url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | exact c1 | case h
v u x : VarName
phi : Formula
phi_ih :
∀ (binders : Finset VarName),
v ∉ binders →
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : v = x
h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders ∪ {x}) phi) = toIsBoundAux binders (exists_ x phi)
⊢ v = x | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | right | v u x : VarName
phi : Formula
phi_ih :
∀ (binders : Finset VarName),
v ∉ binders →
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders ∪ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
⊢ v = x ∨ fastAdmitsAux v u (binders ∪ {x}) phi | case h
v u x : VarName
phi : Formula
phi_ih :
∀ (binders : Finset VarName),
v ∉ binders →
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders ∪ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
⊢ fastAdmitsAux v u (binders ∪ {x}) phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | apply phi_ih | case h
v u x : VarName
phi : Formula
phi_ih :
∀ (binders : Finset VarName),
v ∉ binders →
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders ∪ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
⊢ fastAdmitsAux v u (binders ∪ {x}) phi | case h.h1
v u x : VarName
phi : Formula
phi_ih :
∀ (binders : Finset VarName),
v ∉ binders →
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders ∪ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
⊢ v ∉ binders ∪ {x}
case h.h2
v u x : VarName
phi : Formula
phi_ih :
∀ (binders : Finset VarName),
v ∉ binders →
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders ∪ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
⊢ toIsBoundAux (binders ∪ {x}) phi = toIsBoundAux (binders ∪ {x}) (fastReplaceFree v u phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | simp | case h.h1
v u x : VarName
phi : Formula
phi_ih :
∀ (binders : Finset VarName),
v ∉ binders →
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders ∪ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
⊢ v ∉ binders ∪ {x} | case h.h1
v u x : VarName
phi : Formula
phi_ih :
∀ (binders : Finset VarName),
v ∉ binders →
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders ∪ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
⊢ v ∉ binders ∧ ¬v = x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | tauto | case h.h1
v u x : VarName
phi : Formula
phi_ih :
∀ (binders : Finset VarName),
v ∉ binders →
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders ∪ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
⊢ v ∉ binders ∧ ¬v = x | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | simp only [toIsBoundAux] at h2 | case h.h2
v u x : VarName
phi : Formula
phi_ih :
∀ (binders : Finset VarName),
v ∉ binders →
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders ∪ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
⊢ toIsBoundAux (binders ∪ {x}) phi = toIsBoundAux (binders ∪ {x}) (fastReplaceFree v u phi) | case h.h2
v u x : VarName
phi : Formula
phi_ih :
∀ (binders : Finset VarName),
v ∉ binders →
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders ∪ {x}) phi) =
BoolFormula.forall_ (decide True) (toIsBoundAux (binders ∪ {x}) (fastReplaceFree v u phi))
⊢ toIsBoundAux (binders ∪ {x}) phi = toIsBoundAux (binders ∪ {x}) (fastReplaceFree v u phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | simp at h2 | case h.h2
v u x : VarName
phi : Formula
phi_ih :
∀ (binders : Finset VarName),
v ∉ binders →
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders ∪ {x}) phi) =
BoolFormula.forall_ (decide True) (toIsBoundAux (binders ∪ {x}) (fastReplaceFree v u phi))
⊢ toIsBoundAux (binders ∪ {x}) phi = toIsBoundAux (binders ∪ {x}) (fastReplaceFree v u phi) | case h.h2
v u x : VarName
phi : Formula
phi_ih :
∀ (binders : Finset VarName),
v ∉ binders →
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
h2 : toIsBoundAux (binders ∪ {x}) phi = toIsBoundAux (binders ∪ {x}) (fastReplaceFree v u phi)
⊢ toIsBoundAux (binders ∪ {x}) phi = toIsBoundAux (binders ∪ {x}) (fastReplaceFree v u phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | exact h2 | case h.h2
v u x : VarName
phi : Formula
phi_ih :
∀ (binders : Finset VarName),
v ∉ binders →
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
h2 : toIsBoundAux (binders ∪ {x}) phi = toIsBoundAux (binders ∪ {x}) (fastReplaceFree v u phi)
⊢ toIsBoundAux (binders ∪ {x}) phi = toIsBoundAux (binders ∪ {x}) (fastReplaceFree v u phi) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_self | [760, 1] | [769, 10] | induction F generalizing binders | F : Formula
v : VarName
binders : Finset VarName
⊢ admitsAux v v binders F | case pred_const_
v : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
⊢ admitsAux v v binders (pred_const_ a✝¹ a✝)
case pred_var_
v : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
⊢ admitsAux v v binders (pred_var_ a✝¹ a✝)
case eq_
v a✝¹ a✝ : VarName
binders : Finset VarName
⊢ admitsAux v v binders (eq_ a✝¹ a✝)
case true_
v : VarName
binders : Finset VarName
⊢ admitsAux v v binders true_
case false_
v : VarName
binders : Finset VarName
⊢ admitsAux v v binders false_
case not_
v : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders a✝.not_
case imp_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders (a✝¹.imp_ a✝)
case and_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders (a✝¹.and_ a✝)
case or_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders (a✝¹.or_ a✝)
case iff_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders (a✝¹.iff_ a✝)
case forall_
v a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders (forall_ a✝¹ a✝)
case exists_
v a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders (exists_ a✝¹ a✝)
case def_
v : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
⊢ admitsAux v v binders (def_ a✝¹ a✝) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_self | [760, 1] | [769, 10] | all_goals
simp only [admitsAux] | case pred_const_
v : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
⊢ admitsAux v v binders (pred_const_ a✝¹ a✝)
case pred_var_
v : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
⊢ admitsAux v v binders (pred_var_ a✝¹ a✝)
case eq_
v a✝¹ a✝ : VarName
binders : Finset VarName
⊢ admitsAux v v binders (eq_ a✝¹ a✝)
case true_
v : VarName
binders : Finset VarName
⊢ admitsAux v v binders true_
case false_
v : VarName
binders : Finset VarName
⊢ admitsAux v v binders false_
case not_
v : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders a✝.not_
case imp_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders (a✝¹.imp_ a✝)
case and_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders (a✝¹.and_ a✝)
case or_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders (a✝¹.or_ a✝)
case iff_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders (a✝¹.iff_ a✝)
case forall_
v a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders (forall_ a✝¹ a✝)
case exists_
v a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders (exists_ a✝¹ a✝)
case def_
v : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
⊢ admitsAux v v binders (def_ a✝¹ a✝) | case pred_const_
v : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
⊢ v ∈ a✝ ∧ v ∉ binders → v ∉ binders
case pred_var_
v : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
⊢ v ∈ a✝ ∧ v ∉ binders → v ∉ binders
case eq_
v a✝¹ a✝ : VarName
binders : Finset VarName
⊢ (v = a✝¹ ∨ v = a✝) ∧ v ∉ binders → v ∉ binders
case not_
v : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders a✝
case imp_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders a✝¹ ∧ admitsAux v v binders a✝
case and_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders a✝¹ ∧ admitsAux v v binders a✝
case or_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders a✝¹ ∧ admitsAux v v binders a✝
case iff_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders a✝¹ ∧ admitsAux v v binders a✝
case forall_
v a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v (binders ∪ {a✝¹}) a✝
case exists_
v a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v (binders ∪ {a✝¹}) a✝
case def_
v : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
⊢ v ∈ a✝ ∧ v ∉ binders → v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_self | [760, 1] | [769, 10] | all_goals
tauto | case pred_const_
v : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
⊢ v ∈ a✝ ∧ v ∉ binders → v ∉ binders
case pred_var_
v : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
⊢ v ∈ a✝ ∧ v ∉ binders → v ∉ binders
case eq_
v a✝¹ a✝ : VarName
binders : Finset VarName
⊢ (v = a✝¹ ∨ v = a✝) ∧ v ∉ binders → v ∉ binders
case not_
v : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders a✝
case imp_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders a✝¹ ∧ admitsAux v v binders a✝
case and_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders a✝¹ ∧ admitsAux v v binders a✝
case or_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders a✝¹ ∧ admitsAux v v binders a✝
case iff_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v binders a✝¹ ∧ admitsAux v v binders a✝
case forall_
v a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v (binders ∪ {a✝¹}) a✝
case exists_
v a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), admitsAux v v binders a✝
binders : Finset VarName
⊢ admitsAux v v (binders ∪ {a✝¹}) a✝
case def_
v : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
⊢ v ∈ a✝ ∧ v ∉ binders → v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_self | [760, 1] | [769, 10] | simp only [admitsAux] | case def_
v : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
⊢ admitsAux v v binders (def_ a✝¹ a✝) | case def_
v : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
⊢ v ∈ a✝ ∧ v ∉ binders → v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_self | [760, 1] | [769, 10] | tauto | case def_
v : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
⊢ v ∈ a✝ ∧ v ∉ binders → v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admits_self | [772, 1] | [778, 23] | simp only [admits] | F : Formula
v : VarName
⊢ admits v v F | F : Formula
v : VarName
⊢ admitsAux v v ∅ F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admits_self | [772, 1] | [778, 23] | apply admitsAux_self | F : Formula
v : VarName
⊢ admitsAux v v ∅ F | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | induction F generalizing binders | F : Formula
v u : VarName
binders : Finset VarName
h1 : ¬isFreeIn v F
⊢ admitsAux v u binders F | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isFreeIn v (pred_const_ a✝¹ a✝)
⊢ admitsAux v u binders (pred_const_ a✝¹ a✝)
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isFreeIn v (pred_var_ a✝¹ a✝)
⊢ admitsAux v u binders (pred_var_ a✝¹ a✝)
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : ¬isFreeIn v (eq_ a✝¹ a✝)
⊢ admitsAux v u binders (eq_ a✝¹ a✝)
case true_
v u : VarName
binders : Finset VarName
h1 : ¬isFreeIn v true_
⊢ admitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : ¬isFreeIn v false_
⊢ admitsAux v u binders false_
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v a✝.not_
⊢ admitsAux v u binders a✝.not_
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (a✝¹.imp_ a✝)
⊢ admitsAux v u binders (a✝¹.imp_ a✝)
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (a✝¹.and_ a✝)
⊢ admitsAux v u binders (a✝¹.and_ a✝)
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (a✝¹.or_ a✝)
⊢ admitsAux v u binders (a✝¹.or_ a✝)
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (a✝¹.iff_ a✝)
⊢ admitsAux v u binders (a✝¹.iff_ a✝)
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (forall_ a✝¹ a✝)
⊢ admitsAux v u binders (forall_ a✝¹ a✝)
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (exists_ a✝¹ a✝)
⊢ admitsAux v u binders (exists_ a✝¹ a✝)
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isFreeIn v (def_ a✝¹ a✝)
⊢ admitsAux v u binders (def_ a✝¹ a✝) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | all_goals
simp only [isFreeIn] at h1
simp only [admitsAux] | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isFreeIn v (pred_const_ a✝¹ a✝)
⊢ admitsAux v u binders (pred_const_ a✝¹ a✝)
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isFreeIn v (pred_var_ a✝¹ a✝)
⊢ admitsAux v u binders (pred_var_ a✝¹ a✝)
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : ¬isFreeIn v (eq_ a✝¹ a✝)
⊢ admitsAux v u binders (eq_ a✝¹ a✝)
case true_
v u : VarName
binders : Finset VarName
h1 : ¬isFreeIn v true_
⊢ admitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : ¬isFreeIn v false_
⊢ admitsAux v u binders false_
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v a✝.not_
⊢ admitsAux v u binders a✝.not_
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (a✝¹.imp_ a✝)
⊢ admitsAux v u binders (a✝¹.imp_ a✝)
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (a✝¹.and_ a✝)
⊢ admitsAux v u binders (a✝¹.and_ a✝)
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (a✝¹.or_ a✝)
⊢ admitsAux v u binders (a✝¹.or_ a✝)
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (a✝¹.iff_ a✝)
⊢ admitsAux v u binders (a✝¹.iff_ a✝)
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (forall_ a✝¹ a✝)
⊢ admitsAux v u binders (forall_ a✝¹ a✝)
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (exists_ a✝¹ a✝)
⊢ admitsAux v u binders (exists_ a✝¹ a✝)
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isFreeIn v (def_ a✝¹ a✝)
⊢ admitsAux v u binders (def_ a✝¹ a✝) | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ a✝
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ a✝
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : ¬(v = a✝¹ ∨ v = a✝)
⊢ (v = a✝¹ ∨ v = a✝) ∧ v ∉ binders → u ∉ binders
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v a✝
⊢ admitsAux v u binders a✝
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝)
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝)
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝)
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝)
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(¬v = a✝¹ ∧ isFreeIn v a✝)
⊢ admitsAux v u (binders ∪ {a✝¹}) a✝
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(¬v = a✝¹ ∧ isFreeIn v a✝)
⊢ admitsAux v u (binders ∪ {a✝¹}) a✝
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ a✝
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | all_goals
tauto | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ a✝
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ a✝
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : ¬(v = a✝¹ ∨ v = a✝)
⊢ (v = a✝¹ ∨ v = a✝) ∧ v ∉ binders → u ∉ binders
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v a✝
⊢ admitsAux v u binders a✝
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝)
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝)
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝)
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝)
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ a✝
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | simp only [isFreeIn] at h1 | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isFreeIn v (def_ a✝¹ a✝)
⊢ admitsAux v u binders (def_ a✝¹ a✝) | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ a✝
⊢ admitsAux v u binders (def_ a✝¹ a✝) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | simp only [admitsAux] | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ a✝
⊢ admitsAux v u binders (def_ a✝¹ a✝) | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ a✝
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | by_cases c1 : v = x | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isFreeIn v phi → admitsAux v u binders phi
binders : Finset VarName
h1 : ¬(¬v = x ∧ isFreeIn v phi)
⊢ admitsAux v u (binders ∪ {x}) phi | case pos
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isFreeIn v phi → admitsAux v u binders phi
binders : Finset VarName
h1 : ¬(¬v = x ∧ isFreeIn v phi)
c1 : v = x
⊢ admitsAux v u (binders ∪ {x}) phi
case neg
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isFreeIn v phi → admitsAux v u binders phi
binders : Finset VarName
h1 : ¬(¬v = x ∧ isFreeIn v phi)
c1 : ¬v = x
⊢ admitsAux v u (binders ∪ {x}) phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | apply mem_binders_imp_admitsAux | case pos
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isFreeIn v phi → admitsAux v u binders phi
binders : Finset VarName
h1 : ¬(¬v = x ∧ isFreeIn v phi)
c1 : v = x
⊢ admitsAux v u (binders ∪ {x}) phi | case pos.h1
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isFreeIn v phi → admitsAux v u binders phi
binders : Finset VarName
h1 : ¬(¬v = x ∧ isFreeIn v phi)
c1 : v = x
⊢ v ∈ binders ∪ {x} |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | simp | case pos.h1
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isFreeIn v phi → admitsAux v u binders phi
binders : Finset VarName
h1 : ¬(¬v = x ∧ isFreeIn v phi)
c1 : v = x
⊢ v ∈ binders ∪ {x} | case pos.h1
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isFreeIn v phi → admitsAux v u binders phi
binders : Finset VarName
h1 : ¬(¬v = x ∧ isFreeIn v phi)
c1 : v = x
⊢ v ∈ binders ∨ v = x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | tauto | case pos.h1
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isFreeIn v phi → admitsAux v u binders phi
binders : Finset VarName
h1 : ¬(¬v = x ∧ isFreeIn v phi)
c1 : v = x
⊢ v ∈ binders ∨ v = x | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | apply phi_ih | case neg
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isFreeIn v phi → admitsAux v u binders phi
binders : Finset VarName
h1 : ¬(¬v = x ∧ isFreeIn v phi)
c1 : ¬v = x
⊢ admitsAux v u (binders ∪ {x}) phi | case neg.h1
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isFreeIn v phi → admitsAux v u binders phi
binders : Finset VarName
h1 : ¬(¬v = x ∧ isFreeIn v phi)
c1 : ¬v = x
⊢ ¬isFreeIn v phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | tauto | case neg.h1
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isFreeIn v phi → admitsAux v u binders phi
binders : Finset VarName
h1 : ¬(¬v = x ∧ isFreeIn v phi)
c1 : ¬v = x
⊢ ¬isFreeIn v phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | tauto | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ a✝
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admits | [805, 1] | [812, 46] | simp only [admits] | F : Formula
v u : VarName
h1 : ¬isFreeIn v F
⊢ admits v u F | F : Formula
v u : VarName
h1 : ¬isFreeIn v F
⊢ admitsAux v u ∅ F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admits | [805, 1] | [812, 46] | exact not_isFreeIn_imp_admitsAux F v u ∅ h1 | F : Formula
v u : VarName
h1 : ¬isFreeIn v F
⊢ admitsAux v u ∅ F | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | induction F generalizing binders | F : Formula
v u : VarName
binders : Finset VarName
h1 : ¬isBoundIn u F
h2 : u ∉ binders
⊢ admitsAux v u binders F | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isBoundIn u (pred_const_ a✝¹ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (pred_const_ a✝¹ a✝)
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isBoundIn u (pred_var_ a✝¹ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (pred_var_ a✝¹ a✝)
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : ¬isBoundIn u (eq_ a✝¹ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (eq_ a✝¹ a✝)
case true_
v u : VarName
binders : Finset VarName
h1 : ¬isBoundIn u true_
h2 : u ∉ binders
⊢ admitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : ¬isBoundIn u false_
h2 : u ∉ binders
⊢ admitsAux v u binders false_
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u a✝.not_
h2 : u ∉ binders
⊢ admitsAux v u binders a✝.not_
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (a✝¹.imp_ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (a✝¹.imp_ a✝)
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (a✝¹.and_ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (a✝¹.and_ a✝)
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (a✝¹.or_ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (a✝¹.or_ a✝)
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (a✝¹.iff_ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (a✝¹.iff_ a✝)
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (forall_ a✝¹ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (forall_ a✝¹ a✝)
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (exists_ a✝¹ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (exists_ a✝¹ a✝)
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isBoundIn u (def_ a✝¹ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (def_ a✝¹ a✝) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | all_goals
simp only [isBoundIn] at h1
simp only [admitsAux] | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isBoundIn u (pred_const_ a✝¹ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (pred_const_ a✝¹ a✝)
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isBoundIn u (pred_var_ a✝¹ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (pred_var_ a✝¹ a✝)
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : ¬isBoundIn u (eq_ a✝¹ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (eq_ a✝¹ a✝)
case true_
v u : VarName
binders : Finset VarName
h1 : ¬isBoundIn u true_
h2 : u ∉ binders
⊢ admitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : ¬isBoundIn u false_
h2 : u ∉ binders
⊢ admitsAux v u binders false_
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u a✝.not_
h2 : u ∉ binders
⊢ admitsAux v u binders a✝.not_
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (a✝¹.imp_ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (a✝¹.imp_ a✝)
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (a✝¹.and_ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (a✝¹.and_ a✝)
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (a✝¹.or_ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (a✝¹.or_ a✝)
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (a✝¹.iff_ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (a✝¹.iff_ a✝)
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (forall_ a✝¹ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (forall_ a✝¹ a✝)
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (exists_ a✝¹ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (exists_ a✝¹ a✝)
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isBoundIn u (def_ a✝¹ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (def_ a✝¹ a✝) | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ (v = a✝¹ ∨ v = a✝) ∧ v ∉ binders → u ∉ binders
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u a✝
h2 : u ∉ binders
⊢ admitsAux v u binders a✝
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(u = a✝¹ ∨ isBoundIn u a✝)
h2 : u ∉ binders
⊢ admitsAux v u (binders ∪ {a✝¹}) a✝
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(u = a✝¹ ∨ isBoundIn u a✝)
h2 : u ∉ binders
⊢ admitsAux v u (binders ∪ {a✝¹}) a✝
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | case forall_ x phi phi_ih | exists_ x phi phi_ih =>
push_neg at h1
cases h1
case intro h1_left h1_right =>
apply phi_ih (binders ∪ {x}) h1_right
simp
tauto | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → admitsAux v u binders phi
binders : Finset VarName
h1 : ¬(u = x ∨ isBoundIn u phi)
h2 : u ∉ binders
⊢ admitsAux v u (binders ∪ {x}) phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | all_goals
tauto | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ (v = a✝¹ ∨ v = a✝) ∧ v ∉ binders → u ∉ binders
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u a✝
h2 : u ∉ binders
⊢ admitsAux v u binders a✝
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | simp only [isBoundIn] at h1 | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isBoundIn u (def_ a✝¹ a✝)
h2 : u ∉ binders
⊢ admitsAux v u binders (def_ a✝¹ a✝) | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ admitsAux v u binders (def_ a✝¹ a✝) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | simp only [admitsAux] | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ admitsAux v u binders (def_ a✝¹ a✝) | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | push_neg at h1 | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → admitsAux v u binders phi
binders : Finset VarName
h1 : ¬(u = x ∨ isBoundIn u phi)
h2 : u ∉ binders
⊢ admitsAux v u (binders ∪ {x}) phi | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → admitsAux v u binders phi
binders : Finset VarName
h2 : u ∉ binders
h1 : u ≠ x ∧ ¬isBoundIn u phi
⊢ admitsAux v u (binders ∪ {x}) phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | cases h1 | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → admitsAux v u binders phi
binders : Finset VarName
h2 : u ∉ binders
h1 : u ≠ x ∧ ¬isBoundIn u phi
⊢ admitsAux v u (binders ∪ {x}) phi | case intro
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → admitsAux v u binders phi
binders : Finset VarName
h2 : u ∉ binders
left✝ : u ≠ x
right✝ : ¬isBoundIn u phi
⊢ admitsAux v u (binders ∪ {x}) phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | case intro h1_left h1_right =>
apply phi_ih (binders ∪ {x}) h1_right
simp
tauto | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → admitsAux v u binders phi
binders : Finset VarName
h2 : u ∉ binders
h1_left : u ≠ x
h1_right : ¬isBoundIn u phi
⊢ admitsAux v u (binders ∪ {x}) phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | apply phi_ih (binders ∪ {x}) h1_right | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → admitsAux v u binders phi
binders : Finset VarName
h2 : u ∉ binders
h1_left : u ≠ x
h1_right : ¬isBoundIn u phi
⊢ admitsAux v u (binders ∪ {x}) phi | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → admitsAux v u binders phi
binders : Finset VarName
h2 : u ∉ binders
h1_left : u ≠ x
h1_right : ¬isBoundIn u phi
⊢ u ∉ binders ∪ {x} |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | simp | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → admitsAux v u binders phi
binders : Finset VarName
h2 : u ∉ binders
h1_left : u ≠ x
h1_right : ¬isBoundIn u phi
⊢ u ∉ binders ∪ {x} | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → admitsAux v u binders phi
binders : Finset VarName
h2 : u ∉ binders
h1_left : u ≠ x
h1_right : ¬isBoundIn u phi
⊢ u ∉ binders ∧ ¬u = x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | tauto | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → admitsAux v u binders phi
binders : Finset VarName
h2 : u ∉ binders
h1_left : u ≠ x
h1_right : ¬isBoundIn u phi
⊢ u ∉ binders ∧ ¬u = x | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | tauto | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admits | [841, 1] | [849, 7] | simp only [admits] | F : Formula
v u : VarName
h1 : ¬isBoundIn u F
⊢ admits v u F | F : Formula
v u : VarName
h1 : ¬isBoundIn u F
⊢ admitsAux v u ∅ F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admits | [841, 1] | [849, 7] | apply not_isBoundIn_imp_admitsAux F v u ∅ h1 | F : Formula
v u : VarName
h1 : ¬isBoundIn u F
⊢ admitsAux v u ∅ F | F : Formula
v u : VarName
h1 : ¬isBoundIn u F
⊢ u ∉ ∅ |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admits | [841, 1] | [849, 7] | simp | F : Formula
v u : VarName
h1 : ¬isBoundIn u F
⊢ u ∉ ∅ | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | induction F generalizing binders | F : Formula
v t : VarName
binders : Finset VarName
h1 : ¬occursIn t F
⊢ admitsAux t v binders (replaceFreeAux v t binders F) | case pred_const_
v t : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬occursIn t (pred_const_ a✝¹ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (pred_const_ a✝¹ a✝))
case pred_var_
v t : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬occursIn t (pred_var_ a✝¹ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (pred_var_ a✝¹ a✝))
case eq_
v t a✝¹ a✝ : VarName
binders : Finset VarName
h1 : ¬occursIn t (eq_ a✝¹ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (eq_ a✝¹ a✝))
case true_
v t : VarName
binders : Finset VarName
h1 : ¬occursIn t true_
⊢ admitsAux t v binders (replaceFreeAux v t binders true_)
case false_
v t : VarName
binders : Finset VarName
h1 : ¬occursIn t false_
⊢ admitsAux t v binders (replaceFreeAux v t binders false_)
case not_
v t : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬occursIn t a✝.not_
⊢ admitsAux t v binders (replaceFreeAux v t binders a✝.not_)
case imp_
v t : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬occursIn t a✝¹ → admitsAux t v binders (replaceFreeAux v t binders a✝¹)
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬occursIn t (a✝¹.imp_ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (a✝¹.imp_ a✝))
case and_
v t : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬occursIn t a✝¹ → admitsAux t v binders (replaceFreeAux v t binders a✝¹)
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬occursIn t (a✝¹.and_ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (a✝¹.and_ a✝))
case or_
v t : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬occursIn t a✝¹ → admitsAux t v binders (replaceFreeAux v t binders a✝¹)
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬occursIn t (a✝¹.or_ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (a✝¹.or_ a✝))
case iff_
v t : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬occursIn t a✝¹ → admitsAux t v binders (replaceFreeAux v t binders a✝¹)
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬occursIn t (a✝¹.iff_ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (a✝¹.iff_ a✝))
case forall_
v t a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬occursIn t (forall_ a✝¹ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (forall_ a✝¹ a✝))
case exists_
v t a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬occursIn t (exists_ a✝¹ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (exists_ a✝¹ a✝))
case def_
v t : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬occursIn t (def_ a✝¹ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (def_ a✝¹ a✝)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | all_goals
simp only [occursIn] at h1
simp only [replaceFreeAux]
simp only [admitsAux] | case pred_const_
v t : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬occursIn t (pred_const_ a✝¹ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (pred_const_ a✝¹ a✝))
case pred_var_
v t : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬occursIn t (pred_var_ a✝¹ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (pred_var_ a✝¹ a✝))
case eq_
v t a✝¹ a✝ : VarName
binders : Finset VarName
h1 : ¬occursIn t (eq_ a✝¹ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (eq_ a✝¹ a✝))
case true_
v t : VarName
binders : Finset VarName
h1 : ¬occursIn t true_
⊢ admitsAux t v binders (replaceFreeAux v t binders true_)
case false_
v t : VarName
binders : Finset VarName
h1 : ¬occursIn t false_
⊢ admitsAux t v binders (replaceFreeAux v t binders false_)
case not_
v t : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬occursIn t a✝.not_
⊢ admitsAux t v binders (replaceFreeAux v t binders a✝.not_)
case imp_
v t : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬occursIn t a✝¹ → admitsAux t v binders (replaceFreeAux v t binders a✝¹)
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬occursIn t (a✝¹.imp_ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (a✝¹.imp_ a✝))
case and_
v t : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬occursIn t a✝¹ → admitsAux t v binders (replaceFreeAux v t binders a✝¹)
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬occursIn t (a✝¹.and_ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (a✝¹.and_ a✝))
case or_
v t : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬occursIn t a✝¹ → admitsAux t v binders (replaceFreeAux v t binders a✝¹)
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬occursIn t (a✝¹.or_ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (a✝¹.or_ a✝))
case iff_
v t : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬occursIn t a✝¹ → admitsAux t v binders (replaceFreeAux v t binders a✝¹)
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬occursIn t (a✝¹.iff_ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (a✝¹.iff_ a✝))
case forall_
v t a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬occursIn t (forall_ a✝¹ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (forall_ a✝¹ a✝))
case exists_
v t a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬occursIn t (exists_ a✝¹ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (exists_ a✝¹ a✝))
case def_
v t : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬occursIn t (def_ a✝¹ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (def_ a✝¹ a✝)) | case pred_const_
v t : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : t ∉ a✝
⊢ t ∈ List.map (fun x => if v = x ∧ x ∉ binders then t else x) a✝ ∧ t ∉ binders → v ∉ binders
case pred_var_
v t : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : t ∉ a✝
⊢ t ∈ List.map (fun x => if v = x ∧ x ∉ binders then t else x) a✝ ∧ t ∉ binders → v ∉ binders
case eq_
v t a✝¹ a✝ : VarName
binders : Finset VarName
h1 : ¬(t = a✝¹ ∨ t = a✝)
⊢ ((t = if v = a✝¹ ∧ a✝¹ ∉ binders then t else a✝¹) ∨ t = if v = a✝ ∧ a✝ ∉ binders then t else a✝) ∧ t ∉ binders →
v ∉ binders
case not_
v t : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬occursIn t a✝
⊢ admitsAux t v binders (replaceFreeAux v t binders a✝)
case imp_
v t : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬occursIn t a✝¹ → admitsAux t v binders (replaceFreeAux v t binders a✝¹)
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬(occursIn t a✝¹ ∨ occursIn t a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders a✝¹) ∧ admitsAux t v binders (replaceFreeAux v t binders a✝)
case and_
v t : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬occursIn t a✝¹ → admitsAux t v binders (replaceFreeAux v t binders a✝¹)
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬(occursIn t a✝¹ ∨ occursIn t a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders a✝¹) ∧ admitsAux t v binders (replaceFreeAux v t binders a✝)
case or_
v t : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬occursIn t a✝¹ → admitsAux t v binders (replaceFreeAux v t binders a✝¹)
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬(occursIn t a✝¹ ∨ occursIn t a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders a✝¹) ∧ admitsAux t v binders (replaceFreeAux v t binders a✝)
case iff_
v t : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬occursIn t a✝¹ → admitsAux t v binders (replaceFreeAux v t binders a✝¹)
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬(occursIn t a✝¹ ∨ occursIn t a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders a✝¹) ∧ admitsAux t v binders (replaceFreeAux v t binders a✝)
case forall_
v t a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬(t = a✝¹ ∨ occursIn t a✝)
⊢ admitsAux t v (binders ∪ {a✝¹}) (replaceFreeAux v t (binders ∪ {a✝¹}) a✝)
case exists_
v t a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬(t = a✝¹ ∨ occursIn t a✝)
⊢ admitsAux t v (binders ∪ {a✝¹}) (replaceFreeAux v t (binders ∪ {a✝¹}) a✝)
case def_
v t : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : t ∉ a✝
⊢ t ∈ List.map (fun x => if v = x ∧ x ∉ binders then t else x) a✝ ∧ t ∉ binders → v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case pred_const_ X xs | pred_var_ X xs | def_ X xs =>
simp
intro x a1 a2 a3
by_cases c1 : v = x ∧ x ∉ binders
case pos =>
cases c1
case intro c1_left c1_right =>
subst c1_left
exact c1_right
case neg =>
simp at c1
specialize a2 c1
subst a2
contradiction | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
⊢ t ∈ List.map (fun x => if v = x ∧ x ∉ binders then t else x) xs ∧ t ∉ binders → v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case eq_ x y =>
push_neg at h1
cases h1
case intro h1_left h1_right =>
intro a1
split_ifs at a1
case _ c1 c2 =>
cases c1
case intro c1_left c1_right =>
subst c1_left
exact c1_right
case _ c1 c2 =>
cases c1
case intro c1_left c1_right =>
subst c1_left
exact c1_right
case _ c1 c2 =>
cases c2
case intro c2_left c2_right =>
subst c2_left
exact c2_right
case _ c1 c2 =>
tauto | v t x y : VarName
binders : Finset VarName
h1 : ¬(t = x ∨ t = y)
⊢ ((t = if v = x ∧ x ∉ binders then t else x) ∨ t = if v = y ∧ y ∉ binders then t else y) ∧ t ∉ binders → v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | all_goals
tauto | case not_
v t : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬occursIn t a✝
⊢ admitsAux t v binders (replaceFreeAux v t binders a✝)
case imp_
v t : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬occursIn t a✝¹ → admitsAux t v binders (replaceFreeAux v t binders a✝¹)
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬(occursIn t a✝¹ ∨ occursIn t a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders a✝¹) ∧ admitsAux t v binders (replaceFreeAux v t binders a✝)
case and_
v t : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬occursIn t a✝¹ → admitsAux t v binders (replaceFreeAux v t binders a✝¹)
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬(occursIn t a✝¹ ∨ occursIn t a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders a✝¹) ∧ admitsAux t v binders (replaceFreeAux v t binders a✝)
case or_
v t : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬occursIn t a✝¹ → admitsAux t v binders (replaceFreeAux v t binders a✝¹)
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬(occursIn t a✝¹ ∨ occursIn t a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders a✝¹) ∧ admitsAux t v binders (replaceFreeAux v t binders a✝)
case iff_
v t : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬occursIn t a✝¹ → admitsAux t v binders (replaceFreeAux v t binders a✝¹)
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬(occursIn t a✝¹ ∨ occursIn t a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders a✝¹) ∧ admitsAux t v binders (replaceFreeAux v t binders a✝)
case forall_
v t a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬(t = a✝¹ ∨ occursIn t a✝)
⊢ admitsAux t v (binders ∪ {a✝¹}) (replaceFreeAux v t (binders ∪ {a✝¹}) a✝)
case exists_
v t a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬(t = a✝¹ ∨ occursIn t a✝)
⊢ admitsAux t v (binders ∪ {a✝¹}) (replaceFreeAux v t (binders ∪ {a✝¹}) a✝) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | simp only [occursIn] at h1 | case def_
v t : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬occursIn t (def_ a✝¹ a✝)
⊢ admitsAux t v binders (replaceFreeAux v t binders (def_ a✝¹ a✝)) | case def_
v t : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : t ∉ a✝
⊢ admitsAux t v binders (replaceFreeAux v t binders (def_ a✝¹ a✝)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | simp only [replaceFreeAux] | case def_
v t : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : t ∉ a✝
⊢ admitsAux t v binders (replaceFreeAux v t binders (def_ a✝¹ a✝)) | case def_
v t : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : t ∉ a✝
⊢ admitsAux t v binders (def_ a✝¹ (List.map (fun x => if v = x ∧ x ∉ binders then t else x) a✝)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | simp only [admitsAux] | case def_
v t : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : t ∉ a✝
⊢ admitsAux t v binders (def_ a✝¹ (List.map (fun x => if v = x ∧ x ∉ binders then t else x) a✝)) | case def_
v t : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : t ∉ a✝
⊢ t ∈ List.map (fun x => if v = x ∧ x ∉ binders then t else x) a✝ ∧ t ∉ binders → v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | simp | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
⊢ t ∈ List.map (fun x => if v = x ∧ x ∉ binders then t else x) xs ∧ t ∉ binders → v ∉ binders | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
⊢ ∀ x ∈ xs, ((v = x → x ∈ binders) → x = t) → t ∉ binders → v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | intro x a1 a2 a3 | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
⊢ ∀ x ∈ xs, ((v = x → x ∈ binders) → x = t) → t ∉ binders → v ∉ binders | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
x : VarName
a1 : x ∈ xs
a2 : (v = x → x ∈ binders) → x = t
a3 : t ∉ binders
⊢ v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | by_cases c1 : v = x ∧ x ∉ binders | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
x : VarName
a1 : x ∈ xs
a2 : (v = x → x ∈ binders) → x = t
a3 : t ∉ binders
⊢ v ∉ binders | case pos
v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
x : VarName
a1 : x ∈ xs
a2 : (v = x → x ∈ binders) → x = t
a3 : t ∉ binders
c1 : v = x ∧ x ∉ binders
⊢ v ∉ binders
case neg
v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
x : VarName
a1 : x ∈ xs
a2 : (v = x → x ∈ binders) → x = t
a3 : t ∉ binders
c1 : ¬(v = x ∧ x ∉ binders)
⊢ v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case pos =>
cases c1
case intro c1_left c1_right =>
subst c1_left
exact c1_right | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
x : VarName
a1 : x ∈ xs
a2 : (v = x → x ∈ binders) → x = t
a3 : t ∉ binders
c1 : v = x ∧ x ∉ binders
⊢ v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case neg =>
simp at c1
specialize a2 c1
subst a2
contradiction | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
x : VarName
a1 : x ∈ xs
a2 : (v = x → x ∈ binders) → x = t
a3 : t ∉ binders
c1 : ¬(v = x ∧ x ∉ binders)
⊢ v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | cases c1 | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
x : VarName
a1 : x ∈ xs
a2 : (v = x → x ∈ binders) → x = t
a3 : t ∉ binders
c1 : v = x ∧ x ∉ binders
⊢ v ∉ binders | case intro
v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
x : VarName
a1 : x ∈ xs
a2 : (v = x → x ∈ binders) → x = t
a3 : t ∉ binders
left✝ : v = x
right✝ : x ∉ binders
⊢ v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case intro c1_left c1_right =>
subst c1_left
exact c1_right | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
x : VarName
a1 : x ∈ xs
a2 : (v = x → x ∈ binders) → x = t
a3 : t ∉ binders
c1_left : v = x
c1_right : x ∉ binders
⊢ v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | subst c1_left | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
x : VarName
a1 : x ∈ xs
a2 : (v = x → x ∈ binders) → x = t
a3 : t ∉ binders
c1_left : v = x
c1_right : x ∉ binders
⊢ v ∉ binders | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
a3 : t ∉ binders
a1 : v ∈ xs
a2 : (v = v → v ∈ binders) → v = t
c1_right : v ∉ binders
⊢ v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | exact c1_right | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
a3 : t ∉ binders
a1 : v ∈ xs
a2 : (v = v → v ∈ binders) → v = t
c1_right : v ∉ binders
⊢ v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | simp at c1 | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
x : VarName
a1 : x ∈ xs
a2 : (v = x → x ∈ binders) → x = t
a3 : t ∉ binders
c1 : ¬(v = x ∧ x ∉ binders)
⊢ v ∉ binders | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
x : VarName
a1 : x ∈ xs
a2 : (v = x → x ∈ binders) → x = t
a3 : t ∉ binders
c1 : v = x → x ∈ binders
⊢ v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | specialize a2 c1 | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
x : VarName
a1 : x ∈ xs
a2 : (v = x → x ∈ binders) → x = t
a3 : t ∉ binders
c1 : v = x → x ∈ binders
⊢ v ∉ binders | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
x : VarName
a1 : x ∈ xs
a3 : t ∉ binders
c1 : v = x → x ∈ binders
a2 : x = t
⊢ v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | subst a2 | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t ∉ xs
x : VarName
a1 : x ∈ xs
a3 : t ∉ binders
c1 : v = x → x ∈ binders
a2 : x = t
⊢ v ∉ binders | v : VarName
X : DefName
xs : List VarName
binders : Finset VarName
x : VarName
a1 : x ∈ xs
c1 : v = x → x ∈ binders
h1 : x ∉ xs
a3 : x ∉ binders
⊢ v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | contradiction | v : VarName
X : DefName
xs : List VarName
binders : Finset VarName
x : VarName
a1 : x ∈ xs
c1 : v = x → x ∈ binders
h1 : x ∉ xs
a3 : x ∉ binders
⊢ v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | push_neg at h1 | v t x y : VarName
binders : Finset VarName
h1 : ¬(t = x ∨ t = y)
⊢ ((t = if v = x ∧ x ∉ binders then t else x) ∨ t = if v = y ∧ y ∉ binders then t else y) ∧ t ∉ binders → v ∉ binders | v t x y : VarName
binders : Finset VarName
h1 : t ≠ x ∧ t ≠ y
⊢ ((t = if v = x ∧ x ∉ binders then t else x) ∨ t = if v = y ∧ y ∉ binders then t else y) ∧ t ∉ binders → v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | cases h1 | v t x y : VarName
binders : Finset VarName
h1 : t ≠ x ∧ t ≠ y
⊢ ((t = if v = x ∧ x ∉ binders then t else x) ∨ t = if v = y ∧ y ∉ binders then t else y) ∧ t ∉ binders → v ∉ binders | case intro
v t x y : VarName
binders : Finset VarName
left✝ : t ≠ x
right✝ : t ≠ y
⊢ ((t = if v = x ∧ x ∉ binders then t else x) ∨ t = if v = y ∧ y ∉ binders then t else y) ∧ t ∉ binders → v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case intro h1_left h1_right =>
intro a1
split_ifs at a1
case _ c1 c2 =>
cases c1
case intro c1_left c1_right =>
subst c1_left
exact c1_right
case _ c1 c2 =>
cases c1
case intro c1_left c1_right =>
subst c1_left
exact c1_right
case _ c1 c2 =>
cases c2
case intro c2_left c2_right =>
subst c2_left
exact c2_right
case _ c1 c2 =>
tauto | v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
⊢ ((t = if v = x ∧ x ∉ binders then t else x) ∨ t = if v = y ∧ y ∉ binders then t else y) ∧ t ∉ binders → v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | intro a1 | v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
⊢ ((t = if v = x ∧ x ∉ binders then t else x) ∨ t = if v = y ∧ y ∉ binders then t else y) ∧ t ∉ binders → v ∉ binders | v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
a1 : ((t = if v = x ∧ x ∉ binders then t else x) ∨ t = if v = y ∧ y ∉ binders then t else y) ∧ t ∉ binders
⊢ v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | split_ifs at a1 | v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
a1 : ((t = if v = x ∧ x ∉ binders then t else x) ∨ t = if v = y ∧ y ∉ binders then t else y) ∧ t ∉ binders
⊢ v ∉ binders | case pos
v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
h✝¹ : v = x ∧ x ∉ binders
h✝ : v = y ∧ y ∉ binders
a1 : (t = t ∨ t = t) ∧ t ∉ binders
⊢ v ∉ binders
case neg
v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
h✝¹ : v = x ∧ x ∉ binders
h✝ : ¬(v = y ∧ y ∉ binders)
a1 : (t = t ∨ t = y) ∧ t ∉ binders
⊢ v ∉ binders
case pos
v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
h✝¹ : ¬(v = x ∧ x ∉ binders)
h✝ : v = y ∧ y ∉ binders
a1 : (t = x ∨ t = t) ∧ t ∉ binders
⊢ v ∉ binders
case neg
v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
h✝¹ : ¬(v = x ∧ x ∉ binders)
h✝ : ¬(v = y ∧ y ∉ binders)
a1 : (t = x ∨ t = y) ∧ t ∉ binders
⊢ v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case _ c1 c2 =>
cases c1
case intro c1_left c1_right =>
subst c1_left
exact c1_right | v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
c1 : v = x ∧ x ∉ binders
c2 : v = y ∧ y ∉ binders
a1 : (t = t ∨ t = t) ∧ t ∉ binders
⊢ v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case _ c1 c2 =>
cases c1
case intro c1_left c1_right =>
subst c1_left
exact c1_right | v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
c1 : v = x ∧ x ∉ binders
c2 : ¬(v = y ∧ y ∉ binders)
a1 : (t = t ∨ t = y) ∧ t ∉ binders
⊢ v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case _ c1 c2 =>
cases c2
case intro c2_left c2_right =>
subst c2_left
exact c2_right | v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
c1 : ¬(v = x ∧ x ∉ binders)
c2 : v = y ∧ y ∉ binders
a1 : (t = x ∨ t = t) ∧ t ∉ binders
⊢ v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case _ c1 c2 =>
tauto | v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
c1 : ¬(v = x ∧ x ∉ binders)
c2 : ¬(v = y ∧ y ∉ binders)
a1 : (t = x ∨ t = y) ∧ t ∉ binders
⊢ v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | cases c1 | v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
c1 : v = x ∧ x ∉ binders
c2 : v = y ∧ y ∉ binders
a1 : (t = t ∨ t = t) ∧ t ∉ binders
⊢ v ∉ binders | case intro
v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
c2 : v = y ∧ y ∉ binders
a1 : (t = t ∨ t = t) ∧ t ∉ binders
left✝ : v = x
right✝ : x ∉ binders
⊢ v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case intro c1_left c1_right =>
subst c1_left
exact c1_right | v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
c2 : v = y ∧ y ∉ binders
a1 : (t = t ∨ t = t) ∧ t ∉ binders
c1_left : v = x
c1_right : x ∉ binders
⊢ v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | subst c1_left | v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
c2 : v = y ∧ y ∉ binders
a1 : (t = t ∨ t = t) ∧ t ∉ binders
c1_left : v = x
c1_right : x ∉ binders
⊢ v ∉ binders | v t y : VarName
binders : Finset VarName
h1_right : t ≠ y
c2 : v = y ∧ y ∉ binders
a1 : (t = t ∨ t = t) ∧ t ∉ binders
h1_left : t ≠ v
c1_right : v ∉ binders
⊢ v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | exact c1_right | v t y : VarName
binders : Finset VarName
h1_right : t ≠ y
c2 : v = y ∧ y ∉ binders
a1 : (t = t ∨ t = t) ∧ t ∉ binders
h1_left : t ≠ v
c1_right : v ∉ binders
⊢ v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | cases c1 | v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
c1 : v = x ∧ x ∉ binders
c2 : ¬(v = y ∧ y ∉ binders)
a1 : (t = t ∨ t = y) ∧ t ∉ binders
⊢ v ∉ binders | case intro
v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
c2 : ¬(v = y ∧ y ∉ binders)
a1 : (t = t ∨ t = y) ∧ t ∉ binders
left✝ : v = x
right✝ : x ∉ binders
⊢ v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case intro c1_left c1_right =>
subst c1_left
exact c1_right | v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
c2 : ¬(v = y ∧ y ∉ binders)
a1 : (t = t ∨ t = y) ∧ t ∉ binders
c1_left : v = x
c1_right : x ∉ binders
⊢ v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | subst c1_left | v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
c2 : ¬(v = y ∧ y ∉ binders)
a1 : (t = t ∨ t = y) ∧ t ∉ binders
c1_left : v = x
c1_right : x ∉ binders
⊢ v ∉ binders | v t y : VarName
binders : Finset VarName
h1_right : t ≠ y
c2 : ¬(v = y ∧ y ∉ binders)
a1 : (t = t ∨ t = y) ∧ t ∉ binders
h1_left : t ≠ v
c1_right : v ∉ binders
⊢ v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | exact c1_right | v t y : VarName
binders : Finset VarName
h1_right : t ≠ y
c2 : ¬(v = y ∧ y ∉ binders)
a1 : (t = t ∨ t = y) ∧ t ∉ binders
h1_left : t ≠ v
c1_right : v ∉ binders
⊢ v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | cases c2 | v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
c1 : ¬(v = x ∧ x ∉ binders)
c2 : v = y ∧ y ∉ binders
a1 : (t = x ∨ t = t) ∧ t ∉ binders
⊢ v ∉ binders | case intro
v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
c1 : ¬(v = x ∧ x ∉ binders)
a1 : (t = x ∨ t = t) ∧ t ∉ binders
left✝ : v = y
right✝ : y ∉ binders
⊢ v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case intro c2_left c2_right =>
subst c2_left
exact c2_right | v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
c1 : ¬(v = x ∧ x ∉ binders)
a1 : (t = x ∨ t = t) ∧ t ∉ binders
c2_left : v = y
c2_right : y ∉ binders
⊢ v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | subst c2_left | v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
c1 : ¬(v = x ∧ x ∉ binders)
a1 : (t = x ∨ t = t) ∧ t ∉ binders
c2_left : v = y
c2_right : y ∉ binders
⊢ v ∉ binders | v t x : VarName
binders : Finset VarName
h1_left : t ≠ x
c1 : ¬(v = x ∧ x ∉ binders)
a1 : (t = x ∨ t = t) ∧ t ∉ binders
h1_right : t ≠ v
c2_right : v ∉ binders
⊢ v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | exact c2_right | v t x : VarName
binders : Finset VarName
h1_left : t ≠ x
c1 : ¬(v = x ∧ x ∉ binders)
a1 : (t = x ∨ t = t) ∧ t ∉ binders
h1_right : t ≠ v
c2_right : v ∉ binders
⊢ v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | tauto | v t x y : VarName
binders : Finset VarName
h1_left : t ≠ x
h1_right : t ≠ y
c1 : ¬(v = x ∧ x ∉ binders)
c2 : ¬(v = y ∧ y ∉ binders)
a1 : (t = x ∨ t = y) ∧ t ∉ binders
⊢ v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | tauto | case exists_
v t a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝)
binders : Finset VarName
h1 : ¬(t = a✝¹ ∨ occursIn t a✝)
⊢ admitsAux t v (binders ∪ {a✝¹}) (replaceFreeAux v t (binders ∪ {a✝¹}) a✝) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFree_admits | [908, 1] | [916, 44] | simp only [replaceFree] | F : Formula
v t : VarName
h1 : ¬occursIn t F
⊢ admits t v (replaceFree v t F) | F : Formula
v t : VarName
h1 : ¬occursIn t F
⊢ admits t v (replaceFreeAux v t ∅ F) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFree_admits | [908, 1] | [916, 44] | simp only [admits] | F : Formula
v t : VarName
h1 : ¬occursIn t F
⊢ admits t v (replaceFreeAux v t ∅ F) | F : Formula
v t : VarName
h1 : ¬occursIn t F
⊢ admitsAux t v ∅ (replaceFreeAux v t ∅ F) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFree_admits | [908, 1] | [916, 44] | exact replaceFreeAux_admitsAux F v t ∅ h1 | F : Formula
v t : VarName
h1 : ¬occursIn t F
⊢ admitsAux t v ∅ (replaceFreeAux v t ∅ F) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_add_binders | [920, 1] | [940, 10] | induction F generalizing S | F : Formula
v u : VarName
S T : Finset VarName
h1 : admitsAux v u S F
h2 : u ∉ T
⊢ admitsAux v u (S ∪ T) F | case pred_const_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ : PredName
a✝ : List VarName
S : Finset VarName
h1 : admitsAux v u S (pred_const_ a✝¹ a✝)
⊢ admitsAux v u (S ∪ T) (pred_const_ a✝¹ a✝)
case pred_var_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ : PredName
a✝ : List VarName
S : Finset VarName
h1 : admitsAux v u S (pred_var_ a✝¹ a✝)
⊢ admitsAux v u (S ∪ T) (pred_var_ a✝¹ a✝)
case eq_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ a✝ : VarName
S : Finset VarName
h1 : admitsAux v u S (eq_ a✝¹ a✝)
⊢ admitsAux v u (S ∪ T) (eq_ a✝¹ a✝)
case true_
v u : VarName
T : Finset VarName
h2 : u ∉ T
S : Finset VarName
h1 : admitsAux v u S true_
⊢ admitsAux v u (S ∪ T) true_
case false_
v u : VarName
T : Finset VarName
h2 : u ∉ T
S : Finset VarName
h1 : admitsAux v u S false_
⊢ admitsAux v u (S ∪ T) false_
case not_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝ : Formula
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S a✝.not_
⊢ admitsAux v u (S ∪ T) a✝.not_
case imp_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S (a✝¹.imp_ a✝)
⊢ admitsAux v u (S ∪ T) (a✝¹.imp_ a✝)
case and_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S (a✝¹.and_ a✝)
⊢ admitsAux v u (S ∪ T) (a✝¹.and_ a✝)
case or_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S (a✝¹.or_ a✝)
⊢ admitsAux v u (S ∪ T) (a✝¹.or_ a✝)
case iff_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S (a✝¹.iff_ a✝)
⊢ admitsAux v u (S ∪ T) (a✝¹.iff_ a✝)
case forall_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S (forall_ a✝¹ a✝)
⊢ admitsAux v u (S ∪ T) (forall_ a✝¹ a✝)
case exists_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S (exists_ a✝¹ a✝)
⊢ admitsAux v u (S ∪ T) (exists_ a✝¹ a✝)
case def_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ : DefName
a✝ : List VarName
S : Finset VarName
h1 : admitsAux v u S (def_ a✝¹ a✝)
⊢ admitsAux v u (S ∪ T) (def_ a✝¹ a✝) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_add_binders | [920, 1] | [940, 10] | all_goals
simp only [admitsAux] at h1
simp only [admitsAux] | case pred_const_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ : PredName
a✝ : List VarName
S : Finset VarName
h1 : admitsAux v u S (pred_const_ a✝¹ a✝)
⊢ admitsAux v u (S ∪ T) (pred_const_ a✝¹ a✝)
case pred_var_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ : PredName
a✝ : List VarName
S : Finset VarName
h1 : admitsAux v u S (pred_var_ a✝¹ a✝)
⊢ admitsAux v u (S ∪ T) (pred_var_ a✝¹ a✝)
case eq_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ a✝ : VarName
S : Finset VarName
h1 : admitsAux v u S (eq_ a✝¹ a✝)
⊢ admitsAux v u (S ∪ T) (eq_ a✝¹ a✝)
case true_
v u : VarName
T : Finset VarName
h2 : u ∉ T
S : Finset VarName
h1 : admitsAux v u S true_
⊢ admitsAux v u (S ∪ T) true_
case false_
v u : VarName
T : Finset VarName
h2 : u ∉ T
S : Finset VarName
h1 : admitsAux v u S false_
⊢ admitsAux v u (S ∪ T) false_
case not_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝ : Formula
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S a✝.not_
⊢ admitsAux v u (S ∪ T) a✝.not_
case imp_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S (a✝¹.imp_ a✝)
⊢ admitsAux v u (S ∪ T) (a✝¹.imp_ a✝)
case and_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S (a✝¹.and_ a✝)
⊢ admitsAux v u (S ∪ T) (a✝¹.and_ a✝)
case or_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S (a✝¹.or_ a✝)
⊢ admitsAux v u (S ∪ T) (a✝¹.or_ a✝)
case iff_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S (a✝¹.iff_ a✝)
⊢ admitsAux v u (S ∪ T) (a✝¹.iff_ a✝)
case forall_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S (forall_ a✝¹ a✝)
⊢ admitsAux v u (S ∪ T) (forall_ a✝¹ a✝)
case exists_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S (exists_ a✝¹ a✝)
⊢ admitsAux v u (S ∪ T) (exists_ a✝¹ a✝)
case def_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ : DefName
a✝ : List VarName
S : Finset VarName
h1 : admitsAux v u S (def_ a✝¹ a✝)
⊢ admitsAux v u (S ∪ T) (def_ a✝¹ a✝) | case pred_const_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ : PredName
a✝ : List VarName
S : Finset VarName
h1 : v ∈ a✝ ∧ v ∉ S → u ∉ S
⊢ v ∈ a✝ ∧ v ∉ S ∪ T → u ∉ S ∪ T
case pred_var_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ : PredName
a✝ : List VarName
S : Finset VarName
h1 : v ∈ a✝ ∧ v ∉ S → u ∉ S
⊢ v ∈ a✝ ∧ v ∉ S ∪ T → u ∉ S ∪ T
case eq_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ a✝ : VarName
S : Finset VarName
h1 : (v = a✝¹ ∨ v = a✝) ∧ v ∉ S → u ∉ S
⊢ (v = a✝¹ ∨ v = a✝) ∧ v ∉ S ∪ T → u ∉ S ∪ T
case not_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝ : Formula
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S a✝
⊢ admitsAux v u (S ∪ T) a✝
case imp_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S a✝¹ ∧ admitsAux v u S a✝
⊢ admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝
case and_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S a✝¹ ∧ admitsAux v u S a✝
⊢ admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝
case or_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S a✝¹ ∧ admitsAux v u S a✝
⊢ admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝
case iff_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S a✝¹ ∧ admitsAux v u S a✝
⊢ admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝
case forall_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u (S ∪ {a✝¹}) a✝
⊢ admitsAux v u (S ∪ T ∪ {a✝¹}) a✝
case exists_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u (S ∪ {a✝¹}) a✝
⊢ admitsAux v u (S ∪ T ∪ {a✝¹}) a✝
case def_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ : DefName
a✝ : List VarName
S : Finset VarName
h1 : v ∈ a✝ ∧ v ∉ S → u ∉ S
⊢ v ∈ a✝ ∧ v ∉ S ∪ T → u ∉ S ∪ T |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_add_binders | [920, 1] | [940, 10] | case pred_const_ X xs | pred_var_ X xs | eq_ x y |def_ X xs =>
simp
tauto | v u : VarName
T : Finset VarName
h2 : u ∉ T
X : DefName
xs : List VarName
S : Finset VarName
h1 : v ∈ xs ∧ v ∉ S → u ∉ S
⊢ v ∈ xs ∧ v ∉ S ∪ T → u ∉ S ∪ T | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_add_binders | [920, 1] | [940, 10] | case forall_ x phi phi_ih | exists_ x phi phi_ih =>
simp only [Finset.union_right_comm S T {x}]
tauto | v u : VarName
T : Finset VarName
h2 : u ∉ T
x : VarName
phi : Formula
phi_ih : ∀ (S : Finset VarName), admitsAux v u S phi → admitsAux v u (S ∪ T) phi
S : Finset VarName
h1 : admitsAux v u (S ∪ {x}) phi
⊢ admitsAux v u (S ∪ T ∪ {x}) phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_add_binders | [920, 1] | [940, 10] | all_goals
tauto | case not_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝ : Formula
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S a✝
⊢ admitsAux v u (S ∪ T) a✝
case imp_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S a✝¹ ∧ admitsAux v u S a✝
⊢ admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝
case and_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S a✝¹ ∧ admitsAux v u S a✝
⊢ admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝
case or_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S a✝¹ ∧ admitsAux v u S a✝
⊢ admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝
case iff_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹
a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝
S : Finset VarName
h1 : admitsAux v u S a✝¹ ∧ admitsAux v u S a✝
⊢ admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝ | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_add_binders | [920, 1] | [940, 10] | simp only [admitsAux] at h1 | case def_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ : DefName
a✝ : List VarName
S : Finset VarName
h1 : admitsAux v u S (def_ a✝¹ a✝)
⊢ admitsAux v u (S ∪ T) (def_ a✝¹ a✝) | case def_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ : DefName
a✝ : List VarName
S : Finset VarName
h1 : v ∈ a✝ ∧ v ∉ S → u ∉ S
⊢ admitsAux v u (S ∪ T) (def_ a✝¹ a✝) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_add_binders | [920, 1] | [940, 10] | simp only [admitsAux] | case def_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ : DefName
a✝ : List VarName
S : Finset VarName
h1 : v ∈ a✝ ∧ v ∉ S → u ∉ S
⊢ admitsAux v u (S ∪ T) (def_ a✝¹ a✝) | case def_
v u : VarName
T : Finset VarName
h2 : u ∉ T
a✝¹ : DefName
a✝ : List VarName
S : Finset VarName
h1 : v ∈ a✝ ∧ v ∉ S → u ∉ S
⊢ v ∈ a✝ ∧ v ∉ S ∪ T → u ∉ S ∪ T |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_add_binders | [920, 1] | [940, 10] | simp | v u : VarName
T : Finset VarName
h2 : u ∉ T
X : DefName
xs : List VarName
S : Finset VarName
h1 : v ∈ xs ∧ v ∉ S → u ∉ S
⊢ v ∈ xs ∧ v ∉ S ∪ T → u ∉ S ∪ T | v u : VarName
T : Finset VarName
h2 : u ∉ T
X : DefName
xs : List VarName
S : Finset VarName
h1 : v ∈ xs ∧ v ∉ S → u ∉ S
⊢ v ∈ xs → v ∉ S → v ∉ T → u ∉ S ∧ u ∉ T |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.