repo_name
stringclasses
10 values
file_path
stringlengths
29
222
content
stringlengths
24
926k
extention
stringclasses
5 values
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/10_SYCL_Graphs_Scheduling_Data_management/src/inorder_queues.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; constexpr int N = 42; int main() { queue Q{property::queue::in_order()}; int *data = malloc_shared<int>(N, Q); Q.parallel_for(N, [=](id<1> i) { data[i] = 1; }); Q.single_task([=]() { for (int i = 1; i < N; i++) data[0] += data[i]; }); Q.wait(); assert(data[0] == N); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/10_SYCL_Graphs_Scheduling_Data_management/src/y_pattern_buffers.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; constexpr int N = 42; int main() { queue Q; buffer<int> data1{range{N}}; buffer<int> data2{range{N}}; Q.submit([&](handler &h) { accessor a{data1, h}; h.parallel_for(N, [=](id<1> i) { a[i] = 1; }); }); Q.submit([&](handler &h) { accessor b{data2, h}; h.parallel_for(N, [=](id<1> i) { b[i] = 2; }); }); Q.submit([&](handler &h) { accessor a{data1, h}; accessor b{data2, h, read_only}; h.parallel_for(N, [=](id<1> i) { a[i] += b[i]; }); }); Q.submit([&](handler &h) { accessor a{data1, h}; h.single_task([=]() { for (int i = 1; i < N; i++) a[0] += a[i]; a[0] /= 3; }); }); host_accessor h_a{data1}; assert(h_a[0] == N); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/10_SYCL_Graphs_Scheduling_Data_management/src/accessors_RAW.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <array> using namespace sycl; constexpr int N = 42; int main() { std::array<int,N> a, b, c; for (int i = 0; i < N; i++) { a[i] = b[i] = c[i] = 0; } queue Q; //Create Buffers buffer A{a}; buffer B{b}; buffer C{c}; Q.submit([&](handler &h) { accessor accA(A, h, read_only); accessor accB(B, h, write_only); h.parallel_for( // computeB N, [=](id<1> i) { accB[i] = accA[i] + 1; }); }); Q.submit([&](handler &h) { accessor accA(A, h, read_only); h.parallel_for( // readA N, [=](id<1> i) { // Useful only as an example int data = accA[i]; }); }); Q.submit([&](handler &h) { // RAW of buffer B accessor accB(B, h, read_only); accessor accC(C, h, write_only); h.parallel_for( // computeC N, [=](id<1> i) { accC[i] = accB[i] + 2; }); }); // read C on host host_accessor host_accC(C, read_only); for (int i = 0; i < N; i++) { std::cout << host_accC[i] << " "; } std::cout << "\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/10_SYCL_Graphs_Scheduling_Data_management/lab/USM_implicit.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; constexpr int N = 42; int main() { queue Q; int *host_array = malloc_host<int>(N, Q); int *shared_array = malloc_shared<int>(N, Q); for (int i = 0; i < N; i++) { // Initialize hostArray on host host_array[i] = i; } // Submit the queue Q.submit([&](handler &h) { h.parallel_for(N, [=](id<1> i) { // access sharedArray and hostArray on device shared_array[i] = host_array[i] + 1; }); }); Q.wait(); for (int i = 0; i < N; i++) { // access sharedArray on host host_array[i] = shared_array[i]; } free(shared_array, Q); free(host_array, Q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/10_SYCL_Graphs_Scheduling_Data_management/lab/event_graphs.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; constexpr int N = 42; #include <sycl/sycl.hpp> using namespace sycl; constexpr int N = 42; int main() { queue Q; int *data = malloc_shared<int>(N, Q); auto e = Q.parallel_for(N, [=](id<1> i) { data[i] = 1; }); Q.submit([&](handler &h) { h.depends_on(e); h.single_task([=]() { for (int i = 1; i < N; i++) data[0] += data[i]; }); }); Q.wait(); assert(data[0] == N); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/10_SYCL_Graphs_Scheduling_Data_management/lab/accessors_WAR_WAW.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // Copyright (C) 2020 Intel Corporation // SPDX-License-Identifier: MIT #include <sycl/sycl.hpp> #include <array> using namespace sycl; constexpr int N = 42; int main() { std::array<int,N> a, b; for (int i = 0; i < N; i++) { a[i] = b[i] = 0; } queue Q; buffer A{a}; buffer B{b}; Q.submit([&](handler &h) { accessor accA(A, h, read_only); accessor accB(B, h, write_only); h.parallel_for( // computeB N, [=](id<1> i) { accB[i] = accA[i] + 1; }); }); Q.submit([&](handler &h) { // WAR of buffer A accessor accA(A, h, write_only); h.parallel_for( // rewriteA N, [=](id<1> i) { accA[i] = 21 + 21; }); }); Q.submit([&](handler &h) { // WAW of buffer B accessor accB(B, h, write_only); h.parallel_for( // rewriteB N, [=](id<1> i) { accB[i] = 30 + 12; }); }); host_accessor host_accA(A, read_only); host_accessor host_accB(B, read_only); for (int i = 0; i < N; i++) { std::cout << host_accA[i] << " " << host_accB[i] << " "; } std::cout << "\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/10_SYCL_Graphs_Scheduling_Data_management/lab/y_pattern_events.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; constexpr int N = 42; int main() { queue Q; int *data1 = malloc_shared<int>(N, Q); int *data2 = malloc_shared<int>(N, Q); auto e1 = Q.parallel_for(N, [=](id<1> i) { data1[i] = 1; }); auto e2 = Q.parallel_for(N, [=](id<1> i) { data2[i] = 2; }); auto e3 = Q.parallel_for(range{N}, {e1, e2}, [=](id<1> i) { data1[i] += data2[i]; }); Q.single_task(e3, [=]() { for (int i = 1; i < N; i++) data1[0] += data1[i]; data1[0] /= 3; }); Q.wait(); assert(data1[0] == N); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/10_SYCL_Graphs_Scheduling_Data_management/lab/accessors_sample.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <cassert> using namespace sycl; constexpr int N = 42; int main() { queue Q; // Create 3 buffers of 42 ints buffer<int> A{range{N}}; buffer<int> B{range{N}}; buffer<int> C{range{N}}; Q.submit([&](handler &h) { // create device accessors accessor aA{A, h, write_only, no_init}; accessor aB{B, h, write_only, no_init}; accessor aC{C, h, write_only, no_init}; h.parallel_for(N, [=](id<1> i) { aA[i] = 1; aB[i] = 40; aC[i] = 0; }); }); Q.submit([&](handler &h) { // create device accessors accessor aA{A, h, read_only}; accessor aB{B, h, read_only}; accessor aC{C, h, read_write}; h.parallel_for(N, [=](id<1> i) { aC[i] += aA[i] + aB[i]; }); }); host_accessor result{C, read_only}; for (int i = 0; i < N; i++) std::cout << result[i] << " "; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/10_SYCL_Graphs_Scheduling_Data_management/lab/linear_buffers_graphs.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; constexpr int N = 42; int main() { queue Q; buffer<int> data{range{N}}; Q.submit([&](handler &h) { accessor a{data, h}; h.parallel_for(N, [=](id<1> i) { a[i] = 1; }); }); Q.submit([&](handler &h) { accessor a{data, h}; h.single_task([=]() { for (int i = 1; i < N; i++) a[0] += a[i]; }); }); host_accessor h_a{data}; assert(h_a[0] == N); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/10_SYCL_Graphs_Scheduling_Data_management/lab/y_pattern_inorder_queues.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; constexpr int N = 42; int main() { queue Q{property::queue::in_order()}; int *data1 = malloc_shared<int>(N, Q); int *data2 = malloc_shared<int>(N, Q); Q.parallel_for(N, [=](id<1> i) { data1[i] = 1; }); Q.parallel_for(N, [=](id<1> i) { data2[i] = 2; }); Q.parallel_for(N, [=](id<1> i) { data1[i] += data2[i]; }); Q.single_task([=]() { for (int i = 1; i < N; i++) data1[0] += data1[i]; data1[0] /= 3; }); Q.wait(); assert(data1[0] == N); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/10_SYCL_Graphs_Scheduling_Data_management/lab/Linear_inorder_queues.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; constexpr int N = 42; int main() { queue Q{property::queue::in_order()}; int *data = malloc_shared<int>(N, Q); Q.parallel_for(N, [=](id<1> i) { data[i] = 1; }); Q.single_task([=]() { for (int i = 1; i < N; i++) data[0] += data[i]; }); Q.wait(); assert(data[0] == N); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/10_SYCL_Graphs_Scheduling_Data_management/lab/task_scheduling.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; constexpr int N = 256; int main() { queue q; //# 3 vectors initialized to values std::vector<int> data1(N, 1); std::vector<int> data2(N, 2); std::vector<int> data3(N, 3); //# STEP 1 : Create buffers for data1, data2 and data3 //# YOUR CODE GOES HERE //# STEP 2 : Create a kernel to update data1 += data3, set accessor permissions //# YOUR CODE GOES HERE //# STEP 3 : Create a kernel to update data2 *= 2, set accessor permissions //# YOUR CODE GOES HERE //# STEP 4 : Create a kernel to update data3 = data1 + data2, set accessor permissions //# YOUR CODE GOES HERE //# STEP 5 : Create a host accessor to copy back data3 //# YOUR CODE GOES HERE std::cout << "Output = " << data3[0] << "\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/10_SYCL_Graphs_Scheduling_Data_management/lab/linear_event_graphs.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; constexpr int N = 42; int main() { queue Q; int *data = malloc_shared<int>(N, Q); auto e = Q.parallel_for(N, [=](id<1> i) { data[i] = 1; }); Q.submit([&](handler &h) { h.depends_on(e); h.single_task([=]() { for (int i = 1; i < N; i++) data[0] += data[i]; }); }); Q.wait(); assert(data[0] == N); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/10_SYCL_Graphs_Scheduling_Data_management/lab/USM_explicit.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include<array> using namespace sycl; constexpr int N = 42; int main() { queue Q; std::array<int,N> host_array; int *device_array = malloc_device<int>(N, Q); for (int i = 0; i < N; i++) host_array[i] = N; // Submit the queue Q.submit([&](handler &h) { // copy hostArray to deviceArray h.memcpy(device_array, &host_array[0], N * sizeof(int)); }); Q.wait(); Q.submit([&](handler &h) { h.parallel_for(N, [=](id<1> i) { device_array[i]++; }); }); Q.wait(); Q.submit([&](handler &h) { // copy deviceArray back to hostArray h.memcpy(&host_array[0], device_array, N * sizeof(int)); }); Q.wait(); free(device_array, Q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/10_SYCL_Graphs_Scheduling_Data_management/lab/inorder_queues.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; constexpr int N = 42; int main() { queue Q{property::queue::in_order()}; int *data = malloc_shared<int>(N, Q); Q.parallel_for(N, [=](id<1> i) { data[i] = 1; }); Q.single_task([=]() { for (int i = 1; i < N; i++) data[0] += data[i]; }); Q.wait(); assert(data[0] == N); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/10_SYCL_Graphs_Scheduling_Data_management/lab/y_pattern_buffers.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; constexpr int N = 42; int main() { queue Q; buffer<int> data1{range{N}}; buffer<int> data2{range{N}}; Q.submit([&](handler &h) { accessor a{data1, h}; h.parallel_for(N, [=](id<1> i) { a[i] = 1; }); }); Q.submit([&](handler &h) { accessor b{data2, h}; h.parallel_for(N, [=](id<1> i) { b[i] = 2; }); }); Q.submit([&](handler &h) { accessor a{data1, h}; accessor b{data2, h, read_only}; h.parallel_for(N, [=](id<1> i) { a[i] += b[i]; }); }); Q.submit([&](handler &h) { accessor a{data1, h}; h.single_task([=]() { for (int i = 1; i < N; i++) a[0] += a[i]; a[0] /= 3; }); }); host_accessor h_a{data1}; assert(h_a[0] == N); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/10_SYCL_Graphs_Scheduling_Data_management/lab/accessors_RAW.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <array> using namespace sycl; constexpr int N = 42; int main() { std::array<int,N> a, b, c; for (int i = 0; i < N; i++) { a[i] = b[i] = c[i] = 0; } queue Q; //Create Buffers buffer A{a}; buffer B{b}; buffer C{c}; Q.submit([&](handler &h) { accessor accA(A, h, read_only); accessor accB(B, h, write_only); h.parallel_for( // computeB N, [=](id<1> i) { accB[i] = accA[i] + 1; }); }); Q.submit([&](handler &h) { accessor accA(A, h, read_only); h.parallel_for( // readA N, [=](id<1> i) { // Useful only as an example int data = accA[i]; }); }); Q.submit([&](handler &h) { // RAW of buffer B accessor accB(B, h, read_only); accessor accC(C, h, write_only); h.parallel_for( // computeC N, [=](id<1> i) { accC[i] = accB[i] + 2; }); }); // read C on host host_accessor host_accC(C, read_only); for (int i = 0; i < N; i++) { std::cout << host_accC[i] << " "; } std::cout << "\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/00_Introduction_to_Jupyter/src/hello.cpp
#include <iostream> int main(){ std::cout << "Hello World"; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/src/sub_buffers.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; int main() { const int N = 64; const int num1 = 2; const int num2 = 3; int data[N]; for (int i = 0; i < N; i++) data[i] = i; std::cout<<"BUffer Values: "; for (int i = 0; i < N; i++) std::cout << data[i] << " "; std::cout<<"\n"; buffer B(data, range(N)); //Create sub buffers with offsets and half of the range. buffer<int> B1(B, 0, range{ N / 2 }); buffer<int> B2(B, 32, range{ N / 2 }); //Multiply the elemets in first sub buffer by 2 queue q1; q1.submit([&](handler& h) { accessor a1(B1, h); h.parallel_for(N/2, [=](auto i) { a1[i] *= num1; }); }); //Multiply the elemets in second sub buffer by 3 queue q2; q2.submit([&](handler& h) { accessor a2(B2, h); h.parallel_for(N/2, [=](auto i) { a2[i] *= num2; }); }); //Host accessors to get the results back to the host from the device host_accessor b1(B1, read_only); host_accessor b2(B2, read_only); std::cout<<"Sub Buffer1: "; for (int i = 0; i < N/2; i++) std::cout<< b1[i] << " "; std::cout<<"\n"; std::cout<<"Sub Buffer2: "; for (int i = 0; i < N/2; i++) std::cout << b2[i] << " "; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/src/buffer_creation.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; int main() { // Create a buffer of ints from an input iterator std::vector<int> myVec; buffer b1{myVec}; buffer b2{myVec.begin(), myVec.end()}; // Create a buffer of ints from std::array std::array<int,42> my_data; buffer b3{my_data}; // Create a buffer of 4 doubles and initialize it from a host pointer double myDoubles[4] = {1.1, 2.2, 3.3, 4.4}; buffer b4{myDoubles, range{4}}; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/src/buffer_creation_uncommon.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; int main() { // Create a buffer of 2x5 ints using the default allocator and CTAD for dimensions buffer<int, 2> b1{range{2, 5}}; //Dimensions defaults to 1 // Create a buffer of 20 floats using a default-constructed std::allocator buffer<float> b2{range{20}}; // Create a buffer from a shared pointer to int auto sharedPtr = std::make_shared<int>(42); buffer b3{sharedPtr, range{1}}; // Create a buffer of 2x5 ints and 2 non-overlapping sub-buffers of 5 ints. buffer<int, 2> b4{range{2, 5}}; buffer b5{b4, id{0, 0}, range{1, 5}}; buffer b6{b4, id{1, 0}, range{1, 5}}; // Create a buffer of 5 doubles and initialize it from a host pointer to // const double const double myConstDbls[5] = {1.0, 2.0, 3.0, 4.0, 5.0}; buffer b7{myConstDbls, range{5}}; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/src/buffer_set_write_back.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <array> using namespace sycl; constexpr int N = 42; int main() { std::array<int,N> my_data; for (int i = 0; i < N; i++) my_data[i] = i; { queue q; buffer my_buffer(my_data); //Call the set_write_back method to control the data to be written back to the host from the device. e //Setting it to false will not update the host with the updated values my_buffer.set_write_back(false); q.submit([&](handler &h) { // create an accessor to update // the buffer on the device accessor my_accessor(my_buffer, h); h.parallel_for(N, [=](id<1> i) { my_accessor[i]*=2; }); }); } // myData is updated when myBuffer is // destroyed upon exiting scope for (int i = 0; i < N; i++) { std::cout << my_data[i] << " "; } }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/src/accessors_sample.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <cassert> using namespace sycl; constexpr int N = 42; int main() { queue Q; // Create 3 buffers of 42 ints buffer<int> A{range{N}}; buffer<int> B{range{N}}; buffer<int> C{range{N}}; Q.submit([&](handler &h) { // create device accessors accessor aA{A, h, write_only, no_init}; accessor aB{B, h, write_only, no_init}; accessor aC{C, h, write_only, no_init}; h.parallel_for(N, [=](id<1> i) { aA[i] = 1; aB[i] = 40; aC[i] = 0; }); }); Q.submit([&](handler &h) { // create device accessors accessor aA{A, h, read_only}; accessor aB{B, h, read_only}; accessor aC{C, h, read_write}; h.parallel_for(N, [=](id<1> i) { aC[i] += aA[i] + aB[i]; }); }); host_accessor result{C, read_only}; for (int i = 0; i < N; i++) std::cout << result[i] << " "; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/src/buffer_host_ptr.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <mutex> #include <sycl/sycl.hpp> using namespace sycl; static const int N = 20; int main() { int myInts[N]; queue q; //Initialize vector a,b and c std::vector<float> a(N, 10.0f); std::vector<float> b(N, 20.0f); auto R = range<1>(N); { //Create host_ptr buffers for a and b buffer buf_a(a,{property::buffer::use_host_ptr()}); buffer buf_b(b,{property::buffer::use_host_ptr()}); q.submit([&](handler& h) { //create Accessors for a and b accessor A(buf_a,h); accessor B(buf_b,h,read_only); h.parallel_for(R, [=](auto i) { A[i] += B[1] ; }); }); } for (int i = 0; i < N; i++) std::cout << a[i] << " "; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/src/buffer_sample.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> constexpr int num=16; using namespace sycl; int main() { auto R = range<1>{ num }; //Create Buffers A and B buffer<int> A{ R }, B{ R }; //Create a device queue queue Q; //Submit Kernel 1 Q.submit([&](handler& h) { //Accessor for buffer A accessor out(A,h,write_only); h.parallel_for(R, [=](auto idx) { out[idx] = idx[0]; }); }); //Submit Kernel 2 Q.submit([&](handler& h) { //This task will wait till the first queue is complete accessor out(A,h,write_only); h.parallel_for(R, [=](auto idx) { out[idx] += idx[0]; }); }); //Submit Kernel 3 Q.submit([&](handler& h) { //Accessor for Buffer B accessor out(B,h,write_only); h.parallel_for(R, [=](auto idx) { out[idx] = idx[0]; }); }); //Submit task 4 Q.submit([&](handler& h) { //This task will wait till kernel 2 and 3 are complete accessor in (A,h,read_only); accessor inout(B,h); h.parallel_for(R, [=](auto idx) { inout[idx] *= in[idx]; }); }); // And the following is back to device code host_accessor result(B,read_only); for (int i=0; i<num; ++i) std::cout << result[i] << "\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/src/buffer_set_final_data.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <array> using namespace sycl; constexpr int N = 42; int main() { std::array<int,N> my_data; for (int i = 0; i < N; i++) my_data[i] = i; auto buff = std::make_shared<std::array<int, N>>(); { queue q; buffer my_buffer(my_data); //Call the set_final_data to the created shared ptr where the values will be written back when the buffer gets destructed. //my_buffer.set_final_data(nullptr); my_buffer.set_final_data(buff); q.submit([&](handler &h) { // create an accessor to update // the buffer on the device accessor my_accessor(my_buffer, h); h.parallel_for(N, [=](id<1> i) { my_accessor[i]*=2; }); }); } // myData is updated when myBuffer is // destroyed upon exiting scope for (int i = 0; i < N; i++) { std::cout << my_data[i] << " "; } std::cout << "\n"; for (int i = 0; i < N; i++) { std::cout <<(*buff)[i] << " "; } std::cout << "\n"; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/src/lab_buffers.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; int main() { const int N = 256; int data[N]; for (int i = 0; i < N; i++) data[i] = i; std::cout<<"\nInput Values: "; for (int i = 0; i < N; i++) std::cout << data[i] << " "; std::cout<<"\n"; buffer buf_data(data, range(N)); //# STEP 1 : Create 3 non-overlapping/disjoint sub-buffers for buf_data with length 64, 128 and 64. buffer<int> buf_data1(buf_data, 0, range{ 64 }); buffer<int> buf_data2(buf_data, 64, range{ 128 }); buffer<int> buf_data3(buf_data, 192, range{ 64 }); //# STEP 2 : Submit task to Multiply the elements in first sub buffer by 2 queue q1; q1.submit([&](handler& h) { accessor a(buf_data1, h); h.parallel_for(64, [=](auto i) { a[i] *= 2; }); }); //# STEP 3 : Submit task to Multiply the elements in second sub buffer by 3 queue q2; q2.submit([&](handler& h) { accessor a(buf_data2, h); h.parallel_for(128, [=](auto i) { a[i] *= 3; }); }); //# STEP 4 : Submit task to Multiply the elements in third sub buffer by 2 queue q3; q3.submit([&](handler& h) { accessor a(buf_data3, h); h.parallel_for(64, [=](auto i) { a[i] *= 2; }); }); //# STEP 5 : Create Host accessors to get the results back to the host from the device host_accessor a(buf_data, read_only); std::cout<<"\nOutput Values: "; for (int i = 0; i < N; i++) std::cout<< data[i] << " "; std::cout<<"\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/src/host_accessor_init.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <algorithm> #include <iostream> using namespace sycl; int main() { constexpr size_t N = 1024; // Set up queue on any available device queue q; // Create buffers of size N buffer<int> in_buf{N}, out_buf{N}; // Use host accessors to initialize the data { // CRITICAL: Begin scope for host_accessor lifetime! host_accessor in_acc{ in_buf }, out_acc{ out_buf }; for (int i=0; i < N; i++) { in_acc[i] = i; out_acc[i] = 0; } } //Close scope to make host accessors go out of scope! // Submit the kernel to the queue q.submit([&](handler& h) { accessor in{in_buf, h}; accessor out{out_buf, h}; h.parallel_for(range{N}, [=](id<1> idx) { out[idx] = in[idx]; }); }); // Check that all outputs match expected value // Use host accessor! Buffer is still in scope / alive host_accessor A{out_buf}; //for (int i=0; i<N; i++) std::cout << "A[" << i << "]=" << A[i] << "\n"; int indices[]{0, 1, 2, 3, 4, (N - 1)}; constexpr size_t indices_size = sizeof(indices) / sizeof(int); for (int i = 0; i < indices_size; i++) { int j = indices[i]; if (i == indices_size - 1) std::cout << "...\n"; std::cout << "A[" << j << "]=" << A[j] << "\n"; } return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/src/host_accessor_sample.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <algorithm> #include <iostream> using namespace sycl; int main() { // BEGIN CODE SNIP static const int N = 1024; // Set up queue on any available device queue q; // Create host containers to initialize on the host std::vector<int> in_vec(N), out_vec(N); // Initialize input and output vectors for (int i=0; i < N; i++) in_vec[i] = i; std::fill(out_vec.begin(), out_vec.end(), 0); // Create buffers using host allocations (vector in this case) buffer in_buf{in_vec}, out_buf{out_vec}; // Submit the kernel to the queue q.submit([&](handler& h) { accessor in{in_buf, h}; accessor out{out_buf, h}; h.parallel_for(range{N}, [=](id<1> idx) { out[idx] = in[idx] * 2; }); }); // Check that all outputs match expected value // Use host accessor! Buffer is still in scope / alive host_accessor A{out_buf}; //for (int i=0; i<N; i++) std::cout << "A[" << i << "]=" << A[i] << "\n"; int indices[]{0, 1, 2, 3, 4, (N - 1)}; constexpr size_t indices_size = sizeof(indices) / sizeof(int); for (int i = 0; i < indices_size; i++) { int j = indices[i]; if (i == indices_size - 1) std::cout << "...\n"; std::cout << "A[" << j << "]=" << A[j] << "\n"; } // END CODE SNIP return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/lab/sub_buffers.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; int main() { const int N = 64; const int num1 = 2; const int num2 = 3; int data[N]; for (int i = 0; i < N; i++) data[i] = i; std::cout<<"BUffer Values: "; for (int i = 0; i < N; i++) std::cout << data[i] << " "; std::cout<<"\n"; buffer B(data, range(N)); //Create sub buffers with offsets and half of the range. buffer<int> B1(B, 0, range{ N / 2 }); buffer<int> B2(B, 32, range{ N / 2 }); //Multiply the elemets in first sub buffer by 2 queue q1; q1.submit([&](handler& h) { accessor a1(B1, h); h.parallel_for(N/2, [=](auto i) { a1[i] *= num1; }); }); //Multiply the elemets in second sub buffer by 3 queue q2; q2.submit([&](handler& h) { accessor a2(B2, h); h.parallel_for(N/2, [=](auto i) { a2[i] *= num2; }); }); //Host accessors to get the results back to the host from the device host_accessor b1(B1, read_only); host_accessor b2(B2, read_only); std::cout<<"Sub Buffer1: "; for (int i = 0; i < N/2; i++) std::cout<< b1[i] << " "; std::cout<<"\n"; std::cout<<"Sub Buffer2: "; for (int i = 0; i < N/2; i++) std::cout << b2[i] << " "; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/lab/buffer_creation.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; int main() { // Create a buffer of ints from an input iterator std::vector<int> myVec; buffer b1{myVec}; buffer b2{myVec.begin(), myVec.end()}; // Create a buffer of ints from std::array std::array<int,42> my_data; buffer b3{my_data}; // Create a buffer of 4 doubles and initialize it from a host pointer double myDoubles[4] = {1.1, 2.2, 3.3, 4.4}; buffer b4{myDoubles, range{4}}; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/lab/buffer_creation_uncommon.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; int main() { // Create a buffer of 2x5 ints using the default allocator and CTAD for dimensions buffer<int, 2> b1{range{2, 5}}; //Dimensions defaults to 1 // Create a buffer of 20 floats using a default-constructed std::allocator buffer<float> b2{range{20}}; // Create a buffer from a shared pointer to int auto sharedPtr = std::make_shared<int>(42); buffer b3{sharedPtr, range{1}}; // Create a buffer of 2x5 ints and 2 non-overlapping sub-buffers of 5 ints. buffer<int, 2> b4{range{2, 5}}; buffer b5{b4, id{0, 0}, range{1, 5}}; buffer b6{b4, id{1, 0}, range{1, 5}}; // Create a buffer of 5 doubles and initialize it from a host pointer to // const double const double myConstDbls[5] = {1.0, 2.0, 3.0, 4.0, 5.0}; buffer b7{myConstDbls, range{5}}; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/lab/buffer_set_write_back.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <array> using namespace sycl; constexpr int N = 42; int main() { std::array<int,N> my_data; for (int i = 0; i < N; i++) my_data[i] = i; { queue q; buffer my_buffer(my_data); //Call the set_write_back method to control the data to be written back to the host from the device. e //Setting it to false will not update the host with the updated values my_buffer.set_write_back(false); q.submit([&](handler &h) { // create an accessor to update // the buffer on the device accessor my_accessor(my_buffer, h); h.parallel_for(N, [=](id<1> i) { my_accessor[i]*=2; }); }); } // myData is updated when myBuffer is // destroyed upon exiting scope for (int i = 0; i < N; i++) { std::cout << my_data[i] << " "; } }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/lab/accessors_sample.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <cassert> using namespace sycl; constexpr int N = 42; int main() { queue Q; // Create 3 buffers of 42 ints buffer<int> A{range{N}}; buffer<int> B{range{N}}; buffer<int> C{range{N}}; Q.submit([&](handler &h) { // create device accessors accessor aA{A, h, write_only, no_init}; accessor aB{B, h, write_only, no_init}; accessor aC{C, h, write_only, no_init}; h.parallel_for(N, [=](id<1> i) { aA[i] = 1; aB[i] = 40; aC[i] = 0; }); }); Q.submit([&](handler &h) { // create device accessors accessor aA{A, h, read_only}; accessor aB{B, h, read_only}; accessor aC{C, h, read_write}; h.parallel_for(N, [=](id<1> i) { aC[i] += aA[i] + aB[i]; }); }); host_accessor result{C, read_only}; for (int i = 0; i < N; i++) std::cout << result[i] << " "; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/lab/buffer_host_ptr.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <mutex> #include <sycl/sycl.hpp> using namespace sycl; static const int N = 20; int main() { int myInts[N]; queue q; //Initialize vector a,b and c std::vector<float> a(N, 10.0f); std::vector<float> b(N, 20.0f); auto R = range<1>(N); { //Create host_ptr buffers for a and b buffer buf_a(a,{property::buffer::use_host_ptr()}); buffer buf_b(b,{property::buffer::use_host_ptr()}); q.submit([&](handler& h) { //create Accessors for a and b accessor A(buf_a,h); accessor B(buf_b,h,read_only); h.parallel_for(R, [=](auto i) { A[i] += B[1] ; }); }); } for (int i = 0; i < N; i++) std::cout << a[i] << " "; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/lab/buffer_sample.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> constexpr int num=16; using namespace sycl; int main() { auto R = range<1>{ num }; //Create Buffers A and B buffer<int> A{ R }, B{ R }; //Create a device queue queue Q; //Submit Kernel 1 Q.submit([&](handler& h) { //Accessor for buffer A accessor out(A,h,write_only); h.parallel_for(R, [=](auto idx) { out[idx] = idx[0]; }); }); //Submit Kernel 2 Q.submit([&](handler& h) { //This task will wait till the first queue is complete accessor out(A,h,write_only); h.parallel_for(R, [=](auto idx) { out[idx] += idx[0]; }); }); //Submit Kernel 3 Q.submit([&](handler& h) { //Accessor for Buffer B accessor out(B,h,write_only); h.parallel_for(R, [=](auto idx) { out[idx] = idx[0]; }); }); //Submit task 4 Q.submit([&](handler& h) { //This task will wait till kernel 2 and 3 are complete accessor in (A,h,read_only); accessor inout(B,h); h.parallel_for(R, [=](auto idx) { inout[idx] *= in[idx]; }); }); // And the following is back to device code host_accessor result(B,read_only); for (int i=0; i<num; ++i) std::cout << result[i] << "\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/lab/buffer_set_final_data.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <array> using namespace sycl; constexpr int N = 42; int main() { std::array<int,N> my_data; for (int i = 0; i < N; i++) my_data[i] = i; auto buff = std::make_shared<std::array<int, N>>(); { queue q; buffer my_buffer(my_data); //Call the set_final_data to the created shared ptr where the values will be written back when the buffer gets destructed. //my_buffer.set_final_data(nullptr); my_buffer.set_final_data(buff); q.submit([&](handler &h) { // create an accessor to update // the buffer on the device accessor my_accessor(my_buffer, h); h.parallel_for(N, [=](id<1> i) { my_accessor[i]*=2; }); }); } // myData is updated when myBuffer is // destroyed upon exiting scope for (int i = 0; i < N; i++) { std::cout << my_data[i] << " "; } std::cout << "\n"; for (int i = 0; i < N; i++) { std::cout <<(*buff)[i] << " "; } std::cout << "\n"; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/lab/lab_buffers.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; int main() { const int N = 256; int data[N]; for (int i = 0; i < N; i++) data[i] = i; std::cout<<"\nInput Values: "; for (int i = 0; i < N; i++) std::cout << data[i] << " "; std::cout<<"\n"; buffer buf_data(data, range(N)); //# STEP 1 : Create 3 non-overlapping/disjoint sub-buffers for buf_data with length 64, 128 and 64. //# YOUR CODE GOES HERE //# STEP 2 : Submit task to Multiply the elements in first sub buffer by 2 queue q1; q1.submit([&](handler& h) { //# YOUR CODE GOES HERE }); //# STEP 3 : Submit task to Multiply the elements in second sub buffer by 3 queue q2; q2.submit([&](handler& h) { //# YOUR CODE GOES HERE }); //# STEP 4 : Submit task to Multiply the elements in third sub buffer by 2 queue q3; q3.submit([&](handler& h) { //# YOUR CODE GOES HERE }); //# STEP 5 : Create Host accessors to get the results back to the host from the device //# YOUR CODE GOES HERE std::cout<<"\nOutput Values: "; for (int i = 0; i < N; i++) std::cout<< data[i] << " "; std::cout<<"\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/lab/host_accessor_init.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <algorithm> #include <iostream> using namespace sycl; int main() { constexpr size_t N = 1024; // Set up queue on any available device queue q; // Create buffers of size N buffer<int> in_buf{N}, out_buf{N}; // Use host accessors to initialize the data { // CRITICAL: Begin scope for host_accessor lifetime! host_accessor in_acc{ in_buf }, out_acc{ out_buf }; for (int i=0; i < N; i++) { in_acc[i] = i; out_acc[i] = 0; } } //Close scope to make host accessors go out of scope! // Submit the kernel to the queue q.submit([&](handler& h) { accessor in{in_buf, h}; accessor out{out_buf, h}; h.parallel_for(range{N}, [=](id<1> idx) { out[idx] = in[idx]; }); }); // Check that all outputs match expected value // Use host accessor! Buffer is still in scope / alive host_accessor A{out_buf}; //for (int i=0; i<N; i++) std::cout << "A[" << i << "]=" << A[i] << "\n"; int indices[]{0, 1, 2, 3, 4, (N - 1)}; constexpr size_t indices_size = sizeof(indices) / sizeof(int); for (int i = 0; i < indices_size; i++) { int j = indices[i]; if (i == indices_size - 1) std::cout << "...\n"; std::cout << "A[" << j << "]=" << A[j] << "\n"; } return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/09_SYCL_Buffers_And_Accessors_Indepth/lab/host_accessor_sample.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <algorithm> #include <iostream> using namespace sycl; int main() { // BEGIN CODE SNIP static const int N = 1024; // Set up queue on any available device queue q; // Create host containers to initialize on the host std::vector<int> in_vec(N), out_vec(N); // Initialize input and output vectors for (int i=0; i < N; i++) in_vec[i] = i; std::fill(out_vec.begin(), out_vec.end(), 0); // Create buffers using host allocations (vector in this case) buffer in_buf{in_vec}, out_buf{out_vec}; // Submit the kernel to the queue q.submit([&](handler& h) { accessor in{in_buf, h}; accessor out{out_buf, h}; h.parallel_for(range{N}, [=](id<1> idx) { out[idx] = in[idx] * 2; }); }); // Check that all outputs match expected value // Use host accessor! Buffer is still in scope / alive host_accessor A{out_buf}; //for (int i=0; i<N; i++) std::cout << "A[" << i << "]=" << A[i] << "\n"; int indices[]{0, 1, 2, 3, 4, (N - 1)}; constexpr size_t indices_size = sizeof(indices) / sizeof(int); for (int i = 0; i < indices_size; i++) { int j = indices[i]; if (i == indices_size - 1) std::cout << "...\n"; std::cout << "A[" << j << "]=" << A[j] << "\n"; } // END CODE SNIP return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/01_oneAPI_Intro/src/sycl_vector_add.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <iostream> //# STEP 1 : Include header for SYCL #include <sycl/sycl.hpp> int main(){ //# STEP 2: Create a SYCL queue and device selection for offload sycl::queue q; //# initialize some data array const int N = 16; //# STEP 3: Allocate memory so that both host and device can access auto a = sycl::malloc_shared<float>(N, q); auto b = sycl::malloc_shared<float>(N, q); auto c = sycl::malloc_shared<float>(N, q); for(int i=0;i<N;i++) { a[i] = 1; b[i] = 2; c[i] = 0; } //# STEP 4: Submit computation to Offload device q.parallel_for(N, [=](auto i){ //# computation for(int i=0;i<N;i++) c[i] = a[i] + b[i]; }).wait(); //# print output for(int i=0;i<N;i++) std::cout << c[i] << "\n"; sycl::free(a, q); sycl::free(b, q); sycl::free(c, q); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/01_oneAPI_Intro/src/simple.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static const int N = 16; int main(){ //# define queue which has default device associated for offload queue q; std::cout << "Device: " << q.get_device().get_info<info::device::name>() << "\n"; //# Unified Shared Memory Allocation enables data access on host and device int *data = malloc_shared<int>(N, q); //# Initialization for(int i=0; i<N; i++) data[i] = i; //# Offload parallel computation to device q.parallel_for(range<1>(N), [=] (id<1> i){ data[i] *= 2; }).wait(); //# Print Output for(int i=0; i<N; i++) std::cout << data[i] << "\n"; free(data, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/01_oneAPI_Intro/src/onedpl_compute_offload.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <oneapi/dpl/algorithm> #include <oneapi/dpl/execution> #include <iostream> int main(){ //# initialize some data array const int N = 16; std::vector<int> data(N); for(int i=0;i<N;i++) data[i] = i; //# parallel computation on GPU using SYCL library (oneDPL) oneapi::dpl::for_each(oneapi::dpl::execution::dpcpp_default, data.begin(), data.end(), [](int &tmp){ tmp *= 5; }); //# print output for(int i=0;i<N;i++) std::cout << data[i] << "\n"; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/01_oneAPI_Intro/src/sycl_compute_offload_parallelism.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <iostream> int main(){ //# select device for offload sycl::queue q(sycl::gpu_selector_v); std::cout << "Offload Device: " << q.get_device().get_info<sycl::info::device::name>() << "\n"; //# initialize some data array const int N = 16; auto data = sycl::malloc_shared<float>(N, q); for(int i=0;i<N;i++) data[i] = i; //# parallel computation on GPU q.parallel_for(N,[=](auto i){ data[i] = data[i] * 5; }).wait(); //# print output for(int i=0;i<N;i++) std::cout << data[i] << "\n"; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/01_oneAPI_Intro/src/sycl_compute_offload.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <iostream> int main(){ //# select device for offload sycl::queue q(sycl::gpu_selector_v); std::cout << "Offload Device: " << q.get_device().get_info<sycl::info::device::name>() << "\n"; //# initialize some data array const int N = 16; auto data = sycl::malloc_shared<float>(N, q); for(int i=0;i<N;i++) data[i] = i; //# computation on GPU q.single_task([=](){ for(int i=0;i<N;i++) data[i] = data[i] * 5; }).wait(); //# print output for(int i=0;i<N;i++) std::cout << data[i] << "\n"; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/01_oneAPI_Intro/src/cpp_compute.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <iostream> int main(){ //# initialize some data array const int N = 16; float data[N]; for(int i=0;i<N;i++) data[i] = i; //# computation on CPU for(int i=0;i<N;i++) data[i] = data[i] * 5; //# print output for(int i=0;i<N;i++) std::cout << data[i] << "\n"; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/01_oneAPI_Intro/lab/sycl_vector_add.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <iostream> //# STEP 1 : Include header for SYCL //# YOUR CODE GOES HERE int main(){ //# STEP 2: Create a SYCL queue and device selection for offload //# YOUR CODE GOES HERE //# initialize some data array const int N = 16; //# STEP 3: Allocate memory so that both host and device can access //# MODIFY THE CODE BELOW float a[N], b[N], c[N]; for(int i=0;i<N;i++) { a[i] = 1; b[i] = 2; c[i] = 0; } //# STEP 4: Submit computation to Offload device //# MODIFY THE CODE BELOW //# computation for(int i=0;i<N;i++) c[i] = a[i] + b[i]; //# print output for(int i=0;i<N;i++) std::cout << c[i] << "\n"; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/01_oneAPI_Intro/lab/simple.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static const int N = 16; int main(){ //# define queue which has default device associated for offload queue q; std::cout << "Device: " << q.get_device().get_info<info::device::name>() << "\n"; //# Unified Shared Memory Allocation enables data access on host and device int *data = malloc_shared<int>(N, q); //# Initialization for(int i=0; i<N; i++) data[i] = i; //# Offload parallel computation to device q.parallel_for(range<1>(N), [=] (id<1> i){ data[i] *= 2; }).wait(); //# Print Output for(int i=0; i<N; i++) std::cout << data[i] << "\n"; free(data, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/01_oneAPI_Intro/lab/onedpl_compute_offload.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <oneapi/dpl/algorithm> #include <oneapi/dpl/execution> #include <iostream> int main(){ //# initialize some data array const int N = 16; std::vector<int> data(N); for(int i=0;i<N;i++) data[i] = i; //# parallel computation on GPU using SYCL library (oneDPL) oneapi::dpl::for_each(oneapi::dpl::execution::dpcpp_default, data.begin(), data.end(), [](int &tmp){ tmp *= 5; }); //# print output for(int i=0;i<N;i++) std::cout << data[i] << "\n"; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/01_oneAPI_Intro/lab/sycl_compute_offload_parallelism.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <iostream> int main(){ //# select device for offload sycl::queue q(sycl::gpu_selector_v); std::cout << "Offload Device: " << q.get_device().get_info<sycl::info::device::name>() << "\n"; //# initialize some data array const int N = 16; auto data = sycl::malloc_shared<float>(N, q); for(int i=0;i<N;i++) data[i] = i; //# parallel computation on GPU q.parallel_for(N,[=](auto i){ data[i] = data[i] * 5; }).wait(); //# print output for(int i=0;i<N;i++) std::cout << data[i] << "\n"; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/01_oneAPI_Intro/lab/sycl_compute_offload.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <iostream> int main(){ //# select device for offload sycl::queue q(sycl::gpu_selector_v); std::cout << "Offload Device: " << q.get_device().get_info<sycl::info::device::name>() << "\n"; //# initialize some data array const int N = 16; auto data = sycl::malloc_shared<float>(N, q); for(int i=0;i<N;i++) data[i] = i; //# computation on GPU q.single_task([=](){ for(int i=0;i<N;i++) data[i] = data[i] * 5; }).wait(); //# print output for(int i=0;i<N;i++) std::cout << data[i] << "\n"; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/01_oneAPI_Intro/lab/cpp_compute.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <iostream> int main(){ //# initialize some data array const int N = 16; float data[N]; for(int i=0;i<N;i++) data[i] = i; //# computation on CPU for(int i=0;i<N;i++) data[i] = data[i] * 5; //# print output for(int i=0;i<N;i++) std::cout << data[i] << "\n"; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/03_SYCL_Unified_Shared_Memory/src/usm_lab.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static const int N = 1024; int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //intialize 2 arrays on host int *data1 = static_cast<int *>(malloc(N * sizeof(int))); int *data2 = static_cast<int *>(malloc(N * sizeof(int))); for (int i = 0; i < N; i++) { data1[i] = 25; data2[i] = 49; } //# STEP 1 : Create USM device allocation for data1 and data2 auto data1_device = malloc_device<int>(N, q); auto data2_device = malloc_device<int>(N, q); //# STEP 2 : Copy data1 and data2 to USM device allocation auto e1 = q.memcpy(data1_device, data1, N * sizeof(int)); auto e2 = q.memcpy(data2_device, data2, N * sizeof(int)); //# STEP 3 : Write kernel code to update data1 on device with square of its value auto e3 = q.parallel_for(N, e1, [=](auto i) { data1_device[i] = (data1_device[i]*data1_device[i]); }); //# STEP 4 : Write kernel code to update data2 on device with square of its value auto e4 = q.parallel_for(N, e2, [=](auto i) { data2_device[i] = (data2_device[i]*data2_device[i]); }); //# STEP 5 : Write kernel code to add data2 on device to data1 auto e5 = q.parallel_for(N, {e3,e4}, [=](auto i) { data1_device[i] += data2_device[i]; }); //# STEP 6 : Copy result from device to data1 q.memcpy(data1, data1_device, N * sizeof(int), e5).wait(); //# verify results int fail = 0; for (int i = 0; i < N; i++) if(data1[i] != 3026) {fail = 1; break;} if(fail == 1) std::cout << " FAIL"; else std::cout << " PASS"; std::cout << "\n"; free(data1_device, q); free(data2_device, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/03_SYCL_Unified_Shared_Memory/src/usm_data.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static const int N = 256; int main() { /* in_order queue property */ queue q{property::queue::in_order()}; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; int *data = static_cast<int *>(malloc_shared(N * sizeof(int), q)); for (int i = 0; i < N; i++) data[i] = 10; q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; }); q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; }); q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 5; }); q.wait(); for (int i = 0; i < N; i++) std::cout << data[i] << " "; std::cout << "\n"; free(data, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/03_SYCL_Unified_Shared_Memory/src/usm.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static const int N = 16; int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //# USM allocation using malloc_shared int *data = static_cast<int *>(malloc_shared(N * sizeof(int), q)); //# Initialize data array for (int i = 0; i < N; i++) data[i] = i; //# Modify data array on device q.parallel_for(range<1>(N), [=](id<1> i) { data[i] *= 2; }).wait(); //# print output for (int i = 0; i < N; i++) std::cout << data[i] << "\n"; free(data, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/03_SYCL_Unified_Shared_Memory/src/usm_explicit.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static const int N = 16; int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //# initialize data on host int *data = static_cast<int *>(malloc(N * sizeof(int))); for (int i = 0; i < N; i++) data[i] = i; //# Explicit USM allocation using malloc_device int *data_device = malloc_device<int>(N, q); //# copy mem from host to device q.memcpy(data_device, data, sizeof(int) * N).wait(); //# update device memory q.parallel_for(range<1>(N), [=](id<1> i) { data_device[i] *= 2; }).wait(); //# copy mem from device to host q.memcpy(data, data_device, sizeof(int) * N).wait(); //# print output for (int i = 0; i < N; i++) std::cout << data[i] << "\n"; free(data_device, q); free(data); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/03_SYCL_Unified_Shared_Memory/src/usm_data2.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static const int N = 1024; int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; int *data1 = malloc_shared<int>(N, q); int *data2 = malloc_shared<int>(N, q); for (int i = 0; i < N; i++) { data1[i] = 10; data2[i] = 10; } auto e1 = q.parallel_for(range<1>(N), [=](id<1> i) { data1[i] += 2; }); auto e2 = q.parallel_for(range<1>(N), [=](id<1> i) { data2[i] += 3; }); q.parallel_for(range<1>(N), {e1, e2}, [=](id<1> i) { data1[i] += data2[i]; }).wait(); for (int i = 0; i < N; i++) std::cout << data1[i] << " "; std::cout << "\n"; free(data1, q); free(data2, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/03_SYCL_Unified_Shared_Memory/lab/usm_lab.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static const int N = 1024; int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //intialize 2 arrays on host int *data1 = static_cast<int *>(malloc(N * sizeof(int))); int *data2 = static_cast<int *>(malloc(N * sizeof(int))); for (int i = 0; i < N; i++) { data1[i] = 25; data2[i] = 49; } //# STEP 1 : Create USM device allocation for data1 and data2 //# YOUR CODE GOES HERE //# STEP 2 : Copy data1 and data2 to USM device allocation //# YOUR CODE GOES HERE //# STEP 3 : Write kernel code to update data1 on device with square of its value q.parallel_for(N, [=](auto i) { //# YOUR CODE GOES HERE }); //# STEP 3 : Write kernel code to update data2 on device with square of its value q.parallel_for(N, [=](auto i) { //# YOUR CODE GOES HERE }); //# STEP 5 : Write kernel code to add data2 on device to data1 q.parallel_for(N, [=](auto i) { //# YOUR CODE GOES HERE }); //# STEP 6 : Copy data1 on device to host //# YOUR CODE GOES HERE //# verify results int fail = 0; for (int i = 0; i < N; i++) if(data1[i] != 12) {fail = 1; break;} if(fail == 1) std::cout << " FAIL"; else std::cout << " PASS"; std::cout << "\n"; //# STEP 7 : Free USM device allocations //# YOUR CODE GOES HERE //# STEP 8 : Add event based kernel dependency for the Steps 2 - 6 return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/03_SYCL_Unified_Shared_Memory/lab/usm_data.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static const int N = 256; int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; int *data = static_cast<int *>(malloc_shared(N * sizeof(int), q)); for (int i = 0; i < N; i++) data[i] = 10; q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; }); q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; }); q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 5; }); q.wait(); for (int i = 0; i < N; i++) std::cout << data[i] << " "; std::cout << "\n"; free(data, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/03_SYCL_Unified_Shared_Memory/lab/usm.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static const int N = 16; int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //# USM allocation using malloc_shared int *data = malloc_shared<int>(N, q); //# Initialize data array for (int i = 0; i < N; i++) data[i] = i; //# Modify data array on device q.parallel_for(range<1>(N), [=](id<1> i) { data[i] *= 2; }).wait(); //# print output for (int i = 0; i < N; i++) std::cout << data[i] << "\n"; free(data, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/03_SYCL_Unified_Shared_Memory/lab/usm_explicit.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static const int N = 16; int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //# initialize data on host int *data = static_cast<int *>(malloc(N * sizeof(int))); for (int i = 0; i < N; i++) data[i] = i; //# Explicit USM allocation using malloc_device int *data_device = malloc_device<int>(N, q); //# copy mem from host to device q.memcpy(data_device, data, sizeof(int) * N).wait(); //# update device memory q.parallel_for(range<1>(N), [=](id<1> i) { data_device[i] *= 2; }).wait(); //# copy mem from device to host q.memcpy(data, data_device, sizeof(int) * N).wait(); //# print output for (int i = 0; i < N; i++) std::cout << data[i] << "\n"; free(data_device, q); free(data); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/03_SYCL_Unified_Shared_Memory/lab/usm_data2.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static const int N = 1024; int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; int *data1 = malloc_shared<int>(N, q); int *data2 = malloc_shared<int>(N, q); for (int i = 0; i < N; i++) { data1[i] = 10; data2[i] = 10; } q.parallel_for(range<1>(N), [=](id<1> i) { data1[i] += 2; }); q.parallel_for(range<1>(N), [=](id<1> i) { data2[i] += 3; }); q.parallel_for(range<1>(N), [=](id<1> i) { data1[i] += data2[i]; }).wait(); for (int i = 0; i < N; i++) std::cout << data1[i] << " "; std::cout << "\n"; free(data1, q); free(data2, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/11_Intel_Distribution_for_GDB/src/selector.hpp
//============================================================== // Copyright (C) Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <iostream> // Custom device selector to select a device of the specified type. // The platform of the device has to contain the phrase "Intel". If // the platform or the type are not as expected, the queried device is // not selected, as indicated by a negative score. using namespace std; using namespace sycl; class CustomSelector { public: CustomSelector(info::device_type type) : type{type} {} int operator()(const device& dev) const { if (type != dev.get_info<info::device::device_type>()) return -1; string platform_name = dev.get_platform().get_info<info::platform::name>(); if (platform_name.find("Intel") != string::npos) return 10; else return (type == info::device_type::host) ? 10 : -1; } private: info::device_type type; }; // Return the device type based on the program arguments. static info::device_type GetDeviceType(int argc, char* argv[]) { if (argc < 2) { cerr << "Usage: " << argv[0] << " " << "<host|cpu|gpu|accelerator>\n"; exit(1); } string type_arg{argv[1]}; info::device_type type; if (type_arg.compare("host") == 0) type = info::device_type::host; else if (type_arg.compare("cpu") == 0) type = info::device_type::cpu; else if (type_arg.compare("gpu") == 0) type = info::device_type::gpu; else if (type_arg.compare("accelerator") == 0) type = info::device_type::accelerator; else { cerr << "fail; unrecognized device type '" << type_arg << "'\n"; exit(-1); } return type; }
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/11_Intel_Distribution_for_GDB/src/array-transform.cpp
//============================================================== // Copyright (C) Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= // This is a simple SYCL program that accompanies the Getting Started // Guide of the debugger. The kernel does not compute anything // particularly interesting; it is designed to illustrate the most // essential features of the debugger when the target device is CPU or // GPU. #include <sycl/sycl.hpp> #include <iostream> #include "selector.hpp" using namespace std; using namespace sycl; // A device function, called from inside the kernel. static size_t GetDim(id<1> wi, int dim) { return wi[dim]; } int main(int argc, char *argv[]) { constexpr size_t length = 64; int input[length]; int output[length]; // Initialize the input for (int i = 0; i < length; i++) input[i] = i + 100; try { CustomSelector selector(GetDeviceType(argc, argv)); queue q(selector); cout << "[SYCL] Using device: [" << q.get_device().get_info<info::device::name>() << "] from [" << q.get_device().get_platform().get_info<info::platform::name>() << "]\n"; range data_range{length}; buffer buffer_in{input, data_range}; buffer buffer_out{output, data_range}; q.submit([&](auto &h) { accessor in(buffer_in, h, read_only); accessor out(buffer_out, h, write_only); // kernel-start h.parallel_for(data_range, [=](id<1> index) { size_t id0 = GetDim(index, 0); int element = in[index]; // breakpoint-here int result = element + 50; if (id0 % 2 == 0) { result = result + 50; // then-branch } else { result = -1; // else-branch } out[index] = result; }); // kernel-end }); q.wait_and_throw(); } catch (sycl::exception const& e) { cout << "fail; synchronous exception occurred: " << e.what() << "\n"; return -1; } // Verify the output for (int i = 0; i < length; i++) { int result = (i % 2 == 0) ? (input[i] + 100) : -1; if (output[i] != result) { cout << "fail; element " << i << " is " << output[i] << "\n"; return -1; } } cout << "success; result is correct.\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/04_SYCL_Sub_Groups/src/sub_group_reqd_size.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static constexpr size_t N = 64; // global size static constexpr size_t B = 64; // work-group size int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //# get all supported sub_group sizes and print auto sg_sizes = q.get_device().get_info<info::device::sub_group_sizes>(); std::cout << "Supported Sub-Group Sizes : "; for (int i=0; i<sg_sizes.size(); i++) std::cout << sg_sizes[i] << " "; std::cout << "\n"; //# find out maximum supported sub_group size auto max_sg_size = std::max_element(sg_sizes.begin(), sg_sizes.end()); std::cout << "Max Sub-Group Size : " << max_sg_size[0] << "\n"; q.submit([&](handler &h) { //# setup sycl stream class to print standard output from device code auto out = stream(1024, 768, h); //# nd-range kernel with user specified sub_group size h.parallel_for(nd_range<1>(N, B), [=](nd_item<1> item)[[intel::reqd_sub_group_size(32)]] { //# get sub_group handle auto sg = item.get_sub_group(); //# query sub_group and print sub_group info once per sub_group if (sg.get_local_id()[0] == 0) { out << "sub_group id: " << sg.get_group_id()[0] << " of " << sg.get_group_range()[0] << ", size=" << sg.get_local_range()[0] << "\n"; } }); }).wait(); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/04_SYCL_Sub_Groups/src/sub_group_info.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static constexpr size_t N = 64; // global size static constexpr size_t B = 64; // work-group size int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; q.submit([&](handler &h) { //# setup sycl stream class to print standard output from device code auto out = stream(1024, 768, h); //# nd-range kernel h.parallel_for(nd_range<1>(N, B), [=](nd_item<1> item) { //# get sub_group handle auto sg = item.get_sub_group(); //# query sub_group and print sub_group info once per sub_group if (sg.get_local_id()[0] == 0) { out << "sub_group id: " << sg.get_group_id()[0] << " of " << sg.get_group_range()[0] << ", size=" << sg.get_local_range()[0] << "\n"; } }); }).wait(); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/04_SYCL_Sub_Groups/src/sub_group_shuffle.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static constexpr size_t N = 256; // global size static constexpr size_t B = 64; // work-group size int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //# initialize data array using usm int *data = malloc_shared<int>(N, q); for (int i = 0; i < N; i++) data[i] = i; for (int i = 0; i < N; i++) std::cout << data[i] << " "; std::cout << "\n\n"; q.parallel_for(nd_range<1>(N, B), [=](nd_item<1> item) { auto sg = item.get_sub_group(); auto i = item.get_global_id(0); //# swap adjacent items in array using sub_group permute_group_by_xor data[i] = permute_group_by_xor(sg, data[i], 1); //# reverse the order of items in sub_group using permute_group_by_xor //data[i] = permute_group_by_xor(sg, data[i], sg.get_max_local_range() - 1); }).wait(); for (int i = 0; i < N; i++) std::cout << data[i] << " "; std::cout << "\n"; free(data, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/04_SYCL_Sub_Groups/src/sub_group_reduce.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static constexpr size_t N = 256; // global size static constexpr size_t B = 64; // work-group size int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //# initialize data array using usm int *data = malloc_shared<int>(N, q); for (int i = 0; i < N; i++) data[i] = i; for (int i = 0; i < N; i++) std::cout << data[i] << " "; std::cout << "\n\n"; q.parallel_for(nd_range<1>(N, B), [=](nd_item<1> item) { auto sg = item.get_sub_group(); auto i = item.get_global_id(0); //# Adds all elements in sub_group using sub_group collectives int sum = reduce_over_group(sg, data[i], plus<>()); //# write sub_group sum in first location for each sub_group if (sg.get_local_id()[0] == 0) { data[i] = sum; } else { data[i] = 0; } }).wait(); for (int i = 0; i < N; i++) std::cout << data[i] << " "; std::cout << "\n"; free(data, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/04_SYCL_Sub_Groups/src/sub_group_lab.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static constexpr size_t N = 1024; // global size static constexpr size_t B = 256; // work-group size static constexpr size_t S = 32; // sub-group size int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //# allocate USM shared allocation for input data array and sg_data array int *data = malloc_shared<int>(N, q); int *sg_data = malloc_shared<int>(N/S, q); //# initialize input data array for (int i = 0; i < N; i++) data[i] = i; for (int i = 0; i < N; i++) std::cout << data[i] << " "; std::cout << "\n\n"; //# Kernel task to compute sub-group sum and save to sg_data array //# STEP 1 : fix the sub_group size to value S in the kernel below q.parallel_for(nd_range<1>(N, B), [=](nd_item<1> item)[[intel::reqd_sub_group_size(S)]] { auto sg = item.get_sub_group(); auto i = item.get_global_id(0); //# STEP 2: Add all elements in sub_group using sub_group reduce int sg_sum = reduce_over_group(sg, data[i], plus<>()); //# STEP 3 : save each sub-group sum to sg_sum array if (sg.get_local_id()[0] == 0) { sg_data[i/S] = sg_sum; } }).wait(); //# print sg_sum array for (int i = 0; i < N/S; i++) std::cout << sg_data[i] << " "; std::cout << "\n"; //# STEP 4: compute sum of all elements in sg_data array int sum = 0; for (int i = 0; i < N/S; i++) sum += sg_data[i]; std::cout << "\nSum = " << sum << "\n"; //# free USM allocations free(data, q); free(sg_data, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/04_SYCL_Sub_Groups/src/sub_group_votes.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static constexpr size_t N = 32; // global size static constexpr size_t B = 16; // work-group size int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //# initialize input and output array using usm auto input = malloc_shared<int>(N, q); auto all = malloc_shared<int>(N, q); auto any = malloc_shared<int>(N, q); auto none = malloc_shared<int>(N, q); //# initialize values for input array for(int i=0; i<N; i++) { if (i< 10) input[i] = 0; else input[i] = i; } std::cout << "input:\n"; for(int i=0; i<N; i++) std::cout << input[i] << " "; std::cout << "\n"; //# use parallel_for and sub_groups q.parallel_for(nd_range<1>(N, B), [=](nd_item<1> item)[[intel::reqd_sub_group_size(8)]] { auto sg = item.get_sub_group(); auto i = item.get_global_id(0); //# write items with vote functions all[i] = all_of_group(sg, input[i]); any[i] = any_of_group(sg, input[i]); none[i] = none_of_group(sg, input[i]); }).wait(); std::cout << "all_of:\n"; for(int i=0; i<N; i++) std::cout << all[i] << " "; std::cout << "\n"; std::cout << "any_of:\n"; for(int i=0; i<N; i++) std::cout << any[i] << " "; std::cout << "\n"; std::cout << "none_of:\n"; for(int i=0; i<N; i++) std::cout << none[i] << " "; std::cout << "\n"; free(input, q); free(all, q); free(any, q); free(none, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/04_SYCL_Sub_Groups/src/sub_group_broadcast.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static constexpr size_t N = 256; // global size static constexpr size_t B = 64; // work-group size int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //# initialize data array using usm int *data = malloc_shared<int>(N, q); for(int i=0; i<N; i++) data[i] = i; for(int i=0; i<N; i++) std::cout << data[i] << " "; std::cout << "\n"; //# use parallel_for and sub_groups q.parallel_for(nd_range<1>(N, B), [=](nd_item<1> item) { auto sg = item.get_sub_group(); auto i = item.get_global_id(0); //# write sub_group item values to broadcast value at index 3 data[i] = group_broadcast(sg, data[i], 3); }).wait(); for(int i=0; i<N; i++) std::cout << data[i] << " "; std::cout << "\n"; free(data, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/04_SYCL_Sub_Groups/lab/sub_group_reqd_size.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static constexpr size_t N = 64; // global size static constexpr size_t B = 64; // work-group size int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //# get all supported sub_group sizes and print auto sg_sizes = q.get_device().get_info<info::device::sub_group_sizes>(); std::cout << "Supported Sub-Group Sizes : "; for (int i=0; i<sg_sizes.size(); i++) std::cout << sg_sizes[i] << " "; std::cout << "\n"; //# find out maximum supported sub_group size auto max_sg_size = std::max_element(sg_sizes.begin(), sg_sizes.end()); std::cout << "Max Sub-Group Size : " << max_sg_size[0] << "\n"; q.submit([&](handler &h) { //# setup sycl stream class to print standard output from device code auto out = stream(1024, 768, h); //# nd-range kernel with user specified sub_group size h.parallel_for(nd_range<1>(N, B), [=](nd_item<1> item)[[intel::reqd_sub_group_size(32)]] { //# get sub_group handle auto sg = item.get_sub_group(); //# query sub_group and print sub_group info once per sub_group if (sg.get_local_id()[0] == 0) { out << "sub_group id: " << sg.get_group_id()[0] << " of " << sg.get_group_range()[0] << ", size=" << sg.get_local_range()[0] << "\n"; } }); }).wait(); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/04_SYCL_Sub_Groups/lab/sub_group_info.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static constexpr size_t N = 64; // global size static constexpr size_t B = 64; // work-group size int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; q.submit([&](handler &h) { //# setup sycl stream class to print standard output from device code auto out = stream(1024, 768, h); //# nd-range kernel h.parallel_for(nd_range<1>(N, B), [=](nd_item<1> item) { //# get sub_group handle auto sg = item.get_sub_group(); //# query sub_group and print sub_group info once per sub_group if (sg.get_local_id()[0] == 0) { out << "sub_group id: " << sg.get_group_id()[0] << " of " << sg.get_group_range()[0] << ", size=" << sg.get_local_range()[0] << "\n"; } }); }).wait(); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/04_SYCL_Sub_Groups/lab/sub_group_shuffle.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static constexpr size_t N = 256; // global size static constexpr size_t B = 64; // work-group size int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //# initialize data array using usm int *data = malloc_shared<int>(N, q); for (int i = 0; i < N; i++) data[i] = i; for (int i = 0; i < N; i++) std::cout << data[i] << " "; std::cout << "\n\n"; q.parallel_for(nd_range<1>(N, B), [=](nd_item<1> item) { auto sg = item.get_sub_group(); auto i = item.get_global_id(0); //# swap adjacent items in array using sub_group permute_group_by_xor data[i] = permute_group_by_xor(sg, data[i], 1); //# reverse the order of items in sub_group using permute_group_by_xor //data[i] = permute_group_by_xor(sg, data[i], sg.get_max_local_range()[0] - 1); }).wait(); for (int i = 0; i < N; i++) std::cout << data[i] << " "; std::cout << "\n"; free(data, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/04_SYCL_Sub_Groups/lab/sub_group_reduce.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static constexpr size_t N = 256; // global size static constexpr size_t B = 64; // work-group size int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //# initialize data array using usm int *data = malloc_shared<int>(N, q); for (int i = 0; i < N; i++) data[i] = i; for (int i = 0; i < N; i++) std::cout << data[i] << " "; std::cout << "\n\n"; q.parallel_for(nd_range<1>(N, B), [=](nd_item<1> item) { auto sg = item.get_sub_group(); auto i = item.get_global_id(0); //# Add all elements in sub_group using sub_group collectives int result = reduce_over_group(sg, data[i], plus<>()); //# write sub_group sum in first location for each sub_group if (sg.get_local_id()[0] == 0) { data[i] = result; } else { data[i] = 0; } }).wait(); for (int i = 0; i < N; i++) std::cout << data[i] << " "; std::cout << "\n"; free(data, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/04_SYCL_Sub_Groups/lab/sub_group_lab.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static constexpr size_t N = 1024; // global size static constexpr size_t B = 256; // work-group size static constexpr size_t S = 32; // sub-group size int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //# allocate USM shared allocation for input data array and sg_data array int *data = malloc_shared<int>(N, q); int *sg_data = malloc_shared<int>(N/S, q); //# initialize input data array for (int i = 0; i < N; i++) data[i] = i; for (int i = 0; i < N; i++) std::cout << data[i] << " "; std::cout << "\n\n"; //# Kernel task to compute sub-group sum and save to sg_data array //# STEP 1 : set fixed sub_group size of value S in the kernel below q.parallel_for(nd_range<1>(N, B), [=](nd_item<1> item) { auto sg = item.get_sub_group(); auto i = item.get_global_id(0); //# STEP 2: Add all elements in sub_group using sub_group reduce //# YOUR CODE GOES HERE //# STEP 3 : save each sub-group sum to sg_data array //# YOUR CODE GOES HERE }).wait(); //# print sg_data array for (int i = 0; i < N/S; i++) std::cout << sg_data[i] << " "; std::cout << "\n"; //# STEP 4: compute sum of all elements in sg_data array int sum = 0; //# YOUR CODE GOES HERE std::cout << "\nSum = " << sum << "\n"; //# free USM allocations free(data, q); free(sg_data, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/04_SYCL_Sub_Groups/lab/sub_group_votes.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static constexpr size_t N = 32; // global size static constexpr size_t B = 16; // work-group size int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //# initialize input and output array using usm auto input = malloc_shared<int>(N, q); auto all = malloc_shared<int>(N, q); auto any = malloc_shared<int>(N, q); auto none = malloc_shared<int>(N, q); //# initialize values for input array for(int i=0; i<N; i++) { if (i< 10) input[i] = 0; else input[i] = i; } std::cout << "input:\n"; for(int i=0; i<N; i++) std::cout << input[i] << " "; std::cout << "\n"; //# use parallel_for and sub_groups q.parallel_for(nd_range<1>(N, B), [=](nd_item<1> item)[[intel::reqd_sub_group_size(32)]] { auto sg = item.get_sub_group(); auto i = item.get_global_id(0); //# write items with vote functions all[i] = all_of_group(sg, input[i]); any[i] = any_of_group(sg, input[i]); none[i] = none_of_group(sg, input[i]); }).wait(); std::cout << "all_of:\n"; for(int i=0; i<N; i++) std::cout << all[i] << " "; std::cout << "\n"; std::cout << "any_of:\n"; for(int i=0; i<N; i++) std::cout << any[i] << " "; std::cout << "\n"; std::cout << "none_of:\n"; for(int i=0; i<N; i++) std::cout << none[i] << " "; std::cout << "\n"; free(input, q); free(all, q); free(any, q); free(none, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/04_SYCL_Sub_Groups/lab/sub_group_broadcast.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static constexpr size_t N = 256; // global size static constexpr size_t B = 64; // work-group size int main() { queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //# initialize data array using usm int *data = malloc_shared<int>(N, q); for(int i=0; i<N; i++) data[i] = i; for(int i=0; i<N; i++) std::cout << data[i] << " "; std::cout << "\n\n"; //# use parallel_for and sub_groups q.parallel_for(nd_range<1>(N, B), [=](nd_item<1> item) { auto sg = item.get_sub_group(); auto i = item.get_global_id(0); //# write sub_group item values to broadcast value at index 3 data[i] = group_broadcast(sg, data[i], 3); }).wait(); for(int i=0; i<N; i++) std::cout << data[i] << " "; std::cout << "\n"; free(data, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/02_SYCL_Program_Structure/src/buffer_destruction2.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> constexpr int N = 16; using namespace sycl; // Buffer creation happens within a separate function scope. void SYCL_code(std::vector<int> &v, queue &q) { auto R = range<1>(N); buffer buf(v); q.submit([&](handler &h) { accessor a(buf,h); h.parallel_for(R, [=](auto i) { a[i] -= 2; }); }); } int main() { std::vector<int> v(N, 10); queue q; SYCL_code(v, q); // When execution advances beyond this function scope, buffer destructor is // invoked which relinquishes the ownership of data and copies back the data to // the host memory. for (int i = 0; i < N; i++) std::cout << v[i] << "\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/02_SYCL_Program_Structure/src/complex_mult_solution.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <iomanip> #include <vector> #include "Complex.hpp" using namespace sycl; using namespace std; // Number of complex numbers passing to the SYCL code static const int num_elements = 10000; class CustomDeviceSelector { public: CustomDeviceSelector(std::string vendorName) : vendorName_(vendorName){}; int operator()(const device &dev) const { int device_rating = 0; //We are querying for the custom device specific to a Vendor and if it is a GPU device we //are giving the highest rating as 3 . The second preference is given to any GPU device and the third preference is given to //CPU device. //**************Step1: Uncomment the following lines where you are setting the rating for the devices******** if (dev.is_gpu() & (dev.get_info<info::device::name>().find(vendorName_) != std::string::npos)) device_rating = 3; else if (dev.is_gpu()) device_rating = 2; else if (dev.is_cpu()) device_rating = 1; return device_rating; }; private: std::string vendorName_; }; // in_vect1 and in_vect2 are the vectors with num_elements complex nubers and // are inputs to the parallel function void SYCLParallel(queue &q, std::vector<Complex2> &in_vect1, std::vector<Complex2> &in_vect2, std::vector<Complex2> &out_vect) { auto R = range(in_vect1.size()); if (in_vect2.size() != in_vect1.size() || out_vect.size() != in_vect1.size()){ std::cout << "ERROR: Vector sizes do not match"<< "\n"; return; } // Setup input buffers buffer bufin_vect1(in_vect1); buffer bufin_vect2(in_vect2); // Setup Output buffers buffer bufout_vect(out_vect); std::cout << "Target Device: " << q.get_device().get_info<info::device::name>() << "\n"; // Submit Command group function object to the queue q.submit([&](auto &h) { // Accessors set as read mode accessor V1(bufin_vect1,h,read_only); accessor V2(bufin_vect2,h,read_only); // Accessor set to Write mode //**************STEP 2: Uncomment the below line to set the Write Accessor******************** accessor V3 (bufout_vect,h,write_only); h.parallel_for(R, [=](auto i) { //**************STEP 3: Uncomment the below line to call the complex_mul function that computes the multiplication //of the complex numbers******************** V3[i] = V1[i].complex_mul(V2[i]); }); }); q.wait_and_throw(); } void Scalar(std::vector<Complex2> &in_vect1, std::vector<Complex2> &in_vect2, std::vector<Complex2> &out_vect) { if ((in_vect2.size() != in_vect1.size()) || (out_vect.size() != in_vect1.size())){ std::cout<<"ERROR: Vector sizes do not match"<<"\n"; return; } for (int i = 0; i < in_vect1.size(); i++) { out_vect[i] = in_vect1[i].complex_mul(in_vect2[i]); } } // Compare the results of the two output vectors from parallel and scalar. They // should be equal int Compare(std::vector<Complex2> &v1, std::vector<Complex2> &v2) { int ret_code = 1; if(v1.size() != v2.size()){ ret_code = -1; } for (int i = 0; i < v1.size(); i++) { if (v1[i] != v2[i]) { ret_code = -1; break; } } return ret_code; } int main() { // Declare your Input and Output vectors of the Complex2 class vector<Complex2> input_vect1; vector<Complex2> input_vect2; vector<Complex2> out_vect_parallel; vector<Complex2> out_vect_scalar; for (int i = 0; i < num_elements; i++) { input_vect1.push_back(Complex2(i + 2, i + 4)); input_vect2.push_back(Complex2(i + 4, i + 6)); out_vect_parallel.push_back(Complex2(0, 0)); out_vect_scalar.push_back(Complex2(0, 0)); } // Initialize your Input and Output Vectors. Inputs are initialized as below. // Outputs are initialized with 0 try { // Pass in the name of the vendor for which the device you want to query std::string vendor_name = "Intel"; // std::string vendor_name = "AMD"; // std::string vendor_name = "Nvidia"; // queue constructor passed exception handler CustomDeviceSelector selector(vendor_name); queue q(selector); // Call the SYCLParallel with the required inputs and outputs SYCLParallel(q, input_vect1, input_vect2, out_vect_parallel); } catch (...) { // some other exception detected std::cout << "Failure" << "\n"; std::terminate(); } std::cout << "****************************************Multiplying Complex numbers " "in Parallel********************************************************" << "\n"; // Print the outputs of the Parallel function int indices[]{0, 1, 2, 3, 4, (num_elements - 1)}; constexpr size_t indices_size = sizeof(indices) / sizeof(int); for (int i = 0; i < indices_size; i++) { int j = indices[i]; if (i == indices_size - 1) std::cout << "...\n"; std::cout << "[" << j << "] " << input_vect1[j] << " * " << input_vect2[j] << " = " << out_vect_parallel[j] << "\n"; } // Call the Scalar function with the required input and outputs Scalar(input_vect1, input_vect2, out_vect_scalar); // Compare the outputs from the parallel and the scalar functions. They should // be equal int ret_code = Compare(out_vect_parallel, out_vect_scalar); if (ret_code == 1) { std::cout << "Complex multiplication successfully run on the device" << "\n"; } else std::cout << "*********************************************Verification Failed. Results are " "not matched**************************" << "\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/02_SYCL_Program_Structure/src/vector_add_usm_buffers.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; // kernel function to compute vector add using Unified Shared memory model (USM) void kernel_usm(int* a, int* b, int* c, int N) { //Step 1: create a device queue queue q; //Step 2: create USM device allocation auto a_device = malloc_device<int>(N, q); auto b_device = malloc_device<int>(N, q); auto c_device = malloc_device<int>(N, q); //Step 3: copy memory from host to device q.memcpy(a_device, a, N*sizeof(int)); q.memcpy(b_device, b, N*sizeof(int)); q.wait(); //Step 4: send a kernel (lambda) for execution q.parallel_for(N, [=](auto i){ //Step 5: write a kernel c_device[i] = a_device[i] + b_device[i]; }).wait(); //Step 6: copy the result back to host q.memcpy(c, c_device, N*sizeof(int)).wait(); //Step 7: free device allocation free(a_device, q); free(b_device, q); free(c_device, q); } // kernel function to compute vector add using Buffer memory model void kernel_buffers(int* a, int* b, int* c, int N) { //Step 1: create a device queue queue q; //Step 2: create buffers buffer buf_a(a, range<1>(N)); buffer buf_b(b, range<1>(N)); buffer buf_c(c, range<1>(N)); //Step 3: submit a command for (asynchronous) execution q.submit([&](handler &h){ //Step 4: create buffer accessors to access buffer data on the device accessor A(buf_a, h, read_only); accessor B(buf_b, h, read_only); accessor C(buf_c, h, write_only); //Step 5: send a kernel (lambda) for execution h.parallel_for(N, [=](auto i){ //Step 6: write a kernel C[i] = A[i] + B[i]; }); }); } int main() { // initialize data arrays on host constexpr int N = 256; int a[N], b[N], c[N]; for (int i=0; i<N; i++){ a[i] = 1; b[i] = 2; } // initialize c = 0 and offload computation using USM, print output for (int i=0; i<N; i++) c[i] = 0; kernel_usm(a, b, c, N); std::cout << "Vector Add Output (USM): \n"; for (int i=0; i<N; i++)std::cout << c[i] << " ";std::cout << "\n"; // initialize c = 0 and offload computation using USM, print output for (int i=0; i<N; i++) c[i] = 0; std::cout << "Vector Add Output (Buffers): \n"; kernel_buffers(a, b, c, N); for (int i=0; i<N; i++)std::cout << c[i] << " ";std::cout << "\n"; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/02_SYCL_Program_Structure/src/custom_device_sample.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <iostream> using namespace sycl; class my_device_selector { public: my_device_selector(std::string vendorName) : vendorName_(vendorName){}; int operator()(const device& dev) const { int rating = 0; //We are querying for the custom device specific to a Vendor and if it is a GPU device we //are giving the highest rating as 3 . The second preference is given to any GPU device and the third preference is given to //CPU device. if (dev.is_gpu() & (dev.get_info<info::device::name>().find(vendorName_) != std::string::npos)) rating = 3; else if (dev.is_gpu()) rating = 2; else if (dev.is_cpu()) rating = 1; return rating; }; private: std::string vendorName_; }; int main() { //pass in the name of the vendor for which the device you want to query std::string vendor_name = "Intel"; //std::string vendor_name = "AMD"; //std::string vendor_name = "Nvidia"; my_device_selector selector(vendor_name); queue q(selector); std::cout << "Device: " << q.get_device().get_info<info::device::name>() << "\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/02_SYCL_Program_Structure/src/buffer_sample.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> constexpr int num=16; using namespace sycl; int main() { auto R = range<1>{ num }; //Create Buffers A and B buffer<int> A{ R }, B{ R }; //Create a device queue queue Q; //Submit Kernel 1 Q.submit([&](handler& h) { //Accessor for buffer A accessor out(A,h,write_only); h.parallel_for(R, [=](auto idx) { out[idx] = idx[0]; }); }); //Submit Kernel 2 Q.submit([&](handler& h) { //This task will wait till the first queue is complete accessor out(A,h,write_only); h.parallel_for(R, [=](auto idx) { out[idx] += idx[0]; }); }); //Submit Kernel 3 Q.submit([&](handler& h) { //Accessor for Buffer B accessor out(B,h,write_only); h.parallel_for(R, [=](auto idx) { out[idx] = idx[0]; }); }); //Submit task 4 Q.submit([&](handler& h) { //This task will wait till kernel 2 and 3 are complete accessor in (A,h,read_only); accessor inout(B,h); h.parallel_for(R, [=](auto idx) { inout[idx] *= in[idx]; }); }); // And the following is back to device code host_accessor result(B,read_only); for (int i=0; i<num; ++i) std::cout << result[i] << "\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/02_SYCL_Program_Structure/src/Complex.hpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <iostream> #include <vector> using namespace std; class Complex2 { private: int m_real_, m_imag_; public: Complex2() { m_real_ = 0; m_imag_ = 0; } Complex2(int x, int y) { m_real_ = x; m_imag_ = y; } // Overloading the != operator friend bool operator!=(const Complex2& a, const Complex2& b) { return (a.m_real_ != b.m_real_) || (a.m_imag_ != b.m_imag_); } // The function performs Complex number multiplication and returns a Complex2 // object. Complex2 complex_mul(const Complex2& obj) const { return Complex2(((m_real_ * obj.m_real_) - (m_imag_ * obj.m_imag_)), ((m_real_ * obj.m_imag_) + (m_imag_ * obj.m_real_))); } // Overloading the ostream operator to print the objects of the Complex2 // object friend ostream& operator<<(ostream& out, const Complex2& obj) { out << "(" << obj.m_real_ << " : " << obj.m_imag_ << "i)"; return out; } };
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/02_SYCL_Program_Structure/src/complex_mult.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <iomanip> #include <vector> #include "Complex.hpp" using namespace sycl; using namespace std; // Number of complex numbers passing to the SYCL code static const int num_elements = 10000; class CustomDeviceSelector { public: CustomDeviceSelector(std::string vendorName) : vendorName_(vendorName){}; int operator()(const device &dev) { int device_rating = 0; //We are querying for the custom device specific to a Vendor and if it is a GPU device we //are giving the highest rating as 3 . The second preference is given to any GPU device and the third preference is given to //CPU device. if (dev.is_gpu() & (dev.get_info<info::device::name>().find(vendorName_) != std::string::npos)) device_rating = 3; else if (dev.is_gpu()) device_rating = 2; else if (dev.is_cpu()) device_rating = 1; return device_rating; }; private: std::string vendorName_; }; // in_vect1 and in_vect2 are the vectors with num_elements complex nubers and // are inputs to the parallel function void SYCLParallel(queue &q, std::vector<Complex2> &in_vect1, std::vector<Complex2> &in_vect2, std::vector<Complex2> &out_vect) { auto R = range(in_vect1.size()); if (in_vect2.size() != in_vect1.size() || out_vect.size() != in_vect1.size()){ std::cout << "ERROR: Vector sizes do not match"<< "\n"; return; } // Setup input buffers buffer bufin_vect1(in_vect1); buffer bufin_vect2(in_vect2); // Setup Output buffers buffer bufout_vect(out_vect); std::cout << "Target Device: " << q.get_device().get_info<info::device::name>() << "\n"; // Submit Command group function object to the queue q.submit([&](auto &h) { // Accessors set as read mode accessor V1(bufin_vect1,h,read_only); accessor V2(bufin_vect2,h,read_only); // Accessor set to Write mode accessor V3 (bufout_vect,h,write_only); h.parallel_for(R, [=](auto i) { V3[i] = V1[i].complex_mul(V2[i]); }); }); q.wait_and_throw(); } void Scalar(std::vector<Complex2> &in_vect1, std::vector<Complex2> &in_vect2, std::vector<Complex2> &out_vect) { if ((in_vect2.size() != in_vect1.size()) || (out_vect.size() != in_vect1.size())){ std::cout<<"ERROR: Vector sizes do not match"<<"\n"; return; } for (int i = 0; i < in_vect1.size(); i++) { out_vect[i] = in_vect1[i].complex_mul(in_vect2[i]); } } // Compare the results of the two output vectors from parallel and scalar. They // should be equal int Compare(std::vector<Complex2> &v1, std::vector<Complex2> &v2) { int ret_code = 1; if(v1.size() != v2.size()){ ret_code = -1; } for (int i = 0; i < v1.size(); i++) { if (v1[i] != v2[i]) { ret_code = -1; break; } } return ret_code; } int main() { // Declare your Input and Output vectors of the Complex2 class vector<Complex2> input_vect1; vector<Complex2> input_vect2; vector<Complex2> out_vect_parallel; vector<Complex2> out_vect_scalar; for (int i = 0; i < num_elements; i++) { input_vect1.push_back(Complex2(i + 2, i + 4)); input_vect2.push_back(Complex2(i + 4, i + 6)); out_vect_parallel.push_back(Complex2(0, 0)); out_vect_scalar.push_back(Complex2(0, 0)); } // Initialize your Input and Output Vectors. Inputs are initialized as below. // Outputs are initialized with 0 try { // Pass in the name of the vendor for which the device you want to query std::string vendor_name = "Intel"; // std::string vendor_name = "AMD"; // std::string vendor_name = "Nvidia"; CustomDeviceSelector selector(vendor_name); queue q(selector); // Call the SYCLParallel with the required inputs and outputs SYCLParallel(q, input_vect1, input_vect2, out_vect_parallel); } catch (...) { // some other exception detected std::cout << "Failure" << "\n"; std::terminate(); } std::cout << "****************************************Multiplying Complex numbers " "in Parallel********************************************************" << "\n"; // Print the outputs of the Parallel function int indices[]{0, 1, 2, 3, 4, (num_elements - 1)}; constexpr size_t indices_size = sizeof(indices) / sizeof(int); for (int i = 0; i < indices_size; i++) { int j = indices[i]; if (i == indices_size - 1) std::cout << "...\n"; std::cout << "[" << j << "] " << input_vect1[j] << " * " << input_vect2[j] << " = " << out_vect_parallel[j] << "\n"; } // Call the Scalar function with the required input and outputs Scalar(input_vect1, input_vect2, out_vect_scalar); // Compare the outputs from the parallel and the scalar functions. They should // be equal int ret_code = Compare(out_vect_parallel, out_vect_scalar); if (ret_code == 1) { std::cout << "Complex multiplication successfully run on the device" << "\n"; } else std::cout << "*********************************************Verification Failed. Results are " "not matched**************************" << "\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/02_SYCL_Program_Structure/src/gpu_sample.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; int main() { //# Create a device queue with device selector queue q(gpu_selector_v); //queue q(cpu_selector_v); //queue q(accelerator_selector_v); //queue q(default_selector_v); //queue q; //# Print the device name std::cout << "Device: " << q.get_device().get_info<info::device::name>() << "\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/02_SYCL_Program_Structure/src/vector_add.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; int main() { const int N = 256; //# Initialize a vector and print values std::vector<int> vector1(N, 10); std::cout<<"\nInput Vector1: "; for (int i = 0; i < N; i++) { std::cout << vector1[i] << " "; } //# STEP 1 : Create second vector, initialize to 20 and print values std::vector<int> vector2(N, 20); std::cout<<"\nInput Vector2: "; for (int i = 0; i < N; i++) std::cout << vector2[i] << " "; //# Create Buffer buffer vector1_buffer(vector1); //# STEP 2 : Create buffer for second vector buffer vector2_buffer(vector2); //# Submit task to add vector queue q; q.submit([&](handler &h) { //# Create accessor for vector1_buffer accessor vector1_accessor (vector1_buffer,h); //# STEP 3 - add second accessor for second buffer accessor vector2_accessor (vector2_buffer,h, read_only); h.parallel_for(range<1>(N), [=](id<1> index) { //# STEP 4 : Modify the code below to add the second vector to first one vector1_accessor[index] += vector2_accessor[index]; }); }); //# Create a host accessor to copy data from device to host host_accessor h_a(vector1_buffer,read_only); //# Print Output values std::cout<<"\nOutput Values: "; for (int i = 0; i < N; i++) std::cout<< vector1[i] << " "; std::cout<<"\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/02_SYCL_Program_Structure/src/host_accessor_sample.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; int main() { constexpr int N = 16; auto R = range<1>(N); std::vector<int> v(N, 10); queue q; // Buffer takes ownership of the data stored in vector. buffer buf(v); q.submit([&](handler& h) { accessor a(buf,h); h.parallel_for(R, [=](auto i) { a[i] -= 2; }); }); // Creating host accessor is a blocking call and will only return after all // enqueued SYCL kernels that modify the same buffer in any queue completes // execution and the data is available to the host via this host accessor. host_accessor b(buf,read_only); for (int i = 0; i < N; i++) std::cout << b[i] << " "; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/02_SYCL_Program_Structure/lab/buffer_destruction2.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> constexpr int N = 16; using namespace sycl; // Buffer creation happens within a separate function scope. void SYCL_code(std::vector<int> &v, queue &q) { auto R = range<1>(N); buffer buf(v); q.submit([&](handler &h) { accessor a(buf,h); h.parallel_for(R, [=](auto i) { a[i] -= 2; }); }); } int main() { std::vector<int> v(N, 10); queue q; SYCL_code(v, q); // When execution advances beyond this function scope, buffer destructor is // invoked which relinquishes the ownership of data and copies back the data to // the host memory. for (int i = 0; i < N; i++) std::cout << v[i] << " "; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/02_SYCL_Program_Structure/lab/vector_add_usm_buffers.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; // kernel function to compute vector add using Unified Shared memory model (USM) void kernel_usm(int* a, int* b, int* c, int N) { //Step 1: create a device queue queue q; //Step 2: create USM device allocation auto a_device = malloc_device<int>(N, q); auto b_device = malloc_device<int>(N, q); auto c_device = malloc_device<int>(N, q); //Step 3: copy memory from host to device q.memcpy(a_device, a, N*sizeof(int)); q.memcpy(b_device, b, N*sizeof(int)); q.wait(); //Step 4: send a kernel (lambda) for execution q.parallel_for(N, [=](auto i){ //Step 5: write a kernel c_device[i] = a_device[i] + b_device[i]; }).wait(); //Step 6: copy the result back to host q.memcpy(c, c_device, N*sizeof(int)).wait(); //Step 7: free device allocation free(a_device, q); free(b_device, q); free(c_device, q); } // kernel function to compute vector add using Buffer memory model void kernel_buffers(int* a, int* b, int* c, int N) { //Step 1: create a device queue queue q; //Step 2: create buffers buffer buf_a(a, range<1>(N)); buffer buf_b(b, range<1>(N)); buffer buf_c(c, range<1>(N)); //Step 3: submit a command for (asynchronous) execution q.submit([&](handler &h){ //Step 4: create buffer accessors to access buffer data on the device accessor A(buf_a, h, read_only); accessor B(buf_b, h, read_only); accessor C(buf_c, h, write_only); //Step 5: send a kernel (lambda) for execution h.parallel_for(N, [=](auto i){ //Step 6: write a kernel C[i] = A[i] + B[i]; }); }); } int main() { // initialize data arrays on host constexpr int N = 256; int a[N], b[N], c[N]; for (int i=0; i<N; i++){ a[i] = 1; b[i] = 2; } // initialize c = 0 and offload computation using USM, print output for (int i=0; i<N; i++) c[i] = 0; kernel_usm(a, b, c, N); std::cout << "Vector Add Output (USM): \n"; for (int i=0; i<N; i++)std::cout << c[i] << " ";std::cout << "\n"; // initialize c = 0 and offload computation using USM, print output for (int i=0; i<N; i++) c[i] = 0; std::cout << "Vector Add Output (Buffers): \n"; kernel_buffers(a, b, c, N); for (int i=0; i<N; i++)std::cout << c[i] << " ";std::cout << "\n"; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/02_SYCL_Program_Structure/lab/custom_device_sample.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <iostream> using namespace sycl; class my_device_selector { public: my_device_selector(std::string vendorName) : vendorName_(vendorName){}; int operator()(const device& dev) const { int rating = 0; //We are querying for the custom device specific to a Vendor and if it is a GPU device we //are giving the highest rating as 3 . The second preference is given to any GPU device and the third preference is given to //CPU device. if (dev.is_gpu() & (dev.get_info<info::device::name>().find(vendorName_) != std::string::npos)) rating = 3; else if (dev.is_gpu()) rating = 2; else if (dev.is_cpu()) rating = 1; return rating; }; private: std::string vendorName_; }; int main() { //pass in the name of the vendor for which the device you want to query std::string vendor_name = "Intel"; //std::string vendor_name = "AMD"; //std::string vendor_name = "Nvidia"; my_device_selector selector(vendor_name); queue q(selector); std::cout << "Device: " << q.get_device().get_info<info::device::name>() << "\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/02_SYCL_Program_Structure/lab/buffer_sample.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> constexpr int num=16; using namespace sycl; int main() { auto R = range<1>{ num }; //Create Buffers A and B buffer<int> A{ R }, B{ R }; //Create a device queue queue Q; //Submit Kernel 1 Q.submit([&](handler& h) { //Accessor for buffer A accessor out(A,h,write_only); h.parallel_for(R, [=](auto idx) { out[idx] = idx[0]; }); }); //Submit Kernel 2 Q.submit([&](handler& h) { //This task will wait till the first queue is complete. Default access mode is read_write accessor out(A,h); h.parallel_for(R, [=](auto idx) { out[idx] += idx[0]; }); }); //Submit Kernel 3 Q.submit([&](handler& h) { //Accessor for Buffer B accessor out(B,h,write_only); h.parallel_for(R, [=](auto idx) { out[idx] = idx[0]; }); }); //Submit task 4 Q.submit([&](handler& h) { //This task will wait till kernel 2 and 3 are complete accessor in (A,h,read_only); accessor inout(B,h); h.parallel_for(R, [=](auto idx) { inout[idx] *= in[idx]; }); }); // And the following is back to device code host_accessor result(B,read_only); for (int i=0; i<num; ++i) std::cout << result[i] << "\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/02_SYCL_Program_Structure/lab/complex_mult.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <iomanip> #include <vector> #include "Complex.hpp" using namespace sycl; using namespace std; // Number of complex numbers passing to the SYCL code static const int num_elements = 10000; class CustomDeviceSelector { public: CustomDeviceSelector(std::string vendorName) : vendorName_(vendorName){}; int operator()(const device &dev) { int device_rating = 0; //We are querying for the custom device specific to a Vendor and if it is a GPU device we //are giving the highest rating as 3 . The second preference is given to any GPU device and the third preference is given to //CPU device. if (dev.is_gpu() & (dev.get_info<info::device::name>().find(vendorName_) != std::string::npos)) device_rating = 3; else if (dev.is_gpu()) device_rating = 2; else if (dev.is_cpu()) device_rating = 1; return device_rating; }; private: std::string vendorName_; }; // in_vect1 and in_vect2 are the vectors with num_elements complex nubers and // are inputs to the parallel function void SYCLParallel(queue &q, std::vector<Complex2> &in_vect1, std::vector<Complex2> &in_vect2, std::vector<Complex2> &out_vect) { auto R = range(in_vect1.size()); if (in_vect2.size() != in_vect1.size() || out_vect.size() != in_vect1.size()){ std::cout << "ERROR: Vector sizes do not match"<< "\n"; return; } // Setup input buffers buffer bufin_vect1(in_vect1); buffer bufin_vect2(in_vect2); // Setup Output buffers buffer bufout_vect(out_vect); std::cout << "Target Device: " << q.get_device().get_info<info::device::name>() << "\n"; // Submit Command group function object to the queue q.submit([&](auto &h) { // Accessors set as read mode accessor V1(bufin_vect1,h,read_only); accessor V2(bufin_vect2,h,read_only); // Accessor set to Write mode accessor V3 (bufout_vect,h,write_only); h.parallel_for(R, [=](auto i) { V3[i] = V1[i].complex_mul(V2[i]); }); }); q.wait_and_throw(); } void Scalar(std::vector<Complex2> &in_vect1, std::vector<Complex2> &in_vect2, std::vector<Complex2> &out_vect) { if ((in_vect2.size() != in_vect1.size()) || (out_vect.size() != in_vect1.size())){ std::cout<<"ERROR: Vector sizes do not match"<<"\n"; return; } for (int i = 0; i < in_vect1.size(); i++) { out_vect[i] = in_vect1[i].complex_mul(in_vect2[i]); } } // Compare the results of the two output vectors from parallel and scalar. They // should be equal int Compare(std::vector<Complex2> &v1, std::vector<Complex2> &v2) { int ret_code = 1; if(v1.size() != v2.size()){ ret_code = -1; } for (int i = 0; i < v1.size(); i++) { if (v1[i] != v2[i]) { ret_code = -1; break; } } return ret_code; } int main() { // Declare your Input and Output vectors of the Complex2 class vector<Complex2> input_vect1; vector<Complex2> input_vect2; vector<Complex2> out_vect_parallel; vector<Complex2> out_vect_scalar; for (int i = 0; i < num_elements; i++) { input_vect1.push_back(Complex2(i + 2, i + 4)); input_vect2.push_back(Complex2(i + 4, i + 6)); out_vect_parallel.push_back(Complex2(0, 0)); out_vect_scalar.push_back(Complex2(0, 0)); } // Initialize your Input and Output Vectors. Inputs are initialized as below. // Outputs are initialized with 0 try { // Pass in the name of the vendor for which the device you want to query std::string vendor_name = "Intel"; // std::string vendor_name = "AMD"; // std::string vendor_name = "Nvidia"; CustomDeviceSelector selector(vendor_name); queue q(selector); // Call the SYCLParallel with the required inputs and outputs SYCLParallel(q, input_vect1, input_vect2, out_vect_parallel); } catch (...) { // some other exception detected std::cout << "Failure" << "\n"; std::terminate(); } std::cout << "****************************************Multiplying Complex numbers " "in Parallel********************************************************" << "\n"; // Print the outputs of the Parallel function int indices[]{0, 1, 2, 3, 4, (num_elements - 1)}; constexpr size_t indices_size = sizeof(indices) / sizeof(int); for (int i = 0; i < indices_size; i++) { int j = indices[i]; if (i == indices_size - 1) std::cout << "...\n"; std::cout << "[" << j << "] " << input_vect1[j] << " * " << input_vect2[j] << " = " << out_vect_parallel[j] << "\n"; } // Call the Scalar function with the required input and outputs Scalar(input_vect1, input_vect2, out_vect_scalar); // Compare the outputs from the parallel and the scalar functions. They should // be equal int ret_code = Compare(out_vect_parallel, out_vect_scalar); if (ret_code == 1) { std::cout << "Complex multiplication successfully run on the device" << "\n"; } else std::cout << "*********************************************Verification Failed. Results are " "not matched**************************" << "\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/02_SYCL_Program_Structure/lab/gpu_sample.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; int main() { //# Create a device queue with device selector queue q(gpu_selector_v); //queue q(cpu_selector_v); //queue q(accelerator_selector_v); //queue q(default_selector_v); //queue q; //# Print the device name std::cout << "Device: " << q.get_device().get_info<info::device::name>() << "\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/02_SYCL_Program_Structure/lab/vector_add.cpp
//============================================================== // Copyright © 2020 Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; int main() { const int N = 256; //# Initialize a vector and print values std::vector<int> vector1(N, 10); std::cout<<"\nInput Vector1: "; for (int i = 0; i < N; i++) std::cout << vector1[i] << " "; //# STEP 1 : Create second vector, initialize to 20 and print values //# YOUR CODE GOES HERE //# Create Buffer buffer vector1_buffer(vector1); //# STEP 2 : Create buffer for second vector //# YOUR CODE GOES HERE //# Submit task to add vector queue q; q.submit([&](handler &h) { //# Create accessor for vector1_buffer accessor vector1_accessor (vector1_buffer,h); //# STEP 3 - add second accessor for second buffer //# YOUR CODE GOES HERE h.parallel_for(range<1>(N), [=](id<1> index) { //# STEP 4 : Modify the code below to add the second vector to first one vector1_accessor[index] += 1; }); }); //# Create a host accessor to copy data from device to host host_accessor h_a(vector1_buffer,read_only); //# Print Output values std::cout<<"\nOutput Values: "; for (int i = 0; i < N; i++) std::cout<< vector1[i] << " "; std::cout<<"\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/02_SYCL_Program_Structure/lab/host_accessor_sample.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; int main() { constexpr int N = 16; auto R = range<1>(N); std::vector<int> v(N, 10); queue q; // Buffer takes ownership of the data stored in vector. buffer buf(v); q.submit([&](handler& h) { accessor a(buf,h); h.parallel_for(R, [=](auto i) { a[i] -= 2; }); }); // Creating host accessor is a blocking call and will only return after all // enqueued SYCL kernels that modify the same buffer in any queue completes // execution and the data is available to the host via this host accessor. host_accessor b(buf,read_only); for (int i = 0; i < N; i++) std::cout << b[i] << " "; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/08_SYCL_Reduction/src/reduction_custom_operator.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> #include <time.h> using namespace sycl; static constexpr size_t N = 256; // global size static constexpr size_t B = 64; // work-group size template <typename T, typename I> struct pair { bool operator<(const pair& o) const { return val <= o.val || (val == o.val && idx <= o.idx); } T val; I idx; }; int main() { //# setup queue with default selector queue q; //# initialize input data and result using usm auto result = malloc_shared<pair<int, int>>(1, q); auto data = malloc_shared<int>(N, q); //# initialize input data with random numbers srand(time(0)); for (int i = 0; i < N; ++i) data[i] = rand() % 256; std::cout << "Input Data:\n"; for (int i = 0; i < N; i++) std::cout << data[i] << " "; std::cout << "\n\n"; //# custom operator for reduction to find minumum and index pair<int, int> operator_identity = {std::numeric_limits<int>::max(), std::numeric_limits<int>::min()}; *result = operator_identity; auto reduction_object = reduction(result, operator_identity, minimum<pair<int, int>>()); //# parallel_for with user defined reduction object q.parallel_for(nd_range<1>{N, B}, reduction_object, [=](nd_item<1> item, auto& temp) { int i = item.get_global_id(0); temp.combine({data[i], i}); }).wait(); std::cout << "Minimum value and index = " << result->val << " at " << result->idx << "\n"; free(result, q); free(data, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/08_SYCL_Reduction/src/sum_single_task.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static constexpr size_t N = 1024; // global size int main() { //# setup queue with in_order property queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //# initialize data array using usm auto data = malloc_shared<int>(N, q); for (int i = 0; i < N; i++) data[i] = i; //# user single_task to add all numbers q.single_task([=](){ int sum = 0; for(int i=0;i<N;i++){ sum += data[i]; } data[0] = sum; }).wait(); std::cout << "Sum = " << data[0] << "\n"; free(data, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/08_SYCL_Reduction/src/sum_reduction_usm.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static constexpr size_t N = 1024; // global size static constexpr size_t B = 128; // work-group size int main() { //# setup queue with default selector queue q; std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //# initialize data array using usm auto data = malloc_shared<int>(N, q); for (int i = 0; i < N; i++) data[i] = i; //# implicit USM for writing sum value int* sum = malloc_shared<int>(1, q); *sum = 0; //# nd-range kernel parallel_for with reduction parameter q.parallel_for(nd_range<1>{N, B}, reduction(sum, plus<>()), [=](nd_item<1> it, auto& temp) { auto i = it.get_global_id(0); temp.combine(data[i]); }).wait(); std::cout << "Sum = " << *sum << "\n"; free(data, q); free(sum, q); return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/Jupyter/oneapi-essentials-training/08_SYCL_Reduction/src/sum_work_group.cpp
//============================================================== // Copyright © Intel Corporation // // SPDX-License-Identifier: MIT // ============================================================= #include <sycl/sycl.hpp> using namespace sycl; static constexpr size_t N = 1024; // global size static constexpr size_t B = 128; // work-group size int main() { //# setup queue with in_order property queue q(property::queue::in_order{}); std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n"; //# initialize data array using usm auto data = malloc_shared<int>(N, q); for (int i = 0; i < N; i++) data[i] = i; //# use parallel_for to calculate sum for each work_group q.parallel_for(nd_range<1>(N, B), [=](nd_item<1> item){ size_t index = item.get_global_id(0); if(item.get_local_id(0) == 0 ){ int sum_wg = 0; for(int i=index; i<index+B; i++){ sum_wg += data[i]; } data[index] = sum_wg; } }); q.single_task([=](){ int sum = 0; for(int i=0;i<N;i+=B){ sum += data[i]; } data[0] = sum; }).wait(); std::cout << "Sum = " << data[0] << "\n"; free(data, q); return 0; }
cpp