url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [phi_ih]
case h D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D ⊒ Holds D I (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d) E (sub (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) c phi) ↔ Holds D I (Function.updateITE (V ∘ Οƒ) x d) E phi
case h D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D ⊒ Holds D I (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d ∘ Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) E phi ↔ Holds D I (Function.updateITE (V ∘ Οƒ) x d) E phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply Holds_coincide_Var
case h D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D ⊒ Holds D I (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d ∘ Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) E phi ↔ Holds D I (Function.updateITE (V ∘ Οƒ) x d) E phi
case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D ⊒ βˆ€ (v : VarName), isFreeIn v phi β†’ (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d ∘ Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) v = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
intro v a1
case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D ⊒ βˆ€ (v : VarName), isFreeIn v phi β†’ (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d ∘ Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) v = Function.updateITE (V ∘ Οƒ) x d v
case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi ⊒ (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d ∘ Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) v = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi ⊒ (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d ∘ Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) v = Function.updateITE (V ∘ Οƒ) x d v
case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi ⊒ Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
split_ifs
case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi ⊒ Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) v) = Function.updateITE (V ∘ Οƒ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi h✝ : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x ⊒ Function.updateITE V (fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet) d (Function.updateITE Οƒ x (fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet) v) = Function.updateITE (V ∘ Οƒ) x d v case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi h✝ : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x ⊒ Function.updateITE V x d (Function.updateITE Οƒ x x v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply forall_congr'
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ (βˆ€ (d : D), Holds D I (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d) E (sub (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) c phi)) ↔ βˆ€ (d : D), Holds D I (Function.updateITE (V ∘ Οƒ) x d) E phi
case h D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) a) E (sub (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) c phi) ↔ Holds D I (Function.updateITE (V ∘ Οƒ) x a) E phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply exists_congr
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ (βˆƒ d, Holds D I (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d) E (sub (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) c phi)) ↔ βˆƒ d, Holds D I (Function.updateITE (V ∘ Οƒ) x d) E phi
case h D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) a) E (sub (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) c phi) ↔ Holds D I (Function.updateITE (V ∘ Οƒ) x a) E phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
obtain s0 := fresh_not_mem x c (freeVarSet (sub (Function.updateITE Οƒ x x) c phi))
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x ⊒ Function.updateITE V (fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet) d (Function.updateITE Οƒ x (fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet) v) = Function.updateITE (V ∘ Οƒ) x d v
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x s0 : fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet ⊒ Function.updateITE V (fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet) d (Function.updateITE Οƒ x (fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet) v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
generalize (fresh x c (freeVarSet (sub (Function.updateITE Οƒ x x) c phi))) = x' at *
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x s0 : fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet ⊒ Function.updateITE V (fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet) d (Function.updateITE Οƒ x (fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet) v) = Function.updateITE (V ∘ Οƒ) x d v
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
by_cases c2 : v = x
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' v) = Function.updateITE (V ∘ Οƒ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : v = x ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' v) = Function.updateITE (V ∘ Οƒ) x d v case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [c2]
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : v = x ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' v) = Function.updateITE (V ∘ Οƒ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : v = x ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' x) = Function.updateITE (V ∘ Οƒ) x d x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [Function.updateITE]
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : v = x ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' x) = Function.updateITE (V ∘ Οƒ) x d x
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : v = x ⊒ (if (if True then x' else Οƒ x) = x' then d else V (if True then x' else Οƒ x)) = if True then d else (V ∘ Οƒ) x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : v = x ⊒ (if (if True then x' else Οƒ x) = x' then d else V (if True then x' else Οƒ x)) = if True then d else (V ∘ Οƒ) x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
by_cases c3 : Οƒ v = x'
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' v) = Function.updateITE (V ∘ Οƒ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x c3 : Οƒ v = x' ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' v) = Function.updateITE (V ∘ Οƒ) x d v case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x c3 : ¬σ v = x' ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
subst c3
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x c3 : Οƒ v = x' ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' v) = Function.updateITE (V ∘ Οƒ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet ⊒ Function.updateITE V (Οƒ v) d (Function.updateITE Οƒ x (Οƒ v) v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [freeVarSet_sub_eq_freeVarSet_image] at s0
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet ⊒ Function.updateITE V (Οƒ v) d (Function.updateITE Οƒ x (Οƒ v) v) = Function.updateITE (V ∘ Οƒ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ Function.updateITE V (Οƒ v) d (Function.updateITE Οƒ x (Οƒ v) v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
have s1 : Οƒ v ∈ Finset.image (Function.updateITE Οƒ x x) (freeVarSet phi)
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ Function.updateITE V (Οƒ v) d (Function.updateITE Οƒ x (Οƒ v) v) = Function.updateITE (V ∘ Οƒ) x d v
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ Οƒ v ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet s1 : Οƒ v ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ Function.updateITE V (Οƒ v) d (Function.updateITE Οƒ x (Οƒ v) v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply Finset.mem_image_update
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ Οƒ v ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet s1 : Οƒ v ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ Function.updateITE V (Οƒ v) d (Function.updateITE Οƒ x (Οƒ v) v) = Function.updateITE (V ∘ Οƒ) x d v
case s1.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ Β¬v = x case s1.h2 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ v ∈ phi.freeVarSet case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet s1 : Οƒ v ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ Function.updateITE V (Οƒ v) d (Function.updateITE Οƒ x (Οƒ v) v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
contradiction
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet s1 : Οƒ v ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ Function.updateITE V (Οƒ v) d (Function.updateITE Οƒ x (Οƒ v) v) = Function.updateITE (V ∘ Οƒ) x d v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
exact c2
case s1.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ Β¬v = x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [← isFreeIn_iff_mem_freeVarSet]
case s1.h2 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ v ∈ phi.freeVarSet
case s1.h2 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ isFreeIn v phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
exact a1
case s1.h2 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ isFreeIn v phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [Function.updateITE]
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x c3 : ¬σ v = x' ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' v) = Function.updateITE (V ∘ Οƒ) x d v
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x c3 : ¬σ v = x' ⊒ (if (if v = x then x' else Οƒ v) = x' then d else V (if v = x then x' else Οƒ v)) = if v = x then d else (V ∘ Οƒ) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [if_neg c2]
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x c3 : ¬σ v = x' ⊒ (if (if v = x then x' else Οƒ v) = x' then d else V (if v = x then x' else Οƒ v)) = if v = x then d else (V ∘ Οƒ) v
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x c3 : ¬σ v = x' ⊒ (if Οƒ v = x' then d else V (Οƒ v)) = (V ∘ Οƒ) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [if_neg c3]
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x c3 : ¬σ v = x' ⊒ (if Οƒ v = x' then d else V (Οƒ v)) = (V ∘ Οƒ) v
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x c3 : ¬σ v = x' ⊒ V (Οƒ v) = (V ∘ Οƒ) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x c3 : ¬σ v = x' ⊒ V (Οƒ v) = (V ∘ Οƒ) v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
by_cases c2 : v = x
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x ⊒ Function.updateITE V x d (Function.updateITE Οƒ x x v) = Function.updateITE (V ∘ Οƒ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : v = x ⊒ Function.updateITE V x d (Function.updateITE Οƒ x x v) = Function.updateITE (V ∘ Οƒ) x d v case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x ⊒ Function.updateITE V x d (Function.updateITE Οƒ x x v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
subst c2
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : v = x ⊒ Function.updateITE V x d (Function.updateITE Οƒ x x v) = Function.updateITE (V ∘ Οƒ) x d v
case pos D : Type I : Interpretation D E : Env c : Char phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {v}, Οƒ y = v ⊒ Function.updateITE V v d (Function.updateITE Οƒ v v v) = Function.updateITE (V ∘ Οƒ) v d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [Function.updateITE]
case pos D : Type I : Interpretation D E : Env c : Char phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {v}, Οƒ y = v ⊒ Function.updateITE V v d (Function.updateITE Οƒ v v v) = Function.updateITE (V ∘ Οƒ) v d v
case pos D : Type I : Interpretation D E : Env c : Char phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {v}, Οƒ y = v ⊒ (if (if True then v else Οƒ v) = v then d else V (if True then v else Οƒ v)) = if True then d else (V ∘ Οƒ) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case pos D : Type I : Interpretation D E : Env c : Char phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {v}, Οƒ y = v ⊒ (if (if True then v else Οƒ v) = v then d else V (if True then v else Οƒ v)) = if True then d else (V ∘ Οƒ) v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
have s1 : Β¬ Οƒ v = x
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x ⊒ Function.updateITE V x d (Function.updateITE Οƒ x x v) = Function.updateITE (V ∘ Οƒ) x d v
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x ⊒ ¬σ v = x case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s1 : ¬σ v = x ⊒ Function.updateITE V x d (Function.updateITE Οƒ x x v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [Function.updateITE]
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s1 : ¬σ v = x ⊒ Function.updateITE V x d (Function.updateITE Οƒ x x v) = Function.updateITE (V ∘ Οƒ) x d v
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s1 : ¬σ v = x ⊒ (if (if v = x then x else Οƒ v) = x then d else V (if v = x then x else Οƒ v)) = if v = x then d else (V ∘ Οƒ) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [if_neg c2]
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s1 : ¬σ v = x ⊒ (if (if v = x then x else Οƒ v) = x then d else V (if v = x then x else Οƒ v)) = if v = x then d else (V ∘ Οƒ) v
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s1 : ¬σ v = x ⊒ (if Οƒ v = x then d else V (Οƒ v)) = (V ∘ Οƒ) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [if_neg s1]
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s1 : ¬σ v = x ⊒ (if Οƒ v = x then d else V (Οƒ v)) = (V ∘ Οƒ) v
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s1 : ¬σ v = x ⊒ V (Οƒ v) = (V ∘ Οƒ) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s1 : ¬σ v = x ⊒ V (Οƒ v) = (V ∘ Οƒ) v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
intro contra
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x ⊒ ¬σ v = x
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ False
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply c1
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ False
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply Exists.intro v
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ v ∈ phi.freeVarSet \ {x} ∧ Οƒ v = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
constructor
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ v ∈ phi.freeVarSet \ {x} ∧ Οƒ v = x
case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ v ∈ phi.freeVarSet \ {x} case s1.right D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ Οƒ v = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ v ∈ phi.freeVarSet \ {x}
case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ v ∈ phi.freeVarSet ∧ Β¬v = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [← isFreeIn_iff_mem_freeVarSet]
case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ v ∈ phi.freeVarSet ∧ Β¬v = x
case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ isFreeIn v phi ∧ Β¬v = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
tauto
case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ isFreeIn v phi ∧ Β¬v = x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
exact contra
case s1.right D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ Οƒ v = x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
induction E
D : Type I : Interpretation D E : Env c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V E (sub Οƒ c (def_ X xs)) ↔ Holds D I (V ∘ Οƒ) E (def_ X xs)
case nil D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V [] (sub Οƒ c (def_ X xs)) ↔ Holds D I (V ∘ Οƒ) [] (def_ X xs) case cons D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : Holds D I V tail✝ (sub Οƒ c (def_ X xs)) ↔ Holds D I (V ∘ Οƒ) tail✝ (def_ X xs) ⊒ Holds D I V (head✝ :: tail✝) (sub Οƒ c (def_ X xs)) ↔ Holds D I (V ∘ Οƒ) (head✝ :: tail✝) (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
case nil => simp only [sub] simp only [Holds]
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V [] (sub Οƒ c (def_ X xs)) ↔ Holds D I (V ∘ Οƒ) [] (def_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [sub]
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V [] (sub Οƒ c (def_ X xs)) ↔ Holds D I (V ∘ Οƒ) [] (def_ X xs)
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V [] (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) [] (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [Holds]
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V [] (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) [] (def_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [sub] at E_ih
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (sub Οƒ c (def_ X xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) ⊒ Holds D I V (E_hd :: E_tl) (sub Οƒ c (def_ X xs)) ↔ Holds D I (V ∘ Οƒ) (E_hd :: E_tl) (def_ X xs)
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) ⊒ Holds D I V (E_hd :: E_tl) (sub Οƒ c (def_ X xs)) ↔ Holds D I (V ∘ Οƒ) (E_hd :: E_tl) (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [sub]
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) ⊒ Holds D I V (E_hd :: E_tl) (sub Οƒ c (def_ X xs)) ↔ Holds D I (V ∘ Οƒ) (E_hd :: E_tl) (def_ X xs)
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) ⊒ Holds D I V (E_hd :: E_tl) (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) (E_hd :: E_tl) (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [Holds]
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) ⊒ Holds D I V (E_hd :: E_tl) (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) (E_hd :: E_tl) (def_ X xs)
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) ⊒ (if X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))) ↔ if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE (V ∘ Οƒ) E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q else Holds D I (V ∘ Οƒ) E_tl (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) ⊒ (if X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))) ↔ if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE (V ∘ Οƒ) E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q else Holds D I (V ∘ Οƒ) E_tl (def_ X xs)
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) ⊒ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))) ↔ if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE (V ∘ Οƒ) E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q else Holds D I (V ∘ Οƒ) E_tl (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
split_ifs
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) ⊒ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))) ↔ if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE (V ∘ Οƒ) E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q else Holds D I (V ∘ Οƒ) E_tl (def_ X xs)
case pos D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) h✝ : X = E_hd.name ∧ xs.length = E_hd.args.length ⊒ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE (V ∘ Οƒ) E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q case neg D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) h✝ : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) ⊒ Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
case neg c1 => exact E_ih
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) ⊒ Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply Holds_coincide_Var
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length ⊒ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE (V ∘ Οƒ) E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q
case h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length ⊒ βˆ€ (v : VarName), isFreeIn v E_hd.q β†’ Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs) v = Function.updateListITE (V ∘ Οƒ) E_hd.args (List.map (V ∘ Οƒ) xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
intro v a1
case h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length ⊒ βˆ€ (v : VarName), isFreeIn v E_hd.q β†’ Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs) v = Function.updateListITE (V ∘ Οƒ) E_hd.args (List.map (V ∘ Οƒ) xs) v
case h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊒ Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs) v = Function.updateListITE (V ∘ Οƒ) E_hd.args (List.map (V ∘ Οƒ) xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply Function.updateListITE_map_mem_ext
case h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊒ Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs) v = Function.updateListITE (V ∘ Οƒ) E_hd.args (List.map (V ∘ Οƒ) xs) v
case h1.h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊒ βˆ€ y ∈ xs, (V ∘ Οƒ) y = (V ∘ Οƒ) y case h1.h2 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊒ E_hd.args.length = xs.length case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊒ v ∈ E_hd.args
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case h1.h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊒ βˆ€ y ∈ xs, (V ∘ Οƒ) y = (V ∘ Οƒ) y
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
cases c1
case h1.h2 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊒ E_hd.args.length = xs.length
case h1.h2.intro D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) v : VarName a1 : isFreeIn v E_hd.q left✝ : X = E_hd.name right✝ : xs.length = E_hd.args.length ⊒ E_hd.args.length = xs.length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
case _ c1_left c1_right => symm exact c1_right
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) v : VarName a1 : isFreeIn v E_hd.q c1_left : X = E_hd.name c1_right : xs.length = E_hd.args.length ⊒ E_hd.args.length = xs.length
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
symm
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) v : VarName a1 : isFreeIn v E_hd.q c1_left : X = E_hd.name c1_right : xs.length = E_hd.args.length ⊒ E_hd.args.length = xs.length
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) v : VarName a1 : isFreeIn v E_hd.q c1_left : X = E_hd.name c1_right : xs.length = E_hd.args.length ⊒ xs.length = E_hd.args.length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
exact c1_right
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) v : VarName a1 : isFreeIn v E_hd.q c1_left : X = E_hd.name c1_right : xs.length = E_hd.args.length ⊒ xs.length = E_hd.args.length
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [isFreeIn_iff_mem_freeVarSet] at a1
case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊒ v ∈ E_hd.args
case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : v ∈ E_hd.q.freeVarSet ⊒ v ∈ E_hd.args
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [← List.mem_toFinset]
case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : v ∈ E_hd.q.freeVarSet ⊒ v ∈ E_hd.args
case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : v ∈ E_hd.q.freeVarSet ⊒ v ∈ E_hd.args.toFinset
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply Finset.mem_of_subset E_hd.h1 a1
case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : v ∈ E_hd.q.freeVarSet ⊒ v ∈ E_hd.args.toFinset
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
exact E_ih
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) ⊒ Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_is_valid
[248, 1]
[260, 11]
simp only [IsValid] at h1
Οƒ : VarName β†’ VarName c : Char F : Formula h1 : F.IsValid ⊒ (sub Οƒ c F).IsValid
Οƒ : VarName β†’ VarName c : Char F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ (sub Οƒ c F).IsValid
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_is_valid
[248, 1]
[260, 11]
simp only [IsValid]
Οƒ : VarName β†’ VarName c : Char F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ (sub Οƒ c F).IsValid
Οƒ : VarName β†’ VarName c : Char F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (sub Οƒ c F)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_is_valid
[248, 1]
[260, 11]
intro D I V E
Οƒ : VarName β†’ VarName c : Char F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (sub Οƒ c F)
Οƒ : VarName β†’ VarName c : Char F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I V E (sub Οƒ c F)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_is_valid
[248, 1]
[260, 11]
simp only [substitution_theorem]
Οƒ : VarName β†’ VarName c : Char F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I V E (sub Οƒ c F)
Οƒ : VarName β†’ VarName c : Char F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I (V ∘ Οƒ) E F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_is_valid
[248, 1]
[260, 11]
apply h1
Οƒ : VarName β†’ VarName c : Char F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I (V ∘ Οƒ) E F
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationEmpty
[208, 1]
[218, 7]
cases h1
V_N V_T : Type R : V_N β†’ PE V_N V_T n : β„• xs : List V_T o : Option (List V_T) h1 : Interpretation V_N V_T R (empty, xs) (n, o) ⊒ n = 1 ∧ o = some []
case empty V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T ⊒ 1 = 1 ∧ some [] = some []
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationEmpty
[208, 1]
[218, 7]
simp
case empty V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T ⊒ 1 = 1 ∧ some [] = some []
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationSteps
[221, 1]
[233, 10]
cases h1
V_N V_T : Type R : V_N β†’ PE V_N V_T e : PE V_N V_T xs : List V_T o : Option (List V_T) n : β„• h1 : Interpretation V_N V_T R (e, xs) (n, o) ⊒ n > 0
case empty V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T ⊒ 1 > 0 case terminal_success V_N V_T : Type R : V_N β†’ PE V_N V_T a✝ : V_T xs✝ : List V_T ⊒ 1 > 0 case terminal_failure_1 V_N V_T : Type R : V_N β†’ PE V_N V_T a✝¹ b✝ : V_T xs✝ : List V_T a✝ : Β¬a✝¹ = b✝ ⊒ 1 > 0 case terminal_failure_2 V_N V_T : Type R : V_N β†’ PE V_N V_T a✝ : V_T xs✝ : List V_T ⊒ 1 > 0 case nonTerminal V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T o : Option (List V_T) A✝ : V_N n✝ : β„• a✝ : Interpretation V_N V_T R (R A✝, xs) (n✝, o) ⊒ n✝ + 1 > 0 case seq_success V_N V_T : Type R : V_N β†’ PE V_N V_T e1✝ e2✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : β„• a✝¹ : Interpretation V_N V_T R (e1✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e2✝, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ⊒ n1✝ + n2✝ + 1 > 0 case seq_failure_1 V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T e1✝ e2✝ : PE V_N V_T n✝ : β„• a✝ : Interpretation V_N V_T R (e1✝, xs) (n✝, none) ⊒ n✝ + 1 > 0 case seq_failure_2 V_N V_T : Type R : V_N β†’ PE V_N V_T e1✝ e2✝ : PE V_N V_T xs✝ ys✝ : List V_T n1✝ n2✝ : β„• a✝¹ : Interpretation V_N V_T R (e1✝, xs✝ ++ ys✝) (n1✝, some xs✝) a✝ : Interpretation V_N V_T R (e2✝, ys✝) (n2✝, none) ⊒ n1✝ + n2✝ + 1 > 0 case choice_1 V_N V_T : Type R : V_N β†’ PE V_N V_T e1✝ e2✝ : PE V_N V_T xs✝ ys✝ : List V_T n✝ : β„• a✝ : Interpretation V_N V_T R (e1✝, xs✝ ++ ys✝) (n✝, some xs✝) ⊒ n✝ + 1 > 0 case choice_2 V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T o : Option (List V_T) e1✝ e2✝ : PE V_N V_T n1✝ n2✝ : β„• a✝¹ : Interpretation V_N V_T R (e1✝, xs) (n1✝, none) a✝ : Interpretation V_N V_T R (e2✝, xs) (n2✝, o) ⊒ n1✝ + n2✝ + 1 > 0 case star_repetition V_N V_T : Type R : V_N β†’ PE V_N V_T e✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : β„• a✝¹ : Interpretation V_N V_T R (e✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e✝.star, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ⊒ n1✝ + n2✝ + 1 > 0 case star_termination V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : β„• a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ⊒ n✝ + 1 > 0 case notP_1 V_N V_T : Type R : V_N β†’ PE V_N V_T e✝ : PE V_N V_T xs✝ ys✝ : List V_T n✝ : β„• a✝ : Interpretation V_N V_T R (e✝, xs✝ ++ ys✝) (n✝, some xs✝) ⊒ n✝ + 1 > 0 case notP_2 V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : β„• a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ⊒ n✝ + 1 > 0
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationSteps
[221, 1]
[233, 10]
all_goals omega
case empty V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T ⊒ 1 > 0 case terminal_success V_N V_T : Type R : V_N β†’ PE V_N V_T a✝ : V_T xs✝ : List V_T ⊒ 1 > 0 case terminal_failure_1 V_N V_T : Type R : V_N β†’ PE V_N V_T a✝¹ b✝ : V_T xs✝ : List V_T a✝ : Β¬a✝¹ = b✝ ⊒ 1 > 0 case terminal_failure_2 V_N V_T : Type R : V_N β†’ PE V_N V_T a✝ : V_T xs✝ : List V_T ⊒ 1 > 0 case nonTerminal V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T o : Option (List V_T) A✝ : V_N n✝ : β„• a✝ : Interpretation V_N V_T R (R A✝, xs) (n✝, o) ⊒ n✝ + 1 > 0 case seq_success V_N V_T : Type R : V_N β†’ PE V_N V_T e1✝ e2✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : β„• a✝¹ : Interpretation V_N V_T R (e1✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e2✝, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ⊒ n1✝ + n2✝ + 1 > 0 case seq_failure_1 V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T e1✝ e2✝ : PE V_N V_T n✝ : β„• a✝ : Interpretation V_N V_T R (e1✝, xs) (n✝, none) ⊒ n✝ + 1 > 0 case seq_failure_2 V_N V_T : Type R : V_N β†’ PE V_N V_T e1✝ e2✝ : PE V_N V_T xs✝ ys✝ : List V_T n1✝ n2✝ : β„• a✝¹ : Interpretation V_N V_T R (e1✝, xs✝ ++ ys✝) (n1✝, some xs✝) a✝ : Interpretation V_N V_T R (e2✝, ys✝) (n2✝, none) ⊒ n1✝ + n2✝ + 1 > 0 case choice_1 V_N V_T : Type R : V_N β†’ PE V_N V_T e1✝ e2✝ : PE V_N V_T xs✝ ys✝ : List V_T n✝ : β„• a✝ : Interpretation V_N V_T R (e1✝, xs✝ ++ ys✝) (n✝, some xs✝) ⊒ n✝ + 1 > 0 case choice_2 V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T o : Option (List V_T) e1✝ e2✝ : PE V_N V_T n1✝ n2✝ : β„• a✝¹ : Interpretation V_N V_T R (e1✝, xs) (n1✝, none) a✝ : Interpretation V_N V_T R (e2✝, xs) (n2✝, o) ⊒ n1✝ + n2✝ + 1 > 0 case star_repetition V_N V_T : Type R : V_N β†’ PE V_N V_T e✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : β„• a✝¹ : Interpretation V_N V_T R (e✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e✝.star, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ⊒ n1✝ + n2✝ + 1 > 0 case star_termination V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : β„• a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ⊒ n✝ + 1 > 0 case notP_1 V_N V_T : Type R : V_N β†’ PE V_N V_T e✝ : PE V_N V_T xs✝ ys✝ : List V_T n✝ : β„• a✝ : Interpretation V_N V_T R (e✝, xs✝ ++ ys✝) (n✝, some xs✝) ⊒ n✝ + 1 > 0 case notP_2 V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : β„• a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ⊒ n✝ + 1 > 0
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationSteps
[221, 1]
[233, 10]
omega
case notP_2 V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : β„• a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ⊒ n✝ + 1 > 0
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
EmptyStringPrefix
[236, 1]
[241, 27]
exact List.nil_prefix xs
α : Type xs : List α ⊒ [].IsPrefix xs
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
CharPrefix
[244, 1]
[250, 40]
exact List.prefix_iff_eq_take.mpr rfl
α : Type x : α xs : List α ⊒ [x].IsPrefix (x :: xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
PrefixAppend
[253, 1]
[258, 33]
exact List.prefix_append xs ys
α : Type xs ys : List α ⊒ xs.IsPrefix (xs ++ ys)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
induction n using Nat.strongInductionOn generalizing e
V_N V_T : Type R : V_N β†’ PE V_N V_T e : PE V_N V_T xs ys : List V_T n : β„• h1 : Interpretation V_N V_T R (e, xs) (n, some ys) ⊒ ys.IsPrefix xs
case ind V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T n✝ : β„• a✝ : βˆ€ m < n✝, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs e : PE V_N V_T h1 : Interpretation V_N V_T R (e, xs) (n✝, some ys) ⊒ ys.IsPrefix xs
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
cases h1
V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T n : β„• ih : βˆ€ m < n, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs e : PE V_N V_T h1 : Interpretation V_N V_T R (e, xs) (n, some ys) ⊒ ys.IsPrefix xs
case empty V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T ih : βˆ€ m < 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) β†’ [].IsPrefix xs ⊒ [].IsPrefix xs case terminal_success V_N V_T : Type R : V_N β†’ PE V_N V_T a✝ : V_T xs✝ : List V_T ih : βˆ€ m < 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, a✝ :: xs✝) (m, some [a✝]) β†’ [a✝].IsPrefix (a✝ :: xs✝) ⊒ [a✝].IsPrefix (a✝ :: xs✝) case nonTerminal V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T A✝ : V_N n✝ : β„• ih : βˆ€ m < n✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs a✝ : Interpretation V_N V_T R (R A✝, xs) (n✝, some ys) ⊒ ys.IsPrefix xs case seq_success V_N V_T : Type R : V_N β†’ PE V_N V_T e1✝ e2✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : β„• a✝¹ : Interpretation V_N V_T R (e1✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e2✝, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ih : βˆ€ m < n1✝ + n2✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs_1✝ ++ xs_2✝ ++ ys✝) (m, some (xs_1✝ ++ xs_2✝)) β†’ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) ⊒ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) case choice_1 V_N V_T : Type R : V_N β†’ PE V_N V_T ys : List V_T e1✝ e2✝ : PE V_N V_T ys✝ : List V_T n✝ : β„• a✝ : Interpretation V_N V_T R (e1✝, ys ++ ys✝) (n✝, some ys) ih : βˆ€ m < n✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, ys ++ ys✝) (m, some ys) β†’ ys.IsPrefix (ys ++ ys✝) ⊒ ys.IsPrefix (ys ++ ys✝) case choice_2 V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T e1✝ e2✝ : PE V_N V_T n1✝ n2✝ : β„• a✝¹ : Interpretation V_N V_T R (e1✝, xs) (n1✝, none) ih : βˆ€ m < n1✝ + n2✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs a✝ : Interpretation V_N V_T R (e2✝, xs) (n2✝, some ys) ⊒ ys.IsPrefix xs case star_repetition V_N V_T : Type R : V_N β†’ PE V_N V_T e✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : β„• a✝¹ : Interpretation V_N V_T R (e✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e✝.star, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ih : βˆ€ m < n1✝ + n2✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs_1✝ ++ xs_2✝ ++ ys✝) (m, some (xs_1✝ ++ xs_2✝)) β†’ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) ⊒ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) case star_termination V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : β„• a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ih : βˆ€ m < n✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) β†’ [].IsPrefix xs ⊒ [].IsPrefix xs case notP_2 V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : β„• a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ih : βˆ€ m < n✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) β†’ [].IsPrefix xs ⊒ [].IsPrefix xs
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
any_goals first | apply EmptyStringPrefix | apply CharPrefix | apply PrefixAppend
case empty V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T ih : βˆ€ m < 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) β†’ [].IsPrefix xs ⊒ [].IsPrefix xs case terminal_success V_N V_T : Type R : V_N β†’ PE V_N V_T a✝ : V_T xs✝ : List V_T ih : βˆ€ m < 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, a✝ :: xs✝) (m, some [a✝]) β†’ [a✝].IsPrefix (a✝ :: xs✝) ⊒ [a✝].IsPrefix (a✝ :: xs✝) case nonTerminal V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T A✝ : V_N n✝ : β„• ih : βˆ€ m < n✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs a✝ : Interpretation V_N V_T R (R A✝, xs) (n✝, some ys) ⊒ ys.IsPrefix xs case seq_success V_N V_T : Type R : V_N β†’ PE V_N V_T e1✝ e2✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : β„• a✝¹ : Interpretation V_N V_T R (e1✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e2✝, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ih : βˆ€ m < n1✝ + n2✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs_1✝ ++ xs_2✝ ++ ys✝) (m, some (xs_1✝ ++ xs_2✝)) β†’ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) ⊒ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) case choice_1 V_N V_T : Type R : V_N β†’ PE V_N V_T ys : List V_T e1✝ e2✝ : PE V_N V_T ys✝ : List V_T n✝ : β„• a✝ : Interpretation V_N V_T R (e1✝, ys ++ ys✝) (n✝, some ys) ih : βˆ€ m < n✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, ys ++ ys✝) (m, some ys) β†’ ys.IsPrefix (ys ++ ys✝) ⊒ ys.IsPrefix (ys ++ ys✝) case choice_2 V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T e1✝ e2✝ : PE V_N V_T n1✝ n2✝ : β„• a✝¹ : Interpretation V_N V_T R (e1✝, xs) (n1✝, none) ih : βˆ€ m < n1✝ + n2✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs a✝ : Interpretation V_N V_T R (e2✝, xs) (n2✝, some ys) ⊒ ys.IsPrefix xs case star_repetition V_N V_T : Type R : V_N β†’ PE V_N V_T e✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : β„• a✝¹ : Interpretation V_N V_T R (e✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e✝.star, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ih : βˆ€ m < n1✝ + n2✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs_1✝ ++ xs_2✝ ++ ys✝) (m, some (xs_1✝ ++ xs_2✝)) β†’ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) ⊒ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) case star_termination V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : β„• a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ih : βˆ€ m < n✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) β†’ [].IsPrefix xs ⊒ [].IsPrefix xs case notP_2 V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : β„• a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ih : βˆ€ m < n✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) β†’ [].IsPrefix xs ⊒ [].IsPrefix xs
case nonTerminal V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T A✝ : V_N n✝ : β„• ih : βˆ€ m < n✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs a✝ : Interpretation V_N V_T R (R A✝, xs) (n✝, some ys) ⊒ ys.IsPrefix xs case choice_2 V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T e1✝ e2✝ : PE V_N V_T n1✝ n2✝ : β„• a✝¹ : Interpretation V_N V_T R (e1✝, xs) (n1✝, none) ih : βˆ€ m < n1✝ + n2✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs a✝ : Interpretation V_N V_T R (e2✝, xs) (n2✝, some ys) ⊒ ys.IsPrefix xs
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
first | apply EmptyStringPrefix | apply CharPrefix | apply PrefixAppend
case notP_2 V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : β„• a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ih : βˆ€ m < n✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) β†’ [].IsPrefix xs ⊒ [].IsPrefix xs
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
apply EmptyStringPrefix
case notP_2 V_N V_T : Type R : V_N β†’ PE V_N V_T xs : List V_T e✝ : PE V_N V_T n✝ : β„• a✝ : Interpretation V_N V_T R (e✝, xs) (n✝, none) ih : βˆ€ m < n✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some []) β†’ [].IsPrefix xs ⊒ [].IsPrefix xs
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
apply CharPrefix
case terminal_success V_N V_T : Type R : V_N β†’ PE V_N V_T a✝ : V_T xs✝ : List V_T ih : βˆ€ m < 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, a✝ :: xs✝) (m, some [a✝]) β†’ [a✝].IsPrefix (a✝ :: xs✝) ⊒ [a✝].IsPrefix (a✝ :: xs✝)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
apply PrefixAppend
case star_repetition V_N V_T : Type R : V_N β†’ PE V_N V_T e✝ : PE V_N V_T xs_1✝ xs_2✝ ys✝ : List V_T n1✝ n2✝ : β„• a✝¹ : Interpretation V_N V_T R (e✝, xs_1✝ ++ xs_2✝ ++ ys✝) (n1✝, some xs_1✝) a✝ : Interpretation V_N V_T R (e✝.star, xs_2✝ ++ ys✝) (n2✝, some xs_2✝) ih : βˆ€ m < n1✝ + n2✝ + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs_1✝ ++ xs_2✝ ++ ys✝) (m, some (xs_1✝ ++ xs_2✝)) β†’ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝) ⊒ (xs_1✝ ++ xs_2✝).IsPrefix (xs_1✝ ++ xs_2✝ ++ ys✝)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
specialize ih n _ (R A)
V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T A : V_N n : β„• ih : βˆ€ m < n + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ⊒ ys.IsPrefix xs
V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T A : V_N n : β„• ih : βˆ€ m < n + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ⊒ n < n + 1 V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T A : V_N n : β„• ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ih : Interpretation V_N V_T R (R A, xs) (n, some ys) β†’ ys.IsPrefix xs ⊒ ys.IsPrefix xs
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
omega
V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T A : V_N n : β„• ih : βˆ€ m < n + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ⊒ n < n + 1
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
exact ih ih_1
V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T A : V_N n : β„• ih_1 : Interpretation V_N V_T R (R A, xs) (n, some ys) ih : Interpretation V_N V_T R (R A, xs) (n, some ys) β†’ ys.IsPrefix xs ⊒ ys.IsPrefix xs
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
specialize ih n2 _ e2
V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : β„• ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih : βˆ€ m < n1 + n2 + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ⊒ ys.IsPrefix xs
V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : β„• ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih : βˆ€ m < n1 + n2 + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ⊒ n2 < n1 + n2 + 1 V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : β„• ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ih : Interpretation V_N V_T R (e2, xs) (n2, some ys) β†’ ys.IsPrefix xs ⊒ ys.IsPrefix xs
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
omega
V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : β„• ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih : βˆ€ m < n1 + n2 + 1, βˆ€ (e : PE V_N V_T), Interpretation V_N V_T R (e, xs) (m, some ys) β†’ ys.IsPrefix xs ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ⊒ n2 < n1 + n2 + 1
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/PEG.lean
InterpretationPrefix
[264, 1]
[285, 20]
exact ih ih_2
V_N V_T : Type R : V_N β†’ PE V_N V_T xs ys : List V_T e1 e2 : PE V_N V_T n1 n2 : β„• ih_1 : Interpretation V_N V_T R (e1, xs) (n1, none) ih_2 : Interpretation V_N V_T R (e2, xs) (n2, some ys) ih : Interpretation V_N V_T R (e2, xs) (n2, some ys) β†’ ys.IsPrefix xs ⊒ ys.IsPrefix xs
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.fastAdmitsAux_and_fastReplaceFree_imp_isFreeSub
[125, 1]
[194, 21]
subst h2
F F' : Formula v u : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders F h2 : Rec.fastReplaceFree v u F = F' ⊒ IsSub F v u F'
F : Formula v u : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders F ⊒ IsSub F v u (Rec.fastReplaceFree v u F)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.fastAdmitsAux_and_fastReplaceFree_imp_isFreeSub
[125, 1]
[194, 21]
induction F generalizing binders
F : Formula v u : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders F ⊒ IsSub F v u (Rec.fastReplaceFree v u F)
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) ⊒ IsSub (pred_const_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (pred_const_ a✝¹ a✝)) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) ⊒ IsSub (pred_var_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (pred_var_ a✝¹ a✝)) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (eq_ a✝¹ a✝) ⊒ IsSub (eq_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (eq_ a✝¹ a✝)) case true_ v u : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders true_ ⊒ IsSub true_ v u (Rec.fastReplaceFree v u true_) case false_ v u : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders false_ ⊒ IsSub false_ v u (Rec.fastReplaceFree v u false_) case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders a✝.not_ ⊒ IsSub a✝.not_ v u (Rec.fastReplaceFree v u a✝.not_) case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ β†’ IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (a✝¹.imp_ a✝) ⊒ IsSub (a✝¹.imp_ a✝) v u (Rec.fastReplaceFree v u (a✝¹.imp_ a✝)) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ β†’ IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (a✝¹.and_ a✝) ⊒ IsSub (a✝¹.and_ a✝) v u (Rec.fastReplaceFree v u (a✝¹.and_ a✝)) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ β†’ IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (a✝¹.or_ a✝) ⊒ IsSub (a✝¹.or_ a✝) v u (Rec.fastReplaceFree v u (a✝¹.or_ a✝)) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ β†’ IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (a✝¹.iff_ a✝) ⊒ IsSub (a✝¹.iff_ a✝) v u (Rec.fastReplaceFree v u (a✝¹.iff_ a✝)) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (forall_ a✝¹ a✝) ⊒ IsSub (forall_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (forall_ a✝¹ a✝)) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (exists_ a✝¹ a✝) ⊒ IsSub (exists_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (exists_ a✝¹ a✝)) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (def_ a✝¹ a✝) ⊒ IsSub (def_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (def_ a✝¹ a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.fastAdmitsAux_and_fastReplaceFree_imp_isFreeSub
[125, 1]
[194, 21]
all_goals simp only [Rec.fastAdmitsAux] at h1 simp only [Rec.fastReplaceFree]
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) ⊒ IsSub (pred_const_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (pred_const_ a✝¹ a✝)) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) ⊒ IsSub (pred_var_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (pred_var_ a✝¹ a✝)) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (eq_ a✝¹ a✝) ⊒ IsSub (eq_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (eq_ a✝¹ a✝)) case true_ v u : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders true_ ⊒ IsSub true_ v u (Rec.fastReplaceFree v u true_) case false_ v u : VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders false_ ⊒ IsSub false_ v u (Rec.fastReplaceFree v u false_) case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders a✝.not_ ⊒ IsSub a✝.not_ v u (Rec.fastReplaceFree v u a✝.not_) case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ β†’ IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (a✝¹.imp_ a✝) ⊒ IsSub (a✝¹.imp_ a✝) v u (Rec.fastReplaceFree v u (a✝¹.imp_ a✝)) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ β†’ IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (a✝¹.and_ a✝) ⊒ IsSub (a✝¹.and_ a✝) v u (Rec.fastReplaceFree v u (a✝¹.and_ a✝)) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ β†’ IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (a✝¹.or_ a✝) ⊒ IsSub (a✝¹.or_ a✝) v u (Rec.fastReplaceFree v u (a✝¹.or_ a✝)) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ β†’ IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (a✝¹.iff_ a✝) ⊒ IsSub (a✝¹.iff_ a✝) v u (Rec.fastReplaceFree v u (a✝¹.iff_ a✝)) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (forall_ a✝¹ a✝) ⊒ IsSub (forall_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (forall_ a✝¹ a✝)) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (exists_ a✝¹ a✝) ⊒ IsSub (exists_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (exists_ a✝¹ a✝)) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (def_ a✝¹ a✝) ⊒ IsSub (def_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (def_ a✝¹ a✝))
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ IsSub (pred_const_ a✝¹ a✝) v u (pred_const_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ IsSub (pred_var_ a✝¹ a✝) v u (pred_var_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v = a✝¹ ∨ v = a✝ β†’ u βˆ‰ binders ⊒ IsSub (eq_ a✝¹ a✝) v u (eq_ (if v = a✝¹ then u else a✝¹) (if v = a✝ then u else a✝)) case true_ v u : VarName binders : Finset VarName h1 : True ⊒ IsSub true_ v u true_ case false_ v u : VarName binders : Finset VarName h1 : True ⊒ IsSub false_ v u false_ case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders a✝ ⊒ IsSub a✝.not_ v u (Rec.fastReplaceFree v u a✝).not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ β†’ IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders a✝¹ ∧ Rec.fastAdmitsAux v u binders a✝ ⊒ IsSub (a✝¹.imp_ a✝) v u ((Rec.fastReplaceFree v u a✝¹).imp_ (Rec.fastReplaceFree v u a✝)) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ β†’ IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders a✝¹ ∧ Rec.fastAdmitsAux v u binders a✝ ⊒ IsSub (a✝¹.and_ a✝) v u ((Rec.fastReplaceFree v u a✝¹).and_ (Rec.fastReplaceFree v u a✝)) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ β†’ IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders a✝¹ ∧ Rec.fastAdmitsAux v u binders a✝ ⊒ IsSub (a✝¹.or_ a✝) v u ((Rec.fastReplaceFree v u a✝¹).or_ (Rec.fastReplaceFree v u a✝)) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝¹ β†’ IsSub a✝¹ v u (Rec.fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders a✝¹ ∧ Rec.fastAdmitsAux v u binders a✝ ⊒ IsSub (a✝¹.iff_ a✝) v u ((Rec.fastReplaceFree v u a✝¹).iff_ (Rec.fastReplaceFree v u a✝)) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : v = a✝¹ ∨ Rec.fastAdmitsAux v u (binders βˆͺ {a✝¹}) a✝ ⊒ IsSub (forall_ a✝¹ a✝) v u (if v = a✝¹ then forall_ a✝¹ a✝ else forall_ a✝¹ (Rec.fastReplaceFree v u a✝)) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders a✝ β†’ IsSub a✝ v u (Rec.fastReplaceFree v u a✝) binders : Finset VarName h1 : v = a✝¹ ∨ Rec.fastAdmitsAux v u (binders βˆͺ {a✝¹}) a✝ ⊒ IsSub (exists_ a✝¹ a✝) v u (if v = a✝¹ then exists_ a✝¹ a✝ else exists_ a✝¹ (Rec.fastReplaceFree v u a✝)) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ IsSub (def_ a✝¹ a✝) v u (def_ a✝¹ (List.map (fun x => if v = x then u else x) a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.fastAdmitsAux_and_fastReplaceFree_imp_isFreeSub
[125, 1]
[194, 21]
case pred_const_ X xs | pred_var_ X xs => first | apply IsSub.pred_const_ | apply IsSub.pred_var_
v u : VarName X : PredName xs : List VarName binders : Finset VarName h1 : v ∈ xs β†’ u βˆ‰ binders ⊒ IsSub (pred_var_ X xs) v u (pred_var_ X (List.map (fun x => if v = x then u else x) xs))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.fastAdmitsAux_and_fastReplaceFree_imp_isFreeSub
[125, 1]
[194, 21]
case eq_ x y => apply IsSub.eq_
v u x y : VarName binders : Finset VarName h1 : v = x ∨ v = y β†’ u βˆ‰ binders ⊒ IsSub (eq_ x y) v u (eq_ (if v = x then u else x) (if v = y then u else y))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.fastAdmitsAux_and_fastReplaceFree_imp_isFreeSub
[125, 1]
[194, 21]
case true_ | false_ => first | apply IsSub.true_ | apply IsSub.false_
v u : VarName binders : Finset VarName h1 : True ⊒ IsSub false_ v u false_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.fastAdmitsAux_and_fastReplaceFree_imp_isFreeSub
[125, 1]
[194, 21]
case not_ phi phi_ih => apply IsSub.not_ exact phi_ih binders h1
v u : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Rec.fastAdmitsAux v u binders phi β†’ IsSub phi v u (Rec.fastReplaceFree v u phi) binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders phi ⊒ IsSub phi.not_ v u (Rec.fastReplaceFree v u phi).not_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.fastAdmitsAux_and_fastReplaceFree_imp_isFreeSub
[125, 1]
[194, 21]
case def_ X xs => apply IsSub.def_
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v ∈ xs β†’ u βˆ‰ binders ⊒ IsSub (def_ X xs) v u (def_ X (List.map (fun x => if v = x then u else x) xs))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Ind/Sub.lean
FOL.NV.Sub.Var.One.Ind.fastAdmitsAux_and_fastReplaceFree_imp_isFreeSub
[125, 1]
[194, 21]
simp only [Rec.fastAdmitsAux] at h1
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Rec.fastAdmitsAux v u binders (def_ a✝¹ a✝) ⊒ IsSub (def_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (def_ a✝¹ a✝))
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ IsSub (def_ a✝¹ a✝) v u (Rec.fastReplaceFree v u (def_ a✝¹ a✝))