repo_name
stringclasses 10
values | file_path
stringlengths 29
222
| content
stringlengths 24
926k
| extention
stringclasses 5
values |
---|---|---|---|
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/monte_carlo_pi/mc_pi_device_api.cpp | //==============================================================
// Copyright © 2020 Intel Corporation
//
// SPDX-License-Identifier: MIT
// =============================================================
/*
*
* Content:
* This file contains Monte Carlo Pi number evaluation benchmark for DPC++
* device interface of random number generators.
*
*******************************************************************************/
#include <iostream>
#include <numeric>
#include <vector>
#include <sycl/sycl.hpp>
#include "oneapi/mkl/rng/device.hpp"
using namespace oneapi;
// Value of Pi with many exact digits to compare with estimated value of Pi
static const auto pi = 3.1415926535897932384626433832795;
// Initialization value for random number generator
static const auto seed = 7777;
// Default Number of 2D points
static const auto n_samples = 120000000;
double estimate_pi(sycl::queue& q, size_t n_points) {
double estimated_pi; // Estimated value of Pi
size_t n_under_curve = 0; // Number of points fallen under the curve
size_t count_per_thread = 32;
constexpr size_t vec_size = 2;
{
sycl::buffer<size_t, 1> count_buf(&n_under_curve, 1);
q.submit([&] (sycl::handler& h) {
auto count_acc = count_buf.template get_access<sycl::access::mode::write>(h);
h.parallel_for(sycl::range<1>(n_points / (count_per_thread * vec_size / 2)),
[=](sycl::item<1> item) {
size_t id_global = item.get_id(0);
sycl::vec<float, vec_size> r;
sycl::atomic_ref<size_t, sycl::memory_order::relaxed,
sycl::memory_scope::device,
sycl::access::address_space::global_space> atomic_counter { count_acc[0] };
size_t count = 0;
// Create an object of basic random numer generator (engine)
mkl::rng::device::philox4x32x10<vec_size> engine(seed, id_global * count_per_thread * vec_size);
// Create an object of distribution (by default float, a = 0.0f, b = 1.0f)
mkl::rng::device::uniform distr;
for(int i = 0; i < count_per_thread; i++) {
// Step 1. Generate 2D point
r = mkl::rng::device::generate(distr, engine);
// Step 2. Increment counter if point is under curve (x ^ 2 + y ^ 2 < 1.0f)
if(sycl::length(r) <= 1.0f) {
count += 1;
}
}
atomic_counter.fetch_add(count);
});
});
}
estimated_pi = n_under_curve / ((double)n_points) * 4.0;
return estimated_pi;
}
int main(int argc, char ** argv) {
std::cout << std::endl;
std::cout << "Monte Carlo pi Calculation Simulation" << std::endl;
std::cout << "Device Api" << std::endl;
std::cout << "-------------------------------------" << std::endl;
double estimated_pi;
size_t n_points = n_samples;
if(argc >= 2) {
n_points = atol(argv[1]);
if(n_points == 0) {
n_points = n_samples;
}
}
std::cout << "Number of points = " << n_points << std::endl;
// This exception handler with catch async exceptions
auto exception_handler = [&](sycl::exception_list exceptions) {
for(std::exception_ptr const& e : exceptions) {
try {
std::rethrow_exception(e);
} catch (sycl::exception const& e) {
std::cout << "Caught asynchronous SYCL exception:\n" << e.what() << std::endl;
std::terminate();
}
}
};
try {
// Queue constructor passed exception handler
sycl::queue q(sycl::default_selector{}, exception_handler);
// Launch Pi number calculation
estimated_pi = estimate_pi(q, n_points);
} catch (...) {
// Some other exception detected
std::cout << "Failure" << std::endl;
std::terminate();
}
// Printing results
std::cout << "Estimated value of Pi = " << estimated_pi << std::endl;
std::cout << "Exact value of Pi = " << pi << std::endl;
std::cout << "Absolute error = " << fabs(pi-estimated_pi) << std::endl;
std::cout << std::endl;
return 0;
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/monte_carlo_pi/mc_pi_usm.cpp | //==============================================================
// Copyright © 2020 Intel Corporation
//
// SPDX-License-Identifier: MIT
// =============================================================
/*
*
* Content:
* This file contains Monte Carlo Pi number evaluation benchmark for DPC++
* USM-based interface of random number generators.
*
*******************************************************************************/
#include <iostream>
#include <numeric>
#include <vector>
#include <numeric>
#include <sycl/sycl.hpp>
#include "oneapi/mkl.hpp"
using namespace oneapi;
// Value of Pi with many exact digits to compare with estimated value of Pi
static const auto pi = 3.1415926535897932384626433832795;
// Initialization value for random number generator
static const auto seed = 7777;
// Default Number of 2D points
static const auto n_samples = 120000000;
double estimate_pi(sycl::queue& q, size_t n_points) {
double estimated_pi; // Estimated value of Pi
size_t n_under_curve = 0; // Number of points fallen under the curve
// Step 1. Generate n_points * 2 random numbers
// 1.1. Generator initialization
// Create an object of basic random numer generator (engine)
mkl::rng::philox4x32x10 engine(q, seed);
// Create an object of distribution (by default float, a = 0.0f, b = 1.0f)
mkl::rng::uniform distr;
float* rng_ptr = sycl::malloc_device<float>(n_points * 2, q);
// 1.2. Random number generation
auto event = mkl::rng::generate(distr, engine, n_points * 2, rng_ptr);
// Step 2. Count points under curve (x ^ 2 + y ^ 2 < 1.0f)
size_t wg_size = std::min(q.get_device().get_info<sycl::info::device::max_work_group_size>(), n_points);
size_t max_compute_units = q.get_device().get_info<sycl::info::device::max_compute_units>();
size_t wg_num = (n_points > wg_size * max_compute_units) ? max_compute_units : 1;
size_t count_per_thread = n_points / (wg_size * wg_num);
size_t* count_ptr = sycl::malloc_shared<size_t>(wg_num, q);
// Make sure, that generation is finished
event.wait_and_throw();
event = q.submit([&] (sycl::handler& h) {
h.parallel_for(sycl::nd_range<1>(wg_size * wg_num, wg_size),
[=](sycl::nd_item<1> item) {
sycl::vec<float, 2> r;
size_t count = 0;
for(int i = 0; i < count_per_thread; i++) {
r.load(i + item.get_global_linear_id() * count_per_thread, sycl::global_ptr<float>(rng_ptr));
if(sycl::length(r) <= 1.0f) {
count += 1;
}
}
count_ptr[item.get_group_linear_id()] = reduce_over_group(item.get_group(), count, std::plus<size_t>());
});
});
event.wait_and_throw();
n_under_curve = std::accumulate(count_ptr, count_ptr + wg_num, 0);
// Step 3. Calculate approximated value of Pi
estimated_pi = n_under_curve / ((double)n_points) * 4.0;
sycl::free(rng_ptr, q);
sycl::free(count_ptr, q);
return estimated_pi;
}
int main(int argc, char ** argv) {
std::cout << std::endl;
std::cout << "Monte Carlo pi Calculation Simulation" << std::endl;
std::cout << "Unified Shared Memory Api" << std::endl;
std::cout << "-------------------------------------" << std::endl;
double estimated_pi;
size_t n_points = n_samples;
if(argc >= 2) {
n_points = atol(argv[1]);
if(n_points == 0) {
n_points = n_samples;
}
}
std::cout << "Number of points = " << n_points << std::endl;
// This exception handler with catch async exceptions
auto exception_handler = [&](sycl::exception_list exceptions) {
for(std::exception_ptr const& e : exceptions) {
try {
std::rethrow_exception(e);
} catch (sycl::exception const& e) {
std::cout << "Caught asynchronous SYCL exception:\n" << e.what() << std::endl;
std::terminate();
}
}
};
try {
// Queue constructor passed exception handler
sycl::queue q(sycl::default_selector{}, exception_handler);
// Launch Pi number calculation
estimated_pi = estimate_pi(q, n_points);
} catch (...) {
// Some other exception detected
std::cout << "Failure" << std::endl;
std::terminate();
}
// Printing results
std::cout << "Estimated value of Pi = " << estimated_pi << std::endl;
std::cout << "Exact value of Pi = " << pi << std::endl;
std::cout << "Absolute error = " << fabs(pi-estimated_pi) << std::endl;
std::cout << std::endl;
return 0;
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/computed_tomography/computed_tomography.cpp | //=====================================================================
// Copyright © 2020 Intel Corporation
//
// SPDX-License-Identifier: MIT
// ====================================================================
/*
* Content:
* Reconstruct the original image from the Computed Tomography (CT)
* data using oneMKL DPC++ fast Fourier transform (FFT) functions.
************************************************************************
* Usage:
* ======
* program.out p q input.bmp radon.bmp restored.bmp
* Input:
* p, q - parameters of Radon transform
* input.bmp - must be a 24-bit uncompressed input bitmap
* Output:
* radon.bmp - p-by-(2q+1) result of Radon transform of input.bmp
* restored.bmp - 2q-by-2q result of FFT-based reconstruction
*
* Steps:
* ======
* - Acquire Radon transforms from the original image - perform
* line integrals for the original image in 'p' directions onto
* '2q+1' points for each direction to obtain a sinogram.
* Reconstruction phase -
* 1) Perform 'p' 1-D FFT's using oneMKL DFT DPC++ asynchronous USM API,
* constructing full fourier representation of the object using 'p'
* projections.
* 2) Interpolate from radial grid(fourier representation from step2)
* onto Cartesian grid.
* 3) Perform one 2-D inverse FFT to obtain the reconstructed
* image using oneMKL DFT DPCPP asynchronous USM API.
*/
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <string>
#include <vector>
#include <sycl/sycl.hpp>
#include "oneapi/mkl.hpp"
#if !defined(M_PI)
#define M_PI 3.14159265358979323846
#endif
#if !defined(REAL_DATA)
#define REAL_DATA double
#endif
typedef std::complex<REAL_DATA> complex;
typedef oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::DOUBLE,
oneapi::mkl::dft::domain::REAL>
descriptor_real;
typedef oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::DOUBLE,
oneapi::mkl::dft::domain::COMPLEX>
descriptor_complex;
// A simple transparent matrix class, row-major layout
template <typename T>
struct matrix {
sycl::queue q;
T *data;
int h, w, ldw;
matrix(sycl::queue &main_queue) : q{main_queue}, data{NULL} {}
matrix(const matrix &);
matrix &operator=(const matrix &);
void deallocate()
{
if (data)
free(data, q.get_context());
}
void allocate(int _h, int _w, int _ldw)
{
h = _h;
w = _w;
ldw = _ldw; // leading dimension for w
deallocate();
data = (T *)malloc_shared(sizeof(T) * h * ldw, q.get_device(), q.get_context());
}
~matrix() { deallocate(); }
};
typedef matrix<REAL_DATA> matrix_r;
typedef matrix<complex> matrix_c;
// Computational functions
sycl::event step1_fft_1d(matrix_r &radon_image,
descriptor_real &fft1d,
sycl::queue &main_queue,
const std::vector<sycl::event> &deps = {});
sycl::event step2_interpolation(matrix_r &result,
matrix_r &radon_image,
sycl::queue &main_queue,
const std::vector<sycl::event> &deps = {});
sycl::event step3_ifft_2d(matrix_r &fhat,
descriptor_complex &ifft2d,
sycl::queue &main_queue,
const std::vector<sycl::event> &deps = {});
// Support functions
void bmp_read(matrix_r &image, std::string fname);
void bmp_write(std::string fname, const matrix_r &image, bool isComplex);
sycl::event acquire_radon(matrix_r &result, matrix_r &input, sycl::queue &main_queue);
template <typename T>
inline int is_odd(const T &n)
{
return n & 1;
}
template <typename T>
void die(std::string err, T param);
void die(std::string err);
// Main function carrying out the steps mentioned above
int main(int argc, char **argv)
{
int p = argc > 1 ? atoi(argv[1]) : 200; // # of projections in range 0..PI
int q = argc > 2 ? atoi(argv[2]) : 100; // # of density points per projection is 2q+1
std::string original_bmpname = argc > 3 ? argv[3] : "input.bmp";
std::string radon_bmpname = argc > 4 ? argv[4] : "radon.bmp";
std::string restored_bmpname = argc > 5 ? argv[5] : "restored.bmp";
// Create execution queue.
// This sample requires double precision, so look for a device that supports it.
sycl::queue main_queue;
try {
main_queue = sycl::queue(sycl::aspect_selector({sycl::aspect::fp64}));
} catch (sycl::exception &e) {
std::cerr << "Could not find any device with double precision support. Exiting.\n";
return 0;
}
std::cout << "Reading original image from " << original_bmpname << std::endl;
matrix_r original_image(main_queue);
bmp_read(original_image, original_bmpname);
std::cout << "Allocating radonImage for backprojection" << std::endl;
matrix_r radon_image(main_queue);
// space for p-by-(2q+2) reals, or for p-by-(q+1) complex numbers
radon_image.allocate(p, 2 * q + 1, 2 * q + 2);
if (!radon_image.data)
die("cannot allocate memory for radonImage\n");
std::cout << "Performing backprojection" << std::endl;
auto ev = acquire_radon(radon_image, original_image, main_queue);
ev.wait(); // wait here for bmpWrite
bmp_write(radon_bmpname, radon_image, false);
std::cout << "Restoring original: step1 - fft_1d in-place" << std::endl;
descriptor_real fft1d((radon_image.w) - 1); // 2*q
auto step1 = step1_fft_1d(radon_image, fft1d, main_queue);
std::cout << "Allocating array for radial->cartesian interpolation" << std::endl;
matrix_r fhat(main_queue);
fhat.allocate(2 * q, 2 * 2 * q, 2 * 2 * q);
if (!fhat.data)
die("cannot allocate memory for fhat\n");
std::cout << "Restoring original: step2 - interpolation" << std::endl;
auto step2 = step2_interpolation(fhat, radon_image, main_queue, {step1});
// step2.wait(); //wait here for bmpWrite
// bmpWrite( "check-after-interpolation.bmp", fhat , true); //For debugging purpose
std::cout << "Restoring original: step3 - ifft_2d in-place" << std::endl;
descriptor_complex ifft2d({fhat.h, (fhat.w) / 2}); // fhat.w/2 in complex'es
auto step3 = step3_ifft_2d(fhat, ifft2d, main_queue, {step2});
std::cout << "Saving restored image to " << restored_bmpname << std::endl;
step3.wait(); // Wait for the reconstructed image
bmp_write(restored_bmpname, fhat, true);
return 0;
}
// Step 1: batch of 1d r2c fft.
// ghat[j, lambda] <-- scale * FFT_1D( g[j,l] )
sycl::event step1_fft_1d(matrix_r &radon,
descriptor_real &fft1d,
sycl::queue &main_queue,
const std::vector<sycl::event> &deps)
{
std::int64_t p = radon.h;
std::int64_t q2 = radon.w - 1; // w = 2*q + 1
std::int64_t ldw = radon.ldw;
REAL_DATA scale = 1.0 / sqrt(0.0 + q2);
// Make sure we can do in-place r2c
if (is_odd(ldw))
die("c-domain needs even ldw at line %i\n", __LINE__);
if (q2 / 2 + 1 > ldw / 2)
die("no space for in-place r2c, line %i\n", __LINE__);
// Configure descriptor
fft1d.set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, p);
fft1d.set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, ldw); // in REAL_DATA's
fft1d.set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, ldw / 2); // in complex'es
fft1d.set_value(oneapi::mkl::dft::config_param::FORWARD_SCALE, scale);
fft1d.commit(main_queue);
auto fft1d_ev = oneapi::mkl::dft::compute_forward(fft1d, radon.data, deps);
return fft1d_ev;
}
// Step 2: interpolation to Cartesian grid.
// ifreq_dom[x, y] <-- interpolation( freq_dom[theta, ksi] )
sycl::event step2_interpolation(matrix_r &fhat,
matrix_r &radon_image,
sycl::queue &main_queue,
const std::vector<sycl::event> &deps)
{
// radonImage is the result of r2c FFT
// rt(pp,:) contains frequences 0...q
complex *rt = (complex *)radon_image.data;
complex *ft = (complex *)fhat.data;
int q = (radon_image.w - 1) / 2; // w = 2q + 1
int ldq = radon_image.ldw / 2;
int p = radon_image.h;
int h = fhat.h;
int w = fhat.w / 2; // fhat.w/2 in complex'es
int ldw = fhat.ldw / 2; // fhat.ldw/2 in complex'es
auto ev = main_queue.submit([&](sycl::handler &cgh) {
cgh.depends_on(deps);
auto interpolateKernel = [=](sycl::item<1> item) {
const int i = item.get_id(0);
for (int j = 0; j < w; ++j) {
REAL_DATA yy = 2.0 * i / h - 1; // yy = [-1...1]
REAL_DATA xx = 2.0 * j / w - 1; // xx = [-1...1]
REAL_DATA r = sycl::sqrt(xx * xx + yy * yy);
REAL_DATA phi = sycl::atan2(yy, xx);
complex fhat_ij = complex(0.);
if (r <= 1) {
if (phi < 0) {
r = -r;
phi += M_PI;
}
int qq = sycl::floor(REAL_DATA(q + r * q + 0.5)) - q; // qq = [-q...q)
if (qq >= q)
qq = q - 1;
int pp = sycl::floor(REAL_DATA(phi / M_PI * p + 0.5)); // pp = [0...p)
if (pp >= p)
pp = p - 1;
if (qq >= 0)
fhat_ij = rt[pp * ldq + qq];
else
fhat_ij = std::conj(rt[pp * ldq - qq]);
if (is_odd(qq))
fhat_ij = -fhat_ij;
if (is_odd(i))
fhat_ij = -fhat_ij;
if (is_odd(j))
fhat_ij = -fhat_ij;
}
ft[i * ldw + j] = fhat_ij;
}
};
cgh.parallel_for<class interpolateKernelClass>(sycl::range<1>(h), interpolateKernel);
});
return ev;
}
// Step 3: inverse FFT
// ifreq_dom[x, y] <-- IFFT_2D( ifreq_dom[x, y] )
sycl::event step3_ifft_2d(matrix_r &fhat,
descriptor_complex &ifft2d,
sycl::queue &main_queue,
const std::vector<sycl::event> &deps)
{
// Configure descriptor
std::int64_t strides[3] = {0, (fhat.ldw) / 2, 1}; // fhat.ldw/2, in complex'es
ifft2d.set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, strides);
ifft2d.commit(main_queue);
sycl::event ifft2d_ev = oneapi::mkl::dft::compute_backward(ifft2d, fhat.data, deps);
return ifft2d_ev;
}
// Simplified BMP structure.
// See http://msdn.microsoft.com/en-us/library/dd183392(v=vs.85).aspx
#pragma pack(push, 1)
struct bmp_header {
char bf_type[2];
unsigned int bf_size;
unsigned int bf_reserved;
unsigned int bf_off_bits;
unsigned int bi_size;
unsigned int bi_width;
unsigned int bi_height;
unsigned short bi_planes;
unsigned short bi_bit_count;
unsigned int bi_compression;
unsigned int bi_size_image;
unsigned int bi_x_pels_per_meter;
unsigned int bi_y_pels_per_meter;
unsigned int bi_clr_used;
unsigned int bi_clr_important;
};
#pragma pack(pop)
// Read image from fname and convert it to gray-scale REAL.
void bmp_read(matrix_r &image, std::string fname)
{
std::fstream fp;
fp.open(fname, std::fstream::in | std::fstream::binary);
if (fp.fail())
die("cannot open the file %s\n", fname);
bmp_header header;
fp.read((char *)(&header), sizeof(header));
if (header.bi_bit_count != 24)
die("not a 24-bit image in %s\n", fname);
if (header.bi_compression)
die("%s is compressed bmp\n", fname);
if (header.bi_height <= 0 || header.bi_width <= 0)
die("image %s has zero size\n", fname);
if (header.bi_height > 65536 || header.bi_width > 65536)
die("image %s too large\n", fname);
image.allocate(header.bi_height, header.bi_width, header.bi_width);
if (!image.data)
die("no memory to read %s\n", fname);
fp.seekg(sizeof(header), std::ios_base::beg);
REAL_DATA *image_data = (REAL_DATA *)image.data;
for (int i = 0; i < image.h; ++i) {
for (int j = 0; j < image.w; ++j) {
struct {
unsigned char b, g, r;
} pixel;
fp.read((char *)(&pixel), 3);
REAL_DATA gray = (255 * 3.0 - pixel.r - pixel.g - pixel.b) / 255;
image_data[i * image.ldw + j] = gray;
}
fp.seekg((4 - 3 * image.w % 4) % 4, std::ios_base::cur);
}
if (!fp)
die("error reading %s\n", fname);
fp.close();
}
inline REAL_DATA to_real(const REAL_DATA &x)
{
return x;
}
inline REAL_DATA to_real(const complex &x)
{
return std::abs(x);
}
template <typename T>
void bmp_write_templ(std::string fname, int h, int w, int ldw, T *data)
{
unsigned sizeof_line = (w * 3 + 3) / 4 * 4;
unsigned sizeof_image = h * sizeof_line;
bmp_header header = {{'B', 'M'},
unsigned(sizeof(header) + sizeof_image),
0,
sizeof(header),
sizeof(header) - offsetof(bmp_header, bi_size),
unsigned(w),
unsigned(h),
1,
24,
0,
sizeof_image,
6000,
6000,
0,
0};
std::fstream fp;
fp.open(fname, std::fstream::out | std::fstream::binary);
if (fp.fail())
die("failed to save the image, cannot open file", fname);
fp.write((char *)(&header), sizeof(header));
REAL_DATA minabs = 1e38, maxabs = 0;
for (int i = 0; i < h; ++i)
for (int j = 0; j < w; ++j) {
REAL_DATA ijabs = to_real(data[i * ldw + j]);
if (!(ijabs > minabs))
minabs = ijabs;
if (!(ijabs < maxabs))
maxabs = ijabs;
}
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
REAL_DATA ijabs = to_real(data[i * ldw + j]);
REAL_DATA gray = 255 * (ijabs - maxabs) / (minabs - maxabs);
struct {
unsigned char b, g, r;
} pixel;
pixel.b = pixel.g = pixel.r = (unsigned char)(gray + 0.5);
fp.write((char *)(&pixel), 3);
}
for (int j = 3 * w; j % 4; ++j)
fp.put(0);
}
fp.close();
}
void bmp_write(std::string fname, const matrix_r &image, bool isComplex)
{
if (isComplex)
bmp_write_templ(fname, image.h, image.w / 2, image.ldw / 2, (complex *)image.data);
else
bmp_write_templ(fname, image.h, image.w, image.ldw, image.data);
}
sycl::event acquire_radon(matrix_r &result, matrix_r &input, sycl::queue &main_queue)
{
int h_r = result.h, w_r = result.w, ldw_r = result.ldw;
int h_i = input.h, w_i = input.w, ldw_i = input.ldw;
// Integrate image along line [(x,y),(cos theta, sin theta)] = R*s
auto integrate_along_line = [=](REAL_DATA theta, REAL_DATA s, int h, int w, int ldw,
REAL_DATA *data) {
REAL_DATA R = 0.5 * sycl::sqrt(REAL_DATA(h * h + w * w));
REAL_DATA S = s * R, B = sycl::sqrt(1 - s * s) * R;
REAL_DATA cs = sycl::cos(theta), sn = sycl::sin(theta);
REAL_DATA dl = 1, dx = -dl * sn, dy = dl * cs; // integration step
// unadjusted start of integration
REAL_DATA x0 = 0.5 * w + S * cs + B * sn;
REAL_DATA y0 = 0.5 * h + S * sn - B * cs; // unadjusted end of integration
REAL_DATA x1 = 0.5 * w + S * cs - B * sn;
REAL_DATA y1 = 0.5 * h + S * sn + B * cs;
int N = 0; // number of sampling points on the interval
do {
// Adjust start-end of the integration interval
if (x0 < 0) {
if (x1 < 0)
break;
else {
y0 -= (0 - x0) * cs / sn;
x0 = 0;
}
}
if (y0 < 0) {
if (y1 < 0)
break;
else {
x0 -= (0 - y0) * sn / cs;
y0 = 0;
}
}
if (x1 < 0) {
if (x0 < 0)
break;
else {
y1 -= (0 - x1) * cs / sn;
x1 = 0;
}
}
if (y1 < 0) {
if (y0 < 0)
break;
else {
x1 -= (0 - y1) * sn / cs;
y1 = 0;
}
}
if (x0 > w) {
if (x1 > w)
break;
else {
y0 -= (w - x0) * cs / sn;
x0 = w;
}
}
if (y0 > h) {
if (y1 > h)
break;
else {
x0 -= (h - y0) * sn / cs;
y0 = h;
}
}
if (x1 > w) {
if (x0 > w)
break;
else {
y1 -= (w - x1) * cs / sn;
x1 = w;
}
}
if (y1 > h) {
if (y0 > h)
break;
else {
x1 -= (h - y1) * sn / cs;
y1 = h;
}
}
// Compute number of steps
N = int(sycl::fabs(dx) > sycl::fabs(dy) ? ((x1 - x0) / dx) : ((y1 - y0) / dy));
} while (0);
// Integrate
REAL_DATA sum = 0;
for (int n = 0; n < N; ++n) {
int i = sycl::floor(y0 + n * dy + 0.5 * dy);
int j = sycl::floor(x0 + n * dx + 0.5 * dx);
sum += data[i * ldw + j];
}
sum *= dl;
return sum;
};
REAL_DATA *input_data = (REAL_DATA *)input.data;
REAL_DATA *result_data = (REAL_DATA *)result.data;
sycl::event ev = main_queue.submit([&](sycl::handler &cgh) {
auto acquire_radon_kernel = [=](sycl::item<1> item) {
const int i = item.get_id(0);
REAL_DATA theta = i * M_PI / h_r; // theta=[0,...,M_PI)
for (int j = 0; j < w_r; ++j) {
REAL_DATA s = -1. + (2.0 * j + 1) / w_r; // s=(-1,...,1)
REAL_DATA projection = integrate_along_line(theta, s, h_i, w_i, ldw_i, input_data);
result_data[i * ldw_r + j] = projection;
}
};
cgh.parallel_for<class acquire_radon_class>(sycl::range<1>(h_r), acquire_radon_kernel);
});
return ev;
}
template <typename T>
void die(std::string err, T param)
{
std::cout << "Fatal error: " << err << " " << param << std::endl;
fflush(0);
exit(1);
}
void die(std::string err)
{
std::cout << "Fatal error: " << err << " " << std::endl;
fflush(0);
exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/student_t_test/t_test.cpp | //==============================================================
// Copyright © 2021 Intel Corporation
//
// SPDX-License-Identifier: MIT
// =============================================================
/*
*
* Content:
* This file contains Student's T-test DPC++ implementation with
* buffer APIs.
*
*******************************************************************************/
#include <sycl/sycl.hpp>
#include <cstdlib>
#include <iostream>
#include <vector>
#include "oneapi/mkl.hpp"
using fp_type = float;
// Initialization value for random number generator
static const auto seed = 7777;
// Quantity of samples to check using Students' T-test
static const auto n_samples = 1000000;
// Expected mean value of random samples
static const auto expected_mean = 0.0f;
// Expected standard deviation of random samples
static const auto expected_std_dev = 1.0f;
// T-test threshold which corresponds to 5% significance level and infinite
// degrees of freedom
static const auto threshold = 1.95996f;
// T-test function with expected mean
// Returns: -1 if something went wrong, 1 - in case of NULL hypothesis should be
// accepted, 0 - in case of NULL hypothesis should be rejected
template <typename RealType>
std::int32_t t_test(sycl::queue &q, sycl::buffer<RealType, 1> &r,
std::int64_t n, RealType expected_mean) {
std::int32_t res = -1;
RealType sqrt_n_observations = sycl::sqrt(static_cast<RealType>(n));
// Create buffers to be passed inside oneMKL stats functions
sycl::buffer<RealType, 1> mean_buf(sycl::range{1});
sycl::buffer<RealType, 1> variance_buf(sycl::range{1});
// Perform computations of mean and variance
auto dataset =
oneapi::mkl::stats::make_dataset<oneapi::mkl::stats::layout::row_major>(
1, n, r);
oneapi::mkl::stats::mean(q, dataset, mean_buf);
q.wait_and_throw();
oneapi::mkl::stats::central_moment(q, mean_buf, dataset, variance_buf);
q.wait_and_throw();
// Create Host accessors and check the condition
sycl::host_accessor mean_acc(mean_buf);
sycl::host_accessor variance_acc(variance_buf);
if ((sycl::abs(mean_acc[0] - expected_mean) * sqrt_n_observations /
sycl::sqrt(variance_acc[0])) < static_cast<RealType>(threshold)) {
res = 1;
} else {
res = 0;
}
return res;
}
// T-test function with two input arrays
// Returns: -1 if something went wrong, 1 - in case of NULL hypothesis should be
// accepted, 0 - in case of NULL hypothesis should be rejected
template <typename RealType>
std::int32_t t_test(sycl::queue &q, sycl::buffer<RealType, 1> &r1,
std::int64_t n1, sycl::buffer<RealType, 1> &r2,
std::int64_t n2) {
std::int32_t res = -1;
// Create buffers to be passed inside oneMKL stats functions
sycl::buffer<RealType, 1> mean1_buf(sycl::range{1});
sycl::buffer<RealType, 1> variance1_buf(sycl::range{1});
sycl::buffer<RealType, 1> mean2_buf(sycl::range{1});
sycl::buffer<RealType, 1> variance2_buf(sycl::range{1});
// Perform computations of mean and variance
auto dataset1 =
oneapi::mkl::stats::make_dataset<oneapi::mkl::stats::layout::row_major>(
1, n1, r1);
auto dataset2 =
oneapi::mkl::stats::make_dataset<oneapi::mkl::stats::layout::row_major>(
1, n2, r2);
oneapi::mkl::stats::mean(q, dataset1, mean1_buf);
q.wait_and_throw();
oneapi::mkl::stats::central_moment(q, mean1_buf, dataset1, variance1_buf);
oneapi::mkl::stats::mean(q, dataset2, mean2_buf);
q.wait_and_throw();
oneapi::mkl::stats::central_moment(q, mean2_buf, dataset2, variance2_buf);
q.wait_and_throw();
// Create Host accessors and check the condition
sycl::host_accessor mean1_acc{mean1_buf};
sycl::host_accessor variance1_acc{variance1_buf};
sycl::host_accessor mean2_acc{mean2_buf};
sycl::host_accessor variance2_acc{variance2_buf};
bool almost_equal = (variance1_acc[0] < 2 * variance2_acc[0]) ||
(variance2_acc[0] < 2 * variance1_acc[0]);
if (almost_equal) {
if ((sycl::abs(mean1_acc[0] - mean2_acc[0]) /
sycl::sqrt((static_cast<RealType>(1.0) / static_cast<RealType>(n1) +
static_cast<RealType>(1.0) / static_cast<RealType>(n2)) *
((n1 - 1) * (n1 - 1) * variance1_acc[0] +
(n2 - 1) * (n2 - 1) * variance2_acc[0]) /
(n1 + n2 - 2))) < static_cast<RealType>(threshold)) {
res = 1;
} else {
res = 0;
}
} else {
if ((sycl::abs(mean1_acc[0] - mean2_acc[0]) /
sycl::sqrt((variance1_acc[0] + variance2_acc[0]))) <
static_cast<RealType>(threshold)) {
res = 1;
} else {
res = 0;
}
}
return res;
}
int main(int argc, char **argv) {
std::cout << "\nStudent's T-test Simulation\n";
std::cout << "Buffer Api\n";
std::cout << "-------------------------------------\n";
size_t n_points = n_samples;
fp_type mean = expected_mean;
fp_type std_dev = expected_std_dev;
if (argc >= 2) {
n_points = std::atol(argv[1]);
if (n_points == 0) {
n_points = n_samples;
}
}
if (argc >= 3) {
mean = std::atof(argv[2]);
if (std::isnan(mean) || std::isinf(mean)) {
mean = expected_mean;
}
}
if (argc >= 4) {
std_dev = std::atof(argv[3]);
if (std_dev <= static_cast<fp_type>(0.0f)) {
std_dev = expected_std_dev;
}
}
std::cout << "Number of random samples = " << n_points
<< " with mean = " << mean << ", std_dev = " << std_dev << "\n";
// This exception handler with catch async exceptions
auto exception_handler = [](sycl::exception_list exceptions) {
for (std::exception_ptr const &e : exceptions) {
try {
std::rethrow_exception(e);
} catch (sycl::exception const &e) {
std::cout << "Caught asynchronous SYCL exception during generation:\n"
<< e.what() << std::endl;
}
}
};
std::int32_t res0, res1;
try {
// Queue constructor passed exception handler
sycl::queue q(sycl::default_selector{}, exception_handler);
// Prepare buffers for random output
sycl::buffer<fp_type, 1> rng_buf0(n_points);
sycl::buffer<fp_type, 1> rng_buf1(n_points);
// Create engine object
oneapi::mkl::rng::default_engine engine(q, seed);
// Create distribution object
oneapi::mkl::rng::gaussian<fp_type> distribution(mean, std_dev);
// Perform generation
oneapi::mkl::rng::generate(distribution, engine, n_points, rng_buf0);
oneapi::mkl::rng::generate(distribution, engine, n_points, rng_buf1);
q.wait_and_throw();
// Launch T-test with expected mean
res0 = t_test(q, rng_buf0, n_points, mean);
// Launch T-test with two input arrays
res1 = t_test(q, rng_buf0, n_points, rng_buf1, n_points);
} catch (...) {
// Some other exception detected
std::cout << "Failure\n";
std::terminate();
}
// Printing results
std::cout << "T-test result with expected mean: " << res0 << "\n";
std::cout << "T-test result with two input arrays: " << res1 << "\n\n";
return 0;
} | cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/student_t_test/t_test_usm.cpp | //==============================================================
// Copyright © 2021 Intel Corporation
//
// SPDX-License-Identifier: MIT
// =============================================================
/*
*
* Content:
* This file contains Student's T-test DPC++ implementation with
* USM APIs.
*
*******************************************************************************/
#include <sycl/sycl.hpp>
#include <cstdlib>
#include <iostream>
#include <vector>
#include "oneapi/mkl.hpp"
using fp_type = float;
// Initialization value for random number generator
static const auto seed = 7777;
// Quantity of samples to check using Students' T-test
static const auto n_samples = 1000000;
// Expected mean value of random samples
static const auto expected_mean = 0.0f;
// Expected standard deviation of random samples
static const auto expected_std_dev = 1.0f;
// T-test threshold which corresponds to 5% significance level and infinite
// degrees of freedom
static const auto threshold = 1.95996f;
// T-test function with expected mean
// Returns: -1 if something went wrong, 1 - in case of NULL hypothesis should be
// accepted, 0 - in case of NULL hypothesis should be rejected
template <typename RealType>
std::int32_t t_test(sycl::queue& q, RealType* r, std::int64_t n,
RealType expected_mean) {
std::int32_t res = -1;
RealType sqrt_n_observations = sycl::sqrt(static_cast<RealType>(n));
// Allocate memory to be passed inside oneMKL stats functions
RealType* mean = sycl::malloc_shared<RealType>(1, q);
RealType* variance = sycl::malloc_shared<RealType>(1, q);
// Perform computations of mean and variance
auto dataset =
oneapi::mkl::stats::make_dataset<oneapi::mkl::stats::layout::row_major>(
1, n, r);
oneapi::mkl::stats::mean(q, dataset, mean);
q.wait_and_throw();
oneapi::mkl::stats::central_moment(q, mean, dataset, variance);
q.wait_and_throw();
// Check the condition
if ((sycl::abs(mean[0] - expected_mean) * sqrt_n_observations /
sycl::sqrt(variance[0])) < static_cast<RealType>(threshold)) {
res = 1;
} else {
res = 0;
}
// Free allocated memory
sycl::free(mean, q);
sycl::free(variance, q);
return res;
}
// T-test function with two input arrays
// Returns: -1 if something went wrong, 1 - in case of NULL hypothesis should be
// accepted, 0 - in case of NULL hypothesis should be rejected
template <typename RealType>
std::int32_t t_test(sycl::queue& q, RealType* r1, std::int64_t n1,
RealType* r2, std::int64_t n2) {
std::int32_t res = -1;
// Allocate memory to be passed inside oneMKL stats functions
RealType* mean1 = sycl::malloc_shared<RealType>(1, q);
RealType* variance1 = sycl::malloc_shared<RealType>(1, q);
RealType* mean2 = sycl::malloc_shared<RealType>(1, q);
RealType* variance2 = sycl::malloc_shared<RealType>(1, q);
// Perform computations of mean and variance
auto dataset1 =
oneapi::mkl::stats::make_dataset<oneapi::mkl::stats::layout::row_major>(
1, n1, r1);
auto dataset2 =
oneapi::mkl::stats::make_dataset<oneapi::mkl::stats::layout::row_major>(
1, n2, r2);
oneapi::mkl::stats::mean(q, dataset1, mean1);
q.wait_and_throw();
oneapi::mkl::stats::central_moment(q, mean1, dataset1, variance1);
oneapi::mkl::stats::mean(q, dataset2, mean2);
q.wait_and_throw();
oneapi::mkl::stats::central_moment(q, mean2, dataset2, variance2);
q.wait_and_throw();
// Check the condition
bool almost_equal =
(variance1[0] < 2 * variance2[0]) || (variance2[0] < 2 * variance1[0]);
if (almost_equal) {
if ((sycl::abs(mean1[0] - mean2[0]) /
sycl::sqrt((static_cast<RealType>(1.0) / static_cast<RealType>(n1) +
static_cast<RealType>(1.0) / static_cast<RealType>(n2)) *
((n1 - 1) * (n1 - 1) * variance1[0] +
(n2 - 1) * (n2 - 1) * variance2[0]) /
(n1 + n2 - 2))) < static_cast<RealType>(threshold)) {
res = 1;
} else {
res = 0;
}
} else {
if ((sycl::abs(mean1[0] - mean2[0]) /
sycl::sqrt((variance1[0] + variance2[0]))) <
static_cast<RealType>(threshold)) {
res = 1;
} else {
res = 0;
}
}
// Free allocated memory
sycl::free(mean1, q);
sycl::free(variance1, q);
sycl::free(mean2, q);
sycl::free(variance2, q);
return res;
}
int main(int argc, char** argv) {
std::cout << "\nStudent's T-test Simulation\n";
std::cout << "Unified Shared Memory Api\n";
std::cout << "-------------------------------------\n";
size_t n_points = n_samples;
fp_type mean = expected_mean;
fp_type std_dev = expected_std_dev;
if (argc >= 2) {
n_points = std::atol(argv[1]);
if (n_points == 0) {
n_points = n_samples;
}
}
if (argc >= 3) {
mean = std::atof(argv[2]);
if (std::isnan(mean) || std::isinf(mean)) {
mean = expected_mean;
}
}
if (argc >= 4) {
std_dev = std::atof(argv[3]);
if (std_dev <= static_cast<fp_type>(0.0f)) {
std_dev = expected_std_dev;
}
}
std::cout << "Number of random samples = " << n_points
<< " with mean = " << mean << ", std_dev = " << std_dev << "\n";
// This exception handler with catch async exceptions
auto exception_handler = [](sycl::exception_list exceptions) {
for (std::exception_ptr const& e : exceptions) {
try {
std::rethrow_exception(e);
} catch (sycl::exception const& e) {
std::cout << "Caught asynchronous SYCL exception during generation:\n"
<< e.what() << std::endl;
}
}
};
std::int32_t res0, res1;
try {
// Queue constructor passed exception handler
sycl::queue q(sycl::default_selector{}, exception_handler);
// Allocate memory for random output
fp_type* rng_arr0 = sycl::malloc_shared<fp_type>(n_points, q);
fp_type* rng_arr1 = sycl::malloc_shared<fp_type>(n_points, q);
// Create engine object
oneapi::mkl::rng::default_engine engine(q, seed);
// Create distribution object
oneapi::mkl::rng::gaussian<fp_type> distribution(mean, std_dev);
// Perform generation
oneapi::mkl::rng::generate(distribution, engine, n_points, rng_arr0);
oneapi::mkl::rng::generate(distribution, engine, n_points, rng_arr1);
q.wait_and_throw();
// Launch T-test with expected mean
res0 = t_test(q, rng_arr0, n_points, mean);
// Launch T-test with two input arrays
res1 = t_test(q, rng_arr0, n_points, rng_arr1, n_points);
// Free allocated memory
sycl::free(rng_arr0, q);
sycl::free(rng_arr1, q);
} catch (...) {
// Some other exception detected
std::cout << "Failure\n";
std::terminate();
}
// Printing results
std::cout << "T-test result with expected mean: " << res0 << "\n";
std::cout << "T-test result with two input arrays: " << res1 << "\n\n";
return 0;
} | cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/fourier_correlation/fcorr_1d_usm.cpp | //==============================================================
// Copyright © 2020 Intel Corporation
//
// SPDX-License-Identifier: MIT
// =============================================================
//
// Content:
// This code implements the 1D Fourier correlation algorithm
// using SYCL, oneMKL, and unified shared memory (USM).
//
// =============================================================
#include <mkl.h>
#include <sycl/sycl.hpp>
#include <iostream>
#include <string>
#include <oneapi/mkl/dfti.hpp>
#include <oneapi/mkl/rng.hpp>
#include <oneapi/mkl/vm.hpp>
template <typename T, typename I>
using maxloc = sycl::ext::oneapi::maximum<std::pair<T, I>>;
constexpr size_t L = 1;
int main(int argc, char** argv) {
unsigned int N = (argc == 1) ? 32 : std::stoi(argv[1]);
if ((N % 2) != 0) N++;
if (N < 32) N = 32;
// Initialize SYCL queue
sycl::queue Q(sycl::default_selector_v);
std::cout << "Running on: "
<< Q.get_device().get_info<sycl::info::device::name>() << "\n";
// Initialize signal and correlation arrays
auto sig1 = sycl::malloc_shared<float>(N + 2, Q);
auto sig2 = sycl::malloc_shared<float>(N + 2, Q);
auto corr = sycl::malloc_shared<float>(N + 2, Q);
// Initialize input signals with artificial data
std::uint32_t seed = (unsigned)time(NULL); // Get RNG seed value
oneapi::mkl::rng::mcg31m1 engine(Q, seed); // Initialize RNG engine
// Set RNG distribution
oneapi::mkl::rng::uniform<float, oneapi::mkl::rng::uniform_method::standard>
rng_distribution(-0.00005, 0.00005);
auto evt1 =
oneapi::mkl::rng::generate(rng_distribution, engine, N, sig1); // Noise
auto evt2 = oneapi::mkl::rng::generate(rng_distribution, engine, N, sig2);
evt1.wait();
evt2.wait();
Q.single_task<>([=]() {
sig1[N - N / 4 - 1] = 1.0;
sig1[N - N / 4] = 1.0;
sig1[N - N / 4 + 1] = 1.0; // Signal
sig2[N / 4 - 1] = 1.0;
sig2[N / 4] = 1.0;
sig2[N / 4 + 1] = 1.0;
})
.wait();
// Initialize FFT descriptor
oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::SINGLE,
oneapi::mkl::dft::domain::REAL>
transform_plan(N);
transform_plan.commit(Q);
// Perform forward transforms on real arrays
evt1 = oneapi::mkl::dft::compute_forward(transform_plan, sig1);
evt2 = oneapi::mkl::dft::compute_forward(transform_plan, sig2);
// Compute: DFT(sig1) * CONJG(DFT(sig2))
oneapi::mkl::vm::mulbyconj(
Q, N / 2, reinterpret_cast<std::complex<float>*>(sig1),
reinterpret_cast<std::complex<float>*>(sig2),
reinterpret_cast<std::complex<float>*>(corr), {evt1, evt2})
.wait();
// Perform backward transform on complex correlation array
oneapi::mkl::dft::compute_backward(transform_plan, corr).wait();
// Find the shift that gives maximum correlation value using parallel maxloc
// reduction
std::pair<float, int>* max_res =
sycl::malloc_shared<std::pair<float, int>>(1, Q);
std::pair<float, int> max_identity = {std::numeric_limits<float>::min(),
std::numeric_limits<int>::min()};
*max_res = max_identity;
auto red_max = reduction(max_res, max_identity, maxloc<float, int>());
Q.parallel_for(sycl::nd_range<1>{N, L}, red_max,
[=](sycl::nd_item<1> item, auto& max_res) {
int i = item.get_global_id(0);
std::pair<float, int> partial = {corr[i], i};
max_res.combine(partial);
})
.wait();
float max_corr = max_res->first;
int shift = max_res->second;
shift =
(shift > N / 2) ? shift - N : shift; // Treat the signals as circularly
// shifted versions of each other.
std::cout << "Shift the second signal " << shift
<< " elements relative to the first signal to get a maximum, "
"normalized correlation score of "
<< max_corr / N << ".\n";
// Cleanup
sycl::free(sig1, Q);
sycl::free(sig2, Q);
sycl::free(corr, Q);
sycl::free(max_res, Q);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/fourier_correlation/fcorr_1d_buffers.cpp | //==============================================================
// Copyright © 2020 Intel Corporation
//
// SPDX-License-Identifier: MIT
// =============================================================
//
// Content:
// This code implements the 1D Fourier correlation algorithm
// using SYCL, oneMKL, oneDPL, and explicit buffering.
//
// =============================================================
#include <oneapi/dpl/algorithm>
#include <oneapi/dpl/execution>
#include <oneapi/dpl/iterator>
#include <sycl/sycl.hpp>
#include <oneapi/mkl/dfti.hpp>
#include <oneapi/mkl/rng.hpp>
#include <oneapi/mkl/vm.hpp>
#include <mkl.h>
#include <iostream>
#include <string>
int main(int argc, char **argv) {
unsigned int N = (argc == 1) ? 32 : std::stoi(argv[1]);
if ((N % 2) != 0) N++;
if (N < 32) N = 32;
// Initialize SYCL queue
sycl::queue Q(sycl::default_selector_v);
std::cout << "Running on: "
<< Q.get_device().get_info<sycl::info::device::name>() << "\n";
// Create buffers for signal data. This will only be used on the device.
sycl::buffer<float> sig1_buf{N + 2};
sycl::buffer<float> sig2_buf{N + 2};
sycl::buffer<float> corr_buf{N + 2};
// Initialize the input signals with artificial data
std::uint32_t seed = (unsigned)time(NULL); // Get RNG seed value
oneapi::mkl::rng::mcg31m1 engine(Q, seed); // Initialize RNG engine
// Set RNG distribution
oneapi::mkl::rng::uniform<float, oneapi::mkl::rng::uniform_method::standard>
rng_distribution(-0.00005, 0.00005);
oneapi::mkl::rng::generate(rng_distribution, engine, N, sig1_buf); // Noise
oneapi::mkl::rng::generate(rng_distribution, engine, N, sig2_buf);
Q.submit([&](sycl::handler &h) {
sycl::accessor sig1_acc{sig1_buf, h, sycl::write_only};
sycl::accessor sig2_acc{sig2_buf, h, sycl::write_only};
h.single_task<>([=]() {
sig1_acc[N - N / 4 - 1] = 1.0;
sig1_acc[N - N / 4] = 1.0;
sig1_acc[N - N / 4 + 1] = 1.0; // Signal
sig2_acc[N / 4 - 1] = 1.0;
sig2_acc[N / 4] = 1.0;
sig2_acc[N / 4 + 1] = 1.0;
});
}); // End signal initialization
// Initialize FFT descriptor
oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::SINGLE,
oneapi::mkl::dft::domain::REAL>
transform_plan(N);
transform_plan.commit(Q);
// Perform forward transforms on real arrays
oneapi::mkl::dft::compute_forward(transform_plan, sig1_buf);
oneapi::mkl::dft::compute_forward(transform_plan, sig2_buf);
// Compute: DFT(sig1) * CONJG(DFT(sig2))
auto sig1_buf_cplx =
sig1_buf.template reinterpret<std::complex<float>, 1>((N + 2) / 2);
auto sig2_buf_cplx =
sig2_buf.template reinterpret<std::complex<float>, 1>((N + 2) / 2);
auto corr_buf_cplx =
corr_buf.template reinterpret<std::complex<float>, 1>((N + 2) / 2);
oneapi::mkl::vm::mulbyconj(Q, N / 2, sig1_buf_cplx, sig2_buf_cplx,
corr_buf_cplx);
// Perform backward transform on complex correlation array
oneapi::mkl::dft::compute_backward(transform_plan, corr_buf);
// Find the shift that gives maximum correlation value
auto policy = oneapi::dpl::execution::make_device_policy(Q);
auto maxloc = oneapi::dpl::max_element(policy,
oneapi::dpl::begin(corr_buf),
oneapi::dpl::end(corr_buf));
int shift = oneapi::dpl::distance(oneapi::dpl::begin(corr_buf), maxloc);
float max_corr = corr_buf.get_host_access()[shift];
shift =
(shift > N / 2) ? shift - N : shift; // Treat the signals as circularly
// shifted versions of each other.
std::cout << "Shift the second signal " << shift
<< " elements relative to the first signal to get a maximum, "
"normalized correlation score of "
<< max_corr / N << ".\n";
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/fourier_correlation/fcorr_2d_usm.cpp | //==============================================================
// Copyright © 2020 Intel Corporation
//
// SPDX-License-Identifier: MIT
// =============================================================
//
// Content:
// This code implements the 2D Fourier correlation algorithm
// using SYCL, oneMKL, oneDPL, and unified shared memory
// (USM).
//
// =============================================================
#include <oneapi/dpl/algorithm>
#include <oneapi/dpl/execution>
#include <oneapi/dpl/iterator>
#include <sycl/sycl.hpp>
#include <oneapi/mkl/dfti.hpp>
#include <oneapi/mkl/vm.hpp>
#include <mkl.h>
#include <iostream>
int main(int argc, char **argv)
{
// Initialize SYCL queue
sycl::queue Q(sycl::default_selector_v);
std::cout << "Running on: "
<< Q.get_device().get_info<sycl::info::device::name>()
<< std::endl;
// Allocate 2D image and correlation arrays
unsigned int n_rows = 8, n_cols = 8;
auto img1 = sycl::malloc_shared<float>(n_rows * n_cols * 2 + 2, Q);
auto img2 = sycl::malloc_shared<float>(n_rows * n_cols * 2 + 2, Q);
auto corr = sycl::malloc_shared<float>(n_rows * n_cols * 2 + 2, Q);
// Initialize input images with artificial data. Do initialization on the device.
// Generalized strides for row-major addressing
int r_stride = 1, c_stride = (n_cols / 2 + 1) * 2, c_stride_h = (n_cols / 2 + 1);
Q.parallel_for<>(sycl::range<2>{n_rows, n_cols}, [=](sycl::id<2> idx) {
unsigned int r = idx[0];
unsigned int c = idx[1];
img1[r * c_stride + c * r_stride] = 0.0;
img2[r * c_stride + c * r_stride] = 0.0;
corr[r * c_stride + c * r_stride] = 0.0;
}).wait();
Q.single_task<>([=]() {
// Set a box of elements in the lower right of the first image
img1[4 * c_stride + 5 * r_stride] = 1.0;
img1[4 * c_stride + 6 * r_stride] = 1.0;
img1[5 * c_stride + 5 * r_stride] = 1.0;
img1[5 * c_stride + 6 * r_stride] = 1.0;
// Set a box of elements in the upper left of the second image
img2[1 * c_stride + 1 * r_stride] = 1.0;
img2[1 * c_stride + 2 * r_stride] = 1.0;
img2[2 * c_stride + 1 * r_stride] = 1.0;
img2[2 * c_stride + 2 * r_stride] = 1.0;
}).wait();
std::cout << std::endl << "First image:" << std::endl;
for (unsigned int r = 0; r < n_rows; r++) {
for (unsigned int c = 0; c < n_cols; c++) {
std::cout << img1[r * c_stride + c * r_stride] << " ";
}
std::cout << std::endl;
}
std::cout << std::endl << "Second image:" << std::endl;
for (unsigned int r = 0; r < n_rows; r++) {
for (unsigned int c = 0; c < n_cols; c++) {
std::cout << img2[r * c_stride + c * r_stride] << " ";
}
std::cout << std::endl;
}
// Initialize FFT descriptor
oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::SINGLE,
oneapi::mkl::dft::domain::REAL>
forward_plan({n_rows, n_cols});
// Data layout in real domain
std::int64_t real_layout[4] = {0, c_stride, 1};
forward_plan.set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES,
real_layout);
// Data layout in conjugate-even domain
std::int64_t complex_layout[4] = {0, c_stride_h, 1};
forward_plan.set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES,
complex_layout);
// Perform forward transforms on real arrays
forward_plan.commit(Q);
auto evt1 = oneapi::mkl::dft::compute_forward(forward_plan, img1);
auto evt2 = oneapi::mkl::dft::compute_forward(forward_plan, img2);
// Compute: DFT(img1) * CONJG(DFT(img2))
oneapi::mkl::vm::mulbyconj(Q, n_rows * c_stride_h,
reinterpret_cast<std::complex<float>*>(img1),
reinterpret_cast<std::complex<float>*>(img2),
reinterpret_cast<std::complex<float>*>(corr),
{evt1, evt2})
.wait();
// Perform backward transform on complex correlation array
oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::SINGLE,
oneapi::mkl::dft::domain::REAL>
backward_plan({n_rows, n_cols});
// Data layout in conjugate-even domain
backward_plan.set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES,
complex_layout);
// Data layout in real domain
backward_plan.set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES,
real_layout);
backward_plan.commit(Q);
auto bwd = oneapi::mkl::dft::compute_backward(backward_plan, corr);
bwd.wait();
std::cout << std::endl << "Normalized Fourier correlation result:"
<< std::endl;
for (unsigned int r = 0; r < n_rows; r++) {
for (unsigned int c = 0; c < n_cols; c++) {
std::cout << corr[r * c_stride + c * r_stride] / (n_rows * n_cols)
<< " ";
}
std::cout << std::endl;
}
// Find the translation vector that gives maximum correlation value
auto policy = oneapi::dpl::execution::make_device_policy(Q);
auto maxloc = oneapi::dpl::max_element(policy,
corr,
corr + (n_rows * n_cols * 2 + 2));
policy.queue().wait();
auto s = oneapi::dpl::distance(corr, maxloc);
float max_corr = corr[s];
int x_shift = s % (n_cols + 2);
int y_shift = s / (n_rows + 2);
std::cout << std::endl << "Shift the second image (x, y) = (" << x_shift
<< ", " << y_shift
<< ") elements relative to the first image to get a maximum,"
<< std::endl << "normalized correlation score of "
<< max_corr / (n_rows * n_cols)
<< ". Treat the images as circularly shifted versions of each other."
<< std::endl;
// Cleanup
sycl::free(img1, Q);
sycl::free(img2, Q);
sycl::free(corr, Q);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/monte_carlo_european_opt/src/montecarlo.hpp | //==============================================================
// Copyright © 2022 Intel Corporation
//
// SPDX-License-Identifier: MIT
// =============================================================
#pragma once
#define _USE_MATH_DEFINES
#include <math.h>
#include <iostream>
#include <vector>
#include <sycl/sycl.hpp>
#ifndef DATA_TYPE
#define DATA_TYPE double
#endif
#ifndef ITEMS_PER_WORK_ITEM
#define ITEMS_PER_WORK_ITEM 4
#endif
#ifndef VEC_SIZE
#define VEC_SIZE 8
#endif
using DataType = DATA_TYPE;
//Should be > 1
constexpr int num_options = 384000;
//Should be > 16
constexpr int path_length = 262144;
//Test iterations
constexpr int num_iterations = 5;
constexpr DataType risk_free = 0.06f;
constexpr DataType volatility = 0.10f;
constexpr DataType RLog2E = -risk_free * M_LOG2E;
constexpr DataType MuLog2E = M_LOG2E * (risk_free - 0.5 * volatility * volatility);
constexpr DataType VLog2E = M_LOG2E * volatility;
template<typename MonteCarlo_vector>
void check(const MonteCarlo_vector& h_CallResult, const MonteCarlo_vector& h_CallConfidence,
const MonteCarlo_vector& h_StockPrice, const MonteCarlo_vector& h_OptionStrike, const MonteCarlo_vector& h_OptionYears)
{
std::vector<DataType> h_CallResultRef(num_options);
auto BlackScholesRefImpl = [](
DataType Sf, //Stock price
DataType Xf, //Option strike
DataType Tf //Option years
) {
// BSM Formula: https://www.nobelprize.org/prizes/economic-sciences/1997/press-release/
// N(d)=1/2 + 1/2*ERF(d/sqrt(2)), https://software.intel.com/en-us/node/531898
DataType S = Sf, L = Xf, t = Tf, r = risk_free, sigma = volatility;
DataType N_d1 = 1. / 2. + 1. / 2. * std::erf(((std::log(S / L) + (r + 0.5 * sigma * sigma) * t) / (sigma * std::sqrt(t))) / std::sqrt(2.));
DataType N_d2 = 1. / 2. + 1. / 2. * std::erf(((std::log(S / L) + (r - 0.5 * sigma * sigma) * t) / (sigma * std::sqrt(t))) / std::sqrt(2.));
return S * N_d1 - L * std::exp(-r * t) * N_d2;
};
for (int opt = 0; opt < num_options; opt++)
{
h_CallResultRef[opt] = BlackScholesRefImpl(h_StockPrice[opt], h_OptionStrike[opt], h_OptionYears[opt]);
}
std::cout << "Running quality test..." << std::endl;
DataType sum_delta = 0.0,
sum_ref = 0.0,
max_delta = 0.0,
sum_reserve = 0.0;
for (int opt = 0; opt < num_options; opt++)
{
DataType ref = h_CallResultRef[opt];
DataType delta = std::fabs(h_CallResultRef[opt] - h_CallResult[opt]);
if (delta > max_delta)
{
max_delta = delta;
}
sum_delta += delta;
sum_ref += std::fabs(ref);
if (delta > 1e-6)
{
sum_reserve += h_CallConfidence[opt] / delta;
}
max_delta = std::max(delta, max_delta);
}
sum_reserve /= static_cast<double>(num_options);
DataType L1_norm = sum_delta / sum_ref;
std::cout << "L1_Norm = "<< L1_norm << std::endl;
std::cout << "Average RESERVE = "<< sum_reserve << std::endl;
std::cout << "Max Error = "<< max_delta << std::endl;
std::cout << (sum_reserve > 1.0f ? "TEST PASSED!" : "TEST FAILED!") << std::endl;
}
| hpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/monte_carlo_european_opt/src/montecarlo_main.cpp | //==============================================================
// Copyright © 2022 Intel Corporation
//
// SPDX-License-Identifier: MIT
// =============================================================
#include <cmath>
#include <limits>
#include <iostream>
#include <sycl/sycl.hpp>
#include <oneapi/mkl.hpp>
#include <oneapi/mkl/rng/device.hpp>
#include "montecarlo.hpp"
#include "timer.hpp"
template<typename Type, int>
class k_MonteCarlo; // can be useful for profiling
int main(int argc, char** argv)
{
try {
std::cout << "MonteCarlo European Option Pricing in " <<
(std::is_same_v<DataType, double> ? "Double" : "Single") <<
" precision using " <<
#if USE_PHILOX
"PHILOX4x32x10" <<
#elif USE_MRG
"MRG32k3a" <<
#else
"MCG59" <<
#endif
" generator." <<
std::endl;
std::cout <<
"Pricing " << num_options <<
" Options with Path Length = " << path_length <<
", sycl::vec size = " << VEC_SIZE <<
", Options Per Work Item = " << ITEMS_PER_WORK_ITEM <<
" and Iterations = " << num_iterations <<
std::endl;
sycl::queue my_queue;
sycl::usm_allocator<DataType, sycl::usm::alloc::shared> alloc(my_queue);
std::vector<DataType, decltype(alloc)> h_call_result(num_options, alloc);
std::vector<DataType, decltype(alloc)> h_call_confidence(num_options, alloc);
std::vector<DataType, decltype(alloc)> h_stock_price(num_options, alloc);
std::vector<DataType, decltype(alloc)> h_option_strike(num_options, alloc);
std::vector<DataType, decltype(alloc)> h_option_years(num_options, alloc);
DataType* h_call_result_ptr = h_call_result.data();
DataType* h_call_confidence_ptr = h_call_confidence.data();
DataType* h_stock_price_ptr = h_stock_price.data();
DataType* h_option_strike_ptr = h_option_strike.data();
DataType* h_option_years_ptr = h_option_years.data();
// calculate the number of blocks
constexpr DataType fpath_lengthN = static_cast<DataType>(path_length);
constexpr DataType stddev_denom = 1.0 / (fpath_lengthN * (fpath_lengthN - 1.0));
DataType confidence_denom = 1.96 / std::sqrt(fpath_lengthN);
constexpr int rand_seed = 777;
constexpr std::size_t local_size = 256;
const std::size_t global_size = (num_options * local_size) / ITEMS_PER_WORK_ITEM; // It requires num_options be divisible by ITEMS_PER_WORK_ITEM
const int block_n = path_length / (local_size * VEC_SIZE);
timer tt{};
double total_time = 0.0;
namespace mkl_rng = oneapi::mkl::rng;
mkl_rng::mcg59 engine(
#if !INIT_ON_HOST
my_queue,
#else
sycl::queue{sycl::cpu_selector_v},
#endif
rand_seed); // random number generator object
auto rng_event_1 = mkl_rng::generate(mkl_rng::uniform<DataType>(5.0, 50.0), engine, num_options, h_stock_price_ptr);
auto rng_event_2 = mkl_rng::generate(mkl_rng::uniform<DataType>(10.0, 25.0), engine, num_options, h_option_strike_ptr);
auto rng_event_3 = mkl_rng::generate(mkl_rng::uniform<DataType>(1.0, 5.0), engine, num_options, h_option_years_ptr);
std::size_t n_states = global_size;
using EngineType =
#if USE_PHILOX
mkl_rng::device::philox4x32x10<VEC_SIZE>;
#elif USE_MRG
mkl_rng::device::mrg32k3a<VEC_SIZE>;
#else
mkl_rng::device::mcg59<VEC_SIZE>;
#endif
// initialization needs only on first step
auto deleter = [my_queue](auto* ptr) {sycl::free(ptr, my_queue);};
auto rng_states_uptr = std::unique_ptr<EngineType, decltype(deleter)>(sycl::malloc_device<EngineType>(n_states, my_queue), deleter);
auto* rng_states = rng_states_uptr.get();
my_queue.parallel_for<class k_initialize_state>(
sycl::range<1>(n_states),
std::vector<sycl::event>{rng_event_1, rng_event_2, rng_event_3},
[=](sycl::item<1> idx) {
auto id = idx[0];
#if USE_MRG
constexpr std::uint32_t seed = 12345u;
rng_states[id] = EngineType({ seed, seed, seed, seed, seed, seed }, { 0, (4096 * id) });
#else
rng_states[id] = EngineType(rand_seed, id * ITEMS_PER_WORK_ITEM * VEC_SIZE * block_n);
#endif
})
.wait_and_throw();
// main cycle
for (int i = 0; i < num_iterations; i++)
{
tt.start();
my_queue.parallel_for<k_MonteCarlo<DataType, ITEMS_PER_WORK_ITEM>>(
sycl::nd_range<1>({global_size}, {local_size}),
[=](sycl::nd_item<1> item)
{
auto local_state = rng_states[item.get_global_id()];
for(std::size_t i = 0; i < ITEMS_PER_WORK_ITEM; ++i)
{
const std::size_t i_options = item.get_group_linear_id() * ITEMS_PER_WORK_ITEM + i;
DataType option_years = h_option_years_ptr[i_options];
const DataType VBySqrtT = VLog2E * sycl::sqrt(option_years);
const DataType MuByT = MuLog2E * option_years;
const DataType Y = h_stock_price_ptr[i_options];
const DataType Z = h_option_strike_ptr[i_options];
DataType v0 = 0, v1 = 0;
mkl_rng::device::gaussian<DataType> distr(MuByT, VBySqrtT);
for (int block = 0; block < block_n; ++block)
{
auto rng_val_vec = mkl_rng::device::generate(distr, local_state);
auto rng_val = Y * sycl::exp2(rng_val_vec) - Z;
for (int lane = 0; lane < VEC_SIZE; ++lane)
{
DataType rng_element = sycl::max(rng_val[lane], DataType{});
// reduce within the work-item
v0 += rng_element;
v1 += rng_element * rng_element;
}
}
// reduce within the work-group
v0 = sycl::reduce_over_group(item.get_group(), v0, std::plus<>());
v1 = sycl::reduce_over_group(item.get_group(), v1, std::plus<>());
const DataType exprt = sycl::exp2(RLog2E * option_years);
DataType call_result = exprt * v0 * (DataType(1) / fpath_lengthN);
const DataType std_dev = sycl::sqrt((fpath_lengthN * v1 - v0 * v0) * stddev_denom);
DataType call_confidence = static_cast<DataType>(exprt * std_dev * confidence_denom);
if(item.get_local_id() == 0)
{
h_call_result_ptr[i_options] = call_result;
h_call_confidence_ptr[i_options] = call_confidence;
}
}
}).wait_and_throw();
tt.stop();
if(i != 0)
total_time += tt.duration();
}
std::cout << "Completed in " << total_time << " seconds. Options per second = " << static_cast<double>(num_options * (num_iterations - 1)) / total_time << std::endl;
// check results
check(h_call_result, h_call_confidence, h_stock_price, h_option_strike, h_option_years);
}
catch (sycl::exception e) {
std::cout << e.what();
exit(1);
}
return 0;
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/monte_carlo_european_opt/src/timer.hpp | //==============================================================
// Copyright © 2022 Intel Corporation
//
// SPDX-License-Identifier: MIT
// =============================================================
#pragma once
#include <chrono>
class timer
{
public:
timer() { start(); }
void start() { t1_ = std::chrono::steady_clock::now(); }
void stop() { t2_ = std::chrono::steady_clock::now(); }
auto duration() { return std::chrono::duration<double>(t2_ - t1_).count(); }
private:
std::chrono::steady_clock::time_point t1_, t2_;
};
| hpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/matrix_mul_mkl/matrix_mul_mkl.cpp | //==============================================================
// Copyright © 2023 Intel Corporation
//
// SPDX-License-Identifier: MIT
// =============================================================
//
// Contents:
// A simple matrix multiplication benchmark, using the oneAPI Math Kernel
// Library (oneMKL).
//
#include <sycl/sycl.hpp>
#include <oneapi/mkl.hpp>
#include <chrono>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <string>
#include "utilities.hpp"
using namespace sycl;
template <typename T>
void test(queue &Q, int M, int N, int K)
{
std::cout << "\nBenchmarking (" << M << " x " << K << ") x (" << K << " x " << N << ") matrix multiplication, " << type_string<T>() << std::endl;;
std::cout << " -> Initializing data...\n";
/* Allocate A/B/C matrices */
int lda = nice_ld<T>(M);
int ldb = nice_ld<T>(K);
int ldc = nice_ld<T>(M);
auto A = malloc_device<T>(lda * K, Q);
auto B = malloc_device<T>(ldb * N, Q);
auto C = malloc_device<T>(ldc * N, Q);
/* Fill A/B with random data */
constexpr int rd_size = 1048576;
auto random_data = malloc_host<T>(rd_size, Q);
generate_random_data(rd_size, random_data);
replicate_data(Q, A, lda * K, random_data, rd_size);
replicate_data(Q, B, ldb * N, random_data, rd_size);
/* Measure time for a given number of GEMM calls */
auto time_gemms = [=, &Q](int runs) -> double {
using namespace oneapi::mkl;
using namespace std::chrono;
auto start = steady_clock::now();
for (int i = 0; i < runs; i++)
blas::gemm(Q, transpose::N, transpose::N, M, N, K, 1, A, lda, B, ldb, 0, C, ldc);
Q.wait_and_throw();
auto end = steady_clock::now();
return duration<double>(end - start).count();
};
/* Do a warmup call to initialize MKL and ensure kernels are JIT'ed if needed */
std::cout << " -> Warmup...\n";
(void) time_gemms(1);
/* Time one GEMM call, and estimate how many calls will be required to keep the
* GPU busy for 1s. */
auto tare = time_gemms(1);
int ncalls = std::max(4, std::min(1000, int(1. / tare)));
/* Time that many GEMMs, subtracting the first call time to remove host overhead.
* This gives a better idea of device performance. */
std::cout << " -> Timing...\n";
auto time = time_gemms(ncalls + 1) - tare;
auto avg = time / ncalls;
/* Calculate and display performance */
auto op_count = double(M) * double(N) * double(K) * 2;
auto flops = op_count / avg;
flops *= 1e-9;
char unit = 'G';
if (flops >= 1000.) {
flops *= 1e-3;
unit = 'T';
}
if (flops >= 1000.) {
flops *= 1e-3;
unit = 'P';
}
std::cout << "\nAverage performance: " << flops << unit << 'F' << std::endl;
/* Free data */
free(A, Q);
free(B, Q);
free(C, Q);
free(random_data, Q);
}
void usage(const char *pname)
{
std::cerr << "Usage:\n"
<< " " << pname << " [type] N benchmark (NxN) x (NxN) square matrix multiplication (default: N = 4096)\n"
<< " " << pname << " [type] M N K benchmark (MxK) x (KxN) square matrix multiplication\n"
<< "\n"
<< "The optional [type] selects the data type:\n"
<< " double [default]\n"
<< " single\n"
<< " half\n"
<< "\n"
<< "This benchmark uses the default DPC++ device, which can be controlled using\n"
<< " the ONEAPI_DEVICE_SELECTOR environment variable\n";
std::exit(1);
}
int main(int argc, char **argv)
{
auto pname = argv[0];
int M = 4096, N = 4096, K = 4096;
std::string type = "double";
if (argc <= 1)
usage(pname);
if (argc > 1 && std::isalpha(argv[1][0])) {
type = argv[1];
argc--; argv++;
}
if (argc > 1) M = N = K = std::atoi(argv[1]);
if (argc > 3) {
N = std::atoi(argv[2]);
K = std::atoi(argv[3]);
}
if (M <= 0 || N <= 0 || K <= 0)
usage(pname);
queue Q;
std::cout << "oneMKL DPC++ GEMM benchmark\n"
<< "---------------------------\n"
<< "Device: " << Q.get_device().get_info<info::device::name>() << std::endl
<< "Core/EU count: " << Q.get_device().get_info<info::device::max_compute_units>() << std::endl
<< "Maximum clock frequency: " << Q.get_device().get_info<info::device::max_clock_frequency>() << " MHz" << std::endl;
if (type == "double")
test<double>(Q, M, N, K);
else if (type == "single" || type == "float")
test<float>(Q, M, N, K);
else if (type == "half")
test<half>(Q, M, N, K);
else
usage(pname);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/matrix_mul_mkl/utilities.hpp | //==============================================================
// Copyright © 2023 Intel Corporation
//
// SPDX-License-Identifier: MIT
// =============================================================
#include <sycl/sycl.hpp>
#include <algorithm>
template <typename T> const char *type_string() { return "unknown type"; }
template <> const char *type_string<sycl::half>() { return "half precision"; }
template <> const char *type_string<float>() { return "single precision"; }
template <> const char *type_string<double>() { return "double precision"; }
/* Choose inter-column padding for optimal performance */
template <typename T>
int nice_ld(int x)
{
x = std::max(x, 1);
x *= sizeof(T);
x = (x + 511) & ~511;
x += 256;
x /= sizeof(T);
return x;
}
/* Random number generation helpers */
template <typename T>
void generate_random_data(size_t elems, T *v)
{
#pragma omp parallel for
for (size_t i = 0; i < elems; i++)
v[i] = double(std::rand()) / RAND_MAX;
}
template <typename T>
void replicate_data(sycl::queue &Q, T *dst, size_t dst_elems, const T *src, size_t src_elems)
{
while (dst_elems > 0) {
auto copy_elems = std::min(dst_elems, src_elems);
Q.copy(src, dst, copy_elems);
dst += copy_elems;
dst_elems -= copy_elems;
}
Q.wait();
}
| hpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Common/cublas_utils.h | /*
* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cmath>
#include <functional>
#include <iostream>
#include <random>
#include <stdexcept>
#include <string>
#include <dpct/lib_common_utils.hpp>
#include <complex>
// CUDA API error checking
/*
DPCT1001:1: The statement could not be removed.
*/
/*
DPCT1000:2: Error handling if-stmt was detected but could not be rewritten.
*/
#define CUDA_CHECK(err) \
do { \
int err_ = (err); \
if (err_ != 0) { \
std::printf("CUDA error %d at %s:%d\n", err_, __FILE__, __LINE__); \
throw std::runtime_error("CUDA error"); \
} \
} while (0)
// cublas API error checking
#define CUBLAS_CHECK(err) \
do { \
int err_ = (err); \
if (err_ != 0) { \
std::printf("cublas error %d at %s:%d\n", err_, __FILE__, \
__LINE__); \
throw std::runtime_error("cublas error"); \
} \
} while (0)
// memory alignment
#define ALIGN_TO(A, B) (((A + B - 1) / B) * B)
// device memory pitch alignment
static const size_t device_alignment = 32;
// type traits
template <typename T> struct traits;
template <> struct traits<float> {
// scalar type
typedef float T;
typedef T S;
static constexpr T zero = 0.f;
static constexpr dpct::library_data_t cuda_data_type =
dpct::library_data_t::real_float;
inline static S abs(T val) { return fabs(val); }
template <typename RNG> inline static T rand(RNG &gen) { return (S)gen(); }
inline static T add(T a, T b) { return a + b; }
inline static T mul(T v, double f) { return v * f; }
};
template <> struct traits<double> {
// scalar type
typedef double T;
typedef T S;
static constexpr T zero = 0.;
static constexpr dpct::library_data_t cuda_data_type =
dpct::library_data_t::real_double;
inline static S abs(T val) { return fabs(val); }
template <typename RNG> inline static T rand(RNG &gen) { return (S)gen(); }
inline static T add(T a, T b) { return a + b; }
inline static T mul(T v, double f) { return v * f; }
};
template <> struct traits<sycl::float2> {
// scalar type
typedef float S;
typedef sycl::float2 T;
static constexpr T zero = {0.f, 0.f};
static constexpr dpct::library_data_t cuda_data_type =
dpct::library_data_t::complex_float;
inline static S abs(T val) { return dpct::cabs<float>(val); }
template <typename RNG> inline static T rand(RNG &gen) {
return sycl::float2((S)gen(), (S)gen());
}
inline static T add(T a, T b) { return a + b; }
inline static T add(T a, S b) { return a + sycl::float2(b, 0.f); }
inline static T mul(T v, double f) {
return sycl::float2(v.x() * f, v.y() * f);
}
};
template <> struct traits<sycl::double2> {
// scalar type
typedef double S;
typedef sycl::double2 T;
static constexpr T zero = {0., 0.};
static constexpr dpct::library_data_t cuda_data_type =
dpct::library_data_t::complex_double;
inline static S abs(T val) { return dpct::cabs<double>(val); }
template <typename RNG> inline static T rand(RNG &gen) {
return sycl::double2((S)gen(), (S)gen());
}
inline static T add(T a, T b) { return a + b; }
inline static T add(T a, S b) { return a + sycl::double2(b, 0.); }
inline static T mul(T v, double f) {
return sycl::double2(v.x() * f, v.y() * f);
}
};
template <typename T> void print_matrix(const int &m, const int &n, const T *A, const int &lda);
template <> void print_matrix(const int &m, const int &n, const float *A, const int &lda) {
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
std::printf("%0.2f ", A[j * lda + i]);
}
std::printf("\n");
}
}
template <> void print_matrix(const int &m, const int &n, const double *A, const int &lda) {
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
std::printf("%0.2f ", A[j * lda + i]);
}
std::printf("\n");
}
}
template <>
void print_matrix(const int &m, const int &n, const sycl::float2 *A,
const int &lda) {
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
std::printf("%0.2f + %0.2fj ", A[j * lda + i].x(),
A[j * lda + i].y());
}
std::printf("\n");
}
}
template <>
void print_matrix(const int &m, const int &n, const sycl::double2 *A,
const int &lda) {
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
std::printf("%0.2f + %0.2fj ", A[j * lda + i].x(),
A[j * lda + i].y());
}
std::printf("\n");
}
}
template <typename T> void print_vector(const int &m, const T *A);
template <> void print_vector(const int &m, const float *A) {
for (int i = 0; i < m; i++) {
std::printf("%0.2f ", A[i]);
}
std::printf("\n");
}
template <> void print_vector(const int &m, const double *A) {
for (int i = 0; i < m; i++) {
std::printf("%0.2f ", A[i]);
}
std::printf("\n");
}
template <> void print_vector(const int &m, const sycl::float2 *A) {
for (int i = 0; i < m; i++) {
std::printf("%0.2f + %0.2fj ", A[i].x(), A[i].y());
}
std::printf("\n");
}
template <> void print_vector(const int &m, const sycl::double2 *A) {
for (int i = 0; i < m; i++) {
std::printf("%0.2f + %0.2fj ", A[i].x(), A[i].y());
}
std::printf("\n");
}
template <typename T> void generate_random_matrix(int m, int n, T **A, int *lda) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<typename traits<T>::S> dis(-1.0, 1.0);
auto rand_gen = std::bind(dis, gen);
*lda = n;
size_t matrix_mem_size = static_cast<size_t>(*lda * m * sizeof(T));
// suppress gcc 7 size warning
if (matrix_mem_size <= PTRDIFF_MAX)
*A = (T *)malloc(matrix_mem_size);
else
throw std::runtime_error("Memory allocation size is too large");
if (*A == NULL)
throw std::runtime_error("Unable to allocate host matrix");
// random matrix and accumulate row sums
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
T *A_row = (*A) + *lda * i;
A_row[j] = traits<T>::rand(rand_gen);
}
}
}
// Makes matrix A of size mxn and leading dimension lda diagonal dominant
template <typename T> void make_diag_dominant_matrix(int m, int n, T *A, int lda) {
for (int i = 0; i < std::min(m, n); ++i) {
T *A_row = A + lda * i;
auto row_sum = traits<typename traits<T>::S>::zero;
for (int j = 0; j < n; ++j) {
row_sum += traits<T>::abs(A_row[j]);
}
A_row[i] = traits<T>::add(A_row[i], row_sum);
}
}
// Returns cudaDataType value as defined in library_types.h for the string
// containing type name
dpct::library_data_t get_cuda_library_type(std::string type_string) {
if (type_string.compare("CUDA_R_16F") == 0)
return dpct::library_data_t::real_half;
else if (type_string.compare("CUDA_C_16F") == 0)
return dpct::library_data_t::complex_half;
else if (type_string.compare("CUDA_R_32F") == 0)
return dpct::library_data_t::real_float;
else if (type_string.compare("CUDA_C_32F") == 0)
return dpct::library_data_t::complex_float;
else if (type_string.compare("CUDA_R_64F") == 0)
return dpct::library_data_t::real_double;
else if (type_string.compare("CUDA_C_64F") == 0)
return dpct::library_data_t::complex_double;
else if (type_string.compare("CUDA_R_8I") == 0)
return dpct::library_data_t::real_int8;
else if (type_string.compare("CUDA_C_8I") == 0)
return dpct::library_data_t::complex_int8;
else if (type_string.compare("CUDA_R_8U") == 0)
return dpct::library_data_t::real_uint8;
else if (type_string.compare("CUDA_C_8U") == 0)
return dpct::library_data_t::complex_uint8;
else if (type_string.compare("CUDA_R_32I") == 0)
return dpct::library_data_t::real_int32;
else if (type_string.compare("CUDA_C_32I") == 0)
return dpct::library_data_t::complex_int32;
else if (type_string.compare("CUDA_R_32U") == 0)
return dpct::library_data_t::real_uint32;
else if (type_string.compare("CUDA_C_32U") == 0)
return dpct::library_data_t::complex_uint32;
else
throw std::runtime_error("Unknown CUDA datatype");
}
| h |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_syr2_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.0 3.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
* y = | 7.0 8.0 |
*/
std::vector<data_type> A = {1.0, 3.0, 3.0, 4.0};
const std::vector<data_type> x = {5.0, 6.0};
const std::vector<data_type> y = {7.0, 8.0};
const data_type alpha = 1.0;
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:109: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:110: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK((d_y = (data_type *)sycl::malloc_device(
sizeof(data_type) * y.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_y, y.data(), sizeof(data_type) * y.size()), 0));
/* step 3: compute */
/*
DPCT1003:111: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((oneapi::mkl::blas::column_major::syr2(
*cublasH, uplo, n, alpha, d_x, incx, d_y, incy, d_A, lda),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(A.data(), d_A, sizeof(data_type) * A.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* A = | 71.0 85.0 |
* | 3.0 100.0 |
*/
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
CUDA_CHECK((sycl::free(d_y, q_ct1), 0));
/*
DPCT1003:112: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_hpr2_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
#include <complex>
using data_type = sycl::double2;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* AP = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
* x = | 5.1 + 6.2j | 7.3 + 8.4j |
* y = | 1.1 + 2.2j | 3.3 + 4.4j |
*/
std::vector<data_type> AP = {{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
const std::vector<data_type> x = {{5.1, 6.2}, {7.3, 8.4}};
const std::vector<data_type> y = {{1.1, 2.2}, {3.3, 4.4}};
const data_type alpha = {1.0, 1.0};
const int incx = 1;
const int incy = 1;
data_type *d_AP = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:78: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:79: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_AP = (data_type *)sycl::malloc_device(
sizeof(data_type) * AP.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK((d_y = (data_type *)sycl::malloc_device(
sizeof(data_type) * y.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_AP, AP.data(), sizeof(data_type) * AP.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_y, y.data(), sizeof(data_type) * y.size()), 0));
/* step 3: compute */
/*
DPCT1003:80: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK(
(oneapi::mkl::blas::column_major::hpr2(
*cublasH, uplo, n, std::complex<double>(alpha.x(), alpha.y()),
(std::complex<double> *)d_x, incx, (std::complex<double> *)d_y,
incy, (std::complex<double> *)d_AP),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(AP.data(), d_AP, sizeof(data_type) * AP.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* AP = | 48.40 + 0.00j | 133.20 + 0.00j |
* | 82.92 + 26.04j | 4.70 + 4.80j |
*/
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_AP, q_ct1), 0));
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
CUDA_CHECK((sycl::free(d_y, q_ct1), 0));
/*
DPCT1003:81: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_hpr_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
#include <complex>
using data_type = sycl::double2;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* AP = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
* x = | 5.1 + 6.2j | 7.3 + 8.4j |
*/
std::vector<data_type> AP = {{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
const std::vector<data_type> x = {{5.1, 6.2}, {7.3, 8.4}};
const double alpha = 1.0;
const int incx = 1;
data_type *d_AP = nullptr;
data_type *d_x = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:82: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:83: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_AP = (data_type *)sycl::malloc_device(
sizeof(data_type) * AP.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_AP, AP.data(), sizeof(data_type) * AP.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
/* step 3: compute */
/*
DPCT1003:84: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((oneapi::mkl::blas::column_major::hpr(
*cublasH, uplo, n, alpha, (std::complex<double> *)d_x,
incx, (std::complex<double> *)d_AP),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(AP.data(), d_AP, sizeof(data_type) * AP.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* AP = | 65.55 + 0.00j | 126.15 + 0.00j |
* | 92.81 + 6.02j | 4.70 + 4.80j |
*/
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_AP, q_ct1), 0));
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
/*
DPCT1003:85: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_trmv_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.0 2.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 2.0, 4.0};
std::vector<data_type> x = {5.0, 6.0};
const int incx = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
oneapi::mkl::diag diag = oneapi::mkl::diag::nonunit;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:139: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:140: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
/* step 3: compute */
/*
DPCT1003:141: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((oneapi::mkl::blas::column_major::trmv(
*cublasH, uplo, transa, diag, n, d_A, lda, d_x, incx),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(x.data(), d_x, sizeof(data_type) * x.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* x = | 17.00 24.00 |
*/
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
/*
DPCT1003:142: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_spr_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* AP = | 1.0 3.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
std::vector<data_type> AP = {1.0, 3.0, 3.0, 4.0};
const std::vector<data_type> x = {5.0, 6.0};
const data_type alpha = 1.0;
const int incx = 1;
data_type *d_AP = nullptr;
data_type *d_x = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:101: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:102: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_AP = (data_type *)sycl::malloc_device(
sizeof(data_type) * AP.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_AP, AP.data(), sizeof(data_type) * AP.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
/* step 3: compute */
/*
DPCT1003:103: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((oneapi::mkl::blas::column_major::spr(*cublasH, uplo, n, alpha,
d_x, incx, d_AP),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(AP.data(), d_AP, sizeof(data_type) * AP.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* AP = | 26.0 39.0 |
* | 33.0 4.0 |
*/
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_AP, q_ct1), 0));
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
/*
DPCT1003:104: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_spmv_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* AP = | 1.0 3.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> AP = {1.0, 3.0, 3.0, 4.0};
const std::vector<data_type> x = {5.0, 6.0};
std::vector<data_type> y(m, 0);
const data_type alpha = 1.0;
const data_type beta = 0.0;
const int incx = 1;
const int incy = 1;
data_type *d_AP = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:93: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:94: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_AP = (data_type *)sycl::malloc_device(
sizeof(data_type) * AP.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK((d_y = (data_type *)sycl::malloc_device(
sizeof(data_type) * y.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_AP, AP.data(), sizeof(data_type) * AP.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
/* step 3: compute */
CUBLAS_CHECK(
(/*
DPCT1003:95: Migrated API does not return error code. (*, 0) is
inserted. You may need to rewrite this code.
*/
oneapi::mkl::blas::column_major::spmv(*cublasH, uplo, n, alpha, d_AP,
d_x, incx, beta, d_y, incy),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(y.data(), d_y, sizeof(data_type) * y.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* y = | 23.00 33.00 |
*/
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_AP, q_ct1), 0));
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
CUDA_CHECK((sycl::free(d_y, q_ct1), 0));
/*
DPCT1003:96: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_symv_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.0 3.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 3.0, 4.0};
const std::vector<data_type> x = {5.0, 6.0};
std::vector<data_type> y(m, 0);
const data_type alpha = 1.0;
const data_type beta = 0.0;
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:105: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:106: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK((d_y = (data_type *)sycl::malloc_device(
sizeof(data_type) * y.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
/* step 3: compute */
CUBLAS_CHECK(
(/*
DPCT1003:107: Migrated API does not return error code. (*, 0) is
inserted. You may need to rewrite this code.
*/
oneapi::mkl::blas::column_major::symv(*cublasH, uplo, n, alpha, d_A,
lda, d_x, incx, beta, d_y, incy),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(y.data(), d_y, sizeof(data_type) * y.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* y = | 23.00 29.00 |
*/
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
CUDA_CHECK((sycl::free(d_y, q_ct1), 0));
/*
DPCT1003:108: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_tpmv_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.0 2.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> AP = {1.0, 3.0, 2.0, 4.0};
std::vector<data_type> x = {5.0, 6.0};
const int incx = 1;
data_type *d_AP = nullptr;
data_type *d_x = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
oneapi::mkl::diag diag = oneapi::mkl::diag::nonunit;
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:128: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1003:129: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
/*
DPCT1025:130: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:131: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_AP = (data_type *)sycl::malloc_device(
sizeof(data_type) * AP.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_AP, AP.data(), sizeof(data_type) * AP.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
/* step 3: compute */
/*
DPCT1003:132: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((oneapi::mkl::blas::column_major::tpmv(
*cublasH, uplo, transa, diag, n, d_AP, d_x, incx),
0));
/* step 4: copy data to host */
/*
DPCT1003:133: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(x.data(), d_x, sizeof(data_type) * x.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* x = | 23.00 12.00 |
*/
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_AP, q_ct1), 0));
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
/*
DPCT1003:134: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_hemv_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
#include <complex>
using data_type = sycl::double2;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
* x = | 5.1 + 6.2j | 7.3 + 8.4j |
*/
const std::vector<data_type> A = {{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
const std::vector<data_type> x = {{5.1, 6.2}, {7.3, 8.4}};
std::vector<data_type> y(m);
const data_type alpha = {1.0, 1.0};
const data_type beta = {0.0, 0.0};
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:49: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:50: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK((d_y = (data_type *)sycl::malloc_device(
sizeof(data_type) * y.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
/* step 3: compute */
/*
DPCT1003:51: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK(
(oneapi::mkl::blas::column_major::hemv(
*cublasH, uplo, n, std::complex<double>(alpha.x(), alpha.y()),
(std::complex<double> *)d_A, lda, (std::complex<double> *)d_x,
incx, std::complex<double>(beta.x(), beta.y()),
(std::complex<double> *)d_y, incy),
0));
/* step 4: copy data to host */
/*
DPCT1003:52: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(y.data(), d_y, sizeof(data_type) * y.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* y = | -41.42 + 45.90j 19.42 + 102.42j |
*/
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* free resources */
/*
DPCT1003:53: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
CUDA_CHECK((sycl::free(d_y, q_ct1), 0));
/*
DPCT1003:54: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
/*
DPCT1003:55: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_ger_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.0 2.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
* y = | 7.0 8.0 |
*/
std::vector<data_type> A = {1.0, 3.0, 2.0, 4.0};
const std::vector<data_type> x = {5.0, 6.0};
const std::vector<data_type> y = {7.0, 8.0};
const data_type alpha = 2.0;
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:33: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:34: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK((d_y = (data_type *)sycl::malloc_device(
sizeof(data_type) * y.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
/*
DPCT1003:35: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_y, y.data(), sizeof(data_type) * y.size()), 0));
/* step 3: compute */
/*
DPCT1003:36: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((oneapi::mkl::blas::column_major::ger(
*cublasH, m, n, alpha, d_x, incx, d_y, incy, d_A, lda),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(A.data(), d_A, sizeof(data_type) * A.size()), 0));
/*
DPCT1003:37: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((stream->wait(), 0));
/*
* A = | 71.0 82.0 |
* | 87.0 100.0 |
*/
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
/*
DPCT1003:38: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
CUDA_CHECK((sycl::free(d_y, q_ct1), 0));
/*
DPCT1003:39: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
/*
DPCT1003:40: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_spr2_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* AP = | 1.0 3.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
* y = | 7.0 8.0 |
*/
std::vector<data_type> AP = {1.0, 3.0, 3.0, 4.0};
const std::vector<data_type> x = {5.0, 6.0};
const std::vector<data_type> y = {7.0, 8.0};
const data_type alpha = 1.0;
const int incx = 1;
const int incy = 1;
data_type *d_AP = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:97: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:98: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_AP = (data_type *)sycl::malloc_device(
sizeof(data_type) * AP.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK((d_y = (data_type *)sycl::malloc_device(
sizeof(data_type) * y.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_AP, AP.data(), sizeof(data_type) * AP.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_y, y.data(), sizeof(data_type) * y.size()), 0));
/* step 3: compute */
/*
DPCT1003:99: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK(
(oneapi::mkl::blas::column_major::ger(*cublasH, uplo, n, alpha, d_x,
incx, d_y, incy, d_AP, lda),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(AP.data(), d_AP, sizeof(data_type) * AP.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* AP = | 36.0 43.0 |
* | 3.0 4.0 |
*/
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_AP, q_ct1), 0));
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
CUDA_CHECK((sycl::free(d_y, q_ct1), 0));
/*
DPCT1003:100: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_gbmv_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.0 2.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 2.0, 4.0};
const std::vector<data_type> x = {5.0, 6.0};
std::vector<data_type> y(m, 0);
const data_type alpha = 1.0;
const data_type beta = 0.0;
const int incx = 1;
const int incy = 1;
const int kl = 0;
const int ku = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:0: Migrated API does not return error code. (*, 0) is inserted. You
may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1003:3: Migrated API does not return error code. (*, 0) is inserted. You
may need to rewrite this code.
*/
/*
DPCT1025:4: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:5: Migrated API does not return error code. (*, 0) is inserted. You
may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
/*
DPCT1003:6: Migrated API does not return error code. (*, 0) is inserted. You
may need to rewrite this code.
*/
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
/*
DPCT1003:7: Migrated API does not return error code. (*, 0) is inserted. You
may need to rewrite this code.
*/
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
/*
DPCT1003:8: Migrated API does not return error code. (*, 0) is inserted. You
may need to rewrite this code.
*/
CUDA_CHECK((d_y = (data_type *)sycl::malloc_device(
sizeof(data_type) * y.size(), q_ct1),
0));
/*
DPCT1003:9: Migrated API does not return error code. (*, 0) is inserted. You
may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
/*
DPCT1003:10: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
/* step 3: compute */
CUBLAS_CHECK((/*
DPCT1003:11: Migrated API does not return error code. (*, 0) is
inserted. You may need to rewrite this code.
*/
oneapi::mkl::blas::column_major::gbmv(
*cublasH, transa, m, n, kl, ku, alpha, d_A, lda, d_x,
incx, beta, d_y, incy),
0));
/* step 4: copy data to host */
/*
DPCT1003:12: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(y.data(), d_y, sizeof(data_type) * y.size()), 0));
/*
DPCT1003:13: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((stream->wait(), 0));
/*
* y = | 27.0 24.0 |
*/
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* free resources */
/*
DPCT1003:14: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
/*
DPCT1003:15: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
/*
DPCT1003:16: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_y, q_ct1), 0));
/*
DPCT1003:17: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
/*
DPCT1003:18: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
/*
DPCT1003:19: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_syr_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.0 3.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
std::vector<data_type> A = {1.0, 3.0, 3.0, 4.0};
const std::vector<data_type> x = {5.0, 6.0};
const data_type alpha = 1.0;
const int incx = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:113: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:114: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
/* step 3: compute */
/*
DPCT1003:115: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((oneapi::mkl::blas::column_major::syr(*cublasH, uplo, n, alpha,
d_x, incx, d_A, lda),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(A.data(), d_A, sizeof(data_type) * A.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* A = | 26.0 33.0 |
* | 3.0 40.0 |
*/
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
/*
DPCT1003:116: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_trsv_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.0 2.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 2.0, 4.0};
std::vector<data_type> x = {5.0, 6.0};
const int incx = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
oneapi::mkl::diag diag = oneapi::mkl::diag::nonunit;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:143: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:144: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
/* step 3: compute */
/*
DPCT1003:145: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((oneapi::mkl::blas::column_major::trsv(
*cublasH, uplo, transa, diag, n, d_A, lda, d_x, incx),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(x.data(), d_x, sizeof(data_type) * x.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* x = | 2.00 1.50 |
*/
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
/*
DPCT1003:146: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_her2_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
#include <complex>
using data_type = sycl::double2;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
* x = | 5.1 + 6.2j | 7.3 + 8.4j |
* y = | 1.1 + 2.2j | 3.3 + 4.4j |
*/
std::vector<data_type> A = {{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
const std::vector<data_type> x = {{5.1, 6.2}, {7.3, 8.4}};
const std::vector<data_type> y = {{1.1, 2.2}, {3.3, 4.4}};
const data_type alpha = {1.0, 1.0};
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:56: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1025:57: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:58: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK((d_y = (data_type *)sycl::malloc_device(
sizeof(data_type) * y.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
/*
DPCT1003:59: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_y, y.data(), sizeof(data_type) * y.size()), 0));
/* step 3: compute */
/*
DPCT1003:60: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK(
(oneapi::mkl::blas::column_major::her2(
*cublasH, uplo, n, std::complex<double>(alpha.x(), alpha.y()),
(std::complex<double> *)d_x, incx, (std::complex<double> *)d_y,
incy, (std::complex<double> *)d_A, lda),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(A.data(), d_A, sizeof(data_type) * A.size()), 0));
/*
DPCT1003:61: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((stream->wait(), 0));
/*
* A = | 48.40 + 0.00j | 81.72 + 24.84j |
* | 3.50 + 3.60j | 135.60 + 0.00j |
*/
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
CUDA_CHECK((sycl::free(d_y, q_ct1), 0));
/*
DPCT1003:62: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
/*
DPCT1003:63: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_hbmv_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
#include <complex>
using data_type = sycl::double2;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 1;
const int lda = m;
/*
* A = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
* x = | 5.1 + 6.2j | 7.3 + 8.4j |
*/
const std::vector<data_type> A = {{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
const std::vector<data_type> x = {{5.1, 6.2}, {7.3, 8.4}};
std::vector<data_type> y(m);
const data_type alpha = {1.0, 1.0};
const data_type beta = {0.0, 0.0};
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:41: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1003:42: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
/*
DPCT1025:43: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:44: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK((d_y = (data_type *)sycl::malloc_device(
sizeof(data_type) * y.size(), q_ct1),
0));
/*
DPCT1003:45: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
/*
DPCT1003:46: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
/* step 3: compute */
/*
DPCT1003:47: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK(
(oneapi::mkl::blas::column_major::hbmv(
*cublasH, uplo, n, k, std::complex<double>(alpha.x(), alpha.y()),
(std::complex<double> *)d_A, lda, (std::complex<double> *)d_x,
incx, std::complex<double>(beta.x(), beta.y()),
(std::complex<double> *)d_y, incy),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(y.data(), d_y, sizeof(data_type) * y.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* y = | -44.06 + 73.02j 19.42 + 102.42j |
*/
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
CUDA_CHECK((sycl::free(d_y, q_ct1), 0));
/*
DPCT1003:48: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_hpmv_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
#include <complex>
using data_type = sycl::double2;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
* x = | 5.1 + 6.2j | 7.3 + 8.4j |
*/
const std::vector<data_type> AP = {{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
const std::vector<data_type> x = {{5.1, 6.2}, {7.3, 8.4}};
std::vector<data_type> y(m);
const data_type alpha = {1.0, 1.0};
const data_type beta = {0.0, 0.0};
const int incx = 1;
const int incy = 1;
data_type *d_AP = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:74: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:75: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_AP = (data_type *)sycl::malloc_device(
sizeof(data_type) * AP.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK((d_y = (data_type *)sycl::malloc_device(
sizeof(data_type) * y.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_AP, AP.data(), sizeof(data_type) * AP.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
/* step 3: compute */
/*
DPCT1003:76: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK(
(oneapi::mkl::blas::column_major::hpmv(
*cublasH, uplo, n, std::complex<double>(alpha.x(), alpha.y()),
(std::complex<double> *)d_AP, (std::complex<double> *)d_x, incx,
std::complex<double>(beta.x(), beta.y()),
(std::complex<double> *)d_y, incy),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(y.data(), d_y, sizeof(data_type) * y.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* y = | -61.58 + 63.42j 34.30 + 79.62j |
*/
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_AP, q_ct1), 0));
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
CUDA_CHECK((sycl::free(d_y, q_ct1), 0));
/*
DPCT1003:77: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_sbmv_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 1;
const int lda = m;
/*
* A = | 1.0 3.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 3.0, 4.0};
const std::vector<data_type> x = {5.0, 6.0};
std::vector<data_type> y(m, 0);
const data_type alpha = 1.0;
const data_type beta = 0.0;
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:86: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:87: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK((d_y = (data_type *)sycl::malloc_device(
sizeof(data_type) * y.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
/* step 3: compute */
CUBLAS_CHECK(
(/*
DPCT1003:88: Migrated API does not return error code. (*, 0) is
inserted. You may need to rewrite this code.
*/
oneapi::mkl::blas::column_major::sbmv(*cublasH, uplo, n, k, alpha, d_A,
lda, d_x, incx, beta, d_y, incy),
0));
/* step 4: copy data to host */
/*
DPCT1003:89: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(y.data(), d_y, sizeof(data_type) * y.size()), 0));
/*
DPCT1003:90: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((stream->wait(), 0));
/*
* y = | 33.00 39.00 |
*/
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
CUDA_CHECK((sycl::free(d_y, q_ct1), 0));
/*
DPCT1003:91: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
/*
DPCT1003:92: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_her_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
#include <complex>
using data_type = sycl::double2;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
* x = | 5.1 + 6.2j | 7.3 + 8.4j |
*/
std::vector<data_type> A = {{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
const std::vector<data_type> x = {{5.1, 6.2}, {7.3, 8.4}};
const double alpha = 1.0;
const int incx = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:64: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1003:65: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
/*
DPCT1025:66: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:67: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
/*
DPCT1003:68: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
/* step 3: compute */
/*
DPCT1003:69: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((oneapi::mkl::blas::column_major::her(
*cublasH, uplo, n, alpha, (std::complex<double> *)d_x,
incx, (std::complex<double> *)d_A, lda),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(A.data(), d_A, sizeof(data_type) * A.size()), 0));
/*
DPCT1003:70: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((stream->wait(), 0));
/*
* A = | 65.55 + 0.00j | 91.61 + 4.82j |
* | 3.50 + 3.60j | 128.55 + 0.00j |
*/
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
/* free resources */
/*
DPCT1003:71: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
/*
DPCT1003:72: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
/*
DPCT1003:73: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_tbmv_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 1;
const int lda = m;
/*
* A = | 1.0 2.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 2.0, 4.0};
std::vector<data_type> x = {5.0, 6.0};
const int incx = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
oneapi::mkl::diag diag = oneapi::mkl::diag::nonunit;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:117: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1003:118: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
/*
DPCT1025:119: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:120: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
/* step 3: compute */
/*
DPCT1003:121: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((oneapi::mkl::blas::column_major::tbmv(
*cublasH, uplo, transa, diag, n, k, d_A, lda, d_x, incx),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(x.data(), d_x, sizeof(data_type) * x.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* x = | 27.00 24.00 |
*/
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
/*
DPCT1003:122: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
/*
DPCT1003:123: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_tbsv_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 1;
const int lda = m;
/*
* A = | 1.0 2.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 2.0, 4.0};
std::vector<data_type> x = {5.0, 6.0};
const int incx = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
oneapi::mkl::diag diag = oneapi::mkl::diag::nonunit;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:124: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:125: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
/* step 3: compute */
/*
DPCT1003:126: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((oneapi::mkl::blas::column_major::tbsv(
*cublasH, uplo, transa, diag, n, k, d_A, lda, d_x, incx),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(x.data(), d_x, sizeof(data_type) * x.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* x = | 0.67 1.50 |
*/
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
/*
DPCT1003:127: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_tpsv_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.0 2.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> AP = {1.0, 3.0, 2.0, 4.0};
std::vector<data_type> x = {5.0, 6.0};
const int incx = 1;
data_type *d_AP = nullptr;
data_type *d_x = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
oneapi::mkl::diag diag = oneapi::mkl::diag::nonunit;
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:135: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:136: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_AP = (data_type *)sycl::malloc_device(
sizeof(data_type) * AP.size(), q_ct1),
0));
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_AP, AP.data(), sizeof(data_type) * AP.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
/* step 3: compute */
/*
DPCT1003:137: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((oneapi::mkl::blas::column_major::tpsv(
*cublasH, uplo, transa, diag, n, d_AP, d_x, incx),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(x.data(), d_x, sizeof(data_type) * x.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* x = | -4.00 3.00 |
*/
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_AP, q_ct1), 0));
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
/*
DPCT1003:138: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-2/cublas_gemv_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.0 2.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 2.0, 4.0};
const std::vector<data_type> x = {5.0, 6.0};
std::vector<data_type> y(m, 0);
const data_type alpha = 1.0;
const data_type beta = 0.0;
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:20: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1003:21: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
/*
DPCT1025:22: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:23: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
/*
DPCT1003:24: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
/*
DPCT1003:25: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((d_x = (data_type *)sycl::malloc_device(
sizeof(data_type) * x.size(), q_ct1),
0));
CUDA_CHECK((d_y = (data_type *)sycl::malloc_device(
sizeof(data_type) * y.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size()), 0));
/* step 3: compute */
CUBLAS_CHECK((/*
DPCT1003:26: Migrated API does not return error code. (*, 0) is
inserted. You may need to rewrite this code.
*/
oneapi::mkl::blas::column_major::gemv(*cublasH, transa, m, n,
alpha, d_A, lda, d_x,
incx, beta, d_y, incy),
0));
/* step 4: copy data to host */
/*
DPCT1003:27: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(y.data(), d_y, sizeof(data_type) * y.size()), 0));
/*
DPCT1003:28: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((stream->wait(), 0));
/*
* y = | 17.00 39.00 |
*/
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* free resources */
/*
DPCT1003:29: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
/*
DPCT1003:30: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_x, q_ct1), 0));
CUDA_CHECK((sycl::free(d_y, q_ct1), 0));
/*
DPCT1003:31: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
/*
DPCT1003:32: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-1/cublas_asum_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.0 2.0 3.0 4.0 |
*/
const std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
const int incx = 1;
data_type result = 0.0;
data_type *d_A = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:18: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:19: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
/* step 3: compute */
/*
DPCT1034:20: Migrated API does not return error code. 0 is returned in the
lambda. You may need to rewrite this code.
*/
CUBLAS_CHECK([&]() {
double *res_temp_ptr_ct5 = &result;
if (sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::device &&
sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::shared) {
res_temp_ptr_ct5 =
sycl::malloc_shared<double>(1, dpct::get_default_queue());
}
oneapi::mkl::blas::column_major::asum(*cublasH, A.size(), d_A, incx,
res_temp_ptr_ct5);
if (sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::device &&
sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::shared) {
cublasH->wait();
result = *res_temp_ptr_ct5;
sycl::free(res_temp_ptr_ct5, dpct::get_default_queue());
}
return 0;
}());
CUDA_CHECK((stream->wait(), 0));
/*
* result = 10.00
*/
printf("result\n");
std::printf("%0.2f\n", result);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
/*
DPCT1003:21: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-1/cublas_dot_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.0 2.0 3.0 4.0 |
* B = | 5.0 6.0 7.0 8.0 |
*/
const std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
const std::vector<data_type> B = {5.0, 6.0, 7.0, 8.0};
const int incx = 1;
const int incy = 1;
data_type result = 0.0;
data_type *d_A = nullptr;
data_type *d_B = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:59: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:60: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_B = (data_type *)sycl::malloc_device(
sizeof(data_type) * B.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size()), 0));
/* step 3: compute */
/*
DPCT1034:61: Migrated API does not return error code. 0 is returned in the
lambda. You may need to rewrite this code.
*/
CUBLAS_CHECK([&]() {
double *res_temp_ptr_ct7 = &result;
if (sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::device &&
sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::shared) {
res_temp_ptr_ct7 =
sycl::malloc_shared<double>(1, dpct::get_default_queue());
}
oneapi::mkl::blas::column_major::dot(*cublasH, A.size(), d_A, incx, d_B,
incy, res_temp_ptr_ct7);
if (sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::device &&
sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::shared) {
cublasH->wait();
result = *res_temp_ptr_ct7;
sycl::free(res_temp_ptr_ct7, dpct::get_default_queue());
}
return 0;
}());
CUDA_CHECK((stream->wait(), 0));
/*
* result = 70.00
*/
printf("Result\n");
printf("%0.2f\n", result);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_B, q_ct1), 0));
/*
DPCT1003:62: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-1/cublas_scal_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.0 2.0 3.0 4.0 |
*/
std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
const data_type alpha = 2.2;
const int incx = 1;
data_type *d_A = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:103: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1003:104: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
/*
DPCT1025:105: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:106: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
/*
DPCT1003:107: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
/* step 3: compute */
/*
DPCT1003:108: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((oneapi::mkl::blas::column_major::scal(*cublasH, A.size(),
alpha, d_A, incx),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(A.data(), d_A, sizeof(data_type) * A.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* A = | 2.2 4.4 6.6 8.8 |
*/
printf("A (scaled)\n");
print_vector(A.size(), A.data());
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
/*
DPCT1003:109: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
/*
DPCT1003:110: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-1/cublas_amin_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.0 2.0 3.0 4.0 |
*/
const std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
const int incx = 1;
int result = 0.0;
data_type *d_A = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:14: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:15: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
/* step 3: compute */
/*
DPCT1034:16: Migrated API does not return error code. 0 is returned in the
lambda. You may need to rewrite this code.
*/
CUBLAS_CHECK([&]() {
int64_t *res_temp_ptr_ct3 =
sycl::malloc_shared<int64_t>(1, dpct::get_default_queue());
oneapi::mkl::blas::column_major::iamin(*cublasH, A.size(), d_A, incx,
res_temp_ptr_ct3)
.wait();
int res_temp_host_ct4 = (int)*res_temp_ptr_ct3;
dpct::dpct_memcpy(&result, &res_temp_host_ct4, sizeof(int));
sycl::free(res_temp_ptr_ct3, dpct::get_default_queue());
return 0;
}());
CUDA_CHECK((stream->wait(), 0));
/*
* result = 1
*/
printf("result\n");
std::printf("%d\n", result);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
/*
DPCT1003:17: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-1/cublas_amax_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.0 2.0 3.0 4.0 |
*/
const std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
const int incx = 1;
int result = 0.0;
data_type *d_A = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:0: Migrated API does not return error code. (*, 0) is inserted. You
may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1003:3: Migrated API does not return error code. (*, 0) is inserted. You
may need to rewrite this code.
*/
/*
DPCT1025:4: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:5: Migrated API does not return error code. (*, 0) is inserted. You
may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
/*
DPCT1003:6: Migrated API does not return error code. (*, 0) is inserted. You
may need to rewrite this code.
*/
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
/*
DPCT1003:7: Migrated API does not return error code. (*, 0) is inserted. You
may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
/* step 3: compute */
/*
DPCT1034:8: Migrated API does not return error code. 0 is returned in the
lambda. You may need to rewrite this code.
*/
CUBLAS_CHECK([&]() {
int64_t *res_temp_ptr_ct1 =
sycl::malloc_shared<int64_t>(1, dpct::get_default_queue());
oneapi::mkl::blas::column_major::iamax(*cublasH, A.size(), d_A, incx,
res_temp_ptr_ct1)
.wait();
int res_temp_host_ct2 = (int)*res_temp_ptr_ct1;
dpct::dpct_memcpy(&result, &res_temp_host_ct2, sizeof(int));
sycl::free(res_temp_ptr_ct1, dpct::get_default_queue());
return 0;
}());
/*
DPCT1003:9: Migrated API does not return error code. (*, 0) is inserted. You
may need to rewrite this code.
*/
CUDA_CHECK((stream->wait(), 0));
/*
* result = 4
*/
printf("result\n");
std::printf("%d\n", result);
printf("=====\n");
/* free resources */
/*
DPCT1003:10: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
/*
DPCT1003:11: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
/*
DPCT1003:12: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
/*
DPCT1003:13: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-1/cublas_rot_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.0 2.0 3.0 4.0 |
* B = | 5.0 6.0 7.0 8.0 |
*/
std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
std::vector<data_type> B = {5.0, 6.0, 7.0, 8.0};
const data_type c = 2.1;
const data_type s = 1.2;
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_B = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:69: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:70: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_B = (data_type *)sycl::malloc_device(
sizeof(data_type) * B.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size()), 0));
/* step 3: compute */
/*
DPCT1003:71: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((oneapi::mkl::blas::column_major::rot(*cublasH, A.size(), d_A,
incx, d_B, incy, c, s),
0));
/* step 4: copy data to host */
/*
DPCT1003:72: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(A.data(), d_A, sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(B.data(), d_B, sizeof(data_type) * B.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* A = | 8.1 11.4 14.7 18.0 |
* B = | 9.3 10.2 11.1 12.0 |
*/
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
/* free resources */
/*
DPCT1003:73: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
/*
DPCT1003:74: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_B, q_ct1), 0));
/*
DPCT1003:75: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
/*
DPCT1003:76: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
/*
DPCT1003:77: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-1/cublas_nrm2_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.0 2.0 3.0 4.0 |
*/
std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
const int incx = 1;
data_type result = 0.0;
data_type *d_A = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:63: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:64: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
/* step 3: compute */
/*
DPCT1034:65: Migrated API does not return error code. 0 is returned in the
lambda. You may need to rewrite this code.
*/
CUBLAS_CHECK([&]() {
double *res_temp_ptr_ct8 = &result;
if (sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::device &&
sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::shared) {
res_temp_ptr_ct8 =
sycl::malloc_shared<double>(1, dpct::get_default_queue());
}
oneapi::mkl::blas::column_major::nrm2(*cublasH, A.size(), d_A, incx,
res_temp_ptr_ct8);
if (sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::device &&
sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::shared) {
cublasH->wait();
result = *res_temp_ptr_ct8;
sycl::free(res_temp_ptr_ct8, dpct::get_default_queue());
}
return 0;
}());
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(A.data(), d_A, sizeof(data_type) * A.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* Result = 5.48
*/
printf("Result\n");
printf("%0.2f\n", result);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
/*
DPCT1003:66: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
/*
DPCT1003:67: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
/*
DPCT1003:68: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-1/cublas_axpy_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.0 2.0 3.0 4.0 |
* B = | 5.0 6.0 7.0 8.0 |
*/
const std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
std::vector<data_type> B = {5.0, 6.0, 7.0, 8.0};
const data_type alpha = 2.1;
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_B = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:22: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1003:23: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
/*
DPCT1025:24: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:25: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
/*
DPCT1003:26: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_B = (data_type *)sycl::malloc_device(
sizeof(data_type) * B.size(), q_ct1),
0));
/*
DPCT1003:27: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
/*
DPCT1003:28: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size()), 0));
/* step 3: compute */
/*
DPCT1003:29: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((oneapi::mkl::blas::column_major::axpy(
*cublasH, A.size(), alpha, d_A, incx, d_B, incy),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(B.data(), d_B, sizeof(data_type) * B.size()), 0));
/*
DPCT1003:30: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((stream->wait(), 0));
/*
* B = | 7.10 10.20 13.30 16.40 |
*/
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
/* free resources */
/*
DPCT1003:31: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
/*
DPCT1003:32: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_B, q_ct1), 0));
/*
DPCT1003:33: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
/*
DPCT1003:34: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
/*
DPCT1003:35: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-1/cublas_rotmg_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = 1.0
* B = 5.0
* X = 2.1
* Y = 1.2
*/
data_type A = 1.0;
data_type B = 5.0;
data_type X = 2.1;
data_type Y = 1.2;
std::vector<data_type> param = {1.0, 5.0, 6.0, 7.0, 8.0}; // flag = param[0]
data_type *d_A = nullptr;
data_type *d_B = nullptr;
printf("A\n");
std::printf("%0.2f\n", A);
printf("=====\n");
printf("B\n");
std::printf("%0.2f\n", B);
printf("=====\n");
printf("X\n");
std::printf("%0.2f\n", X);
printf("=====\n");
printf("Y\n");
std::printf("%0.2f\n", Y);
printf("=====\n");
printf("param\n");
print_vector(param.size(), param.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:97: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1003:98: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
/*
DPCT1025:99: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:100: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 3: compute */
/*
DPCT1034:101: Migrated API does not return error code. 0 is returned in the
lambda. You may need to rewrite this code.
*/
CUBLAS_CHECK([&]() {
double *d1_ct13 = &A;
double *d2_ct14 = &B;
double *x1_ct15 = &X;
double *param_ct16 = param.data();
if (sycl::get_pointer_type(&A, cublasH->get_context()) !=
sycl::usm::alloc::device &&
sycl::get_pointer_type(&A, cublasH->get_context()) !=
sycl::usm::alloc::shared) {
d1_ct13 = sycl::malloc_shared<double>(8, dpct::get_default_queue());
d2_ct14 = d1_ct13 + 1;
x1_ct15 = d1_ct13 + 2;
param_ct16 = d1_ct13 + 3;
*d1_ct13 = A;
*d2_ct14 = B;
*x1_ct15 = X;
}
oneapi::mkl::blas::column_major::rotmg(*cublasH, d1_ct13, d2_ct14, x1_ct15,
Y, param_ct16);
if (sycl::get_pointer_type(&A, cublasH->get_context()) !=
sycl::usm::alloc::device &&
sycl::get_pointer_type(&A, cublasH->get_context()) !=
sycl::usm::alloc::shared) {
cublasH->wait();
A = *d1_ct13;
B = *d2_ct14;
X = *x1_ct15;
dpct::get_default_queue()
.memcpy(param.data(), param_ct16, sizeof(double) * 5)
.wait();
sycl::free(d1_ct13, dpct::get_default_queue());
}
return 0;
}());
CUDA_CHECK((stream->wait(), 0));
/*
* A = 3.10
* B = 0.62
* X = 1.94
*/
printf("A\n");
std::printf("%0.2f\n", A);
printf("=====\n");
printf("B\n");
std::printf("%0.2f\n", B);
printf("=====\n");
printf("X\n");
std::printf("%0.2f\n", X);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_B, q_ct1), 0));
/*
DPCT1003:102: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-1/cublas_rotg_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = 2.10
* B = 1.20
*/
data_type A = 2.1;
data_type B = 1.2;
data_type c = 2.1;
data_type s = 1.2;
printf("A\n");
std::printf("%0.2f\n", A);
printf("=====\n");
printf("B\n");
std::printf("%0.2f\n", B);
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:78: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1003:79: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
/*
DPCT1025:80: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:81: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 3: compute */
/*
DPCT1034:82: Migrated API does not return error code. 0 is returned in the
lambda. You may need to rewrite this code.
*/
CUBLAS_CHECK([&]() {
double *a_ct9 = &A;
double *b_ct10 = &B;
double *c_ct11 = &c;
double *s_ct12 = &s;
if (sycl::get_pointer_type(&A, cublasH->get_context()) !=
sycl::usm::alloc::device &&
sycl::get_pointer_type(&A, cublasH->get_context()) !=
sycl::usm::alloc::shared) {
a_ct9 = sycl::malloc_shared<double>(4, dpct::get_default_queue());
b_ct10 = a_ct9 + 1;
c_ct11 = a_ct9 + 2;
s_ct12 = a_ct9 + 3;
*a_ct9 = A;
*b_ct10 = B;
*c_ct11 = c;
*s_ct12 = s;
}
oneapi::mkl::blas::column_major::rotg(*cublasH, a_ct9, b_ct10, c_ct11,
s_ct12);
if (sycl::get_pointer_type(&A, cublasH->get_context()) !=
sycl::usm::alloc::device &&
sycl::get_pointer_type(&A, cublasH->get_context()) !=
sycl::usm::alloc::shared) {
cublasH->wait();
A = *a_ct9;
B = *b_ct10;
c = *c_ct11;
s = *s_ct12;
sycl::free(a_ct9, dpct::get_default_queue());
}
return 0;
}());
/*
DPCT1003:83: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((stream->wait(), 0));
/*
* A = 2.42
* B = 0.50
*/
printf("A\n");
std::printf("%0.2f\n", A);
printf("=====\n");
printf("B\n");
std::printf("%0.2f\n", B);
printf("=====\n");
/* free resources */
/*
DPCT1003:84: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-1/cublas_swap_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.0 2.0 3.0 4.0 |
* B = | 5.0 6.0 7.0 8.0 |
*/
std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
std::vector<data_type> B = {5.0, 6.0, 7.0, 8.0};
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_B = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:111: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:112: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_B = (data_type *)sycl::malloc_device(
sizeof(data_type) * B.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size()), 0));
/* step 3: compute */
/*
DPCT1003:113: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((oneapi::mkl::blas::column_major::swap(*cublasH, A.size(), d_A,
incx, d_B, incy),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(A.data(), d_A, sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(B.data(), d_B, sizeof(data_type) * B.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* A = | 5.0 6.0 7.0 8.0 |
* B = | 1.0 2.0 3.0 4.0 |
*/
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_B, q_ct1), 0));
/*
DPCT1003:114: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-1/cublas_dotc_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
#include <complex>
using data_type = sycl::double2;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.1 + 1.2j | 2.3 + 2.4j | 3.5 + 3.6j | 4.7 + 4.8j |
* B = | 5.1 + 5.2j | 6.3 + 6.4j | 7.5 + 7.6j | 8.7 + 8.8j |
*/
const std::vector<data_type> A = {{1.1, 1.2}, {2.3, 2.4}, {3.5, 3.6}, {4.7, 4.8}};
const std::vector<data_type> B = {{5.1, 5.2}, {6.3, 6.4}, {7.5, 7.6}, {8.7, 8.8}};
const int incx = 1;
const int incy = 1;
data_type result = {0.0, 0.0};
data_type *d_A = nullptr;
data_type *d_B = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:49: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1003:50: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
/*
DPCT1025:51: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:52: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_B = (data_type *)sycl::malloc_device(
sizeof(data_type) * B.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
/*
DPCT1003:53: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size()), 0));
/* step 3: compute */
/*
DPCT1034:54: Migrated API does not return error code. 0 is returned in the
lambda. You may need to rewrite this code.
*/
CUBLAS_CHECK([&]() {
sycl::double2 *res_temp_ptr_ct6 = &result;
if (sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::device &&
sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::shared) {
res_temp_ptr_ct6 =
sycl::malloc_shared<sycl::double2>(1, dpct::get_default_queue());
}
oneapi::mkl::blas::column_major::dotc(
*cublasH, A.size(), (std::complex<double> *)d_A, incx,
(std::complex<double> *)d_B, incy,
(std::complex<double> *)res_temp_ptr_ct6);
if (sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::device &&
sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::shared) {
cublasH->wait();
result = *res_temp_ptr_ct6;
sycl::free(res_temp_ptr_ct6, dpct::get_default_queue());
}
return 0;
}());
CUDA_CHECK((stream->wait(), 0));
/*
* result = 178.44+-1.60j
*/
printf("Result\n");
printf("%0.2f+%0.2fj\n", result.x(), result.y());
printf("=====\n");
/* free resources */
/*
DPCT1003:55: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
/*
DPCT1003:56: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_B, q_ct1), 0));
/*
DPCT1003:57: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
/*
DPCT1003:58: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-1/cublas_rotm_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.0 2.0 3.0 4.0 |
* B = | 5.0 6.0 7.0 8.0 |
*/
std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
std::vector<data_type> B = {5.0, 6.0, 7.0, 8.0};
std::vector<data_type> param = {1.0, 5.0, 6.0, 7.0, 8.0}; // flag = param[0]
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_B = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
printf("param\n");
print_vector(param.size(), param.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:85: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1025:86: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:87: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_B = (data_type *)sycl::malloc_device(
sizeof(data_type) * B.size(), q_ct1),
0));
/*
DPCT1003:88: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
/*
DPCT1003:89: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size()), 0));
/* step 3: compute */
/*
DPCT1003:90: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((oneapi::mkl::blas::column_major::rotm(
*cublasH, A.size(), d_A, incx, d_B, incy,
const_cast<double *>(param.data())),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(A.data(), d_A, sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(B.data(), d_B, sizeof(data_type) * B.size()), 0));
/*
DPCT1003:91: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((stream->wait(), 0));
/*
* A = | 10.0 16.0 22.0 28.0 |
* B = | 39.0 46.0 53.0 60.0 |
*/
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
/* free resources */
/*
DPCT1003:92: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
/*
DPCT1003:93: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_B, q_ct1), 0));
/*
DPCT1003:94: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
/*
DPCT1003:95: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
/*
DPCT1003:96: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-1/cublas_copy_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.0 2.0 3.0 4.0 |
* B = | 0.0 0.0 0.0 0.0 |
*/
const std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
std::vector<data_type> B(A.size(), 0);
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_B = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:36: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1025:37: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:38: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
/*
DPCT1003:39: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_B = (data_type *)sycl::malloc_device(
sizeof(data_type) * B.size(), q_ct1),
0));
/*
DPCT1003:40: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
/*
DPCT1003:41: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size()), 0));
/* step 3: compute */
/*
DPCT1003:42: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((oneapi::mkl::blas::column_major::copy(*cublasH, A.size(), d_A,
incx, d_B, incy),
0));
/* step 4: copy data to host */
/*
DPCT1003:43: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(B.data(), d_B, sizeof(data_type) * B.size()), 0));
/*
DPCT1003:44: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((stream->wait(), 0));
/*
* B = | 1.0 2.0 3.0 4.0 |
*/
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
/* free resources */
/*
DPCT1003:45: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_B, q_ct1), 0));
/*
DPCT1003:46: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
/*
DPCT1003:47: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
/*
DPCT1003:48: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-3/cublas_gemmStridedBatched_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 2;
const int lda = 2;
const int ldb = 2;
const int ldc = 2;
const int batch_count = 2;
const long long int strideA = m * k;
const long long int strideB = k * n;
const long long int strideC = m * n;
/*
* A = | 1.0 | 2.0 | 5.0 | 6.0 |
* | 3.0 | 4.0 | 7.0 | 8.0 |
*
* B = | 5.0 | 6.0 | 9.0 | 10.0 |
* | 7.0 | 8.0 | 11.0 | 12.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 2.0, 4.0, 5.0, 7.0, 6.0, 8.0};
const std::vector<data_type> B = {5.0, 7.0, 6.0, 8.0, 9.0, 11.0, 10.0, 12.0};
std::vector<data_type> C(m * n * batch_count);
const data_type alpha = 1.0;
const data_type beta = 0.0;
data_type *d_A = nullptr;
data_type *d_B = nullptr;
data_type *d_C = nullptr;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
oneapi::mkl::transpose transb = oneapi::mkl::transpose::nontrans;
printf("A[0]\n");
print_matrix(m, k, A.data(), lda);
printf("=====\n");
printf("A[1]\n");
print_matrix(m, k, A.data() + (m * k), lda);
printf("=====\n");
printf("B[0]\n");
print_matrix(k, n, B.data(), ldb);
printf("=====\n");
printf("B[1]\n");
print_matrix(k, n, B.data() + (k * n), ldb);
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:58: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1003:59: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
/*
DPCT1025:60: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:61: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_B = (data_type *)sycl::malloc_device(
sizeof(data_type) * B.size(), q_ct1),
0));
/*
DPCT1003:62: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((d_C = (data_type *)sycl::malloc_device(
sizeof(data_type) * C.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size()), 0));
/* step 3: compute */
/*
DPCT1003:63: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK(
(oneapi::mkl::blas::column_major::gemm_batch(
*cublasH, transa, transb, m, n, k, alpha, d_A, lda, strideA, d_B,
ldb, strideB, beta, d_C, ldc, strideC, batch_count),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(C.data(), d_C, sizeof(data_type) * C.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* C = | 19.0 | 22.0 | 111.0 | 122.0 |
* | 43.0 | 50.0 | 151.0 | 166.0 |
*/
printf("C[0]\n");
print_matrix(m, n, C.data(), ldc);
printf("=====\n");
printf("C[1]\n");
print_matrix(m, n, C.data() + (m * n), ldc);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
/*
DPCT1003:64: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_B, q_ct1), 0));
/*
DPCT1003:65: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_C, q_ct1), 0));
/*
DPCT1003:66: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
/*
DPCT1003:67: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
/*
DPCT1003:68: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-3/cublas_gemm3m_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
#include <complex>
using data_type = sycl::float2;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 2;
const int lda = 2;
const int ldb = 2;
const int ldc = 2;
/*
* A = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
*
* B = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
*/
const std::vector<data_type> A = {{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
const std::vector<data_type> B = {{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
std::vector<data_type> C(m * n);
const data_type alpha = {1.0, 1.0};
const data_type beta = {0.0, 0.0};
data_type *d_A = nullptr;
data_type *d_B = nullptr;
data_type *d_C = nullptr;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
oneapi::mkl::transpose transb = oneapi::mkl::transpose::nontrans;
printf("A\n");
print_matrix(m, k, A.data(), lda);
printf("=====\n");
printf("B\n");
print_matrix(k, n, B.data(), ldb);
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:0: Migrated API does not return error code. (*, 0) is inserted. You
may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1003:3: Migrated API does not return error code. (*, 0) is inserted. You
may need to rewrite this code.
*/
/*
DPCT1025:4: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:5: Migrated API does not return error code. (*, 0) is inserted. You
may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
/*
DPCT1003:6: Migrated API does not return error code. (*, 0) is inserted. You
may need to rewrite this code.
*/
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
/*
DPCT1003:7: Migrated API does not return error code. (*, 0) is inserted. You
may need to rewrite this code.
*/
CUDA_CHECK((d_B = (data_type *)sycl::malloc_device(
sizeof(data_type) * B.size(), q_ct1),
0));
/*
DPCT1003:8: Migrated API does not return error code. (*, 0) is inserted. You
may need to rewrite this code.
*/
CUDA_CHECK((d_C = (data_type *)sycl::malloc_device(
sizeof(data_type) * C.size(), q_ct1),
0));
/*
DPCT1003:9: Migrated API does not return error code. (*, 0) is inserted. You
may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
/*
DPCT1003:10: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size()), 0));
/* step 3: compute */
/*
DPCT1003:11: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK(
(oneapi::mkl::blas::column_major::gemm(
*cublasH, transa, transb, m, n, k,
std::complex<float>(alpha.x(), alpha.y()),
(std::complex<float> *)d_A, lda, (std::complex<float> *)d_B, ldb,
std::complex<float>(beta.x(), beta.y()),
(std::complex<float> *)d_C, ldc),
0));
/* step 4: copy data to host */
/*
DPCT1003:12: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(C.data(), d_C, sizeof(data_type) * C.size()), 0));
/*
DPCT1003:13: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((stream->wait(), 0));
/*
* C = | -20.14 + 18.50j -28.78 + 26.66j |
* | -43.18 + 40.58j -63.34 + 60.26j |
*/
printf("C\n");
print_matrix(m, n, C.data(), ldc);
printf("=====\n");
/* free resources */
/*
DPCT1003:14: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
/*
DPCT1003:15: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_B, q_ct1), 0));
/*
DPCT1003:16: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_C, q_ct1), 0));
/*
DPCT1003:17: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
/*
DPCT1003:18: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
/*
DPCT1003:19: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-3/cublas_trmm_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 2;
const int lda = 2;
const int ldb = 2;
const int ldc = 2;
/*
* A = | 1.0 | 2.0 |
* | 3.0 | 4.0 |
*
* B = | 5.0 | 6.0 |
* | 7.0 | 8.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 2.0, 4.0};
const std::vector<data_type> B = {5.0, 7.0, 6.0, 8.0};
std::vector<data_type> C(m * n);
const data_type alpha = 1.0;
data_type *d_A = nullptr;
data_type *d_B = nullptr;
data_type *d_C = nullptr;
oneapi::mkl::side side = oneapi::mkl::side::left;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
oneapi::mkl::diag diag = oneapi::mkl::diag::nonunit;
printf("A\n");
print_matrix(m, k, A.data(), lda);
printf("=====\n");
printf("B\n");
print_matrix(k, n, B.data(), ldb);
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:117: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:118: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_B = (data_type *)sycl::malloc_device(
sizeof(data_type) * B.size(), q_ct1),
0));
CUDA_CHECK((d_C = (data_type *)sycl::malloc_device(
sizeof(data_type) * C.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size()), 0));
/* step 3: compute */
CUBLAS_CHECK((dpct::trmm(*cublasH, side, uplo, transa, diag, m, n, &alpha,
d_A, lda, d_B, ldb, d_C, ldc),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(C.data(), d_C, sizeof(data_type) * C.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* C = | 19.0 | 22.0 |
* | 28.0 | 32.0 |
*/
printf("C\n");
print_matrix(m, n, C.data(), ldc);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_B, q_ct1), 0));
CUDA_CHECK((sycl::free(d_C, q_ct1), 0));
/*
DPCT1003:119: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-3/cublas_syrkx_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 2;
const int lda = 2;
const int ldb = 2;
const int ldc = 2;
/*
* A = | 1.0 | 3.0 |
* | 3.0 | 4.0 |
*
* B = | 5.0 | 7.0 |
* | 7.0 | 8.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 3.0, 4.0};
const std::vector<data_type> B = {5.0, 7.0, 7.0, 8.0};
std::vector<data_type> C(m * n);
const data_type alpha = 1.0;
const data_type beta = 0.0;
data_type *d_A = nullptr;
data_type *d_B = nullptr;
data_type *d_C = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
printf("A\n");
print_matrix(m, k, A.data(), lda);
printf("=====\n");
printf("B\n");
print_matrix(k, n, B.data(), ldb);
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:114: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:115: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_B = (data_type *)sycl::malloc_device(
sizeof(data_type) * B.size(), q_ct1),
0));
CUDA_CHECK((d_C = (data_type *)sycl::malloc_device(
sizeof(data_type) * C.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size()), 0));
/* step 3: compute */
CUBLAS_CHECK((dpct::syrk(*cublasH, uplo, transa, n, k, &alpha, d_A, lda,
d_B, ldb, &beta, d_C, ldc),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(C.data(), d_C, sizeof(data_type) * C.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* C = | 26.0 | 31.0 |
* | 0.0 | 53.0 |
*/
printf("C\n");
print_matrix(m, n, C.data(), ldc);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_B, q_ct1), 0));
CUDA_CHECK((sycl::free(d_C, q_ct1), 0));
/*
DPCT1003:116: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-3/cublas_gemmBatched_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 2;
const int lda = 2;
const int ldb = 2;
const int ldc = 2;
const int batch_count = 2;
/*
* A = | 1.0 | 2.0 | 5.0 | 6.0 |
* | 3.0 | 4.0 | 7.0 | 8.0 |
*
* B = | 5.0 | 6.0 | 9.0 | 10.0 |
* | 7.0 | 8.0 | 11.0 | 12.0 |
*/
const std::vector<std::vector<data_type>> A_array = {{1.0 ,3.0, 2.0, 4.0},
{5.0, 7.0, 6.0, 8.0}};
const std::vector<std::vector<data_type>> B_array = {{5.0, 7.0, 6.0, 8.0},
{9.0, 11.0, 10.0, 12.0}};
std::vector<std::vector<data_type>> C_array(batch_count, std::vector<data_type>(m * n));
const data_type alpha = 1.0;
const data_type beta = 0.0;
data_type **d_A_array = nullptr;
data_type **d_B_array = nullptr;
data_type **d_C_array = nullptr;
std::vector<data_type *> d_A(batch_count, nullptr);
std::vector<data_type *> d_B(batch_count, nullptr);
std::vector<data_type *> d_C(batch_count, nullptr);
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
oneapi::mkl::transpose transb = oneapi::mkl::transpose::nontrans;
printf("A[0]\n");
print_matrix(m, k, A_array[0].data(), lda);
printf("=====\n");
printf("A[1]\n");
print_matrix(m, k, A_array[1].data(), lda);
printf("=====\n");
printf("B[0]\n");
print_matrix(k, n, B_array[0].data(), ldb);
printf("=====\n");
printf("B[1]\n");
print_matrix(k, n, B_array[1].data(), ldb);
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:20: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1003:21: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
/*
DPCT1025:22: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:23: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
for (int i = 0; i < batch_count; i++) {
CUDA_CHECK(((d_A[i]) = (value_type)sycl::malloc_device(
sizeof(data_type) * A_array[i].size(), q_ct1),
0));
/*
DPCT1003:24: Migrated API does not return error code. (*, 0) is
inserted. You may need to rewrite this code.
*/
CUDA_CHECK(((d_B[i]) = (value_type)sycl::malloc_device(
sizeof(data_type) * B_array[i].size(), q_ct1),
0));
/*
DPCT1003:25: Migrated API does not return error code. (*, 0) is
inserted. You may need to rewrite this code.
*/
CUDA_CHECK(((d_C[i]) = (value_type)sycl::malloc_device(
sizeof(data_type) * C_array[i].size(), q_ct1),
0));
}
/*
DPCT1003:26: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((d_A_array = (data_type **)sycl::malloc_device(
sizeof(data_type *) * batch_count, q_ct1),
0));
/*
DPCT1003:27: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((d_B_array = (data_type **)sycl::malloc_device(
sizeof(data_type *) * batch_count, q_ct1),
0));
CUDA_CHECK((d_C_array = (data_type **)sycl::malloc_device(
sizeof(data_type *) * batch_count, q_ct1),
0));
for (int i = 0; i < batch_count; i++) {
/*
DPCT1003:28: Migrated API does not return error code. (*, 0) is
inserted. You may need to rewrite this code.
*/
CUDA_CHECK((stream->memcpy(d_A[i], A_array[i].data(),
sizeof(data_type) * A_array[i].size()),
0));
CUDA_CHECK((stream->memcpy(d_B[i], B_array[i].data(),
sizeof(data_type) * B_array[i].size()),
0));
}
/*
DPCT1003:29: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((stream->memcpy(d_A_array, d_A.data(),
sizeof(data_type *) * batch_count),
0));
/*
DPCT1003:30: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((stream->memcpy(d_B_array, d_B.data(),
sizeof(data_type *) * batch_count),
0));
/*
DPCT1003:31: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((stream->memcpy(d_C_array, d_C.data(),
sizeof(data_type *) * batch_count),
0));
/* step 3: compute */
/*
DPCT1003:32: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK(
(dpct::gemm_batch(
*cublasH, transa, transb, m, n, k, &alpha,
(const void **)d_A_array, dpct::library_data_t::real_double, lda,
(const void **)d_B_array, dpct::library_data_t::real_double, ldb,
&beta, (void **)d_C_array, dpct::library_data_t::real_double, ldc,
batch_count, dpct::library_data_t::real_double),
0));
/* step 4: copy data to host */
for (int i = 0; i < batch_count; i++) {
/*
DPCT1003:33: Migrated API does not return error code. (*, 0) is
inserted. You may need to rewrite this code.
*/
CUDA_CHECK((stream->memcpy(C_array[i].data(), d_C[i],
sizeof(data_type) * C_array[i].size()),
0));
}
/*
DPCT1003:34: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((stream->wait(), 0));
/*
* C = | 19.0 | 22.0 | 111.0 | 122.0 |
* | 43.0 | 50.0 | 151.0 | 166.0 |
*/
printf("C[0]\n");
print_matrix(m, n, C_array[0].data(), ldc);
printf("=====\n");
printf("C[1]\n");
print_matrix(m, n, C_array[1].data(), ldc);
printf("=====\n");
/* free resources */
/*
DPCT1003:35: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_A_array, q_ct1), 0));
/*
DPCT1003:36: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_B_array, q_ct1), 0));
/*
DPCT1003:37: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_C_array, q_ct1), 0));
for (int i = 0; i < batch_count; i++) {
/*
DPCT1003:38: Migrated API does not return error code. (*, 0) is
inserted. You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_A[i], q_ct1), 0));
/*
DPCT1003:39: Migrated API does not return error code. (*, 0) is
inserted. You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_B[i], q_ct1), 0));
/*
DPCT1003:40: Migrated API does not return error code. (*, 0) is
inserted. You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_C[i], q_ct1), 0));
}
/*
DPCT1003:41: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
/*
DPCT1003:42: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
/*
DPCT1003:43: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-3/cublas_her2k_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
#include <complex>
using data_type = sycl::double2;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 2;
const int lda = 2;
const int ldb = 2;
const int ldc = 2;
/*
* A = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
*
* B = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
*/
const std::vector<data_type> A = {{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
const std::vector<data_type> B = {{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
std::vector<data_type> C(m * n);
const data_type alpha = {1.0, 1.0};
const double beta = 0.0;
data_type *d_A = nullptr;
data_type *d_B = nullptr;
data_type *d_C = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
printf("A\n");
print_matrix(m, k, A.data(), lda);
printf("=====\n");
printf("B\n");
print_matrix(k, n, B.data(), ldb);
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:79: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:80: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_B = (data_type *)sycl::malloc_device(
sizeof(data_type) * B.size(), q_ct1),
0));
CUDA_CHECK((d_C = (data_type *)sycl::malloc_device(
sizeof(data_type) * C.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size()), 0));
/* step 3: compute */
CUBLAS_CHECK(
(/*
DPCT1003:81: Migrated API does not return error code. (*, 0) is
inserted. You may need to rewrite this code.
*/
oneapi::mkl::blas::column_major::her2k(
*cublasH, uplo, transa, n, k,
std::complex<double>(alpha.x(), alpha.y()),
(std::complex<double> *)d_A, lda, (std::complex<double> *)d_B, ldb,
beta, (std::complex<double> *)d_C, ldc),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(C.data(), d_C, sizeof(data_type) * C.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* C = | 27.40 + 0.00j | 61.00 + 0.96j |
* | 0.00 + 0.00j | 140.68 + 0.00j |
*/
printf("C\n");
print_matrix(m, n, C.data(), ldc);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_B, q_ct1), 0));
CUDA_CHECK((sycl::free(d_C, q_ct1), 0));
/*
DPCT1003:82: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-3/cublas_hemm_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
#include <complex>
using data_type = sycl::double2;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 2;
const int lda = 2;
const int ldb = 2;
const int ldc = 2;
/*
* A = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
*
* B = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
*/
const std::vector<data_type> A = {{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
const std::vector<data_type> B = {{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
std::vector<data_type> C(m * n);
const data_type alpha = {1.0, 1.0};
const data_type beta = {0.0, 0.0};
data_type *d_A = nullptr;
data_type *d_B = nullptr;
data_type *d_C = nullptr;
oneapi::mkl::side side = oneapi::mkl::side::left;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("A\n");
print_matrix(m, k, A.data(), lda);
printf("=====\n");
printf("B\n");
print_matrix(k, n, B.data(), ldb);
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:69: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1003:70: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
/*
DPCT1025:71: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:72: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_B = (data_type *)sycl::malloc_device(
sizeof(data_type) * B.size(), q_ct1),
0));
CUDA_CHECK((d_C = (data_type *)sycl::malloc_device(
sizeof(data_type) * C.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
/*
DPCT1003:73: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size()), 0));
/* step 3: compute */
CUBLAS_CHECK(
(/*
DPCT1003:74: Migrated API does not return error code. (*, 0) is
inserted. You may need to rewrite this code.
*/
oneapi::mkl::blas::column_major::hemm(
*cublasH, side, uplo, m, n,
std::complex<double>(alpha.x(), alpha.y()),
(std::complex<double> *)d_A, lda, (std::complex<double> *)d_B, ldb,
std::complex<double>(beta.x(), beta.y()),
(std::complex<double> *)d_C, ldc),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(C.data(), d_C, sizeof(data_type) * C.size()), 0));
/*
DPCT1003:75: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((stream->wait(), 0));
/*
* C = | -17.38 + 18.62j | -23.14 + 26.78j |
* | 4.82 + 38.90j | 10.58 + 55.70j |
*/
printf("C\n");
print_matrix(m, n, C.data(), ldc);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_B, q_ct1), 0));
/*
DPCT1003:76: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_C, q_ct1), 0));
/*
DPCT1003:77: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
/*
DPCT1003:78: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-3/cublas_trsmBatched_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 2;
const int lda = 2;
const int ldb = 2;
const int batch_count = 2;
/*
* A = | 1.0 | 2.0 | 5.0 | 6.0 |
* | 3.0 | 4.0 | 7.0 | 8.0 |
*
* B = | 5.0 | 6.0 | 9.0 | 10.0 |
* | 7.0 | 8.0 | 11.0 | 12.0 |
*/
const std::vector<std::vector<data_type>> A_array = {{1.0, 3.0, 2.0, 4.0},
{5.0, 7.0, 6.0, 8.0}};
std::vector<std::vector<data_type>> B_array = {{5.0, 7.0, 6.0, 8.0}, {9.0, 11.0, 10.0, 12.0}};
const data_type alpha = 1.0;
data_type **d_A_array = nullptr;
data_type **d_B_array = nullptr;
std::vector<data_type *> d_A(batch_count, nullptr);
std::vector<data_type *> d_B(batch_count, nullptr);
oneapi::mkl::side side = oneapi::mkl::side::left;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
oneapi::mkl::diag diag = oneapi::mkl::diag::nonunit;
printf("A[0]\n");
print_matrix(m, k, A_array[0].data(), lda);
printf("=====\n");
printf("A[1]\n");
print_matrix(m, k, A_array[1].data(), lda);
printf("=====\n");
printf("B[0] (in)\n");
print_matrix(k, n, B_array[0].data(), ldb);
printf("=====\n");
printf("B[1] (in)\n");
print_matrix(k, n, B_array[1].data(), ldb);
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:120: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1025:121: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:122: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
for (int i = 0; i < batch_count; i++) {
CUDA_CHECK(((d_A[i]) = (value_type)sycl::malloc_device(
sizeof(data_type) * A_array[i].size(), q_ct1),
0));
CUDA_CHECK(((d_B[i]) = (value_type)sycl::malloc_device(
sizeof(data_type) * B_array[i].size(), q_ct1),
0));
}
CUDA_CHECK((d_A_array = (data_type **)sycl::malloc_device(
sizeof(data_type *) * batch_count, q_ct1),
0));
CUDA_CHECK((d_B_array = (data_type **)sycl::malloc_device(
sizeof(data_type *) * batch_count, q_ct1),
0));
for (int i = 0; i < batch_count; i++) {
/*
DPCT1003:123: Migrated API does not return error code. (*, 0) is
inserted. You may need to rewrite this code.
*/
CUDA_CHECK((stream->memcpy(d_A[i], A_array[i].data(),
sizeof(data_type) * A_array[i].size()),
0));
/*
DPCT1003:124: Migrated API does not return error code. (*, 0) is
inserted. You may need to rewrite this code.
*/
CUDA_CHECK((stream->memcpy(d_B[i], B_array[i].data(),
sizeof(data_type) * B_array[i].size()),
0));
}
CUDA_CHECK((stream->memcpy(d_A_array, d_A.data(),
sizeof(data_type *) * batch_count),
0));
CUDA_CHECK((stream->memcpy(d_B_array, d_B.data(),
sizeof(data_type *) * batch_count),
0));
/* step 3: compute */
CUBLAS_CHECK(
(dpct::trsm_batch(*cublasH, side, uplo, transa, diag, m, n, &alpha,
(const void **)d_A_array,
dpct::library_data_t::real_double, lda,
(void **)d_B_array, dpct::library_data_t::real_double,
ldb, batch_count, dpct::library_data_t::real_double),
0));
/* step 4: copy data to host */
for (int i = 0; i < batch_count; i++) {
CUDA_CHECK((stream->memcpy(B_array[i].data(), d_B[i],
sizeof(data_type) * B_array[i].size()),
0));
}
/*
DPCT1003:125: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((stream->wait(), 0));
/*
* B = | 1.50 | 2.00 | 0.15 | 0.20 |
* | 1.75 | 2.00 | 1.38 | 1.50 |
*/
printf("B[0] (out)\n");
print_matrix(k, n, B_array[0].data(), ldb);
printf("=====\n");
printf("B[1] (out)\n");
print_matrix(k, n, B_array[1].data(), ldb);
printf("=====\n");
/* free resources */
/*
DPCT1003:126: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_A_array, q_ct1), 0));
/*
DPCT1003:127: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_B_array, q_ct1), 0));
for (int i = 0; i < batch_count; i++) {
/*
DPCT1003:128: Migrated API does not return error code. (*, 0) is
inserted. You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_A[i], q_ct1), 0));
/*
DPCT1003:129: Migrated API does not return error code. (*, 0) is
inserted. You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_B[i], q_ct1), 0));
}
/*
DPCT1003:130: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
/*
DPCT1003:131: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
/*
DPCT1003:132: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-3/cublas_syrk_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 2;
const int lda = 2;
const int ldc = 2;
/*
* A = | 1.0 | 3.0 |
* | 3.0 | 4.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 3.0, 4.0};
std::vector<data_type> C(m * n);
const data_type alpha = 1.0;
const data_type beta = 0.0;
data_type *d_A = nullptr;
data_type *d_C = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::trans;
printf("A\n");
print_matrix(m, k, A.data(), lda);
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:106: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1003:107: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
/*
DPCT1025:108: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:109: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
/*
DPCT1003:110: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_C = (data_type *)sycl::malloc_device(
sizeof(data_type) * C.size(), q_ct1),
0));
/*
DPCT1003:111: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
/* step 3: compute */
/*
DPCT1003:112: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK(
(oneapi::mkl::blas::column_major::syrk(*cublasH, uplo, transa, n, k,
alpha, d_A, lda, beta, d_C, ldc),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(C.data(), d_C, sizeof(data_type) * C.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* C = | 10.0 | 15.0 |
* | 0.0 | 25.0 |
*/
printf("C\n");
print_matrix(m, n, C.data(), ldc);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_C, q_ct1), 0));
/*
DPCT1003:113: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-3/cublas_syr2k_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 2;
const int lda = 2;
const int ldb = 2;
const int ldc = 2;
/*
* A = | 1.0 | 3.0 |
* | 3.0 | 4.0 |
*
* B = | 5.0 | 7.0 |
* | 7.0 | 8.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 3.0, 4.0};
const std::vector<data_type> B = {5.0, 7.0, 7.0, 8.0};
std::vector<data_type> C(m * n);
const data_type alpha = 1.0;
const data_type beta = 0.0;
data_type *d_A = nullptr;
data_type *d_B = nullptr;
data_type *d_C = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
printf("A\n");
print_matrix(m, k, A.data(), lda);
printf("=====\n");
printf("B\n");
print_matrix(k, n, B.data(), ldb);
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:102: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:103: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_B = (data_type *)sycl::malloc_device(
sizeof(data_type) * B.size(), q_ct1),
0));
CUDA_CHECK((d_C = (data_type *)sycl::malloc_device(
sizeof(data_type) * C.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size()), 0));
/* step 3: compute */
CUBLAS_CHECK((/*
DPCT1003:104: Migrated API does not return error code. (*, 0)
is inserted. You may need to rewrite this code.
*/
oneapi::mkl::blas::column_major::syr2k(
*cublasH, uplo, transa, n, k, alpha, d_A, lda, d_B, ldb,
beta, d_C, ldc),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(C.data(), d_C, sizeof(data_type) * C.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* C = | 52.0 | 74.0 |
* | 0.0 | 106.0 |
*/
printf("C\n");
print_matrix(m, n, C.data(), ldc);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_B, q_ct1), 0));
CUDA_CHECK((sycl::free(d_C, q_ct1), 0));
/*
DPCT1003:105: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-3/cublas_herkx_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
#include <complex>
using data_type = sycl::double2;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 2;
const int lda = 2;
const int ldb = 2;
const int ldc = 2;
/*
* A = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
*
* B = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
*/
const std::vector<data_type> A = {{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
const std::vector<data_type> B = {{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
std::vector<data_type> C(m * n);
const data_type alpha = {1.0, 1.0};
const double beta = 0.0;
data_type *d_A = nullptr;
data_type *d_B = nullptr;
data_type *d_C = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
printf("A\n");
print_matrix(m, k, A.data(), lda);
printf("=====\n");
printf("B\n");
print_matrix(k, n, B.data(), ldb);
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:94: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:95: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_B = (data_type *)sycl::malloc_device(
sizeof(data_type) * B.size(), q_ct1),
0));
CUDA_CHECK((d_C = (data_type *)sycl::malloc_device(
sizeof(data_type) * C.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size()), 0));
/* step 3: compute */
/*
DPCT1003:96: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((dpct::herk(*cublasH, uplo, transa, n, k, &alpha, d_A, lda,
d_B, ldb, &beta, d_C, ldc),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(C.data(), d_C, sizeof(data_type) * C.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* C = | 13.70 + 0.00j | 30.02 + 30.98j |
* | 0.00 + 0.00j | 70.34 + 0.00j |
*/
printf("C\n");
print_matrix(m, n, C.data(), ldc);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_B, q_ct1), 0));
CUDA_CHECK((sycl::free(d_C, q_ct1), 0));
/*
DPCT1003:97: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-3/cublas_symm_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 2;
const int lda = 2;
const int ldb = 2;
const int ldc = 2;
/*
* A = | 1.0 | 3.0 |
* | 3.0 | 4.0 |
*
* B = | 5.0 | 7.0 |
* | 7.0 | 8.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 3.0, 4.0};
const std::vector<data_type> B = {5.0, 7.0, 7.0, 8.0};
std::vector<data_type> C(m * n);
const data_type alpha = 1.0;
const data_type beta = 0.0;
data_type *d_A = nullptr;
data_type *d_B = nullptr;
data_type *d_C = nullptr;
oneapi::mkl::side side = oneapi::mkl::side::left;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("A\n");
print_matrix(m, k, A.data(), lda);
printf("=====\n");
printf("B\n");
print_matrix(k, n, B.data(), ldb);
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:98: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:99: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_B = (data_type *)sycl::malloc_device(
sizeof(data_type) * B.size(), q_ct1),
0));
CUDA_CHECK((d_C = (data_type *)sycl::malloc_device(
sizeof(data_type) * C.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size()), 0));
/* step 3: compute */
CUBLAS_CHECK((/*
DPCT1003:100: Migrated API does not return error code. (*, 0)
is inserted. You may need to rewrite this code.
*/
oneapi::mkl::blas::column_major::symm(*cublasH, side, uplo, m,
n, alpha, d_A, lda, d_B,
ldb, beta, d_C, ldc),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(C.data(), d_C, sizeof(data_type) * C.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* C = | 26.0 | 31.0 |
* | 43.0 | 53.0 |
*/
printf("C\n");
print_matrix(m, n, C.data(), ldc);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_B, q_ct1), 0));
CUDA_CHECK((sycl::free(d_C, q_ct1), 0));
/*
DPCT1003:101: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-3/cublas_herk_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
#include <complex>
using data_type = sycl::double2;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 2;
const int lda = 2;
const int ldc = 2;
/*
* A = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
*/
const std::vector<data_type> A = {{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
std::vector<data_type> C(m * n);
const double alpha = 1.0;
const double beta = 0.0;
data_type *d_A = nullptr;
data_type *d_C = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
printf("A\n");
print_matrix(m, k, A.data(), lda);
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:83: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1003:84: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
/*
DPCT1025:85: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:86: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
/*
DPCT1003:87: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
/*
DPCT1003:88: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((d_C = (data_type *)sycl::malloc_device(
sizeof(data_type) * C.size(), q_ct1),
0));
/*
DPCT1003:89: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
/* step 3: compute */
/*
DPCT1003:90: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK(
(oneapi::mkl::blas::column_major::herk(
*cublasH, uplo, transa, n, k, alpha, (std::complex<double> *)d_A,
lda, beta, (std::complex<double> *)d_C, ldc),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(C.data(), d_C, sizeof(data_type) * C.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* C = | 13.70 + 0.00j | 30.50 + 0.48j |
* | 0.00 + 0.00j | 70.34 + 0.00j |
*/
printf("C\n");
print_matrix(m, n, C.data(), ldc);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_C, q_ct1), 0));
/*
DPCT1003:91: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
/*
DPCT1003:92: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
/*
DPCT1003:93: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-3/cublas_gemm_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 2;
const int lda = 2;
const int ldb = 2;
const int ldc = 2;
/*
* A = | 1.0 | 2.0 |
* | 3.0 | 4.0 |
*
* B = | 5.0 | 6.0 |
* | 7.0 | 8.0 |
*/
const std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
const std::vector<data_type> B = {5.0, 6.0, 7.0, 8.0};
std::vector<data_type> C(m * n);
const data_type alpha = 1.0;
const data_type beta = 0.0;
data_type *d_A = nullptr;
data_type *d_B = nullptr;
data_type *d_C = nullptr;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
oneapi::mkl::transpose transb = oneapi::mkl::transpose::nontrans;
printf("A\n");
print_matrix(m, k, A.data(), lda);
printf("=====\n");
printf("B\n");
print_matrix(k, n, B.data(), ldb);
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:44: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1003:45: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
/*
DPCT1025:46: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:47: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
/*
DPCT1003:48: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_B = (data_type *)sycl::malloc_device(
sizeof(data_type) * B.size(), q_ct1),
0));
CUDA_CHECK((d_C = (data_type *)sycl::malloc_device(
sizeof(data_type) * C.size(), q_ct1),
0));
/*
DPCT1003:49: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
/*
DPCT1003:50: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size()), 0));
/* step 3: compute */
CUBLAS_CHECK((/*
DPCT1003:51: Migrated API does not return error code. (*, 0) is
inserted. You may need to rewrite this code.
*/
oneapi::mkl::blas::column_major::gemm(
*cublasH, transa, transb, m, n, k, alpha, d_A, lda, d_B,
ldb, beta, d_C, ldc),
0));
/* step 4: copy data to host */
/*
DPCT1003:52: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK(
(stream->memcpy(C.data(), d_C, sizeof(data_type) * C.size()), 0));
/*
DPCT1003:53: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((stream->wait(), 0));
/*
* C = | 23.0 | 31.0 |
* | 34.0 | 46.0 |
*/
printf("C\n");
print_matrix(m, n, C.data(), ldc);
printf("=====\n");
/* free resources */
/*
DPCT1003:54: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_B, q_ct1), 0));
CUDA_CHECK((sycl::free(d_C, q_ct1), 0));
/*
DPCT1003:55: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
/*
DPCT1003:56: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
/*
DPCT1003:57: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/01_sycl_dpct_output/Level-3/cublas_trsm_example.dp.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <oneapi/mkl.hpp>
#include <dpct/blas_utils.hpp>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 2;
const int lda = 2;
const int ldb = 2;
const int ldc = 2;
/*
* A = | 1.0 | 2.0 |
* | 3.0 | 4.0 |
*
* B = | 5.0 | 6.0 |
* | 7.0 | 8.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 2.0, 4.0};
std::vector<data_type> B = {5.0, 7.0, 6.0, 8.0};
const data_type alpha = 1.0;
data_type *d_A = nullptr;
data_type *d_B = nullptr;
oneapi::mkl::side side = oneapi::mkl::side::left;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
oneapi::mkl::diag diag = oneapi::mkl::diag::nonunit;
printf("A\n");
print_matrix(m, k, A.data(), lda);
printf("=====\n");
printf("B (in) \n");
print_matrix(k, n, B.data(), ldb);
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
/*
DPCT1003:133: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = &q_ct1, 0));
/*
DPCT1003:134: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
/*
DPCT1025:135: The SYCL queue is created ignoring the flag and priority
options.
*/
CUDA_CHECK((stream = dev_ct1.create_queue(), 0));
/*
DPCT1003:136: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = stream, 0));
/* step 2: copy data to device */
/*
DPCT1003:137: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUDA_CHECK((d_A = (data_type *)sycl::malloc_device(
sizeof(data_type) * A.size(), q_ct1),
0));
CUDA_CHECK((d_B = (data_type *)sycl::malloc_device(
sizeof(data_type) * B.size(), q_ct1),
0));
CUDA_CHECK(
(stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()), 0));
CUDA_CHECK(
(stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size()), 0));
/* step 3: compute */
/*
DPCT1003:138: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((oneapi::mkl::blas::column_major::trsm(
*cublasH, side, uplo, transa, diag, m, n, alpha, d_A, lda,
d_B, ldb),
0));
/* step 4: copy data to host */
CUDA_CHECK(
(stream->memcpy(B.data(), d_B, sizeof(data_type) * B.size()), 0));
CUDA_CHECK((stream->wait(), 0));
/*
* B = | 1.50 | 2.00 |
* | 1.75 | 2.00 |
*/
printf("B (out)\n");
print_matrix(m, n, B.data(), ldc);
printf("=====\n");
/* free resources */
CUDA_CHECK((sycl::free(d_A, q_ct1), 0));
CUDA_CHECK((sycl::free(d_B, q_ct1), 0));
/*
DPCT1003:139: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code.
*/
CUBLAS_CHECK((cublasH = nullptr, 0));
CUDA_CHECK((dev_ct1.destroy_queue(stream), 0));
CUDA_CHECK((dev_ct1.reset(), 0));
return EXIT_SUCCESS;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Common/cublas_utils.h | /*
* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <cmath>
#include <complex>
#include <dpct/dpct.hpp>
#include <dpct/lib_common_utils.hpp>
#include <functional>
#include <iostream>
#include <random>
#include <stdexcept>
#include <string>
#include <sycl/sycl.hpp>
// CUDA API error checking
#define CUDA_CHECK(err) \
do { \
int err_ = (err); \
if (err_ != 0) { \
std::printf("CUDA error %d at %s:%d\n", err_, __FILE__, __LINE__); \
throw std::runtime_error("CUDA error"); \
} \
} while (0)
// cublas API error checking
#define CUBLAS_CHECK(err) \
do { \
int err_ = (err); \
if (err_ != 0) { \
std::printf("cublas error %d at %s:%d\n", err_, __FILE__, __LINE__); \
throw std::runtime_error("cublas error"); \
} \
} while (0)
// memory alignment
#define ALIGN_TO(A, B) (((A + B - 1) / B) * B)
// device memory pitch alignment
static const size_t device_alignment = 32;
// type traits
template <typename T>
struct traits;
template <>
struct traits<float> {
// scalar type
typedef float T;
typedef T S;
static constexpr T zero = 0.f;
static constexpr dpct::library_data_t cuda_data_type =
dpct::library_data_t::real_float;
inline static S abs(T val) { return fabs(val); }
template <typename RNG>
inline static T rand(RNG &gen) {
return (S)gen();
}
inline static T add(T a, T b) { return a + b; }
inline static T mul(T v, double f) { return v * f; }
};
template <>
struct traits<double> {
// scalar type
typedef double T;
typedef T S;
static constexpr T zero = 0.;
static constexpr dpct::library_data_t cuda_data_type =
dpct::library_data_t::real_double;
inline static S abs(T val) { return fabs(val); }
template <typename RNG>
inline static T rand(RNG &gen) {
return (S)gen();
}
inline static T add(T a, T b) { return a + b; }
inline static T mul(T v, double f) { return v * f; }
};
template <>
struct traits<sycl::float2> {
// scalar type
typedef float S;
typedef sycl::float2 T;
static constexpr T zero = {0.f, 0.f};
static constexpr dpct::library_data_t cuda_data_type =
dpct::library_data_t::complex_float;
inline static S abs(T val) { return dpct::cabs<float>(val); }
template <typename RNG>
inline static T rand(RNG &gen) {
return sycl::float2((S)gen(), (S)gen());
}
inline static T add(T a, T b) { return a + b; }
inline static T add(T a, S b) { return a + sycl::float2(b, 0.f); }
inline static T mul(T v, double f) {
return sycl::float2(v.x() * f, v.y() * f);
}
};
template <>
struct traits<sycl::double2> {
// scalar type
typedef double S;
typedef sycl::double2 T;
static constexpr T zero = {0., 0.};
static constexpr dpct::library_data_t cuda_data_type =
dpct::library_data_t::complex_double;
inline static S abs(T val) { return dpct::cabs<double>(val); }
template <typename RNG>
inline static T rand(RNG &gen) {
return sycl::double2((S)gen(), (S)gen());
}
inline static T add(T a, T b) { return a + b; }
inline static T add(T a, S b) { return a + sycl::double2(b, 0.); }
inline static T mul(T v, double f) {
return sycl::double2(v.x() * f, v.y() * f);
}
};
template <typename T>
void print_matrix(const int &m, const int &n, const T *A, const int &lda);
template <>
void print_matrix(const int &m, const int &n, const float *A, const int &lda) {
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
std::printf("%0.2f ", A[j * lda + i]);
}
std::printf("\n");
}
}
template <>
void print_matrix(const int &m, const int &n, const double *A, const int &lda) {
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
std::printf("%0.2f ", A[j * lda + i]);
}
std::printf("\n");
}
}
template <>
void print_matrix(const int &m, const int &n, const sycl::float2 *A,
const int &lda) {
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
std::printf("%0.2f + %0.2fj ", A[j * lda + i].x(), A[j * lda + i].y());
}
std::printf("\n");
}
}
template <>
void print_matrix(const int &m, const int &n, const sycl::double2 *A,
const int &lda) {
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
std::printf("%0.2f + %0.2fj ", A[j * lda + i].x(), A[j * lda + i].y());
}
std::printf("\n");
}
}
template <typename T>
void print_vector(const int &m, const T *A);
template <>
void print_vector(const int &m, const float *A) {
for (int i = 0; i < m; i++) {
std::printf("%0.2f ", A[i]);
}
std::printf("\n");
}
template <>
void print_vector(const int &m, const double *A) {
for (int i = 0; i < m; i++) {
std::printf("%0.2f ", A[i]);
}
std::printf("\n");
}
template <>
void print_vector(const int &m, const sycl::float2 *A) {
for (int i = 0; i < m; i++) {
std::printf("%0.2f + %0.2fj ", A[i].x(), A[i].y());
}
std::printf("\n");
}
template <>
void print_vector(const int &m, const sycl::double2 *A) {
for (int i = 0; i < m; i++) {
std::printf("%0.2f + %0.2fj ", A[i].x(), A[i].y());
}
std::printf("\n");
}
template <typename T>
void generate_random_matrix(int m, int n, T **A, int *lda) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<typename traits<T>::S> dis(-1.0, 1.0);
auto rand_gen = std::bind(dis, gen);
*lda = n;
size_t matrix_mem_size = static_cast<size_t>(*lda * m * sizeof(T));
// suppress gcc 7 size warning
if (matrix_mem_size <= PTRDIFF_MAX)
*A = (T *)malloc(matrix_mem_size);
else
throw std::runtime_error("Memory allocation size is too large");
if (*A == NULL) throw std::runtime_error("Unable to allocate host matrix");
// random matrix and accumulate row sums
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
T *A_row = (*A) + *lda * i;
A_row[j] = traits<T>::rand(rand_gen);
}
}
}
// Makes matrix A of size mxn and leading dimension lda diagonal dominant
template <typename T>
void make_diag_dominant_matrix(int m, int n, T *A, int lda) {
for (int i = 0; i < std::min(m, n); ++i) {
T *A_row = A + lda * i;
auto row_sum = traits<typename traits<T>::S>::zero;
for (int j = 0; j < n; ++j) {
row_sum += traits<T>::abs(A_row[j]);
}
A_row[i] = traits<T>::add(A_row[i], row_sum);
}
}
// Returns cudaDataType value as defined in library_types.h for the string
// containing type name
dpct::library_data_t get_cuda_library_type(std::string type_string) {
if (type_string.compare("CUDA_R_16F") == 0)
return dpct::library_data_t::real_half;
else if (type_string.compare("CUDA_C_16F") == 0)
return dpct::library_data_t::complex_half;
else if (type_string.compare("CUDA_R_32F") == 0)
return dpct::library_data_t::real_float;
else if (type_string.compare("CUDA_C_32F") == 0)
return dpct::library_data_t::complex_float;
else if (type_string.compare("CUDA_R_64F") == 0)
return dpct::library_data_t::real_double;
else if (type_string.compare("CUDA_C_64F") == 0)
return dpct::library_data_t::complex_double;
else if (type_string.compare("CUDA_R_8I") == 0)
return dpct::library_data_t::real_int8;
else if (type_string.compare("CUDA_C_8I") == 0)
return dpct::library_data_t::complex_int8;
else if (type_string.compare("CUDA_R_8U") == 0)
return dpct::library_data_t::real_uint8;
else if (type_string.compare("CUDA_C_8U") == 0)
return dpct::library_data_t::complex_uint8;
else if (type_string.compare("CUDA_R_32I") == 0)
return dpct::library_data_t::real_int32;
else if (type_string.compare("CUDA_C_32I") == 0)
return dpct::library_data_t::complex_int32;
else if (type_string.compare("CUDA_R_32U") == 0)
return dpct::library_data_t::real_uint32;
else if (type_string.compare("CUDA_C_32U") == 0)
return dpct::library_data_t::complex_uint32;
else
throw std::runtime_error("Unknown CUDA datatype");
}
| h |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/spr2.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* AP = | 1.0 3.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
* y = | 7.0 8.0 |
*/
std::vector<data_type> AP = {1.0, 3.0, 3.0, 4.0};
const std::vector<data_type> x = {5.0, 6.0};
const std::vector<data_type> y = {7.0, 8.0};
const data_type alpha = 1.0;
const int incx = 1;
const int incy = 1;
data_type *d_AP = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_AP = (data_type *)sycl::malloc_device(sizeof(data_type) * AP.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
d_y = (data_type *)sycl::malloc_device(sizeof(data_type) * y.size(), q_ct1);
stream->memcpy(d_AP, AP.data(), sizeof(data_type) * AP.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
stream->memcpy(d_y, y.data(), sizeof(data_type) * y.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::spr2(*cublasH, uplo, n, alpha, d_x, incx,
d_y, incy, d_AP);
/* step 4: copy data to host */
stream->memcpy(AP.data(), d_AP, sizeof(data_type) * AP.size());
stream->wait();
/*
* AP = | 71.0 99.0 |
* | 85.0 4.0 |
*/
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
/* free resources */
sycl::free(d_AP, q_ct1);
sycl::free(d_x, q_ct1);
sycl::free(d_y, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/hpr2.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = sycl::double2;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* AP = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
* x = | 5.1 + 6.2j | 7.3 + 8.4j |
* y = | 1.1 + 2.2j | 3.3 + 4.4j |
*/
std::vector<data_type> AP = {{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
const std::vector<data_type> x = {{5.1, 6.2}, {7.3, 8.4}};
const std::vector<data_type> y = {{1.1, 2.2}, {3.3, 4.4}};
const data_type alpha = {1.0, 1.0};
const int incx = 1;
const int incy = 1;
data_type *d_AP = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_AP = (data_type *)sycl::malloc_device(sizeof(data_type) * AP.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
d_y = (data_type *)sycl::malloc_device(sizeof(data_type) * y.size(), q_ct1);
stream->memcpy(d_AP, AP.data(), sizeof(data_type) * AP.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
stream->memcpy(d_y, y.data(), sizeof(data_type) * y.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::hpr2(
*cublasH, uplo, n, std::complex<double>(alpha.x(), alpha.y()),
(std::complex<double> *)d_x, incx, (std::complex<double> *)d_y, incy,
(std::complex<double> *)d_AP);
/* step 4: copy data to host */
stream->memcpy(AP.data(), d_AP, sizeof(data_type) * AP.size());
stream->wait();
/*
* AP = | 48.40 + 0.00j | 133.20 + 0.00j |
* | 82.92 + 26.04j | 4.70 + 4.80j |
*/
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
/* free resources */
sycl::free(d_AP, q_ct1);
sycl::free(d_x, q_ct1);
sycl::free(d_y, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/syr.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.0 3.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
std::vector<data_type> A = {1.0, 3.0, 3.0, 4.0};
const std::vector<data_type> x = {5.0, 6.0};
const data_type alpha = 1.0;
const int incx = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type *)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::syr(*cublasH, uplo, n, alpha, d_x, incx, d_A,
lda);
/* step 4: copy data to host */
stream->memcpy(A.data(), d_A, sizeof(data_type) * A.size());
stream->wait();
/*
* A = | 26.0 33.0 |
* | 3.0 40.0 |
*/
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
sycl::free(d_x, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/tpsv.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.0 2.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> AP = {1.0, 3.0, 2.0, 4.0};
std::vector<data_type> x = {5.0, 6.0};
const int incx = 1;
data_type *d_AP = nullptr;
data_type *d_x = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
oneapi::mkl::diag diag = oneapi::mkl::diag::nonunit;
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_AP = (data_type *)sycl::malloc_device(sizeof(data_type) * AP.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
stream->memcpy(d_AP, AP.data(), sizeof(data_type) * AP.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::tpsv(*cublasH, uplo, transa, diag, n, d_AP,
d_x, incx);
/* step 4: copy data to host */
stream->memcpy(x.data(), d_x, sizeof(data_type) * x.size());
stream->wait();
/*
* x = | -4.00 3.00 |
*/
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* free resources */
sycl::free(d_AP, q_ct1);
sycl::free(d_x, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/sbmv.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 1;
const int lda = m;
/*
* A = | 1.0 3.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 3.0, 4.0};
const std::vector<data_type> x = {5.0, 6.0};
std::vector<data_type> y(m, 0);
const data_type alpha = 1.0;
const data_type beta = 0.0;
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type *)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
d_y = (data_type *)sycl::malloc_device(sizeof(data_type) * y.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::sbmv(*cublasH, uplo, n, k, alpha, d_A, lda,
d_x, incx, beta, d_y, incy);
/* step 4: copy data to host */
stream->memcpy(y.data(), d_y, sizeof(data_type) * y.size());
stream->wait();
/*
* y = | 33.00 39.00 |
*/
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
sycl::free(d_x, q_ct1);
sycl::free(d_y, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/hpr.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = sycl::double2;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* AP = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
* x = | 5.1 + 6.2j | 7.3 + 8.4j |
*/
std::vector<data_type> AP = {{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
const std::vector<data_type> x = {{5.1, 6.2}, {7.3, 8.4}};
const double alpha = 1.0;
const int incx = 1;
data_type *d_AP = nullptr;
data_type *d_x = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_AP = (data_type *)sycl::malloc_device(sizeof(data_type) * AP.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
stream->memcpy(d_AP, AP.data(), sizeof(data_type) * AP.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::hpr(*cublasH, uplo, n, alpha,
(std::complex<double> *)d_x, incx,
(std::complex<double> *)d_AP);
/* step 4: copy data to host */
stream->memcpy(AP.data(), d_AP, sizeof(data_type) * AP.size());
stream->wait();
/*
* AP = | 65.55 + 0.00j | 126.15 + 0.00j |
* | 92.81 + 6.02j | 4.70 + 4.80j |
*/
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
/* free resources */
sycl::free(d_AP, q_ct1);
sycl::free(d_x, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/gemv.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.0 2.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 2.0, 4.0};
const std::vector<data_type> x = {5.0, 6.0};
std::vector<data_type> y(m, 0);
const data_type alpha = 1.0;
const data_type beta = 0.0;
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type *)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
d_y = (data_type *)sycl::malloc_device(sizeof(data_type) * y.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::gemv(*cublasH, transa, m, n, alpha, d_A, lda,
d_x, incx, beta, d_y, incy);
/* step 4: copy data to host */
stream->memcpy(y.data(), d_y, sizeof(data_type) * y.size());
stream->wait();
/*
* y = | 17.00 39.00 |
*/
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
sycl::free(d_x, q_ct1);
sycl::free(d_y, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/syr2.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.0 3.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
* y = | 7.0 8.0 |
*/
std::vector<data_type> A = {1.0, 3.0, 3.0, 4.0};
const std::vector<data_type> x = {5.0, 6.0};
const std::vector<data_type> y = {7.0, 8.0};
const data_type alpha = 1.0;
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type *)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
d_y = (data_type *)sycl::malloc_device(sizeof(data_type) * y.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
stream->memcpy(d_y, y.data(), sizeof(data_type) * y.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::syr2(*cublasH, uplo, n, alpha, d_x, incx,
d_y, incy, d_A, lda);
/* step 4: copy data to host */
stream->memcpy(A.data(), d_A, sizeof(data_type) * A.size());
stream->wait();
/*
* A = | 71.0 85.0 |
* | 3.0 100.0 |
*/
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
sycl::free(d_x, q_ct1);
sycl::free(d_y, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/her2.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = sycl::double2;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
* x = | 5.1 + 6.2j | 7.3 + 8.4j |
* y = | 1.1 + 2.2j | 3.3 + 4.4j |
*/
std::vector<data_type> A = {{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
const std::vector<data_type> x = {{5.1, 6.2}, {7.3, 8.4}};
const std::vector<data_type> y = {{1.1, 2.2}, {3.3, 4.4}};
const data_type alpha = {1.0, 1.0};
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type *)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
d_y = (data_type *)sycl::malloc_device(sizeof(data_type) * y.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
stream->memcpy(d_y, y.data(), sizeof(data_type) * y.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::her2(
*cublasH, uplo, n, std::complex<double>(alpha.x(), alpha.y()),
(std::complex<double> *)d_x, incx, (std::complex<double> *)d_y, incy,
(std::complex<double> *)d_A, lda);
/* step 4: copy data to host */
stream->memcpy(A.data(), d_A, sizeof(data_type) * A.size());
stream->wait();
/*
* A = | 48.40 + 0.00j | 81.72 + 24.84j |
* | 3.50 + 3.60j | 135.60 + 0.00j |
*/
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
sycl::free(d_x, q_ct1);
sycl::free(d_y, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/spmv.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* AP = | 1.0 3.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> AP = {1.0, 3.0, 3.0, 4.0};
const std::vector<data_type> x = {5.0, 6.0};
std::vector<data_type> y(m, 0);
const data_type alpha = 1.0;
const data_type beta = 0.0;
const int incx = 1;
const int incy = 1;
data_type *d_AP = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_AP = (data_type *)sycl::malloc_device(sizeof(data_type) * AP.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
d_y = (data_type *)sycl::malloc_device(sizeof(data_type) * y.size(), q_ct1);
stream->memcpy(d_AP, AP.data(), sizeof(data_type) * AP.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::spmv(*cublasH, uplo, n, alpha, d_AP, d_x,
incx, beta, d_y, incy);
/* step 4: copy data to host */
stream->memcpy(y.data(), d_y, sizeof(data_type) * y.size());
stream->wait();
/*
* y = | 23.00 33.00 |
*/
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* free resources */
sycl::free(d_AP, q_ct1);
sycl::free(d_x, q_ct1);
sycl::free(d_y, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/tbmv.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 1;
const int lda = m;
/*
* A = | 1.0 2.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 2.0, 4.0};
std::vector<data_type> x = {5.0, 6.0};
const int incx = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
oneapi::mkl::diag diag = oneapi::mkl::diag::nonunit;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type *)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::tbmv(*cublasH, uplo, transa, diag, n, k, d_A,
lda, d_x, incx);
/* step 4: copy data to host */
stream->memcpy(x.data(), d_x, sizeof(data_type) * x.size());
stream->wait();
/*
* x = | 27.00 24.00 |
*/
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
sycl::free(d_x, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/spr.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* AP = | 1.0 3.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
std::vector<data_type> AP = {1.0, 3.0, 3.0, 4.0};
const std::vector<data_type> x = {5.0, 6.0};
const data_type alpha = 1.0;
const int incx = 1;
data_type *d_AP = nullptr;
data_type *d_x = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_AP = (data_type *)sycl::malloc_device(sizeof(data_type) * AP.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
stream->memcpy(d_AP, AP.data(), sizeof(data_type) * AP.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::spr(*cublasH, uplo, n, alpha, d_x, incx,
d_AP);
/* step 4: copy data to host */
stream->memcpy(AP.data(), d_AP, sizeof(data_type) * AP.size());
stream->wait();
/*
* AP = | 26.0 39.0 |
* | 33.0 4.0 |
*/
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
/* free resources */
sycl::free(d_AP, q_ct1);
sycl::free(d_x, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/tpmv.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.0 2.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> AP = {1.0, 3.0, 2.0, 4.0};
std::vector<data_type> x = {5.0, 6.0};
const int incx = 1;
data_type *d_AP = nullptr;
data_type *d_x = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
oneapi::mkl::diag diag = oneapi::mkl::diag::nonunit;
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_AP = (data_type *)sycl::malloc_device(sizeof(data_type) * AP.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
stream->memcpy(d_AP, AP.data(), sizeof(data_type) * AP.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::tpmv(*cublasH, uplo, transa, diag, n, d_AP,
d_x, incx);
/* step 4: copy data to host */
stream->memcpy(x.data(), d_x, sizeof(data_type) * x.size());
stream->wait();
/*
* x = | 23.00 12.00 |
*/
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* free resources */
sycl::free(d_AP, q_ct1);
sycl::free(d_x, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/her.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = sycl::double2;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
* x = | 5.1 + 6.2j | 7.3 + 8.4j |
*/
std::vector<data_type> A = {{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
const std::vector<data_type> x = {{5.1, 6.2}, {7.3, 8.4}};
const double alpha = 1.0;
const int incx = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type *)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::her(*cublasH, uplo, n, alpha,
(std::complex<double> *)d_x, incx,
(std::complex<double> *)d_A, lda);
/* step 4: copy data to host */
stream->memcpy(A.data(), d_A, sizeof(data_type) * A.size());
stream->wait();
/*
* A = | 65.55 + 0.00j | 91.61 + 4.82j |
* | 3.50 + 3.60j | 128.55 + 0.00j |
*/
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
sycl::free(d_x, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/ger.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.0 2.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
* y = | 7.0 8.0 |
*/
std::vector<data_type> A = {1.0, 3.0, 2.0, 4.0};
const std::vector<data_type> x = {5.0, 6.0};
const std::vector<data_type> y = {7.0, 8.0};
const data_type alpha = 2.0;
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type *)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
d_y = (data_type *)sycl::malloc_device(sizeof(data_type) * y.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
stream->memcpy(d_y, y.data(), sizeof(data_type) * y.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::ger(*cublasH, m, n, alpha, d_x, incx, d_y,
incy, d_A, lda);
/* step 4: copy data to host */
stream->memcpy(A.data(), d_A, sizeof(data_type) * A.size());
stream->wait();
/*
* A = | 71.0 82.0 |
* | 87.0 100.0 |
*/
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
sycl::free(d_x, q_ct1);
sycl::free(d_y, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/trsv.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.0 2.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 2.0, 4.0};
std::vector<data_type> x = {5.0, 6.0};
const int incx = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
oneapi::mkl::diag diag = oneapi::mkl::diag::nonunit;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type *)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::trsv(*cublasH, uplo, transa, diag, n, d_A,
lda, d_x, incx);
/* step 4: copy data to host */
stream->memcpy(x.data(), d_x, sizeof(data_type) * x.size());
stream->wait();
/*
* x = | 2.00 1.50 |
*/
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
sycl::free(d_x, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/hemv.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = sycl::double2;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
* x = | 5.1 + 6.2j | 7.3 + 8.4j |
*/
const std::vector<data_type> A = {
{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
const std::vector<data_type> x = {{5.1, 6.2}, {7.3, 8.4}};
std::vector<data_type> y(m);
const data_type alpha = {1.0, 1.0};
const data_type beta = {0.0, 0.0};
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type *)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
d_y = (data_type *)sycl::malloc_device(sizeof(data_type) * y.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::hemv(
*cublasH, uplo, n, std::complex<double>(alpha.x(), alpha.y()),
(std::complex<double> *)d_A, lda, (std::complex<double> *)d_x, incx,
std::complex<double>(beta.x(), beta.y()), (std::complex<double> *)d_y,
incy);
/* step 4: copy data to host */
stream->memcpy(y.data(), d_y, sizeof(data_type) * y.size());
stream->wait();
/*
* y = | -41.42 + 45.90j 19.42 + 102.42j |
*/
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
sycl::free(d_x, q_ct1);
sycl::free(d_y, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/gbmv.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.0 2.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 2.0, 4.0};
const std::vector<data_type> x = {5.0, 6.0};
std::vector<data_type> y(m, 0);
const data_type alpha = 1.0;
const data_type beta = 0.0;
const int incx = 1;
const int incy = 1;
const int kl = 0;
const int ku = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type *)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
d_y = (data_type *)sycl::malloc_device(sizeof(data_type) * y.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::gbmv(*cublasH, transa, m, n, kl, ku, alpha,
d_A, lda, d_x, incx, beta, d_y, incy);
/* step 4: copy data to host */
stream->memcpy(y.data(), d_y, sizeof(data_type) * y.size());
stream->wait();
/*
* y = | 27.0 24.0 |
*/
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
sycl::free(d_x, q_ct1);
sycl::free(d_y, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/hbmv.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = sycl::double2;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 1;
const int lda = m;
/*
* A = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
* x = | 5.1 + 6.2j | 7.3 + 8.4j |
*/
const std::vector<data_type> A = {
{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
const std::vector<data_type> x = {{5.1, 6.2}, {7.3, 8.4}};
std::vector<data_type> y(m);
const data_type alpha = {1.0, 1.0};
const data_type beta = {0.0, 0.0};
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type *)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
d_y = (data_type *)sycl::malloc_device(sizeof(data_type) * y.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::hbmv(
*cublasH, uplo, n, k, std::complex<double>(alpha.x(), alpha.y()),
(std::complex<double> *)d_A, lda, (std::complex<double> *)d_x, incx,
std::complex<double>(beta.x(), beta.y()), (std::complex<double> *)d_y,
incy);
/* step 4: copy data to host */
stream->memcpy(y.data(), d_y, sizeof(data_type) * y.size());
stream->wait();
/*
* y = | -44.06 + 73.02j 19.42 + 102.42j |
*/
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
sycl::free(d_x, q_ct1);
sycl::free(d_y, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/trmv.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.0 2.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 2.0, 4.0};
std::vector<data_type> x = {5.0, 6.0};
const int incx = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
oneapi::mkl::diag diag = oneapi::mkl::diag::nonunit;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type *)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::trmv(*cublasH, uplo, transa, diag, n, d_A,
lda, d_x, incx);
/* step 4: copy data to host */
stream->memcpy(x.data(), d_x, sizeof(data_type) * x.size());
stream->wait();
/*
* x = | 17.00 24.00 |
*/
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
sycl::free(d_x, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/symv.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.0 3.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 3.0, 4.0};
const std::vector<data_type> x = {5.0, 6.0};
std::vector<data_type> y(m, 0);
const data_type alpha = 1.0;
const data_type beta = 0.0;
const int incx = 1;
const int incy = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type *)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
d_y = (data_type *)sycl::malloc_device(sizeof(data_type) * y.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::symv(*cublasH, uplo, n, alpha, d_A, lda, d_x,
incx, beta, d_y, incy);
/* step 4: copy data to host */
stream->memcpy(y.data(), d_y, sizeof(data_type) * y.size());
stream->wait();
/*
* y = | 23.00 29.00 |
*/
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
sycl::free(d_x, q_ct1);
sycl::free(d_y, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/tbsv.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int k = 1;
const int lda = m;
/*
* A = | 1.0 2.0 |
* | 3.0 4.0 |
* x = | 5.0 6.0 |
*/
const std::vector<data_type> A = {1.0, 3.0, 2.0, 4.0};
std::vector<data_type> x = {5.0, 6.0};
const int incx = 1;
data_type *d_A = nullptr;
data_type *d_x = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
oneapi::mkl::transpose transa = oneapi::mkl::transpose::nontrans;
oneapi::mkl::diag diag = oneapi::mkl::diag::nonunit;
printf("A\n");
print_matrix(m, n, A.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type *)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::tbsv(*cublasH, uplo, transa, diag, n, k, d_A,
lda, d_x, incx);
/* step 4: copy data to host */
stream->memcpy(x.data(), d_x, sizeof(data_type) * x.size());
stream->wait();
/*
* x = | 0.67 1.50 |
*/
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
sycl::free(d_x, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-2/hpmv.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = sycl::double2;
int main(int argc, char *argv[]) try {
dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
sycl::queue *cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
const int m = 2;
const int n = 2;
const int lda = m;
/*
* A = | 1.1 + 1.2j | 2.3 + 2.4j |
* | 3.5 + 3.6j | 4.7 + 4.8j |
* x = | 5.1 + 6.2j | 7.3 + 8.4j |
*/
const std::vector<data_type> AP = {
{1.1, 1.2}, {3.5, 3.6}, {2.3, 2.4}, {4.7, 4.8}};
const std::vector<data_type> x = {{5.1, 6.2}, {7.3, 8.4}};
std::vector<data_type> y(m);
const data_type alpha = {1.0, 1.0};
const data_type beta = {0.0, 0.0};
const int incx = 1;
const int incy = 1;
data_type *d_AP = nullptr;
data_type *d_x = nullptr;
data_type *d_y = nullptr;
oneapi::mkl::uplo uplo = oneapi::mkl::uplo::upper;
printf("AP\n");
print_matrix(m, n, AP.data(), lda);
printf("=====\n");
printf("x\n");
print_vector(x.size(), x.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_AP = (data_type *)sycl::malloc_device(sizeof(data_type) * AP.size(), q_ct1);
d_x = (data_type *)sycl::malloc_device(sizeof(data_type) * x.size(), q_ct1);
d_y = (data_type *)sycl::malloc_device(sizeof(data_type) * y.size(), q_ct1);
stream->memcpy(d_AP, AP.data(), sizeof(data_type) * AP.size());
stream->memcpy(d_x, x.data(), sizeof(data_type) * x.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::hpmv(
*cublasH, uplo, n, std::complex<double>(alpha.x(), alpha.y()),
(std::complex<double> *)d_AP, (std::complex<double> *)d_x, incx,
std::complex<double>(beta.x(), beta.y()), (std::complex<double> *)d_y,
incy);
/* step 4: copy data to host */
stream->memcpy(y.data(), d_y, sizeof(data_type) * y.size());
stream->wait();
/*
* y = | -61.58 + 63.42j 34.30 + 79.62j |
*/
printf("y\n");
print_vector(y.size(), y.data());
printf("=====\n");
/* free resources */
sycl::free(d_AP, q_ct1);
sycl::free(d_x, q_ct1);
sycl::free(d_y, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-1/nrm2.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char* argv[]) try {
dpct::device_ext& dev_ct1 = dpct::get_current_device();
sycl::queue& q_ct1 = dev_ct1.default_queue();
sycl::queue* cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.0 2.0 3.0 4.0 |
*/
std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
const int incx = 1;
data_type result = 0.0;
data_type* d_A = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type*)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
/* step 3: compute */
[&]() {
double* res_temp_ptr_ct8 = &result;
if (sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::device &&
sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::shared) {
res_temp_ptr_ct8 =
sycl::malloc_shared<double>(1, dpct::get_default_queue());
}
oneapi::mkl::blas::column_major::nrm2(*cublasH, A.size(), d_A, incx,
res_temp_ptr_ct8);
if (sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::device &&
sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::shared) {
cublasH->wait();
result = *res_temp_ptr_ct8;
sycl::free(res_temp_ptr_ct8, dpct::get_default_queue());
}
return 0;
}();
/* step 4: copy data to host */
stream->memcpy(A.data(), d_A, sizeof(data_type) * A.size());
stream->wait();
/*
* Result = 5.48
*/
printf("Result\n");
printf("%0.2f\n", result);
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const& exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-1/copy.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char* argv[]) try {
dpct::device_ext& dev_ct1 = dpct::get_current_device();
sycl::queue& q_ct1 = dev_ct1.default_queue();
sycl::queue* cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.0 2.0 3.0 4.0 |
* B = | 0.0 0.0 0.0 0.0 |
*/
const std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
std::vector<data_type> B(A.size(), 0);
const int incx = 1;
const int incy = 1;
data_type* d_A = nullptr;
data_type* d_B = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type*)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
d_B = (data_type*)sycl::malloc_device(sizeof(data_type) * B.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::copy(*cublasH, A.size(), d_A, incx, d_B,
incy);
/* step 4: copy data to host */
stream->memcpy(B.data(), d_B, sizeof(data_type) * B.size());
stream->wait();
/*
* B = | 1.0 2.0 3.0 4.0 |
*/
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
sycl::free(d_B, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const& exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-1/rot.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char* argv[]) try {
dpct::device_ext& dev_ct1 = dpct::get_current_device();
sycl::queue& q_ct1 = dev_ct1.default_queue();
sycl::queue* cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.0 2.0 3.0 4.0 |
* B = | 5.0 6.0 7.0 8.0 |
*/
std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
std::vector<data_type> B = {5.0, 6.0, 7.0, 8.0};
const data_type c = 2.1;
const data_type s = 1.2;
const int incx = 1;
const int incy = 1;
data_type* d_A = nullptr;
data_type* d_B = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type*)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
d_B = (data_type*)sycl::malloc_device(sizeof(data_type) * B.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::rot(*cublasH, A.size(), d_A, incx, d_B, incy,
c, s);
/* step 4: copy data to host */
stream->memcpy(A.data(), d_A, sizeof(data_type) * A.size());
stream->memcpy(B.data(), d_B, sizeof(data_type) * B.size());
stream->wait();
/*
* A = | 8.1 11.4 14.7 18.0 |
* B = | 9.3 10.2 11.1 12.0 |
*/
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
sycl::free(d_B, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const& exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-1/rotm.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char* argv[]) try {
dpct::device_ext& dev_ct1 = dpct::get_current_device();
sycl::queue& q_ct1 = dev_ct1.default_queue();
sycl::queue* cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.0 2.0 3.0 4.0 |
* B = | 5.0 6.0 7.0 8.0 |
*/
std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
std::vector<data_type> B = {5.0, 6.0, 7.0, 8.0};
std::vector<data_type> param = {1.0, 5.0, 6.0, 7.0, 8.0}; // flag = param[0]
const int incx = 1;
const int incy = 1;
data_type* d_A = nullptr;
data_type* d_B = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
printf("param\n");
print_vector(param.size(), param.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type*)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
d_B = (data_type*)sycl::malloc_device(sizeof(data_type) * B.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::rotm(*cublasH, A.size(), d_A, incx, d_B,
incy,
const_cast<double*>(param.data()));
/* step 4: copy data to host */
stream->memcpy(A.data(), d_A, sizeof(data_type) * A.size());
stream->memcpy(B.data(), d_B, sizeof(data_type) * B.size());
stream->wait();
/*
* A = | 10.0 16.0 22.0 28.0 |
* B = | 39.0 46.0 53.0 60.0 |
*/
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
sycl::free(d_B, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const& exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-1/amin.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char* argv[]) try {
dpct::device_ext& dev_ct1 = dpct::get_current_device();
sycl::queue& q_ct1 = dev_ct1.default_queue();
sycl::queue* cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.0 2.0 3.0 4.0 |
*/
const std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
const int incx = 1;
int result = 0.0;
data_type* d_A = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type*)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
/* step 3: compute */
int64_t* res_temp_ptr_ct3 =
sycl::malloc_shared<int64_t>(1, dpct::get_default_queue());
oneapi::mkl::blas::column_major::iamin(*cublasH, A.size(), d_A, incx,
res_temp_ptr_ct3)
.wait();
int res_temp_host_ct4 = A[(int)*res_temp_ptr_ct3];
dpct::dpct_memcpy(&result, &res_temp_host_ct4, sizeof(int));
sycl::free(res_temp_ptr_ct3, dpct::get_default_queue());
stream->wait();
/*
* result = 1
*/
printf("result\n");
std::printf("%d\n", result);
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const& exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-1/rotg.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char* argv[]) try {
dpct::device_ext& dev_ct1 = dpct::get_current_device();
sycl::queue& q_ct1 = dev_ct1.default_queue();
sycl::queue* cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = 2.10
* B = 1.20
*/
data_type A = 2.1;
data_type B = 1.2;
data_type c = 2.1;
data_type s = 1.2;
printf("A\n");
std::printf("%0.2f\n", A);
printf("=====\n");
printf("B\n");
std::printf("%0.2f\n", B);
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 3: compute */
[&]() {
double* a_ct9 = &A;
double* b_ct10 = &B;
double* c_ct11 = &c;
double* s_ct12 = &s;
if (sycl::get_pointer_type(&A, cublasH->get_context()) !=
sycl::usm::alloc::device &&
sycl::get_pointer_type(&A, cublasH->get_context()) !=
sycl::usm::alloc::shared) {
a_ct9 = sycl::malloc_shared<double>(4, dpct::get_default_queue());
b_ct10 = a_ct9 + 1;
c_ct11 = a_ct9 + 2;
s_ct12 = a_ct9 + 3;
*a_ct9 = A;
*b_ct10 = B;
*c_ct11 = c;
*s_ct12 = s;
}
oneapi::mkl::blas::column_major::rotg(*cublasH, a_ct9, b_ct10, c_ct11,
s_ct12);
if (sycl::get_pointer_type(&A, cublasH->get_context()) !=
sycl::usm::alloc::device &&
sycl::get_pointer_type(&A, cublasH->get_context()) !=
sycl::usm::alloc::shared) {
cublasH->wait();
A = *a_ct9;
B = *b_ct10;
c = *c_ct11;
s = *s_ct12;
sycl::free(a_ct9, dpct::get_default_queue());
}
return 0;
}();
stream->wait();
/*
* A = 2.42
* B = 0.50
*/
printf("A\n");
std::printf("%0.2f\n", A);
printf("=====\n");
printf("B\n");
std::printf("%0.2f\n", B);
printf("=====\n");
/* free resources */
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const& exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-1/asum.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char* argv[]) try {
dpct::device_ext& dev_ct1 = dpct::get_current_device();
sycl::queue& q_ct1 = dev_ct1.default_queue();
sycl::queue* cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.0 2.0 3.0 4.0 |
*/
const std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
const int incx = 1;
data_type result = 0.0;
data_type* d_A = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type*)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
/* step 3: compute */
[&]() {
double* res_temp_ptr_ct5 = &result;
if (sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::device &&
sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::shared) {
res_temp_ptr_ct5 =
sycl::malloc_shared<double>(1, dpct::get_default_queue());
}
oneapi::mkl::blas::column_major::asum(*cublasH, A.size(), d_A, incx,
res_temp_ptr_ct5);
if (sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::device &&
sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::shared) {
cublasH->wait();
result = *res_temp_ptr_ct5;
sycl::free(res_temp_ptr_ct5, dpct::get_default_queue());
}
return 0;
}();
stream->wait();
/*
* result = 10.00
*/
printf("result\n");
std::printf("%0.2f\n", result);
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const& exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-1/scal.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char* argv[]) try {
dpct::device_ext& dev_ct1 = dpct::get_current_device();
sycl::queue& q_ct1 = dev_ct1.default_queue();
sycl::queue* cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.0 2.0 3.0 4.0 |
*/
std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
const data_type alpha = 2.2;
const int incx = 1;
data_type* d_A = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type*)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::scal(*cublasH, A.size(), alpha, d_A, incx);
/* step 4: copy data to host */
stream->memcpy(A.data(), d_A, sizeof(data_type) * A.size());
stream->wait();
/*
* A = | 2.2 4.4 6.6 8.8 |
*/
printf("A (scaled)\n");
print_vector(A.size(), A.data());
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const& exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-1/axpy.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char* argv[]) try {
dpct::device_ext& dev_ct1 = dpct::get_current_device();
sycl::queue& q_ct1 = dev_ct1.default_queue();
sycl::queue* cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.0 2.0 3.0 4.0 |
* B = | 5.0 6.0 7.0 8.0 |
*/
const std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
std::vector<data_type> B = {5.0, 6.0, 7.0, 8.0};
const data_type alpha = 2.1;
const int incx = 1;
const int incy = 1;
data_type* d_A = nullptr;
data_type* d_B = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type*)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
d_B = (data_type*)sycl::malloc_device(sizeof(data_type) * B.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size());
/* step 3: compute */
oneapi::mkl::blas::column_major::axpy(*cublasH, A.size(), alpha, d_A, incx,
d_B, incy);
/* step 4: copy data to host */
stream->memcpy(B.data(), d_B, sizeof(data_type) * B.size());
stream->wait();
/*
* B = | 7.10 10.20 13.30 16.40 |
*/
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
sycl::free(d_B, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const& exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
oneAPI-samples | data/projects/oneAPI-samples/Libraries/oneMKL/guided_cuBLAS_examples_SYCL_Migration/02_sycl_dpct_migrated/Level-1/dot.cpp | /*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <cstdio>
#include <cstdlib>
#include <dpct/dpct.hpp>
#include <dpct/blas_utils.hpp>
#include <oneapi/mkl.hpp>
#include <sycl/sycl.hpp>
#include <vector>
#include "cublas_utils.h"
using data_type = double;
int main(int argc, char* argv[]) try {
dpct::device_ext& dev_ct1 = dpct::get_current_device();
sycl::queue& q_ct1 = dev_ct1.default_queue();
sycl::queue* cublasH = NULL;
dpct::queue_ptr stream = &q_ct1;
/*
* A = | 1.0 2.0 3.0 4.0 |
* B = | 5.0 6.0 7.0 8.0 |
*/
const std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0};
const std::vector<data_type> B = {5.0, 6.0, 7.0, 8.0};
const int incx = 1;
const int incy = 1;
data_type result = 0.0;
data_type* d_A = nullptr;
data_type* d_B = nullptr;
printf("A\n");
print_vector(A.size(), A.data());
printf("=====\n");
printf("B\n");
print_vector(B.size(), B.data());
printf("=====\n");
/* step 1: create cublas handle, bind a stream */
cublasH = &q_ct1;
stream = dev_ct1.create_queue();
cublasH = stream;
/* step 2: copy data to device */
d_A = (data_type*)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1);
d_B = (data_type*)sycl::malloc_device(sizeof(data_type) * B.size(), q_ct1);
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size());
stream->memcpy(d_B, B.data(), sizeof(data_type) * B.size());
/* step 3: compute */
[&]() {
double* res_temp_ptr_ct7 = &result;
if (sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::device &&
sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::shared) {
res_temp_ptr_ct7 =
sycl::malloc_shared<double>(1, dpct::get_default_queue());
}
oneapi::mkl::blas::column_major::dot(*cublasH, A.size(), d_A, incx, d_B,
incy, res_temp_ptr_ct7);
if (sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::device &&
sycl::get_pointer_type(&result, cublasH->get_context()) !=
sycl::usm::alloc::shared) {
cublasH->wait();
result = *res_temp_ptr_ct7;
sycl::free(res_temp_ptr_ct7, dpct::get_default_queue());
}
return 0;
}();
stream->wait();
/*
* result = 70.00
*/
printf("Result\n");
printf("%0.2f\n", result);
printf("=====\n");
/* free resources */
sycl::free(d_A, q_ct1);
sycl::free(d_B, q_ct1);
cublasH = nullptr;
dev_ct1.destroy_queue(stream);
dev_ct1.reset();
return EXIT_SUCCESS;
} catch (sycl::exception const& exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
| cpp |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.