url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/LN/Binders.lean | LN.isBoundIn_iff_mem_boundVarSet | [267, 1] | [320, 17] | tauto | v : Var
phi psi : Formula
phi_ih : occursIn v phi ∧ v.isBound ↔ v ∈ phi.boundVarSet
psi_ih : occursIn v psi ∧ v.isBound ↔ v ∈ psi.boundVarSet
⊢ (occursIn v phi ∨ occursIn v psi) ∧ v.isBound ↔ v ∈ phi.boundVarSet ∨ v ∈ psi.boundVarSet | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/LN/Binders.lean | LN.isBoundIn_iff_mem_boundVarSet | [267, 1] | [320, 17] | simp only [Formula.boundVarSet] | v : Var
a✝ : String
phi : Formula
phi_ih : occursIn v phi ∧ v.isBound ↔ v ∈ phi.boundVarSet
⊢ occursIn v (forall_ a✝ phi) ∧ v.isBound ↔ v ∈ (forall_ a✝ phi).boundVarSet | v : Var
a✝ : String
phi : Formula
phi_ih : occursIn v phi ∧ v.isBound ↔ v ∈ phi.boundVarSet
⊢ occursIn v (forall_ a✝ phi) ∧ v.isBound ↔ v ∈ phi.boundVarSet |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/LN/Binders.lean | LN.isBoundIn_iff_mem_boundVarSet | [267, 1] | [320, 17] | simp only [occursIn] | v : Var
a✝ : String
phi : Formula
phi_ih : occursIn v phi ∧ v.isBound ↔ v ∈ phi.boundVarSet
⊢ occursIn v (forall_ a✝ phi) ∧ v.isBound ↔ v ∈ phi.boundVarSet | v : Var
a✝ : String
phi : Formula
phi_ih : occursIn v phi ∧ v.isBound ↔ v ∈ phi.boundVarSet
⊢ occursIn v phi ∧ v.isBound ↔ v ∈ phi.boundVarSet |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/LN/Binders.lean | LN.isBoundIn_iff_mem_boundVarSet | [267, 1] | [320, 17] | exact phi_ih | v : Var
a✝ : String
phi : Formula
phi_ih : occursIn v phi ∧ v.isBound ↔ v ∈ phi.boundVarSet
⊢ occursIn v phi ∧ v.isBound ↔ v ∈ phi.boundVarSet | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/LN/Binders.lean | LN.isFreeIn_iff_mem_freeVarSet' | [323, 1] | [331, 36] | simp only [freeVarSet'] | v : Var
F : Formula
⊢ occursIn v F ∧ v.isFree ↔ v ∈ F.freeVarSet' | v : Var
F : Formula
⊢ occursIn v F ∧ v.isFree ↔ v ∈ Finset.filter isFree F.varSet |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/LN/Binders.lean | LN.isFreeIn_iff_mem_freeVarSet' | [323, 1] | [331, 36] | simp | v : Var
F : Formula
⊢ occursIn v F ∧ v.isFree ↔ v ∈ Finset.filter isFree F.varSet | v : Var
F : Formula
⊢ v.isFree → (occursIn v F ↔ v ∈ F.varSet) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/LN/Binders.lean | LN.isFreeIn_iff_mem_freeVarSet' | [323, 1] | [331, 36] | intro _ | v : Var
F : Formula
⊢ v.isFree → (occursIn v F ↔ v ∈ F.varSet) | v : Var
F : Formula
a✝ : v.isFree
⊢ occursIn v F ↔ v ∈ F.varSet |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/LN/Binders.lean | LN.isFreeIn_iff_mem_freeVarSet' | [323, 1] | [331, 36] | exact occursIn_iff_mem_varSet v F | v : Var
F : Formula
a✝ : v.isFree
⊢ occursIn v F ↔ v ∈ F.varSet | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/LN/Binders.lean | LN.isBoundIn_iff_mem_boundVarSet' | [334, 1] | [342, 36] | simp only [boundVarSet'] | v : Var
F : Formula
⊢ occursIn v F ∧ v.isBound ↔ v ∈ F.boundVarSet' | v : Var
F : Formula
⊢ occursIn v F ∧ v.isBound ↔ v ∈ Finset.filter isBound F.varSet |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/LN/Binders.lean | LN.isBoundIn_iff_mem_boundVarSet' | [334, 1] | [342, 36] | simp | v : Var
F : Formula
⊢ occursIn v F ∧ v.isBound ↔ v ∈ Finset.filter isBound F.varSet | v : Var
F : Formula
⊢ v.isBound → (occursIn v F ↔ v ∈ F.varSet) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/LN/Binders.lean | LN.isBoundIn_iff_mem_boundVarSet' | [334, 1] | [342, 36] | intro _ | v : Var
F : Formula
⊢ v.isBound → (occursIn v F ↔ v ∈ F.varSet) | v : Var
F : Formula
a✝ : v.isBound
⊢ occursIn v F ↔ v ∈ F.varSet |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/LN/Binders.lean | LN.isBoundIn_iff_mem_boundVarSet' | [334, 1] | [342, 36] | exact occursIn_iff_mem_varSet v F | v : Var
F : Formula
a✝ : v.isBound
⊢ occursIn v F ↔ v ∈ F.varSet | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/LN/Binders.lean | LN.IsFreeIffExistsString | [346, 1] | [356, 9] | cases v | v : Var
⊢ v.isFree ↔ ∃ x, v = free_ x | case free_
a✝ : String
⊢ (free_ a✝).isFree ↔ ∃ x, free_ a✝ = free_ x
case bound_
a✝ : ℕ
⊢ (bound_ a✝).isFree ↔ ∃ x, bound_ a✝ = free_ x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/LN/Binders.lean | LN.IsFreeIffExistsString | [346, 1] | [356, 9] | case free_ x =>
simp only [isFree]
simp | x : String
⊢ (free_ x).isFree ↔ ∃ x_1, free_ x = free_ x_1 | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/LN/Binders.lean | LN.IsFreeIffExistsString | [346, 1] | [356, 9] | case bound_ i =>
simp only [isFree]
simp | i : ℕ
⊢ (bound_ i).isFree ↔ ∃ x, bound_ i = free_ x | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/LN/Binders.lean | LN.IsFreeIffExistsString | [346, 1] | [356, 9] | simp only [isFree] | x : String
⊢ (free_ x).isFree ↔ ∃ x_1, free_ x = free_ x_1 | x : String
⊢ True ↔ ∃ x_1, free_ x = free_ x_1 |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/LN/Binders.lean | LN.IsFreeIffExistsString | [346, 1] | [356, 9] | simp | x : String
⊢ True ↔ ∃ x_1, free_ x = free_ x_1 | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/LN/Binders.lean | LN.IsFreeIffExistsString | [346, 1] | [356, 9] | simp only [isFree] | i : ℕ
⊢ (bound_ i).isFree ↔ ∃ x, bound_ i = free_ x | i : ℕ
⊢ False ↔ ∃ x, False |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/LN/Binders.lean | LN.IsFreeIffExistsString | [346, 1] | [356, 9] | simp | i : ℕ
⊢ False ↔ ∃ x, False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux | [217, 1] | [240, 10] | induction F generalizing binders | F : Formula
v u : VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders F
⊢ fastAdmitsAux v u binders F | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (pred_const_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (pred_const_ a✝¹ a✝)
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (pred_var_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (pred_var_ a✝¹ a✝)
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (eq_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (eq_ a✝¹ a✝)
case true_
v u : VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders true_
⊢ fastAdmitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders false_
⊢ fastAdmitsAux v u binders false_
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders a✝.not_
⊢ fastAdmitsAux v u binders a✝.not_
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (a✝¹.imp_ a✝)
⊢ fastAdmitsAux v u binders (a✝¹.imp_ a✝)
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (a✝¹.and_ a✝)
⊢ fastAdmitsAux v u binders (a✝¹.and_ a✝)
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (a✝¹.or_ a✝)
⊢ fastAdmitsAux v u binders (a✝¹.or_ a✝)
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (a✝¹.iff_ a✝)
⊢ fastAdmitsAux v u binders (a✝¹.iff_ a✝)
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (forall_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (forall_ a✝¹ a✝)
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (exists_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (exists_ a✝¹ a✝)
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (def_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux | [217, 1] | [240, 10] | all_goals
simp only [admitsAux] at h2
simp only [fastAdmitsAux] | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (pred_const_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (pred_const_ a✝¹ a✝)
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (pred_var_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (pred_var_ a✝¹ a✝)
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (eq_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (eq_ a✝¹ a✝)
case true_
v u : VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders true_
⊢ fastAdmitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders false_
⊢ fastAdmitsAux v u binders false_
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders a✝.not_
⊢ fastAdmitsAux v u binders a✝.not_
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (a✝¹.imp_ a✝)
⊢ fastAdmitsAux v u binders (a✝¹.imp_ a✝)
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (a✝¹.and_ a✝)
⊢ fastAdmitsAux v u binders (a✝¹.and_ a✝)
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (a✝¹.or_ a✝)
⊢ fastAdmitsAux v u binders (a✝¹.or_ a✝)
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (a✝¹.iff_ a✝)
⊢ fastAdmitsAux v u binders (a✝¹.iff_ a✝)
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (forall_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (forall_ a✝¹ a✝)
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (exists_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (exists_ a✝¹ a✝)
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (def_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝) | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders
⊢ v ∈ a✝ → u ∉ binders
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders
⊢ v ∈ a✝ → u ∉ binders
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : (v = a✝¹ ∨ v = a✝) ∧ v ∉ binders → u ∉ binders
⊢ v = a✝¹ ∨ v = a✝ → u ∉ binders
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders a✝
⊢ fastAdmitsAux v u binders a✝
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u (binders ∪ {a✝¹}) a✝
⊢ v = a✝¹ ∨ fastAdmitsAux v u (binders ∪ {a✝¹}) a✝
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u (binders ∪ {a✝¹}) a✝
⊢ v = a✝¹ ∨ fastAdmitsAux v u (binders ∪ {a✝¹}) a✝
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders
⊢ v ∈ a✝ → u ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux | [217, 1] | [240, 10] | all_goals
tauto | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders
⊢ v ∈ a✝ → u ∉ binders
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders
⊢ v ∈ a✝ → u ∉ binders
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : (v = a✝¹ ∨ v = a✝) ∧ v ∉ binders → u ∉ binders
⊢ v = a✝¹ ∨ v = a✝ → u ∉ binders
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders a✝
⊢ fastAdmitsAux v u binders a✝
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders
⊢ v ∈ a✝ → u ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux | [217, 1] | [240, 10] | simp only [admitsAux] at h2 | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u binders (def_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝) | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders
⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux | [217, 1] | [240, 10] | simp only [fastAdmitsAux] | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders
⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝) | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders
⊢ v ∈ a✝ → u ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux | [217, 1] | [240, 10] | by_cases c1 : v = x | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u (binders ∪ {x}) phi
⊢ v = x ∨ fastAdmitsAux v u (binders ∪ {x}) phi | case pos
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u (binders ∪ {x}) phi
c1 : v = x
⊢ v = x ∨ fastAdmitsAux v u (binders ∪ {x}) phi
case neg
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u (binders ∪ {x}) phi
c1 : ¬v = x
⊢ v = x ∨ fastAdmitsAux v u (binders ∪ {x}) phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux | [217, 1] | [240, 10] | left | case pos
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u (binders ∪ {x}) phi
c1 : v = x
⊢ v = x ∨ fastAdmitsAux v u (binders ∪ {x}) phi | case pos.h
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u (binders ∪ {x}) phi
c1 : v = x
⊢ v = x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux | [217, 1] | [240, 10] | exact c1 | case pos.h
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u (binders ∪ {x}) phi
c1 : v = x
⊢ v = x | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux | [217, 1] | [240, 10] | right | case neg
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u (binders ∪ {x}) phi
c1 : ¬v = x
⊢ v = x ∨ fastAdmitsAux v u (binders ∪ {x}) phi | case neg.h
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u (binders ∪ {x}) phi
c1 : ¬v = x
⊢ fastAdmitsAux v u (binders ∪ {x}) phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux | [217, 1] | [240, 10] | apply phi_ih | case neg.h
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u (binders ∪ {x}) phi
c1 : ¬v = x
⊢ fastAdmitsAux v u (binders ∪ {x}) phi | case neg.h.h1
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u (binders ∪ {x}) phi
c1 : ¬v = x
⊢ v ∉ binders ∪ {x}
case neg.h.h2
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u (binders ∪ {x}) phi
c1 : ¬v = x
⊢ admitsAux v u (binders ∪ {x}) phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux | [217, 1] | [240, 10] | simp | case neg.h.h1
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u (binders ∪ {x}) phi
c1 : ¬v = x
⊢ v ∉ binders ∪ {x} | case neg.h.h1
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u (binders ∪ {x}) phi
c1 : ¬v = x
⊢ v ∉ binders ∧ ¬v = x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux | [217, 1] | [240, 10] | tauto | case neg.h.h1
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u (binders ∪ {x}) phi
c1 : ¬v = x
⊢ v ∉ binders ∧ ¬v = x | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux | [217, 1] | [240, 10] | exact h2 | case neg.h.h2
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → admitsAux v u binders phi → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v ∉ binders
h2 : admitsAux v u (binders ∪ {x}) phi
c1 : ¬v = x
⊢ admitsAux v u (binders ∪ {x}) phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_imp_fastAdmitsAux | [217, 1] | [240, 10] | tauto | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
h2 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders
⊢ v ∈ a✝ → u ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.mem_binders_imp_admitsAux | [243, 1] | [259, 10] | induction F generalizing binders | F : Formula
v u : VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders F | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (pred_const_ a✝¹ a✝)
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (pred_var_ a✝¹ a✝)
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (eq_ a✝¹ a✝)
case true_
v u : VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders false_
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders a✝.not_
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (a✝¹.imp_ a✝)
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (a✝¹.and_ a✝)
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (a✝¹.or_ a✝)
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (a✝¹.iff_ a✝)
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (forall_ a✝¹ a✝)
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (exists_ a✝¹ a✝)
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (def_ a✝¹ a✝) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.mem_binders_imp_admitsAux | [243, 1] | [259, 10] | all_goals
simp only [admitsAux] | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (pred_const_ a✝¹ a✝)
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (pred_var_ a✝¹ a✝)
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (eq_ a✝¹ a✝)
case true_
v u : VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders false_
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders a✝.not_
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (a✝¹.imp_ a✝)
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (a✝¹.and_ a✝)
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (a✝¹.or_ a✝)
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (a✝¹.iff_ a✝)
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (forall_ a✝¹ a✝)
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (exists_ a✝¹ a✝)
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (def_ a✝¹ a✝) | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ (v = a✝¹ ∨ v = a✝) ∧ v ∉ binders → u ∉ binders
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders a✝
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u (binders ∪ {a✝¹}) a✝
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u (binders ∪ {a✝¹}) a✝
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.mem_binders_imp_admitsAux | [243, 1] | [259, 10] | case forall_ x phi phi_ih | exists_ x phi phi_ih =>
apply phi_ih
simp
left
exact h1 | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders phi
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u (binders ∪ {x}) phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.mem_binders_imp_admitsAux | [243, 1] | [259, 10] | all_goals
tauto | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ (v = a✝¹ ∨ v = a✝) ∧ v ∉ binders → u ∉ binders
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders a✝
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders a✝
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.mem_binders_imp_admitsAux | [243, 1] | [259, 10] | simp only [admitsAux] | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u binders (def_ a✝¹ a✝) | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.mem_binders_imp_admitsAux | [243, 1] | [259, 10] | apply phi_ih | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders phi
binders : Finset VarName
h1 : v ∈ binders
⊢ admitsAux v u (binders ∪ {x}) phi | case h1
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders phi
binders : Finset VarName
h1 : v ∈ binders
⊢ v ∈ binders ∪ {x} |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.mem_binders_imp_admitsAux | [243, 1] | [259, 10] | simp | case h1
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders phi
binders : Finset VarName
h1 : v ∈ binders
⊢ v ∈ binders ∪ {x} | case h1
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders phi
binders : Finset VarName
h1 : v ∈ binders
⊢ v ∈ binders ∨ v = x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.mem_binders_imp_admitsAux | [243, 1] | [259, 10] | left | case h1
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders phi
binders : Finset VarName
h1 : v ∈ binders
⊢ v ∈ binders ∨ v = x | case h1.h
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders phi
binders : Finset VarName
h1 : v ∈ binders
⊢ v ∈ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.mem_binders_imp_admitsAux | [243, 1] | [259, 10] | exact h1 | case h1.h
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∈ binders → admitsAux v u binders phi
binders : Finset VarName
h1 : v ∈ binders
⊢ v ∈ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.mem_binders_imp_admitsAux | [243, 1] | [259, 10] | tauto | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux | [262, 1] | [284, 10] | induction F generalizing binders | F : Formula
v u : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders F
⊢ admitsAux v u binders F | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (pred_const_ a✝¹ a✝)
⊢ admitsAux v u binders (pred_const_ a✝¹ a✝)
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (pred_var_ a✝¹ a✝)
⊢ admitsAux v u binders (pred_var_ a✝¹ a✝)
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (eq_ a✝¹ a✝)
⊢ admitsAux v u binders (eq_ a✝¹ a✝)
case true_
v u : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders true_
⊢ admitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders false_
⊢ admitsAux v u binders false_
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders a✝.not_
⊢ admitsAux v u binders a✝.not_
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders (a✝¹.imp_ a✝)
⊢ admitsAux v u binders (a✝¹.imp_ a✝)
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders (a✝¹.and_ a✝)
⊢ admitsAux v u binders (a✝¹.and_ a✝)
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders (a✝¹.or_ a✝)
⊢ admitsAux v u binders (a✝¹.or_ a✝)
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders (a✝¹.iff_ a✝)
⊢ admitsAux v u binders (a✝¹.iff_ a✝)
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders (forall_ a✝¹ a✝)
⊢ admitsAux v u binders (forall_ a✝¹ a✝)
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders (exists_ a✝¹ a✝)
⊢ admitsAux v u binders (exists_ a✝¹ a✝)
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (def_ a✝¹ a✝)
⊢ admitsAux v u binders (def_ a✝¹ a✝) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux | [262, 1] | [284, 10] | all_goals
simp only [fastAdmitsAux] at h1
simp only [admitsAux] | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (pred_const_ a✝¹ a✝)
⊢ admitsAux v u binders (pred_const_ a✝¹ a✝)
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (pred_var_ a✝¹ a✝)
⊢ admitsAux v u binders (pred_var_ a✝¹ a✝)
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (eq_ a✝¹ a✝)
⊢ admitsAux v u binders (eq_ a✝¹ a✝)
case true_
v u : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders true_
⊢ admitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders false_
⊢ admitsAux v u binders false_
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders a✝.not_
⊢ admitsAux v u binders a✝.not_
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders (a✝¹.imp_ a✝)
⊢ admitsAux v u binders (a✝¹.imp_ a✝)
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders (a✝¹.and_ a✝)
⊢ admitsAux v u binders (a✝¹.and_ a✝)
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders (a✝¹.or_ a✝)
⊢ admitsAux v u binders (a✝¹.or_ a✝)
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders (a✝¹.iff_ a✝)
⊢ admitsAux v u binders (a✝¹.iff_ a✝)
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders (forall_ a✝¹ a✝)
⊢ admitsAux v u binders (forall_ a✝¹ a✝)
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders (exists_ a✝¹ a✝)
⊢ admitsAux v u binders (exists_ a✝¹ a✝)
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (def_ a✝¹ a✝)
⊢ admitsAux v u binders (def_ a✝¹ a✝) | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ a✝ → u ∉ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ a✝ → u ∉ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : v = a✝¹ ∨ v = a✝ → u ∉ binders
⊢ (v = a✝¹ ∨ v = a✝) ∧ v ∉ binders → u ∉ binders
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders a✝
⊢ admitsAux v u binders a✝
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : v = a✝¹ ∨ fastAdmitsAux v u (binders ∪ {a✝¹}) a✝
⊢ admitsAux v u (binders ∪ {a✝¹}) a✝
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : v = a✝¹ ∨ fastAdmitsAux v u (binders ∪ {a✝¹}) a✝
⊢ admitsAux v u (binders ∪ {a✝¹}) a✝
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ a✝ → u ∉ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux | [262, 1] | [284, 10] | case forall_ x phi phi_ih | exists_ x phi phi_ih =>
cases h1
case inl h1 =>
apply mem_binders_imp_admitsAux
subst h1
simp
case inr h1 =>
apply phi_ih
exact h1 | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi
binders : Finset VarName
h1 : v = x ∨ fastAdmitsAux v u (binders ∪ {x}) phi
⊢ admitsAux v u (binders ∪ {x}) phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux | [262, 1] | [284, 10] | all_goals
tauto | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ a✝ → u ∉ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ a✝ → u ∉ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : v = a✝¹ ∨ v = a✝ → u ∉ binders
⊢ (v = a✝¹ ∨ v = a✝) ∧ v ∉ binders → u ∉ binders
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders a✝
⊢ admitsAux v u binders a✝
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ → admitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), fastAdmitsAux v u binders a✝ → admitsAux v u binders a✝
binders : Finset VarName
h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
⊢ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ a✝ → u ∉ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux | [262, 1] | [284, 10] | simp only [fastAdmitsAux] at h1 | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (def_ a✝¹ a✝)
⊢ admitsAux v u binders (def_ a✝¹ a✝) | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ a✝ → u ∉ binders
⊢ admitsAux v u binders (def_ a✝¹ a✝) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux | [262, 1] | [284, 10] | simp only [admitsAux] | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ a✝ → u ∉ binders
⊢ admitsAux v u binders (def_ a✝¹ a✝) | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ a✝ → u ∉ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux | [262, 1] | [284, 10] | cases h1 | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi
binders : Finset VarName
h1 : v = x ∨ fastAdmitsAux v u (binders ∪ {x}) phi
⊢ admitsAux v u (binders ∪ {x}) phi | case inl
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi
binders : Finset VarName
h✝ : v = x
⊢ admitsAux v u (binders ∪ {x}) phi
case inr
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi
binders : Finset VarName
h✝ : fastAdmitsAux v u (binders ∪ {x}) phi
⊢ admitsAux v u (binders ∪ {x}) phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux | [262, 1] | [284, 10] | case inl h1 =>
apply mem_binders_imp_admitsAux
subst h1
simp | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi
binders : Finset VarName
h1 : v = x
⊢ admitsAux v u (binders ∪ {x}) phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux | [262, 1] | [284, 10] | case inr h1 =>
apply phi_ih
exact h1 | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi
binders : Finset VarName
h1 : fastAdmitsAux v u (binders ∪ {x}) phi
⊢ admitsAux v u (binders ∪ {x}) phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux | [262, 1] | [284, 10] | apply mem_binders_imp_admitsAux | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi
binders : Finset VarName
h1 : v = x
⊢ admitsAux v u (binders ∪ {x}) phi | case h1
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi
binders : Finset VarName
h1 : v = x
⊢ v ∈ binders ∪ {x} |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux | [262, 1] | [284, 10] | subst h1 | case h1
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi
binders : Finset VarName
h1 : v = x
⊢ v ∈ binders ∪ {x} | case h1
v u : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi
binders : Finset VarName
⊢ v ∈ binders ∪ {v} |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux | [262, 1] | [284, 10] | simp | case h1
v u : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi
binders : Finset VarName
⊢ v ∈ binders ∪ {v} | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux | [262, 1] | [284, 10] | apply phi_ih | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi
binders : Finset VarName
h1 : fastAdmitsAux v u (binders ∪ {x}) phi
⊢ admitsAux v u (binders ∪ {x}) phi | case h1
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi
binders : Finset VarName
h1 : fastAdmitsAux v u (binders ∪ {x}) phi
⊢ fastAdmitsAux v u (binders ∪ {x}) phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux | [262, 1] | [284, 10] | exact h1 | case h1
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), fastAdmitsAux v u binders phi → admitsAux v u binders phi
binders : Finset VarName
h1 : fastAdmitsAux v u (binders ∪ {x}) phi
⊢ fastAdmitsAux v u (binders ∪ {x}) phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_admitsAux | [262, 1] | [284, 10] | tauto | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∈ a✝ → u ∉ binders
⊢ v ∈ a✝ ∧ v ∉ binders → u ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admits_iff_fastAdmits | [287, 1] | [297, 46] | simp only [admits] | F : Formula
v u : VarName
⊢ admits v u F ↔ fastAdmits v u F | F : Formula
v u : VarName
⊢ admitsAux v u ∅ F ↔ fastAdmits v u F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admits_iff_fastAdmits | [287, 1] | [297, 46] | simp only [fastAdmits] | F : Formula
v u : VarName
⊢ admitsAux v u ∅ F ↔ fastAdmits v u F | F : Formula
v u : VarName
⊢ admitsAux v u ∅ F ↔ fastAdmitsAux v u ∅ F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admits_iff_fastAdmits | [287, 1] | [297, 46] | constructor | F : Formula
v u : VarName
⊢ admitsAux v u ∅ F ↔ fastAdmitsAux v u ∅ F | case mp
F : Formula
v u : VarName
⊢ admitsAux v u ∅ F → fastAdmitsAux v u ∅ F
case mpr
F : Formula
v u : VarName
⊢ fastAdmitsAux v u ∅ F → admitsAux v u ∅ F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admits_iff_fastAdmits | [287, 1] | [297, 46] | apply admitsAux_imp_fastAdmitsAux | case mp
F : Formula
v u : VarName
⊢ admitsAux v u ∅ F → fastAdmitsAux v u ∅ F | case mp.h1
F : Formula
v u : VarName
⊢ v ∉ ∅ |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admits_iff_fastAdmits | [287, 1] | [297, 46] | simp | case mp.h1
F : Formula
v u : VarName
⊢ v ∉ ∅ | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admits_iff_fastAdmits | [287, 1] | [297, 46] | exact fastAdmitsAux_imp_admitsAux F v u ∅ | case mpr
F : Formula
v u : VarName
⊢ fastAdmitsAux v u ∅ F → admitsAux v u ∅ F | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self | [302, 1] | [321, 10] | induction F generalizing binders | F : Formula
v : VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders F | case pred_const_
v : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (pred_const_ a✝¹ a✝)
case pred_var_
v : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (pred_var_ a✝¹ a✝)
case eq_
v a✝¹ a✝ : VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (eq_ a✝¹ a✝)
case true_
v : VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders true_
case false_
v : VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders false_
case not_
v : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders a✝.not_
case imp_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (a✝¹.imp_ a✝)
case and_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (a✝¹.and_ a✝)
case or_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (a✝¹.or_ a✝)
case iff_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (a✝¹.iff_ a✝)
case forall_
v a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (forall_ a✝¹ a✝)
case exists_
v a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (exists_ a✝¹ a✝)
case def_
v : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (def_ a✝¹ a✝) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self | [302, 1] | [321, 10] | all_goals
simp only [fastAdmitsAux] | case pred_const_
v : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (pred_const_ a✝¹ a✝)
case pred_var_
v : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (pred_var_ a✝¹ a✝)
case eq_
v a✝¹ a✝ : VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (eq_ a✝¹ a✝)
case true_
v : VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders true_
case false_
v : VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders false_
case not_
v : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders a✝.not_
case imp_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (a✝¹.imp_ a✝)
case and_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (a✝¹.and_ a✝)
case or_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (a✝¹.or_ a✝)
case iff_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (a✝¹.iff_ a✝)
case forall_
v a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (forall_ a✝¹ a✝)
case exists_
v a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (exists_ a✝¹ a✝)
case def_
v : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (def_ a✝¹ a✝) | case pred_const_
v : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ v ∈ a✝ → v ∉ binders
case pred_var_
v : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ v ∈ a✝ → v ∉ binders
case eq_
v a✝¹ a✝ : VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ v = a✝¹ ∨ v = a✝ → v ∉ binders
case not_
v : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders a✝
case imp_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders a✝¹ ∧ fastAdmitsAux v v binders a✝
case and_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders a✝¹ ∧ fastAdmitsAux v v binders a✝
case or_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders a✝¹ ∧ fastAdmitsAux v v binders a✝
case iff_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders a✝¹ ∧ fastAdmitsAux v v binders a✝
case forall_
v a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ v = a✝¹ ∨ fastAdmitsAux v v (binders ∪ {a✝¹}) a✝
case exists_
v a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ v = a✝¹ ∨ fastAdmitsAux v v (binders ∪ {a✝¹}) a✝
case def_
v : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ v ∈ a✝ → v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self | [302, 1] | [321, 10] | all_goals
tauto | case pred_const_
v : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ v ∈ a✝ → v ∉ binders
case pred_var_
v : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ v ∈ a✝ → v ∉ binders
case eq_
v a✝¹ a✝ : VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ v = a✝¹ ∨ v = a✝ → v ∉ binders
case not_
v : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders a✝
case imp_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders a✝¹ ∧ fastAdmitsAux v v binders a✝
case and_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders a✝¹ ∧ fastAdmitsAux v v binders a✝
case or_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders a✝¹ ∧ fastAdmitsAux v v binders a✝
case iff_
v : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders a✝
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders a✝¹ ∧ fastAdmitsAux v v binders a✝
case def_
v : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ v ∈ a✝ → v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self | [302, 1] | [321, 10] | simp only [fastAdmitsAux] | case def_
v : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ fastAdmitsAux v v binders (def_ a✝¹ a✝) | case def_
v : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ v ∈ a✝ → v ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self | [302, 1] | [321, 10] | by_cases c1 : v = x | v x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi
binders : Finset VarName
h1 : v ∉ binders
⊢ v = x ∨ fastAdmitsAux v v (binders ∪ {x}) phi | case pos
v x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : v = x
⊢ v = x ∨ fastAdmitsAux v v (binders ∪ {x}) phi
case neg
v x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
⊢ v = x ∨ fastAdmitsAux v v (binders ∪ {x}) phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self | [302, 1] | [321, 10] | left | case pos
v x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : v = x
⊢ v = x ∨ fastAdmitsAux v v (binders ∪ {x}) phi | case pos.h
v x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : v = x
⊢ v = x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self | [302, 1] | [321, 10] | exact c1 | case pos.h
v x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : v = x
⊢ v = x | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self | [302, 1] | [321, 10] | right | case neg
v x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
⊢ v = x ∨ fastAdmitsAux v v (binders ∪ {x}) phi | case neg.h
v x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
⊢ fastAdmitsAux v v (binders ∪ {x}) phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self | [302, 1] | [321, 10] | apply phi_ih | case neg.h
v x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
⊢ fastAdmitsAux v v (binders ∪ {x}) phi | case neg.h.h1
v x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
⊢ v ∉ binders ∪ {x} |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self | [302, 1] | [321, 10] | simp | case neg.h.h1
v x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
⊢ v ∉ binders ∪ {x} | case neg.h.h1
v x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
⊢ v ∉ binders ∧ ¬v = x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self | [302, 1] | [321, 10] | tauto | case neg.h.h1
v x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), v ∉ binders → fastAdmitsAux v v binders phi
binders : Finset VarName
h1 : v ∉ binders
c1 : ¬v = x
⊢ v ∉ binders ∧ ¬v = x | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_self | [302, 1] | [321, 10] | tauto | case def_
v : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ binders
⊢ v ∈ a✝ → v ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmits_self | [324, 1] | [331, 7] | simp only [fastAdmits] | F : Formula
v : VarName
⊢ fastAdmits v v F | F : Formula
v : VarName
⊢ fastAdmitsAux v v ∅ F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmits_self | [324, 1] | [331, 7] | apply fastAdmitsAux_self | F : Formula
v : VarName
⊢ fastAdmitsAux v v ∅ F | case h1
F : Formula
v : VarName
⊢ v ∉ ∅ |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.fastAdmits_self | [324, 1] | [331, 7] | simp | case h1
F : Formula
v : VarName
⊢ v ∉ ∅ | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_fastAdmitsAux | [335, 1] | [348, 10] | induction F generalizing binders | F : Formula
v u : VarName
binders : Finset VarName
h1 : ¬isFreeIn v F
⊢ fastAdmitsAux v u binders F | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isFreeIn v (pred_const_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (pred_const_ a✝¹ a✝)
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isFreeIn v (pred_var_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (pred_var_ a✝¹ a✝)
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : ¬isFreeIn v (eq_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (eq_ a✝¹ a✝)
case true_
v u : VarName
binders : Finset VarName
h1 : ¬isFreeIn v true_
⊢ fastAdmitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : ¬isFreeIn v false_
⊢ fastAdmitsAux v u binders false_
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v a✝.not_
⊢ fastAdmitsAux v u binders a✝.not_
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (a✝¹.imp_ a✝)
⊢ fastAdmitsAux v u binders (a✝¹.imp_ a✝)
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (a✝¹.and_ a✝)
⊢ fastAdmitsAux v u binders (a✝¹.and_ a✝)
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (a✝¹.or_ a✝)
⊢ fastAdmitsAux v u binders (a✝¹.or_ a✝)
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (a✝¹.iff_ a✝)
⊢ fastAdmitsAux v u binders (a✝¹.iff_ a✝)
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (forall_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (forall_ a✝¹ a✝)
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (exists_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (exists_ a✝¹ a✝)
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isFreeIn v (def_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_fastAdmitsAux | [335, 1] | [348, 10] | all_goals
simp only [isFreeIn] at h1
simp only [fastAdmitsAux] | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isFreeIn v (pred_const_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (pred_const_ a✝¹ a✝)
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isFreeIn v (pred_var_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (pred_var_ a✝¹ a✝)
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : ¬isFreeIn v (eq_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (eq_ a✝¹ a✝)
case true_
v u : VarName
binders : Finset VarName
h1 : ¬isFreeIn v true_
⊢ fastAdmitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : ¬isFreeIn v false_
⊢ fastAdmitsAux v u binders false_
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v a✝.not_
⊢ fastAdmitsAux v u binders a✝.not_
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (a✝¹.imp_ a✝)
⊢ fastAdmitsAux v u binders (a✝¹.imp_ a✝)
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (a✝¹.and_ a✝)
⊢ fastAdmitsAux v u binders (a✝¹.and_ a✝)
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (a✝¹.or_ a✝)
⊢ fastAdmitsAux v u binders (a✝¹.or_ a✝)
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (a✝¹.iff_ a✝)
⊢ fastAdmitsAux v u binders (a✝¹.iff_ a✝)
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (forall_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (forall_ a✝¹ a✝)
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v (exists_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (exists_ a✝¹ a✝)
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isFreeIn v (def_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝) | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ a✝
⊢ v ∈ a✝ → u ∉ binders
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ a✝
⊢ v ∈ a✝ → u ∉ binders
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : ¬(v = a✝¹ ∨ v = a✝)
⊢ v = a✝¹ ∨ v = a✝ → u ∉ binders
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v a✝
⊢ fastAdmitsAux v u binders a✝
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝)
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝)
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝)
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝)
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(¬v = a✝¹ ∧ isFreeIn v a✝)
⊢ v = a✝¹ ∨ fastAdmitsAux v u (binders ∪ {a✝¹}) a✝
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(¬v = a✝¹ ∧ isFreeIn v a✝)
⊢ v = a✝¹ ∨ fastAdmitsAux v u (binders ∪ {a✝¹}) a✝
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ a✝
⊢ v ∈ a✝ → u ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_fastAdmitsAux | [335, 1] | [348, 10] | all_goals
tauto | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ a✝
⊢ v ∈ a✝ → u ∉ binders
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ a✝
⊢ v ∈ a✝ → u ∉ binders
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : ¬(v = a✝¹ ∨ v = a✝)
⊢ v = a✝¹ ∨ v = a✝ → u ∉ binders
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isFreeIn v a✝
⊢ fastAdmitsAux v u binders a✝
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝)
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝)
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝)
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝¹ → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝)
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(¬v = a✝¹ ∧ isFreeIn v a✝)
⊢ v = a✝¹ ∨ fastAdmitsAux v u (binders ∪ {a✝¹}) a✝
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isFreeIn v a✝ → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(¬v = a✝¹ ∧ isFreeIn v a✝)
⊢ v = a✝¹ ∨ fastAdmitsAux v u (binders ∪ {a✝¹}) a✝
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ a✝
⊢ v ∈ a✝ → u ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_fastAdmitsAux | [335, 1] | [348, 10] | simp only [isFreeIn] at h1 | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isFreeIn v (def_ a✝¹ a✝)
⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝) | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ a✝
⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_fastAdmitsAux | [335, 1] | [348, 10] | simp only [fastAdmitsAux] | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ a✝
⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝) | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ a✝
⊢ v ∈ a✝ → u ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_fastAdmitsAux | [335, 1] | [348, 10] | tauto | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : v ∉ a✝
⊢ v ∈ a✝ → u ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_fastAdmits | [351, 1] | [358, 50] | simp only [fastAdmits] | F : Formula
v u : VarName
h1 : ¬isFreeIn v F
⊢ fastAdmits v u F | F : Formula
v u : VarName
h1 : ¬isFreeIn v F
⊢ fastAdmitsAux v u ∅ F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_fastAdmits | [351, 1] | [358, 50] | exact not_isFreeIn_imp_fastAdmitsAux F v u ∅ h1 | F : Formula
v u : VarName
h1 : ¬isFreeIn v F
⊢ fastAdmitsAux v u ∅ F | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_fastAdmitsAux | [362, 1] | [385, 10] | induction F generalizing binders | F : Formula
v u : VarName
binders : Finset VarName
h1 : ¬isBoundIn u F
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders F | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isBoundIn u (pred_const_ a✝¹ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (pred_const_ a✝¹ a✝)
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isBoundIn u (pred_var_ a✝¹ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (pred_var_ a✝¹ a✝)
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : ¬isBoundIn u (eq_ a✝¹ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (eq_ a✝¹ a✝)
case true_
v u : VarName
binders : Finset VarName
h1 : ¬isBoundIn u true_
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : ¬isBoundIn u false_
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders false_
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u a✝.not_
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders a✝.not_
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (a✝¹.imp_ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (a✝¹.imp_ a✝)
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (a✝¹.and_ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (a✝¹.and_ a✝)
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (a✝¹.or_ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (a✝¹.or_ a✝)
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (a✝¹.iff_ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (a✝¹.iff_ a✝)
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (forall_ a✝¹ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (forall_ a✝¹ a✝)
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (exists_ a✝¹ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (exists_ a✝¹ a✝)
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isBoundIn u (def_ a✝¹ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_fastAdmitsAux | [362, 1] | [385, 10] | all_goals
simp only [isBoundIn] at h1
simp only [fastAdmitsAux] | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isBoundIn u (pred_const_ a✝¹ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (pred_const_ a✝¹ a✝)
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isBoundIn u (pred_var_ a✝¹ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (pred_var_ a✝¹ a✝)
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : ¬isBoundIn u (eq_ a✝¹ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (eq_ a✝¹ a✝)
case true_
v u : VarName
binders : Finset VarName
h1 : ¬isBoundIn u true_
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : ¬isBoundIn u false_
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders false_
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u a✝.not_
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders a✝.not_
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (a✝¹.imp_ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (a✝¹.imp_ a✝)
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (a✝¹.and_ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (a✝¹.and_ a✝)
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (a✝¹.or_ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (a✝¹.or_ a✝)
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (a✝¹.iff_ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (a✝¹.iff_ a✝)
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (forall_ a✝¹ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (forall_ a✝¹ a✝)
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u (exists_ a✝¹ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (exists_ a✝¹ a✝)
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isBoundIn u (def_ a✝¹ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝) | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ v ∈ a✝ → u ∉ binders
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ v ∈ a✝ → u ∉ binders
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ v = a✝¹ ∨ v = a✝ → u ∉ binders
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u a✝
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders a✝
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case forall_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(u = a✝¹ ∨ isBoundIn u a✝)
h2 : u ∉ binders
⊢ v = a✝¹ ∨ fastAdmitsAux v u (binders ∪ {a✝¹}) a✝
case exists_
v u a✝¹ : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(u = a✝¹ ∨ isBoundIn u a✝)
h2 : u ∉ binders
⊢ v = a✝¹ ∨ fastAdmitsAux v u (binders ∪ {a✝¹}) a✝
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ v ∈ a✝ → u ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_fastAdmitsAux | [362, 1] | [385, 10] | all_goals
tauto | case pred_const_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ v ∈ a✝ → u ∉ binders
case pred_var_
v u : VarName
a✝¹ : PredName
a✝ : List VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ v ∈ a✝ → u ∉ binders
case eq_
v u a✝¹ a✝ : VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ v = a✝¹ ∨ v = a✝ → u ∉ binders
case not_
v u : VarName
a✝ : Formula
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬isBoundIn u a✝
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders a✝
case imp_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case and_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case or_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case iff_
v u : VarName
a✝¹ a✝ : Formula
a_ih✝¹ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝¹ → u ∉ binders → fastAdmitsAux v u binders a✝¹
a_ih✝ : ∀ (binders : Finset VarName), ¬isBoundIn u a✝ → u ∉ binders → fastAdmitsAux v u binders a✝
binders : Finset VarName
h1 : ¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝
case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ v ∈ a✝ → u ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_fastAdmitsAux | [362, 1] | [385, 10] | simp only [isBoundIn] at h1 | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬isBoundIn u (def_ a✝¹ a✝)
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝) | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_fastAdmitsAux | [362, 1] | [385, 10] | simp only [fastAdmitsAux] | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ fastAdmitsAux v u binders (def_ a✝¹ a✝) | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ v ∈ a✝ → u ∉ binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_fastAdmitsAux | [362, 1] | [385, 10] | push_neg at h1 | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : ¬(u = x ∨ isBoundIn u phi)
h2 : u ∉ binders
⊢ v = x ∨ fastAdmitsAux v u (binders ∪ {x}) phi | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → fastAdmitsAux v u binders phi
binders : Finset VarName
h2 : u ∉ binders
h1 : u ≠ x ∧ ¬isBoundIn u phi
⊢ v = x ∨ fastAdmitsAux v u (binders ∪ {x}) phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_fastAdmitsAux | [362, 1] | [385, 10] | cases h1 | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → fastAdmitsAux v u binders phi
binders : Finset VarName
h2 : u ∉ binders
h1 : u ≠ x ∧ ¬isBoundIn u phi
⊢ v = x ∨ fastAdmitsAux v u (binders ∪ {x}) phi | case intro
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → fastAdmitsAux v u binders phi
binders : Finset VarName
h2 : u ∉ binders
left✝ : u ≠ x
right✝ : ¬isBoundIn u phi
⊢ v = x ∨ fastAdmitsAux v u (binders ∪ {x}) phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_fastAdmitsAux | [362, 1] | [385, 10] | right | v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → fastAdmitsAux v u binders phi
binders : Finset VarName
h2 : u ∉ binders
h1_left : u ≠ x
h1_right : ¬isBoundIn u phi
⊢ v = x ∨ fastAdmitsAux v u (binders ∪ {x}) phi | case h
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → fastAdmitsAux v u binders phi
binders : Finset VarName
h2 : u ∉ binders
h1_left : u ≠ x
h1_right : ¬isBoundIn u phi
⊢ fastAdmitsAux v u (binders ∪ {x}) phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_fastAdmitsAux | [362, 1] | [385, 10] | apply phi_ih (binders ∪ {x}) h1_right | case h
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → fastAdmitsAux v u binders phi
binders : Finset VarName
h2 : u ∉ binders
h1_left : u ≠ x
h1_right : ¬isBoundIn u phi
⊢ fastAdmitsAux v u (binders ∪ {x}) phi | case h
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → fastAdmitsAux v u binders phi
binders : Finset VarName
h2 : u ∉ binders
h1_left : u ≠ x
h1_right : ¬isBoundIn u phi
⊢ u ∉ binders ∪ {x} |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_fastAdmitsAux | [362, 1] | [385, 10] | simp | case h
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → fastAdmitsAux v u binders phi
binders : Finset VarName
h2 : u ∉ binders
h1_left : u ≠ x
h1_right : ¬isBoundIn u phi
⊢ u ∉ binders ∪ {x} | case h
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → fastAdmitsAux v u binders phi
binders : Finset VarName
h2 : u ∉ binders
h1_left : u ≠ x
h1_right : ¬isBoundIn u phi
⊢ u ∉ binders ∧ ¬u = x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_fastAdmitsAux | [362, 1] | [385, 10] | tauto | case h
v u x : VarName
phi : Formula
phi_ih : ∀ (binders : Finset VarName), ¬isBoundIn u phi → u ∉ binders → fastAdmitsAux v u binders phi
binders : Finset VarName
h2 : u ∉ binders
h1_left : u ≠ x
h1_right : ¬isBoundIn u phi
⊢ u ∉ binders ∧ ¬u = x | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_fastAdmitsAux | [362, 1] | [385, 10] | tauto | case def_
v u : VarName
a✝¹ : DefName
a✝ : List VarName
binders : Finset VarName
h1 : ¬False
h2 : u ∉ binders
⊢ v ∈ a✝ → u ∉ binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_fastAdmits | [388, 1] | [396, 7] | simp only [fastAdmits] | F : Formula
v u : VarName
h1 : ¬isBoundIn u F
⊢ fastAdmits v u F | F : Formula
v u : VarName
h1 : ¬isBoundIn u F
⊢ fastAdmitsAux v u ∅ F |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.