url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply Forall_spec_id' (List.ofFn args_u)
case a.a.a.h1 P_r P_s : Formula r s : VarName name : PredName n : ℕ args_u args_v : Fin n → VarName h1_1 : ∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s h2 : ¬isBoundIn r (pred_const_ name (List.ofFn args_u)) h3 : ¬isBoundIn s (pred_const_ name (List.ofFn args_u)) ⊢ IsDeduct ∅ (Forall_ (List.ofFn args_v) ((And_ (List.ofFn fun i => eq_ (args_u i) (args_v i))).imp_ ((pred_const_ name (List.ofFn args_u)).iff_ (pred_const_ name (List.ofFn args_v)))))
case a.a.a.h1.h1 P_r P_s : Formula r s : VarName name : PredName n : ℕ args_u args_v : Fin n → VarName h1_1 : ∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s h2 : ¬isBoundIn r (pred_const_ name (List.ofFn args_u)) h3 : ¬isBoundIn s (pred_const_ name (List.ofFn args_u)) ⊢ IsDeduct ∅ (Forall_ (List.ofFn args_u) (Forall_ (List.ofFn args_v) ((And_ (List.ofFn fun i => eq_ (args_u i) (args_v i))).imp_ ((pred_const_ name (List.ofFn args_u)).iff_ (pred_const_ name (List.ofFn args_v))))))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply IsDeduct.axiom_
case a.a.a.h1.h1 P_r P_s : Formula r s : VarName name : PredName n : ℕ args_u args_v : Fin n → VarName h1_1 : ∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s h2 : ¬isBoundIn r (pred_const_ name (List.ofFn args_u)) h3 : ¬isBoundIn s (pred_const_ name (List.ofFn args_u)) ⊢ IsDeduct ∅ (Forall_ (List.ofFn args_u) (Forall_ (List.ofFn args_v) ((And_ (List.ofFn fun i => eq_ (args_u i) (args_v i))).imp_ ((pred_const_ name (List.ofFn args_u)).iff_ (pred_const_ name (List.ofFn args_v))))))
case a.a.a.h1.h1.a P_r P_s : Formula r s : VarName name : PredName n : ℕ args_u args_v : Fin n → VarName h1_1 : ∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s h2 : ¬isBoundIn r (pred_const_ name (List.ofFn args_u)) h3 : ¬isBoundIn s (pred_const_ name (List.ofFn args_u)) ⊢ IsAxiom (Forall_ (List.ofFn args_u) (Forall_ (List.ofFn args_v) ((And_ (List.ofFn fun i => eq_ (args_u i) (args_v i))).imp_ ((pred_const_ name (List.ofFn args_u)).iff_ (pred_const_ name (List.ofFn args_v))))))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
exact IsAxiom.eq_2_pred_const_ name n args_u args_v
case a.a.a.h1.h1.a P_r P_s : Formula r s : VarName name : PredName n : ℕ args_u args_v : Fin n → VarName h1_1 : ∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s h2 : ¬isBoundIn r (pred_const_ name (List.ofFn args_u)) h3 : ¬isBoundIn s (pred_const_ name (List.ofFn args_u)) ⊢ IsAxiom (Forall_ (List.ofFn args_u) (Forall_ (List.ofFn args_v) ((And_ (List.ofFn fun i => eq_ (args_u i) (args_v i))).imp_ ((pred_const_ name (List.ofFn args_u)).iff_ (pred_const_ name (List.ofFn args_v))))))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
clear h2
case a.a P_r P_s : Formula r s : VarName name : PredName n : ℕ args_u args_v : Fin n → VarName h1_1 : ∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s h2 : ¬isBoundIn r (pred_const_ name (List.ofFn args_u)) h3 : ¬isBoundIn s (pred_const_ name (List.ofFn args_u)) ⊢ IsDeduct ∅ ((eq_ r s).imp_ (And_ (List.ofFn fun i => eq_ (args_u i) (args_v i))))
case a.a P_r P_s : Formula r s : VarName name : PredName n : ℕ args_u args_v : Fin n → VarName h1_1 : ∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s h3 : ¬isBoundIn s (pred_const_ name (List.ofFn args_u)) ⊢ IsDeduct ∅ ((eq_ r s).imp_ (And_ (List.ofFn fun i => eq_ (args_u i) (args_v i))))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
clear h3
case a.a P_r P_s : Formula r s : VarName name : PredName n : ℕ args_u args_v : Fin n → VarName h1_1 : ∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s h3 : ¬isBoundIn s (pred_const_ name (List.ofFn args_u)) ⊢ IsDeduct ∅ ((eq_ r s).imp_ (And_ (List.ofFn fun i => eq_ (args_u i) (args_v i))))
case a.a P_r P_s : Formula r s : VarName name : PredName n : ℕ args_u args_v : Fin n → VarName h1_1 : ∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (And_ (List.ofFn fun i => eq_ (args_u i) (args_v i))))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [And_]
case a.a P_r P_s : Formula r s : VarName name : PredName n : ℕ args_u args_v : Fin n → VarName h1_1 : ∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (And_ (List.ofFn fun i => eq_ (args_u i) (args_v i))))
case a.a P_r P_s : Formula r s : VarName name : PredName n : ℕ args_u args_v : Fin n → VarName h1_1 : ∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i))))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
induction n
case a.a P_r P_s : Formula r s : VarName name : PredName n : ℕ args_u args_v : Fin n → VarName h1_1 : ∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i))))
case a.a.zero P_r P_s : Formula r s : VarName name : PredName args_u args_v : Fin 0 → VarName h1_1 : ∀ (i : Fin 0), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) case a.a.succ P_r P_s : Formula r s : VarName name : PredName n✝ : ℕ a✝ : ∀ (args_u args_v : Fin n✝ → VarName), (∀ (i : Fin n✝), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n✝ + 1) → VarName h1_1 : ∀ (i : Fin (n✝ + 1)), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i))))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
case _ => simp SC
P_r P_s : Formula r s : VarName name : PredName args_u args_v : Fin 0 → VarName h1_1 : ∀ (i : Fin 0), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i))))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp
P_r P_s : Formula r s : VarName name : PredName args_u args_v : Fin 0 → VarName h1_1 : ∀ (i : Fin 0), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i))))
P_r P_s : Formula r s : VarName name : PredName args_u args_v : Fin 0 → VarName h1_1 : ∀ (i : Fin 0), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ true_)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
SC
P_r P_s : Formula r s : VarName name : PredName args_u args_v : Fin 0 → VarName h1_1 : ∀ (i : Fin 0), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ true_)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp
P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h1_1 : ∀ (i : Fin (n + 1)), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i))))
P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h1_1 : ∀ (i : Fin (n + 1)), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ ((eq_ (args_u 0) (args_v 0)).and_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i.succ) (args_v i.succ)))))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply IsDeduct.mp_ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun (i : Fin n) => eq_ (args_u i.succ) (args_v i.succ))))
P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h1_1 : ∀ (i : Fin (n + 1)), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ ((eq_ (args_u 0) (args_v 0)).and_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i.succ) (args_v i.succ)))))
case a P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h1_1 : ∀ (i : Fin (n + 1)), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ (((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i.succ) (args_v i.succ)))).imp_ ((eq_ r s).imp_ ((eq_ (args_u 0) (args_v 0)).and_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i.succ) (args_v i.succ)))))) case a P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h1_1 : ∀ (i : Fin (n + 1)), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i.succ) (args_v i.succ))))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply IsDeduct.mp_ ((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0)))
case a P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h1_1 : ∀ (i : Fin (n + 1)), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ (((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i.succ) (args_v i.succ)))).imp_ ((eq_ r s).imp_ ((eq_ (args_u 0) (args_v 0)).and_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i.succ) (args_v i.succ))))))
case a.a P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h1_1 : ∀ (i : Fin (n + 1)), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ (((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0))).imp_ (((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i.succ) (args_v i.succ)))).imp_ ((eq_ r s).imp_ ((eq_ (args_u 0) (args_v 0)).and_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i.succ) (args_v i.succ))))))) case a.a P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h1_1 : ∀ (i : Fin (n + 1)), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [def_and_]
case a.a P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h1_1 : ∀ (i : Fin (n + 1)), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ (((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0))).imp_ (((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i.succ) (args_v i.succ)))).imp_ ((eq_ r s).imp_ ((eq_ (args_u 0) (args_v 0)).and_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i.succ) (args_v i.succ)))))))
case a.a P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h1_1 : ∀ (i : Fin (n + 1)), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ (((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0))).imp_ (((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i.succ) (args_v i.succ)))).imp_ ((eq_ r s).imp_ ((eq_ (args_u 0) (args_v 0)).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i.succ) (args_v i.succ))).not_).not_)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
SC
case a.a P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h1_1 : ∀ (i : Fin (n + 1)), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ (((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0))).imp_ (((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i.succ) (args_v i.succ)))).imp_ ((eq_ r s).imp_ ((eq_ (args_u 0) (args_v 0)).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i.succ) (args_v i.succ))).not_).not_)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
specialize h1_1 0
case a.a P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h1_1 : ∀ (i : Fin (n + 1)), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0)))
case a.a P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h1_1 : args_u 0 = args_v 0 ∨ args_u 0 = r ∧ args_v 0 = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
cases h1_1
case a.a P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h1_1 : args_u 0 = args_v 0 ∨ args_u 0 = r ∧ args_v 0 = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0)))
case a.a.inl P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h✝ : args_u 0 = args_v 0 ⊢ IsDeduct ∅ ((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0))) case a.a.inr P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h✝ : args_u 0 = r ∧ args_v 0 = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
case _ c1 => apply IsDeduct.mp_ (eq_ (args_u 0) (args_v 0)) case _ => SC case _ => simp only [c1] apply specId (args_v 0) apply IsDeduct.axiom_ apply IsAxiom.eq_1_
P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName c1 : args_u 0 = args_v 0 ⊢ IsDeduct ∅ ((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
case _ c1 => cases c1 case _ c1_left c1_right => subst c1_left subst c1_right SC
P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName c1 : args_u 0 = r ∧ args_v 0 = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply IsDeduct.mp_ (eq_ (args_u 0) (args_v 0))
P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName c1 : args_u 0 = args_v 0 ⊢ IsDeduct ∅ ((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0)))
case a P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName c1 : args_u 0 = args_v 0 ⊢ IsDeduct ∅ ((eq_ (args_u 0) (args_v 0)).imp_ ((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0)))) case a P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName c1 : args_u 0 = args_v 0 ⊢ IsDeduct ∅ (eq_ (args_u 0) (args_v 0))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
case _ => SC
P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName c1 : args_u 0 = args_v 0 ⊢ IsDeduct ∅ ((eq_ (args_u 0) (args_v 0)).imp_ ((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0))))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
case _ => simp only [c1] apply specId (args_v 0) apply IsDeduct.axiom_ apply IsAxiom.eq_1_
P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName c1 : args_u 0 = args_v 0 ⊢ IsDeduct ∅ (eq_ (args_u 0) (args_v 0))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
SC
P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName c1 : args_u 0 = args_v 0 ⊢ IsDeduct ∅ ((eq_ (args_u 0) (args_v 0)).imp_ ((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0))))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [c1]
P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName c1 : args_u 0 = args_v 0 ⊢ IsDeduct ∅ (eq_ (args_u 0) (args_v 0))
P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName c1 : args_u 0 = args_v 0 ⊢ IsDeduct ∅ (eq_ (args_v 0) (args_v 0))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply specId (args_v 0)
P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName c1 : args_u 0 = args_v 0 ⊢ IsDeduct ∅ (eq_ (args_v 0) (args_v 0))
case h1 P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName c1 : args_u 0 = args_v 0 ⊢ IsDeduct ∅ (forall_ (args_v 0) (eq_ (args_v 0) (args_v 0)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply IsDeduct.axiom_
case h1 P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName c1 : args_u 0 = args_v 0 ⊢ IsDeduct ∅ (forall_ (args_v 0) (eq_ (args_v 0) (args_v 0)))
case h1.a P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName c1 : args_u 0 = args_v 0 ⊢ IsAxiom (forall_ (args_v 0) (eq_ (args_v 0) (args_v 0)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply IsAxiom.eq_1_
case h1.a P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName c1 : args_u 0 = args_v 0 ⊢ IsAxiom (forall_ (args_v 0) (eq_ (args_v 0) (args_v 0)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
cases c1
P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName c1 : args_u 0 = r ∧ args_v 0 = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0)))
case intro P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName left✝ : args_u 0 = r right✝ : args_v 0 = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
case _ c1_left c1_right => subst c1_left subst c1_right SC
P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName c1_left : args_u 0 = r c1_right : args_v 0 = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
subst c1_left
P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName c1_left : args_u 0 = r c1_right : args_v 0 = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (eq_ (args_u 0) (args_v 0)))
P_r P_s : Formula s : VarName name : PredName n : ℕ args_u args_v : Fin (n + 1) → VarName c1_right : args_v 0 = s ih : ∀ (args_u_1 args_v : Fin n → VarName), (∀ (i : Fin n), args_u_1 i = args_v i ∨ args_u_1 i = args_u 0 ∧ args_v i = s) → IsDeduct ∅ ((eq_ (args_u 0) s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u_1 i) (args_v i)))) ⊢ IsDeduct ∅ ((eq_ (args_u 0) s).imp_ (eq_ (args_u 0) (args_v 0)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
subst c1_right
P_r P_s : Formula s : VarName name : PredName n : ℕ args_u args_v : Fin (n + 1) → VarName c1_right : args_v 0 = s ih : ∀ (args_u_1 args_v : Fin n → VarName), (∀ (i : Fin n), args_u_1 i = args_v i ∨ args_u_1 i = args_u 0 ∧ args_v i = s) → IsDeduct ∅ ((eq_ (args_u 0) s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u_1 i) (args_v i)))) ⊢ IsDeduct ∅ ((eq_ (args_u 0) s).imp_ (eq_ (args_u 0) (args_v 0)))
P_r P_s : Formula name : PredName n : ℕ args_u args_v : Fin (n + 1) → VarName ih : ∀ (args_u_1 args_v_1 : Fin n → VarName), (∀ (i : Fin n), args_u_1 i = args_v_1 i ∨ args_u_1 i = args_u 0 ∧ args_v_1 i = args_v 0) → IsDeduct ∅ ((eq_ (args_u 0) (args_v 0)).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u_1 i) (args_v_1 i)))) ⊢ IsDeduct ∅ ((eq_ (args_u 0) (args_v 0)).imp_ (eq_ (args_u 0) (args_v 0)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
SC
P_r P_s : Formula name : PredName n : ℕ args_u args_v : Fin (n + 1) → VarName ih : ∀ (args_u_1 args_v_1 : Fin n → VarName), (∀ (i : Fin n), args_u_1 i = args_v_1 i ∨ args_u_1 i = args_u 0 ∧ args_v_1 i = args_v 0) → IsDeduct ∅ ((eq_ (args_u 0) (args_v 0)).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u_1 i) (args_v_1 i)))) ⊢ IsDeduct ∅ ((eq_ (args_u 0) (args_v 0)).imp_ (eq_ (args_u 0) (args_v 0)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply ih
case a P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h1_1 : ∀ (i : Fin (n + 1)), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i.succ) (args_v i.succ))))
case a.h1_1 P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h1_1 : ∀ (i : Fin (n + 1)), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ ∀ (i : Fin n), args_u i.succ = args_v i.succ ∨ args_u i.succ = r ∧ args_v i.succ = s
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
intro i
case a.h1_1 P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h1_1 : ∀ (i : Fin (n + 1)), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s ⊢ ∀ (i : Fin n), args_u i.succ = args_v i.succ ∨ args_u i.succ = r ∧ args_v i.succ = s
case a.h1_1 P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h1_1 : ∀ (i : Fin (n + 1)), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s i : Fin n ⊢ args_u i.succ = args_v i.succ ∨ args_u i.succ = r ∧ args_v i.succ = s
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply h1_1
case a.h1_1 P_r P_s : Formula r s : VarName name : PredName n : ℕ ih : ∀ (args_u args_v : Fin n → VarName), (∀ (i : Fin n), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s) → IsDeduct ∅ ((eq_ r s).imp_ (List.foldr and_ true_ (List.ofFn fun i => eq_ (args_u i) (args_v i)))) args_u args_v : Fin (n + 1) → VarName h1_1 : ∀ (i : Fin (n + 1)), args_u i = args_v i ∨ args_u i = r ∧ args_v i = s i : Fin n ⊢ args_u i.succ = args_v i.succ ∨ args_u i.succ = r ∧ args_v i.succ = s
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [isBoundIn] at h2
P_r P_s : Formula r s : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2 : ¬isBoundIn r P_u.not_ h3 : ¬isBoundIn s P_u.not_ ⊢ IsProof ((eq_ r s).imp_ (P_u.not_.iff_ P_v.not_))
P_r P_s : Formula r s : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2 : ¬isBoundIn r P_u h3 : ¬isBoundIn s P_u.not_ ⊢ IsProof ((eq_ r s).imp_ (P_u.not_.iff_ P_v.not_))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [isBoundIn] at h3
P_r P_s : Formula r s : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2 : ¬isBoundIn r P_u h3 : ¬isBoundIn s P_u.not_ ⊢ IsProof ((eq_ r s).imp_ (P_u.not_.iff_ P_v.not_))
P_r P_s : Formula r s : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2 : ¬isBoundIn r P_u h3 : ¬isBoundIn s P_u ⊢ IsProof ((eq_ r s).imp_ (P_u.not_.iff_ P_v.not_))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
specialize h1_ih h2 h3
P_r P_s : Formula r s : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2 : ¬isBoundIn r P_u h3 : ¬isBoundIn s P_u ⊢ IsProof ((eq_ r s).imp_ (P_u.not_.iff_ P_v.not_))
P_r P_s : Formula r s : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h2 : ¬isBoundIn r P_u h3 : ¬isBoundIn s P_u h1_ih : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) ⊢ IsProof ((eq_ r s).imp_ (P_u.not_.iff_ P_v.not_))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply IsDeduct.mp_ ((eq_ r s).imp_ (P_u.iff_ P_v))
P_r P_s : Formula r s : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h2 : ¬isBoundIn r P_u h3 : ¬isBoundIn s P_u h1_ih : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) ⊢ IsProof ((eq_ r s).imp_ (P_u.not_.iff_ P_v.not_))
case a P_r P_s : Formula r s : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h2 : ¬isBoundIn r P_u h3 : ¬isBoundIn s P_u h1_ih : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ (P_u.iff_ P_v)).imp_ ((eq_ r s).imp_ (P_u.not_.iff_ P_v.not_))) case a P_r P_s : Formula r s : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h2 : ¬isBoundIn r P_u h3 : ¬isBoundIn s P_u h1_ih : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) ⊢ IsDeduct ∅ ((eq_ r s).imp_ (P_u.iff_ P_v))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [def_iff_]
case a P_r P_s : Formula r s : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h2 : ¬isBoundIn r P_u h3 : ¬isBoundIn s P_u h1_ih : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ (P_u.iff_ P_v)).imp_ ((eq_ r s).imp_ (P_u.not_.iff_ P_v.not_)))
case a P_r P_s : Formula r s : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h2 : ¬isBoundIn r P_u h3 : ¬isBoundIn s P_u h1_ih : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ ((P_u.imp_ P_v).and_ (P_v.imp_ P_u))).imp_ ((eq_ r s).imp_ ((P_u.not_.imp_ P_v.not_).and_ (P_v.not_.imp_ P_u.not_))))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [def_and_]
case a P_r P_s : Formula r s : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h2 : ¬isBoundIn r P_u h3 : ¬isBoundIn s P_u h1_ih : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ ((P_u.imp_ P_v).and_ (P_v.imp_ P_u))).imp_ ((eq_ r s).imp_ ((P_u.not_.imp_ P_v.not_).and_ (P_v.not_.imp_ P_u.not_))))
case a P_r P_s : Formula r s : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h2 : ¬isBoundIn r P_u h3 : ¬isBoundIn s P_u h1_ih : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ ((P_u.imp_ P_v).imp_ (P_v.imp_ P_u).not_).not_).imp_ ((eq_ r s).imp_ ((P_u.not_.imp_ P_v.not_).imp_ (P_v.not_.imp_ P_u.not_).not_).not_))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
SC
case a P_r P_s : Formula r s : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h2 : ¬isBoundIn r P_u h3 : ¬isBoundIn s P_u h1_ih : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ ((P_u.imp_ P_v).imp_ (P_v.imp_ P_u).not_).not_).imp_ ((eq_ r s).imp_ ((P_u.not_.imp_ P_v.not_).imp_ (P_v.not_.imp_ P_u.not_).not_).not_))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
exact h1_ih
case a P_r P_s : Formula r s : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h2 : ¬isBoundIn r P_u h3 : ¬isBoundIn s P_u h1_ih : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) ⊢ IsDeduct ∅ ((eq_ r s).imp_ (P_u.iff_ P_v))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [isBoundIn] at h2
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h2 : ¬isBoundIn r (P_u.imp_ Q_u) h3 : ¬isBoundIn s (P_u.imp_ Q_u) ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h2 : ¬(isBoundIn r P_u ∨ isBoundIn r Q_u) h3 : ¬isBoundIn s (P_u.imp_ Q_u) ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
push_neg at h2
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h2 : ¬(isBoundIn r P_u ∨ isBoundIn r Q_u) h3 : ¬isBoundIn s (P_u.imp_ Q_u) ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h3 : ¬isBoundIn s (P_u.imp_ Q_u) h2 : ¬isBoundIn r P_u ∧ ¬isBoundIn r Q_u ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
cases h2
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h3 : ¬isBoundIn s (P_u.imp_ Q_u) h2 : ¬isBoundIn r P_u ∧ ¬isBoundIn r Q_u ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
case intro P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h3 : ¬isBoundIn s (P_u.imp_ Q_u) left✝ : ¬isBoundIn r P_u right✝ : ¬isBoundIn r Q_u ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [isBoundIn] at h3
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h3 : ¬isBoundIn s (P_u.imp_ Q_u) h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h3 : ¬(isBoundIn s P_u ∨ isBoundIn s Q_u) h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
push_neg at h3
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h3 : ¬(isBoundIn s P_u ∨ isBoundIn s Q_u) h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3 : ¬isBoundIn s P_u ∧ ¬isBoundIn s Q_u ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
cases h3
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3 : ¬isBoundIn s P_u ∧ ¬isBoundIn s Q_u ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
case intro P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u left✝ : ¬isBoundIn s P_u right✝ : ¬isBoundIn s Q_u ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
specialize h1_ih_1 h2_left h3_left
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_1 : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
specialize h1_ih_2 h2_right h3_right
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h1_ih_2 : ¬isBoundIn r Q_u → ¬isBoundIn s Q_u → IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply IsDeduct.mp_ ((eq_ r s).imp_ (Q_u.iff_ Q_v))
P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsProof ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))
case a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ (Q_u.iff_ Q_v)).imp_ ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))) case a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ ((eq_ r s).imp_ (Q_u.iff_ Q_v))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply IsDeduct.mp_ ((eq_ r s).imp_ (P_u.iff_ P_v))
case a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ (Q_u.iff_ Q_v)).imp_ ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v))))
case a.a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ (P_u.iff_ P_v)).imp_ (((eq_ r s).imp_ (Q_u.iff_ Q_v)).imp_ ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v))))) case a.a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ ((eq_ r s).imp_ (P_u.iff_ P_v))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [def_iff_]
case a.a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ (P_u.iff_ P_v)).imp_ (((eq_ r s).imp_ (Q_u.iff_ Q_v)).imp_ ((eq_ r s).imp_ ((P_u.imp_ Q_u).iff_ (P_v.imp_ Q_v)))))
case a.a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ ((P_u.imp_ P_v).and_ (P_v.imp_ P_u))).imp_ (((eq_ r s).imp_ ((Q_u.imp_ Q_v).and_ (Q_v.imp_ Q_u))).imp_ ((eq_ r s).imp_ (((P_u.imp_ Q_u).imp_ (P_v.imp_ Q_v)).and_ ((P_v.imp_ Q_v).imp_ (P_u.imp_ Q_u))))))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [def_and_]
case a.a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ ((P_u.imp_ P_v).and_ (P_v.imp_ P_u))).imp_ (((eq_ r s).imp_ ((Q_u.imp_ Q_v).and_ (Q_v.imp_ Q_u))).imp_ ((eq_ r s).imp_ (((P_u.imp_ Q_u).imp_ (P_v.imp_ Q_v)).and_ ((P_v.imp_ Q_v).imp_ (P_u.imp_ Q_u))))))
case a.a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ ((P_u.imp_ P_v).imp_ (P_v.imp_ P_u).not_).not_).imp_ (((eq_ r s).imp_ ((Q_u.imp_ Q_v).imp_ (Q_v.imp_ Q_u).not_).not_).imp_ ((eq_ r s).imp_ (((P_u.imp_ Q_u).imp_ (P_v.imp_ Q_v)).imp_ ((P_v.imp_ Q_v).imp_ (P_u.imp_ Q_u)).not_).not_)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
SC
case a.a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ (((eq_ r s).imp_ ((P_u.imp_ P_v).imp_ (P_v.imp_ P_u).not_).not_).imp_ (((eq_ r s).imp_ ((Q_u.imp_ Q_v).imp_ (Q_v.imp_ Q_u).not_).not_).imp_ ((eq_ r s).imp_ (((P_u.imp_ Q_u).imp_ (P_v.imp_ Q_v)).imp_ ((P_v.imp_ Q_v).imp_ (P_u.imp_ Q_u)).not_).not_)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
exact h1_ih_1
case a.a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ ((eq_ r s).imp_ (P_u.iff_ P_v))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
exact h1_ih_2
case a P_r P_s : Formula r s : VarName P_u Q_u P_v Q_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_2 : IsReplOfVarInFormula r s Q_u Q_v h2_left : ¬isBoundIn r P_u h2_right : ¬isBoundIn r Q_u h3_left : ¬isBoundIn s P_u h3_right : ¬isBoundIn s Q_u h1_ih_1 : IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h1_ih_2 : IsProof ((eq_ r s).imp_ (Q_u.iff_ Q_v)) ⊢ IsDeduct ∅ ((eq_ r s).imp_ (Q_u.iff_ Q_v))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [isBoundIn] at h2
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2 : ¬isBoundIn r (forall_ x P_u) h3 : ¬isBoundIn s (forall_ x P_u) ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2 : ¬(r = x ∨ isBoundIn r P_u) h3 : ¬isBoundIn s (forall_ x P_u) ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
push_neg at h2
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2 : ¬(r = x ∨ isBoundIn r P_u) h3 : ¬isBoundIn s (forall_ x P_u) ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h3 : ¬isBoundIn s (forall_ x P_u) h2 : r ≠ x ∧ ¬isBoundIn r P_u ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
cases h2
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h3 : ¬isBoundIn s (forall_ x P_u) h2 : r ≠ x ∧ ¬isBoundIn r P_u ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
case intro P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h3 : ¬isBoundIn s (forall_ x P_u) left✝ : r ≠ x right✝ : ¬isBoundIn r P_u ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [isBoundIn] at h3
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h3 : ¬isBoundIn s (forall_ x P_u) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h3 : ¬(s = x ∨ isBoundIn s P_u) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
push_neg at h3
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h3 : ¬(s = x ∨ isBoundIn s P_u) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3 : s ≠ x ∧ ¬isBoundIn s P_u ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
cases h3
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3 : s ≠ x ∧ ¬isBoundIn s P_u ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
case intro P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u left✝ : s ≠ x right✝ : ¬isBoundIn s P_u ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply deduction_theorem
P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsProof ((eq_ r s).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
case h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct (∅ ∪ {eq_ r s}) ((forall_ x P_u).iff_ (forall_ x P_v))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp
case h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct (∅ ∪ {eq_ r s}) ((forall_ x P_u).iff_ (forall_ x P_v))
case h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct {eq_ r s} ((forall_ x P_u).iff_ (forall_ x P_v))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply IsDeduct.mp_ (forall_ x (P_u.iff_ P_v))
case h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct {eq_ r s} ((forall_ x P_u).iff_ (forall_ x P_v))
case h1.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct {eq_ r s} ((forall_ x (P_u.iff_ P_v)).imp_ ((forall_ x P_u).iff_ (forall_ x P_v))) case h1.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct {eq_ r s} (forall_ x (P_u.iff_ P_v))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply proof_imp_deduct
case h1.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct {eq_ r s} ((forall_ x (P_u.iff_ P_v)).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
case h1.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsProof ((forall_ x (P_u.iff_ P_v)).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply T_18_1
case h1.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsProof ((forall_ x (P_u.iff_ P_v)).imp_ ((forall_ x P_u).iff_ (forall_ x P_v)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply IsDeduct.mp_ (eq_ r s)
case h1.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct {eq_ r s} (forall_ x (P_u.iff_ P_v))
case h1.a.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct {eq_ r s} ((eq_ r s).imp_ (forall_ x (P_u.iff_ P_v))) case h1.a.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct {eq_ r s} (eq_ r s)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply proof_imp_deduct
case h1.a.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct {eq_ r s} ((eq_ r s).imp_ (forall_ x (P_u.iff_ P_v)))
case h1.a.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsProof ((eq_ r s).imp_ (forall_ x (P_u.iff_ P_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply IsDeduct.mp_ (forall_ x ((eq_ r s).imp_ (P_u.iff_ P_v)))
case h1.a.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsProof ((eq_ r s).imp_ (forall_ x (P_u.iff_ P_v)))
case h1.a.a.h1.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct ∅ ((forall_ x ((eq_ r s).imp_ (P_u.iff_ P_v))).imp_ ((eq_ r s).imp_ (forall_ x (P_u.iff_ P_v)))) case h1.a.a.h1.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct ∅ (forall_ x ((eq_ r s).imp_ (P_u.iff_ P_v)))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply T_19_TS_21_left
case h1.a.a.h1.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct ∅ ((forall_ x ((eq_ r s).imp_ (P_u.iff_ P_v))).imp_ ((eq_ r s).imp_ (forall_ x (P_u.iff_ P_v))))
case h1.a.a.h1.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ ¬isFreeIn x (eq_ r s)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [isFreeIn]
case h1.a.a.h1.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ ¬isFreeIn x (eq_ r s)
case h1.a.a.h1.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ ¬(x = r ∨ x = s)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
push_neg
case h1.a.a.h1.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ ¬(x = r ∨ x = s)
case h1.a.a.h1.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ x ≠ r ∧ x ≠ s
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
constructor
case h1.a.a.h1.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ x ≠ r ∧ x ≠ s
case h1.a.a.h1.a.h1.left P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ x ≠ r case h1.a.a.h1.a.h1.right P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ x ≠ s
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [ne_comm]
case h1.a.a.h1.a.h1.left P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ x ≠ r
case h1.a.a.h1.a.h1.left P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ r ≠ x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
exact h2_left
case h1.a.a.h1.a.h1.left P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ r ≠ x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp only [ne_comm]
case h1.a.a.h1.a.h1.right P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ x ≠ s
case h1.a.a.h1.a.h1.right P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ s ≠ x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
exact h3_left
case h1.a.a.h1.a.h1.right P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ s ≠ x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply generalization
case h1.a.a.h1.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct ∅ (forall_ x ((eq_ r s).imp_ (P_u.iff_ P_v)))
case h1.a.a.h1.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct ∅ ((eq_ r s).imp_ (P_u.iff_ P_v)) case h1.a.a.h1.a.h2 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ ∀ H ∈ ∅, ¬isFreeIn x H
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
exact h1_ih h2_right h3_right
case h1.a.a.h1.a.h1 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct ∅ ((eq_ r s).imp_ (P_u.iff_ P_v))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
intro H a1
case h1.a.a.h1.a.h2 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ ∀ H ∈ ∅, ¬isFreeIn x H
case h1.a.a.h1.a.h2 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u H : Formula a1 : H ∈ ∅ ⊢ ¬isFreeIn x H
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp at a1
case h1.a.a.h1.a.h2 P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u H : Formula a1 : H ∈ ∅ ⊢ ¬isFreeIn x H
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
apply IsDeduct.assume_
case h1.a.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ IsDeduct {eq_ r s} (eq_ r s)
case h1.a.a.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ eq_ r s ∈ {eq_ r s}
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
simp
case h1.a.a.a P_r P_s : Formula r s x : VarName P_u P_v : Formula h1_1 : IsReplOfVarInFormula r s P_u P_v h1_ih : ¬isBoundIn r P_u → ¬isBoundIn s P_u → IsProof ((eq_ r s).imp_ (P_u.iff_ P_v)) h2_left : r ≠ x h2_right : ¬isBoundIn r P_u h3_left : s ≠ x h3_right : ¬isBoundIn s P_u ⊢ eq_ r s ∈ {eq_ r s}
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_21_8
[1404, 1]
[1543, 10]
sorry
case exists_ P_r P_s : Formula r s x✝ : VarName P_u✝ P_v✝ : Formula a✝ : IsReplOfVarInFormula r s P_u✝ P_v✝ a_ih✝ : ¬isBoundIn r P_u✝ → ¬isBoundIn s P_u✝ → IsProof ((eq_ r s).imp_ (P_u✝.iff_ P_v✝)) h2 : ¬isBoundIn r (exists_ x✝ P_u✝) h3 : ¬isBoundIn s (exists_ x✝ P_u✝) ⊢ IsProof ((eq_ r s).imp_ ((exists_ x✝ P_u✝).iff_ (exists_ x✝ P_v✝)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.left_id_left_inverse
[74, 1]
[83, 22]
simp only [Function.LeftInverse]
α β : Type f : α → β g : β → α h1 : g ∘ f = id ⊢ LeftInverse g f
α β : Type f : α → β g : β → α h1 : g ∘ f = id ⊢ ∀ (x : α), g (f x) = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.left_id_left_inverse
[74, 1]
[83, 22]
intro x
α β : Type f : α → β g : β → α h1 : g ∘ f = id ⊢ ∀ (x : α), g (f x) = x
α β : Type f : α → β g : β → α h1 : g ∘ f = id x : α ⊢ g (f x) = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.left_id_left_inverse
[74, 1]
[83, 22]
exact congrFun h1 x
α β : Type f : α → β g : β → α h1 : g ∘ f = id x : α ⊢ g (f x) = x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.right_id_right_inverse
[86, 1]
[94, 45]
simp only [Function.RightInverse]
α β : Type f : α → β g : β → α h1 : f ∘ g = id ⊢ RightInverse g f
α β : Type f : α → β g : β → α h1 : f ∘ g = id ⊢ LeftInverse f g
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.right_id_right_inverse
[86, 1]
[94, 45]
exact Function.left_id_left_inverse g f h1
α β : Type f : α → β g : β → α h1 : f ∘ g = id ⊢ LeftInverse f g
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
funext x
α β : Type inst✝ : DecidableEq α f : α → β a : α b : β ⊢ updateITE f a b = Function.updateITE' f a b
case h α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α ⊢ updateITE f a b x = Function.updateITE' f a b x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
simp only [Function.updateITE]
case h α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α ⊢ updateITE f a b x = Function.updateITE' f a b x
case h α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α ⊢ (if x = a then b else f x) = Function.updateITE' f a b x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
simp only [Function.updateITE']
case h α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α ⊢ (if x = a then b else f x) = Function.updateITE' f a b x
case h α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α ⊢ (if x = a then b else f x) = if a = x then b else f x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
split_ifs
case h α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α ⊢ (if x = a then b else f x) = if a = x then b else f x
case pos α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α h✝¹ : x = a h✝ : a = x ⊢ b = b case neg α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α h✝¹ : x = a h✝ : ¬a = x ⊢ b = f x case pos α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α h✝¹ : ¬x = a h✝ : a = x ⊢ f x = b case neg α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α h✝¹ : ¬x = a h✝ : ¬a = x ⊢ f x = f x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
case _ c1 c2 => rfl
α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α c1 : x = a c2 : a = x ⊢ b = b
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
case _ c1 c2 => subst c1 contradiction
α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α c1 : x = a c2 : ¬a = x ⊢ b = f x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
case _ c1 c2 => subst c2 contradiction
α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α c1 : ¬x = a c2 : a = x ⊢ f x = b
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/FunctionUpdateITE.lean
Function.updateITE_eq_Function.updateITE'
[99, 1]
[121, 8]
case _ c1 c2 => rfl
α β : Type inst✝ : DecidableEq α f : α → β a : α b : β x : α c1 : ¬x = a c2 : ¬a = x ⊢ f x = f x
no goals