url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [Holds]
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x x' : VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' y y' : VarName h2_left : isAlphaEqvVar binders x y h2_right : isAlphaEqvVar binders x' y' ⊢ Holds D I V (head✝ :: tail✝) (eq_ x x') ↔ Holds D I V' (head✝ :: tail✝) (eq_ y y')
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x x' : VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' y y' : VarName h2_left : isAlphaEqvVar binders x y h2_right : isAlphaEqvVar binders x' y' ⊢ V x = V x' ↔ V' y = V' y'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
congr! 1
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x x' : VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' y y' : VarName h2_left : isAlphaEqvVar binders x y h2_right : isAlphaEqvVar binders x' y' ⊢ V x = V x' ↔ V' y = V' y'
case a.h.e'_2 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x x' : VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' y y' : VarName h2_left : isAlphaEqvVar binders x y h2_right : isAlphaEqvVar binders x' y' ⊢ V x = V' y case a.h.e'_3 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x x' : VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' y y' : VarName h2_left : isAlphaEqvVar binders x y h2_right : isAlphaEqvVar binders x' y' ⊢ V x' = V' y'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
exact aux_1 D binders x y V V' h1 h2_left
case a.h.e'_2 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x x' : VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' y y' : VarName h2_left : isAlphaEqvVar binders x y h2_right : isAlphaEqvVar binders x' y' ⊢ V x = V' y
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
exact aux_1 D binders x' y' V V' h1 h2_right
case a.h.e'_3 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x x' : VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' y y' : VarName h2_left : isAlphaEqvVar binders x y h2_right : isAlphaEqvVar binders x' y' ⊢ V x' = V' y'
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [Holds]
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' h2 : True ⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D I V' (head✝ :: tail✝) false_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [Holds]
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' phi' : Formula h2 : isAlphaEqvAux binders phi phi' ⊢ Holds D I V (head✝ :: tail✝) phi.not_ ↔ Holds D I V' (head✝ :: tail✝) phi'.not_
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' phi' : Formula h2 : isAlphaEqvAux binders phi phi' ⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I V' (head✝ :: tail✝) phi'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
congr! 1
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' phi' : Formula h2 : isAlphaEqvAux binders phi phi' ⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I V' (head✝ :: tail✝) phi'
case a.h.e'_1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' phi' : Formula h2 : isAlphaEqvAux binders phi phi' ⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
exact phi_ih V V' phi' binders h1 h2
case a.h.e'_1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' phi' : Formula h2 : isAlphaEqvAux binders phi phi' ⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi'
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
cases h2
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') psi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders psi F' → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' phi' psi' : Formula h2 : isAlphaEqvAux binders phi phi' ∧ isAlphaEqvAux binders psi psi' ⊢ Holds D I V (head✝ :: tail✝) (phi.iff_ psi) ↔ Holds D I V' (head✝ :: tail✝) (phi'.iff_ psi')
case intro D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') psi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders psi F' → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' phi' psi' : Formula left✝ : isAlphaEqvAux binders phi phi' right✝ : isAlphaEqvAux binders psi psi' ⊢ Holds D I V (head✝ :: tail✝) (phi.iff_ psi) ↔ Holds D I V' (head✝ :: tail✝) (phi'.iff_ psi')
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [Holds]
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') psi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders psi F' → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' phi' psi' : Formula h2_left : isAlphaEqvAux binders phi phi' h2_right : isAlphaEqvAux binders psi psi' ⊢ Holds D I V (head✝ :: tail✝) (phi.iff_ psi) ↔ Holds D I V' (head✝ :: tail✝) (phi'.iff_ psi')
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') psi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders psi F' → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' phi' psi' : Formula h2_left : isAlphaEqvAux binders phi phi' h2_right : isAlphaEqvAux binders psi psi' ⊢ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) psi) ↔ (Holds D I V' (head✝ :: tail✝) phi' ↔ Holds D I V' (head✝ :: tail✝) psi')
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
congr! 1
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') psi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders psi F' → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' phi' psi' : Formula h2_left : isAlphaEqvAux binders phi phi' h2_right : isAlphaEqvAux binders psi psi' ⊢ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) psi) ↔ (Holds D I V' (head✝ :: tail✝) phi' ↔ Holds D I V' (head✝ :: tail✝) psi')
case a.h.e'_1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') psi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders psi F' → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' phi' psi' : Formula h2_left : isAlphaEqvAux binders phi phi' h2_right : isAlphaEqvAux binders psi psi' ⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi' case a.h.e'_2.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') psi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders psi F' → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' phi' psi' : Formula h2_left : isAlphaEqvAux binders phi phi' h2_right : isAlphaEqvAux binders psi psi' ⊢ Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
exact phi_ih V V' phi' binders h1 h2_left
case a.h.e'_1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') psi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders psi F' → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' phi' psi' : Formula h2_left : isAlphaEqvAux binders phi phi' h2_right : isAlphaEqvAux binders psi psi' ⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi'
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
exact psi_ih V V' psi' binders h1 h2_right
case a.h.e'_2.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') psi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders psi F' → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' phi' psi' : Formula h2_left : isAlphaEqvAux binders phi phi' h2_right : isAlphaEqvAux binders psi psi' ⊢ Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi'
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [Holds]
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' y : VarName phi' : Formula h2 : isAlphaEqvAux ((x, y) :: binders) phi phi' ⊢ Holds D I V (head✝ :: tail✝) (exists_ x phi) ↔ Holds D I V' (head✝ :: tail✝) (exists_ y phi')
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' y : VarName phi' : Formula h2 : isAlphaEqvAux ((x, y) :: binders) phi phi' ⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔ ∃ d, Holds D I (Function.updateITE V' y d) (head✝ :: tail✝) phi'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
first | apply forall_congr' | apply exists_congr
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' y : VarName phi' : Formula h2 : isAlphaEqvAux ((x, y) :: binders) phi phi' ⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔ ∃ d, Holds D I (Function.updateITE V' y d) (head✝ :: tail✝) phi'
case h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' y : VarName phi' : Formula h2 : isAlphaEqvAux ((x, y) :: binders) phi phi' ⊢ ∀ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' y a) (head✝ :: tail✝) phi'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
intro d
case h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' y : VarName phi' : Formula h2 : isAlphaEqvAux ((x, y) :: binders) phi phi' ⊢ ∀ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' y a) (head✝ :: tail✝) phi'
case h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' y : VarName phi' : Formula h2 : isAlphaEqvAux ((x, y) :: binders) phi phi' d : D ⊢ Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' y d) (head✝ :: tail✝) phi'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
induction h1
case h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' y : VarName phi' : Formula h2 : isAlphaEqvAux ((x, y) :: binders) phi phi' d : D ⊢ Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' y d) (head✝ :: tail✝) phi'
case h.nil D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D V✝ : VarAssignment D h2 : isAlphaEqvAux [(x, y)] phi phi' ⊢ Holds D I (Function.updateITE V✝ x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V✝ y d) (head✝ :: tail✝) phi' case h.cons D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D binders✝ : List (VarName × VarName) x✝ y✝ : VarName V✝ V'✝ : VarAssignment D d✝ : D a✝ : AlphaEqvVarAssignment D binders✝ V✝ V'✝ a_ih✝ : isAlphaEqvAux ((x, y) :: binders✝) phi phi' → (Holds D I (Function.updateITE V✝ x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V'✝ y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (x✝, y✝) :: binders✝) phi phi' ⊢ Holds D I (Function.updateITE (Function.updateITE V✝ x✝ d✝) x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE (Function.updateITE V'✝ y✝ d✝) y d) (head✝ :: tail✝) phi'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
apply forall_congr'
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' y : VarName phi' : Formula h2 : isAlphaEqvAux ((x, y) :: binders) phi phi' ⊢ (∀ (d : D), Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔ ∀ (d : D), Holds D I (Function.updateITE V' y d) (head✝ :: tail✝) phi'
case h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' y : VarName phi' : Formula h2 : isAlphaEqvAux ((x, y) :: binders) phi phi' ⊢ ∀ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' y a) (head✝ :: tail✝) phi'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
apply exists_congr
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' y : VarName phi' : Formula h2 : isAlphaEqvAux ((x, y) :: binders) phi phi' ⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔ ∃ d, Holds D I (Function.updateITE V' y d) (head✝ :: tail✝) phi'
case h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' y : VarName phi' : Formula h2 : isAlphaEqvAux ((x, y) :: binders) phi phi' ⊢ ∀ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' y a) (head✝ :: tail✝) phi'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
apply phi_ih
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_V : VarAssignment D h2 : isAlphaEqvAux [(x, y)] phi phi' ⊢ Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V y d) (head✝ :: tail✝) phi'
case h1 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_V : VarAssignment D h2 : isAlphaEqvAux [(x, y)] phi phi' ⊢ AlphaEqvVarAssignment D ?binders (Function.updateITE h1_V x d) (Function.updateITE h1_V y d) case h2 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_V : VarAssignment D h2 : isAlphaEqvAux [(x, y)] phi phi' ⊢ isAlphaEqvAux ?binders phi phi' case binders D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_V : VarAssignment D h2 : isAlphaEqvAux [(x, y)] phi phi' ⊢ List (VarName × VarName)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
apply AlphaEqvVarAssignment.cons
case h1 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_V : VarAssignment D h2 : isAlphaEqvAux [(x, y)] phi phi' ⊢ AlphaEqvVarAssignment D ?binders (Function.updateITE h1_V x d) (Function.updateITE h1_V y d)
case h1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_V : VarAssignment D h2 : isAlphaEqvAux [(x, y)] phi phi' ⊢ AlphaEqvVarAssignment D ?h1.binders h1_V h1_V case h1.binders D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_V : VarAssignment D h2 : isAlphaEqvAux [(x, y)] phi phi' ⊢ List (VarName × VarName)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
apply AlphaEqvVarAssignment.nil
case h1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_V : VarAssignment D h2 : isAlphaEqvAux [(x, y)] phi phi' ⊢ AlphaEqvVarAssignment D ?h1.binders h1_V h1_V case h1.binders D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_V : VarAssignment D h2 : isAlphaEqvAux [(x, y)] phi phi' ⊢ List (VarName × VarName)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
exact h2
case h2 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_V : VarAssignment D h2 : isAlphaEqvAux [(x, y)] phi phi' ⊢ isAlphaEqvAux [(x, y)] phi phi'
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
apply phi_ih
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ Holds D I (Function.updateITE (Function.updateITE h1_V h1_x h1_d) x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE (Function.updateITE h1_V' h1_y h1_d) y d) (head✝ :: tail✝) phi'
case h1 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ AlphaEqvVarAssignment D ?binders (Function.updateITE (Function.updateITE h1_V h1_x h1_d) x d) (Function.updateITE (Function.updateITE h1_V' h1_y h1_d) y d) case h2 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ isAlphaEqvAux ?binders phi phi' case binders D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ List (VarName × VarName)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
apply AlphaEqvVarAssignment.cons
case h1 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ AlphaEqvVarAssignment D ?binders (Function.updateITE (Function.updateITE h1_V h1_x h1_d) x d) (Function.updateITE (Function.updateITE h1_V' h1_y h1_d) y d)
case h1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ AlphaEqvVarAssignment D ?h1.binders (Function.updateITE h1_V h1_x h1_d) (Function.updateITE h1_V' h1_y h1_d) case h1.binders D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ List (VarName × VarName)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
apply AlphaEqvVarAssignment.cons
case h1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ AlphaEqvVarAssignment D ?h1.binders (Function.updateITE h1_V h1_x h1_d) (Function.updateITE h1_V' h1_y h1_d) case h1.binders D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ List (VarName × VarName)
case h1.a.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ AlphaEqvVarAssignment D ?h1.a.binders h1_V h1_V' case h1.a.binders D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ List (VarName × VarName)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
exact h1_1
case h1.a.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ AlphaEqvVarAssignment D ?h1.a.binders h1_V h1_V' case h1.a.binders D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ List (VarName × VarName)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
exact h2
case h2 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F') x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D) (F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders phi F' → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) F') V V' : VarAssignment D binders : List (VarName × VarName) y : VarName phi' : Formula d : D h1_binders : List (VarName × VarName) h1_x h1_y : VarName h1_V h1_V' : VarAssignment D h1_d : D h1_1 : AlphaEqvVarAssignment D h1_binders h1_V h1_V' a_ih✝ : isAlphaEqvAux ((x, y) :: h1_binders) phi phi' → (Holds D I (Function.updateITE h1_V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE h1_V' y d) (head✝ :: tail✝) phi') h2 : isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi' ⊢ isAlphaEqvAux ((x, y) :: (h1_x, h1_y) :: h1_binders) phi phi'
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [Holds]
D : Type I : Interpretation D a✝³ : DefName a✝² : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' a✝¹ : DefName a✝ : List VarName h2 : a✝³ = a✝¹ ∧ isAlphaEqvVarList binders a✝² a✝ ⊢ Holds D I V [] (def_ a✝³ a✝²) ↔ Holds D I V' [] (def_ a✝¹ a✝)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [Holds]
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys ⊢ Holds D I V (hd :: tl) (def_ X xs) ↔ Holds D I V' (hd :: tl) (def_ Y ys)
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys ⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)) ↔ if Y = hd.name ∧ ys.length = hd.args.length then Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q else Holds D I V' tl (def_ Y ys)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
split_ifs
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys ⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)) ↔ if Y = hd.name ∧ ys.length = hd.args.length then Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q else Holds D I V' tl (def_ Y ys)
case pos D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys h✝¹ : X = hd.name ∧ xs.length = hd.args.length h✝ : Y = hd.name ∧ ys.length = hd.args.length ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q case neg D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys h✝¹ : X = hd.name ∧ xs.length = hd.args.length h✝ : ¬(Y = hd.name ∧ ys.length = hd.args.length) ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ Y ys) case pos D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys h✝¹ : ¬(X = hd.name ∧ xs.length = hd.args.length) h✝ : Y = hd.name ∧ ys.length = hd.args.length ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q case neg D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys h✝¹ : ¬(X = hd.name ∧ xs.length = hd.args.length) h✝ : ¬(Y = hd.name ∧ ys.length = hd.args.length) ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ Y ys)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
case _ c1 c2 => cases h2 case intro h2_left h2_right => simp only [isAlphaEqvVarList_length binders xs ys h2_right] at c1 subst h2_left contradiction
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys c1 : X = hd.name ∧ xs.length = hd.args.length c2 : ¬(Y = hd.name ∧ ys.length = hd.args.length) ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ Y ys)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
case _ c1 c2 => cases h2 case intro h2_left h2_right => simp only [← isAlphaEqvVarList_length binders xs ys h2_right] at c2 subst h2_left contradiction
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) c2 : Y = hd.name ∧ ys.length = hd.args.length ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
case _ c1 c2 => exact ih V V' (def_ X xs) (def_ Y ys) binders h1 h2
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) c2 : ¬(Y = hd.name ∧ ys.length = hd.args.length) ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ Y ys)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
cases h2
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
case intro D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length left✝ : X = Y right✝ : isAlphaEqvVarList binders xs ys ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
apply Holds_coincide_Var
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys ⊢ ∀ (v : VarName), isFreeIn v hd.q → Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' ys) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
intro v a1
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys ⊢ ∀ (v : VarName), isFreeIn v hd.q → Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' ys) v
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' ys) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [aux_2 D binders xs ys V V' h1 h2_right]
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' ys) v
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ Function.updateListITE V hd.args (List.map V' ys) v = Function.updateListITE V' hd.args (List.map V' ys) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
apply Function.updateListITE_mem_eq_len
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ Function.updateListITE V hd.args (List.map V' ys) v = Function.updateListITE V' hd.args (List.map V' ys) v
case h1.h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ v ∈ hd.args case h1.h2 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ hd.args.length = (List.map V' ys).length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [isFreeIn_iff_mem_freeVarSet] at a1
case h1.h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ v ∈ hd.args
case h1.h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : v ∈ hd.q.freeVarSet ⊢ v ∈ hd.args
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [← List.mem_toFinset]
case h1.h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : v ∈ hd.q.freeVarSet ⊢ v ∈ hd.args
case h1.h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : v ∈ hd.q.freeVarSet ⊢ v ∈ hd.args.toFinset
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
apply Finset.mem_of_subset hd.h1 a1
case h1.h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : v ∈ hd.q.freeVarSet ⊢ v ∈ hd.args.toFinset
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp
case h1.h2 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ hd.args.length = (List.map V' ys).length
case h1.h2 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ hd.args.length = ys.length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [eq_comm]
case h1.h2 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ hd.args.length = ys.length
case h1.h2 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ ys.length = hd.args.length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
cases c2
case h1.h2 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q ⊢ ys.length = hd.args.length
case h1.h2.intro D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q left✝ : Y = hd.name right✝ : ys.length = hd.args.length ⊢ ys.length = hd.args.length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
case intro c2_left c2_right => exact c2_right
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q c2_left : Y = hd.name c2_right : ys.length = hd.args.length ⊢ ys.length = hd.args.length
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
exact c2_right
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys v : VarName a1 : isFreeIn v hd.q c2_left : Y = hd.name c2_right : ys.length = hd.args.length ⊢ ys.length = hd.args.length
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
cases h2
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys c1 : X = hd.name ∧ xs.length = hd.args.length c2 : ¬(Y = hd.name ∧ ys.length = hd.args.length) ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ Y ys)
case intro D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : ¬(Y = hd.name ∧ ys.length = hd.args.length) left✝ : X = Y right✝ : isAlphaEqvVarList binders xs ys ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ Y ys)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
case intro h2_left h2_right => simp only [isAlphaEqvVarList_length binders xs ys h2_right] at c1 subst h2_left contradiction
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : ¬(Y = hd.name ∧ ys.length = hd.args.length) h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ Y ys)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [isAlphaEqvVarList_length binders xs ys h2_right] at c1
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : X = hd.name ∧ xs.length = hd.args.length c2 : ¬(Y = hd.name ∧ ys.length = hd.args.length) h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ Y ys)
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c2 : ¬(Y = hd.name ∧ ys.length = hd.args.length) h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys c1 : X = hd.name ∧ ys.length = hd.args.length ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ Y ys)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
subst h2_left
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c2 : ¬(Y = hd.name ∧ ys.length = hd.args.length) h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys c1 : X = hd.name ∧ ys.length = hd.args.length ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ Y ys)
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' ys : List VarName h2_right : isAlphaEqvVarList binders xs ys c1 : X = hd.name ∧ ys.length = hd.args.length c2 : ¬(X = hd.name ∧ ys.length = hd.args.length) ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ X ys)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
contradiction
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' ys : List VarName h2_right : isAlphaEqvVarList binders xs ys c1 : X = hd.name ∧ ys.length = hd.args.length c2 : ¬(X = hd.name ∧ ys.length = hd.args.length) ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I V' tl (def_ X ys)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
cases h2
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) c2 : Y = hd.name ∧ ys.length = hd.args.length ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
case intro D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) c2 : Y = hd.name ∧ ys.length = hd.args.length left✝ : X = Y right✝ : isAlphaEqvVarList binders xs ys ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
case intro h2_left h2_right => simp only [← isAlphaEqvVarList_length binders xs ys h2_right] at c2 subst h2_left contradiction
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
simp only [← isAlphaEqvVarList_length binders xs ys h2_right] at c2
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) c2 : Y = hd.name ∧ ys.length = hd.args.length h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys c2 : Y = hd.name ∧ xs.length = hd.args.length ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
subst h2_left
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) h2_left : X = Y h2_right : isAlphaEqvVarList binders xs ys c2 : Y = hd.name ∧ xs.length = hd.args.length ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' ys : List VarName c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) h2_right : isAlphaEqvVarList binders xs ys c2 : X = hd.name ∧ xs.length = hd.args.length ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
contradiction
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' ys : List VarName c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) h2_right : isAlphaEqvVarList binders xs ys c2 : X = hd.name ∧ xs.length = hd.args.length ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' ys)) tl hd.q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isAlphaEqv_Holds_aux
[624, 1]
[734, 58]
exact ih V V' (def_ X xs) (def_ Y ys) binders h1 h2
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F F' : Formula) (binders : List (VarName × VarName)), AlphaEqvVarAssignment D binders V V' → isAlphaEqvAux binders F F' → (Holds D I V tl F ↔ Holds D I V' tl F') X : DefName xs : List VarName V V' : VarAssignment D binders : List (VarName × VarName) h1 : AlphaEqvVarAssignment D binders V V' Y : DefName ys : List VarName h2 : X = Y ∧ isAlphaEqvVarList binders xs ys c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) c2 : ¬(Y = hd.name ∧ ys.length = hd.args.length) ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ Y ys)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isalphaEqv_Holds
[737, 1]
[748, 76]
simp only [isAlphaEqv] at h1
D : Type I : Interpretation D V : VarAssignment D E : Env F F' : Formula h1 : isAlphaEqv F F' ⊢ Holds D I V E F ↔ Holds D I V E F'
D : Type I : Interpretation D V : VarAssignment D E : Env F F' : Formula h1 : isAlphaEqvAux [] F F' ⊢ Holds D I V E F ↔ Holds D I V E F'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Alpha.lean
FOL.NV.isalphaEqv_Holds
[737, 1]
[748, 76]
exact isAlphaEqv_Holds_aux D I V V E F F' [] AlphaEqvVarAssignment.nil h1
D : Type I : Interpretation D V : VarAssignment D E : Env F F' : Formula h1 : isAlphaEqvAux [] F F' ⊢ Holds D I V E F ↔ Holds D I V E F'
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_char_EpsilonNFA_toAbstract
[50, 1]
[63, 9]
simp only [match_char_EpsilonNFA]
α : Type inst✝ : DecidableEq α c : α ⊢ (match_char_EpsilonNFA c).toAbstract = match_char_AbstractEpsilonNFA c
α : Type inst✝ : DecidableEq α c : α ⊢ { symbol_arrow_list := [{ start_state := 0, symbol := c, stop_state_list := [1] }], epsilon_arrow_list := [], starting_state_list := [0], accepting_state_list := [1] }.toAbstract = match_char_AbstractEpsilonNFA c
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_char_EpsilonNFA_toAbstract
[50, 1]
[63, 9]
simp only [EpsilonNFA.toAbstract]
α : Type inst✝ : DecidableEq α c : α ⊢ { symbol_arrow_list := [{ start_state := 0, symbol := c, stop_state_list := [1] }], epsilon_arrow_list := [], starting_state_list := [0], accepting_state_list := [1] }.toAbstract = match_char_AbstractEpsilonNFA c
α : Type inst✝ : DecidableEq α c : α ⊢ { symbol := fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ [{ start_state := 0, symbol := c, stop_state_list := [1] }] ∧ stop_state ∈ stop_state_list, epsilon := fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ [] ∧ stop_state ∈ stop_state_list, start := fun state => state ∈ [0], accepting := fun state => state ∈ [1] } = match_char_AbstractEpsilonNFA c
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_char_EpsilonNFA_toAbstract
[50, 1]
[63, 9]
simp only [match_char_AbstractEpsilonNFA]
α : Type inst✝ : DecidableEq α c : α ⊢ { symbol := fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ [{ start_state := 0, symbol := c, stop_state_list := [1] }] ∧ stop_state ∈ stop_state_list, epsilon := fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ [] ∧ stop_state ∈ stop_state_list, start := fun state => state ∈ [0], accepting := fun state => state ∈ [1] } = match_char_AbstractEpsilonNFA c
α : Type inst✝ : DecidableEq α c : α ⊢ { symbol := fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ [{ start_state := 0, symbol := c, stop_state_list := [1] }] ∧ stop_state ∈ stop_state_list, epsilon := fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ [] ∧ stop_state ∈ stop_state_list, start := fun state => state ∈ [0], accepting := fun state => state ∈ [1] } = { symbol := fun p a q => p = 0 ∧ a = c ∧ q = 1, epsilon := fun x x => False, start := fun p => p = 0, accepting := fun p => p = 1 }
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_char_EpsilonNFA_toAbstract
[50, 1]
[63, 9]
simp
α : Type inst✝ : DecidableEq α c : α ⊢ { symbol := fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ [{ start_state := 0, symbol := c, stop_state_list := [1] }] ∧ stop_state ∈ stop_state_list, epsilon := fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ [] ∧ stop_state ∈ stop_state_list, start := fun state => state ∈ [0], accepting := fun state => state ∈ [1] } = { symbol := fun p a q => p = 0 ∧ a = c ∧ q = 1, epsilon := fun x x => False, start := fun p => p = 0, accepting := fun p => p = 1 }
α : Type inst✝ : DecidableEq α c : α ⊢ (fun start_state symbol stop_state => ∃ stop_state_list, (start_state = 0 ∧ symbol = c ∧ stop_state_list = [1]) ∧ stop_state ∈ stop_state_list) = fun p a q => p = 0 ∧ a = c ∧ q = 1
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_char_EpsilonNFA_toAbstract
[50, 1]
[63, 9]
simp only [← and_assoc]
α : Type inst✝ : DecidableEq α c : α ⊢ (fun start_state symbol stop_state => ∃ stop_state_list, (start_state = 0 ∧ symbol = c ∧ stop_state_list = [1]) ∧ stop_state ∈ stop_state_list) = fun p a q => p = 0 ∧ a = c ∧ q = 1
α : Type inst✝ : DecidableEq α c : α ⊢ (fun start_state symbol stop_state => ∃ stop_state_list, ((start_state = 0 ∧ symbol = c) ∧ stop_state_list = [1]) ∧ stop_state ∈ stop_state_list) = fun p a q => (p = 0 ∧ a = c) ∧ q = 1
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_char_EpsilonNFA_toAbstract
[50, 1]
[63, 9]
simp only [and_right_comm]
α : Type inst✝ : DecidableEq α c : α ⊢ (fun start_state symbol stop_state => ∃ stop_state_list, ((start_state = 0 ∧ symbol = c) ∧ stop_state_list = [1]) ∧ stop_state ∈ stop_state_list) = fun p a q => (p = 0 ∧ a = c) ∧ q = 1
α : Type inst✝ : DecidableEq α c : α ⊢ (fun start_state symbol stop_state => ∃ stop_state_list, ((start_state = 0 ∧ symbol = c) ∧ stop_state ∈ stop_state_list) ∧ stop_state_list = [1]) = fun p a q => (p = 0 ∧ a = c) ∧ q = 1
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_char_EpsilonNFA_toAbstract
[50, 1]
[63, 9]
simp
α : Type inst✝ : DecidableEq α c : α ⊢ (fun start_state symbol stop_state => ∃ stop_state_list, ((start_state = 0 ∧ symbol = c) ∧ stop_state ∈ stop_state_list) ∧ stop_state_list = [1]) = fun p a q => (p = 0 ∧ a = c) ∧ q = 1
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
simp only [match_epsilon_EpsilonNFA]
α : Type inst✝ : DecidableEq α ⊢ (match_epsilon_EpsilonNFA α).toAbstract = match_epsilon_AbstractEpsilonNFA α
α : Type inst✝ : DecidableEq α ⊢ { symbol_arrow_list := [], epsilon_arrow_list := [{ start_state := 0, stop_state_list := [1] }], starting_state_list := [0], accepting_state_list := [1] }.toAbstract = match_epsilon_AbstractEpsilonNFA α
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
simp only [EpsilonNFA.toAbstract]
α : Type inst✝ : DecidableEq α ⊢ { symbol_arrow_list := [], epsilon_arrow_list := [{ start_state := 0, stop_state_list := [1] }], starting_state_list := [0], accepting_state_list := [1] }.toAbstract = match_epsilon_AbstractEpsilonNFA α
α : Type inst✝ : DecidableEq α ⊢ { symbol := fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ [] ∧ stop_state ∈ stop_state_list, epsilon := fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ [{ start_state := 0, stop_state_list := [1] }] ∧ stop_state ∈ stop_state_list, start := fun state => state ∈ [0], accepting := fun state => state ∈ [1] } = match_epsilon_AbstractEpsilonNFA α
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
simp only [match_epsilon_AbstractEpsilonNFA]
α : Type inst✝ : DecidableEq α ⊢ { symbol := fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ [] ∧ stop_state ∈ stop_state_list, epsilon := fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ [{ start_state := 0, stop_state_list := [1] }] ∧ stop_state ∈ stop_state_list, start := fun state => state ∈ [0], accepting := fun state => state ∈ [1] } = match_epsilon_AbstractEpsilonNFA α
α : Type inst✝ : DecidableEq α ⊢ { symbol := fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ [] ∧ stop_state ∈ stop_state_list, epsilon := fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ [{ start_state := 0, stop_state_list := [1] }] ∧ stop_state ∈ stop_state_list, start := fun state => state ∈ [0], accepting := fun state => state ∈ [1] } = { symbol := fun x x x => False, epsilon := fun p q => p = 0 ∧ q = 1, start := fun p => p = 0, accepting := fun p => p = 1 }
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
simp
α : Type inst✝ : DecidableEq α ⊢ { symbol := fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ [] ∧ stop_state ∈ stop_state_list, epsilon := fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ [{ start_state := 0, stop_state_list := [1] }] ∧ stop_state ∈ stop_state_list, start := fun state => state ∈ [0], accepting := fun state => state ∈ [1] } = { symbol := fun x x x => False, epsilon := fun p q => p = 0 ∧ q = 1, start := fun p => p = 0, accepting := fun p => p = 1 }
α : Type inst✝ : DecidableEq α ⊢ (fun start_state stop_state => ∃ stop_state_list, (start_state = 0 ∧ stop_state_list = [1]) ∧ stop_state ∈ stop_state_list) = fun p q => p = 0 ∧ q = 1
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
funext p q
α : Type inst✝ : DecidableEq α ⊢ (fun start_state stop_state => ∃ stop_state_list, (start_state = 0 ∧ stop_state_list = [1]) ∧ stop_state ∈ stop_state_list) = fun p q => p = 0 ∧ q = 1
case h.h α : Type inst✝ : DecidableEq α p q : ℕ ⊢ (∃ stop_state_list, (p = 0 ∧ stop_state_list = [1]) ∧ q ∈ stop_state_list) = (p = 0 ∧ q = 1)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
simp
case h.h α : Type inst✝ : DecidableEq α p q : ℕ ⊢ (∃ stop_state_list, (p = 0 ∧ stop_state_list = [1]) ∧ q ∈ stop_state_list) = (p = 0 ∧ q = 1)
case h.h α : Type inst✝ : DecidableEq α p q : ℕ ⊢ (∃ stop_state_list, (p = 0 ∧ stop_state_list = [1]) ∧ q ∈ stop_state_list) ↔ p = 0 ∧ q = 1
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
constructor
case h.h α : Type inst✝ : DecidableEq α p q : ℕ ⊢ (∃ stop_state_list, (p = 0 ∧ stop_state_list = [1]) ∧ q ∈ stop_state_list) ↔ p = 0 ∧ q = 1
case h.h.mp α : Type inst✝ : DecidableEq α p q : ℕ ⊢ (∃ stop_state_list, (p = 0 ∧ stop_state_list = [1]) ∧ q ∈ stop_state_list) → p = 0 ∧ q = 1 case h.h.mpr α : Type inst✝ : DecidableEq α p q : ℕ ⊢ p = 0 ∧ q = 1 → ∃ stop_state_list, (p = 0 ∧ stop_state_list = [1]) ∧ q ∈ stop_state_list
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
intro a1
case h.h.mp α : Type inst✝ : DecidableEq α p q : ℕ ⊢ (∃ stop_state_list, (p = 0 ∧ stop_state_list = [1]) ∧ q ∈ stop_state_list) → p = 0 ∧ q = 1
case h.h.mp α : Type inst✝ : DecidableEq α p q : ℕ a1 : ∃ stop_state_list, (p = 0 ∧ stop_state_list = [1]) ∧ q ∈ stop_state_list ⊢ p = 0 ∧ q = 1
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
apply Exists.elim a1
case h.h.mp α : Type inst✝ : DecidableEq α p q : ℕ a1 : ∃ stop_state_list, (p = 0 ∧ stop_state_list = [1]) ∧ q ∈ stop_state_list ⊢ p = 0 ∧ q = 1
case h.h.mp α : Type inst✝ : DecidableEq α p q : ℕ a1 : ∃ stop_state_list, (p = 0 ∧ stop_state_list = [1]) ∧ q ∈ stop_state_list ⊢ ∀ (a : List ℕ), (p = 0 ∧ a = [1]) ∧ q ∈ a → p = 0 ∧ q = 1
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
intro stop_state_list a2
case h.h.mp α : Type inst✝ : DecidableEq α p q : ℕ a1 : ∃ stop_state_list, (p = 0 ∧ stop_state_list = [1]) ∧ q ∈ stop_state_list ⊢ ∀ (a : List ℕ), (p = 0 ∧ a = [1]) ∧ q ∈ a → p = 0 ∧ q = 1
case h.h.mp α : Type inst✝ : DecidableEq α p q : ℕ a1 : ∃ stop_state_list, (p = 0 ∧ stop_state_list = [1]) ∧ q ∈ stop_state_list stop_state_list : List ℕ a2 : (p = 0 ∧ stop_state_list = [1]) ∧ q ∈ stop_state_list ⊢ p = 0 ∧ q = 1
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
clear a1
case h.h.mp α : Type inst✝ : DecidableEq α p q : ℕ a1 : ∃ stop_state_list, (p = 0 ∧ stop_state_list = [1]) ∧ q ∈ stop_state_list stop_state_list : List ℕ a2 : (p = 0 ∧ stop_state_list = [1]) ∧ q ∈ stop_state_list ⊢ p = 0 ∧ q = 1
case h.h.mp α : Type inst✝ : DecidableEq α p q : ℕ stop_state_list : List ℕ a2 : (p = 0 ∧ stop_state_list = [1]) ∧ q ∈ stop_state_list ⊢ p = 0 ∧ q = 1
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
cases a2
case h.h.mp α : Type inst✝ : DecidableEq α p q : ℕ stop_state_list : List ℕ a2 : (p = 0 ∧ stop_state_list = [1]) ∧ q ∈ stop_state_list ⊢ p = 0 ∧ q = 1
case h.h.mp.intro α : Type inst✝ : DecidableEq α p q : ℕ stop_state_list : List ℕ left✝ : p = 0 ∧ stop_state_list = [1] right✝ : q ∈ stop_state_list ⊢ p = 0 ∧ q = 1
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
case _ a2_left a2_right => cases a2_left case _ a2_left_left a2_left_right => simp only [a2_left_right] at a2_right simp at a2_right tauto
α : Type inst✝ : DecidableEq α p q : ℕ stop_state_list : List ℕ a2_left : p = 0 ∧ stop_state_list = [1] a2_right : q ∈ stop_state_list ⊢ p = 0 ∧ q = 1
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
cases a2_left
α : Type inst✝ : DecidableEq α p q : ℕ stop_state_list : List ℕ a2_left : p = 0 ∧ stop_state_list = [1] a2_right : q ∈ stop_state_list ⊢ p = 0 ∧ q = 1
case intro α : Type inst✝ : DecidableEq α p q : ℕ stop_state_list : List ℕ a2_right : q ∈ stop_state_list left✝ : p = 0 right✝ : stop_state_list = [1] ⊢ p = 0 ∧ q = 1
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
case _ a2_left_left a2_left_right => simp only [a2_left_right] at a2_right simp at a2_right tauto
α : Type inst✝ : DecidableEq α p q : ℕ stop_state_list : List ℕ a2_right : q ∈ stop_state_list a2_left_left : p = 0 a2_left_right : stop_state_list = [1] ⊢ p = 0 ∧ q = 1
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
simp only [a2_left_right] at a2_right
α : Type inst✝ : DecidableEq α p q : ℕ stop_state_list : List ℕ a2_right : q ∈ stop_state_list a2_left_left : p = 0 a2_left_right : stop_state_list = [1] ⊢ p = 0 ∧ q = 1
α : Type inst✝ : DecidableEq α p q : ℕ stop_state_list : List ℕ a2_left_left : p = 0 a2_left_right : stop_state_list = [1] a2_right : q ∈ [1] ⊢ p = 0 ∧ q = 1
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
simp at a2_right
α : Type inst✝ : DecidableEq α p q : ℕ stop_state_list : List ℕ a2_left_left : p = 0 a2_left_right : stop_state_list = [1] a2_right : q ∈ [1] ⊢ p = 0 ∧ q = 1
α : Type inst✝ : DecidableEq α p q : ℕ stop_state_list : List ℕ a2_left_left : p = 0 a2_left_right : stop_state_list = [1] a2_right : q = 1 ⊢ p = 0 ∧ q = 1
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
tauto
α : Type inst✝ : DecidableEq α p q : ℕ stop_state_list : List ℕ a2_left_left : p = 0 a2_left_right : stop_state_list = [1] a2_right : q = 1 ⊢ p = 0 ∧ q = 1
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
intro a1
case h.h.mpr α : Type inst✝ : DecidableEq α p q : ℕ ⊢ p = 0 ∧ q = 1 → ∃ stop_state_list, (p = 0 ∧ stop_state_list = [1]) ∧ q ∈ stop_state_list
case h.h.mpr α : Type inst✝ : DecidableEq α p q : ℕ a1 : p = 0 ∧ q = 1 ⊢ ∃ stop_state_list, (p = 0 ∧ stop_state_list = [1]) ∧ q ∈ stop_state_list
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
apply Exists.intro [1]
case h.h.mpr α : Type inst✝ : DecidableEq α p q : ℕ a1 : p = 0 ∧ q = 1 ⊢ ∃ stop_state_list, (p = 0 ∧ stop_state_list = [1]) ∧ q ∈ stop_state_list
case h.h.mpr α : Type inst✝ : DecidableEq α p q : ℕ a1 : p = 0 ∧ q = 1 ⊢ (p = 0 ∧ [1] = [1]) ∧ q ∈ [1]
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
simp
case h.h.mpr α : Type inst✝ : DecidableEq α p q : ℕ a1 : p = 0 ∧ q = 1 ⊢ (p = 0 ∧ [1] = [1]) ∧ q ∈ [1]
case h.h.mpr α : Type inst✝ : DecidableEq α p q : ℕ a1 : p = 0 ∧ q = 1 ⊢ p = 0 ∧ q = 1
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_epsilon_EpsilonNFA_toAbstract
[176, 1]
[204, 15]
exact a1
case h.h.mpr α : Type inst✝ : DecidableEq α p q : ℕ a1 : p = 0 ∧ q = 1 ⊢ p = 0 ∧ q = 1
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_zero_EpsilonNFA_toAbstract
[237, 1]
[245, 9]
simp only [match_zero_EpsilonNFA]
α : Type inst✝ : DecidableEq α ⊢ (match_zero_EpsilonNFA α).toAbstract = match_zero_AbstractEpsilonNFA α
α : Type inst✝ : DecidableEq α ⊢ { symbol_arrow_list := [], epsilon_arrow_list := [], starting_state_list := [0], accepting_state_list := [] }.toAbstract = match_zero_AbstractEpsilonNFA α
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_zero_EpsilonNFA_toAbstract
[237, 1]
[245, 9]
simp only [EpsilonNFA.toAbstract]
α : Type inst✝ : DecidableEq α ⊢ { symbol_arrow_list := [], epsilon_arrow_list := [], starting_state_list := [0], accepting_state_list := [] }.toAbstract = match_zero_AbstractEpsilonNFA α
α : Type inst✝ : DecidableEq α ⊢ { symbol := fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ [] ∧ stop_state ∈ stop_state_list, epsilon := fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ [] ∧ stop_state ∈ stop_state_list, start := fun state => state ∈ [0], accepting := fun state => state ∈ [] } = match_zero_AbstractEpsilonNFA α
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_zero_EpsilonNFA_toAbstract
[237, 1]
[245, 9]
simp only [match_zero_AbstractEpsilonNFA]
α : Type inst✝ : DecidableEq α ⊢ { symbol := fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ [] ∧ stop_state ∈ stop_state_list, epsilon := fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ [] ∧ stop_state ∈ stop_state_list, start := fun state => state ∈ [0], accepting := fun state => state ∈ [] } = match_zero_AbstractEpsilonNFA α
α : Type inst✝ : DecidableEq α ⊢ { symbol := fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ [] ∧ stop_state ∈ stop_state_list, epsilon := fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ [] ∧ stop_state ∈ stop_state_list, start := fun state => state ∈ [0], accepting := fun state => state ∈ [] } = { symbol := fun x x x => False, epsilon := fun x x => False, start := fun p => p = 0, accepting := fun x => False }
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_zero_EpsilonNFA_toAbstract
[237, 1]
[245, 9]
simp
α : Type inst✝ : DecidableEq α ⊢ { symbol := fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ [] ∧ stop_state ∈ stop_state_list, epsilon := fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ [] ∧ stop_state ∈ stop_state_list, start := fun state => state ∈ [0], accepting := fun state => state ∈ [] } = { symbol := fun x x x => False, epsilon := fun x x => False, start := fun p => p = 0, accepting := fun x => False }
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_union_EpsilonNFA_toAbstract
[312, 1]
[506, 17]
simp only [match_union_EpsilonNFA]
α : Type inst✝ : DecidableEq α σ_0 σ_1 : Type M_0 : EpsilonNFA α σ_0 M_1 : EpsilonNFA α σ_1 ⊢ (match_union_EpsilonNFA α σ_0 σ_1 M_0 M_1).toAbstract = match_union_AbstractEpsilonNFA α σ_0 σ_1 M_0.toAbstract M_1.toAbstract
α : Type inst✝ : DecidableEq α σ_0 σ_1 : Type M_0 : EpsilonNFA α σ_0 M_1 : EpsilonNFA α σ_1 ⊢ { symbol_arrow_list := (EpsilonNFA.wrapLeft σ_1 M_0).symbol_arrow_list ++ (EpsilonNFA.wrapRight σ_0 M_1).symbol_arrow_list, epsilon_arrow_list := (EpsilonNFA.wrapLeft σ_1 M_0).epsilon_arrow_list ++ (EpsilonNFA.wrapRight σ_0 M_1).epsilon_arrow_list, starting_state_list := (EpsilonNFA.wrapLeft σ_1 M_0).starting_state_list ++ (EpsilonNFA.wrapRight σ_0 M_1).starting_state_list, accepting_state_list := (EpsilonNFA.wrapLeft σ_1 M_0).accepting_state_list ++ (EpsilonNFA.wrapRight σ_0 M_1).accepting_state_list }.toAbstract = match_union_AbstractEpsilonNFA α σ_0 σ_1 M_0.toAbstract M_1.toAbstract
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_union_EpsilonNFA_toAbstract
[312, 1]
[506, 17]
simp only [EpsilonNFA.toAbstract]
α : Type inst✝ : DecidableEq α σ_0 σ_1 : Type M_0 : EpsilonNFA α σ_0 M_1 : EpsilonNFA α σ_1 ⊢ { symbol_arrow_list := (EpsilonNFA.wrapLeft σ_1 M_0).symbol_arrow_list ++ (EpsilonNFA.wrapRight σ_0 M_1).symbol_arrow_list, epsilon_arrow_list := (EpsilonNFA.wrapLeft σ_1 M_0).epsilon_arrow_list ++ (EpsilonNFA.wrapRight σ_0 M_1).epsilon_arrow_list, starting_state_list := (EpsilonNFA.wrapLeft σ_1 M_0).starting_state_list ++ (EpsilonNFA.wrapRight σ_0 M_1).starting_state_list, accepting_state_list := (EpsilonNFA.wrapLeft σ_1 M_0).accepting_state_list ++ (EpsilonNFA.wrapRight σ_0 M_1).accepting_state_list }.toAbstract = match_union_AbstractEpsilonNFA α σ_0 σ_1 M_0.toAbstract M_1.toAbstract
α : Type inst✝ : DecidableEq α σ_0 σ_1 : Type M_0 : EpsilonNFA α σ_0 M_1 : EpsilonNFA α σ_1 ⊢ { symbol := fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ (EpsilonNFA.wrapLeft σ_1 M_0).symbol_arrow_list ++ (EpsilonNFA.wrapRight σ_0 M_1).symbol_arrow_list ∧ stop_state ∈ stop_state_list, epsilon := fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ (EpsilonNFA.wrapLeft σ_1 M_0).epsilon_arrow_list ++ (EpsilonNFA.wrapRight σ_0 M_1).epsilon_arrow_list ∧ stop_state ∈ stop_state_list, start := fun state => state ∈ (EpsilonNFA.wrapLeft σ_1 M_0).starting_state_list ++ (EpsilonNFA.wrapRight σ_0 M_1).starting_state_list, accepting := fun state => state ∈ (EpsilonNFA.wrapLeft σ_1 M_0).accepting_state_list ++ (EpsilonNFA.wrapRight σ_0 M_1).accepting_state_list } = match_union_AbstractEpsilonNFA α σ_0 σ_1 { symbol := fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧ stop_state ∈ stop_state_list, epsilon := fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ stop_state ∈ stop_state_list, start := fun state => state ∈ M_0.starting_state_list, accepting := fun state => state ∈ M_0.accepting_state_list } { symbol := fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧ stop_state ∈ stop_state_list, epsilon := fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ stop_state ∈ stop_state_list, start := fun state => state ∈ M_1.starting_state_list, accepting := fun state => state ∈ M_1.accepting_state_list }
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_union_EpsilonNFA_toAbstract
[312, 1]
[506, 17]
simp only [match_union_AbstractEpsilonNFA]
α : Type inst✝ : DecidableEq α σ_0 σ_1 : Type M_0 : EpsilonNFA α σ_0 M_1 : EpsilonNFA α σ_1 ⊢ { symbol := fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ (EpsilonNFA.wrapLeft σ_1 M_0).symbol_arrow_list ++ (EpsilonNFA.wrapRight σ_0 M_1).symbol_arrow_list ∧ stop_state ∈ stop_state_list, epsilon := fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ (EpsilonNFA.wrapLeft σ_1 M_0).epsilon_arrow_list ++ (EpsilonNFA.wrapRight σ_0 M_1).epsilon_arrow_list ∧ stop_state ∈ stop_state_list, start := fun state => state ∈ (EpsilonNFA.wrapLeft σ_1 M_0).starting_state_list ++ (EpsilonNFA.wrapRight σ_0 M_1).starting_state_list, accepting := fun state => state ∈ (EpsilonNFA.wrapLeft σ_1 M_0).accepting_state_list ++ (EpsilonNFA.wrapRight σ_0 M_1).accepting_state_list } = match_union_AbstractEpsilonNFA α σ_0 σ_1 { symbol := fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧ stop_state ∈ stop_state_list, epsilon := fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ stop_state ∈ stop_state_list, start := fun state => state ∈ M_0.starting_state_list, accepting := fun state => state ∈ M_0.accepting_state_list } { symbol := fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧ stop_state ∈ stop_state_list, epsilon := fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ stop_state ∈ stop_state_list, start := fun state => state ∈ M_1.starting_state_list, accepting := fun state => state ∈ M_1.accepting_state_list }
α : Type inst✝ : DecidableEq α σ_0 σ_1 : Type M_0 : EpsilonNFA α σ_0 M_1 : EpsilonNFA α σ_1 ⊢ { symbol := fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ (EpsilonNFA.wrapLeft σ_1 M_0).symbol_arrow_list ++ (EpsilonNFA.wrapRight σ_0 M_1).symbol_arrow_list ∧ stop_state ∈ stop_state_list, epsilon := fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ (EpsilonNFA.wrapLeft σ_1 M_0).epsilon_arrow_list ++ (EpsilonNFA.wrapRight σ_0 M_1).epsilon_arrow_list ∧ stop_state ∈ stop_state_list, start := fun state => state ∈ (EpsilonNFA.wrapLeft σ_1 M_0).starting_state_list ++ (EpsilonNFA.wrapRight σ_0 M_1).starting_state_list, accepting := fun state => state ∈ (EpsilonNFA.wrapLeft σ_1 M_0).accepting_state_list ++ (EpsilonNFA.wrapRight σ_0 M_1).accepting_state_list } = { symbol := fun p c q => match (p, q) with | (Sum.inl p', Sum.inl q') => ∃ stop_state_list, { start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧ q' ∈ stop_state_list | (Sum.inr p', Sum.inr q') => ∃ stop_state_list, { start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧ q' ∈ stop_state_list | x => False, epsilon := fun p q => match (p, q) with | (Sum.inl p', Sum.inl q') => ∃ stop_state_list, { start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list | (Sum.inr p', Sum.inr q') => ∃ stop_state_list, { start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list | x => False, start := fun p => match p with | Sum.inl p' => p' ∈ M_0.starting_state_list | Sum.inr p' => p' ∈ M_1.starting_state_list, accepting := fun p => match p with | Sum.inl p' => p' ∈ M_0.accepting_state_list | Sum.inr p' => p' ∈ M_1.accepting_state_list }
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_union_EpsilonNFA_toAbstract
[312, 1]
[506, 17]
simp only [AbstractEpsilonNFA.mk.injEq]
α : Type inst✝ : DecidableEq α σ_0 σ_1 : Type M_0 : EpsilonNFA α σ_0 M_1 : EpsilonNFA α σ_1 ⊢ { symbol := fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ (EpsilonNFA.wrapLeft σ_1 M_0).symbol_arrow_list ++ (EpsilonNFA.wrapRight σ_0 M_1).symbol_arrow_list ∧ stop_state ∈ stop_state_list, epsilon := fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ (EpsilonNFA.wrapLeft σ_1 M_0).epsilon_arrow_list ++ (EpsilonNFA.wrapRight σ_0 M_1).epsilon_arrow_list ∧ stop_state ∈ stop_state_list, start := fun state => state ∈ (EpsilonNFA.wrapLeft σ_1 M_0).starting_state_list ++ (EpsilonNFA.wrapRight σ_0 M_1).starting_state_list, accepting := fun state => state ∈ (EpsilonNFA.wrapLeft σ_1 M_0).accepting_state_list ++ (EpsilonNFA.wrapRight σ_0 M_1).accepting_state_list } = { symbol := fun p c q => match (p, q) with | (Sum.inl p', Sum.inl q') => ∃ stop_state_list, { start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧ q' ∈ stop_state_list | (Sum.inr p', Sum.inr q') => ∃ stop_state_list, { start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧ q' ∈ stop_state_list | x => False, epsilon := fun p q => match (p, q) with | (Sum.inl p', Sum.inl q') => ∃ stop_state_list, { start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list | (Sum.inr p', Sum.inr q') => ∃ stop_state_list, { start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list | x => False, start := fun p => match p with | Sum.inl p' => p' ∈ M_0.starting_state_list | Sum.inr p' => p' ∈ M_1.starting_state_list, accepting := fun p => match p with | Sum.inl p' => p' ∈ M_0.accepting_state_list | Sum.inr p' => p' ∈ M_1.accepting_state_list }
α : Type inst✝ : DecidableEq α σ_0 σ_1 : Type M_0 : EpsilonNFA α σ_0 M_1 : EpsilonNFA α σ_1 ⊢ ((fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ (EpsilonNFA.wrapLeft σ_1 M_0).symbol_arrow_list ++ (EpsilonNFA.wrapRight σ_0 M_1).symbol_arrow_list ∧ stop_state ∈ stop_state_list) = fun p c q => match (p, q) with | (Sum.inl p', Sum.inl q') => ∃ stop_state_list, { start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧ q' ∈ stop_state_list | (Sum.inr p', Sum.inr q') => ∃ stop_state_list, { start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧ q' ∈ stop_state_list | x => False) ∧ ((fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ (EpsilonNFA.wrapLeft σ_1 M_0).epsilon_arrow_list ++ (EpsilonNFA.wrapRight σ_0 M_1).epsilon_arrow_list ∧ stop_state ∈ stop_state_list) = fun p q => match (p, q) with | (Sum.inl p', Sum.inl q') => ∃ stop_state_list, { start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list | (Sum.inr p', Sum.inr q') => ∃ stop_state_list, { start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list | x => False) ∧ ((fun state => state ∈ (EpsilonNFA.wrapLeft σ_1 M_0).starting_state_list ++ (EpsilonNFA.wrapRight σ_0 M_1).starting_state_list) = fun p => match p with | Sum.inl p' => p' ∈ M_0.starting_state_list | Sum.inr p' => p' ∈ M_1.starting_state_list) ∧ (fun state => state ∈ (EpsilonNFA.wrapLeft σ_1 M_0).accepting_state_list ++ (EpsilonNFA.wrapRight σ_0 M_1).accepting_state_list) = fun p => match p with | Sum.inl p' => p' ∈ M_0.accepting_state_list | Sum.inr p' => p' ∈ M_1.accepting_state_list
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_union_EpsilonNFA_toAbstract
[312, 1]
[506, 17]
simp only [EpsilonNFA.wrapLeft]
α : Type inst✝ : DecidableEq α σ_0 σ_1 : Type M_0 : EpsilonNFA α σ_0 M_1 : EpsilonNFA α σ_1 ⊢ ((fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ (EpsilonNFA.wrapLeft σ_1 M_0).symbol_arrow_list ++ (EpsilonNFA.wrapRight σ_0 M_1).symbol_arrow_list ∧ stop_state ∈ stop_state_list) = fun p c q => match (p, q) with | (Sum.inl p', Sum.inl q') => ∃ stop_state_list, { start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧ q' ∈ stop_state_list | (Sum.inr p', Sum.inr q') => ∃ stop_state_list, { start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧ q' ∈ stop_state_list | x => False) ∧ ((fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ (EpsilonNFA.wrapLeft σ_1 M_0).epsilon_arrow_list ++ (EpsilonNFA.wrapRight σ_0 M_1).epsilon_arrow_list ∧ stop_state ∈ stop_state_list) = fun p q => match (p, q) with | (Sum.inl p', Sum.inl q') => ∃ stop_state_list, { start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list | (Sum.inr p', Sum.inr q') => ∃ stop_state_list, { start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list | x => False) ∧ ((fun state => state ∈ (EpsilonNFA.wrapLeft σ_1 M_0).starting_state_list ++ (EpsilonNFA.wrapRight σ_0 M_1).starting_state_list) = fun p => match p with | Sum.inl p' => p' ∈ M_0.starting_state_list | Sum.inr p' => p' ∈ M_1.starting_state_list) ∧ (fun state => state ∈ (EpsilonNFA.wrapLeft σ_1 M_0).accepting_state_list ++ (EpsilonNFA.wrapRight σ_0 M_1).accepting_state_list) = fun p => match p with | Sum.inl p' => p' ∈ M_0.accepting_state_list | Sum.inr p' => p' ∈ M_1.accepting_state_list
α : Type inst✝ : DecidableEq α σ_0 σ_1 : Type M_0 : EpsilonNFA α σ_0 M_1 : EpsilonNFA α σ_1 ⊢ ((fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ (EpsilonNFA.map Sum.inl M_0).symbol_arrow_list ++ (EpsilonNFA.wrapRight σ_0 M_1).symbol_arrow_list ∧ stop_state ∈ stop_state_list) = fun p c q => match (p, q) with | (Sum.inl p', Sum.inl q') => ∃ stop_state_list, { start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧ q' ∈ stop_state_list | (Sum.inr p', Sum.inr q') => ∃ stop_state_list, { start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧ q' ∈ stop_state_list | x => False) ∧ ((fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ (EpsilonNFA.map Sum.inl M_0).epsilon_arrow_list ++ (EpsilonNFA.wrapRight σ_0 M_1).epsilon_arrow_list ∧ stop_state ∈ stop_state_list) = fun p q => match (p, q) with | (Sum.inl p', Sum.inl q') => ∃ stop_state_list, { start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list | (Sum.inr p', Sum.inr q') => ∃ stop_state_list, { start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list | x => False) ∧ ((fun state => state ∈ (EpsilonNFA.map Sum.inl M_0).starting_state_list ++ (EpsilonNFA.wrapRight σ_0 M_1).starting_state_list) = fun p => match p with | Sum.inl p' => p' ∈ M_0.starting_state_list | Sum.inr p' => p' ∈ M_1.starting_state_list) ∧ (fun state => state ∈ (EpsilonNFA.map Sum.inl M_0).accepting_state_list ++ (EpsilonNFA.wrapRight σ_0 M_1).accepting_state_list) = fun p => match p with | Sum.inl p' => p' ∈ M_0.accepting_state_list | Sum.inr p' => p' ∈ M_1.accepting_state_list
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_union_EpsilonNFA_toAbstract
[312, 1]
[506, 17]
simp only [EpsilonNFA.wrapRight]
α : Type inst✝ : DecidableEq α σ_0 σ_1 : Type M_0 : EpsilonNFA α σ_0 M_1 : EpsilonNFA α σ_1 ⊢ ((fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ (EpsilonNFA.map Sum.inl M_0).symbol_arrow_list ++ (EpsilonNFA.wrapRight σ_0 M_1).symbol_arrow_list ∧ stop_state ∈ stop_state_list) = fun p c q => match (p, q) with | (Sum.inl p', Sum.inl q') => ∃ stop_state_list, { start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧ q' ∈ stop_state_list | (Sum.inr p', Sum.inr q') => ∃ stop_state_list, { start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧ q' ∈ stop_state_list | x => False) ∧ ((fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ (EpsilonNFA.map Sum.inl M_0).epsilon_arrow_list ++ (EpsilonNFA.wrapRight σ_0 M_1).epsilon_arrow_list ∧ stop_state ∈ stop_state_list) = fun p q => match (p, q) with | (Sum.inl p', Sum.inl q') => ∃ stop_state_list, { start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list | (Sum.inr p', Sum.inr q') => ∃ stop_state_list, { start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list | x => False) ∧ ((fun state => state ∈ (EpsilonNFA.map Sum.inl M_0).starting_state_list ++ (EpsilonNFA.wrapRight σ_0 M_1).starting_state_list) = fun p => match p with | Sum.inl p' => p' ∈ M_0.starting_state_list | Sum.inr p' => p' ∈ M_1.starting_state_list) ∧ (fun state => state ∈ (EpsilonNFA.map Sum.inl M_0).accepting_state_list ++ (EpsilonNFA.wrapRight σ_0 M_1).accepting_state_list) = fun p => match p with | Sum.inl p' => p' ∈ M_0.accepting_state_list | Sum.inr p' => p' ∈ M_1.accepting_state_list
α : Type inst✝ : DecidableEq α σ_0 σ_1 : Type M_0 : EpsilonNFA α σ_0 M_1 : EpsilonNFA α σ_1 ⊢ ((fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ (EpsilonNFA.map Sum.inl M_0).symbol_arrow_list ++ (EpsilonNFA.map Sum.inr M_1).symbol_arrow_list ∧ stop_state ∈ stop_state_list) = fun p c q => match (p, q) with | (Sum.inl p', Sum.inl q') => ∃ stop_state_list, { start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧ q' ∈ stop_state_list | (Sum.inr p', Sum.inr q') => ∃ stop_state_list, { start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧ q' ∈ stop_state_list | x => False) ∧ ((fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ (EpsilonNFA.map Sum.inl M_0).epsilon_arrow_list ++ (EpsilonNFA.map Sum.inr M_1).epsilon_arrow_list ∧ stop_state ∈ stop_state_list) = fun p q => match (p, q) with | (Sum.inl p', Sum.inl q') => ∃ stop_state_list, { start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list | (Sum.inr p', Sum.inr q') => ∃ stop_state_list, { start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list | x => False) ∧ ((fun state => state ∈ (EpsilonNFA.map Sum.inl M_0).starting_state_list ++ (EpsilonNFA.map Sum.inr M_1).starting_state_list) = fun p => match p with | Sum.inl p' => p' ∈ M_0.starting_state_list | Sum.inr p' => p' ∈ M_1.starting_state_list) ∧ (fun state => state ∈ (EpsilonNFA.map Sum.inl M_0).accepting_state_list ++ (EpsilonNFA.map Sum.inr M_1).accepting_state_list) = fun p => match p with | Sum.inl p' => p' ∈ M_0.accepting_state_list | Sum.inr p' => p' ∈ M_1.accepting_state_list
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/RegExpToEpsilonNFA.lean
match_union_EpsilonNFA_toAbstract
[312, 1]
[506, 17]
simp only [EpsilonNFA.map]
α : Type inst✝ : DecidableEq α σ_0 σ_1 : Type M_0 : EpsilonNFA α σ_0 M_1 : EpsilonNFA α σ_1 ⊢ ((fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ (EpsilonNFA.map Sum.inl M_0).symbol_arrow_list ++ (EpsilonNFA.map Sum.inr M_1).symbol_arrow_list ∧ stop_state ∈ stop_state_list) = fun p c q => match (p, q) with | (Sum.inl p', Sum.inl q') => ∃ stop_state_list, { start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧ q' ∈ stop_state_list | (Sum.inr p', Sum.inr q') => ∃ stop_state_list, { start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧ q' ∈ stop_state_list | x => False) ∧ ((fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ (EpsilonNFA.map Sum.inl M_0).epsilon_arrow_list ++ (EpsilonNFA.map Sum.inr M_1).epsilon_arrow_list ∧ stop_state ∈ stop_state_list) = fun p q => match (p, q) with | (Sum.inl p', Sum.inl q') => ∃ stop_state_list, { start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list | (Sum.inr p', Sum.inr q') => ∃ stop_state_list, { start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list | x => False) ∧ ((fun state => state ∈ (EpsilonNFA.map Sum.inl M_0).starting_state_list ++ (EpsilonNFA.map Sum.inr M_1).starting_state_list) = fun p => match p with | Sum.inl p' => p' ∈ M_0.starting_state_list | Sum.inr p' => p' ∈ M_1.starting_state_list) ∧ (fun state => state ∈ (EpsilonNFA.map Sum.inl M_0).accepting_state_list ++ (EpsilonNFA.map Sum.inr M_1).accepting_state_list) = fun p => match p with | Sum.inl p' => p' ∈ M_0.accepting_state_list | Sum.inr p' => p' ∈ M_1.accepting_state_list
α : Type inst✝ : DecidableEq α σ_0 σ_1 : Type M_0 : EpsilonNFA α σ_0 M_1 : EpsilonNFA α σ_1 ⊢ ((fun start_state symbol stop_state => ∃ stop_state_list, { start_state := start_state, symbol := symbol, stop_state_list := stop_state_list } ∈ List.map (fun arrow => { start_state := Sum.inl arrow.start_state, symbol := arrow.symbol, stop_state_list := List.map Sum.inl arrow.stop_state_list }) M_0.symbol_arrow_list ++ List.map (fun arrow => { start_state := Sum.inr arrow.start_state, symbol := arrow.symbol, stop_state_list := List.map Sum.inr arrow.stop_state_list }) M_1.symbol_arrow_list ∧ stop_state ∈ stop_state_list) = fun p c q => match (p, q) with | (Sum.inl p', Sum.inl q') => ∃ stop_state_list, { start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_0.symbol_arrow_list ∧ q' ∈ stop_state_list | (Sum.inr p', Sum.inr q') => ∃ stop_state_list, { start_state := p', symbol := c, stop_state_list := stop_state_list } ∈ M_1.symbol_arrow_list ∧ q' ∈ stop_state_list | x => False) ∧ ((fun start_state stop_state => ∃ stop_state_list, { start_state := start_state, stop_state_list := stop_state_list } ∈ List.map (fun arrow => { start_state := Sum.inl arrow.start_state, stop_state_list := List.map Sum.inl arrow.stop_state_list }) M_0.epsilon_arrow_list ++ List.map (fun arrow => { start_state := Sum.inr arrow.start_state, stop_state_list := List.map Sum.inr arrow.stop_state_list }) M_1.epsilon_arrow_list ∧ stop_state ∈ stop_state_list) = fun p q => match (p, q) with | (Sum.inl p', Sum.inl q') => ∃ stop_state_list, { start_state := p', stop_state_list := stop_state_list } ∈ M_0.epsilon_arrow_list ∧ q' ∈ stop_state_list | (Sum.inr p', Sum.inr q') => ∃ stop_state_list, { start_state := p', stop_state_list := stop_state_list } ∈ M_1.epsilon_arrow_list ∧ q' ∈ stop_state_list | x => False) ∧ ((fun state => state ∈ List.map Sum.inl M_0.starting_state_list ++ List.map Sum.inr M_1.starting_state_list) = fun p => match p with | Sum.inl p' => p' ∈ M_0.starting_state_list | Sum.inr p' => p' ∈ M_1.starting_state_list) ∧ (fun state => state ∈ List.map Sum.inl M_0.accepting_state_list ++ List.map Sum.inr M_1.accepting_state_list) = fun p => match p with | Sum.inl p' => p' ∈ M_0.accepting_state_list | Sum.inr p' => p' ∈ M_1.accepting_state_list