : DefName xs : List VarName h1 : v ∉ xs ⊢ List.map (fun x => if v = x then t else x) xs = xs
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_free_in_fastReplaceFree_self
[258, 1]
[290, 10]
simp only [List.map_eq_self_iff]
v t : VarName X : DefName xs : List VarName h1 : v ∉ xs ⊢ List.map (fun x => if v = x then t else x) xs = xs
v t : VarName X : DefName xs : List VarName h1 : v ∉ xs ⊢ ∀ x ∈ xs, (if v = x then t else x) = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_free_in_fastReplaceFree_self
[258, 1]
[290, 10]
simp
v t : VarName X : DefName xs : List VarName h1 : v ∉ xs ⊢ ∀ x ∈ xs, (if v = x then t else x) = x
v t : VarName X : DefName xs : List VarName h1 : v ∉ xs ⊢ ∀ x ∈ xs, v = x → t = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_free_in_fastReplaceFree_self
[258, 1]
[290, 10]
intro x a1 a2
v t : VarName X : DefName xs : List VarName h1 : v ∉ xs ⊢ ∀ x ∈ xs, v = x → t = x
v t : VarName X : DefName xs : List VarName h1 : v ∉ xs x : VarName a1 : x ∈ xs a2 : v = x ⊢ t = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_free_in_fastReplaceFree_self
[258, 1]
[290, 10]
subst a2
v t : VarName X : DefName xs : List VarName h1 : v ∉ xs x : VarName a1 : x ∈ xs a2 : v = x ⊢ t = x
v t : VarName X : DefName xs : List VarName h1 : v ∉ xs a1 : v ∈ xs ⊢ t = v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_free_in_fastReplaceFree_self
[258, 1]
[290, 10]
contradiction
v t : VarName X : DefName xs : List VarName h1 : v ∉ xs a1 : v ∈ xs ⊢ t = v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_free_in_fastReplaceFree_self
[258, 1]
[290, 10]
simp
v t x y : VarName h1 : ¬(v = x ∨ v = y) ⊢ eq_ (if v = x then t else x) (if v = y then t else y) = eq_ x y
v t x y : VarName h1 : ¬(v = x ∨ v = y) ⊢ (v = x → t = x) ∧ (v = y → t = y)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_free_in_fastReplaceFree_self
[258, 1]
[290, 10]
tauto
v t x y : VarName h1 : ¬(v = x ∨ v = y) ⊢ (v = x → t = x) ∧ (v = y → t = y)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_free_in_fastReplaceFree_self
[258, 1]
[290, 10]
tauto
v t : VarName phi : Formula phi_ih : ¬isFreeIn v phi → fastReplaceFree v t phi = phi h1 : ¬isFreeIn v phi ⊢ (fastReplaceFree v t phi).not_ = phi.not_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_free_in_fastReplaceFree_self
[258, 1]
[290, 10]
simp
v t : VarName phi psi : Formula phi_ih : ¬isFreeIn v phi → fastReplaceFree v t phi = phi psi_ih : ¬isFreeIn v psi → fastReplaceFree v t psi = psi h1 : ¬(isFreeIn v phi ∨ isFreeIn v psi) ⊢ (fastReplaceFree v t phi).iff_ (fastReplaceFree v t psi) = phi.iff_ psi
v t : VarName phi psi : Formula phi_ih : ¬isFreeIn v phi → fastReplaceFree v t phi = phi psi_ih : ¬isFreeIn v psi → fastReplaceFree v t psi = psi h1 : ¬(isFreeIn v phi ∨ isFreeIn v psi) ⊢ fastReplaceFree v t phi = phi ∧ fastReplaceFree v t psi = psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_free_in_fastReplaceFree_self
[258, 1]
[290, 10]
tauto
v t : VarName phi psi : Formula phi_ih : ¬isFreeIn v phi → fastReplaceFree v t phi = phi psi_ih : ¬isFreeIn v psi → fastReplaceFree v t psi = psi h1 : ¬(isFreeIn v phi ∨ isFreeIn v psi) ⊢ fastReplaceFree v t phi = phi ∧ fastReplaceFree v t psi = psi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_free_in_fastReplaceFree_self
[258, 1]
[290, 10]
simp
v t x : VarName phi : Formula phi_ih : ¬isFreeIn v phi → fastReplaceFree v t phi = phi h1 : ¬(¬v = x ∧ isFreeIn v phi) ⊢ (if v = x then exists_ x phi else exists_ x (fastReplaceFree v t phi)) = exists_ x phi
v t x : VarName phi : Formula phi_ih : ¬isFreeIn v phi → fastReplaceFree v t phi = phi h1 : ¬(¬v = x ∧ isFreeIn v phi) ⊢ ¬v = x → fastReplaceFree v t phi = phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_free_in_fastReplaceFree_self
[258, 1]
[290, 10]
tauto
v t x : VarName phi : Formula phi_ih : ¬isFreeIn v phi → fastReplaceFree v t phi = phi h1 : ¬(¬v = x ∧ isFreeIn v phi) ⊢ ¬v = x → fastReplaceFree v t phi = phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
induction F
F : Formula v t : VarName h1 : ¬occursIn t F ⊢ fastReplaceFree t v (fastReplaceFree v t F) = F
case pred_const_ v t : VarName a✝¹ : PredName a✝ : List VarName h1 : ¬occursIn t (pred_const_ a✝¹ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (pred_const_ a✝¹ a✝)) = pred_const_ a✝¹ a✝ case pred_var_ v t : VarName a✝¹ : PredName a✝ : List VarName h1 : ¬occursIn t (pred_var_ a✝¹ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (pred_var_ a✝¹ a✝)) = pred_var_ a✝¹ a✝ case eq_ v t a✝¹ a✝ : VarName h1 : ¬occursIn t (eq_ a✝¹ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (eq_ a✝¹ a✝)) = eq_ a✝¹ a✝ case true_ v t : VarName h1 : ¬occursIn t true_ ⊢ fastReplaceFree t v (fastReplaceFree v t true_) = true_ case false_ v t : VarName h1 : ¬occursIn t false_ ⊢ fastReplaceFree t v (fastReplaceFree v t false_) = false_ case not_ v t : VarName a✝ : Formula a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬occursIn t a✝.not_ ⊢ fastReplaceFree t v (fastReplaceFree v t a✝.not_) = a✝.not_ case imp_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : ¬occursIn t a✝¹ → fastReplaceFree t v (fastReplaceFree v t a✝¹) = a✝¹ a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬occursIn t (a✝¹.imp_ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (a✝¹.imp_ a✝)) = a✝¹.imp_ a✝ case and_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : ¬occursIn t a✝¹ → fastReplaceFree t v (fastReplaceFree v t a✝¹) = a✝¹ a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬occursIn t (a✝¹.and_ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (a✝¹.and_ a✝)) = a✝¹.and_ a✝ case or_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : ¬occursIn t a✝¹ → fastReplaceFree t v (fastReplaceFree v t a✝¹) = a✝¹ a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬occursIn t (a✝¹.or_ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (a✝¹.or_ a✝)) = a✝¹.or_ a✝ case iff_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : ¬occursIn t a✝¹ → fastReplaceFree t v (fastReplaceFree v t a✝¹) = a✝¹ a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬occursIn t (a✝¹.iff_ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (a✝¹.iff_ a✝)) = a✝¹.iff_ a✝ case forall_ v t a✝¹ : VarName a✝ : Formula a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬occursIn t (forall_ a✝¹ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (forall_ a✝¹ a✝)) = forall_ a✝¹ a✝ case exists_ v t a✝¹ : VarName a✝ : Formula a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬occursIn t (exists_ a✝¹ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (exists_ a✝¹ a✝)) = exists_ a✝¹ a✝ case def_ v t : VarName a✝¹ : DefName a✝ : List VarName h1 : ¬occursIn t (def_ a✝¹ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (def_ a✝¹ a✝)) = def_ a✝¹ a✝
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
any_goals simp only [occursIn] at h1 simp only [fastReplaceFree]
case pred_const_ v t : VarName a✝¹ : PredName a✝ : List VarName h1 : ¬occursIn t (pred_const_ a✝¹ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (pred_const_ a✝¹ a✝)) = pred_const_ a✝¹ a✝ case pred_var_ v t : VarName a✝¹ : PredName a✝ : List VarName h1 : ¬occursIn t (pred_var_ a✝¹ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (pred_var_ a✝¹ a✝)) = pred_var_ a✝¹ a✝ case eq_ v t a✝¹ a✝ : VarName h1 : ¬occursIn t (eq_ a✝¹ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (eq_ a✝¹ a✝)) = eq_ a✝¹ a✝ case true_ v t : VarName h1 : ¬occursIn t true_ ⊢ fastReplaceFree t v (fastReplaceFree v t true_) = true_ case false_ v t : VarName h1 : ¬occursIn t false_ ⊢ fastReplaceFree t v (fastReplaceFree v t false_) = false_ case not_ v t : VarName a✝ : Formula a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬occursIn t a✝.not_ ⊢ fastReplaceFree t v (fastReplaceFree v t a✝.not_) = a✝.not_ case imp_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : ¬occursIn t a✝¹ → fastReplaceFree t v (fastReplaceFree v t a✝¹) = a✝¹ a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬occursIn t (a✝¹.imp_ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (a✝¹.imp_ a✝)) = a✝¹.imp_ a✝ case and_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : ¬occursIn t a✝¹ → fastReplaceFree t v (fastReplaceFree v t a✝¹) = a✝¹ a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬occursIn t (a✝¹.and_ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (a✝¹.and_ a✝)) = a✝¹.and_ a✝ case or_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : ¬occursIn t a✝¹ → fastReplaceFree t v (fastReplaceFree v t a✝¹) = a✝¹ a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬occursIn t (a✝¹.or_ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (a✝¹.or_ a✝)) = a✝¹.or_ a✝ case iff_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : ¬occursIn t a✝¹ → fastReplaceFree t v (fastReplaceFree v t a✝¹) = a✝¹ a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬occursIn t (a✝¹.iff_ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (a✝¹.iff_ a✝)) = a✝¹.iff_ a✝ case forall_ v t a✝¹ : VarName a✝ : Formula a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬occursIn t (forall_ a✝¹ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (forall_ a✝¹ a✝)) = forall_ a✝¹ a✝ case exists_ v t a✝¹ : VarName a✝ : Formula a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬occursIn t (exists_ a✝¹ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (exists_ a✝¹ a✝)) = exists_ a✝¹ a✝ case def_ v t : VarName a✝¹ : DefName a✝ : List VarName h1 : ¬occursIn t (def_ a✝¹ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (def_ a✝¹ a✝)) = def_ a✝¹ a✝
case pred_const_ v t : VarName a✝¹ : PredName a✝ : List VarName h1 : t ∉ a✝ ⊢ pred_const_ a✝¹ (List.map (fun x => if t = x then v else x) (List.map (fun x => if v = x then t else x) a✝)) = pred_const_ a✝¹ a✝ case pred_var_ v t : VarName a✝¹ : PredName a✝ : List VarName h1 : t ∉ a✝ ⊢ pred_var_ a✝¹ (List.map (fun x => if t = x then v else x) (List.map (fun x => if v = x then t else x) a✝)) = pred_var_ a✝¹ a✝ case eq_ v t a✝¹ a✝ : VarName h1 : ¬(t = a✝¹ ∨ t = a✝) ⊢ eq_ (if t = if v = a✝¹ then t else a✝¹ then v else if v = a✝¹ then t else a✝¹) (if t = if v = a✝ then t else a✝ then v else if v = a✝ then t else a✝) = eq_ a✝¹ a✝ case not_ v t : VarName a✝ : Formula a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬occursIn t a✝ ⊢ (fastReplaceFree t v (fastReplaceFree v t a✝)).not_ = a✝.not_ case imp_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : ¬occursIn t a✝¹ → fastReplaceFree t v (fastReplaceFree v t a✝¹) = a✝¹ a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬(occursIn t a✝¹ ∨ occursIn t a✝) ⊢ (fastReplaceFree t v (fastReplaceFree v t a✝¹)).imp_ (fastReplaceFree t v (fastReplaceFree v t a✝)) = a✝¹.imp_ a✝ case and_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : ¬occursIn t a✝¹ → fastReplaceFree t v (fastReplaceFree v t a✝¹) = a✝¹ a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬(occursIn t a✝¹ ∨ occursIn t a✝) ⊢ (fastReplaceFree t v (fastReplaceFree v t a✝¹)).and_ (fastReplaceFree t v (fastReplaceFree v t a✝)) = a✝¹.and_ a✝ case or_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : ¬occursIn t a✝¹ → fastReplaceFree t v (fastReplaceFree v t a✝¹) = a✝¹ a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬(occursIn t a✝¹ ∨ occursIn t a✝) ⊢ (fastReplaceFree t v (fastReplaceFree v t a✝¹)).or_ (fastReplaceFree t v (fastReplaceFree v t a✝)) = a✝¹.or_ a✝ case iff_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : ¬occursIn t a✝¹ → fastReplaceFree t v (fastReplaceFree v t a✝¹) = a✝¹ a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬(occursIn t a✝¹ ∨ occursIn t a✝) ⊢ (fastReplaceFree t v (fastReplaceFree v t a✝¹)).iff_ (fastReplaceFree t v (fastReplaceFree v t a✝)) = a✝¹.iff_ a✝ case forall_ v t a✝¹ : VarName a✝ : Formula a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬(t = a✝¹ ∨ occursIn t a✝) ⊢ fastReplaceFree t v (if v = a✝¹ then forall_ a✝¹ a✝ else forall_ a✝¹ (fastReplaceFree v t a✝)) = forall_ a✝¹ a✝ case exists_ v t a✝¹ : VarName a✝ : Formula a_ih✝ : ¬occursIn t a✝ → fastReplaceFree t v (fastReplaceFree v t a✝) = a✝ h1 : ¬(t = a✝¹ ∨ occursIn t a✝) ⊢ fastReplaceFree t v (if v = a✝¹ then exists_ a✝¹ a✝ else exists_ a✝¹ (fastReplaceFree v t a✝)) = exists_ a✝¹ a✝ case def_ v t : VarName a✝¹ : DefName a✝ : List VarName h1 : t ∉ a✝ ⊢ def_ a✝¹ (List.map (fun x => if t = x then v else x) (List.map (fun x => if v = x then t else x) a✝)) = def_ a✝¹ a✝
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
case not_ phi phi_ih => congr! exact phi_ih h1
v t : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1 : ¬occursIn t phi ⊢ (fastReplaceFree t v (fastReplaceFree v t phi)).not_ = phi.not_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
case imp_ phi psi phi_ih psi_ih | and_ phi psi phi_ih psi_ih | or_ phi psi phi_ih psi_ih | iff_ phi psi phi_ih psi_ih => congr! <;> tauto
v t : VarName phi psi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi psi_ih : ¬occursIn t psi → fastReplaceFree t v (fastReplaceFree v t psi) = psi h1 : ¬(occursIn t phi ∨ occursIn t psi) ⊢ (fastReplaceFree t v (fastReplaceFree v t phi)).iff_ (fastReplaceFree t v (fastReplaceFree v t psi)) = phi.iff_ psi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
case forall_ x phi phi_ih | exists_ x phi phi_ih => push_neg at h1 cases h1 case intro h1_left h1_right => split_ifs case pos c1 => simp only [fastReplaceFree] simp only [if_neg h1_left] congr! apply not_free_in_fastReplaceFree_self contrapose! h1_right exact isFreeIn_imp_occursIn t phi h1_right case neg c1 => simp only [fastReplaceFree] simp only [if_neg h1_left] congr! exact phi_ih h1_right
v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1 : ¬(t = x ∨ occursIn t phi) ⊢ fastReplaceFree t v (if v = x then exists_ x phi else exists_ x (fastReplaceFree v t phi)) = exists_ x phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
simp only [occursIn] at h1
case def_ v t : VarName a✝¹ : DefName a✝ : List VarName h1 : ¬occursIn t (def_ a✝¹ a✝) ⊢ fastReplaceFree t v (fastReplaceFree v t (def_ a✝¹ a✝)) = def_ a✝¹ a✝
case def_ v t : VarName a✝¹ : DefName a✝ : List VarName h1 : t ∉ a✝ ⊢ fastReplaceFree t v (fastReplaceFree v t (def_ a✝¹ a✝)) = def_ a✝¹ a✝
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
simp only [fastReplaceFree]
case def_ v t : VarName a✝¹ : DefName a✝ : List VarName h1 : t ∉ a✝ ⊢ fastReplaceFree t v (fastReplaceFree v t (def_ a✝¹ a✝)) = def_ a✝¹ a✝
case def_ v t : VarName a✝¹ : DefName a✝ : List VarName h1 : t ∉ a✝ ⊢ def_ a✝¹ (List.map (fun x => if t = x then v else x) (List.map (fun x => if v = x then t else x) a✝)) = def_ a✝¹ a✝
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
congr!
v t : VarName X : DefName xs : List VarName h1 : t ∉ xs ⊢ def_ X (List.map (fun x => if t = x then v else x) (List.map (fun x => if v = x then t else x) xs)) = def_ X xs
case h.e'_2 v t : VarName X : DefName xs : List VarName h1 : t ∉ xs ⊢ List.map (fun x => if t = x then v else x) (List.map (fun x => if v = x then t else x) xs) = xs
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
simp
case h.e'_2 v t : VarName X : DefName xs : List VarName h1 : t ∉ xs ⊢ List.map (fun x => if t = x then v else x) (List.map (fun x => if v = x then t else x) xs) = xs
case h.e'_2 v t : VarName X : DefName xs : List VarName h1 : t ∉ xs ⊢ List.map ((fun x => if t = x then v else x) ∘ fun x => if v = x then t else x) xs = xs
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
simp only [List.map_eq_self_iff]
case h.e'_2 v t : VarName X : DefName xs : List VarName h1 : t ∉ xs ⊢ List.map ((fun x => if t = x then v else x) ∘ fun x => if v = x then t else x) xs = xs
case h.e'_2 v t : VarName X : DefName xs : List VarName h1 : t ∉ xs ⊢ ∀ x ∈ xs, ((fun x => if t = x then v else x) ∘ fun x => if v = x then t else x) x = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
simp
case h.e'_2 v t : VarName X : DefName xs : List VarName h1 : t ∉ xs ⊢ ∀ x ∈ xs, ((fun x => if t = x then v else x) ∘ fun x => if v = x then t else x) x = x
case h.e'_2 v t : VarName X : DefName xs : List VarName h1 : t ∉ xs ⊢ ∀ x ∈ xs, (if t = if v = x then t else x then v else if v = x then t else x) = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
intro x a1
case h.e'_2 v t : VarName X : DefName xs : List VarName h1 : t ∉ xs ⊢ ∀ x ∈ xs, (if t = if v = x then t else x then v else if v = x then t else x) = x
case h.e'_2 v t : VarName X : DefName xs : List VarName h1 : t ∉ xs x : VarName a1 : x ∈ xs ⊢ (if t = if v = x then t else x then v else if v = x then t else x) = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
by_cases c1 : v = x
case h.e'_2 v t : VarName X : DefName xs : List VarName h1 : t ∉ xs x : VarName a1 : x ∈ xs ⊢ (if t = if v = x then t else x then v else if v = x then t else x) = x
case pos v t : VarName X : DefName xs : List VarName h1 : t ∉ xs x : VarName a1 : x ∈ xs c1 : v = x ⊢ (if t = if v = x then t else x then v else if v = x then t else x) = x case neg v t : VarName X : DefName xs : List VarName h1 : t ∉ xs x : VarName a1 : x ∈ xs c1 : ¬v = x ⊢ (if t = if v = x then t else x then v else if v = x then t else x) = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
simp only [if_pos c1]
case pos v t : VarName X : DefName xs : List VarName h1 : t ∉ xs x : VarName a1 : x ∈ xs c1 : v = x ⊢ (if t = if v = x then t else x then v else if v = x then t else x) = x
case pos v t : VarName X : DefName xs : List VarName h1 : t ∉ xs x : VarName a1 : x ∈ xs c1 : v = x ⊢ (if True then v else t) = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
simp
case pos v t : VarName X : DefName xs : List VarName h1 : t ∉ xs x : VarName a1 : x ∈ xs c1 : v = x ⊢ (if True then v else t) = x
case pos v t : VarName X : DefName xs : List VarName h1 : t ∉ xs x : VarName a1 : x ∈ xs c1 : v = x ⊢ v = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
exact c1
case pos v t : VarName X : DefName xs : List VarName h1 : t ∉ xs x : VarName a1 : x ∈ xs c1 : v = x ⊢ v = x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
simp only [if_neg c1]
case neg v t : VarName X : DefName xs : List VarName h1 : t ∉ xs x : VarName a1 : x ∈ xs c1 : ¬v = x ⊢ (if t = if v = x then t else x then v else if v = x then t else x) = x
case neg v t : VarName X : DefName xs : List VarName h1 : t ∉ xs x : VarName a1 : x ∈ xs c1 : ¬v = x ⊢ (if t = x then v else x) = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
simp
case neg v t : VarName X : DefName xs : List VarName h1 : t ∉ xs x : VarName a1 : x ∈ xs c1 : ¬v = x ⊢ (if t = x then v else x) = x
case neg v t : VarName X : DefName xs : List VarName h1 : t ∉ xs x : VarName a1 : x ∈ xs c1 : ¬v = x ⊢ t = x → v = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
intro a2
case neg v t : VarName X : DefName xs : List VarName h1 : t ∉ xs x : VarName a1 : x ∈ xs c1 : ¬v = x ⊢ t = x → v = x
case neg v t : VarName X : DefName xs : List VarName h1 : t ∉ xs x : VarName a1 : x ∈ xs c1 : ¬v = x a2 : t = x ⊢ v = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
subst a2
case neg v t : VarName X : DefName xs : List VarName h1 : t ∉ xs x : VarName a1 : x ∈ xs c1 : ¬v = x a2 : t = x ⊢ v = x
case neg v t : VarName X : DefName xs : List VarName h1 : t ∉ xs a1 : t ∈ xs c1 : ¬v = t ⊢ v = t
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
contradiction
case neg v t : VarName X : DefName xs : List VarName h1 : t ∉ xs a1 : t ∈ xs c1 : ¬v = t ⊢ v = t
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
congr!
v t x y : VarName h1 : ¬(t = x ∨ t = y) ⊢ eq_ (if t = if v = x then t else x then v else if v = x then t else x) (if t = if v = y then t else y then v else if v = y then t else y) = eq_ x y
case h.e'_1 v t x y : VarName h1 : ¬(t = x ∨ t = y) ⊢ (if t = if v = x then t else x then v else if v = x then t else x) = x case h.e'_2 v t x y : VarName h1 : ¬(t = x ∨ t = y) ⊢ (if t = if v = y then t else y then v else if v = y then t else y) = y
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
split_ifs <;> tauto
case h.e'_1 v t x y : VarName h1 : ¬(t = x ∨ t = y) ⊢ (if t = if v = x then t else x then v else if v = x then t else x) = x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
split_ifs <;> tauto
case h.e'_2 v t x y : VarName h1 : ¬(t = x ∨ t = y) ⊢ (if t = if v = y then t else y then v else if v = y then t else y) = y
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
congr!
v t : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1 : ¬occursIn t phi ⊢ (fastReplaceFree t v (fastReplaceFree v t phi)).not_ = phi.not_
case h.e'_1 v t : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1 : ¬occursIn t phi ⊢ fastReplaceFree t v (fastReplaceFree v t phi) = phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
exact phi_ih h1
case h.e'_1 v t : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1 : ¬occursIn t phi ⊢ fastReplaceFree t v (fastReplaceFree v t phi) = phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
congr! <;> tauto
v t : VarName phi psi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi psi_ih : ¬occursIn t psi → fastReplaceFree t v (fastReplaceFree v t psi) = psi h1 : ¬(occursIn t phi ∨ occursIn t psi) ⊢ (fastReplaceFree t v (fastReplaceFree v t phi)).iff_ (fastReplaceFree t v (fastReplaceFree v t psi)) = phi.iff_ psi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
push_neg at h1
v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1 : ¬(t = x ∨ occursIn t phi) ⊢ fastReplaceFree t v (if v = x then exists_ x phi else exists_ x (fastReplaceFree v t phi)) = exists_ x phi
v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1 : t ≠ x ∧ ¬occursIn t phi ⊢ fastReplaceFree t v (if v = x then exists_ x phi else exists_ x (fastReplaceFree v t phi)) = exists_ x phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
cases h1
v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1 : t ≠ x ∧ ¬occursIn t phi ⊢ fastReplaceFree t v (if v = x then exists_ x phi else exists_ x (fastReplaceFree v t phi)) = exists_ x phi
case intro v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi left✝ : t ≠ x right✝ : ¬occursIn t phi ⊢ fastReplaceFree t v (if v = x then exists_ x phi else exists_ x (fastReplaceFree v t phi)) = exists_ x phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
case intro h1_left h1_right => split_ifs case pos c1 => simp only [fastReplaceFree] simp only [if_neg h1_left] congr! apply not_free_in_fastReplaceFree_self contrapose! h1_right exact isFreeIn_imp_occursIn t phi h1_right case neg c1 => simp only [fastReplaceFree] simp only [if_neg h1_left] congr! exact phi_ih h1_right
v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi ⊢ fastReplaceFree t v (if v = x then exists_ x phi else exists_ x (fastReplaceFree v t phi)) = exists_ x phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
split_ifs
v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi ⊢ fastReplaceFree t v (if v = x then exists_ x phi else exists_ x (fastReplaceFree v t phi)) = exists_ x phi
case pos v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi h✝ : v = x ⊢ fastReplaceFree t v (exists_ x phi) = exists_ x phi case neg v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi h✝ : ¬v = x ⊢ fastReplaceFree t v (exists_ x (fastReplaceFree v t phi)) = exists_ x phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
case pos c1 => simp only [fastReplaceFree] simp only [if_neg h1_left] congr! apply not_free_in_fastReplaceFree_self contrapose! h1_right exact isFreeIn_imp_occursIn t phi h1_right
v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi c1 : v = x ⊢ fastReplaceFree t v (exists_ x phi) = exists_ x phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
case neg c1 => simp only [fastReplaceFree] simp only [if_neg h1_left] congr! exact phi_ih h1_right
v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi c1 : ¬v = x ⊢ fastReplaceFree t v (exists_ x (fastReplaceFree v t phi)) = exists_ x phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
simp only [fastReplaceFree]
v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi c1 : v = x ⊢ fastReplaceFree t v (exists_ x phi) = exists_ x phi
v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi c1 : v = x ⊢ (if t = x then exists_ x phi else exists_ x (fastReplaceFree t v phi)) = exists_ x phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
simp only [if_neg h1_left]
v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi c1 : v = x ⊢ (if t = x then exists_ x phi else exists_ x (fastReplaceFree t v phi)) = exists_ x phi
v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi c1 : v = x ⊢ exists_ x (fastReplaceFree t v phi) = exists_ x phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
congr!
v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi c1 : v = x ⊢ exists_ x (fastReplaceFree t v phi) = exists_ x phi
case h.e'_2 v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi c1 : v = x ⊢ fastReplaceFree t v phi = phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
apply not_free_in_fastReplaceFree_self
case h.e'_2 v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi c1 : v = x ⊢ fastReplaceFree t v phi = phi
case h.e'_2.h1 v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi c1 : v = x ⊢ ¬isFreeIn t phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
contrapose! h1_right
case h.e'_2.h1 v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi c1 : v = x ⊢ ¬isFreeIn t phi
case h.e'_2.h1 v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x c1 : v = x h1_right : isFreeIn t phi ⊢ occursIn t phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
exact isFreeIn_imp_occursIn t phi h1_right
case h.e'_2.h1 v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x c1 : v = x h1_right : isFreeIn t phi ⊢ occursIn t phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
simp only [fastReplaceFree]
v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi c1 : ¬v = x ⊢ fastReplaceFree t v (exists_ x (fastReplaceFree v t phi)) = exists_ x phi
v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi c1 : ¬v = x ⊢ (if t = x then exists_ x (fastReplaceFree v t phi) else exists_ x (fastReplaceFree t v (fastReplaceFree v t phi))) = exists_ x phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
simp only [if_neg h1_left]
v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi c1 : ¬v = x ⊢ (if t = x then exists_ x (fastReplaceFree v t phi) else exists_ x (fastReplaceFree t v (fastReplaceFree v t phi))) = exists_ x phi
v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi c1 : ¬v = x ⊢ exists_ x (fastReplaceFree t v (fastReplaceFree v t phi)) = exists_ x phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
congr!
v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi c1 : ¬v = x ⊢ exists_ x (fastReplaceFree t v (fastReplaceFree v t phi)) = exists_ x phi
case h.e'_2 v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi c1 : ¬v = x ⊢ fastReplaceFree t v (fastReplaceFree v t phi) = phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.fastReplaceFree_inverse
[293, 1]
[349, 30]
exact phi_ih h1_right
case h.e'_2 v t x : VarName phi : Formula phi_ih : ¬occursIn t phi → fastReplaceFree t v (fastReplaceFree v t phi) = phi h1_left : t ≠ x h1_right : ¬occursIn t phi c1 : ¬v = x ⊢ fastReplaceFree t v (fastReplaceFree v t phi) = phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
induction F
F : Formula v t : VarName h1 : ¬v = t ⊢ ¬isFreeIn v (fastReplaceFree v t F)
case pred_const_ v t : VarName h1 : ¬v = t a✝¹ : PredName a✝ : List VarName ⊢ ¬isFreeIn v (fastReplaceFree v t (pred_const_ a✝¹ a✝)) case pred_var_ v t : VarName h1 : ¬v = t a✝¹ : PredName a✝ : List VarName ⊢ ¬isFreeIn v (fastReplaceFree v t (pred_var_ a✝¹ a✝)) case eq_ v t : VarName h1 : ¬v = t a✝¹ a✝ : VarName ⊢ ¬isFreeIn v (fastReplaceFree v t (eq_ a✝¹ a✝)) case true_ v t : VarName h1 : ¬v = t ⊢ ¬isFreeIn v (fastReplaceFree v t true_) case false_ v t : VarName h1 : ¬v = t ⊢ ¬isFreeIn v (fastReplaceFree v t false_) case not_ v t : VarName h1 : ¬v = t a✝ : Formula a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬isFreeIn v (fastReplaceFree v t a✝.not_) case imp_ v t : VarName h1 : ¬v = t a✝¹ a✝ : Formula a_ih✝¹ : ¬isFreeIn v (fastReplaceFree v t a✝¹) a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬isFreeIn v (fastReplaceFree v t (a✝¹.imp_ a✝)) case and_ v t : VarName h1 : ¬v = t a✝¹ a✝ : Formula a_ih✝¹ : ¬isFreeIn v (fastReplaceFree v t a✝¹) a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬isFreeIn v (fastReplaceFree v t (a✝¹.and_ a✝)) case or_ v t : VarName h1 : ¬v = t a✝¹ a✝ : Formula a_ih✝¹ : ¬isFreeIn v (fastReplaceFree v t a✝¹) a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬isFreeIn v (fastReplaceFree v t (a✝¹.or_ a✝)) case iff_ v t : VarName h1 : ¬v = t a✝¹ a✝ : Formula a_ih✝¹ : ¬isFreeIn v (fastReplaceFree v t a✝¹) a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬isFreeIn v (fastReplaceFree v t (a✝¹.iff_ a✝)) case forall_ v t : VarName h1 : ¬v = t a✝¹ : VarName a✝ : Formula a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬isFreeIn v (fastReplaceFree v t (forall_ a✝¹ a✝)) case exists_ v t : VarName h1 : ¬v = t a✝¹ : VarName a✝ : Formula a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬isFreeIn v (fastReplaceFree v t (exists_ a✝¹ a✝)) case def_ v t : VarName h1 : ¬v = t a✝¹ : DefName a✝ : List VarName ⊢ ¬isFreeIn v (fastReplaceFree v t (def_ a✝¹ a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
any_goals simp only [fastReplaceFree] simp only [isFreeIn]
case pred_const_ v t : VarName h1 : ¬v = t a✝¹ : PredName a✝ : List VarName ⊢ ¬isFreeIn v (fastReplaceFree v t (pred_const_ a✝¹ a✝)) case pred_var_ v t : VarName h1 : ¬v = t a✝¹ : PredName a✝ : List VarName ⊢ ¬isFreeIn v (fastReplaceFree v t (pred_var_ a✝¹ a✝)) case eq_ v t : VarName h1 : ¬v = t a✝¹ a✝ : VarName ⊢ ¬isFreeIn v (fastReplaceFree v t (eq_ a✝¹ a✝)) case true_ v t : VarName h1 : ¬v = t ⊢ ¬isFreeIn v (fastReplaceFree v t true_) case false_ v t : VarName h1 : ¬v = t ⊢ ¬isFreeIn v (fastReplaceFree v t false_) case not_ v t : VarName h1 : ¬v = t a✝ : Formula a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬isFreeIn v (fastReplaceFree v t a✝.not_) case imp_ v t : VarName h1 : ¬v = t a✝¹ a✝ : Formula a_ih✝¹ : ¬isFreeIn v (fastReplaceFree v t a✝¹) a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬isFreeIn v (fastReplaceFree v t (a✝¹.imp_ a✝)) case and_ v t : VarName h1 : ¬v = t a✝¹ a✝ : Formula a_ih✝¹ : ¬isFreeIn v (fastReplaceFree v t a✝¹) a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬isFreeIn v (fastReplaceFree v t (a✝¹.and_ a✝)) case or_ v t : VarName h1 : ¬v = t a✝¹ a✝ : Formula a_ih✝¹ : ¬isFreeIn v (fastReplaceFree v t a✝¹) a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬isFreeIn v (fastReplaceFree v t (a✝¹.or_ a✝)) case iff_ v t : VarName h1 : ¬v = t a✝¹ a✝ : Formula a_ih✝¹ : ¬isFreeIn v (fastReplaceFree v t a✝¹) a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬isFreeIn v (fastReplaceFree v t (a✝¹.iff_ a✝)) case forall_ v t : VarName h1 : ¬v = t a✝¹ : VarName a✝ : Formula a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬isFreeIn v (fastReplaceFree v t (forall_ a✝¹ a✝)) case exists_ v t : VarName h1 : ¬v = t a✝¹ : VarName a✝ : Formula a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬isFreeIn v (fastReplaceFree v t (exists_ a✝¹ a✝)) case def_ v t : VarName h1 : ¬v = t a✝¹ : DefName a✝ : List VarName ⊢ ¬isFreeIn v (fastReplaceFree v t (def_ a✝¹ a✝))
case pred_const_ v t : VarName h1 : ¬v = t a✝¹ : PredName a✝ : List VarName ⊢ v ∉ List.map (fun x => if v = x then t else x) a✝ case pred_var_ v t : VarName h1 : ¬v = t a✝¹ : PredName a✝ : List VarName ⊢ v ∉ List.map (fun x => if v = x then t else x) a✝ case eq_ v t : VarName h1 : ¬v = t a✝¹ a✝ : VarName ⊢ ¬((v = if v = a✝¹ then t else a✝¹) ∨ v = if v = a✝ then t else a✝) case true_ v t : VarName h1 : ¬v = t ⊢ ¬False case false_ v t : VarName h1 : ¬v = t ⊢ ¬False case not_ v t : VarName h1 : ¬v = t a✝ : Formula a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬isFreeIn v (fastReplaceFree v t a✝) case imp_ v t : VarName h1 : ¬v = t a✝¹ a✝ : Formula a_ih✝¹ : ¬isFreeIn v (fastReplaceFree v t a✝¹) a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬(isFreeIn v (fastReplaceFree v t a✝¹) ∨ isFreeIn v (fastReplaceFree v t a✝)) case and_ v t : VarName h1 : ¬v = t a✝¹ a✝ : Formula a_ih✝¹ : ¬isFreeIn v (fastReplaceFree v t a✝¹) a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬(isFreeIn v (fastReplaceFree v t a✝¹) ∨ isFreeIn v (fastReplaceFree v t a✝)) case or_ v t : VarName h1 : ¬v = t a✝¹ a✝ : Formula a_ih✝¹ : ¬isFreeIn v (fastReplaceFree v t a✝¹) a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬(isFreeIn v (fastReplaceFree v t a✝¹) ∨ isFreeIn v (fastReplaceFree v t a✝)) case iff_ v t : VarName h1 : ¬v = t a✝¹ a✝ : Formula a_ih✝¹ : ¬isFreeIn v (fastReplaceFree v t a✝¹) a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬(isFreeIn v (fastReplaceFree v t a✝¹) ∨ isFreeIn v (fastReplaceFree v t a✝)) case forall_ v t : VarName h1 : ¬v = t a✝¹ : VarName a✝ : Formula a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬isFreeIn v (fastReplaceFree v t (forall_ a✝¹ a✝)) case exists_ v t : VarName h1 : ¬v = t a✝¹ : VarName a✝ : Formula a_ih✝ : ¬isFreeIn v (fastReplaceFree v t a✝) ⊢ ¬isFreeIn v (fastReplaceFree v t (exists_ a✝¹ a✝)) case def_ v t : VarName h1 : ¬v = t a✝¹ : DefName a✝ : List VarName ⊢ v ∉ List.map (fun x => if v = x then t else x) a✝
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
case pred_const_ X xs | pred_var_ X xs | def_ X xs => simp intro x split_ifs <;> tauto
v t : VarName h1 : ¬v = t X : DefName xs : List VarName ⊢ v ∉ List.map (fun x => if v = x then t else x) xs
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
case eq_ x y => split_ifs <;> tauto
v t : VarName h1 : ¬v = t x y : VarName ⊢ ¬((v = if v = x then t else x) ∨ v = if v = y then t else y)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
case true_ | false_ => simp
v t : VarName h1 : ¬v = t ⊢ ¬False
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
case not_ phi phi_ih => exact phi_ih
v t : VarName h1 : ¬v = t phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) ⊢ ¬isFreeIn v (fastReplaceFree v t phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
case imp_ phi psi phi_ih psi_ih | and_ phi psi phi_ih psi_ih | or_ phi psi phi_ih psi_ih | iff_ phi psi phi_ih psi_ih => tauto
v t : VarName h1 : ¬v = t phi psi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) psi_ih : ¬isFreeIn v (fastReplaceFree v t psi) ⊢ ¬(isFreeIn v (fastReplaceFree v t phi) ∨ isFreeIn v (fastReplaceFree v t psi))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
case forall_ x phi phi_ih | exists_ x phi phi_ih => simp only [fastReplaceFree] split_ifs case pos c1 => simp only [isFreeIn] simp intro a1 contradiction case neg c1 => simp only [isFreeIn] simp intro _ exact phi_ih
v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) ⊢ ¬isFreeIn v (fastReplaceFree v t (exists_ x phi))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
simp only [fastReplaceFree]
case def_ v t : VarName h1 : ¬v = t a✝¹ : DefName a✝ : List VarName ⊢ ¬isFreeIn v (fastReplaceFree v t (def_ a✝¹ a✝))
case def_ v t : VarName h1 : ¬v = t a✝¹ : DefName a✝ : List VarName ⊢ ¬isFreeIn v (def_ a✝¹ (List.map (fun x => if v = x then t else x) a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
simp only [isFreeIn]
case def_ v t : VarName h1 : ¬v = t a✝¹ : DefName a✝ : List VarName ⊢ ¬isFreeIn v (def_ a✝¹ (List.map (fun x => if v = x then t else x) a✝))
case def_ v t : VarName h1 : ¬v = t a✝¹ : DefName a✝ : List VarName ⊢ v ∉ List.map (fun x => if v = x then t else x) a✝
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
simp
v t : VarName h1 : ¬v = t X : DefName xs : List VarName ⊢ v ∉ List.map (fun x => if v = x then t else x) xs
v t : VarName h1 : ¬v = t X : DefName xs : List VarName ⊢ ∀ x ∈ xs, ¬(if v = x then t else x) = v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
intro x
v t : VarName h1 : ¬v = t X : DefName xs : List VarName ⊢ ∀ x ∈ xs, ¬(if v = x then t else x) = v
v t : VarName h1 : ¬v = t X : DefName xs : List VarName x : VarName ⊢ x ∈ xs → ¬(if v = x then t else x) = v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
split_ifs <;> tauto
v t : VarName h1 : ¬v = t X : DefName xs : List VarName x : VarName ⊢ x ∈ xs → ¬(if v = x then t else x) = v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
split_ifs <;> tauto
v t : VarName h1 : ¬v = t x y : VarName ⊢ ¬((v = if v = x then t else x) ∨ v = if v = y then t else y)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
simp
v t : VarName h1 : ¬v = t ⊢ ¬False
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
exact phi_ih
v t : VarName h1 : ¬v = t phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) ⊢ ¬isFreeIn v (fastReplaceFree v t phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
tauto
v t : VarName h1 : ¬v = t phi psi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) psi_ih : ¬isFreeIn v (fastReplaceFree v t psi) ⊢ ¬(isFreeIn v (fastReplaceFree v t phi) ∨ isFreeIn v (fastReplaceFree v t psi))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
simp only [fastReplaceFree]
v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) ⊢ ¬isFreeIn v (fastReplaceFree v t (exists_ x phi))
v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) ⊢ ¬isFreeIn v (if v = x then exists_ x phi else exists_ x (fastReplaceFree v t phi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
split_ifs
v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) ⊢ ¬isFreeIn v (if v = x then exists_ x phi else exists_ x (fastReplaceFree v t phi))
case pos v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) h✝ : v = x ⊢ ¬isFreeIn v (exists_ x phi) case neg v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) h✝ : ¬v = x ⊢ ¬isFreeIn v (exists_ x (fastReplaceFree v t phi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
case pos c1 => simp only [isFreeIn] simp intro a1 contradiction
v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) c1 : v = x ⊢ ¬isFreeIn v (exists_ x phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
case neg c1 => simp only [isFreeIn] simp intro _ exact phi_ih
v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) c1 : ¬v = x ⊢ ¬isFreeIn v (exists_ x (fastReplaceFree v t phi))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
simp only [isFreeIn]
v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) c1 : v = x ⊢ ¬isFreeIn v (exists_ x phi)
v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) c1 : v = x ⊢ ¬(¬v = x ∧ isFreeIn v phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
simp
v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) c1 : v = x ⊢ ¬(¬v = x ∧ isFreeIn v phi)
v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) c1 : v = x ⊢ ¬v = x → ¬isFreeIn v phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
intro a1
v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) c1 : v = x ⊢ ¬v = x → ¬isFreeIn v phi
v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) c1 : v = x a1 : ¬v = x ⊢ ¬isFreeIn v phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
contradiction
v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) c1 : v = x a1 : ¬v = x ⊢ ¬isFreeIn v phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
simp only [isFreeIn]
v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) c1 : ¬v = x ⊢ ¬isFreeIn v (exists_ x (fastReplaceFree v t phi))
v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) c1 : ¬v = x ⊢ ¬(¬v = x ∧ isFreeIn v (fastReplaceFree v t phi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
simp
v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) c1 : ¬v = x ⊢ ¬(¬v = x ∧ isFreeIn v (fastReplaceFree v t phi))
v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) c1 : ¬v = x ⊢ ¬v = x → ¬isFreeIn v (fastReplaceFree v t phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
intro _
v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) c1 : ¬v = x ⊢ ¬v = x → ¬isFreeIn v (fastReplaceFree v t phi)
v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) c1 a✝ : ¬v = x ⊢ ¬isFreeIn v (fastReplaceFree v t phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_fastReplaceFree
[352, 1]
[390, 19]
exact phi_ih
v t : VarName h1 : ¬v = t x : VarName phi : Formula phi_ih : ¬isFreeIn v (fastReplaceFree v t phi) c1 a✝ : ¬v = x ⊢ ¬isFreeIn v (fastReplaceFree v t phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
induction E generalizing F binders V V' σ σ'
D : Type I : Interpretation D V V' : VarAssignment D E : Env σ σ' : VarName → VarName binders : Finset VarName F : Formula h1 : admitsAux σ binders F h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V E F ↔ Holds D I V' E (fastReplaceFree σ' F)
case nil D : Type I : Interpretation D V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName F : Formula h1 : admitsAux σ binders F h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V [] F ↔ Holds D I V' [] (fastReplaceFree σ' F) case cons D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName F : Formula h1 : admitsAux σ binders F h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) F ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' F)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
induction F generalizing binders V V' σ σ'
case cons D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName F : Formula h1 : admitsAux σ binders F h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) F ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' F)
case cons.pred_const_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : PredName a✝ : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (pred_const_ a✝¹ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (pred_const_ a✝¹ a✝)) case cons.pred_var_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : PredName a✝ : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (pred_var_ a✝¹ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (pred_var_ a✝¹ a✝)) case cons.eq_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ a✝ : VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (eq_ a✝¹ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (eq_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (eq_ a✝¹ a✝)) case cons.true_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders true_ h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) true_ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' true_) case cons.false_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders false_ h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' false_) case cons.not_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝ : Formula a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders a✝.not_ h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) a✝.not_ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝.not_) case cons.imp_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝¹ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝¹)) a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (a✝¹.imp_ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.imp_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (a✝¹.imp_ a✝)) case cons.and_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝¹ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝¹)) a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (a✝¹.and_ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.and_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (a✝¹.and_ a✝)) case cons.or_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝¹ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝¹)) a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (a✝¹.or_ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.or_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (a✝¹.or_ a✝)) case cons.iff_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝¹ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝¹)) a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (a✝¹.iff_ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.iff_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (a✝¹.iff_ a✝)) case cons.forall_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (forall_ a✝¹ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (forall_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (forall_ a✝¹ a✝)) case cons.exists_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (exists_ a✝¹ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (exists_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (exists_ a✝¹ a✝)) case cons.def_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : DefName a✝ : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (def_ a✝¹ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (def_ a✝¹ a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
all_goals simp only [admitsAux] at h1 simp only [fastReplaceFree] simp only [Holds]
case cons.pred_const_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : PredName a✝ : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (pred_const_ a✝¹ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (pred_const_ a✝¹ a✝)) case cons.pred_var_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : PredName a✝ : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (pred_var_ a✝¹ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (pred_var_ a✝¹ a✝)) case cons.eq_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ a✝ : VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (eq_ a✝¹ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (eq_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (eq_ a✝¹ a✝)) case cons.true_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders true_ h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) true_ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' true_) case cons.false_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders false_ h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' false_) case cons.not_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝ : Formula a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders a✝.not_ h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) a✝.not_ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝.not_) case cons.imp_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝¹ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝¹)) a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (a✝¹.imp_ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.imp_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (a✝¹.imp_ a✝)) case cons.and_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝¹ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝¹)) a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (a✝¹.and_ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.and_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (a✝¹.and_ a✝)) case cons.or_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝¹ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝¹)) a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (a✝¹.or_ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.or_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (a✝¹.or_ a✝)) case cons.iff_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝¹ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝¹)) a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (a✝¹.iff_ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.iff_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (a✝¹.iff_ a✝)) case cons.forall_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (forall_ a✝¹ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (forall_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (forall_ a✝¹ a✝)) case cons.exists_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (exists_ a✝¹ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (exists_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (exists_ a✝¹ a✝)) case cons.def_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : DefName a✝ : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (def_ a✝¹ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (def_ a✝¹ a✝))
case cons.pred_const_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : PredName a✝ : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ a✝, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ I.pred_const_ a✝¹ (List.map V a✝) ↔ I.pred_const_ a✝¹ (List.map V' (List.map σ' a✝)) case cons.pred_var_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : PredName a✝ : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ a✝, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ I.pred_var_ a✝¹ (List.map V a✝) ↔ I.pred_var_ a✝¹ (List.map V' (List.map σ' a✝)) case cons.eq_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ a✝ : VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : (a✝¹ ∉ binders → σ a✝¹ ∉ binders) ∧ (a✝ ∉ binders → σ a✝ ∉ binders) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ V a✝¹ = V a✝ ↔ V' (σ' a✝¹) = V' (σ' a✝) case cons.not_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝ : Formula a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders a✝ h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ ¬Holds D I V (head✝ :: tail✝) a✝ ↔ ¬Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝) case cons.imp_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝¹ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝¹)) a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders a✝¹ ∧ admitsAux σ binders a✝ h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) a✝¹ → Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝¹) → Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝) case cons.and_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝¹ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝¹)) a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders a✝¹ ∧ admitsAux σ binders a✝ h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) a✝¹ ∧ Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝¹) ∧ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝) case cons.or_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝¹ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝¹)) a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders a✝¹ ∧ admitsAux σ binders a✝ h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) a✝¹ ∨ Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝¹) ∨ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝) case cons.iff_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝¹ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝¹)) a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders a✝¹ ∧ admitsAux σ binders a✝ h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V (head✝ :: tail✝) a✝) ↔ (Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝¹) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) case cons.forall_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ (binders ∪ {a✝¹}) a✝ h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ (∀ (d : D), Holds D I (Function.updateITE V a✝¹ d) (head✝ :: tail✝) a✝) ↔ ∀ (d : D), Holds D I (Function.updateITE V' a✝¹ d) (head✝ :: tail✝) (fastReplaceFree (Function.updateITE σ' a✝¹ a✝¹) a✝) case cons.exists_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders a✝ → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' a✝)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ (binders ∪ {a✝¹}) a✝ h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ (∃ d, Holds D I (Function.updateITE V a✝¹ d) (head✝ :: tail✝) a✝) ↔ ∃ d, Holds D I (Function.updateITE V' a✝¹ d) (head✝ :: tail✝) (fastReplaceFree (Function.updateITE σ' a✝¹ a✝¹) a✝) case cons.def_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : DefName a✝ : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ a✝, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ (if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then Holds D I (Function.updateListITE V head✝.args (List.map V a✝)) tail✝ head✝.q else Holds D I V tail✝ (def_ a✝¹ a✝)) ↔ if a✝¹ = head✝.name ∧ (List.map σ' a✝).length = head✝.args.length then Holds D I (Function.updateListITE V' head✝.args (List.map V' (List.map σ' a✝))) tail✝ head✝.q else Holds D I V' tail✝ (def_ a✝¹ (List.map σ' a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
case not_ phi phi_ih => congr! 1 exact phi_ih V V' σ σ' binders h1 h2 h2' h3
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName), admitsAux σ binders phi → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' phi)) V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders phi h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp only [admitsAux] at h1
case cons.def_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : DefName a✝ : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : admitsAux σ binders (def_ a✝¹ a✝) h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (def_ a✝¹ a✝))
case cons.def_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : DefName a✝ : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ a✝, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (def_ a✝¹ a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp only [fastReplaceFree]
case cons.def_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : DefName a✝ : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ a✝, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (fastReplaceFree σ' (def_ a✝¹ a✝))
case cons.def_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : DefName a✝ : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ a✝, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ (List.map σ' a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp only [Holds]
case cons.def_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : DefName a✝ : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ a✝, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ (List.map σ' a✝))
case cons.def_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) a✝¹ : DefName a✝ : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ a✝, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ (if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then Holds D I (Function.updateListITE V head✝.args (List.map V a✝)) tail✝ head✝.q else Holds D I V tail✝ (def_ a✝¹ a✝)) ↔ if a✝¹ = head✝.name ∧ (List.map σ' a✝).length = head✝.args.length then Holds D I (Function.updateListITE V' head✝.args (List.map V' (List.map σ' a✝))) tail✝ head✝.q else Holds D I V' tail✝ (def_ a✝¹ (List.map σ' a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
congr! 1
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) X : PredName xs : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ xs, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ I.pred_var_ X (List.map V xs) ↔ I.pred_var_ X (List.map V' (List.map σ' xs))
case a.h.e'_4 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) X : PredName xs : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ xs, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ List.map V xs = List.map V' (List.map σ' xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp
case a.h.e'_4 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) X : PredName xs : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ xs, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ List.map V xs = List.map V' (List.map σ' xs)
case a.h.e'_4 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) X : PredName xs : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ xs, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ List.map V xs = List.map (V' ∘ σ') xs
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
simp only [List.map_eq_map_iff]
case a.h.e'_4 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) X : PredName xs : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ xs, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ List.map V xs = List.map (V' ∘ σ') xs
case a.h.e'_4 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) X : PredName xs : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ xs, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ ∀ x ∈ xs, V x = (V' ∘ σ') x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
intro v a1
case a.h.e'_4 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) X : PredName xs : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ xs, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v ⊢ ∀ x ∈ xs, V x = (V' ∘ σ') x
case a.h.e'_4 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) X : PredName xs : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ xs, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v v : VarName a1 : v ∈ xs ⊢ V v = (V' ∘ σ') v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
apply h2
case a.h.e'_4 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) X : PredName xs : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ xs, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v v : VarName a1 : v ∈ xs ⊢ V v = (V' ∘ σ') v
case a.h.e'_4.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) X : PredName xs : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ xs, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v v : VarName a1 : v ∈ xs ⊢ v ∈ binders ∨ σ' v ∉ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
by_cases c1 : v ∈ binders
case a.h.e'_4.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) X : PredName xs : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ xs, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v v : VarName a1 : v ∈ xs ⊢ v ∈ binders ∨ σ' v ∉ binders
case pos D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) X : PredName xs : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ xs, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v v : VarName a1 : v ∈ xs c1 : v ∈ binders ⊢ v ∈ binders ∨ σ' v ∉ binders case neg D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) X : PredName xs : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ xs, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v v : VarName a1 : v ∈ xs c1 : v ∉ binders ⊢ v ∈ binders ∨ σ' v ∉ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Admits.lean
FOL.NV.Sub.Var.All.Rec.substitution_theorem_aux
[74, 1]
[207, 28]
left
case pos D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) X : PredName xs : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ xs, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v v : VarName a1 : v ∈ xs c1 : v ∈ binders ⊢ v ∈ binders ∨ σ' v ∉ binders
case pos.h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (σ σ' : VarName → VarName) (binders : Finset VarName) (F : Formula), admitsAux σ binders F → (∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v)) → (∀ v ∈ binders, v = σ' v) → (∀ v ∉ binders, σ' v = σ v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ (fastReplaceFree σ' F)) X : PredName xs : List VarName V V' : VarAssignment D σ σ' : VarName → VarName binders : Finset VarName h1 : ∀ v ∈ xs, v ∉ binders → σ v ∉ binders h2 : ∀ (v : VarName), v ∈ binders ∨ σ' v ∉ binders → V v = V' (σ' v) h2' : ∀ v ∈ binders, v = σ' v h3 : ∀ v ∉ binders, σ' v = σ v v : VarName a1 : v ∈ xs c1 : v ∈ binders ⊢ v ∈ binders