code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" _lowerCAmelCase : Dict = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
340
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ) ) ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if point: if isinstance(_lowerCamelCase , _lowerCamelCase ): for item in point: if not isinstance(_lowerCamelCase , (int, float) ): _lowerCamelCase : Dict = ( "Expected a list of numbers as input, found " F"""{type(_lowerCamelCase ).__name__}""" ) raise TypeError(_lowerCamelCase ) else: _lowerCamelCase : Optional[int] = F"""Expected a list of numbers as input, found {type(_lowerCamelCase ).__name__}""" raise TypeError(_lowerCamelCase ) else: raise ValueError("Missing an input" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(_lowerCamelCase , _lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
340
1
"""simple docstring""" from manim import * class A_ ( _a ): def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Dict = Rectangle(height=0.5 ,width=0.5 ) _lowerCamelCase : Union[str, Any] = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) _lowerCamelCase : str = [mem.copy() for i in range(6 )] _lowerCamelCase : List[Any] = [mem.copy() for i in range(6 )] _lowerCamelCase : str = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase ,buff=0 ) _lowerCamelCase : Tuple = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase ,buff=0 ) _lowerCamelCase : Tuple = VGroup(__lowerCAmelCase ,__lowerCAmelCase ).arrange(__lowerCAmelCase ,buff=0 ) _lowerCamelCase : Optional[Any] = Text("CPU" ,font_size=24 ) _lowerCamelCase : int = Group(__lowerCAmelCase ,__lowerCAmelCase ).arrange(__lowerCAmelCase ,buff=0.5 ,aligned_edge=__lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [mem.copy() for i in range(4 )] _lowerCamelCase : Any = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase ,buff=0 ) _lowerCamelCase : Optional[Any] = Text("GPU" ,font_size=24 ) _lowerCamelCase : Optional[Any] = Group(__lowerCAmelCase ,__lowerCAmelCase ).arrange(__lowerCAmelCase ,buff=0.5 ,aligned_edge=__lowerCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [mem.copy() for i in range(6 )] _lowerCamelCase : str = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase ,buff=0 ) _lowerCamelCase : Dict = Text("Model" ,font_size=24 ) _lowerCamelCase : Optional[int] = Group(__lowerCAmelCase ,__lowerCAmelCase ).arrange(__lowerCAmelCase ,buff=0.5 ,aligned_edge=__lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCAmelCase ) _lowerCamelCase : List[str] = [] for i, rect in enumerate(__lowerCAmelCase ): rect.set_stroke(__lowerCAmelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _lowerCamelCase : Optional[Any] = Rectangle(height=0.46 / 4 ,width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCAmelCase ,opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=__lowerCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] ,direction=__lowerCAmelCase ,buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] ,direction=__lowerCAmelCase ,buff=0.0 ) self.add(__lowerCAmelCase ) cpu_targs.append(__lowerCAmelCase ) _lowerCamelCase : int = [mem.copy() for i in range(6 )] _lowerCamelCase : Union[str, Any] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase ,buff=0 ) _lowerCamelCase : Any = Text("Loaded Checkpoint" ,font_size=24 ) _lowerCamelCase : List[Any] = Group(__lowerCAmelCase ,__lowerCAmelCase ).arrange(__lowerCAmelCase ,aligned_edge=__lowerCAmelCase ,buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _lowerCamelCase : Union[str, Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCamelCase : Optional[int] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Optional[int] = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" ,font_size=18 ,) blue_text.next_to(__lowerCAmelCase ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) _lowerCamelCase : Tuple = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCAmelCase ) ,Write(__lowerCAmelCase ) ) self.play(Write(__lowerCAmelCase ,run_time=1 ) ,Create(__lowerCAmelCase ,run_time=1 ) ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Optional[int] = [] for i, rect in enumerate(__lowerCAmelCase ): _lowerCamelCase : str = fill.copy().set_fill(__lowerCAmelCase ,opacity=0.7 ) target.move_to(__lowerCAmelCase ) first_animations.append(GrowFromCenter(__lowerCAmelCase ,run_time=1 ) ) _lowerCamelCase : Optional[int] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__lowerCAmelCase ,run_time=1.5 ) ) self.play(*__lowerCAmelCase ) self.play(*__lowerCAmelCase ) self.wait()
340
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[Any] = np.inf def set_batch_size(_lowerCamelCase ) -> None: nonlocal batch_size if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Optional[int] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary": _lowerCamelCase : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_lowerCamelCase , _lowerCamelCase ) return None if batch_size is np.inf else batch_size class A_ ( _a ): def __init__( self: Optional[int] ,__lowerCAmelCase: NestedDataStructureLike[PathLike] ,__lowerCAmelCase: Optional[NamedSplit] = None ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__( __lowerCAmelCase ,split=__lowerCAmelCase ,features=__lowerCAmelCase ,cache_dir=__lowerCAmelCase ,keep_in_memory=__lowerCAmelCase ,streaming=__lowerCAmelCase ,num_proc=__lowerCAmelCase ,**__lowerCAmelCase ,) _lowerCamelCase : Tuple = path_or_paths if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else {self.split: path_or_paths} _lowerCamelCase : Any = _PACKAGED_DATASETS_MODULES["parquet"][1] _lowerCamelCase : int = Parquet( cache_dir=__lowerCAmelCase ,data_files=__lowerCAmelCase ,features=__lowerCAmelCase ,hash=__lowerCAmelCase ,**__lowerCAmelCase ,) def _lowercase ( self: Optional[int] ): '''simple docstring''' if self.streaming: _lowerCamelCase : List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCamelCase : Tuple = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : List[str] = None _lowerCamelCase : str = None self.builder.download_and_prepare( download_config=__lowerCAmelCase ,download_mode=__lowerCAmelCase ,verification_mode=__lowerCAmelCase ,base_path=__lowerCAmelCase ,num_proc=self.num_proc ,) _lowerCamelCase : Any = self.builder.as_dataset( split=self.split ,verification_mode=__lowerCAmelCase ,in_memory=self.keep_in_memory ) return dataset class A_ : def __init__( self: str ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: Union[PathLike, BinaryIO] ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' _lowerCamelCase : Any = dataset _lowerCamelCase : Any = path_or_buf _lowerCamelCase : Any = batch_size or get_writer_batch_size(dataset.features ) _lowerCamelCase : List[str] = parquet_writer_kwargs def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ): with open(self.path_or_buf ,"wb+" ) as buffer: _lowerCamelCase : str = self._write(file_obj=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) else: _lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) return written def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: BinaryIO ,__lowerCAmelCase: int ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" ,__lowerCAmelCase ) _lowerCamelCase : List[str] = self.dataset.features.arrow_schema _lowerCamelCase : str = pq.ParquetWriter(__lowerCAmelCase ,schema=__lowerCAmelCase ,**__lowerCAmelCase ) for offset in logging.tqdm( range(0 ,len(self.dataset ) ,__lowerCAmelCase ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating parquet from Arrow format" ,): _lowerCamelCase : List[str] = query_table( table=self.dataset._data ,key=slice(__lowerCAmelCase ,offset + batch_size ) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,) writer.write_table(__lowerCAmelCase ) written += batch.nbytes writer.close() return written
340
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_a ) class A_ ( _a ): lowerCAmelCase__ = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) lowerCAmelCase__ = Features({'image': Image()} ) lowerCAmelCase__ = Features({'labels': ClassLabel} ) lowerCAmelCase__ = "image" lowerCAmelCase__ = "labels" def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] ,__lowerCAmelCase ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) _lowerCamelCase : Any = copy.deepcopy(self ) _lowerCamelCase : Optional[Any] = self.label_schema.copy() _lowerCamelCase : int = features[self.label_column] _lowerCamelCase : Optional[int] = label_schema return task_template @property def _lowercase ( self: Any ): '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
340
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Optional[int] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"] _lowerCamelCase : Dict = len(example["content"] ) / len(output["input_ids"] ) return output _lowerCAmelCase : Tuple = HfArgumentParser(PretokenizationArguments) _lowerCAmelCase : Optional[int] = parser.parse_args() if args.num_workers is None: _lowerCAmelCase : Any = multiprocessing.cpu_count() _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir) _lowerCAmelCase : Union[str, Any] = time.time() _lowerCAmelCase : Optional[int] = load_dataset(args.dataset_name, split='''train''') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') _lowerCAmelCase : Any = time.time() _lowerCAmelCase : Dict = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') _lowerCAmelCase : str = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
340
1
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging _lowerCAmelCase : Optional[Any] = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) _lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase_( ) -> List[str]: '''simple docstring''' _lowerCamelCase : str = "https://pypi.org/pypi/diffusers/json" _lowerCamelCase : Optional[Any] = json.loads(request.urlopen(_lowerCamelCase ).read() )["releases"].keys() return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : version.Version(_lowerCamelCase ) ) def lowerCamelCase_( ) -> int: '''simple docstring''' if HF_MODULES_CACHE in sys.path: return sys.path.append(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCamelCase : Any = Path(_lowerCamelCase ) / "__init__.py" if not init_path.exists(): init_path.touch() def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' init_hf_modules() _lowerCamelCase : Optional[int] = Path(_lowerCamelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCamelCase : str = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' with open(_lowerCamelCase , "r" , encoding="utf-8" ) as f: _lowerCamelCase : int = f.read() # Imports of the form `import .xxx` _lowerCamelCase : int = re.findall("^\s*import\s+\.(\S+)\s*$" , _lowerCamelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , _lowerCamelCase , flags=re.MULTILINE ) # Unique-ify return list(set(_lowerCamelCase ) ) def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : str = False _lowerCamelCase : Union[str, Any] = [module_file] _lowerCamelCase : Optional[int] = [] # Let's recurse through all relative imports while not no_change: _lowerCamelCase : Dict = [] for f in files_to_check: new_imports.extend(get_relative_imports(_lowerCamelCase ) ) _lowerCamelCase : List[str] = Path(_lowerCamelCase ).parent _lowerCamelCase : int = [str(module_path / m ) for m in new_imports] _lowerCamelCase : List[str] = [f for f in new_import_files if f not in all_relative_imports] _lowerCamelCase : List[str] = [F"""{f}.py""" for f in new_import_files] _lowerCamelCase : Any = len(_lowerCamelCase ) == 0 all_relative_imports.extend(_lowerCamelCase ) return all_relative_imports def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' with open(_lowerCamelCase , "r" , encoding="utf-8" ) as f: _lowerCamelCase : Tuple = f.read() # Imports of the form `import xxx` _lowerCamelCase : Any = re.findall("^\s*import\s+(\S+)\s*$" , _lowerCamelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("^\s*from\s+(\S+)\s+import" , _lowerCamelCase , flags=re.MULTILINE ) # Only keep the top-level module _lowerCamelCase : Optional[int] = [imp.split("." )[0] for imp in imports if not imp.startswith("." )] # Unique-ify and test we got them all _lowerCamelCase : Dict = list(set(_lowerCamelCase ) ) _lowerCamelCase : Tuple = [] for imp in imports: try: importlib.import_module(_lowerCamelCase ) except ImportError: missing_packages.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " F"""{', '.join(_lowerCamelCase )}. Run `pip install {' '.join(_lowerCamelCase )}`""" ) return get_relative_imports(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : str = module_path.replace(os.path.sep , "." ) _lowerCamelCase : Tuple = importlib.import_module(_lowerCamelCase ) if class_name is None: return find_pipeline_class(_lowerCamelCase ) return getattr(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' from ..pipelines import DiffusionPipeline _lowerCamelCase : Dict = dict(inspect.getmembers(_lowerCamelCase , inspect.isclass ) ) _lowerCamelCase : int = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , _lowerCamelCase ) and cls.__module__.split("." )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" F""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" F""" {loaded_module}.""" ) _lowerCamelCase : Optional[Any] = cls return pipeline_class def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , ) -> List[Any]: '''simple docstring''' _lowerCamelCase : List[Any] = str(_lowerCamelCase ) _lowerCamelCase : Any = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.isfile(_lowerCamelCase ): _lowerCamelCase : Any = module_file_or_url _lowerCamelCase : Union[str, Any] = "local" elif pretrained_model_name_or_path.count("/" ) == 0: _lowerCamelCase : List[Any] = get_diffusers_versions() # cut ".dev0" _lowerCamelCase : int = "v" + ".".join(__version__.split("." )[:3] ) # retrieve github version that matches if revision is None: _lowerCamelCase : Tuple = latest_version if latest_version[1:] in available_versions else "main" logger.info(F"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: _lowerCamelCase : str = F"""v{revision}""" elif revision == "main": _lowerCamelCase : Tuple = revision else: raise ValueError( F"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" F""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub _lowerCamelCase : Union[str, Any] = COMMUNITY_PIPELINES_URL.format(revision=_lowerCamelCase , pipeline=_lowerCamelCase ) try: _lowerCamelCase : int = cached_download( _lowerCamelCase , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , proxies=_lowerCamelCase , resume_download=_lowerCamelCase , local_files_only=_lowerCamelCase , use_auth_token=_lowerCamelCase , ) _lowerCamelCase : int = "git" _lowerCamelCase : Tuple = pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached _lowerCamelCase : Dict = hf_hub_download( _lowerCamelCase , _lowerCamelCase , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , proxies=_lowerCamelCase , resume_download=_lowerCamelCase , local_files_only=_lowerCamelCase , use_auth_token=_lowerCamelCase , ) _lowerCamelCase : Dict = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) ) except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment _lowerCamelCase : Union[str, Any] = check_imports(_lowerCamelCase ) # Now we move the module inside our cached dynamic modules. _lowerCamelCase : List[Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = Path(_lowerCamelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(_lowerCamelCase , submodule_path / module_file ) for module_needed in modules_needed: _lowerCamelCase : List[str] = F"""{module_needed}.py""" shutil.copy(os.path.join(_lowerCamelCase , _lowerCamelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Dict = use_auth_token elif use_auth_token is True: _lowerCamelCase : List[Any] = HfFolder.get_token() else: _lowerCamelCase : List[str] = None _lowerCamelCase : int = model_info(_lowerCamelCase , revision=_lowerCamelCase , token=_lowerCamelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _lowerCamelCase : Union[str, Any] = submodule_path / commit_hash _lowerCamelCase : str = full_submodule + os.path.sep + commit_hash create_dynamic_module(_lowerCamelCase ) if not (submodule_path / module_file).exists(): shutil.copy(_lowerCamelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( _lowerCamelCase , F"""{module_needed}.py""" , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , resume_download=_lowerCamelCase , proxies=_lowerCamelCase , use_auth_token=_lowerCamelCase , revision=_lowerCamelCase , local_files_only=_lowerCamelCase , ) return os.path.join(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , **_lowerCamelCase , ) -> str: '''simple docstring''' _lowerCamelCase : Optional[int] = get_cached_module_file( _lowerCamelCase , _lowerCamelCase , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , resume_download=_lowerCamelCase , proxies=_lowerCamelCase , use_auth_token=_lowerCamelCase , revision=_lowerCamelCase , local_files_only=_lowerCamelCase , ) return get_class_in_module(_lowerCamelCase , final_module.replace(".py" , "" ) )
340
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Optional[Any] = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
1
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class A_ : def _lowercase ( self: Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : int = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = UNetaDConditionModel( sample_size=32 ,layers_per_block=1 ,block_out_channels=[32, 64] ,down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] ,mid_block_type="UNetMidBlock2DSimpleCrossAttn" ,up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] ,in_channels=3 ,out_channels=6 ,cross_attention_dim=32 ,encoder_hid_dim=32 ,attention_head_dim=8 ,addition_embed_type="text" ,addition_embed_type_num_heads=2 ,cross_attention_norm="group_norm" ,resnet_time_scale_shift="scale_shift" ,act_fn="gelu" ,) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _lowerCamelCase : List[Any] = DDPMScheduler( num_train_timesteps=1_000 ,beta_schedule="squaredcos_cap_v2" ,beta_start=0.00_01 ,beta_end=0.02 ,thresholding=__lowerCAmelCase ,dynamic_thresholding_ratio=0.95 ,sample_max_value=1.0 ,prediction_type="epsilon" ,variance_type="learned_range" ,) torch.manual_seed(0 ) _lowerCamelCase : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowercase ( self: Tuple ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : Tuple = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _lowerCamelCase : int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _lowerCamelCase : List[str] = UNetaDConditionModel( sample_size=32 ,layers_per_block=[1, 2] ,block_out_channels=[32, 64] ,down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] ,mid_block_type="UNetMidBlock2DSimpleCrossAttn" ,up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] ,in_channels=6 ,out_channels=6 ,cross_attention_dim=32 ,encoder_hid_dim=32 ,attention_head_dim=8 ,addition_embed_type="text" ,addition_embed_type_num_heads=2 ,cross_attention_norm="group_norm" ,resnet_time_scale_shift="scale_shift" ,act_fn="gelu" ,class_embed_type="timestep" ,mid_block_scale_factor=1.4_14 ,time_embedding_act_fn="gelu" ,time_embedding_dim=32 ,) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _lowerCamelCase : Union[str, Any] = DDPMScheduler( num_train_timesteps=1_000 ,beta_schedule="squaredcos_cap_v2" ,beta_start=0.00_01 ,beta_end=0.02 ,thresholding=__lowerCAmelCase ,dynamic_thresholding_ratio=0.95 ,sample_max_value=1.0 ,prediction_type="epsilon" ,variance_type="learned_range" ,) torch.manual_seed(0 ) _lowerCamelCase : Tuple = DDPMScheduler( num_train_timesteps=1_000 ,beta_schedule="squaredcos_cap_v2" ,beta_start=0.00_01 ,beta_end=0.02 ,) torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.get_dummy_components() _lowerCamelCase : Tuple = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.get_dummy_inputs(__lowerCAmelCase ) _lowerCamelCase : List[str] = inputs["prompt"] _lowerCamelCase : Any = inputs["generator"] _lowerCamelCase : Optional[Any] = inputs["num_inference_steps"] _lowerCamelCase : str = inputs["output_type"] if "image" in inputs: _lowerCamelCase : Any = inputs["image"] else: _lowerCamelCase : Optional[Any] = None if "mask_image" in inputs: _lowerCamelCase : int = inputs["mask_image"] else: _lowerCamelCase : Optional[Any] = None if "original_image" in inputs: _lowerCamelCase : Any = inputs["original_image"] else: _lowerCamelCase : Optional[int] = None _lowerCamelCase, _lowerCamelCase : Tuple = pipe.encode_prompt(__lowerCAmelCase ) # inputs with prompt converted to embeddings _lowerCamelCase : List[str] = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: _lowerCamelCase : str = image if mask_image is not None: _lowerCamelCase : Tuple = mask_image if original_image is not None: _lowerCamelCase : Tuple = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = pipe(**__lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : Tuple = self.pipeline_class.from_pretrained(__lowerCAmelCase ) pipe_loaded.to(__lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=__lowerCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(__lowerCAmelCase ,__lowerCAmelCase ) is None ,F"""`{optional_component}` did not stay set to None after loading.""" ,) _lowerCamelCase : int = self.get_dummy_inputs(__lowerCAmelCase ) _lowerCamelCase : Tuple = inputs["generator"] _lowerCamelCase : Optional[int] = inputs["num_inference_steps"] _lowerCamelCase : str = inputs["output_type"] # inputs with prompt converted to embeddings _lowerCamelCase : Any = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: _lowerCamelCase : str = image if mask_image is not None: _lowerCamelCase : Optional[int] = mask_image if original_image is not None: _lowerCamelCase : List[str] = original_image _lowerCamelCase : List[str] = pipe_loaded(**__lowerCAmelCase )[0] _lowerCamelCase : Dict = np.abs(to_np(__lowerCAmelCase ) - to_np(__lowerCAmelCase ) ).max() self.assertLess(__lowerCAmelCase ,1e-4 ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Any = self.get_dummy_components() _lowerCamelCase : Optional[Any] = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : int = self.get_dummy_inputs(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = pipe(**__lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.pipeline_class.from_pretrained(__lowerCAmelCase ) pipe_loaded.to(__lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=__lowerCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests _lowerCamelCase : Dict = self.get_dummy_inputs(__lowerCAmelCase ) _lowerCamelCase : str = pipe_loaded(**__lowerCAmelCase )[0] _lowerCamelCase : List[str] = np.abs(to_np(__lowerCAmelCase ) - to_np(__lowerCAmelCase ) ).max() self.assertLess(__lowerCAmelCase ,1e-4 )
340
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) class A_ ( _a ): lowerCAmelCase__ = 'masked_bert' def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=30_522 ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Dict=12 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-12 ,__lowerCAmelCase: Union[str, Any]=0 ,__lowerCAmelCase: List[Any]="topK" ,__lowerCAmelCase: Optional[Any]="constant" ,__lowerCAmelCase: Optional[Any]=0.0 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : int = pruning_method _lowerCamelCase : str = mask_init _lowerCamelCase : List[Any] = mask_scale
340
1
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class A_ ( _a ): lowerCAmelCase__ = 'xlnet' lowerCAmelCase__ = ['mems'] lowerCAmelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self: int ,__lowerCAmelCase: str=32_000 ,__lowerCAmelCase: str=1_024 ,__lowerCAmelCase: List[str]=24 ,__lowerCAmelCase: Dict=16 ,__lowerCAmelCase: Dict=4_096 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[Any]="bi" ,__lowerCAmelCase: Dict=0.02 ,__lowerCAmelCase: str=1e-12 ,__lowerCAmelCase: Tuple=0.1 ,__lowerCAmelCase: Union[str, Any]=512 ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: Dict=False ,__lowerCAmelCase: Tuple=-1 ,__lowerCAmelCase: Dict=False ,__lowerCAmelCase: List[str]="last" ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: List[Any]="tanh" ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: Optional[Any]=5 ,__lowerCAmelCase: Dict=5 ,__lowerCAmelCase: Dict=5 ,__lowerCAmelCase: Optional[int]=1 ,__lowerCAmelCase: int=2 ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Any = d_model _lowerCamelCase : Dict = n_layer _lowerCamelCase : str = n_head if d_model % n_head != 0: raise ValueError(F"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"""`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) _lowerCamelCase : List[Any] = d_model // n_head _lowerCamelCase : int = ff_activation _lowerCamelCase : str = d_inner _lowerCamelCase : Any = untie_r _lowerCamelCase : Dict = attn_type _lowerCamelCase : str = initializer_range _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : List[Any] = dropout _lowerCamelCase : Union[str, Any] = mem_len _lowerCamelCase : Dict = reuse_len _lowerCamelCase : Union[str, Any] = bi_data _lowerCamelCase : List[str] = clamp_len _lowerCamelCase : Any = same_length _lowerCamelCase : Union[str, Any] = summary_type _lowerCamelCase : List[Any] = summary_use_proj _lowerCamelCase : Tuple = summary_activation _lowerCamelCase : List[str] = summary_last_dropout _lowerCamelCase : Dict = start_n_top _lowerCamelCase : Dict = end_n_top _lowerCamelCase : Dict = bos_token_id _lowerCamelCase : int = pad_token_id _lowerCamelCase : Any = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." ,__lowerCAmelCase ,) _lowerCamelCase : List[str] = kwargs["use_cache"] _lowerCamelCase : Any = use_mems_eval _lowerCamelCase : List[Any] = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) @property def _lowercase ( self: str ): '''simple docstring''' logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _lowercase ( self: str ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
340
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowerCAmelCase : str = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]: '''simple docstring''' if rng is None: _lowerCamelCase : Union[str, Any] = random.Random() _lowerCamelCase : Union[str, Any] = 1 for dim in shape: total_dims *= dim _lowerCamelCase : Optional[int] = [] for _ in range(_lowerCamelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) _lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase ) return output def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase ) # make sure that at least one token is attended to for each batch _lowerCamelCase : List[str] = 1 return attn_mask @require_flax class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = () def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _lowerCamelCase : List[str] = 2 _lowerCamelCase : str = inputs["input_ids"].shape[-1] // 2 _lowerCamelCase : Tuple = inputs["input_ids"][:max_batch_size, :sequence_length] _lowerCamelCase : Any = jnp.ones_like(__lowerCAmelCase ) _lowerCamelCase : List[Any] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _lowerCamelCase : Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _lowerCamelCase : List[str] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = False _lowerCamelCase : Dict = max_length _lowerCamelCase : Tuple = 0 for model_class in self.all_generative_model_classes: _lowerCamelCase : str = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCamelCase : Any = getattr(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = pt_model_class(__lowerCAmelCase ).eval() _lowerCamelCase : Optional[Any] = load_flax_weights_in_pytorch_model(__lowerCAmelCase ,flax_model.params ) _lowerCamelCase : int = flax_model.generate(__lowerCAmelCase ).sequences _lowerCamelCase : Optional[int] = pt_model.generate(torch.tensor(__lowerCAmelCase ,dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _lowerCamelCase : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = self._get_input_ids_and_config() _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = True _lowerCamelCase : Optional[int] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : int = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : int = False _lowerCamelCase : Optional[Any] = max_length _lowerCamelCase : Dict = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) _lowerCamelCase : Dict = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = self._get_input_ids_and_config() _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = max_length _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[int] = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : str = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() _lowerCamelCase : int = True _lowerCamelCase : List[Any] = max_length _lowerCamelCase : Optional[Any] = 0.8 _lowerCamelCase : Union[str, Any] = 10 _lowerCamelCase : List[str] = 0.3 _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : str = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Any = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : int = jit(model.generate ) _lowerCamelCase : Optional[int] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[str] = max_length _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : Dict = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Any = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : Any = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() _lowerCamelCase : Dict = max_length _lowerCamelCase : List[Any] = 2 _lowerCamelCase : Tuple = 1 _lowerCamelCase : List[str] = 8 _lowerCamelCase : List[Any] = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : int = model_class(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : Optional[Any] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : Dict = False _lowerCamelCase : Any = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Optional[Any] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : List[str] = True _lowerCamelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[Any] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : int = 2 _lowerCamelCase : int = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : int = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : Dict = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) @require_flax class A_ ( unittest.TestCase ): def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) _lowerCamelCase : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) _lowerCamelCase : Optional[Any] = "Hello world" _lowerCamelCase : str = tokenizer(__lowerCAmelCase ,return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowerCAmelCase ,"do_samples" ): model.generate(__lowerCAmelCase ,do_samples=__lowerCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowerCAmelCase ,"foo" ): _lowerCamelCase : List[str] = {"foo": "bar"} model.generate(__lowerCAmelCase ,**__lowerCAmelCase )
340
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A_ ( _a , _a , _a , unittest.TestCase ): lowerCAmelCase__ = StableDiffusionInpaintPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def _lowercase ( self: Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=9 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,attention_head_dim=(2, 4) ,use_linear_projection=__lowerCAmelCase ,) _lowerCamelCase : Optional[Any] = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,sample_size=128 ,) torch.manual_seed(0 ) _lowerCamelCase : Tuple = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,hidden_act="gelu" ,projection_dim=512 ,) _lowerCamelCase : List[str] = CLIPTextModel(__lowerCAmelCase ) _lowerCamelCase : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _lowerCamelCase : Dict = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Tuple=0 ): '''simple docstring''' _lowerCamelCase : Optional[Any] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) _lowerCamelCase : Any = image.cpu().permute(0 ,2 ,3 ,1 )[0] _lowerCamelCase : Optional[Any] = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("RGB" ).resize((64, 64) ) _lowerCamelCase : List[str] = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((64, 64) ) if str(__lowerCAmelCase ).startswith("mps" ): _lowerCamelCase : str = torch.manual_seed(__lowerCAmelCase ) else: _lowerCamelCase : str = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : str = self.get_dummy_components() _lowerCamelCase : List[Any] = StableDiffusionInpaintPipeline(**__lowerCAmelCase ) _lowerCamelCase : Optional[int] = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : int = self.get_dummy_inputs(__lowerCAmelCase ) _lowerCamelCase : Dict = sd_pipe(**__lowerCAmelCase ).images _lowerCamelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : Optional[int] = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self: Optional[int] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): def _lowercase ( self: Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) _lowerCamelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) _lowerCamelCase : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) _lowerCamelCase : Union[str, Any] = "stabilityai/stable-diffusion-2-inpainting" _lowerCamelCase : List[str] = StableDiffusionInpaintPipeline.from_pretrained(__lowerCAmelCase ,safety_checker=__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() _lowerCamelCase : str = "Face of a yellow cat, high resolution, sitting on a park bench" _lowerCamelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCamelCase : int = pipe( prompt=__lowerCAmelCase ,image=__lowerCAmelCase ,mask_image=__lowerCAmelCase ,generator=__lowerCAmelCase ,output_type="np" ,) _lowerCamelCase : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) _lowerCamelCase : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) _lowerCamelCase : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) _lowerCamelCase : int = "stabilityai/stable-diffusion-2-inpainting" _lowerCamelCase : Any = StableDiffusionInpaintPipeline.from_pretrained( __lowerCAmelCase ,torch_dtype=torch.floataa ,safety_checker=__lowerCAmelCase ,) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() _lowerCamelCase : Tuple = "Face of a yellow cat, high resolution, sitting on a park bench" _lowerCamelCase : Tuple = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( prompt=__lowerCAmelCase ,image=__lowerCAmelCase ,mask_image=__lowerCAmelCase ,generator=__lowerCAmelCase ,output_type="np" ,) _lowerCamelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowercase ( self: int ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCamelCase : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) _lowerCamelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) _lowerCamelCase : Any = "stabilityai/stable-diffusion-2-inpainting" _lowerCamelCase : List[Any] = PNDMScheduler.from_pretrained(__lowerCAmelCase ,subfolder="scheduler" ) _lowerCamelCase : Dict = StableDiffusionInpaintPipeline.from_pretrained( __lowerCAmelCase ,safety_checker=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,torch_dtype=torch.floataa ,) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCamelCase : Dict = "Face of a yellow cat, high resolution, sitting on a park bench" _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( prompt=__lowerCAmelCase ,image=__lowerCAmelCase ,mask_image=__lowerCAmelCase ,generator=__lowerCAmelCase ,num_inference_steps=2 ,output_type="np" ,) _lowerCamelCase : str = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
340
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class A_ ( _a ): lowerCAmelCase__ = 'mobilenet_v1' def __init__( self: Tuple ,__lowerCAmelCase: int=3 ,__lowerCAmelCase: Dict=224 ,__lowerCAmelCase: int=1.0 ,__lowerCAmelCase: Tuple=8 ,__lowerCAmelCase: List[str]="relu6" ,__lowerCAmelCase: int=True ,__lowerCAmelCase: List[Any]=0.9_99 ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: Optional[int]=0.0_01 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : List[Any] = depth_multiplier _lowerCamelCase : Any = min_depth _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Dict = tf_padding _lowerCamelCase : Union[str, Any] = classifier_dropout_prob _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps class A_ ( _a ): lowerCAmelCase__ = version.parse('1.11' ) @property def _lowercase ( self: Optional[int] ): '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def _lowercase ( self: Any ): '''simple docstring''' return 1e-4
340
1
"""simple docstring""" import os from math import logaa def lowerCamelCase_( _lowerCamelCase = "base_exp.txt" ) -> int: '''simple docstring''' _lowerCamelCase : float = 0 _lowerCamelCase : List[Any] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_lowerCamelCase ) , _lowerCamelCase ) ) ): _lowerCamelCase, _lowerCamelCase : Dict = list(map(_lowerCamelCase , line.split("," ) ) ) if x * logaa(_lowerCamelCase ) > largest: _lowerCamelCase : Union[str, Any] = x * logaa(_lowerCamelCase ) _lowerCamelCase : List[Any] = i + 1 return result if __name__ == "__main__": print(solution())
340
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' for param in module.parameters(): _lowerCamelCase : Optional[int] = False def lowerCamelCase_( ) -> List[str]: '''simple docstring''' _lowerCamelCase : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _lowerCamelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Dict = plt.imshow(_lowerCamelCase ) fig.axes.get_xaxis().set_visible(_lowerCamelCase ) fig.axes.get_yaxis().set_visible(_lowerCamelCase ) plt.show() def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Tuple = datetime.now() _lowerCamelCase : Tuple = current_time.strftime("%H:%M:%S" ) return timestamp
340
1
"""simple docstring""" from __future__ import annotations import math def lowerCamelCase_( _lowerCamelCase ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _lowerCAmelCase : Optional[int] = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def lowerCamelCase_( _lowerCamelCase ) -> list[int]: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) _lowerCamelCase : Optional[int] = [] for num in range(len(_lowerCamelCase ) ): _lowerCamelCase : Union[str, Any] = 0 while 2 * i * i <= odd_composites[num]: _lowerCamelCase : Optional[int] = odd_composites[num] - 2 * i * i if is_prime(_lowerCamelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_lowerCamelCase ) == n: return list_nums return [] def lowerCamelCase_( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
340
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) _lowerCamelCase : list = [] for char_count in range(_lowerCamelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_lowerCamelCase ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
340
1
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) _lowerCAmelCase : Any = logging.getLogger(__name__) _lowerCAmelCase : Tuple = {'''facebook/bart-base''': BartForConditionalGeneration} _lowerCAmelCase : Union[str, Any] = {'''facebook/bart-base''': BartTokenizer} def lowerCamelCase_( ) -> Tuple: '''simple docstring''' _lowerCamelCase : Tuple = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=_lowerCamelCase , default=_lowerCamelCase , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=_lowerCamelCase , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=_lowerCamelCase , default=_lowerCamelCase , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=_lowerCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , required=_lowerCamelCase , ) parser.add_argument( "--config_name" , type=_lowerCamelCase , default=_lowerCamelCase , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=_lowerCamelCase , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=_lowerCamelCase , default=_lowerCamelCase , help="Where to store the final ONNX file." ) _lowerCamelCase : Dict = parser.parse_args() return args def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase="cpu" ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[int] = model_dict[model_name].from_pretrained(_lowerCamelCase ).to(_lowerCamelCase ) _lowerCamelCase : Tuple = tokenizer_dict[model_name].from_pretrained(_lowerCamelCase ) if model_name in ["facebook/bart-base"]: _lowerCamelCase : Any = 0 _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = 0 return huggingface_model, tokenizer def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' model.eval() _lowerCamelCase : Tuple = None _lowerCamelCase : str = torch.jit.script(BARTBeamSearchGenerator(_lowerCamelCase ) ) with torch.no_grad(): _lowerCamelCase : int = "My friends are cool but they eat too many carbs." _lowerCamelCase : Dict = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="pt" ).to(model.device ) _lowerCamelCase : str = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=_lowerCamelCase , max_length=_lowerCamelCase , early_stopping=_lowerCamelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _lowerCamelCase , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , _lowerCamelCase , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=_lowerCamelCase , ) logger.info("Model exported to {}".format(_lowerCamelCase ) ) _lowerCamelCase : List[Any] = remove_dup_initializers(os.path.abspath(_lowerCamelCase ) ) logger.info("Deduplicated and optimized model written to {}".format(_lowerCamelCase ) ) _lowerCamelCase : List[str] = onnxruntime.InferenceSession(_lowerCamelCase ) _lowerCamelCase : Optional[Any] = ort_sess.run( _lowerCamelCase , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(_lowerCamelCase ), "max_length": np.array(_lowerCamelCase ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def lowerCamelCase_( ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[Any] = parse_args() _lowerCamelCase : Optional[Any] = 5 _lowerCamelCase : List[Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _lowerCamelCase : Optional[Any] = torch.device(args.device ) _lowerCamelCase, _lowerCamelCase : List[Any] = load_model_tokenizer(args.model_name_or_path , _lowerCamelCase ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(_lowerCamelCase ) if args.max_length: _lowerCamelCase : Optional[Any] = args.max_length if args.num_beams: _lowerCamelCase : Tuple = args.num_beams if args.output_file_path: _lowerCamelCase : int = args.output_file_path else: _lowerCamelCase : Dict = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
340
"""simple docstring""" _lowerCAmelCase : Tuple = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Any = [False] * len(_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = [s] _lowerCamelCase : str = True while queue: _lowerCamelCase : Optional[int] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) _lowerCamelCase : Any = True _lowerCamelCase : Any = u return visited[t] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : List[str] = [-1] * (len(_lowerCamelCase )) _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Any = float("Inf" ) _lowerCamelCase : Dict = sink while s != source: # Find the minimum value in select path _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , graph[parent[s]][s] ) _lowerCamelCase : Union[str, Any] = parent[s] max_flow += path_flow _lowerCamelCase : Optional[Any] = sink while v != source: _lowerCamelCase : Union[str, Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCamelCase : List[str] = parent[v] for i in range(len(_lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
340
1
"""simple docstring""" import pytest import datasets # Import fixture modules as plugins _lowerCAmelCase : List[str] = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ["integration", "unit"] ): continue item.add_marker(pytest.mark.unit ) def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' config.addinivalue_line("markers" , "torchaudio_latest: mark test to run with torchaudio>=0.12" ) @pytest.fixture(autouse=_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Tuple = tmp_path_factory.getbasetemp() / "cache" _lowerCamelCase : Dict = test_hf_cache_home / "datasets" _lowerCamelCase : int = test_hf_cache_home / "metrics" _lowerCamelCase : List[str] = test_hf_cache_home / "modules" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE" , str(_lowerCamelCase ) ) monkeypatch.setattr("datasets.config.HF_METRICS_CACHE" , str(_lowerCamelCase ) ) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE" , str(_lowerCamelCase ) ) _lowerCamelCase : List[Any] = test_hf_datasets_cache / "downloads" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH" , str(_lowerCamelCase ) ) _lowerCamelCase : Optional[int] = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_lowerCamelCase ) ) @pytest.fixture(autouse=_lowerCamelCase , scope="session" ) def lowerCamelCase_( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING" , _lowerCamelCase )
340
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class A_ ( _a ): lowerCAmelCase__ = 'camembert' def __init__( self: Tuple ,__lowerCAmelCase: Union[str, Any]=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: int=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: int=512 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Any="absolute" ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Tuple=None ,**__lowerCAmelCase: Dict ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Tuple = position_embedding_type _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : Dict = classifier_dropout class A_ ( _a ): @property def _lowercase ( self: Any ): '''simple docstring''' if self.task == "multiple-choice": _lowerCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
340
1
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase ): '''simple docstring''' _lowerCamelCase : str = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: _lowerCamelCase : str = 128 elif "12-12" in model_name: _lowerCamelCase : str = 12 _lowerCamelCase : List[str] = 12 elif "14-14" in model_name: _lowerCamelCase : Union[str, Any] = 14 _lowerCamelCase : Dict = 14 elif "16-16" in model_name: _lowerCamelCase : int = 16 _lowerCamelCase : List[Any] = 16 else: raise ValueError("Model not supported" ) _lowerCamelCase : Optional[Any] = 'huggingface/label-files' if "speech-commands" in model_name: _lowerCamelCase : Optional[int] = 35 _lowerCamelCase : Union[str, Any] = 'speech-commands-v2-id2label.json' else: _lowerCamelCase : Union[str, Any] = 527 _lowerCamelCase : Tuple = 'audioset-id2label.json' _lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : int = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Tuple = idalabel _lowerCamelCase : int = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_( _lowerCamelCase ): '''simple docstring''' if "module.v" in name: _lowerCamelCase : str = name.replace("module.v" , "audio_spectrogram_transformer" ) if "cls_token" in name: _lowerCamelCase : List[Any] = name.replace("cls_token" , "embeddings.cls_token" ) if "dist_token" in name: _lowerCamelCase : List[Any] = name.replace("dist_token" , "embeddings.distillation_token" ) if "pos_embed" in name: _lowerCamelCase : Optional[int] = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: _lowerCamelCase : List[Any] = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) # transformer blocks if "blocks" in name: _lowerCamelCase : Dict = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: _lowerCamelCase : Tuple = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _lowerCamelCase : Dict = name.replace("attn" , "attention.self" ) if "norm1" in name: _lowerCamelCase : Dict = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _lowerCamelCase : List[str] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _lowerCamelCase : Union[str, Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _lowerCamelCase : Optional[int] = name.replace("mlp.fc2" , "output.dense" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: _lowerCamelCase : int = name.replace("audio_spectrogram_transformer.norm" , "audio_spectrogram_transformer.layernorm" ) # classifier head if "module.mlp_head.0" in name: _lowerCamelCase : Union[str, Any] = name.replace("module.mlp_head.0" , "classifier.layernorm" ) if "module.mlp_head.1" in name: _lowerCamelCase : Tuple = name.replace("module.mlp_head.1" , "classifier.dense" ) return name def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase : int = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: _lowerCamelCase : Union[str, Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Union[str, Any] = config.hidden_size if "weight" in key: _lowerCamelCase : Optional[Any] = val[:dim, :] _lowerCamelCase : Optional[int] = val[dim : dim * 2, :] _lowerCamelCase : Any = val[-dim:, :] else: _lowerCamelCase : int = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : str = val[-dim:] else: _lowerCamelCase : int = val return orig_state_dict def lowerCamelCase_( _lowerCamelCase ): '''simple docstring''' _lowerCamelCase : List[Any] = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCamelCase : Dict = get_audio_spectrogram_transformer_config(_UpperCAmelCase ) _lowerCamelCase : Union[str, Any] = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict _lowerCamelCase : Any = model_name_to_url[model_name] _lowerCamelCase : Dict = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location="cpu" ) # remove some keys remove_keys(_UpperCAmelCase ) # rename some keys _lowerCamelCase : List[Any] = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) # load 🤗 model _lowerCamelCase : Any = ASTForAudioClassification(_UpperCAmelCase ) model.eval() model.load_state_dict(_UpperCAmelCase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 _lowerCamelCase : Dict = -4.2_6_7_7_3_9_3 if 'speech-commands' not in model_name else -6.8_4_5_9_7_8 _lowerCamelCase : Dict = 4.5_6_8_9_9_7_4 if 'speech-commands' not in model_name else 5.5_6_5_4_5_2_6 _lowerCamelCase : Tuple = 1024 if 'speech-commands' not in model_name else 128 _lowerCamelCase : Tuple = ASTFeatureExtractor(mean=_UpperCAmelCase , std=_UpperCAmelCase , max_length=_UpperCAmelCase ) if "speech-commands" in model_name: _lowerCamelCase : int = load_dataset("speech_commands" , "v0.02" , split="validation" ) _lowerCamelCase : Optional[int] = dataset[0]['audio']['array'] else: _lowerCamelCase : List[str] = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" , ) _lowerCamelCase : Optional[int] = torchaudio.load(_UpperCAmelCase ) _lowerCamelCase : Union[str, Any] = waveform.squeeze().numpy() _lowerCamelCase : Optional[Any] = feature_extractor(_UpperCAmelCase , sampling_rate=16000 , return_tensors="pt" ) # forward pass _lowerCamelCase : Any = model(**_UpperCAmelCase ) _lowerCamelCase : str = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": _lowerCamelCase : Tuple = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": _lowerCamelCase : Union[str, Any] = torch.tensor([-1.1_9_8_6, -7.0_9_0_3, -8.2_7_1_8] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": _lowerCamelCase : Dict = torch.tensor([-2.6_1_2_8, -8.0_0_8_0, -9.4_3_4_4] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": _lowerCamelCase : Optional[Any] = torch.tensor([-1.5_0_8_0, -7.4_5_3_4, -8.8_9_1_7] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": _lowerCamelCase : List[Any] = torch.tensor([-0.5_0_5_0, -6.5_8_3_3, -8.0_8_4_3] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": _lowerCamelCase : Optional[int] = torch.tensor([-0.3_8_2_6, -7.0_3_3_6, -8.2_4_1_3] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": _lowerCamelCase : List[Any] = torch.tensor([-1.2_1_1_3, -6.9_1_0_1, -8.3_4_7_0] ) elif model_name == "ast-finetuned-speech-commands-v2": _lowerCamelCase : Dict = torch.tensor([6.1_5_8_9, -8.0_5_6_6, -8.7_9_8_4] ) else: raise ValueError("Unknown model name" ) if not torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1e-4 ): raise ValueError("Logits don\'t match" ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCAmelCase ) print(F"""Saving feature extractor to {pytorch_dump_folder_path}""" ) feature_extractor.save_pretrained(_UpperCAmelCase ) if push_to_hub: print("Pushing model and feature extractor to the hub..." ) model.push_to_hub(F"""MIT/{model_name}""" ) feature_extractor.push_to_hub(F"""MIT/{model_name}""" ) if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCAmelCase : Dict = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
350
"""simple docstring""" from collections import defaultdict def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : str = True for v in tree[start]: if v not in visited: ret += dfs(_lowerCamelCase ) if ret % 2 == 0: cuts.append(_lowerCamelCase ) return ret def lowerCamelCase_( ) -> int: '''simple docstring''' dfs(1 ) if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = 10, 9 _lowerCAmelCase : str = defaultdict(list) _lowerCAmelCase : dict[int, bool] = {} _lowerCAmelCase : list[int] = [] _lowerCAmelCase : Any = 0 _lowerCAmelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
0
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[int] = numpy.array([0, 0]) _lowerCAmelCase : List[Any] = numpy.array([0.5, 0.8_660_254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : Optional[int] = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[numpy.ndarray]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = initial_vectors for _ in range(lowercase__ ): _lowerCamelCase : List[Any] = iteration_step(lowercase__ ) return vectors def lowerCamelCase_( _lowerCamelCase ) -> list[numpy.ndarray]: '''simple docstring''' _lowerCamelCase : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): _lowerCamelCase : List[Any] = vectors[i + 1] new_vectors.append(lowercase__ ) _lowerCamelCase : str = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> numpy.ndarray: '''simple docstring''' _lowerCamelCase : Union[str, Any] = numpy.radians(lowercase__ ) _lowerCamelCase : Tuple = numpy.cos(lowercase__ ), numpy.sin(lowercase__ ) _lowerCamelCase : Tuple = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowercase__ , lowercase__ ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' _lowerCamelCase : Tuple = plt.gca() axes.set_aspect("equal" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _lowerCamelCase : Any = zip(*lowercase__ ) plt.plot(lowercase__ , lowercase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Any = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
351
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _lowerCAmelCase : Optional[int] = '''__DUMMY_TRANSFORMERS_USER__''' _lowerCAmelCase : Dict = '''Dummy User''' _lowerCAmelCase : Optional[int] = '''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''' _lowerCAmelCase : Tuple = '''https://hub-ci.huggingface.co''' _lowerCAmelCase : Any = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' _lowerCAmelCase : Tuple = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' _lowerCAmelCase : Dict = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' HfFolder.save_token(_lowerCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def lowerCamelCase_( ) -> str: '''simple docstring''' return HfApi(endpoint=_lowerCamelCase ) @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Dict = HfFolder.get_token() HfFolder.save_token(_lowerCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' def _cleanup_repo(_lowerCamelCase ): hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' @contextmanager def _temporary_repo(_lowerCamelCase ): try: yield repo_id finally: cleanup_repo(_lowerCamelCase ) return _temporary_repo @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Tuple = F"""repo_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[str] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data/text_data.txt" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : List[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : Dict = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Any = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[Any] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
340
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A_ ( _UpperCAmelCase ): lowerCAmelCase__ = ["image_processor", "tokenizer"] lowerCAmelCase__ = "ViTImageProcessor" lowerCAmelCase__ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self: Tuple ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Any=None ,**__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,_UpperCAmelCase ,) _lowerCamelCase : Optional[int] = kwargs.pop("feature_extractor" ) _lowerCamelCase : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_UpperCAmelCase ,_UpperCAmelCase ) def __call__( self: int ,__lowerCAmelCase: Dict=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: int=None ,__lowerCAmelCase: List[Any]=None ,**__lowerCAmelCase: Tuple ): '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: _lowerCamelCase : Optional[Any] = self.tokenizer(_UpperCAmelCase ,return_tensors=_UpperCAmelCase ,**_UpperCAmelCase ) if visual_prompt is not None: _lowerCamelCase : str = self.image_processor(_UpperCAmelCase ,return_tensors=_UpperCAmelCase ,**_UpperCAmelCase ) if images is not None: _lowerCamelCase : Tuple = self.image_processor(_UpperCAmelCase ,return_tensors=_UpperCAmelCase ,**_UpperCAmelCase ) if visual_prompt is not None and images is not None: _lowerCamelCase : Any = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _lowerCamelCase : str = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _lowerCamelCase : Union[str, Any] = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) ,tensor_type=_UpperCAmelCase ) def _lowercase ( self: int ,*__lowerCAmelCase: int ,**__lowerCAmelCase: List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase ,**_UpperCAmelCase ) def _lowercase ( self: Any ,*__lowerCAmelCase: Any ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase ,**_UpperCAmelCase ) @property def _lowercase ( self: List[Any] ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." ,_UpperCAmelCase ,) return self.image_processor_class @property def _lowercase ( self: List[str] ): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." ,_UpperCAmelCase ,) return self.image_processor
352
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class A_ ( _a ): def __init__( self: List[Any] ,__lowerCAmelCase: Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() _lowerCamelCase : Tuple = nn.ModuleList(__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Union[torch.Tensor, float, int] ,__lowerCAmelCase: torch.Tensor ,__lowerCAmelCase: List[torch.tensor] ,__lowerCAmelCase: List[float] ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[Dict[str, Any]] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(__lowerCAmelCase ,__lowerCAmelCase ,self.nets ) ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = controlnet( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,) # merge samples if i == 0: _lowerCamelCase, _lowerCamelCase : Optional[Any] = down_samples, mid_sample else: _lowerCamelCase : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__lowerCAmelCase ,__lowerCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Union[str, os.PathLike] ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Callable = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[str] = None ,): '''simple docstring''' _lowerCamelCase : List[Any] = 0 _lowerCamelCase : str = save_directory for controlnet in self.nets: controlnet.save_pretrained( __lowerCAmelCase ,is_main_process=__lowerCAmelCase ,save_function=__lowerCAmelCase ,safe_serialization=__lowerCAmelCase ,variant=__lowerCAmelCase ,) idx += 1 _lowerCamelCase : int = model_path_to_save + F"""_{idx}""" @classmethod def _lowercase ( cls: Any ,__lowerCAmelCase: Optional[Union[str, os.PathLike]] ,**__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : int = 0 _lowerCamelCase : str = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _lowerCamelCase : Dict = pretrained_model_path while os.path.isdir(__lowerCAmelCase ): _lowerCamelCase : List[Any] = ControlNetModel.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) controlnets.append(__lowerCAmelCase ) idx += 1 _lowerCamelCase : Tuple = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(__lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.""" ) if len(__lowerCAmelCase ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(__lowerCAmelCase )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(__lowerCAmelCase )
340
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class A_ ( A__ ): lowerCAmelCase__ = 'luke' def __init__( self: Dict ,__lowerCAmelCase: Any=50_267 ,__lowerCAmelCase: List[str]=500_000 ,__lowerCAmelCase: Any=768 ,__lowerCAmelCase: Dict=256 ,__lowerCAmelCase: Optional[int]=12 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: int=3_072 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Any=512 ,__lowerCAmelCase: Tuple=2 ,__lowerCAmelCase: str=0.02 ,__lowerCAmelCase: str=1e-12 ,__lowerCAmelCase: Any=True ,__lowerCAmelCase: Optional[int]=None ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: List[str]=0 ,__lowerCAmelCase: Optional[int]=2 ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' super().__init__(pad_token_id=__snake_case ,bos_token_id=__snake_case ,eos_token_id=__snake_case ,**__snake_case ) _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Any = entity_vocab_size _lowerCamelCase : int = hidden_size _lowerCamelCase : Optional[int] = entity_emb_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : List[str] = intermediate_size _lowerCamelCase : Optional[int] = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : str = use_entity_aware_attention _lowerCamelCase : Optional[int] = classifier_dropout
353
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : int = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]: '''simple docstring''' _lowerCamelCase : Tuple = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): _lowerCamelCase : Tuple = "segformer.encoder." + key if key.startswith("backbone" ): _lowerCamelCase : Any = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowerCamelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _lowerCamelCase : int = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_lowerCamelCase )-1}""" ) if "norm" in key: _lowerCamelCase : Optional[Any] = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowerCamelCase : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] _lowerCamelCase : Tuple = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_lowerCamelCase )-1}""" ) if "layer_norm1" in key: _lowerCamelCase : Union[str, Any] = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: _lowerCamelCase : int = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _lowerCamelCase : Union[str, Any] = key[key.find("block" ) + len("block" )] _lowerCamelCase : Optional[Any] = key.replace(F"""block{idx}""" , F"""block.{int(_lowerCamelCase )-1}""" ) if "attn.q" in key: _lowerCamelCase : Optional[int] = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: _lowerCamelCase : List[str] = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: _lowerCamelCase : Tuple = key.replace("attn" , "attention.self" ) if "fc1" in key: _lowerCamelCase : Optional[Any] = key.replace("fc1" , "dense1" ) if "fc2" in key: _lowerCamelCase : Dict = key.replace("fc2" , "dense2" ) if "linear_pred" in key: _lowerCamelCase : int = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: _lowerCamelCase : str = key.replace("linear_fuse.conv" , "linear_fuse" ) _lowerCamelCase : Optional[Any] = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowerCamelCase : Union[str, Any] = key[key.find("linear_c" ) + len("linear_c" )] _lowerCamelCase : Optional[int] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_lowerCamelCase )-1}""" ) if key.startswith("head" ): _lowerCamelCase : List[str] = key.replace("head" , "classifier" ) _lowerCamelCase : Union[str, Any] = value return new_state_dict def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _lowerCamelCase : int = kv_weight[ : config.hidden_sizes[i], : ] _lowerCamelCase : int = kv_bias[: config.hidden_sizes[i]] _lowerCamelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _lowerCamelCase : Optional[Any] = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase_( ) -> Dict: '''simple docstring''' _lowerCamelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Any = SegformerConfig() _lowerCamelCase : int = False # set attributes based on model_name _lowerCamelCase : Any = "huggingface/label-files" if "segformer" in model_name: _lowerCamelCase : str = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: _lowerCamelCase : str = 150 _lowerCamelCase : Dict = "ade20k-id2label.json" _lowerCamelCase : Dict = (1, 150, 128, 128) elif "city" in model_name: _lowerCamelCase : List[str] = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" _lowerCamelCase : Tuple = (1, 19, 128, 128) else: raise ValueError(F"""Model {model_name} not supported""" ) elif "mit" in model_name: _lowerCamelCase : List[str] = True _lowerCamelCase : Tuple = model_name[4:6] _lowerCamelCase : Tuple = 1000 _lowerCamelCase : List[Any] = "imagenet-1k-id2label.json" _lowerCamelCase : List[Any] = (1, 1000) else: raise ValueError(F"""Model {model_name} not supported""" ) # set config attributes _lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : int = 256 elif size == "b2": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : List[Any] = 768 _lowerCamelCase : Any = [3, 4, 6, 3] elif size == "b3": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : Union[str, Any] = 768 _lowerCamelCase : Optional[Any] = [3, 4, 18, 3] elif size == "b4": _lowerCamelCase : str = [64, 128, 320, 512] _lowerCamelCase : Optional[Any] = 768 _lowerCamelCase : Dict = [3, 8, 27, 3] elif size == "b5": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : Tuple = 768 _lowerCamelCase : Tuple = [3, 6, 40, 3] else: raise ValueError(F"""Size {size} not supported""" ) # load image processor (only resize + normalize) _lowerCamelCase : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase ) # prepare image _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Dict = image_processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values logger.info(F"""Converting model {model_name}...""" ) # load original state dict if encoder_only: _lowerCamelCase : Tuple = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) ) else: _lowerCamelCase : int = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )["state_dict"] # rename keys _lowerCamelCase : str = rename_keys(_lowerCamelCase , encoder_only=_lowerCamelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_lowerCamelCase , _lowerCamelCase ) # create HuggingFace model and load state dict if encoder_only: _lowerCamelCase : Tuple = False _lowerCamelCase : Optional[int] = SegformerForImageClassification(_lowerCamelCase ) else: _lowerCamelCase : List[str] = SegformerForSemanticSegmentation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # forward pass _lowerCamelCase : Any = model(_lowerCamelCase ) _lowerCamelCase : Dict = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _lowerCamelCase : str = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]], [[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _lowerCamelCase : int = torch.tensor( [ [[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]], [[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]], [[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _lowerCamelCase : Optional[Any] = torch.tensor( [ [[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]], [[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]], [[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]], [[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]], [[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]], [[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]], [[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _lowerCamelCase : Dict = torch.tensor( [ [[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]], [[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _lowerCamelCase : Optional[int] = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]], [[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [ [-1.13_72e01, -1.27_87e01, -1.34_77e01], [-1.25_36e01, -1.41_94e01, -1.44_09e01], [-1.32_17e01, -1.48_88e01, -1.53_27e01], ], [ [-1.47_91e01, -1.71_22e01, -1.82_77e01], [-1.71_63e01, -1.91_92e01, -1.95_33e01], [-1.78_97e01, -1.99_91e01, -2.03_15e01], ], [ [7.67_23e-01, 4.19_21e-01, -7.78_78e-02], [4.77_72e-01, 9.55_57e-03, -2.80_82e-01], [3.60_32e-01, -2.48_26e-01, -5.11_68e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _lowerCamelCase : Union[str, Any] = torch.tensor( [ [[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]], [[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _lowerCamelCase : List[Any] = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]], [[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _lowerCamelCase : Any = torch.tensor( [ [[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]], [[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]], [[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _lowerCamelCase : str = torch.tensor( [ [[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]], [[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: _lowerCamelCase : Dict = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : str = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
340
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[Any] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class A_ ( a__ , a__ , a__ , unittest.TestCase ): lowerCAmelCase__ = StableDiffusionLatentUpscalePipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } lowerCAmelCase__ = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) lowerCAmelCase__ = True @property def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Any = 1 _lowerCamelCase : Dict = 4 _lowerCamelCase : Union[str, Any] = (16, 16) _lowerCamelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(_lowerCamelCase ) return image def _lowercase ( self: Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : int = UNetaDConditionModel( act_fn="gelu" ,attention_head_dim=8 ,norm_num_groups=_lowerCamelCase ,block_out_channels=[32, 32, 64, 64] ,time_cond_proj_dim=160 ,conv_in_kernel=1 ,conv_out_kernel=1 ,cross_attention_dim=32 ,down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) ,in_channels=8 ,mid_block_type=_lowerCamelCase ,only_cross_attention=_lowerCamelCase ,out_channels=5 ,resnet_time_scale_shift="scale_shift" ,time_embedding_type="fourier" ,timestep_post_act="gelu" ,up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") ,) _lowerCamelCase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 32, 64, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,) _lowerCamelCase : List[str] = EulerDiscreteScheduler(prediction_type="sample" ) _lowerCamelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,hidden_act="quick_gelu" ,projection_dim=512 ,) _lowerCamelCase : List[Any] = CLIPTextModel(_lowerCamelCase ) _lowerCamelCase : List[str] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _lowerCamelCase : List[str] = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def _lowercase ( self: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Dict=0 ): '''simple docstring''' if str(_lowerCamelCase ).startswith("mps" ): _lowerCamelCase : Dict = torch.manual_seed(_lowerCamelCase ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) _lowerCamelCase : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = '''cpu''' _lowerCamelCase : str = self.get_dummy_components() _lowerCamelCase : int = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _lowerCamelCase : int = self.get_dummy_inputs(_lowerCamelCase ) _lowerCamelCase : List[Any] = pipe(**_lowerCamelCase ).images _lowerCamelCase : Dict = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 256, 256, 3) ) _lowerCamelCase : Tuple = np.array( [0.47_22_24_12, 0.41_92_16_33, 0.44_71_74_34, 0.46_87_41_92, 0.42_58_82_58, 0.46_15_07_26, 0.4_67_75_34, 0.45_58_38_32, 0.48_57_90_55] ) _lowerCamelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase ,1e-3 ) def _lowercase ( self: Tuple ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def _lowercase ( self: List[str] ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def _lowercase ( self: List[Any] ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _lowercase ( self: int ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def _lowercase ( self: Any ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def _lowercase ( self: Any ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3 ) def _lowercase ( self: Any ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3 ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] _lowerCamelCase : Dict = self.get_dummy_components() _lowerCamelCase : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _lowerCamelCase : Optional[Any] = self.get_dummy_inputs(_lowerCamelCase ) _lowerCamelCase : int = 2 _lowerCamelCase : int = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _lowerCamelCase : List[str] = getattr(_lowerCamelCase ,scheduler_enum.name ) _lowerCamelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) _lowerCamelCase : Optional[Any] = pipe(**_lowerCamelCase )[0] outputs.append(_lowerCamelCase ) assert check_same_shape(_lowerCamelCase ) @require_torch_gpu @slow class A_ ( unittest.TestCase ): def _lowercase ( self: Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : Tuple = torch.manual_seed(33 ) _lowerCamelCase : List[Any] = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ,torch_dtype=torch.floataa ) pipe.to("cuda" ) _lowerCamelCase : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" ,torch_dtype=torch.floataa ) upscaler.to("cuda" ) _lowerCamelCase : List[str] = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' _lowerCamelCase : Union[str, Any] = pipe(_lowerCamelCase ,generator=_lowerCamelCase ,output_type="latent" ).images _lowerCamelCase : Dict = upscaler( prompt=_lowerCamelCase ,image=_lowerCamelCase ,num_inference_steps=20 ,guidance_scale=0 ,generator=_lowerCamelCase ,output_type="np" ,).images[0] _lowerCamelCase : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5e-2 def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : int = torch.manual_seed(33 ) _lowerCamelCase : Tuple = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" ,torch_dtype=torch.floataa ) upscaler.to("cuda" ) _lowerCamelCase : str = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' _lowerCamelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) _lowerCamelCase : Dict = upscaler( prompt=_lowerCamelCase ,image=_lowerCamelCase ,num_inference_steps=20 ,guidance_scale=0 ,generator=_lowerCamelCase ,output_type="np" ,).images[0] _lowerCamelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5e-2
354
"""simple docstring""" _lowerCAmelCase : dict[tuple[int, int, int], int] = {} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _lowerCamelCase : Optional[int] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _lowerCamelCase : int = _calculate(days - 1 , _lowerCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _lowerCamelCase : Tuple = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _lowerCamelCase : str = _calculate(days - 1 , _lowerCamelCase , 0 ) _lowerCamelCase : List[Any] = state_late + state_absent + state_ontime _lowerCamelCase : int = prizestrings return prizestrings def lowerCamelCase_( _lowerCamelCase = 30 ) -> int: '''simple docstring''' return _calculate(_lowerCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
340
0
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : str = LxmertConfig.from_json_file(__a ) print(F"""Building PyTorch model from configuration: {config}""" ) _lowerCamelCase : Union[str, Any] = LxmertForPreTraining(__a ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__a , __a , __a ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __a ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCAmelCase : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
355
"""simple docstring""" from __future__ import annotations def lowerCamelCase_( _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : int = str(_lowerCamelCase ) return len(_lowerCamelCase ) == 9 and set(_lowerCamelCase ) == set("123456789" ) def lowerCamelCase_( ) -> int | None: '''simple docstring''' for base_num in range(9999 , 4999 , -1 ): _lowerCamelCase : Union[str, Any] = 100002 * base_num if is_9_pandigital(_lowerCamelCase ): return candidate for base_num in range(333 , 99 , -1 ): _lowerCamelCase : Tuple = 1002003 * base_num if is_9_pandigital(_lowerCamelCase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
340
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[str]=12 ,__lowerCAmelCase: Dict=7 ,__lowerCAmelCase: int=True ,__lowerCAmelCase: Optional[int]=True ,__lowerCAmelCase: str=True ,__lowerCAmelCase: Optional[Any]=99 ,__lowerCAmelCase: Union[str, Any]=32 ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: Dict=2 ,__lowerCAmelCase: List[Any]=4 ,__lowerCAmelCase: List[Any]=37 ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[Any]=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: List[Any]=0.02 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Tuple=None ,): '''simple docstring''' _lowerCamelCase : str = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : int = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Tuple = use_input_mask _lowerCamelCase : Union[str, Any] = use_labels _lowerCamelCase : Optional[Any] = vocab_size _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : List[str] = projection_dim _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : Any = dropout _lowerCamelCase : Dict = attention_dropout _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Any = scope _lowerCamelCase : List[Any] = bos_token_id def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCamelCase : Union[str, Any] = None if self.use_input_mask: _lowerCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _lowerCamelCase : int = input_mask.numpy() _lowerCamelCase, _lowerCamelCase : str = input_mask.shape _lowerCamelCase : str = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(__lowerCAmelCase ): _lowerCamelCase : Optional[Any] = 1 _lowerCamelCase : str = 0 _lowerCamelCase : List[Any] = self.get_config() return config, input_ids, tf.convert_to_tensor(__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,__lowerCAmelCase: Any ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[str] = TFBlipTextModel(config=__lowerCAmelCase ) _lowerCamelCase : List[str] = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,training=__lowerCAmelCase ) _lowerCamelCase : Dict = model(__lowerCAmelCase ,training=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : str = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A_ ( lowerCamelCase__ , unittest.TestCase ): lowerCAmelCase__ = (TFBlipTextModel,) if is_tf_available() else () lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[int] = BlipTextModelTester(self ) _lowerCamelCase : Dict = ConfigTester(self ,config_class=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' pass def _lowercase ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def _lowercase ( self: Optional[int] ): '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def _lowercase ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def _lowercase ( self: int ): '''simple docstring''' pass @slow def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Tuple = TFBlipTextModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def _lowercase ( self: Any ,__lowerCAmelCase: Any=True ): '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=__lowerCAmelCase )
356
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class A_ ( _a ): lowerCAmelCase__ = 'char' lowerCAmelCase__ = 'bpe' lowerCAmelCase__ = 'wp' _lowerCAmelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class A_ ( _a ): lowerCAmelCase__ = ['image_processor', 'char_tokenizer'] lowerCAmelCase__ = 'ViTImageProcessor' lowerCAmelCase__ = 'MgpstrTokenizer' def __init__( self: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,__lowerCAmelCase ,) _lowerCamelCase : List[Any] = kwargs.pop("feature_extractor" ) _lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : str = AutoTokenizer.from_pretrained("gpt2" ) _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) def __call__( self: Optional[int] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ): '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _lowerCamelCase : Optional[int] = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is not None: _lowerCamelCase : int = self.char_tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: _lowerCamelCase : Tuple = encodings["input_ids"] return inputs def _lowercase ( self: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = sequences _lowerCamelCase : Dict = char_preds.size(0 ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._decode_helper(__lowerCAmelCase ,"char" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(__lowerCAmelCase ,"bpe" ) _lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(__lowerCAmelCase ,"wp" ) _lowerCamelCase : List[str] = [] _lowerCamelCase : str = [] for i in range(__lowerCAmelCase ): _lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowerCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowerCamelCase : Optional[Any] = scores.index(max(__lowerCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = final_strs _lowerCamelCase : int = final_scores _lowerCamelCase : str = char_strs _lowerCamelCase : Dict = bpe_strs _lowerCamelCase : int = wp_strs return out def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ): '''simple docstring''' if format == DecodeType.CHARACTER: _lowerCamelCase : int = self.char_decode _lowerCamelCase : List[str] = 1 _lowerCamelCase : Optional[int] = "[s]" elif format == DecodeType.BPE: _lowerCamelCase : Dict = self.bpe_decode _lowerCamelCase : str = 2 _lowerCamelCase : Union[str, Any] = "#" elif format == DecodeType.WORDPIECE: _lowerCamelCase : int = self.wp_decode _lowerCamelCase : List[str] = 102 _lowerCamelCase : List[Any] = "[SEP]" else: raise ValueError(F"""Format {format} is not supported.""" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], [] _lowerCamelCase : Any = pred_logits.size(0 ) _lowerCamelCase : int = pred_logits.size(1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=__lowerCAmelCase ,sorted=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_index.view(-1 ,__lowerCAmelCase )[:, 1:] _lowerCamelCase : List[str] = decoder(__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : str = torch.nn.functional.softmax(__lowerCAmelCase ,dim=2 ).max(dim=2 ) _lowerCamelCase : Any = preds_max_prob[:, 1:] for index in range(__lowerCAmelCase ): _lowerCamelCase : List[Any] = preds_str[index].find(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_str[index][:pred_eos] _lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist() _lowerCamelCase : List[str] = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1 _lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1] _lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__lowerCAmelCase ) conf_scores.append(__lowerCAmelCase ) return dec_strs, conf_scores def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str] ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(__lowerCAmelCase ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs
340
0
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Union[str, Any] = [False] * len(__A ) _lowerCamelCase : Optional[Any] = [-1] * len(__A ) def dfs(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Dict = True _lowerCamelCase : str = c for u in graph[v]: if not visited[u]: dfs(__A , 1 - c ) for i in range(len(__A ) ): if not visited[i]: dfs(__A , 0 ) for i in range(len(__A ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _lowerCAmelCase : Tuple = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
357
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _lowerCAmelCase : List[Any] = get_logger(__name__) class A_ : lowerCAmelCase__ = 'dummy_data' lowerCAmelCase__ = 'datasets' lowerCAmelCase__ = False def __init__( self: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[Version, str] ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[List[Callable]] = None ,): '''simple docstring''' _lowerCamelCase : str = 0 _lowerCamelCase : List[str] = dataset_name _lowerCamelCase : Optional[int] = cache_dir _lowerCamelCase : Optional[int] = use_local_dummy_data _lowerCamelCase : int = config # download_callbacks take a single url as input _lowerCamelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowerCamelCase : int = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowerCamelCase : Tuple = str(__lowerCAmelCase ) # to be downloaded _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Dict = None @property def _lowercase ( self: str ): '''simple docstring''' if self._dummy_file is None: _lowerCamelCase : List[str] = self.download_dummy_data() return self._dummy_file @property def _lowercase ( self: str ): '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" ,self.config.name ,self.version_name ) # structure is dummy / version_name return os.path.join("dummy" ,self.version_name ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' return os.path.join(self.dummy_data_folder ,"dummy_data.zip" ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowerCamelCase : Optional[int] = cached_path( __lowerCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=__lowerCAmelCase ,force_extract=__lowerCAmelCase ) return os.path.join(__lowerCAmelCase ,self.dummy_file_name ) @property def _lowercase ( self: Tuple ): '''simple docstring''' return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file ) @property def _lowercase ( self: List[str] ): '''simple docstring''' if self._bucket_url is None: _lowerCamelCase : List[str] = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) ) return self._bucket_url @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,*__lowerCAmelCase: List[Any] ): '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowerCamelCase : Tuple = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowerCamelCase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.create_dummy_data_dict(__lowerCAmelCase ,__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,(list, tuple) ): return self.create_dummy_data_list(__lowerCAmelCase ,__lowerCAmelCase ) else: return self.create_dummy_data_single(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: Optional[int] ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' return path def _lowercase ( self: Optional[int] ): '''simple docstring''' return {} def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : str = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): for single_url in single_urls: download_callback(__lowerCAmelCase ) else: _lowerCamelCase : Union[str, Any] = single_urls download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Dict = [os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) for x in single_urls] else: _lowerCamelCase : Union[str, Any] = single_urls _lowerCamelCase : List[str] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) _lowerCamelCase : List[Any] = value # make sure that values are unique if all(isinstance(__lowerCAmelCase ,__lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowerCamelCase : List[str] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,__lowerCAmelCase ) ) for url in data_url ) _lowerCamelCase : Optional[Any] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _lowerCamelCase : Tuple = [data_url[0]] * len(__lowerCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(__lowerCAmelCase ) return dummy_data_list def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : Optional[int] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(__lowerCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass def _lowercase ( self: Optional[int] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' def _iter_archive_members(__lowerCAmelCase: Any ): # this preserves the order of the members inside the ZIP archive _lowerCamelCase : Tuple = Path(self.dummy_file ).parent _lowerCamelCase : str = path.relative_to(__lowerCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _lowerCamelCase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = Path(__lowerCAmelCase ) _lowerCamelCase : int = _iter_archive_members(__lowerCAmelCase ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(__lowerCAmelCase ).as_posix(), file_path.open("rb" ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [paths] for path in paths: if os.path.isfile(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(__lowerCAmelCase ): if filename.startswith((".", "__") ): continue yield os.path.join(__lowerCAmelCase ,__lowerCAmelCase )
340
0
"""simple docstring""" import sys _lowerCAmelCase : Any = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCamelCase_( _lowerCamelCase = N ) -> str: '''simple docstring''' _lowerCamelCase : int = -sys.maxsize - 1 for i in range(len(lowerCamelCase_ ) - 12 ): _lowerCamelCase : Any = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _lowerCamelCase : Any = product return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
358
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) _lowerCamelCase : int = precision _lowerCamelCase : Dict = ceil(precision / 14 ) _lowerCamelCase : Optional[Any] = 426880 * Decimal(10005 ).sqrt() _lowerCamelCase : int = 1 _lowerCamelCase : Optional[int] = 13591409 _lowerCamelCase : int = Decimal(_lowerCamelCase ) for k in range(1 , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCamelCase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
340
0
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _lowerCAmelCase : int = logging.get_logger(__name__) @add_end_docstrings( __A , r'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , ) class A_ ( __A ): def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' if self.framework == "tf": _lowerCamelCase : str = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _lowerCamelCase : Tuple = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=__lowercase ) else: raise ValueError("Unsupported framework" ) return masked_index def _lowercase ( self: Dict ,__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Tuple = self.get_masked_index(__lowercase ) _lowerCamelCase : int = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" ,self.model.base_model_prefix ,F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" ,) def _lowercase ( self: List[Any] ,__lowerCAmelCase: List[str] ): '''simple docstring''' if isinstance(__lowercase ,__lowercase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__lowercase ) def _lowercase ( self: int ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: List[Any] ): '''simple docstring''' if return_tensors is None: _lowerCamelCase : Union[str, Any] = self.framework _lowerCamelCase : Tuple = self.tokenizer(__lowercase ,return_tensors=__lowercase ) self.ensure_exactly_one_mask_token(__lowercase ) return model_inputs def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : str = self.model(**__lowercase ) _lowerCamelCase : Optional[Any] = model_inputs["input_ids"] return model_outputs def _lowercase ( self: List[str] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any=5 ,__lowerCAmelCase: Optional[int]=None ): '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: _lowerCamelCase : Any = target_ids.shape[0] _lowerCamelCase : Dict = model_outputs["input_ids"][0] _lowerCamelCase : Optional[int] = model_outputs["logits"] if self.framework == "tf": _lowerCamelCase : Any = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _lowerCamelCase : List[Any] = outputs.numpy() _lowerCamelCase : Dict = outputs[0, masked_index, :] _lowerCamelCase : Dict = stable_softmax(__lowercase ,axis=-1 ) if target_ids is not None: _lowerCamelCase : Union[str, Any] = tf.gather_nd(tf.squeeze(__lowercase ,0 ) ,target_ids.reshape(-1 ,1 ) ) _lowerCamelCase : List[str] = tf.expand_dims(__lowercase ,0 ) _lowerCamelCase : Union[str, Any] = tf.math.top_k(__lowercase ,k=__lowercase ) _lowerCamelCase, _lowerCamelCase : List[Any] = topk.values.numpy(), topk.indices.numpy() else: _lowerCamelCase : str = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=__lowercase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _lowerCamelCase : Any = outputs[0, masked_index, :] _lowerCamelCase : str = logits.softmax(dim=-1 ) if target_ids is not None: _lowerCamelCase : List[Any] = probs[..., target_ids] _lowerCamelCase, _lowerCamelCase : int = probs.topk(__lowercase ) _lowerCamelCase : List[Any] = [] _lowerCamelCase : Dict = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): _lowerCamelCase : Tuple = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place _lowerCamelCase : List[str] = input_ids.numpy().copy() if target_ids is not None: _lowerCamelCase : Dict = target_ids[p].tolist() _lowerCamelCase : Any = p # Filter padding out: _lowerCamelCase : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _lowerCamelCase : Optional[Any] = self.tokenizer.decode(__lowercase ,skip_special_tokens=__lowercase ) _lowerCamelCase : int = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(__lowercase ) result.append(__lowercase ) if single_mask: return result[0] return result def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[Any]=None ): '''simple docstring''' if isinstance(__lowercase ,__lowercase ): _lowerCamelCase : List[str] = [targets] try: _lowerCamelCase : str = self.tokenizer.get_vocab() except Exception: _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Tuple = [] for target in targets: _lowerCamelCase : Optional[Any] = vocab.get(__lowercase ,__lowercase ) if id_ is None: _lowerCamelCase : List[str] = self.tokenizer( __lowercase ,add_special_tokens=__lowercase ,return_attention_mask=__lowercase ,return_token_type_ids=__lowercase ,max_length=1 ,truncation=__lowercase ,)["input_ids"] if len(__lowercase ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ "We cannot replace it with anything meaningful, ignoring it" ) continue _lowerCamelCase : List[Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) _lowerCamelCase : Union[str, Any] = list(set(__lowercase ) ) if len(__lowercase ) == 0: raise ValueError("At least one target must be provided when passed." ) _lowerCamelCase : Optional[int] = np.array(__lowercase ) return target_ids def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: Any=None ): '''simple docstring''' _lowerCamelCase : Optional[Any] = {} if targets is not None: _lowerCamelCase : str = self.get_target_ids(__lowercase ,__lowercase ) _lowerCamelCase : int = target_ids if top_k is not None: _lowerCamelCase : Tuple = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" ,self.model.base_model_prefix ,"The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__( self: Dict ,__lowerCAmelCase: List[Any] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Any = super().__call__(__lowercase ,**__lowercase ) if isinstance(__lowercase ,__lowercase ) and len(__lowercase ) == 1: return outputs[0] return outputs
359
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class A_ ( _a ): lowerCAmelCase__ = 42 lowerCAmelCase__ = None def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=0.9_9_9 , _lowerCamelCase="cosine" , ) -> List[str]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowerCamelCase : str = [] for i in range(_lowerCamelCase ): _lowerCamelCase : Any = i / num_diffusion_timesteps _lowerCamelCase : Optional[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) ) return torch.tensor(_lowerCamelCase , dtype=torch.floataa ) class A_ ( _a , _a ): @register_to_config def __init__( self: str ,__lowerCAmelCase: int = 1_000 ,__lowerCAmelCase: str = "fixed_small_log" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[float] = 1.0 ,__lowerCAmelCase: str = "epsilon" ,__lowerCAmelCase: str = "squaredcos_cap_v2" ,): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) _lowerCamelCase : Union[str, Any] = betas_for_alpha_bar(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = 1.0 - self.betas _lowerCamelCase : Dict = torch.cumprod(self.alphas ,dim=0 ) _lowerCamelCase : int = torch.tensor(1.0 ) # standard deviation of the initial noise distribution _lowerCamelCase : Tuple = 1.0 # setable values _lowerCamelCase : List[Any] = None _lowerCamelCase : Union[str, Any] = torch.from_numpy(np.arange(0 ,__lowerCAmelCase )[::-1].copy() ) _lowerCamelCase : List[str] = variance_type def _lowercase ( self: Any ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ): '''simple docstring''' return sample def _lowercase ( self: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, torch.device] = None ): '''simple docstring''' _lowerCamelCase : str = num_inference_steps _lowerCamelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _lowerCamelCase : Union[str, Any] = (np.arange(0 ,__lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) _lowerCamelCase : int = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: str=None ): '''simple docstring''' if prev_timestep is None: _lowerCamelCase : List[str] = t - 1 _lowerCamelCase : Optional[int] = self.alphas_cumprod[t] _lowerCamelCase : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Dict = 1 - alpha_prod_t _lowerCamelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : List[Any] = self.betas[t] else: _lowerCamelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _lowerCamelCase : int = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _lowerCamelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _lowerCamelCase : Dict = torch.log(torch.clamp(__lowerCAmelCase ,min=1e-20 ) ) _lowerCamelCase : str = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _lowerCamelCase : str = variance.log() _lowerCamelCase : str = beta.log() _lowerCamelCase : Optional[int] = (predicted_variance + 1) / 2 _lowerCamelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: int ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : str = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _lowerCamelCase, _lowerCamelCase : int = torch.split(__lowerCAmelCase ,sample.shape[1] ,dim=1 ) else: _lowerCamelCase : List[Any] = None # 1. compute alphas, betas if prev_timestep is None: _lowerCamelCase : List[Any] = t - 1 _lowerCamelCase : Dict = self.alphas_cumprod[t] _lowerCamelCase : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Dict = 1 - alpha_prod_t _lowerCamelCase : List[str] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : Any = self.betas[t] _lowerCamelCase : str = self.alphas[t] else: _lowerCamelCase : Any = 1 - alpha_prod_t / alpha_prod_t_prev _lowerCamelCase : Optional[Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _lowerCamelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _lowerCamelCase : List[Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: _lowerCamelCase : Any = torch.clamp( __lowerCAmelCase ,-self.config.clip_sample_range ,self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : List[str] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _lowerCamelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _lowerCamelCase : Union[str, Any] = 0 if t > 0: _lowerCamelCase : Dict = randn_tensor( model_output.shape ,dtype=model_output.dtype ,generator=__lowerCAmelCase ,device=model_output.device ) _lowerCamelCase : Any = self._get_variance( __lowerCAmelCase ,predicted_variance=__lowerCAmelCase ,prev_timestep=__lowerCAmelCase ,) if self.variance_type == "fixed_small_log": _lowerCamelCase : Optional[Any] = variance elif self.variance_type == "learned_range": _lowerCamelCase : Optional[int] = (0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) _lowerCamelCase : Dict = variance * variance_noise _lowerCamelCase : List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase ,pred_original_sample=__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.IntTensor ,): '''simple docstring''' _lowerCamelCase : int = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype ) _lowerCamelCase : Any = timesteps.to(original_samples.device ) _lowerCamelCase : List[Any] = alphas_cumprod[timesteps] ** 0.5 _lowerCamelCase : List[Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : int = sqrt_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Union[str, Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 _lowerCamelCase : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : Union[str, Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
340
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class A_ ( A_ ): lowerCAmelCase__ = "open-llama" def __init__( self: List[str] ,__lowerCAmelCase: Tuple=100_000 ,__lowerCAmelCase: Dict=4_096 ,__lowerCAmelCase: str=11_008 ,__lowerCAmelCase: int=32 ,__lowerCAmelCase: Union[str, Any]=32 ,__lowerCAmelCase: str="silu" ,__lowerCAmelCase: str=2_048 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Any=1e-6 ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Union[str, Any]=0 ,__lowerCAmelCase: Dict=1 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: Optional[int]=0.1 ,__lowerCAmelCase: int=True ,__lowerCAmelCase: str=True ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Any ,): '''simple docstring''' _lowerCamelCase : int = vocab_size _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : str = hidden_size _lowerCamelCase : Tuple = intermediate_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Optional[Any] = num_attention_heads _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : Tuple = rms_norm_eps _lowerCamelCase : int = use_cache _lowerCamelCase : Optional[int] = kwargs.pop( "use_memorry_efficient_attention" ,snake_case__ ) _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_dropout_prob _lowerCamelCase : Any = use_stable_embedding _lowerCamelCase : str = shared_input_output_embedding _lowerCamelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ,tie_word_embeddings=snake_case__ ,**snake_case__ ,) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F"""got {self.rope_scaling}""" ) _lowerCamelCase : str = self.rope_scaling.get("type" ,snake_case__ ) _lowerCamelCase : Dict = self.rope_scaling.get("factor" ,snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(snake_case__ ,snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
360
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : str = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' for attribute in key.split("." ): _lowerCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: _lowerCamelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: _lowerCamelCase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCamelCase : Tuple = value elif weight_type == "weight_g": _lowerCamelCase : List[str] = value elif weight_type == "weight_v": _lowerCamelCase : List[Any] = value elif weight_type == "bias": _lowerCamelCase : str = value elif weight_type == "running_mean": _lowerCamelCase : Optional[int] = value elif weight_type == "running_var": _lowerCamelCase : Optional[Any] = value elif weight_type == "num_batches_tracked": _lowerCamelCase : int = value elif weight_type == "inv_freq": _lowerCamelCase : List[str] = value else: _lowerCamelCase : Optional[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[Any] = fairseq_model.state_dict() _lowerCamelCase : List[Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) _lowerCamelCase : List[Any] = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase : Dict = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowerCamelCase : int = True if "*" in mapped_key: _lowerCamelCase : Tuple = name.split(_lowerCamelCase )[0].split("." )[-2] _lowerCamelCase : int = mapped_key.replace("*" , _lowerCamelCase ) if "pos_bias_u" in name: _lowerCamelCase : int = None elif "pos_bias_v" in name: _lowerCamelCase : Any = None elif "weight_g" in name: _lowerCamelCase : Any = "weight_g" elif "weight_v" in name: _lowerCamelCase : Any = "weight_v" elif "bias" in name: _lowerCamelCase : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase : Dict = "weight" elif "running_mean" in name: _lowerCamelCase : str = "running_mean" elif "inv_freq" in name: _lowerCamelCase : List[Any] = "inv_freq" elif "running_var" in name: _lowerCamelCase : Tuple = "running_var" elif "num_batches_tracked" in name: _lowerCamelCase : str = "num_batches_tracked" else: _lowerCamelCase : Dict = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = full_name.split("conv_layers." )[-1] _lowerCamelCase : List[Any] = name.split("." ) _lowerCamelCase : Union[str, Any] = int(items[0] ) _lowerCamelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCamelCase : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCamelCase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _lowerCamelCase : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCamelCase : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> Dict: '''simple docstring''' if config_path is not None: _lowerCamelCase : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" ) else: _lowerCamelCase : Dict = WavaVecaConformerConfig() if "rope" in checkpoint_path: _lowerCamelCase : List[Any] = "rotary" if is_finetuned: if dict_path: _lowerCamelCase : Dict = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase : Optional[int] = target_dict.pad_index _lowerCamelCase : Dict = target_dict.bos_index _lowerCamelCase : Optional[Any] = target_dict.eos_index _lowerCamelCase : str = len(target_dict.symbols ) _lowerCamelCase : int = os.path.join(_lowerCamelCase , "vocab.json" ) if not os.path.isdir(_lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCamelCase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase : List[str] = 0 _lowerCamelCase : List[Any] = 1 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) _lowerCamelCase : Tuple = True if config.feat_extract_norm == "layer" else False _lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) _lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCamelCase : List[Any] = WavaVecaConformerForCTC(_lowerCamelCase ) else: _lowerCamelCase : Any = WavaVecaConformerForPreTraining(_lowerCamelCase ) if is_finetuned: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _lowerCamelCase : List[Any] = argparse.Namespace(task="audio_pretraining" ) _lowerCamelCase : Optional[Any] = fairseq.tasks.setup_task(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) _lowerCamelCase : Dict = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCAmelCase : str = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
340
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _lowerCamelCase : List[str] = "" while len(lowerCAmelCase__ ) % 3 != 0: _lowerCamelCase : str = "0" + bin_string _lowerCamelCase : int = [ bin_string[index : index + 3] for index in range(len(lowerCAmelCase__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _lowerCamelCase : Union[str, Any] = 0 for index, val in enumerate(lowerCAmelCase__ ): oct_val += int(2 ** (2 - index) * int(lowerCAmelCase__ ) ) oct_string += str(lowerCAmelCase__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
361
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ) ) ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if point: if isinstance(_lowerCamelCase , _lowerCamelCase ): for item in point: if not isinstance(_lowerCamelCase , (int, float) ): _lowerCamelCase : Dict = ( "Expected a list of numbers as input, found " F"""{type(_lowerCamelCase ).__name__}""" ) raise TypeError(_lowerCamelCase ) else: _lowerCamelCase : Optional[int] = F"""Expected a list of numbers as input, found {type(_lowerCamelCase ).__name__}""" raise TypeError(_lowerCamelCase ) else: raise ValueError("Missing an input" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(_lowerCamelCase , _lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
340
0
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): @property def _lowercase ( self: int ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("DownBlock2D", "AttnDownBlock2D") ,up_block_types=("AttnUpBlock2D", "UpBlock2D") ,) return model @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : List[Any] = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=3 ,) return model @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : str = self.dummy_uncond_unet _lowerCamelCase : Tuple = DDIMScheduler() _lowerCamelCase : Union[str, Any] = self.dummy_vq_model _lowerCamelCase : Optional[int] = LDMPipeline(unet=__lowerCAmelCase ,vqvae=__lowerCAmelCase ,scheduler=__lowerCAmelCase ) ldm.to(__lowerCAmelCase ) ldm.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : List[Any] = torch.manual_seed(0 ) _lowerCamelCase : Any = ldm(generator=__lowerCAmelCase ,num_inference_steps=2 ,output_type="numpy" ).images _lowerCamelCase : str = torch.manual_seed(0 ) _lowerCamelCase : int = ldm(generator=__lowerCAmelCase ,num_inference_steps=2 ,output_type="numpy" ,return_dict=__lowerCAmelCase )[0] _lowerCamelCase : Tuple = image[0, -3:, -3:, -1] _lowerCamelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : List[Any] = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] ) _lowerCamelCase : Dict = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Tuple = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" ) ldm.to(__lowerCAmelCase ) ldm.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : int = torch.manual_seed(0 ) _lowerCamelCase : Any = ldm(generator=__lowerCAmelCase ,num_inference_steps=5 ,output_type="numpy" ).images _lowerCamelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCamelCase : Optional[Any] = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] ) _lowerCamelCase : Union[str, Any] = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
362
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[Any] = np.inf def set_batch_size(_lowerCamelCase ) -> None: nonlocal batch_size if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Optional[int] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary": _lowerCamelCase : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_lowerCamelCase , _lowerCamelCase ) return None if batch_size is np.inf else batch_size class A_ ( _a ): def __init__( self: Optional[int] ,__lowerCAmelCase: NestedDataStructureLike[PathLike] ,__lowerCAmelCase: Optional[NamedSplit] = None ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__( __lowerCAmelCase ,split=__lowerCAmelCase ,features=__lowerCAmelCase ,cache_dir=__lowerCAmelCase ,keep_in_memory=__lowerCAmelCase ,streaming=__lowerCAmelCase ,num_proc=__lowerCAmelCase ,**__lowerCAmelCase ,) _lowerCamelCase : Tuple = path_or_paths if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else {self.split: path_or_paths} _lowerCamelCase : Any = _PACKAGED_DATASETS_MODULES["parquet"][1] _lowerCamelCase : int = Parquet( cache_dir=__lowerCAmelCase ,data_files=__lowerCAmelCase ,features=__lowerCAmelCase ,hash=__lowerCAmelCase ,**__lowerCAmelCase ,) def _lowercase ( self: Optional[int] ): '''simple docstring''' if self.streaming: _lowerCamelCase : List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCamelCase : Tuple = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : List[str] = None _lowerCamelCase : str = None self.builder.download_and_prepare( download_config=__lowerCAmelCase ,download_mode=__lowerCAmelCase ,verification_mode=__lowerCAmelCase ,base_path=__lowerCAmelCase ,num_proc=self.num_proc ,) _lowerCamelCase : Any = self.builder.as_dataset( split=self.split ,verification_mode=__lowerCAmelCase ,in_memory=self.keep_in_memory ) return dataset class A_ : def __init__( self: str ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: Union[PathLike, BinaryIO] ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' _lowerCamelCase : Any = dataset _lowerCamelCase : Any = path_or_buf _lowerCamelCase : Any = batch_size or get_writer_batch_size(dataset.features ) _lowerCamelCase : List[str] = parquet_writer_kwargs def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ): with open(self.path_or_buf ,"wb+" ) as buffer: _lowerCamelCase : str = self._write(file_obj=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) else: _lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) return written def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: BinaryIO ,__lowerCAmelCase: int ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" ,__lowerCAmelCase ) _lowerCamelCase : List[str] = self.dataset.features.arrow_schema _lowerCamelCase : str = pq.ParquetWriter(__lowerCAmelCase ,schema=__lowerCAmelCase ,**__lowerCAmelCase ) for offset in logging.tqdm( range(0 ,len(self.dataset ) ,__lowerCAmelCase ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating parquet from Arrow format" ,): _lowerCamelCase : List[str] = query_table( table=self.dataset._data ,key=slice(__lowerCAmelCase ,offset + batch_size ) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,) writer.write_table(__lowerCAmelCase ) written += batch.nbytes writer.close() return written
340
0
"""simple docstring""" import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants _lowerCAmelCase : List[Any] = Mapping[str, np.ndarray] _lowerCAmelCase : Optional[int] = Mapping[str, Any] # Is a nested dict. _lowerCAmelCase : Tuple = 0.01 @dataclasses.dataclass(frozen=__lowercase ) class A_ : lowerCAmelCase__ = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCAmelCase__ = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCAmelCase__ = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCAmelCase__ = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCAmelCase__ = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCAmelCase__ = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCAmelCase__ = None # Templates used to generate this protein (prediction-only) lowerCAmelCase__ = None # Chain corresponding to each parent lowerCAmelCase__ = None def lowerCamelCase_( _lowerCamelCase ) -> Protein: '''simple docstring''' _lowerCamelCase : List[str] = R"""(\[[A-Z]+\]\n)""" _lowerCamelCase : List[str] = [tag.strip() for tag in re.split(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) > 0] _lowerCamelCase : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) _lowerCamelCase : List[str] = ["N", "CA", "C"] _lowerCamelCase : Dict = None _lowerCamelCase : Any = None _lowerCamelCase : Optional[int] = None for g in groups: if "[PRIMARY]" == g[0]: _lowerCamelCase : Union[str, Any] = g[1][0].strip() for i in range(len(_lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: _lowerCamelCase : Any = """X""" # FIXME: strings are immutable _lowerCamelCase : int = np.array( [residue_constants.restype_order.get(_lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: _lowerCamelCase : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(_lowerCamelCase , g[1][axis].split() ) ) ) _lowerCamelCase : int = np.array(_lowerCamelCase ) _lowerCamelCase : Optional[int] = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_lowerCamelCase ): _lowerCamelCase : Union[str, Any] = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: _lowerCamelCase : List[Any] = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) _lowerCamelCase : Tuple = np.zeros( ( len(_lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_lowerCamelCase ): _lowerCamelCase : List[str] = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_lowerCamelCase , atom_mask=_lowerCamelCase , aatype=_lowerCamelCase , residue_index=np.arange(len(_lowerCamelCase ) ) , b_factors=_lowerCamelCase , ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = 0 ) -> List[str]: '''simple docstring''' _lowerCamelCase : List[str] = [] _lowerCamelCase : Optional[int] = prot.remark if remark is not None: pdb_headers.append(F"""REMARK {remark}""" ) _lowerCamelCase : List[str] = prot.parents _lowerCamelCase : List[str] = prot.parents_chain_index if parents is not None and parents_chain_index is not None: _lowerCamelCase : str = [p for i, p in zip(_lowerCamelCase , _lowerCamelCase ) if i == chain_id] if parents is None or len(_lowerCamelCase ) == 0: _lowerCamelCase : Optional[int] = ["""N/A"""] pdb_headers.append(F"""PARENT {' '.join(_lowerCamelCase )}""" ) return pdb_headers def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : List[str] = [] _lowerCamelCase : Dict = pdb_str.split("\n" ) _lowerCamelCase : Dict = prot.remark if remark is not None: out_pdb_lines.append(F"""REMARK {remark}""" ) _lowerCamelCase : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: _lowerCamelCase : Dict = [] if prot.parents_chain_index is not None: _lowerCamelCase : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(_lowerCamelCase ) , [] ) parent_dict[str(_lowerCamelCase )].append(_lowerCamelCase ) _lowerCamelCase : Optional[Any] = max([int(_lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): _lowerCamelCase : Any = parent_dict.get(str(_lowerCamelCase ) , ["N/A"] ) parents_per_chain.append(_lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: _lowerCamelCase : str = [["""N/A"""]] def make_parent_line(_lowerCamelCase ) -> str: return F"""PARENT {' '.join(_lowerCamelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) _lowerCamelCase : str = 0 for i, l in enumerate(_lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_lowerCamelCase ): _lowerCamelCase : Any = parents_per_chain[chain_counter] else: _lowerCamelCase : Any = ["""N/A"""] out_pdb_lines.append(make_parent_line(_lowerCamelCase ) ) return "\n".join(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Tuple = residue_constants.restypes + ["""X"""] def res_atoa(_lowerCamelCase ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) _lowerCamelCase : int = residue_constants.atom_types _lowerCamelCase : List[str] = [] _lowerCamelCase : str = prot.atom_mask _lowerCamelCase : int = prot.aatype _lowerCamelCase : Optional[Any] = prot.atom_positions _lowerCamelCase : int = prot.residue_index.astype(np.intaa ) _lowerCamelCase : List[str] = prot.b_factors _lowerCamelCase : str = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) _lowerCamelCase : List[Any] = get_pdb_headers(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: pdb_lines.extend(_lowerCamelCase ) _lowerCamelCase : Any = aatype.shape[0] _lowerCamelCase : str = 1 _lowerCamelCase : Any = 0 _lowerCamelCase : List[Any] = string.ascii_uppercase _lowerCamelCase : Union[str, Any] = None # Add all atom sites. for i in range(_lowerCamelCase ): _lowerCamelCase : Optional[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue _lowerCamelCase : List[str] = """ATOM""" _lowerCamelCase : Dict = atom_name if len(_lowerCamelCase ) == 4 else F""" {atom_name}""" _lowerCamelCase : int = """""" _lowerCamelCase : List[Any] = """""" _lowerCamelCase : Optional[Any] = 1.0_0 _lowerCamelCase : str = atom_name[0] # Protein supports only C, N, O, S, this works. _lowerCamelCase : Tuple = """""" _lowerCamelCase : List[str] = """A""" if chain_index is not None: _lowerCamelCase : Union[str, Any] = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! _lowerCamelCase : Optional[Any] = ( F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" F"""{res_name_a:>3} {chain_tag:>1}""" F"""{residue_index[i]:>4}{insertion_code:>1} """ F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" F"""{occupancy:>6.2f}{b_factor:>6.2f} """ F"""{element:>2}{charge:>2}""" ) pdb_lines.append(_lowerCamelCase ) atom_index += 1 _lowerCamelCase : str = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: _lowerCamelCase : int = True _lowerCamelCase : List[Any] = chain_index[i + 1] if should_terminate: # Close the chain. _lowerCamelCase : Optional[Any] = """TER""" _lowerCamelCase : Optional[Any] = ( F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(_lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_lowerCamelCase , _lowerCamelCase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> np.ndarray: '''simple docstring''' return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) -> Protein: '''simple docstring''' return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=_lowerCamelCase , remark=_lowerCamelCase , parents=_lowerCamelCase , parents_chain_index=_lowerCamelCase , )
363
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Optional[int] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"] _lowerCamelCase : Dict = len(example["content"] ) / len(output["input_ids"] ) return output _lowerCAmelCase : Tuple = HfArgumentParser(PretokenizationArguments) _lowerCAmelCase : Optional[int] = parser.parse_args() if args.num_workers is None: _lowerCAmelCase : Any = multiprocessing.cpu_count() _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir) _lowerCAmelCase : Union[str, Any] = time.time() _lowerCAmelCase : Optional[int] = load_dataset(args.dataset_name, split='''train''') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') _lowerCAmelCase : Any = time.time() _lowerCAmelCase : Dict = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') _lowerCAmelCase : str = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
340
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp _lowerCAmelCase : str = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } _lowerCAmelCase : Optional[int] = { '''RUCAIBox/mvp''': 1024, } class A_ ( a_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase__ = MvpTokenizer def __init__( self: Any ,__lowerCAmelCase: Any=None ,__lowerCAmelCase: Optional[int]=None ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[Any]="replace" ,__lowerCAmelCase: str="<s>" ,__lowerCAmelCase: List[Any]="</s>" ,__lowerCAmelCase: Union[str, Any]="</s>" ,__lowerCAmelCase: Any="<s>" ,__lowerCAmelCase: Union[str, Any]="<unk>" ,__lowerCAmelCase: Any="<pad>" ,__lowerCAmelCase: int="<mask>" ,__lowerCAmelCase: str=False ,__lowerCAmelCase: List[Any]=True ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__( lowercase_ ,lowercase_ ,tokenizer_file=lowercase_ ,errors=lowercase_ ,bos_token=lowercase_ ,eos_token=lowercase_ ,sep_token=lowercase_ ,cls_token=lowercase_ ,unk_token=lowercase_ ,pad_token=lowercase_ ,mask_token=lowercase_ ,add_prefix_space=lowercase_ ,trim_offsets=lowercase_ ,**lowercase_ ,) _lowerCamelCase : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" ,lowercase_ ) != add_prefix_space: _lowerCamelCase : int = getattr(lowercase_ ,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : int = pre_tok_class(**lowercase_ ) _lowerCamelCase : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : str = "post_processor" _lowerCamelCase : List[Any] = getattr(self.backend_tokenizer ,lowercase_ ,lowercase_ ) if tokenizer_component_instance: _lowerCamelCase : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : List[Any] = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : Dict = tuple(state["cls"] ) _lowerCamelCase : List[str] = False if state.get("add_prefix_space" ,lowercase_ ) != add_prefix_space: _lowerCamelCase : Union[str, Any] = add_prefix_space _lowerCamelCase : int = True if state.get("trim_offsets" ,lowercase_ ) != trim_offsets: _lowerCamelCase : Optional[Any] = trim_offsets _lowerCamelCase : Optional[int] = True if changes_to_apply: _lowerCamelCase : int = getattr(lowercase_ ,state.pop("type" ) ) _lowerCamelCase : Any = component_class(**lowercase_ ) setattr(self.backend_tokenizer ,lowercase_ ,lowercase_ ) @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : Any = AddedToken(lowercase_ ,lstrip=lowercase_ ,rstrip=lowercase_ ) if isinstance(lowercase_ ,lowercase_ ) else value _lowerCamelCase : Any = value def _lowercase ( self: Union[str, Any] ,*__lowerCAmelCase: Optional[int] ,**__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : List[Any] = kwargs.get("is_split_into_words" ,lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase_ ,**lowercase_ ) def _lowercase ( self: List[Any] ,*__lowerCAmelCase: Optional[Any] ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = kwargs.get("is_split_into_words" ,lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase_ ,**lowercase_ ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: int = None ): '''simple docstring''' _lowerCamelCase : Tuple = self._tokenizer.model.save(lowercase_ ,name=lowercase_ ) return tuple(lowercase_ ) def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Optional[Any]=None ): '''simple docstring''' _lowerCamelCase : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase ( self: int ,__lowerCAmelCase: str ,__lowerCAmelCase: Dict = None ): '''simple docstring''' _lowerCamelCase : Dict = [self.sep_token_id] _lowerCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Optional[Any] = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class A_ ( __lowercase ): lowerCAmelCase__ = "sew-d" def __init__( self: Dict ,__lowerCAmelCase: List[str]=32 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Tuple=12 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: Any=2 ,__lowerCAmelCase: Optional[Any]=512 ,__lowerCAmelCase: int=256 ,__lowerCAmelCase: Any=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[int]=("p2c", "c2p") ,__lowerCAmelCase: Any="layer_norm" ,__lowerCAmelCase: Optional[Any]="gelu_python" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[Any]=0.0 ,__lowerCAmelCase: Optional[int]=0.1 ,__lowerCAmelCase: Dict=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-7 ,__lowerCAmelCase: Any=1e-5 ,__lowerCAmelCase: Tuple="group" ,__lowerCAmelCase: List[str]="gelu" ,__lowerCAmelCase: int=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) ,__lowerCAmelCase: Dict=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,__lowerCAmelCase: Dict=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,__lowerCAmelCase: List[Any]=False ,__lowerCAmelCase: List[str]=128 ,__lowerCAmelCase: Dict=16 ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: str=0.05 ,__lowerCAmelCase: Optional[int]=10 ,__lowerCAmelCase: Any=2 ,__lowerCAmelCase: List[Any]=0.0 ,__lowerCAmelCase: List[str]=10 ,__lowerCAmelCase: Tuple=0 ,__lowerCAmelCase: Tuple="mean" ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: Optional[Any]=256 ,__lowerCAmelCase: int=0 ,__lowerCAmelCase: Tuple=1 ,__lowerCAmelCase: Optional[int]=2 ,**__lowerCAmelCase: Dict ,): '''simple docstring''' super().__init__(**_a ,pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ) _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : List[str] = feat_extract_norm _lowerCamelCase : List[str] = feat_extract_activation _lowerCamelCase : Tuple = list(_a ) _lowerCamelCase : List[Any] = list(_a ) _lowerCamelCase : List[str] = list(_a ) _lowerCamelCase : Tuple = conv_bias _lowerCamelCase : str = num_conv_pos_embeddings _lowerCamelCase : int = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = len(self.conv_dim ) _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : Optional[int] = intermediate_size _lowerCamelCase : int = squeeze_factor _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : Any = position_buckets _lowerCamelCase : List[str] = share_att_key _lowerCamelCase : Optional[int] = relative_attention _lowerCamelCase : str = norm_rel_ebd _lowerCamelCase : List[Any] = list(_a ) _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : int = num_attention_heads _lowerCamelCase : str = hidden_dropout _lowerCamelCase : List[Any] = attention_dropout _lowerCamelCase : int = activation_dropout _lowerCamelCase : int = feat_proj_dropout _lowerCamelCase : Any = final_dropout _lowerCamelCase : Any = layer_norm_eps _lowerCamelCase : int = feature_layer_norm_eps _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Tuple = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = apply_spec_augment _lowerCamelCase : Optional[int] = mask_time_prob _lowerCamelCase : Tuple = mask_time_length _lowerCamelCase : str = mask_time_min_masks _lowerCamelCase : Union[str, Any] = mask_feature_prob _lowerCamelCase : Any = mask_feature_length _lowerCamelCase : Optional[int] = mask_feature_min_masks # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : Optional[int] = ctc_zero_infinity # sequence classification _lowerCamelCase : Optional[Any] = use_weighted_layer_sum _lowerCamelCase : Any = classifier_proj_size @property def _lowercase ( self: List[str] ): '''simple docstring''' return functools.reduce(operator.mul ,self.conv_stride ,1 )
365
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) class A_ ( _a ): lowerCAmelCase__ = 'masked_bert' def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=30_522 ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Dict=12 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-12 ,__lowerCAmelCase: Union[str, Any]=0 ,__lowerCAmelCase: List[Any]="topK" ,__lowerCAmelCase: Optional[Any]="constant" ,__lowerCAmelCase: Optional[Any]=0.0 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : int = pruning_method _lowerCamelCase : str = mask_init _lowerCamelCase : List[Any] = mask_scale
340
0
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowerCAmelCase__ = CLIPTokenizer lowerCAmelCase__ = CLIPTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = {} lowerCAmelCase__ = False def _lowercase ( self: Dict ): '''simple docstring''' super().setUp() # fmt: off _lowerCamelCase : List[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _lowerCamelCase : Tuple = dict(zip(__UpperCAmelCase ,range(len(__UpperCAmelCase ) ) ) ) _lowerCamelCase : str = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] _lowerCamelCase : Optional[int] = {"""unk_token""": """<unk>"""} _lowerCamelCase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(__UpperCAmelCase ) ) def _lowercase ( self: Union[str, Any] ,**__lowerCAmelCase: int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ) def _lowercase ( self: Any ,**__lowerCAmelCase: Dict ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = """lower newer""" _lowerCamelCase : Tuple = """lower newer""" return input_text, output_text def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[int] = CLIPTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _lowerCamelCase : Union[str, Any] = """lower newer""" _lowerCamelCase : int = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] _lowerCamelCase : int = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) _lowerCamelCase : Dict = tokens + [tokenizer.unk_token] _lowerCamelCase : Tuple = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) ,__UpperCAmelCase ) @require_ftfy def _lowercase ( self: Optional[int] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowerCamelCase : Optional[Any] = self.tokenizer_class.from_pretrained(__UpperCAmelCase ,**__UpperCAmelCase ) _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase ,**__UpperCAmelCase ) _lowerCamelCase : Optional[int] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" _lowerCamelCase : Optional[Any] = tokenizer_s.tokenize(__UpperCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer_r.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _lowerCamelCase : Dict = """xa\u0303y""" + """ """ + """x\xe3y""" _lowerCamelCase : int = tokenizer_s.tokenize(__UpperCAmelCase ) _lowerCamelCase : Dict = tokenizer_r.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) # Test that the tokenization is identical on unicode of space type _lowerCamelCase : int = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _lowerCamelCase : Optional[int] = tokenizer_s.tokenize(__UpperCAmelCase ) _lowerCamelCase : Any = tokenizer_r.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) # Test that the tokenization is identical on unicode of line break type _lowerCamelCase : Union[str, Any] = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _lowerCamelCase : str = tokenizer_s.tokenize(__UpperCAmelCase ) _lowerCamelCase : int = tokenizer_r.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowerCamelCase : Optional[Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _lowerCamelCase : str = F"""{text_of_1_token} {text_of_1_token}""" _lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase ,use_fast=__UpperCAmelCase ,) _lowerCamelCase : Optional[Any] = tokenizer_r(__UpperCAmelCase ,return_offsets_mapping=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) ,) _lowerCamelCase : Any = F""" {text}""" _lowerCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase ,use_fast=__UpperCAmelCase ,) _lowerCamelCase : Dict = tokenizer_r(__UpperCAmelCase ,return_offsets_mapping=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(__UpperCAmelCase ) + 1, 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) ,) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def _lowercase ( self: str ): '''simple docstring''' super().test_tokenization_python_rust_equals() def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass
366
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowerCAmelCase : str = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]: '''simple docstring''' if rng is None: _lowerCamelCase : Union[str, Any] = random.Random() _lowerCamelCase : Union[str, Any] = 1 for dim in shape: total_dims *= dim _lowerCamelCase : Optional[int] = [] for _ in range(_lowerCamelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) _lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase ) return output def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase ) # make sure that at least one token is attended to for each batch _lowerCamelCase : List[str] = 1 return attn_mask @require_flax class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = () def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _lowerCamelCase : List[str] = 2 _lowerCamelCase : str = inputs["input_ids"].shape[-1] // 2 _lowerCamelCase : Tuple = inputs["input_ids"][:max_batch_size, :sequence_length] _lowerCamelCase : Any = jnp.ones_like(__lowerCAmelCase ) _lowerCamelCase : List[Any] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _lowerCamelCase : Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _lowerCamelCase : List[str] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = False _lowerCamelCase : Dict = max_length _lowerCamelCase : Tuple = 0 for model_class in self.all_generative_model_classes: _lowerCamelCase : str = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCamelCase : Any = getattr(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = pt_model_class(__lowerCAmelCase ).eval() _lowerCamelCase : Optional[Any] = load_flax_weights_in_pytorch_model(__lowerCAmelCase ,flax_model.params ) _lowerCamelCase : int = flax_model.generate(__lowerCAmelCase ).sequences _lowerCamelCase : Optional[int] = pt_model.generate(torch.tensor(__lowerCAmelCase ,dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _lowerCamelCase : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = self._get_input_ids_and_config() _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = True _lowerCamelCase : Optional[int] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : int = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : int = False _lowerCamelCase : Optional[Any] = max_length _lowerCamelCase : Dict = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) _lowerCamelCase : Dict = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = self._get_input_ids_and_config() _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = max_length _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[int] = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : str = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() _lowerCamelCase : int = True _lowerCamelCase : List[Any] = max_length _lowerCamelCase : Optional[Any] = 0.8 _lowerCamelCase : Union[str, Any] = 10 _lowerCamelCase : List[str] = 0.3 _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : str = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Any = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : int = jit(model.generate ) _lowerCamelCase : Optional[int] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[str] = max_length _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : Dict = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Any = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : Any = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() _lowerCamelCase : Dict = max_length _lowerCamelCase : List[Any] = 2 _lowerCamelCase : Tuple = 1 _lowerCamelCase : List[str] = 8 _lowerCamelCase : List[Any] = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : int = model_class(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : Optional[Any] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : Dict = False _lowerCamelCase : Any = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Optional[Any] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : List[str] = True _lowerCamelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[Any] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : int = 2 _lowerCamelCase : int = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : int = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : Dict = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) @require_flax class A_ ( unittest.TestCase ): def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) _lowerCamelCase : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) _lowerCamelCase : Optional[Any] = "Hello world" _lowerCamelCase : str = tokenizer(__lowerCAmelCase ,return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowerCAmelCase ,"do_samples" ): model.generate(__lowerCAmelCase ,do_samples=__lowerCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowerCAmelCase ,"foo" ): _lowerCamelCase : List[str] = {"foo": "bar"} model.generate(__lowerCAmelCase ,**__lowerCAmelCase )
340
0
"""simple docstring""" import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib _lowerCAmelCase : Optional[Any] = threading.Lock() _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : str = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } _lowerCAmelCase : Any = logging.WARNING _lowerCAmelCase : Tuple = True def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Optional[int] = os.getenv("TRANSFORMERS_VERBOSITY" , a_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def lowerCamelCase_( ) -> Optional[int]: '''simple docstring''' return __name__.split("." )[0] def lowerCamelCase_( ) -> str: '''simple docstring''' return logging.getLogger(_get_library_name() ) def lowerCamelCase_( ) -> Tuple: '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _lowerCamelCase : Optional[Any] = logging.StreamHandler() # Set sys.stderr as stream. _lowerCamelCase : Dict = sys.stderr.flush # Apply our default configuration to the library root logger. _lowerCamelCase : Union[str, Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _lowerCamelCase : List[str] = False def lowerCamelCase_( ) -> Optional[Any]: '''simple docstring''' global _default_handler with _lock: if not _default_handler: return _lowerCamelCase : Union[str, Any] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _lowerCamelCase : List[Any] = None def lowerCamelCase_( ) -> Optional[Any]: '''simple docstring''' return log_levels def lowerCamelCase_( _lowerCamelCase = None ) -> Dict: '''simple docstring''' if name is None: _lowerCamelCase : Optional[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(a_ ) def lowerCamelCase_( ) -> Optional[Any]: '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(a_ ) def lowerCamelCase_( ) -> Tuple: '''simple docstring''' return set_verbosity(a_ ) def lowerCamelCase_( ) -> List[str]: '''simple docstring''' return set_verbosity(a_ ) def lowerCamelCase_( ) -> Optional[int]: '''simple docstring''' return set_verbosity(a_ ) def lowerCamelCase_( ) -> int: '''simple docstring''' return set_verbosity(a_ ) def lowerCamelCase_( ) -> str: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def lowerCamelCase_( ) -> Dict: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(a_ ) def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(a_ ) def lowerCamelCase_( ) -> int: '''simple docstring''' _configure_library_root_logger() _lowerCamelCase : Union[str, Any] = False def lowerCamelCase_( ) -> int: '''simple docstring''' _configure_library_root_logger() _lowerCamelCase : int = True def lowerCamelCase_( ) -> Dict: '''simple docstring''' _lowerCamelCase : List[Any] = _get_library_root_logger().handlers for handler in handlers: _lowerCamelCase : List[Any] = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(a_ ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Dict = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(a_ ) def lowerCamelCase_( self , *_lowerCamelCase , **_lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Optional[Any] = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , a_ ) if no_advisory_warnings: return self.warning(*a_ , **a_ ) _lowerCAmelCase : Any = warning_advice @functools.lru_cache(a_ ) def lowerCamelCase_( self , *_lowerCamelCase , **_lowerCamelCase ) -> List[Any]: '''simple docstring''' self.warning(*a_ , **a_ ) _lowerCAmelCase : Optional[int] = warning_once class A_ : def __init__( self: List[str] ,*__lowerCAmelCase: int ,**__lowerCAmelCase: List[Any] ): # pylint: disable=unused-argument '''simple docstring''' _lowerCamelCase : Union[str, Any] = args[0] if args else None def __iter__( self: List[Any] ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self: Any ,__lowerCAmelCase: Any ): '''simple docstring''' def empty_fn(*__lowerCAmelCase: Any ,**__lowerCAmelCase: List[str] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self: str ): '''simple docstring''' return self def __exit__( self: str ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' return class A_ : def __call__( self: Any ,*__lowerCAmelCase: Dict ,**__lowerCAmelCase: Any ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*lowerCAmelCase__ ,**lowerCAmelCase__ ) else: return EmptyTqdm(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def _lowercase ( self: List[Any] ,*__lowerCAmelCase: Optional[int] ,**__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def _lowercase ( self: Tuple ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() _lowerCAmelCase : str = _tqdm_cls() def lowerCamelCase_( ) -> Any: '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def lowerCamelCase_( ) -> str: '''simple docstring''' global _tqdm_active _lowerCamelCase : Optional[Any] = True hf_hub_utils.enable_progress_bars() def lowerCamelCase_( ) -> Dict: '''simple docstring''' global _tqdm_active _lowerCamelCase : int = False hf_hub_utils.disable_progress_bars()
367
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class A_ ( _a ): lowerCAmelCase__ = 'mobilenet_v1' def __init__( self: Tuple ,__lowerCAmelCase: int=3 ,__lowerCAmelCase: Dict=224 ,__lowerCAmelCase: int=1.0 ,__lowerCAmelCase: Tuple=8 ,__lowerCAmelCase: List[str]="relu6" ,__lowerCAmelCase: int=True ,__lowerCAmelCase: List[Any]=0.9_99 ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: Optional[int]=0.0_01 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : List[Any] = depth_multiplier _lowerCamelCase : Any = min_depth _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Dict = tf_padding _lowerCamelCase : Union[str, Any] = classifier_dropout_prob _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps class A_ ( _a ): lowerCAmelCase__ = version.parse('1.11' ) @property def _lowercase ( self: Optional[int] ): '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def _lowercase ( self: Any ): '''simple docstring''' return 1e-4
340
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase = 100 ) -> int: '''simple docstring''' _lowerCamelCase : Dict = n * (n + 1) * (2 * n + 1) / 6 _lowerCamelCase : Optional[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
368
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' for param in module.parameters(): _lowerCamelCase : Optional[int] = False def lowerCamelCase_( ) -> List[str]: '''simple docstring''' _lowerCamelCase : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _lowerCamelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Dict = plt.imshow(_lowerCamelCase ) fig.axes.get_xaxis().set_visible(_lowerCamelCase ) fig.axes.get_yaxis().set_visible(_lowerCamelCase ) plt.show() def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Tuple = datetime.now() _lowerCamelCase : Tuple = current_time.strftime("%H:%M:%S" ) return timestamp
340
0
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : List[Any] = [] _lowerCamelCase : List[Any] = [] for rt in rc.restypes: _lowerCamelCase : Optional[int] = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) _lowerCamelCase : Any = {name: i for i, name in enumerate(a__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) _lowerCamelCase : Optional[Any] = torch.tensor( a__ , dtype=torch.intaa , device=protein["aatype"].device , ) _lowerCamelCase : Tuple = torch.tensor( a__ , dtype=torch.intaa , device=protein["aatype"].device , ) _lowerCamelCase : Dict = torch.tensor( a__ , dtype=torch.floataa , device=protein["aatype"].device , ) _lowerCamelCase : Optional[Any] = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein _lowerCamelCase : Optional[Any] = restype_atomaa_to_atomaa[protein_aatype] _lowerCamelCase : Dict = restype_atomaa_mask[protein_aatype] _lowerCamelCase : List[Any] = residx_atomaa_mask _lowerCamelCase : Dict = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back _lowerCamelCase : Dict = restype_atomaa_to_atomaa[protein_aatype] _lowerCamelCase : str = residx_atomaa_to_atomaa.long() # create the corresponding mask _lowerCamelCase : Optional[int] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["aatype"].device ) for restype, restype_letter in enumerate(rc.restypes ): _lowerCamelCase : Tuple = rc.restype_atoa[restype_letter] _lowerCamelCase : Union[str, Any] = rc.residue_atoms[restype_name] for atom_name in atom_names: _lowerCamelCase : Tuple = rc.atom_order[atom_name] _lowerCamelCase : Any = 1 _lowerCamelCase : Tuple = restype_atomaa_mask[protein_aatype] _lowerCamelCase : Dict = residx_atomaa_mask return protein def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = tree_map(lambda _lowerCamelCase : torch.tensor(a__ , device=batch["aatype"].device ) , a__ , np.ndarray ) _lowerCamelCase : int = tensor_tree_map(lambda _lowerCamelCase : np.array(a__ ) , make_atomaa_masks(a__ ) ) return out
369
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) _lowerCamelCase : list = [] for char_count in range(_lowerCamelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_lowerCamelCase ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
340
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A_ : """simple docstring""" @staticmethod def _lowercase ( *__lowerCAmelCase: Tuple ,**__lowerCAmelCase: str ): '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A_ ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: str ,__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : Dict = pipeline("visual-question-answering" ,model="hf-internal-testing/tiny-vilt-random-vqa" ) _lowerCamelCase : Any = [ { """image""": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = vqa_pipeline(_lowerCAmelCase ,top_k=1 ) self.assertEqual( _lowerCAmelCase ,[ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ] ,) @require_torch def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = pipeline("visual-question-answering" ,model="hf-internal-testing/tiny-vilt-random-vqa" ) _lowerCamelCase : int = """./tests/fixtures/tests_samples/COCO/000000039769.png""" _lowerCamelCase : str = """How many cats are there?""" _lowerCamelCase : Tuple = vqa_pipeline(image=_lowerCAmelCase ,question="How many cats are there?" ,top_k=2 ) self.assertEqual( _lowerCAmelCase ,[{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) _lowerCamelCase : Any = vqa_pipeline({"image": image, "question": question} ,top_k=2 ) self.assertEqual( _lowerCAmelCase ,[{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Dict = pipeline("visual-question-answering" ,model="dandelin/vilt-b32-finetuned-vqa" ) _lowerCamelCase : List[Any] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" _lowerCamelCase : int = """How many cats are there?""" _lowerCamelCase : int = vqa_pipeline(image=_lowerCAmelCase ,question=_lowerCAmelCase ,top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase ,decimals=4 ) ,[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) _lowerCamelCase : Union[str, Any] = vqa_pipeline({"image": image, "question": question} ,top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase ,decimals=4 ) ,[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) _lowerCamelCase : List[str] = vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] ,top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase ,decimals=4 ) ,[[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 ,) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def _lowercase ( self: Any ): '''simple docstring''' pass
370
"""simple docstring""" _lowerCAmelCase : Tuple = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Any = [False] * len(_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = [s] _lowerCamelCase : str = True while queue: _lowerCamelCase : Optional[int] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) _lowerCamelCase : Any = True _lowerCamelCase : Any = u return visited[t] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : List[str] = [-1] * (len(_lowerCamelCase )) _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Any = float("Inf" ) _lowerCamelCase : Dict = sink while s != source: # Find the minimum value in select path _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , graph[parent[s]][s] ) _lowerCamelCase : Union[str, Any] = parent[s] max_flow += path_flow _lowerCamelCase : Optional[Any] = sink while v != source: _lowerCamelCase : Union[str, Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCamelCase : List[str] = parent[v] for i in range(len(_lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
340
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class A_ : def __init__( self: str ,__lowerCAmelCase: List[str] ,): '''simple docstring''' _lowerCamelCase : Dict = parent _lowerCamelCase : Any = 13 _lowerCamelCase : Dict = 7 _lowerCamelCase : List[str] = True _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : Any = True _lowerCamelCase : Tuple = 99 _lowerCamelCase : Union[str, Any] = 32 _lowerCamelCase : Dict = 2 _lowerCamelCase : Any = 4 _lowerCamelCase : Union[str, Any] = 37 _lowerCamelCase : int = """gelu""" _lowerCamelCase : List[Any] = 0.1 _lowerCamelCase : Optional[Any] = 0.1 _lowerCamelCase : List[Any] = 512 _lowerCamelCase : Optional[int] = 16 _lowerCamelCase : List[Any] = 2 _lowerCamelCase : str = 0.02 _lowerCamelCase : Optional[int] = 3 _lowerCamelCase : Optional[int] = 4 _lowerCamelCase : Optional[int] = None def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCamelCase : Optional[Any] = None if self.use_input_mask: _lowerCamelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Dict = None _lowerCamelCase : int = None _lowerCamelCase : Optional[int] = None if self.use_labels: _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowerCamelCase : str = ids_tensor([self.batch_size] ,self.num_choices ) _lowerCamelCase : Any = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self: Union[str, Any] ): '''simple docstring''' ( _lowerCamelCase ) : Any = self.prepare_config_and_inputs() _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowercase ( self: str ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : Optional[int] = TFEsmModel(config=lowercase_ ) _lowerCamelCase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCamelCase : List[Any] = model(lowercase_ ) _lowerCamelCase : Tuple = [input_ids, input_mask] _lowerCamelCase : Union[str, Any] = model(lowercase_ ) _lowerCamelCase : Optional[int] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: int ,__lowerCAmelCase: Any ,__lowerCAmelCase: str ,__lowerCAmelCase: Any ,__lowerCAmelCase: str ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Union[str, Any] ,): '''simple docstring''' _lowerCamelCase : Tuple = True _lowerCamelCase : int = TFEsmModel(config=lowercase_ ) _lowerCamelCase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } _lowerCamelCase : str = model(lowercase_ ) _lowerCamelCase : Union[str, Any] = [input_ids, input_mask] _lowerCamelCase : Optional[Any] = model(lowercase_ ,encoder_hidden_states=lowercase_ ) # Also check the case where encoder outputs are not passed _lowerCamelCase : str = model(lowercase_ ,attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: int ,__lowerCAmelCase: str ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: str ,__lowerCAmelCase: Any ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = TFEsmForMaskedLM(config=lowercase_ ) _lowerCamelCase : Optional[int] = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.num_labels _lowerCamelCase : Union[str, Any] = TFEsmForTokenClassification(config=lowercase_ ) _lowerCamelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCamelCase : List[str] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs() ( _lowerCamelCase ) : Dict = config_and_inputs _lowerCamelCase : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class A_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCAmelCase__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Dict = TFEsmModelTester(self ) _lowerCamelCase : Optional[int] = ConfigTester(self ,config_class=lowercase_ ,hidden_size=37 ) def _lowercase ( self: List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase_ ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def _lowercase ( self: Optional[Any] ): '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[Any] = TFEsmModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip("Protein models do not support embedding resizing." ) def _lowercase ( self: int ): '''simple docstring''' pass @unittest.skip("Protein models do not support embedding resizing." ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(lowercase_ ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _lowerCamelCase : Dict = model.get_bias() assert isinstance(lowercase_ ,lowercase_ ) for k, v in name.items(): assert isinstance(lowercase_ ,tf.Variable ) else: _lowerCamelCase : Any = model.get_output_embeddings() assert x is None _lowerCamelCase : Optional[int] = model.get_bias() assert name is None @require_tf class A_ ( unittest.TestCase ): @slow def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) _lowerCamelCase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCamelCase : List[Any] = model(lowercase_ )[0] _lowerCamelCase : Tuple = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,lowercase_ ) # compare the actual values for a slice. _lowerCamelCase : Optional[int] = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-2 ) ) @slow def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[str] = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) _lowerCamelCase : Any = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _lowerCamelCase : List[Any] = model(lowercase_ )[0] # compare the actual values for a slice. _lowerCamelCase : List[Any] = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
371
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class A_ ( _a ): lowerCAmelCase__ = 'camembert' def __init__( self: Tuple ,__lowerCAmelCase: Union[str, Any]=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: int=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: int=512 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Any="absolute" ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Tuple=None ,**__lowerCAmelCase: Dict ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Tuple = position_embedding_type _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : Dict = classifier_dropout class A_ ( _a ): @property def _lowercase ( self: Any ): '''simple docstring''' if self.task == "multiple-choice": _lowerCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
340
0
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _lowerCAmelCase : Any = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' require_version(deps[pkg] , __a )
350
"""simple docstring""" from collections import defaultdict def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : str = True for v in tree[start]: if v not in visited: ret += dfs(_lowerCamelCase ) if ret % 2 == 0: cuts.append(_lowerCamelCase ) return ret def lowerCamelCase_( ) -> int: '''simple docstring''' dfs(1 ) if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = 10, 9 _lowerCAmelCase : str = defaultdict(list) _lowerCAmelCase : dict[int, bool] = {} _lowerCAmelCase : list[int] = [] _lowerCAmelCase : Any = 0 _lowerCAmelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
0
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _lowerCAmelCase : int = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class A_ ( unittest.TestCase ): def _lowercase ( self: str ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Tuple = None ,__lowerCAmelCase: List[Any] = None ,__lowerCAmelCase: List[Any] = None ,__lowerCAmelCase: str = True ,): '''simple docstring''' _lowerCamelCase : List[str] = [file for file in os.listdir(lowercase_ ) if os.path.isfile(os.path.join(lowercase_ ,lowercase_ ) )] if identifier is not None: _lowerCamelCase : Dict = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ ,lowercase_ ): for n_ in n_identifier: _lowerCamelCase : str = [file for file in files if n_ not in file] else: _lowerCamelCase : Any = [file for file in files if n_identifier not in file] _lowerCamelCase : Union[str, Any] = ignore_files or [] ignore_files.append("__init__.py" ) _lowerCamelCase : Optional[int] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" ,lowercase_ ) if only_modules: _lowerCamelCase : str = file.split("." )[0] try: _lowerCamelCase : str = getattr(lowercase_ ,lowercase_ ) _lowerCamelCase : Tuple = doctest.DocTestSuite(lowercase_ ) _lowerCamelCase : int = unittest.TextTestRunner().run(lowercase_ ) self.assertIs(len(result.failures ) ,0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: _lowerCamelCase : Optional[Any] = doctest.testfile(str(".." / directory / file ) ,optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed ,0 ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : int = Path("src/transformers" ) _lowerCamelCase : str = "modeling" _lowerCamelCase : Optional[Any] = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(lowercase_ ,identifier=lowercase_ ,ignore_files=lowercase_ ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[Any] = Path("src/transformers" ) _lowerCamelCase : Any = "tokenization" self.analyze_directory(lowercase_ ,identifier=lowercase_ ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = Path("src/transformers" ) _lowerCamelCase : List[Any] = "configuration" self.analyze_directory(lowercase_ ,identifier=lowercase_ ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = Path("src/transformers" ) _lowerCamelCase : List[Any] = ["configuration", "modeling", "tokenization"] self.analyze_directory(lowercase_ ,n_identifier=lowercase_ ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = Path("docs/source" ) _lowerCamelCase : Union[str, Any] = ["favicon.ico"] self.analyze_directory(lowercase_ ,ignore_files=lowercase_ ,only_modules=lowercase_ )
351
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _lowerCAmelCase : Optional[int] = '''__DUMMY_TRANSFORMERS_USER__''' _lowerCAmelCase : Dict = '''Dummy User''' _lowerCAmelCase : Optional[int] = '''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''' _lowerCAmelCase : Tuple = '''https://hub-ci.huggingface.co''' _lowerCAmelCase : Any = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' _lowerCAmelCase : Tuple = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' _lowerCAmelCase : Dict = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' HfFolder.save_token(_lowerCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def lowerCamelCase_( ) -> str: '''simple docstring''' return HfApi(endpoint=_lowerCamelCase ) @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Dict = HfFolder.get_token() HfFolder.save_token(_lowerCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' def _cleanup_repo(_lowerCamelCase ): hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' @contextmanager def _temporary_repo(_lowerCamelCase ): try: yield repo_id finally: cleanup_repo(_lowerCamelCase ) return _temporary_repo @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Tuple = F"""repo_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[str] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data/text_data.txt" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : List[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : Dict = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Any = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[Any] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
340
0
"""simple docstring""" from __future__ import annotations _lowerCAmelCase : Union[str, Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _lowerCAmelCase : List[str] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def lowerCamelCase_( _lowerCamelCase ) -> list[float]: '''simple docstring''' _lowerCamelCase : str = [] _lowerCamelCase : Dict = len(_snake_case ) for i in range(_snake_case ): _lowerCamelCase : float = -1 for j in range(i + 1 , _snake_case ): if arr[i] < arr[j]: _lowerCamelCase : List[Any] = arr[j] break result.append(_snake_case ) return result def lowerCamelCase_( _lowerCamelCase ) -> list[float]: '''simple docstring''' _lowerCamelCase : Tuple = [] for i, outer in enumerate(_snake_case ): _lowerCamelCase : float = -1 for inner in arr[i + 1 :]: if outer < inner: _lowerCamelCase : Optional[int] = inner break result.append(_snake_case ) return result def lowerCamelCase_( _lowerCamelCase ) -> list[float]: '''simple docstring''' _lowerCamelCase : Any = len(_snake_case ) _lowerCamelCase : list[float] = [] _lowerCamelCase : list[float] = [-1] * arr_size for index in reversed(range(_snake_case ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _lowerCamelCase : int = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _lowerCAmelCase : Tuple = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
352
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class A_ ( _a ): def __init__( self: List[Any] ,__lowerCAmelCase: Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() _lowerCamelCase : Tuple = nn.ModuleList(__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Union[torch.Tensor, float, int] ,__lowerCAmelCase: torch.Tensor ,__lowerCAmelCase: List[torch.tensor] ,__lowerCAmelCase: List[float] ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[Dict[str, Any]] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(__lowerCAmelCase ,__lowerCAmelCase ,self.nets ) ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = controlnet( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,) # merge samples if i == 0: _lowerCamelCase, _lowerCamelCase : Optional[Any] = down_samples, mid_sample else: _lowerCamelCase : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__lowerCAmelCase ,__lowerCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Union[str, os.PathLike] ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Callable = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[str] = None ,): '''simple docstring''' _lowerCamelCase : List[Any] = 0 _lowerCamelCase : str = save_directory for controlnet in self.nets: controlnet.save_pretrained( __lowerCAmelCase ,is_main_process=__lowerCAmelCase ,save_function=__lowerCAmelCase ,safe_serialization=__lowerCAmelCase ,variant=__lowerCAmelCase ,) idx += 1 _lowerCamelCase : int = model_path_to_save + F"""_{idx}""" @classmethod def _lowercase ( cls: Any ,__lowerCAmelCase: Optional[Union[str, os.PathLike]] ,**__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : int = 0 _lowerCamelCase : str = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _lowerCamelCase : Dict = pretrained_model_path while os.path.isdir(__lowerCAmelCase ): _lowerCamelCase : List[Any] = ControlNetModel.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) controlnets.append(__lowerCAmelCase ) idx += 1 _lowerCamelCase : Tuple = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(__lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.""" ) if len(__lowerCAmelCase ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(__lowerCAmelCase )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(__lowerCAmelCase )
340
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ = 'nat' lowerCAmelCase__ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self: int ,__lowerCAmelCase: List[Any]=4 ,__lowerCAmelCase: Optional[Any]=3 ,__lowerCAmelCase: str=64 ,__lowerCAmelCase: Union[str, Any]=[3, 4, 6, 5] ,__lowerCAmelCase: str=[2, 4, 8, 16] ,__lowerCAmelCase: Union[str, Any]=7 ,__lowerCAmelCase: str=3.0 ,__lowerCAmelCase: str=True ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: List[Any]=0.0 ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: Any="gelu" ,__lowerCAmelCase: int=0.02 ,__lowerCAmelCase: List[Any]=1e-5 ,__lowerCAmelCase: Dict=0.0 ,__lowerCAmelCase: Dict=None ,__lowerCAmelCase: Dict=None ,**__lowerCAmelCase: Any ,): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCamelCase : Union[str, Any] = patch_size _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Tuple = embed_dim _lowerCamelCase : Any = depths _lowerCamelCase : Dict = len(snake_case__ ) _lowerCamelCase : str = num_heads _lowerCamelCase : Dict = kernel_size _lowerCamelCase : Union[str, Any] = mlp_ratio _lowerCamelCase : int = qkv_bias _lowerCamelCase : Optional[Any] = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : Dict = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase : str = int(embed_dim * 2 ** (len(snake_case__ ) - 1) ) _lowerCamelCase : Any = layer_scale_init_value _lowerCamelCase : Any = ['stem'] + [F"""stage{idx}""" for idx in range(1 ,len(snake_case__ ) + 1 )] _lowerCamelCase : str = get_aligned_output_features_output_indices( out_features=snake_case__ ,out_indices=snake_case__ ,stage_names=self.stage_names )
353
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : int = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]: '''simple docstring''' _lowerCamelCase : Tuple = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): _lowerCamelCase : Tuple = "segformer.encoder." + key if key.startswith("backbone" ): _lowerCamelCase : Any = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowerCamelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _lowerCamelCase : int = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_lowerCamelCase )-1}""" ) if "norm" in key: _lowerCamelCase : Optional[Any] = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowerCamelCase : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] _lowerCamelCase : Tuple = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_lowerCamelCase )-1}""" ) if "layer_norm1" in key: _lowerCamelCase : Union[str, Any] = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: _lowerCamelCase : int = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _lowerCamelCase : Union[str, Any] = key[key.find("block" ) + len("block" )] _lowerCamelCase : Optional[Any] = key.replace(F"""block{idx}""" , F"""block.{int(_lowerCamelCase )-1}""" ) if "attn.q" in key: _lowerCamelCase : Optional[int] = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: _lowerCamelCase : List[str] = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: _lowerCamelCase : Tuple = key.replace("attn" , "attention.self" ) if "fc1" in key: _lowerCamelCase : Optional[Any] = key.replace("fc1" , "dense1" ) if "fc2" in key: _lowerCamelCase : Dict = key.replace("fc2" , "dense2" ) if "linear_pred" in key: _lowerCamelCase : int = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: _lowerCamelCase : str = key.replace("linear_fuse.conv" , "linear_fuse" ) _lowerCamelCase : Optional[Any] = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowerCamelCase : Union[str, Any] = key[key.find("linear_c" ) + len("linear_c" )] _lowerCamelCase : Optional[int] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_lowerCamelCase )-1}""" ) if key.startswith("head" ): _lowerCamelCase : List[str] = key.replace("head" , "classifier" ) _lowerCamelCase : Union[str, Any] = value return new_state_dict def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _lowerCamelCase : int = kv_weight[ : config.hidden_sizes[i], : ] _lowerCamelCase : int = kv_bias[: config.hidden_sizes[i]] _lowerCamelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _lowerCamelCase : Optional[Any] = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase_( ) -> Dict: '''simple docstring''' _lowerCamelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Any = SegformerConfig() _lowerCamelCase : int = False # set attributes based on model_name _lowerCamelCase : Any = "huggingface/label-files" if "segformer" in model_name: _lowerCamelCase : str = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: _lowerCamelCase : str = 150 _lowerCamelCase : Dict = "ade20k-id2label.json" _lowerCamelCase : Dict = (1, 150, 128, 128) elif "city" in model_name: _lowerCamelCase : List[str] = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" _lowerCamelCase : Tuple = (1, 19, 128, 128) else: raise ValueError(F"""Model {model_name} not supported""" ) elif "mit" in model_name: _lowerCamelCase : List[str] = True _lowerCamelCase : Tuple = model_name[4:6] _lowerCamelCase : Tuple = 1000 _lowerCamelCase : List[Any] = "imagenet-1k-id2label.json" _lowerCamelCase : List[Any] = (1, 1000) else: raise ValueError(F"""Model {model_name} not supported""" ) # set config attributes _lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : int = 256 elif size == "b2": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : List[Any] = 768 _lowerCamelCase : Any = [3, 4, 6, 3] elif size == "b3": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : Union[str, Any] = 768 _lowerCamelCase : Optional[Any] = [3, 4, 18, 3] elif size == "b4": _lowerCamelCase : str = [64, 128, 320, 512] _lowerCamelCase : Optional[Any] = 768 _lowerCamelCase : Dict = [3, 8, 27, 3] elif size == "b5": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : Tuple = 768 _lowerCamelCase : Tuple = [3, 6, 40, 3] else: raise ValueError(F"""Size {size} not supported""" ) # load image processor (only resize + normalize) _lowerCamelCase : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase ) # prepare image _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Dict = image_processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values logger.info(F"""Converting model {model_name}...""" ) # load original state dict if encoder_only: _lowerCamelCase : Tuple = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) ) else: _lowerCamelCase : int = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )["state_dict"] # rename keys _lowerCamelCase : str = rename_keys(_lowerCamelCase , encoder_only=_lowerCamelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_lowerCamelCase , _lowerCamelCase ) # create HuggingFace model and load state dict if encoder_only: _lowerCamelCase : Tuple = False _lowerCamelCase : Optional[int] = SegformerForImageClassification(_lowerCamelCase ) else: _lowerCamelCase : List[str] = SegformerForSemanticSegmentation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # forward pass _lowerCamelCase : Any = model(_lowerCamelCase ) _lowerCamelCase : Dict = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _lowerCamelCase : str = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]], [[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _lowerCamelCase : int = torch.tensor( [ [[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]], [[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]], [[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _lowerCamelCase : Optional[Any] = torch.tensor( [ [[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]], [[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]], [[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]], [[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]], [[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]], [[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]], [[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _lowerCamelCase : Dict = torch.tensor( [ [[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]], [[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _lowerCamelCase : Optional[int] = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]], [[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [ [-1.13_72e01, -1.27_87e01, -1.34_77e01], [-1.25_36e01, -1.41_94e01, -1.44_09e01], [-1.32_17e01, -1.48_88e01, -1.53_27e01], ], [ [-1.47_91e01, -1.71_22e01, -1.82_77e01], [-1.71_63e01, -1.91_92e01, -1.95_33e01], [-1.78_97e01, -1.99_91e01, -2.03_15e01], ], [ [7.67_23e-01, 4.19_21e-01, -7.78_78e-02], [4.77_72e-01, 9.55_57e-03, -2.80_82e-01], [3.60_32e-01, -2.48_26e-01, -5.11_68e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _lowerCamelCase : Union[str, Any] = torch.tensor( [ [[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]], [[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _lowerCamelCase : List[Any] = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]], [[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _lowerCamelCase : Any = torch.tensor( [ [[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]], [[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]], [[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _lowerCamelCase : str = torch.tensor( [ [[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]], [[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: _lowerCamelCase : Dict = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : str = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
340
0
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class A_ ( _a ): def __init__( self: Union[str, Any] ,__lowerCAmelCase: Union[str, "sqlalchemy.sql.Selectable"] ,__lowerCAmelCase: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(features=__UpperCAmelCase ,cache_dir=__UpperCAmelCase ,keep_in_memory=__UpperCAmelCase ,**__UpperCAmelCase ) _lowerCamelCase : Any = Sql( cache_dir=__UpperCAmelCase ,features=__UpperCAmelCase ,sql=__UpperCAmelCase ,con=__UpperCAmelCase ,**__UpperCAmelCase ,) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = None _lowerCamelCase : Dict = None _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : str = None self.builder.download_and_prepare( download_config=__UpperCAmelCase ,download_mode=__UpperCAmelCase ,verification_mode=__UpperCAmelCase ,base_path=__UpperCAmelCase ,) # Build dataset for splits _lowerCamelCase : str = self.builder.as_dataset( split="train" ,verification_mode=__UpperCAmelCase ,in_memory=self.keep_in_memory ) return dataset class A_ : def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: Any ,): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) _lowerCamelCase : List[str] = dataset _lowerCamelCase : Any = name _lowerCamelCase : Optional[int] = con _lowerCamelCase : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _lowerCamelCase : int = num_proc _lowerCamelCase : int = to_sql_kwargs def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : int = self.to_sql_kwargs.pop("sql" ,__UpperCAmelCase ) _lowerCamelCase : Dict = self.to_sql_kwargs.pop("con" ,__UpperCAmelCase ) _lowerCamelCase : Optional[Any] = self.to_sql_kwargs.pop("index" ,__UpperCAmelCase ) _lowerCamelCase : Optional[Any] = self._write(index=__UpperCAmelCase ,**self.to_sql_kwargs ) return written def _lowercase ( self: List[str] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = args _lowerCamelCase : Any = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs _lowerCamelCase : Optional[Any] = query_table( table=self.dataset.data ,key=slice(__UpperCAmelCase ,offset + self.batch_size ) ,indices=self.dataset._indices ,) _lowerCamelCase : Tuple = batch.to_pandas() _lowerCamelCase : Dict = df.to_sql(self.name ,self.con ,index=__UpperCAmelCase ,**__UpperCAmelCase ) return num_rows or len(__UpperCAmelCase ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 ,len(self.dataset ) ,self.batch_size ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating SQL from Arrow format" ,): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _lowerCamelCase, _lowerCamelCase : Any = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql ,[(offset, index, to_sql_kwargs) for offset in range(0 ,__UpperCAmelCase ,__UpperCAmelCase )] ,) ,total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating SQL from Arrow format" ,): written += num_rows return written
354
"""simple docstring""" _lowerCAmelCase : dict[tuple[int, int, int], int] = {} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _lowerCamelCase : Optional[int] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _lowerCamelCase : int = _calculate(days - 1 , _lowerCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _lowerCamelCase : Tuple = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _lowerCamelCase : str = _calculate(days - 1 , _lowerCamelCase , 0 ) _lowerCamelCase : List[Any] = state_late + state_absent + state_ontime _lowerCamelCase : int = prizestrings return prizestrings def lowerCamelCase_( _lowerCamelCase = 30 ) -> int: '''simple docstring''' return _calculate(_lowerCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
340
0
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCAmelCase : Union[str, Any] = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class A_ ( unittest.TestCase ): @classmethod def _lowercase ( cls: str ): '''simple docstring''' _lowerCamelCase : List[Any] = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE_ ) @classmethod def _lowercase ( cls: Union[str, Any] ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-config" ) except HTTPError: pass def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : Any = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub("test-config" ,use_auth_token=self._token ) _lowerCamelCase : str = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ ,getattr(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) # Reset repo delete_repo(token=self._token ,repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(SCREAMING_SNAKE_CASE_ ,repo_id="test-config" ,push_to_hub=SCREAMING_SNAKE_CASE_ ,use_auth_token=self._token ) _lowerCamelCase : Optional[int] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ ,getattr(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : int = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" ,use_auth_token=self._token ) _lowerCamelCase : Optional[int] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ ,getattr(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( SCREAMING_SNAKE_CASE_ ,repo_id="valid_org/test-config-org" ,push_to_hub=SCREAMING_SNAKE_CASE_ ,use_auth_token=self._token ) _lowerCamelCase : Union[str, Any] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ ,getattr(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self: Tuple ): '''simple docstring''' CustomConfig.register_for_auto_class() _lowerCamelCase : Any = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map ,{"AutoConfig": "custom_configuration.CustomConfig"} ) _lowerCamelCase : Dict = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" ,trust_remote_code=SCREAMING_SNAKE_CASE_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ ,"CustomConfig" ) self.assertEqual(new_config.attribute ,42 ) class A_ ( unittest.TestCase ): def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : str = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCamelCase : Dict = c.n_embd + 1 # int _lowerCamelCase : Dict = c.resid_pdrop + 1.0 # float _lowerCamelCase : Union[str, Any] = not c.scale_attn_weights # bool _lowerCamelCase : Tuple = c.summary_type + """foo""" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(SCREAMING_SNAKE_CASE_ ,c.n_embd ,"mismatch for key: n_embd" ) self.assertEqual(SCREAMING_SNAKE_CASE_ ,c.resid_pdrop ,"mismatch for key: resid_pdrop" ) self.assertEqual(SCREAMING_SNAKE_CASE_ ,c.scale_attn_weights ,"mismatch for key: scale_attn_weights" ) self.assertEqual(SCREAMING_SNAKE_CASE_ ,c.summary_type ,"mismatch for key: summary_type" ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = PretrainedConfig() _lowerCamelCase : int = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( SCREAMING_SNAKE_CASE_ ,["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _lowerCamelCase : Tuple = [key for key, value in config_common_kwargs.items() if value == getattr(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ )] if len(SCREAMING_SNAKE_CASE_ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {', '.join(SCREAMING_SNAKE_CASE_ )}.""" ) def _lowercase ( self: int ): '''simple docstring''' with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCamelCase : List[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _lowerCamelCase : Dict = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ,subfolder="bert" ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : str = mock.Mock() _lowerCamelCase : Union[str, Any] = 500 _lowerCamelCase : Optional[int] = {} _lowerCamelCase : List[Any] = HTTPError _lowerCamelCase : Union[str, Any] = {} # Download this model to make sure it's in the cache. _lowerCamelCase : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" ,return_value=SCREAMING_SNAKE_CASE_ ) as mock_head: _lowerCamelCase : Tuple = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : int = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base-cased" ) _lowerCamelCase : Optional[Any] = ["""config.4.0.0.json"""] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Any = 2 json.dump(configuration.to_dict() ,open(os.path.join(SCREAMING_SNAKE_CASE_ ,"config.4.0.0.json" ) ,"w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertEqual(new_configuration.hidden_size ,2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCamelCase : List[Any] = ["""config.42.0.0.json"""] _lowerCamelCase : Optional[int] = 768 configuration.save_pretrained(SCREAMING_SNAKE_CASE_ ) shutil.move(os.path.join(SCREAMING_SNAKE_CASE_ ,"config.4.0.0.json" ) ,os.path.join(SCREAMING_SNAKE_CASE_ ,"config.42.0.0.json" ) ) _lowerCamelCase : List[str] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertEqual(new_configuration.hidden_size ,768 ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[Any] = """hf-internal-testing/test-two-configs""" import transformers as new_transformers _lowerCamelCase : Optional[Any] = """v4.0.0""" _lowerCamelCase : Union[str, Any] = new_transformers.models.auto.AutoConfig.from_pretrained( SCREAMING_SNAKE_CASE_ ,return_unused_kwargs=SCREAMING_SNAKE_CASE_ ) self.assertEqual(new_configuration.hidden_size ,2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(SCREAMING_SNAKE_CASE_ ,{} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCamelCase : Dict = """v3.0.0""" _lowerCamelCase : int = old_transformers.models.auto.AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertEqual(old_configuration.hidden_size ,768 )
355
"""simple docstring""" from __future__ import annotations def lowerCamelCase_( _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : int = str(_lowerCamelCase ) return len(_lowerCamelCase ) == 9 and set(_lowerCamelCase ) == set("123456789" ) def lowerCamelCase_( ) -> int | None: '''simple docstring''' for base_num in range(9999 , 4999 , -1 ): _lowerCamelCase : Union[str, Any] = 100002 * base_num if is_9_pandigital(_lowerCamelCase ): return candidate for base_num in range(333 , 99 , -1 ): _lowerCamelCase : Tuple = 1002003 * base_num if is_9_pandigital(_lowerCamelCase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
340
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class A_ ( __UpperCamelCase ): @staticmethod @abstractmethod def _lowercase ( __lowerCAmelCase: ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def _lowercase ( self: str ): '''simple docstring''' raise NotImplementedError()
356
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class A_ ( _a ): lowerCAmelCase__ = 'char' lowerCAmelCase__ = 'bpe' lowerCAmelCase__ = 'wp' _lowerCAmelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class A_ ( _a ): lowerCAmelCase__ = ['image_processor', 'char_tokenizer'] lowerCAmelCase__ = 'ViTImageProcessor' lowerCAmelCase__ = 'MgpstrTokenizer' def __init__( self: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,__lowerCAmelCase ,) _lowerCamelCase : List[Any] = kwargs.pop("feature_extractor" ) _lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : str = AutoTokenizer.from_pretrained("gpt2" ) _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) def __call__( self: Optional[int] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ): '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _lowerCamelCase : Optional[int] = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is not None: _lowerCamelCase : int = self.char_tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: _lowerCamelCase : Tuple = encodings["input_ids"] return inputs def _lowercase ( self: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = sequences _lowerCamelCase : Dict = char_preds.size(0 ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._decode_helper(__lowerCAmelCase ,"char" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(__lowerCAmelCase ,"bpe" ) _lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(__lowerCAmelCase ,"wp" ) _lowerCamelCase : List[str] = [] _lowerCamelCase : str = [] for i in range(__lowerCAmelCase ): _lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowerCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowerCamelCase : Optional[Any] = scores.index(max(__lowerCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = final_strs _lowerCamelCase : int = final_scores _lowerCamelCase : str = char_strs _lowerCamelCase : Dict = bpe_strs _lowerCamelCase : int = wp_strs return out def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ): '''simple docstring''' if format == DecodeType.CHARACTER: _lowerCamelCase : int = self.char_decode _lowerCamelCase : List[str] = 1 _lowerCamelCase : Optional[int] = "[s]" elif format == DecodeType.BPE: _lowerCamelCase : Dict = self.bpe_decode _lowerCamelCase : str = 2 _lowerCamelCase : Union[str, Any] = "#" elif format == DecodeType.WORDPIECE: _lowerCamelCase : int = self.wp_decode _lowerCamelCase : List[str] = 102 _lowerCamelCase : List[Any] = "[SEP]" else: raise ValueError(F"""Format {format} is not supported.""" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], [] _lowerCamelCase : Any = pred_logits.size(0 ) _lowerCamelCase : int = pred_logits.size(1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=__lowerCAmelCase ,sorted=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_index.view(-1 ,__lowerCAmelCase )[:, 1:] _lowerCamelCase : List[str] = decoder(__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : str = torch.nn.functional.softmax(__lowerCAmelCase ,dim=2 ).max(dim=2 ) _lowerCamelCase : Any = preds_max_prob[:, 1:] for index in range(__lowerCAmelCase ): _lowerCamelCase : List[Any] = preds_str[index].find(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_str[index][:pred_eos] _lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist() _lowerCamelCase : List[str] = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1 _lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1] _lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__lowerCAmelCase ) conf_scores.append(__lowerCAmelCase ) return dec_strs, conf_scores def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str] ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(__lowerCAmelCase ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs
340
0
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class A_ : def __init__( self: Optional[int] ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: List[Any] ): '''simple docstring''' logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) _lowerCamelCase : List[Any] = model _lowerCamelCase : Optional[Any] = kwargs.get("model_save_dir" ,UpperCamelCase_ ) _lowerCamelCase : List[Any] = kwargs.get("latest_model_name" ,UpperCamelCase_ ) def __call__( self: str ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = {k: np.array(UpperCamelCase_ ) for k, v in kwargs.items()} return self.model.run(UpperCamelCase_ ,UpperCamelCase_ ) @staticmethod def _lowercase ( __lowerCAmelCase: Union[str, Path] ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: int=None ): '''simple docstring''' if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) _lowerCamelCase : Optional[int] = "CPUExecutionProvider" return ort.InferenceSession(UpperCamelCase_ ,providers=[provider] ,sess_options=UpperCamelCase_ ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Union[str, Path] ,__lowerCAmelCase: Optional[str] = None ,**__lowerCAmelCase: Any ): '''simple docstring''' _lowerCamelCase : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME _lowerCamelCase : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) _lowerCamelCase : Dict = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ ,UpperCamelCase_ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _lowerCamelCase : Optional[Any] = self.model_save_dir.joinpath(UpperCamelCase_ ) if src_path.exists(): _lowerCamelCase : Dict = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ ,UpperCamelCase_ ) except shutil.SameFileError: pass def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Union[str, os.PathLike] ,**__lowerCAmelCase: Union[str, Any] ,): '''simple docstring''' if os.path.isfile(UpperCamelCase_ ): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(UpperCamelCase_ ,exist_ok=UpperCamelCase_ ) # saving model weights/files self._save_pretrained(UpperCamelCase_ ,**UpperCamelCase_ ) @classmethod def _lowercase ( cls: Optional[int] ,__lowerCAmelCase: Union[str, Path] ,__lowerCAmelCase: Optional[Union[bool, str, None]] = None ,__lowerCAmelCase: Optional[Union[str, None]] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: Optional["ort.SessionOptions"] = None ,**__lowerCAmelCase: List[str] ,): '''simple docstring''' _lowerCamelCase : str = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(UpperCamelCase_ ): _lowerCamelCase : Optional[int] = OnnxRuntimeModel.load_model( os.path.join(UpperCamelCase_ ,UpperCamelCase_ ) ,provider=UpperCamelCase_ ,sess_options=UpperCamelCase_ ) _lowerCamelCase : str = Path(UpperCamelCase_ ) # load model from hub else: # download model _lowerCamelCase : Optional[Any] = hf_hub_download( repo_id=UpperCamelCase_ ,filename=UpperCamelCase_ ,use_auth_token=UpperCamelCase_ ,revision=UpperCamelCase_ ,cache_dir=UpperCamelCase_ ,force_download=UpperCamelCase_ ,) _lowerCamelCase : List[Any] = Path(UpperCamelCase_ ).parent _lowerCamelCase : str = Path(UpperCamelCase_ ).name _lowerCamelCase : Dict = OnnxRuntimeModel.load_model(UpperCamelCase_ ,provider=UpperCamelCase_ ,sess_options=UpperCamelCase_ ) return cls(model=UpperCamelCase_ ,**UpperCamelCase_ ) @classmethod def _lowercase ( cls: Optional[int] ,__lowerCAmelCase: Union[str, Path] ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: Optional[str] = None ,**__lowerCAmelCase: Union[str, Any] ,): '''simple docstring''' _lowerCamelCase : Tuple = None if len(str(UpperCamelCase_ ).split("@" ) ) == 2: _lowerCamelCase, _lowerCamelCase : Union[str, Any] = model_id.split("@" ) return cls._from_pretrained( model_id=UpperCamelCase_ ,revision=UpperCamelCase_ ,cache_dir=UpperCamelCase_ ,force_download=UpperCamelCase_ ,use_auth_token=UpperCamelCase_ ,**UpperCamelCase_ ,)
357
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _lowerCAmelCase : List[Any] = get_logger(__name__) class A_ : lowerCAmelCase__ = 'dummy_data' lowerCAmelCase__ = 'datasets' lowerCAmelCase__ = False def __init__( self: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[Version, str] ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[List[Callable]] = None ,): '''simple docstring''' _lowerCamelCase : str = 0 _lowerCamelCase : List[str] = dataset_name _lowerCamelCase : Optional[int] = cache_dir _lowerCamelCase : Optional[int] = use_local_dummy_data _lowerCamelCase : int = config # download_callbacks take a single url as input _lowerCamelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowerCamelCase : int = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowerCamelCase : Tuple = str(__lowerCAmelCase ) # to be downloaded _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Dict = None @property def _lowercase ( self: str ): '''simple docstring''' if self._dummy_file is None: _lowerCamelCase : List[str] = self.download_dummy_data() return self._dummy_file @property def _lowercase ( self: str ): '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" ,self.config.name ,self.version_name ) # structure is dummy / version_name return os.path.join("dummy" ,self.version_name ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' return os.path.join(self.dummy_data_folder ,"dummy_data.zip" ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowerCamelCase : Optional[int] = cached_path( __lowerCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=__lowerCAmelCase ,force_extract=__lowerCAmelCase ) return os.path.join(__lowerCAmelCase ,self.dummy_file_name ) @property def _lowercase ( self: Tuple ): '''simple docstring''' return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file ) @property def _lowercase ( self: List[str] ): '''simple docstring''' if self._bucket_url is None: _lowerCamelCase : List[str] = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) ) return self._bucket_url @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,*__lowerCAmelCase: List[Any] ): '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowerCamelCase : Tuple = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowerCamelCase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.create_dummy_data_dict(__lowerCAmelCase ,__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,(list, tuple) ): return self.create_dummy_data_list(__lowerCAmelCase ,__lowerCAmelCase ) else: return self.create_dummy_data_single(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: Optional[int] ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' return path def _lowercase ( self: Optional[int] ): '''simple docstring''' return {} def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : str = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): for single_url in single_urls: download_callback(__lowerCAmelCase ) else: _lowerCamelCase : Union[str, Any] = single_urls download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Dict = [os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) for x in single_urls] else: _lowerCamelCase : Union[str, Any] = single_urls _lowerCamelCase : List[str] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) _lowerCamelCase : List[Any] = value # make sure that values are unique if all(isinstance(__lowerCAmelCase ,__lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowerCamelCase : List[str] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,__lowerCAmelCase ) ) for url in data_url ) _lowerCamelCase : Optional[Any] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _lowerCamelCase : Tuple = [data_url[0]] * len(__lowerCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(__lowerCAmelCase ) return dummy_data_list def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : Optional[int] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(__lowerCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass def _lowercase ( self: Optional[int] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' def _iter_archive_members(__lowerCAmelCase: Any ): # this preserves the order of the members inside the ZIP archive _lowerCamelCase : Tuple = Path(self.dummy_file ).parent _lowerCamelCase : str = path.relative_to(__lowerCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _lowerCamelCase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = Path(__lowerCAmelCase ) _lowerCamelCase : int = _iter_archive_members(__lowerCAmelCase ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(__lowerCAmelCase ).as_posix(), file_path.open("rb" ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [paths] for path in paths: if os.path.isfile(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(__lowerCAmelCase ): if filename.startswith((".", "__") ): continue yield os.path.join(__lowerCAmelCase ,__lowerCAmelCase )
340
0
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging _lowerCAmelCase : int = logging.get_logger(__name__) class A_ ( lowerCAmelCase_ ): lowerCAmelCase__ = 'linear' lowerCAmelCase__ = 'cosine' lowerCAmelCase__ = 'cosine_with_restarts' lowerCAmelCase__ = 'polynomial' lowerCAmelCase__ = 'constant' lowerCAmelCase__ = 'constant_with_warmup' lowerCAmelCase__ = 'piecewise_constant' def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = -1 ) -> Union[str, Any]: '''simple docstring''' return LambdaLR(_lowerCamelCase , lambda _lowerCamelCase : 1 , last_epoch=_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = -1 ) -> Dict: '''simple docstring''' def lr_lambda(_lowerCamelCase ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1.0 , _lowerCamelCase ) ) return 1.0 return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = -1 ) -> List[str]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : Optional[int] = step_rules.split("," ) for rule_str in rule_list[:-1]: _lowerCamelCase, _lowerCamelCase : Any = rule_str.split(":" ) _lowerCamelCase : List[Any] = int(_lowerCamelCase ) _lowerCamelCase : Dict = float(_lowerCamelCase ) _lowerCamelCase : str = value _lowerCamelCase : Optional[int] = float(rule_list[-1] ) def create_rules_function(_lowerCamelCase , _lowerCamelCase ): def rule_func(_lowerCamelCase ) -> float: _lowerCamelCase : List[Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_lowerCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _lowerCamelCase : Any = create_rules_function(_lowerCamelCase , _lowerCamelCase ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=-1 ) -> Union[str, Any]: '''simple docstring''' def lr_lambda(_lowerCamelCase ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0.5 , _lowerCamelCase = -1 ) -> List[str]: '''simple docstring''' def lr_lambda(_lowerCamelCase ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) _lowerCamelCase : List[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowerCamelCase ) * 2.0 * progress )) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = -1 ) -> Dict: '''simple docstring''' def lr_lambda(_lowerCamelCase ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) _lowerCamelCase : Tuple = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowerCamelCase ) * progress) % 1.0) )) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1e-7 , _lowerCamelCase=1.0 , _lowerCamelCase=-1 ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : List[Any] = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(_lowerCamelCase ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _lowerCamelCase : Optional[int] = lr_init - lr_end _lowerCamelCase : Optional[int] = num_training_steps - num_warmup_steps _lowerCamelCase : str = 1 - (current_step - num_warmup_steps) / decay_steps _lowerCamelCase : List[Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 1.0 , _lowerCamelCase = -1 , ) -> Tuple: '''simple docstring''' _lowerCamelCase : Optional[Any] = SchedulerType(_lowerCamelCase ) _lowerCamelCase : int = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_lowerCamelCase , last_epoch=_lowerCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_lowerCamelCase , step_rules=_lowerCamelCase , last_epoch=_lowerCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_lowerCamelCase , num_warmup_steps=_lowerCamelCase , last_epoch=_lowerCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , num_cycles=_lowerCamelCase , last_epoch=_lowerCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , power=_lowerCamelCase , last_epoch=_lowerCamelCase , ) return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , last_epoch=_lowerCamelCase )
358
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) _lowerCamelCase : int = precision _lowerCamelCase : Dict = ceil(precision / 14 ) _lowerCamelCase : Optional[Any] = 426880 * Decimal(10005 ).sqrt() _lowerCamelCase : int = 1 _lowerCamelCase : Optional[int] = 13591409 _lowerCamelCase : int = Decimal(_lowerCamelCase ) for k in range(1 , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCamelCase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
340
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off _lowerCAmelCase : Dict = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] _lowerCAmelCase : Union[str, Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class A_ ( SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = 'whisper' lowerCAmelCase__ = ['past_key_values'] lowerCAmelCase__ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self: List[str] ,__lowerCAmelCase: int=51_865 ,__lowerCAmelCase: Dict=80 ,__lowerCAmelCase: int=6 ,__lowerCAmelCase: Tuple=4 ,__lowerCAmelCase: Dict=6 ,__lowerCAmelCase: str=4 ,__lowerCAmelCase: Optional[Any]=1_536 ,__lowerCAmelCase: Optional[Any]=1_536 ,__lowerCAmelCase: List[Any]=0.0 ,__lowerCAmelCase: str=0.0 ,__lowerCAmelCase: Union[str, Any]=50_257 ,__lowerCAmelCase: Any=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Any="gelu" ,__lowerCAmelCase: Union[str, Any]=256 ,__lowerCAmelCase: Dict=0.0 ,__lowerCAmelCase: Union[str, Any]=0.0 ,__lowerCAmelCase: List[Any]=0.0 ,__lowerCAmelCase: str=0.02 ,__lowerCAmelCase: int=False ,__lowerCAmelCase: str=1_500 ,__lowerCAmelCase: List[str]=448 ,__lowerCAmelCase: List[Any]=50_256 ,__lowerCAmelCase: Dict=50_256 ,__lowerCAmelCase: Tuple=50_256 ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Tuple=[220, 50_256] ,__lowerCAmelCase: List[str]=False ,__lowerCAmelCase: int=256 ,__lowerCAmelCase: int=False ,__lowerCAmelCase: List[str]=0.05 ,__lowerCAmelCase: Union[str, Any]=10 ,__lowerCAmelCase: List[Any]=2 ,__lowerCAmelCase: Dict=0.0 ,__lowerCAmelCase: Any=10 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: str=7 ,**__lowerCAmelCase: Union[str, Any] ,): '''simple docstring''' _lowerCamelCase : str = vocab_size _lowerCamelCase : int = num_mel_bins _lowerCamelCase : int = d_model _lowerCamelCase : int = encoder_layers _lowerCamelCase : Optional[Any] = encoder_attention_heads _lowerCamelCase : int = decoder_layers _lowerCamelCase : str = decoder_attention_heads _lowerCamelCase : List[str] = decoder_ffn_dim _lowerCamelCase : Optional[Any] = encoder_ffn_dim _lowerCamelCase : List[Any] = dropout _lowerCamelCase : Tuple = attention_dropout _lowerCamelCase : Optional[int] = activation_dropout _lowerCamelCase : str = activation_function _lowerCamelCase : Optional[Any] = init_std _lowerCamelCase : Any = encoder_layerdrop _lowerCamelCase : str = decoder_layerdrop _lowerCamelCase : List[str] = use_cache _lowerCamelCase : Any = encoder_layers _lowerCamelCase : str = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCamelCase : Dict = max_source_positions _lowerCamelCase : Optional[int] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : Union[str, Any] = classifier_proj_size _lowerCamelCase : Any = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Tuple = apply_spec_augment _lowerCamelCase : List[str] = mask_time_prob _lowerCamelCase : Dict = mask_time_length _lowerCamelCase : Tuple = mask_time_min_masks _lowerCamelCase : List[Any] = mask_feature_prob _lowerCamelCase : Tuple = mask_feature_length _lowerCamelCase : int = mask_feature_min_masks _lowerCamelCase : Tuple = median_filter_width super().__init__( pad_token_id=a_ ,bos_token_id=a_ ,eos_token_id=a_ ,is_encoder_decoder=a_ ,decoder_start_token_id=a_ ,suppress_tokens=a_ ,begin_suppress_tokens=a_ ,**a_ ,) class A_ ( SCREAMING_SNAKE_CASE__ ): @property def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Dict = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: _lowerCamelCase : Dict = {0: "batch"} else: _lowerCamelCase : List[Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(a_ ,direction="inputs" ) return common_inputs def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,__lowerCAmelCase: int = -1 ,__lowerCAmelCase: int = -1 ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional["TensorType"] = None ,__lowerCAmelCase: int = 22_050 ,__lowerCAmelCase: float = 5.0 ,__lowerCAmelCase: int = 220 ,): '''simple docstring''' _lowerCamelCase : Tuple = OrderedDict() _lowerCamelCase : str = OnnxConfig.generate_dummy_inputs( self ,preprocessor=preprocessor.feature_extractor ,batch_size=a_ ,framework=a_ ,sampling_rate=a_ ,time_duration=a_ ,frequency=a_ ,) _lowerCamelCase : Dict = encoder_inputs["input_features"].shape[2] _lowerCamelCase : int = encoder_sequence_length // 2 if self.use_past else seq_length _lowerCamelCase : List[Any] = super().generate_dummy_inputs( preprocessor.tokenizer ,a_ ,a_ ,a_ ,a_ ) _lowerCamelCase : Optional[Any] = encoder_inputs.pop("input_features" ) _lowerCamelCase : List[str] = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: _lowerCamelCase : List[Any] = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def _lowercase ( self: Optional[int] ): '''simple docstring''' return 1e-3
359
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class A_ ( _a ): lowerCAmelCase__ = 42 lowerCAmelCase__ = None def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=0.9_9_9 , _lowerCamelCase="cosine" , ) -> List[str]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowerCamelCase : str = [] for i in range(_lowerCamelCase ): _lowerCamelCase : Any = i / num_diffusion_timesteps _lowerCamelCase : Optional[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) ) return torch.tensor(_lowerCamelCase , dtype=torch.floataa ) class A_ ( _a , _a ): @register_to_config def __init__( self: str ,__lowerCAmelCase: int = 1_000 ,__lowerCAmelCase: str = "fixed_small_log" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[float] = 1.0 ,__lowerCAmelCase: str = "epsilon" ,__lowerCAmelCase: str = "squaredcos_cap_v2" ,): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) _lowerCamelCase : Union[str, Any] = betas_for_alpha_bar(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = 1.0 - self.betas _lowerCamelCase : Dict = torch.cumprod(self.alphas ,dim=0 ) _lowerCamelCase : int = torch.tensor(1.0 ) # standard deviation of the initial noise distribution _lowerCamelCase : Tuple = 1.0 # setable values _lowerCamelCase : List[Any] = None _lowerCamelCase : Union[str, Any] = torch.from_numpy(np.arange(0 ,__lowerCAmelCase )[::-1].copy() ) _lowerCamelCase : List[str] = variance_type def _lowercase ( self: Any ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ): '''simple docstring''' return sample def _lowercase ( self: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, torch.device] = None ): '''simple docstring''' _lowerCamelCase : str = num_inference_steps _lowerCamelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _lowerCamelCase : Union[str, Any] = (np.arange(0 ,__lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) _lowerCamelCase : int = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: str=None ): '''simple docstring''' if prev_timestep is None: _lowerCamelCase : List[str] = t - 1 _lowerCamelCase : Optional[int] = self.alphas_cumprod[t] _lowerCamelCase : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Dict = 1 - alpha_prod_t _lowerCamelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : List[Any] = self.betas[t] else: _lowerCamelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _lowerCamelCase : int = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _lowerCamelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _lowerCamelCase : Dict = torch.log(torch.clamp(__lowerCAmelCase ,min=1e-20 ) ) _lowerCamelCase : str = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _lowerCamelCase : str = variance.log() _lowerCamelCase : str = beta.log() _lowerCamelCase : Optional[int] = (predicted_variance + 1) / 2 _lowerCamelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: int ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : str = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _lowerCamelCase, _lowerCamelCase : int = torch.split(__lowerCAmelCase ,sample.shape[1] ,dim=1 ) else: _lowerCamelCase : List[Any] = None # 1. compute alphas, betas if prev_timestep is None: _lowerCamelCase : List[Any] = t - 1 _lowerCamelCase : Dict = self.alphas_cumprod[t] _lowerCamelCase : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Dict = 1 - alpha_prod_t _lowerCamelCase : List[str] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : Any = self.betas[t] _lowerCamelCase : str = self.alphas[t] else: _lowerCamelCase : Any = 1 - alpha_prod_t / alpha_prod_t_prev _lowerCamelCase : Optional[Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _lowerCamelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _lowerCamelCase : List[Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: _lowerCamelCase : Any = torch.clamp( __lowerCAmelCase ,-self.config.clip_sample_range ,self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : List[str] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _lowerCamelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _lowerCamelCase : Union[str, Any] = 0 if t > 0: _lowerCamelCase : Dict = randn_tensor( model_output.shape ,dtype=model_output.dtype ,generator=__lowerCAmelCase ,device=model_output.device ) _lowerCamelCase : Any = self._get_variance( __lowerCAmelCase ,predicted_variance=__lowerCAmelCase ,prev_timestep=__lowerCAmelCase ,) if self.variance_type == "fixed_small_log": _lowerCamelCase : Optional[Any] = variance elif self.variance_type == "learned_range": _lowerCamelCase : Optional[int] = (0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) _lowerCamelCase : Dict = variance * variance_noise _lowerCamelCase : List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase ,pred_original_sample=__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.IntTensor ,): '''simple docstring''' _lowerCamelCase : int = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype ) _lowerCamelCase : Any = timesteps.to(original_samples.device ) _lowerCamelCase : List[Any] = alphas_cumprod[timesteps] ** 0.5 _lowerCamelCase : List[Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : int = sqrt_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Union[str, Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 _lowerCamelCase : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : Union[str, Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
340
0
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration _lowerCAmelCase : Union[str, Any] = HfArgumentParser(InitializationArguments) _lowerCAmelCase : Dict = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization _lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks _lowerCAmelCase : Union[str, Any] = { """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) _lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config _lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
360
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : str = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' for attribute in key.split("." ): _lowerCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: _lowerCamelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: _lowerCamelCase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCamelCase : Tuple = value elif weight_type == "weight_g": _lowerCamelCase : List[str] = value elif weight_type == "weight_v": _lowerCamelCase : List[Any] = value elif weight_type == "bias": _lowerCamelCase : str = value elif weight_type == "running_mean": _lowerCamelCase : Optional[int] = value elif weight_type == "running_var": _lowerCamelCase : Optional[Any] = value elif weight_type == "num_batches_tracked": _lowerCamelCase : int = value elif weight_type == "inv_freq": _lowerCamelCase : List[str] = value else: _lowerCamelCase : Optional[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[Any] = fairseq_model.state_dict() _lowerCamelCase : List[Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) _lowerCamelCase : List[Any] = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase : Dict = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowerCamelCase : int = True if "*" in mapped_key: _lowerCamelCase : Tuple = name.split(_lowerCamelCase )[0].split("." )[-2] _lowerCamelCase : int = mapped_key.replace("*" , _lowerCamelCase ) if "pos_bias_u" in name: _lowerCamelCase : int = None elif "pos_bias_v" in name: _lowerCamelCase : Any = None elif "weight_g" in name: _lowerCamelCase : Any = "weight_g" elif "weight_v" in name: _lowerCamelCase : Any = "weight_v" elif "bias" in name: _lowerCamelCase : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase : Dict = "weight" elif "running_mean" in name: _lowerCamelCase : str = "running_mean" elif "inv_freq" in name: _lowerCamelCase : List[Any] = "inv_freq" elif "running_var" in name: _lowerCamelCase : Tuple = "running_var" elif "num_batches_tracked" in name: _lowerCamelCase : str = "num_batches_tracked" else: _lowerCamelCase : Dict = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = full_name.split("conv_layers." )[-1] _lowerCamelCase : List[Any] = name.split("." ) _lowerCamelCase : Union[str, Any] = int(items[0] ) _lowerCamelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCamelCase : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCamelCase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _lowerCamelCase : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCamelCase : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> Dict: '''simple docstring''' if config_path is not None: _lowerCamelCase : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" ) else: _lowerCamelCase : Dict = WavaVecaConformerConfig() if "rope" in checkpoint_path: _lowerCamelCase : List[Any] = "rotary" if is_finetuned: if dict_path: _lowerCamelCase : Dict = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase : Optional[int] = target_dict.pad_index _lowerCamelCase : Dict = target_dict.bos_index _lowerCamelCase : Optional[Any] = target_dict.eos_index _lowerCamelCase : str = len(target_dict.symbols ) _lowerCamelCase : int = os.path.join(_lowerCamelCase , "vocab.json" ) if not os.path.isdir(_lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCamelCase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase : List[str] = 0 _lowerCamelCase : List[Any] = 1 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) _lowerCamelCase : Tuple = True if config.feat_extract_norm == "layer" else False _lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) _lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCamelCase : List[Any] = WavaVecaConformerForCTC(_lowerCamelCase ) else: _lowerCamelCase : Any = WavaVecaConformerForPreTraining(_lowerCamelCase ) if is_finetuned: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _lowerCamelCase : List[Any] = argparse.Namespace(task="audio_pretraining" ) _lowerCamelCase : Optional[Any] = fairseq.tasks.setup_task(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) _lowerCamelCase : Dict = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCAmelCase : str = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
340
0
"""simple docstring""" import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( "kwargs, expected" , [ ({"num_shards": 0, "max_num_jobs": 1}, []), ({"num_shards": 10, "max_num_jobs": 1}, [range(10 )]), ({"num_shards": 10, "max_num_jobs": 10}, [range(a__ , i + 1 ) for i in range(10 )]), ({"num_shards": 1, "max_num_jobs": 10}, [range(1 )]), ({"num_shards": 10, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"num_shards": 3, "max_num_jobs": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Tuple = _distribute_shards(**a__ ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, max_num_jobs, expected" , [ ({"foo": 0}, 10, [{"foo": 0}]), ({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]), ({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]), ({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]), ({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]), ] , ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : int = _split_gen_kwargs(a__ , a__ ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, expected" , [ ({"foo": 0}, 1), ({"shards": [0]}, 1), ({"shards": [0, 1, 2, 3]}, 4), ({"shards": [0, 1, 2, 3], "foo": 0}, 4), ({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4), ({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError), ] , ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' if expected is RuntimeError: with pytest.raises(a__ ): _number_of_shards_in_gen_kwargs(a__ ) else: _lowerCamelCase : Union[str, Any] = _number_of_shards_in_gen_kwargs(a__ ) assert out == expected
361
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ) ) ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if point: if isinstance(_lowerCamelCase , _lowerCamelCase ): for item in point: if not isinstance(_lowerCamelCase , (int, float) ): _lowerCamelCase : Dict = ( "Expected a list of numbers as input, found " F"""{type(_lowerCamelCase ).__name__}""" ) raise TypeError(_lowerCamelCase ) else: _lowerCamelCase : Optional[int] = F"""Expected a list of numbers as input, found {type(_lowerCamelCase ).__name__}""" raise TypeError(_lowerCamelCase ) else: raise ValueError("Missing an input" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(_lowerCamelCase , _lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
340
0
"""simple docstring""" import qiskit def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> qiskit.result.counts.Counts: '''simple docstring''' _lowerCamelCase : Tuple = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register _lowerCamelCase : List[str] = qiskit.QuantumCircuit(lowercase_ , lowercase_ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _lowerCamelCase : Optional[int] = qiskit.execute(lowercase_ , lowercase_ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase_ ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
362
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[Any] = np.inf def set_batch_size(_lowerCamelCase ) -> None: nonlocal batch_size if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Optional[int] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary": _lowerCamelCase : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_lowerCamelCase , _lowerCamelCase ) return None if batch_size is np.inf else batch_size class A_ ( _a ): def __init__( self: Optional[int] ,__lowerCAmelCase: NestedDataStructureLike[PathLike] ,__lowerCAmelCase: Optional[NamedSplit] = None ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__( __lowerCAmelCase ,split=__lowerCAmelCase ,features=__lowerCAmelCase ,cache_dir=__lowerCAmelCase ,keep_in_memory=__lowerCAmelCase ,streaming=__lowerCAmelCase ,num_proc=__lowerCAmelCase ,**__lowerCAmelCase ,) _lowerCamelCase : Tuple = path_or_paths if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else {self.split: path_or_paths} _lowerCamelCase : Any = _PACKAGED_DATASETS_MODULES["parquet"][1] _lowerCamelCase : int = Parquet( cache_dir=__lowerCAmelCase ,data_files=__lowerCAmelCase ,features=__lowerCAmelCase ,hash=__lowerCAmelCase ,**__lowerCAmelCase ,) def _lowercase ( self: Optional[int] ): '''simple docstring''' if self.streaming: _lowerCamelCase : List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCamelCase : Tuple = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : List[str] = None _lowerCamelCase : str = None self.builder.download_and_prepare( download_config=__lowerCAmelCase ,download_mode=__lowerCAmelCase ,verification_mode=__lowerCAmelCase ,base_path=__lowerCAmelCase ,num_proc=self.num_proc ,) _lowerCamelCase : Any = self.builder.as_dataset( split=self.split ,verification_mode=__lowerCAmelCase ,in_memory=self.keep_in_memory ) return dataset class A_ : def __init__( self: str ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: Union[PathLike, BinaryIO] ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' _lowerCamelCase : Any = dataset _lowerCamelCase : Any = path_or_buf _lowerCamelCase : Any = batch_size or get_writer_batch_size(dataset.features ) _lowerCamelCase : List[str] = parquet_writer_kwargs def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ): with open(self.path_or_buf ,"wb+" ) as buffer: _lowerCamelCase : str = self._write(file_obj=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) else: _lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) return written def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: BinaryIO ,__lowerCAmelCase: int ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" ,__lowerCAmelCase ) _lowerCamelCase : List[str] = self.dataset.features.arrow_schema _lowerCamelCase : str = pq.ParquetWriter(__lowerCAmelCase ,schema=__lowerCAmelCase ,**__lowerCAmelCase ) for offset in logging.tqdm( range(0 ,len(self.dataset ) ,__lowerCAmelCase ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating parquet from Arrow format" ,): _lowerCamelCase : List[str] = query_table( table=self.dataset._data ,key=slice(__lowerCAmelCase ,offset + batch_size ) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,) writer.write_table(__lowerCAmelCase ) written += batch.nbytes writer.close() return written
340
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class A_ ( _a ): lowerCAmelCase__ = '''roberta-prelayernorm''' def __init__( self: Union[str, Any] ,__lowerCAmelCase: List[str]=50_265 ,__lowerCAmelCase: List[str]=768 ,__lowerCAmelCase: List[str]=12 ,__lowerCAmelCase: Optional[Any]=12 ,__lowerCAmelCase: Any=3_072 ,__lowerCAmelCase: int="gelu" ,__lowerCAmelCase: List[Any]=0.1 ,__lowerCAmelCase: Dict=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: List[str]=1e-12 ,__lowerCAmelCase: Union[str, Any]=1 ,__lowerCAmelCase: Optional[Any]=0 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Dict="absolute" ,__lowerCAmelCase: Any=True ,__lowerCAmelCase: Dict=None ,**__lowerCAmelCase: Dict ,): '''simple docstring''' super().__init__(pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,**_a ) _lowerCamelCase : Dict = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : str = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : Optional[int] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : Dict = layer_norm_eps _lowerCamelCase : List[str] = position_embedding_type _lowerCamelCase : Dict = use_cache _lowerCamelCase : Any = classifier_dropout class A_ ( _a ): @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if self.task == "multiple-choice": _lowerCamelCase : int = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
363
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Optional[int] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"] _lowerCamelCase : Dict = len(example["content"] ) / len(output["input_ids"] ) return output _lowerCAmelCase : Tuple = HfArgumentParser(PretokenizationArguments) _lowerCAmelCase : Optional[int] = parser.parse_args() if args.num_workers is None: _lowerCAmelCase : Any = multiprocessing.cpu_count() _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir) _lowerCAmelCase : Union[str, Any] = time.time() _lowerCAmelCase : Optional[int] = load_dataset(args.dataset_name, split='''train''') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') _lowerCAmelCase : Any = time.time() _lowerCAmelCase : Dict = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') _lowerCAmelCase : str = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
340
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCAmelCase : Optional[int] = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } _lowerCAmelCase : Dict = { '''gpt2''': 1024, '''gpt2-medium''': 1024, '''gpt2-large''': 1024, '''gpt2-xl''': 1024, '''distilgpt2''': 1024, } class A_ ( SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ['input_ids', 'attention_mask'] lowerCAmelCase__ = GPTaTokenizer def __init__( self: int ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Union[str, Any]="<|endoftext|>" ,__lowerCAmelCase: Optional[Any]="<|endoftext|>" ,__lowerCAmelCase: Dict="<|endoftext|>" ,__lowerCAmelCase: int=False ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' super().__init__( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,tokenizer_file=_SCREAMING_SNAKE_CASE ,unk_token=_SCREAMING_SNAKE_CASE ,bos_token=_SCREAMING_SNAKE_CASE ,eos_token=_SCREAMING_SNAKE_CASE ,add_prefix_space=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) _lowerCamelCase : Tuple = kwargs.pop("add_bos_token" ,_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" ,_SCREAMING_SNAKE_CASE ) != add_prefix_space: _lowerCamelCase : Optional[int] = getattr(_SCREAMING_SNAKE_CASE ,pre_tok_state.pop("type" ) ) _lowerCamelCase : int = add_prefix_space _lowerCamelCase : str = pre_tok_class(**_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Tuple = add_prefix_space def _lowercase ( self: Dict ,*__lowerCAmelCase: int ,**__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = kwargs.get("is_split_into_words" ,_SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def _lowercase ( self: Dict ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Dict = kwargs.get("is_split_into_words" ,_SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[Any] = None ): '''simple docstring''' _lowerCamelCase : str = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE ,name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' _lowerCamelCase : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ) + [self.eos_token_id] ) if len(_SCREAMING_SNAKE_CASE ) > self.model_max_length: _lowerCamelCase : Dict = input_ids[-self.model_max_length :] return input_ids
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Optional[Any] = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
0
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A_ : def __init__( self: Tuple ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any=13 ,__lowerCAmelCase: Optional[int]=32 ,__lowerCAmelCase: Optional[Any]=2 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Optional[int]=16 ,__lowerCAmelCase: Dict=[1, 2, 1] ,__lowerCAmelCase: str=[2, 2, 4] ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: List[Any]=2.0 ,__lowerCAmelCase: str=True ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Union[str, Any]=0.0 ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]="gelu" ,__lowerCAmelCase: Dict=False ,__lowerCAmelCase: str=True ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: Optional[Any]=1e-5 ,__lowerCAmelCase: Optional[int]=True ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: List[str]=10 ,__lowerCAmelCase: List[Any]=8 ,): '''simple docstring''' _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : Dict = image_size _lowerCamelCase : int = patch_size _lowerCamelCase : int = num_channels _lowerCamelCase : int = embed_dim _lowerCamelCase : Dict = depths _lowerCamelCase : int = num_heads _lowerCamelCase : List[str] = window_size _lowerCamelCase : List[str] = mlp_ratio _lowerCamelCase : List[Any] = qkv_bias _lowerCamelCase : List[Any] = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = drop_path_rate _lowerCamelCase : int = hidden_act _lowerCamelCase : Optional[Any] = use_absolute_embeddings _lowerCamelCase : List[str] = patch_norm _lowerCamelCase : Optional[int] = layer_norm_eps _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : str = is_training _lowerCamelCase : Optional[int] = scope _lowerCamelCase : int = use_labels _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : int = encoder_stride def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[str] = None if self.use_labels: _lowerCamelCase : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : Dict = self.get_config() return config, pixel_values, labels def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def _lowercase ( self: Dict ,__lowerCAmelCase: str ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' _lowerCamelCase : List[str] = SwinvaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowerCamelCase : Union[str, Any] = model(UpperCAmelCase_ ) _lowerCamelCase : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCamelCase : str = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def _lowercase ( self: Tuple ,__lowerCAmelCase: str ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = SwinvaForMaskedImageModeling(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowerCamelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : List[str] = SwinvaForMaskedImageModeling(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.type_sequence_label_size _lowerCamelCase : Dict = SwinvaForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowerCamelCase : Dict = model(UpperCAmelCase_ ,labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = self.prepare_config_and_inputs() _lowerCamelCase : List[str] = config_and_inputs _lowerCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( snake_case__ , snake_case__ , unittest.TestCase ): lowerCAmelCase__ = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowerCAmelCase__ = ( {'feature-extraction': SwinvaModel, 'image-classification': SwinvaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = SwinvaModelTester(self ) _lowerCamelCase : Union[str, Any] = ConfigTester(self ,config_class=UpperCAmelCase_ ,embed_dim=37 ) def _lowercase ( self: Dict ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0." ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="Swinv2 does not use inputs_embeds" ) def _lowercase ( self: Dict ): '''simple docstring''' pass def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCamelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ ,nn.Linear ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : str = model_class(UpperCAmelCase_ ) _lowerCamelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Dict = [*signature.parameters.keys()] _lowerCamelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] ,UpperCAmelCase_ ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[int] = True for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Any = False _lowerCamelCase : Tuple = True _lowerCamelCase : str = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): _lowerCamelCase : Dict = model(**self._prepare_for_class(UpperCAmelCase_ ,UpperCAmelCase_ ) ) _lowerCamelCase : Union[str, Any] = outputs.attentions _lowerCamelCase : Optional[int] = len(self.model_tester.depths ) self.assertEqual(len(UpperCAmelCase_ ) ,UpperCAmelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = config.window_size**2 _lowerCamelCase : Union[str, Any] = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(**self._prepare_for_class(UpperCAmelCase_ ,UpperCAmelCase_ ) ) _lowerCamelCase : Dict = outputs.attentions self.assertEqual(len(UpperCAmelCase_ ) ,UpperCAmelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) _lowerCamelCase : List[str] = len(UpperCAmelCase_ ) # Check attention is always last and order is fine _lowerCamelCase : Tuple = True _lowerCamelCase : Dict = True _lowerCamelCase : Dict = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(UpperCAmelCase_ ,UpperCAmelCase_ ) ) if hasattr(self.model_tester ,"num_hidden_states_types" ): _lowerCamelCase : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _lowerCamelCase : Optional[Any] = 2 self.assertEqual(out_len + added_hidden_states ,len(UpperCAmelCase_ ) ) _lowerCamelCase : List[str] = outputs.attentions self.assertEqual(len(UpperCAmelCase_ ) ,UpperCAmelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : Optional[int] = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(UpperCAmelCase_ ,UpperCAmelCase_ ) ) _lowerCamelCase : Dict = outputs.hidden_states _lowerCamelCase : Dict = getattr( self.model_tester ,"expected_num_hidden_layers" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase_ ) ,UpperCAmelCase_ ) # Swinv2 has a different seq_length _lowerCamelCase : str = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) _lowerCamelCase : str = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase_ ) ,UpperCAmelCase_ ) _lowerCamelCase : int = reshaped_hidden_states[0].shape _lowerCamelCase : Dict = ( reshaped_hidden_states[0].view(UpperCAmelCase_ ,UpperCAmelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _lowerCamelCase : List[str] = True self.check_hidden_states_output(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Union[str, Any] = True self.check_hidden_states_output(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : str = 3 _lowerCamelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : int = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _lowerCamelCase : Dict = True self.check_hidden_states_output(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True self.check_hidden_states_output(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,(padded_height, padded_width) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_ ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : int = SwinvaModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Any = _config_zero_init(UpperCAmelCase_ ) for model_class in self.all_model_classes: _lowerCamelCase : str = model_class(config=UpperCAmelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: Optional[int] ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ) if is_vision_available() else None ) @slow def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ).to( UpperCAmelCase_ ) _lowerCamelCase : List[str] = self.default_image_processor _lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : Any = image_processor(images=UpperCAmelCase_ ,return_tensors="pt" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**UpperCAmelCase_ ) # verify the logits _lowerCamelCase : Any = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,UpperCAmelCase_ ) _lowerCamelCase : str = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,UpperCAmelCase_ ,atol=1e-4 ) )
365
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) class A_ ( _a ): lowerCAmelCase__ = 'masked_bert' def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=30_522 ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Dict=12 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-12 ,__lowerCAmelCase: Union[str, Any]=0 ,__lowerCAmelCase: List[Any]="topK" ,__lowerCAmelCase: Optional[Any]="constant" ,__lowerCAmelCase: Optional[Any]=0.0 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : int = pruning_method _lowerCamelCase : str = mask_init _lowerCamelCase : List[Any] = mask_scale
340
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class A_ ( lowerCamelCase_ ): lowerCAmelCase__ = """ibert""" def __init__( self: str ,__lowerCAmelCase: Any=30_522 ,__lowerCAmelCase: List[str]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: Union[str, Any]=3_072 ,__lowerCAmelCase: Tuple="gelu" ,__lowerCAmelCase: Any=0.1 ,__lowerCAmelCase: Any=0.1 ,__lowerCAmelCase: List[str]=512 ,__lowerCAmelCase: Any=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: List[Any]=1e-12 ,__lowerCAmelCase: Tuple=1 ,__lowerCAmelCase: Tuple=0 ,__lowerCAmelCase: List[Any]=2 ,__lowerCAmelCase: Any="absolute" ,__lowerCAmelCase: List[Any]=False ,__lowerCAmelCase: Optional[int]="none" ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ ,bos_token_id=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ,**lowerCAmelCase__ ) _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Dict = position_embedding_type _lowerCamelCase : Union[str, Any] = quant_mode _lowerCamelCase : int = force_dequant class A_ ( lowerCamelCase_ ): @property def _lowercase ( self: str ): '''simple docstring''' if self.task == "multiple-choice": _lowerCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
366
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowerCAmelCase : str = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]: '''simple docstring''' if rng is None: _lowerCamelCase : Union[str, Any] = random.Random() _lowerCamelCase : Union[str, Any] = 1 for dim in shape: total_dims *= dim _lowerCamelCase : Optional[int] = [] for _ in range(_lowerCamelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) _lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase ) return output def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase ) # make sure that at least one token is attended to for each batch _lowerCamelCase : List[str] = 1 return attn_mask @require_flax class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = () def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _lowerCamelCase : List[str] = 2 _lowerCamelCase : str = inputs["input_ids"].shape[-1] // 2 _lowerCamelCase : Tuple = inputs["input_ids"][:max_batch_size, :sequence_length] _lowerCamelCase : Any = jnp.ones_like(__lowerCAmelCase ) _lowerCamelCase : List[Any] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _lowerCamelCase : Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _lowerCamelCase : List[str] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = False _lowerCamelCase : Dict = max_length _lowerCamelCase : Tuple = 0 for model_class in self.all_generative_model_classes: _lowerCamelCase : str = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCamelCase : Any = getattr(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = pt_model_class(__lowerCAmelCase ).eval() _lowerCamelCase : Optional[Any] = load_flax_weights_in_pytorch_model(__lowerCAmelCase ,flax_model.params ) _lowerCamelCase : int = flax_model.generate(__lowerCAmelCase ).sequences _lowerCamelCase : Optional[int] = pt_model.generate(torch.tensor(__lowerCAmelCase ,dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _lowerCamelCase : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = self._get_input_ids_and_config() _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = True _lowerCamelCase : Optional[int] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : int = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : int = False _lowerCamelCase : Optional[Any] = max_length _lowerCamelCase : Dict = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) _lowerCamelCase : Dict = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = self._get_input_ids_and_config() _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = max_length _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[int] = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : str = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() _lowerCamelCase : int = True _lowerCamelCase : List[Any] = max_length _lowerCamelCase : Optional[Any] = 0.8 _lowerCamelCase : Union[str, Any] = 10 _lowerCamelCase : List[str] = 0.3 _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : str = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Any = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : int = jit(model.generate ) _lowerCamelCase : Optional[int] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[str] = max_length _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : Dict = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Any = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : Any = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() _lowerCamelCase : Dict = max_length _lowerCamelCase : List[Any] = 2 _lowerCamelCase : Tuple = 1 _lowerCamelCase : List[str] = 8 _lowerCamelCase : List[Any] = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : int = model_class(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : Optional[Any] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : Dict = False _lowerCamelCase : Any = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Optional[Any] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : List[str] = True _lowerCamelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[Any] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : int = 2 _lowerCamelCase : int = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : int = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : Dict = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) @require_flax class A_ ( unittest.TestCase ): def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) _lowerCamelCase : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) _lowerCamelCase : Optional[Any] = "Hello world" _lowerCamelCase : str = tokenizer(__lowerCAmelCase ,return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowerCAmelCase ,"do_samples" ): model.generate(__lowerCAmelCase ,do_samples=__lowerCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowerCAmelCase ,"foo" ): _lowerCamelCase : List[str] = {"foo": "bar"} model.generate(__lowerCAmelCase ,**__lowerCAmelCase )
340
0
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _lowerCAmelCase : List[Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _lowerCAmelCase : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) _lowerCAmelCase : int = transformers.models.auto.configuration_auto.CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : str = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): _lowerCamelCase : Dict = True # Deal with multi-line cases elif ( re.search( RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , UpperCamelCase__ , ) is not None ): _lowerCamelCase : Tuple = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: _lowerCamelCase : List[str] = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files _lowerCamelCase : int = [ "bos_index", "eos_index", "pad_index", "unk_index", "mask_index", "image_size", "use_cache", "out_features", "out_indices", ] _lowerCamelCase : Optional[Any] = ["encoder_no_repeat_ngram_size"] # Special cases to be allowed _lowerCamelCase : Any = True if not attribute_used: _lowerCamelCase : int = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: _lowerCamelCase : Any = True elif attribute in ["tie_word_embeddings"] and default_value is False: _lowerCamelCase : Optional[Any] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: _lowerCamelCase : Dict = True elif attribute.endswith("_token_id" ): _lowerCamelCase : Union[str, Any] = True # configuration class specific cases if not case_allowed: _lowerCamelCase : Dict = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) _lowerCamelCase : int = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Dict = dict(inspect.signature(config_class.__init__ ).parameters ) _lowerCamelCase : Optional[Any] = [x for x in list(signature.keys() ) if x not in ["self", "kwargs"]] _lowerCamelCase : Tuple = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass _lowerCamelCase : Tuple = {} if len(config_class.attribute_map ) > 0: _lowerCamelCase : List[str] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files _lowerCamelCase : Optional[Any] = inspect.getsourcefile(UpperCamelCase__ ) _lowerCamelCase : List[str] = os.path.dirname(UpperCamelCase__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. _lowerCamelCase : Tuple = [os.path.join(UpperCamelCase__ , UpperCamelCase__ ) for fn in os.listdir(UpperCamelCase__ ) if fn.startswith("modeling_" )] # Get the source code strings _lowerCamelCase : str = [] for path in modeling_paths: if os.path.isfile(UpperCamelCase__ ): with open(UpperCamelCase__ ) as fp: modeling_sources.append(fp.read() ) _lowerCamelCase : Any = [] for config_param, default_value in zip(UpperCamelCase__ , UpperCamelCase__ ): # `attributes` here is all the variant names for `config_param` _lowerCamelCase : Tuple = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): unused_attributes.append(attributes[0] ) return sorted(UpperCamelCase__ ) def lowerCamelCase_( ) -> Dict: '''simple docstring''' _lowerCamelCase : Any = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) _lowerCamelCase : List[Any] = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _lowerCamelCase : inspect.isclass(UpperCamelCase__ ) and issubclass(UpperCamelCase__ , UpperCamelCase__ ) and inspect.getmodule(UpperCamelCase__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: _lowerCamelCase : int = check_config_attributes_being_used(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _lowerCamelCase : List[str] = unused_attributes if len(UpperCamelCase__ ) > 0: _lowerCamelCase : Optional[int] = "The following configuration classes contain unused attributes in the corresponding modeling files:\n" for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(UpperCamelCase__ ) if __name__ == "__main__": check_config_attributes()
367
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class A_ ( _a ): lowerCAmelCase__ = 'mobilenet_v1' def __init__( self: Tuple ,__lowerCAmelCase: int=3 ,__lowerCAmelCase: Dict=224 ,__lowerCAmelCase: int=1.0 ,__lowerCAmelCase: Tuple=8 ,__lowerCAmelCase: List[str]="relu6" ,__lowerCAmelCase: int=True ,__lowerCAmelCase: List[Any]=0.9_99 ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: Optional[int]=0.0_01 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : List[Any] = depth_multiplier _lowerCamelCase : Any = min_depth _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Dict = tf_padding _lowerCamelCase : Union[str, Any] = classifier_dropout_prob _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps class A_ ( _a ): lowerCAmelCase__ = version.parse('1.11' ) @property def _lowercase ( self: Optional[int] ): '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def _lowercase ( self: Any ): '''simple docstring''' return 1e-4
340
0
"""simple docstring""" from string import ascii_uppercase _lowerCAmelCase : List[Any] = {str(ord(c) - 55): c for c in ascii_uppercase} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("int() can\'t convert non-string with explicit base" ) if num < 0: raise ValueError("parameter must be positive int" ) if isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("\'str\' object cannot be interpreted as an integer" ) if isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("\'float\' object cannot be interpreted as an integer" ) if base in (0, 1): raise ValueError("base must be >= 2" ) if base > 36: raise ValueError("base must be <= 36" ) _lowerCamelCase : Any = "" _lowerCamelCase : List[Any] = 0 _lowerCamelCase : List[str] = 0 while div != 1: _lowerCamelCase, _lowerCamelCase : int = divmod(__lowerCamelCase , __lowerCamelCase ) if base >= 11 and 9 < mod < 36: _lowerCamelCase : Dict = ALPHABET_VALUES[str(__lowerCamelCase )] else: _lowerCamelCase : Any = str(__lowerCamelCase ) new_value += actual_value _lowerCamelCase : Tuple = num // base _lowerCamelCase : Optional[Any] = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(__lowerCamelCase ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
368
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' for param in module.parameters(): _lowerCamelCase : Optional[int] = False def lowerCamelCase_( ) -> List[str]: '''simple docstring''' _lowerCamelCase : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _lowerCamelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Dict = plt.imshow(_lowerCamelCase ) fig.axes.get_xaxis().set_visible(_lowerCamelCase ) fig.axes.get_yaxis().set_visible(_lowerCamelCase ) plt.show() def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Tuple = datetime.now() _lowerCamelCase : Tuple = current_time.strftime("%H:%M:%S" ) return timestamp
340
0
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __snake_case : Any = True except ImportError: __snake_case : Optional[Any] = False __snake_case : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class A_ ( _a ): @staticmethod def _lowercase ( __lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Any = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" ,action="store_true" ,help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" ,type=_a ,help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" ,type=_a ,help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=_a ) def __init__( self: Any ,__lowerCAmelCase: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: List[str]=None ,*__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = testing _lowerCamelCase : Tuple = testing_file _lowerCamelCase : int = path def _lowercase ( self: str ): '''simple docstring''' warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory _lowerCamelCase : Any = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(_a ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) _lowerCamelCase : Tuple = ( Path(_a ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) _lowerCamelCase : List[Any] = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(_a ) ) else: with open(self._testing_file ,"r" ) as configuration_file: _lowerCamelCase : int = json.load(_a ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=_a ,extra_context=_a ,) _lowerCamelCase : Optional[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" ,"r" ) as configuration_file: _lowerCamelCase : Any = json.load(_a ) _lowerCamelCase : Tuple = configuration["lowercase_modelname"] _lowerCamelCase : Optional[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(F"""{directory}/configuration.json""" ) _lowerCamelCase : List[Any] = "PyTorch" in generate_tensorflow_pytorch_and_flax _lowerCamelCase : int = "TensorFlow" in generate_tensorflow_pytorch_and_flax _lowerCamelCase : List[Any] = "Flax" in generate_tensorflow_pytorch_and_flax _lowerCamelCase : Tuple = F"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(_a ,exist_ok=_a ) os.makedirs(F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" ,exist_ok=_a ) # Tests require submodules as they have parent imports with open(F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" ,"w" ): pass shutil.move( F"""{directory}/__init__.py""" ,F"""{model_dir}/__init__.py""" ,) shutil.move( F"""{directory}/configuration_{lowercase_model_name}.py""" ,F"""{model_dir}/configuration_{lowercase_model_name}.py""" ,) def remove_copy_lines(__lowerCAmelCase: Any ): with open(_a ,"r" ) as f: _lowerCamelCase : int = f.readlines() with open(_a ,"w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(_a ) if output_pytorch: if not self._testing: remove_copy_lines(F"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/modeling_{lowercase_model_name}.py""" ,F"""{model_dir}/modeling_{lowercase_model_name}.py""" ,) shutil.move( F"""{directory}/test_modeling_{lowercase_model_name}.py""" ,F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" ,) else: os.remove(F"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(F"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(F"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/modeling_tf_{lowercase_model_name}.py""" ,F"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" ,) shutil.move( F"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ,F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" ,) else: os.remove(F"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(F"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(F"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/modeling_flax_{lowercase_model_name}.py""" ,F"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" ,) shutil.move( F"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ,F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" ,) else: os.remove(F"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(F"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/{lowercase_model_name}.md""" ,F"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" ,) shutil.move( F"""{directory}/tokenization_{lowercase_model_name}.py""" ,F"""{model_dir}/tokenization_{lowercase_model_name}.py""" ,) shutil.move( F"""{directory}/tokenization_fast_{lowercase_model_name}.py""" ,F"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Tuple ): # Create temp file _lowerCamelCase : List[str] = mkstemp() _lowerCamelCase : Tuple = False with fdopen(_a ,"w" ) as new_file: with open(_a ) as old_file: for line in old_file: new_file.write(_a ) if line_to_copy_below in line: _lowerCamelCase : str = True for line_to_copy in lines_to_copy: new_file.write(_a ) if not line_found: raise ValueError(F"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(_a ,_a ) # Remove original file remove(_a ) # Move new file move(_a ,_a ) def skip_units(__lowerCAmelCase: Optional[Any] ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__lowerCAmelCase: List[str] ): with open(_a ) as datafile: _lowerCamelCase : Tuple = [] _lowerCamelCase : str = False _lowerCamelCase : Tuple = False for line in datafile: if "# To replace in: " in line and "##" not in line: _lowerCamelCase : int = line.split("\"" )[1] _lowerCamelCase : Optional[Any] = skip_units(_a ) elif "# Below: " in line and "##" not in line: _lowerCamelCase : Any = line.split("\"" )[1] _lowerCamelCase : str = skip_units(_a ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(_a ,_a ,_a ) _lowerCamelCase : Optional[Any] = [] elif "# Replace with" in line and "##" not in line: _lowerCamelCase : Dict = [] elif "##" not in line: lines_to_copy.append(_a ) remove(_a ) replace_in_files(F"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(_a )
369
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) _lowerCamelCase : list = [] for char_count in range(_lowerCamelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_lowerCamelCase ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
340
0
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class A_ : """simple docstring""" def __init__( self: Any ,__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = data _lowerCamelCase : List[Any] = [0x6745_2301, 0xEFCD_AB89, 0x98BA_DCFE, 0x1032_5476, 0xC3D2_E1F0] @staticmethod def _lowercase ( __lowerCAmelCase: Any ,__lowerCAmelCase: List[Any] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xFFFF_FFFF def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = b"\x80" + b"\x00" * (63 - (len(self.data ) + 8) % 64) _lowerCamelCase : Optional[int] = self.data + padding + struct.pack(">Q" ,8 * len(self.data ) ) return padded_data def _lowercase ( self: int ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 ,len(self.padded_data ) ,64 ) ] def _lowercase ( self: str ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : int = list(struct.unpack(">16L" ,_a ) ) + [0] * 64 for i in range(16 ,80 ): _lowerCamelCase : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) ,1 ) return w def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : str = self.padding() _lowerCamelCase : Dict = self.split_blocks() for block in self.blocks: _lowerCamelCase : Tuple = self.expand_block(_a ) _lowerCamelCase : int = self.h for i in range(0 ,80 ): if 0 <= i < 20: _lowerCamelCase : Dict = (b & c) | ((~b) & d) _lowerCamelCase : Optional[Any] = 0x5A82_7999 elif 20 <= i < 40: _lowerCamelCase : Optional[Any] = b ^ c ^ d _lowerCamelCase : Any = 0x6ED9_EBA1 elif 40 <= i < 60: _lowerCamelCase : Optional[int] = (b & c) | (b & d) | (c & d) _lowerCamelCase : Optional[int] = 0x8F1B_BCDC elif 60 <= i < 80: _lowerCamelCase : List[str] = b ^ c ^ d _lowerCamelCase : int = 0xCA62_C1D6 _lowerCamelCase : List[Any] = ( self.rotate(_a ,5 ) + f + e + k + expanded_block[i] & 0xFFFF_FFFF, a, self.rotate(_a ,30 ), c, d, ) _lowerCamelCase : Dict = ( self.h[0] + a & 0xFFFF_FFFF, self.h[1] + b & 0xFFFF_FFFF, self.h[2] + c & 0xFFFF_FFFF, self.h[3] + d & 0xFFFF_FFFF, self.h[4] + e & 0xFFFF_FFFF, ) return ("{:08x}" * 5).format(*self.h ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Optional[Any] = b"Test String" assert SHAaHash(_lowerCamelCase ).final_hash() == hashlib.shaa(_lowerCamelCase ).hexdigest() # noqa: S324 def lowerCamelCase_( ) -> Tuple: '''simple docstring''' _lowerCamelCase : Optional[int] = argparse.ArgumentParser(description="Process some strings or files" ) parser.add_argument( "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument("--file" , dest="input_file" , help="Hash contents of a file" ) _lowerCamelCase : Optional[Any] = parser.parse_args() _lowerCamelCase : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: _lowerCamelCase : List[str] = f.read() else: _lowerCamelCase : Tuple = bytes(_lowerCamelCase , "utf-8" ) print(SHAaHash(_lowerCamelCase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
370
"""simple docstring""" _lowerCAmelCase : Tuple = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Any = [False] * len(_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = [s] _lowerCamelCase : str = True while queue: _lowerCamelCase : Optional[int] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) _lowerCamelCase : Any = True _lowerCamelCase : Any = u return visited[t] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : List[str] = [-1] * (len(_lowerCamelCase )) _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Any = float("Inf" ) _lowerCamelCase : Dict = sink while s != source: # Find the minimum value in select path _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , graph[parent[s]][s] ) _lowerCamelCase : Union[str, Any] = parent[s] max_flow += path_flow _lowerCamelCase : Optional[Any] = sink while v != source: _lowerCamelCase : Union[str, Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCamelCase : List[str] = parent[v] for i in range(len(_lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
340
0
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Any = AlbertConfig.from_json_file(_lowerCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) _lowerCamelCase : Dict = AlbertForPreTraining(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_albert(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCAmelCase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
371
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class A_ ( _a ): lowerCAmelCase__ = 'camembert' def __init__( self: Tuple ,__lowerCAmelCase: Union[str, Any]=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: int=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: int=512 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Any="absolute" ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Tuple=None ,**__lowerCAmelCase: Dict ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Tuple = position_embedding_type _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : Dict = classifier_dropout class A_ ( _a ): @property def _lowercase ( self: Any ): '''simple docstring''' if self.task == "multiple-choice": _lowerCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
340
0
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class A_ ( nn.Module ): lowerCAmelCase__ = 42 lowerCAmelCase__ = jnp.floataa def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self: List[Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : str = hidden_states.shape _lowerCamelCase : Any = jax.image.resize( __lowercase ,shape=(batch, height * 2, width * 2, channels) ,method="nearest" ,) _lowerCamelCase : int = self.conv(__lowercase ) return hidden_states class A_ ( nn.Module ): lowerCAmelCase__ = 42 lowerCAmelCase__ = jnp.floataa def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[str] = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self: int ,__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Any = self.conv(__lowercase ) return hidden_states class A_ ( nn.Module ): lowerCAmelCase__ = 42 lowerCAmelCase__ = None lowerCAmelCase__ = 0.0 lowerCAmelCase__ = None lowerCAmelCase__ = jnp.floataa def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.in_channels if self.out_channels is None else self.out_channels _lowerCamelCase : int = nn.GroupNorm(num_groups=32 ,epsilon=1e-5 ) _lowerCamelCase : Optional[int] = nn.Conv( __lowercase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) _lowerCamelCase : str = nn.Dense(__lowercase ,dtype=self.dtype ) _lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 ,epsilon=1e-5 ) _lowerCamelCase : str = nn.Dropout(self.dropout_prob ) _lowerCamelCase : List[str] = nn.Conv( __lowercase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) _lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _lowerCamelCase : Optional[int] = None if use_nin_shortcut: _lowerCamelCase : List[str] = nn.Conv( __lowercase ,kernel_size=(1, 1) ,strides=(1, 1) ,padding="VALID" ,dtype=self.dtype ,) def __call__( self: Optional[int] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: str=True ): '''simple docstring''' _lowerCamelCase : Tuple = hidden_states _lowerCamelCase : Optional[int] = self.norma(__lowercase ) _lowerCamelCase : Dict = nn.swish(__lowercase ) _lowerCamelCase : Optional[Any] = self.conva(__lowercase ) _lowerCamelCase : Optional[Any] = self.time_emb_proj(nn.swish(__lowercase ) ) _lowerCamelCase : Optional[Any] = jnp.expand_dims(jnp.expand_dims(__lowercase ,1 ) ,1 ) _lowerCamelCase : str = hidden_states + temb _lowerCamelCase : Tuple = self.norma(__lowercase ) _lowerCamelCase : Optional[int] = nn.swish(__lowercase ) _lowerCamelCase : Optional[int] = self.dropout(__lowercase ,__lowercase ) _lowerCamelCase : List[Any] = self.conva(__lowercase ) if self.conv_shortcut is not None: _lowerCamelCase : Any = self.conv_shortcut(__lowercase ) return hidden_states + residual
350
"""simple docstring""" from collections import defaultdict def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : str = True for v in tree[start]: if v not in visited: ret += dfs(_lowerCamelCase ) if ret % 2 == 0: cuts.append(_lowerCamelCase ) return ret def lowerCamelCase_( ) -> int: '''simple docstring''' dfs(1 ) if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = 10, 9 _lowerCAmelCase : str = defaultdict(list) _lowerCAmelCase : dict[int, bool] = {} _lowerCAmelCase : list[int] = [] _lowerCAmelCase : Any = 0 _lowerCAmelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
0
"""simple docstring""" import socket def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : List[str] = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _lowerCamelCase : Optional[int] = socket.gethostname() _lowerCamelCase : str = 12312 sock.connect((host, port) ) sock.send(B"Hello server!" ) with open("Received_file" , "wb" ) as out_file: print("File opened" ) print("Receiving data..." ) while True: _lowerCamelCase : List[str] = sock.recv(1024 ) if not data: break out_file.write(_UpperCAmelCase ) print("Successfully received the file" ) sock.close() print("Connection closed" ) if __name__ == "__main__": main()
351
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _lowerCAmelCase : Optional[int] = '''__DUMMY_TRANSFORMERS_USER__''' _lowerCAmelCase : Dict = '''Dummy User''' _lowerCAmelCase : Optional[int] = '''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''' _lowerCAmelCase : Tuple = '''https://hub-ci.huggingface.co''' _lowerCAmelCase : Any = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' _lowerCAmelCase : Tuple = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' _lowerCAmelCase : Dict = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' HfFolder.save_token(_lowerCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def lowerCamelCase_( ) -> str: '''simple docstring''' return HfApi(endpoint=_lowerCamelCase ) @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Dict = HfFolder.get_token() HfFolder.save_token(_lowerCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' def _cleanup_repo(_lowerCamelCase ): hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' @contextmanager def _temporary_repo(_lowerCamelCase ): try: yield repo_id finally: cleanup_repo(_lowerCamelCase ) return _temporary_repo @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Tuple = F"""repo_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[str] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data/text_data.txt" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : List[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : Dict = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Any = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[Any] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
340
0
"""simple docstring""" import warnings from .generation import TFGenerationMixin class A_ ( lowerCAmelCase_ ): # warning at import time warnings.warn( 'Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ' 'be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.' , lowerCAmelCase_ , )
352
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class A_ ( _a ): def __init__( self: List[Any] ,__lowerCAmelCase: Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() _lowerCamelCase : Tuple = nn.ModuleList(__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Union[torch.Tensor, float, int] ,__lowerCAmelCase: torch.Tensor ,__lowerCAmelCase: List[torch.tensor] ,__lowerCAmelCase: List[float] ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[Dict[str, Any]] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(__lowerCAmelCase ,__lowerCAmelCase ,self.nets ) ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = controlnet( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,) # merge samples if i == 0: _lowerCamelCase, _lowerCamelCase : Optional[Any] = down_samples, mid_sample else: _lowerCamelCase : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__lowerCAmelCase ,__lowerCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Union[str, os.PathLike] ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Callable = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[str] = None ,): '''simple docstring''' _lowerCamelCase : List[Any] = 0 _lowerCamelCase : str = save_directory for controlnet in self.nets: controlnet.save_pretrained( __lowerCAmelCase ,is_main_process=__lowerCAmelCase ,save_function=__lowerCAmelCase ,safe_serialization=__lowerCAmelCase ,variant=__lowerCAmelCase ,) idx += 1 _lowerCamelCase : int = model_path_to_save + F"""_{idx}""" @classmethod def _lowercase ( cls: Any ,__lowerCAmelCase: Optional[Union[str, os.PathLike]] ,**__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : int = 0 _lowerCamelCase : str = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _lowerCamelCase : Dict = pretrained_model_path while os.path.isdir(__lowerCAmelCase ): _lowerCamelCase : List[Any] = ControlNetModel.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) controlnets.append(__lowerCAmelCase ) idx += 1 _lowerCamelCase : Tuple = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(__lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.""" ) if len(__lowerCAmelCase ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(__lowerCAmelCase )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(__lowerCAmelCase )
340
0
"""simple docstring""" import numpy as np from PIL import Image def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = np.array(lowerCamelCase__ ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : List[str] = 0 _lowerCamelCase : List[Any] = 0 _lowerCamelCase : List[str] = 0 # compute the shape of the output matrix _lowerCamelCase : List[str] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape _lowerCamelCase : int = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix _lowerCamelCase : Optional[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _lowerCamelCase : List[str] = 0 _lowerCamelCase : List[Any] = 0 return updated_arr def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Union[str, Any] = np.array(lowerCamelCase__ ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) _lowerCamelCase : List[Any] = 0 _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : str = 0 _lowerCamelCase : List[Any] = 0 # compute the shape of the output matrix _lowerCamelCase : Optional[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape _lowerCamelCase : str = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix _lowerCamelCase : Union[str, Any] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _lowerCamelCase : List[Any] = 0 _lowerCamelCase : Any = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image _lowerCAmelCase = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
353
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : int = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]: '''simple docstring''' _lowerCamelCase : Tuple = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): _lowerCamelCase : Tuple = "segformer.encoder." + key if key.startswith("backbone" ): _lowerCamelCase : Any = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowerCamelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _lowerCamelCase : int = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_lowerCamelCase )-1}""" ) if "norm" in key: _lowerCamelCase : Optional[Any] = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowerCamelCase : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] _lowerCamelCase : Tuple = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_lowerCamelCase )-1}""" ) if "layer_norm1" in key: _lowerCamelCase : Union[str, Any] = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: _lowerCamelCase : int = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _lowerCamelCase : Union[str, Any] = key[key.find("block" ) + len("block" )] _lowerCamelCase : Optional[Any] = key.replace(F"""block{idx}""" , F"""block.{int(_lowerCamelCase )-1}""" ) if "attn.q" in key: _lowerCamelCase : Optional[int] = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: _lowerCamelCase : List[str] = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: _lowerCamelCase : Tuple = key.replace("attn" , "attention.self" ) if "fc1" in key: _lowerCamelCase : Optional[Any] = key.replace("fc1" , "dense1" ) if "fc2" in key: _lowerCamelCase : Dict = key.replace("fc2" , "dense2" ) if "linear_pred" in key: _lowerCamelCase : int = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: _lowerCamelCase : str = key.replace("linear_fuse.conv" , "linear_fuse" ) _lowerCamelCase : Optional[Any] = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowerCamelCase : Union[str, Any] = key[key.find("linear_c" ) + len("linear_c" )] _lowerCamelCase : Optional[int] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_lowerCamelCase )-1}""" ) if key.startswith("head" ): _lowerCamelCase : List[str] = key.replace("head" , "classifier" ) _lowerCamelCase : Union[str, Any] = value return new_state_dict def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _lowerCamelCase : int = kv_weight[ : config.hidden_sizes[i], : ] _lowerCamelCase : int = kv_bias[: config.hidden_sizes[i]] _lowerCamelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _lowerCamelCase : Optional[Any] = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase_( ) -> Dict: '''simple docstring''' _lowerCamelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Any = SegformerConfig() _lowerCamelCase : int = False # set attributes based on model_name _lowerCamelCase : Any = "huggingface/label-files" if "segformer" in model_name: _lowerCamelCase : str = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: _lowerCamelCase : str = 150 _lowerCamelCase : Dict = "ade20k-id2label.json" _lowerCamelCase : Dict = (1, 150, 128, 128) elif "city" in model_name: _lowerCamelCase : List[str] = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" _lowerCamelCase : Tuple = (1, 19, 128, 128) else: raise ValueError(F"""Model {model_name} not supported""" ) elif "mit" in model_name: _lowerCamelCase : List[str] = True _lowerCamelCase : Tuple = model_name[4:6] _lowerCamelCase : Tuple = 1000 _lowerCamelCase : List[Any] = "imagenet-1k-id2label.json" _lowerCamelCase : List[Any] = (1, 1000) else: raise ValueError(F"""Model {model_name} not supported""" ) # set config attributes _lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : int = 256 elif size == "b2": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : List[Any] = 768 _lowerCamelCase : Any = [3, 4, 6, 3] elif size == "b3": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : Union[str, Any] = 768 _lowerCamelCase : Optional[Any] = [3, 4, 18, 3] elif size == "b4": _lowerCamelCase : str = [64, 128, 320, 512] _lowerCamelCase : Optional[Any] = 768 _lowerCamelCase : Dict = [3, 8, 27, 3] elif size == "b5": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : Tuple = 768 _lowerCamelCase : Tuple = [3, 6, 40, 3] else: raise ValueError(F"""Size {size} not supported""" ) # load image processor (only resize + normalize) _lowerCamelCase : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase ) # prepare image _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Dict = image_processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values logger.info(F"""Converting model {model_name}...""" ) # load original state dict if encoder_only: _lowerCamelCase : Tuple = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) ) else: _lowerCamelCase : int = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )["state_dict"] # rename keys _lowerCamelCase : str = rename_keys(_lowerCamelCase , encoder_only=_lowerCamelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_lowerCamelCase , _lowerCamelCase ) # create HuggingFace model and load state dict if encoder_only: _lowerCamelCase : Tuple = False _lowerCamelCase : Optional[int] = SegformerForImageClassification(_lowerCamelCase ) else: _lowerCamelCase : List[str] = SegformerForSemanticSegmentation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # forward pass _lowerCamelCase : Any = model(_lowerCamelCase ) _lowerCamelCase : Dict = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _lowerCamelCase : str = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]], [[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _lowerCamelCase : int = torch.tensor( [ [[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]], [[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]], [[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _lowerCamelCase : Optional[Any] = torch.tensor( [ [[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]], [[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]], [[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]], [[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]], [[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]], [[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]], [[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _lowerCamelCase : Dict = torch.tensor( [ [[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]], [[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _lowerCamelCase : Optional[int] = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]], [[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [ [-1.13_72e01, -1.27_87e01, -1.34_77e01], [-1.25_36e01, -1.41_94e01, -1.44_09e01], [-1.32_17e01, -1.48_88e01, -1.53_27e01], ], [ [-1.47_91e01, -1.71_22e01, -1.82_77e01], [-1.71_63e01, -1.91_92e01, -1.95_33e01], [-1.78_97e01, -1.99_91e01, -2.03_15e01], ], [ [7.67_23e-01, 4.19_21e-01, -7.78_78e-02], [4.77_72e-01, 9.55_57e-03, -2.80_82e-01], [3.60_32e-01, -2.48_26e-01, -5.11_68e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _lowerCamelCase : Union[str, Any] = torch.tensor( [ [[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]], [[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _lowerCamelCase : List[Any] = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]], [[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _lowerCamelCase : Any = torch.tensor( [ [[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]], [[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]], [[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _lowerCamelCase : str = torch.tensor( [ [[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]], [[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: _lowerCamelCase : Dict = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : str = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
340
0
"""simple docstring""" from math import factorial def lowerCamelCase_( _lowerCamelCase = 20 ) -> Tuple: '''simple docstring''' _lowerCamelCase : Optional[Any] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... _lowerCamelCase : int = n // 2 return int(factorial(_lowerCAmelCase ) / (factorial(_lowerCAmelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: _lowerCAmelCase : Dict = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number.''')
354
"""simple docstring""" _lowerCAmelCase : dict[tuple[int, int, int], int] = {} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _lowerCamelCase : Optional[int] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _lowerCamelCase : int = _calculate(days - 1 , _lowerCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _lowerCamelCase : Tuple = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _lowerCamelCase : str = _calculate(days - 1 , _lowerCamelCase , 0 ) _lowerCamelCase : List[Any] = state_late + state_absent + state_ontime _lowerCamelCase : int = prizestrings return prizestrings def lowerCamelCase_( _lowerCamelCase = 30 ) -> int: '''simple docstring''' return _calculate(_lowerCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
340
0
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCAmelCase : Optional[int] = '\\n Text data.\n Second line of data.' _lowerCAmelCase : List[str] = 'file' @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : int = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _lowerCamelCase : str = bytes(_A , "utf-8" ) with zstd.open(_A , "wb" ) as f: f.write(_A ) return path @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , _A ) , "w" ) as f: f.write(_A ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : int = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _lowerCamelCase : Dict = input_paths[compression_format] _lowerCamelCase : Optional[int] = tmp_path / "cache" _lowerCamelCase : str = DownloadConfig(cache_dir=_A , extract_compressed_file=_A ) _lowerCamelCase : List[str] = cached_path(_A , download_config=_A ) with open(_A ) as f: _lowerCamelCase : Optional[int] = f.read() with open(_A ) as f: _lowerCamelCase : Optional[Any] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : int = "custom_cache" _lowerCamelCase : List[str] = "custom_extracted_dir" _lowerCamelCase : Optional[int] = tmp_path / "custom_extracted_path" if default_extracted: _lowerCamelCase : int = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _A ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_A ) ) _lowerCamelCase : Tuple = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _lowerCamelCase : Optional[int] = xz_file _lowerCamelCase : Dict = ( DownloadConfig(extract_compressed_file=_A ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_A ) ) _lowerCamelCase : List[str] = cached_path(_A , download_config=_A ) assert Path(_A ).parent.parts[-2:] == expected def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = str(Path(_A ).resolve() ) assert cached_path(_A ) == text_file # relative path _lowerCamelCase : Dict = str(Path(_A ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_A ) == text_file def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Optional[int] = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(_A ): cached_path(_A ) # relative path _lowerCamelCase : Optional[Any] = "./__missing_file__.txt" with pytest.raises(_A ): cached_path(_A ) def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : List[str] = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(_A ) as f: _lowerCamelCase : Any = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , _A ) def lowerCamelCase_( ) -> List[str]: '''simple docstring''' with pytest.raises(_A ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _A ) def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : int = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_A ): http_get("https://huggingface.co" , temp_file=_A ) with pytest.raises(_A ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _A ) def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_A ): ftp_get("ftp://huggingface.co" , temp_file=_A ) with pytest.raises(_A ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _A ) def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : str = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_A ): fsspec_get("s3://huggingface.co" , temp_file=_A ) with pytest.raises(_A ): fsspec_head("s3://huggingface.co" )
355
"""simple docstring""" from __future__ import annotations def lowerCamelCase_( _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : int = str(_lowerCamelCase ) return len(_lowerCamelCase ) == 9 and set(_lowerCamelCase ) == set("123456789" ) def lowerCamelCase_( ) -> int | None: '''simple docstring''' for base_num in range(9999 , 4999 , -1 ): _lowerCamelCase : Union[str, Any] = 100002 * base_num if is_9_pandigital(_lowerCamelCase ): return candidate for base_num in range(333 , 99 , -1 ): _lowerCamelCase : Tuple = 1002003 * base_num if is_9_pandigital(_lowerCamelCase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
340
0
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class A_ ( nn.Module ): lowerCAmelCase__ = 4_2 lowerCAmelCase__ = jnp.floataa def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self: Optional[int] ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = hidden_states.shape _lowerCamelCase : str = jax.image.resize( __lowerCAmelCase ,shape=(batch, height * 2, width * 2, channels) ,method="nearest" ,) _lowerCamelCase : Tuple = self.conv(__lowerCAmelCase ) return hidden_states class A_ ( nn.Module ): lowerCAmelCase__ = 4_2 lowerCAmelCase__ = jnp.floataa def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Dict = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self: int ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.conv(__lowerCAmelCase ) return hidden_states class A_ ( nn.Module ): lowerCAmelCase__ = 4_2 lowerCAmelCase__ = None lowerCAmelCase__ = 0.0 lowerCAmelCase__ = None lowerCAmelCase__ = jnp.floataa def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.in_channels if self.out_channels is None else self.out_channels _lowerCamelCase : Union[str, Any] = nn.GroupNorm(num_groups=32 ,epsilon=1e-5 ) _lowerCamelCase : Optional[int] = nn.Conv( __lowerCAmelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) _lowerCamelCase : Optional[int] = nn.Dense(__lowerCAmelCase ,dtype=self.dtype ) _lowerCamelCase : int = nn.GroupNorm(num_groups=32 ,epsilon=1e-5 ) _lowerCamelCase : Optional[Any] = nn.Dropout(self.dropout_prob ) _lowerCamelCase : Tuple = nn.Conv( __lowerCAmelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) _lowerCamelCase : Optional[Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _lowerCamelCase : Dict = None if use_nin_shortcut: _lowerCamelCase : Any = nn.Conv( __lowerCAmelCase ,kernel_size=(1, 1) ,strides=(1, 1) ,padding="VALID" ,dtype=self.dtype ,) def __call__( self: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: int=True ): '''simple docstring''' _lowerCamelCase : Optional[int] = hidden_states _lowerCamelCase : List[str] = self.norma(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = nn.swish(__lowerCAmelCase ) _lowerCamelCase : str = self.conva(__lowerCAmelCase ) _lowerCamelCase : Any = self.time_emb_proj(nn.swish(__lowerCAmelCase ) ) _lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(__lowerCAmelCase ,1 ) ,1 ) _lowerCamelCase : Union[str, Any] = hidden_states + temb _lowerCamelCase : Dict = self.norma(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = nn.swish(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = self.dropout(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.conva(__lowerCAmelCase ) if self.conv_shortcut is not None: _lowerCamelCase : List[str] = self.conv_shortcut(__lowerCAmelCase ) return hidden_states + residual
356
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class A_ ( _a ): lowerCAmelCase__ = 'char' lowerCAmelCase__ = 'bpe' lowerCAmelCase__ = 'wp' _lowerCAmelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class A_ ( _a ): lowerCAmelCase__ = ['image_processor', 'char_tokenizer'] lowerCAmelCase__ = 'ViTImageProcessor' lowerCAmelCase__ = 'MgpstrTokenizer' def __init__( self: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,__lowerCAmelCase ,) _lowerCamelCase : List[Any] = kwargs.pop("feature_extractor" ) _lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : str = AutoTokenizer.from_pretrained("gpt2" ) _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) def __call__( self: Optional[int] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ): '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _lowerCamelCase : Optional[int] = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is not None: _lowerCamelCase : int = self.char_tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: _lowerCamelCase : Tuple = encodings["input_ids"] return inputs def _lowercase ( self: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = sequences _lowerCamelCase : Dict = char_preds.size(0 ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._decode_helper(__lowerCAmelCase ,"char" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(__lowerCAmelCase ,"bpe" ) _lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(__lowerCAmelCase ,"wp" ) _lowerCamelCase : List[str] = [] _lowerCamelCase : str = [] for i in range(__lowerCAmelCase ): _lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowerCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowerCamelCase : Optional[Any] = scores.index(max(__lowerCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = final_strs _lowerCamelCase : int = final_scores _lowerCamelCase : str = char_strs _lowerCamelCase : Dict = bpe_strs _lowerCamelCase : int = wp_strs return out def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ): '''simple docstring''' if format == DecodeType.CHARACTER: _lowerCamelCase : int = self.char_decode _lowerCamelCase : List[str] = 1 _lowerCamelCase : Optional[int] = "[s]" elif format == DecodeType.BPE: _lowerCamelCase : Dict = self.bpe_decode _lowerCamelCase : str = 2 _lowerCamelCase : Union[str, Any] = "#" elif format == DecodeType.WORDPIECE: _lowerCamelCase : int = self.wp_decode _lowerCamelCase : List[str] = 102 _lowerCamelCase : List[Any] = "[SEP]" else: raise ValueError(F"""Format {format} is not supported.""" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], [] _lowerCamelCase : Any = pred_logits.size(0 ) _lowerCamelCase : int = pred_logits.size(1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=__lowerCAmelCase ,sorted=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_index.view(-1 ,__lowerCAmelCase )[:, 1:] _lowerCamelCase : List[str] = decoder(__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : str = torch.nn.functional.softmax(__lowerCAmelCase ,dim=2 ).max(dim=2 ) _lowerCamelCase : Any = preds_max_prob[:, 1:] for index in range(__lowerCAmelCase ): _lowerCamelCase : List[Any] = preds_str[index].find(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_str[index][:pred_eos] _lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist() _lowerCamelCase : List[str] = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1 _lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1] _lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__lowerCAmelCase ) conf_scores.append(__lowerCAmelCase ) return dec_strs, conf_scores def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str] ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(__lowerCAmelCase ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs
340
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Optional[Any] = len(_lowerCamelCase ) _lowerCamelCase : List[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCamelCase : Optional[Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCamelCase : Optional[Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCamelCase : Optional[int] = subset[i - 1][j] if arr[i - 1] <= j: _lowerCamelCase : Optional[Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
357
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _lowerCAmelCase : List[Any] = get_logger(__name__) class A_ : lowerCAmelCase__ = 'dummy_data' lowerCAmelCase__ = 'datasets' lowerCAmelCase__ = False def __init__( self: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[Version, str] ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[List[Callable]] = None ,): '''simple docstring''' _lowerCamelCase : str = 0 _lowerCamelCase : List[str] = dataset_name _lowerCamelCase : Optional[int] = cache_dir _lowerCamelCase : Optional[int] = use_local_dummy_data _lowerCamelCase : int = config # download_callbacks take a single url as input _lowerCamelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowerCamelCase : int = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowerCamelCase : Tuple = str(__lowerCAmelCase ) # to be downloaded _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Dict = None @property def _lowercase ( self: str ): '''simple docstring''' if self._dummy_file is None: _lowerCamelCase : List[str] = self.download_dummy_data() return self._dummy_file @property def _lowercase ( self: str ): '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" ,self.config.name ,self.version_name ) # structure is dummy / version_name return os.path.join("dummy" ,self.version_name ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' return os.path.join(self.dummy_data_folder ,"dummy_data.zip" ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowerCamelCase : Optional[int] = cached_path( __lowerCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=__lowerCAmelCase ,force_extract=__lowerCAmelCase ) return os.path.join(__lowerCAmelCase ,self.dummy_file_name ) @property def _lowercase ( self: Tuple ): '''simple docstring''' return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file ) @property def _lowercase ( self: List[str] ): '''simple docstring''' if self._bucket_url is None: _lowerCamelCase : List[str] = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) ) return self._bucket_url @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,*__lowerCAmelCase: List[Any] ): '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowerCamelCase : Tuple = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowerCamelCase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.create_dummy_data_dict(__lowerCAmelCase ,__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,(list, tuple) ): return self.create_dummy_data_list(__lowerCAmelCase ,__lowerCAmelCase ) else: return self.create_dummy_data_single(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: Optional[int] ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' return path def _lowercase ( self: Optional[int] ): '''simple docstring''' return {} def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : str = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): for single_url in single_urls: download_callback(__lowerCAmelCase ) else: _lowerCamelCase : Union[str, Any] = single_urls download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Dict = [os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) for x in single_urls] else: _lowerCamelCase : Union[str, Any] = single_urls _lowerCamelCase : List[str] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) _lowerCamelCase : List[Any] = value # make sure that values are unique if all(isinstance(__lowerCAmelCase ,__lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowerCamelCase : List[str] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,__lowerCAmelCase ) ) for url in data_url ) _lowerCamelCase : Optional[Any] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _lowerCamelCase : Tuple = [data_url[0]] * len(__lowerCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(__lowerCAmelCase ) return dummy_data_list def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : Optional[int] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(__lowerCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass def _lowercase ( self: Optional[int] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' def _iter_archive_members(__lowerCAmelCase: Any ): # this preserves the order of the members inside the ZIP archive _lowerCamelCase : Tuple = Path(self.dummy_file ).parent _lowerCamelCase : str = path.relative_to(__lowerCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _lowerCamelCase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = Path(__lowerCAmelCase ) _lowerCamelCase : int = _iter_archive_members(__lowerCAmelCase ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(__lowerCAmelCase ).as_posix(), file_path.open("rb" ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [paths] for path in paths: if os.path.isfile(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(__lowerCAmelCase ): if filename.startswith((".", "__") ): continue yield os.path.join(__lowerCAmelCase ,__lowerCAmelCase )
340
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Dict = len(A__ ) for i in range(n - 1 ): for j in range(i + 1 , A__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' if len(A__ ) <= 1: return arr, 0 _lowerCamelCase : Tuple = len(A__ ) // 2 _lowerCamelCase : int = arr[0:mid] _lowerCamelCase : str = arr[mid:] _lowerCamelCase, _lowerCamelCase : Any = count_inversions_recursive(A__ ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = count_inversions_recursive(A__ ) _lowerCamelCase, _lowerCamelCase : Any = _count_cross_inversions(A__ , A__ ) _lowerCamelCase : Union[str, Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : int = [] _lowerCamelCase : Optional[int] = 0 while i < len(A__ ) and j < len(A__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(A__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(A__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def lowerCamelCase_( ) -> Any: '''simple docstring''' _lowerCamelCase : int = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _lowerCamelCase : Dict = count_inversions_bf(A__ ) _lowerCamelCase, _lowerCamelCase : Any = count_inversions_recursive(A__ ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = " , A__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _lowerCamelCase : Tuple = count_inversions_bf(A__ ) _lowerCamelCase, _lowerCamelCase : int = count_inversions_recursive(A__ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , A__ ) # an empty list should also have zero inversions _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : int = count_inversions_bf(A__ ) _lowerCamelCase, _lowerCamelCase : Dict = count_inversions_recursive(A__ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , A__ ) if __name__ == "__main__": main()
358
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) _lowerCamelCase : int = precision _lowerCamelCase : Dict = ceil(precision / 14 ) _lowerCamelCase : Optional[Any] = 426880 * Decimal(10005 ).sqrt() _lowerCamelCase : int = 1 _lowerCamelCase : Optional[int] = 13591409 _lowerCamelCase : int = Decimal(_lowerCamelCase ) for k in range(1 , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCamelCase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
340
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class A_ ( SCREAMING_SNAKE_CASE__ ): def __init__( self: Optional[Any] ,*__lowerCAmelCase: Tuple ,**__lowerCAmelCase: str ): '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." ,__lowerCAmelCase ,) super().__init__(*__lowerCAmelCase ,**__lowerCAmelCase )
359
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class A_ ( _a ): lowerCAmelCase__ = 42 lowerCAmelCase__ = None def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=0.9_9_9 , _lowerCamelCase="cosine" , ) -> List[str]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowerCamelCase : str = [] for i in range(_lowerCamelCase ): _lowerCamelCase : Any = i / num_diffusion_timesteps _lowerCamelCase : Optional[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) ) return torch.tensor(_lowerCamelCase , dtype=torch.floataa ) class A_ ( _a , _a ): @register_to_config def __init__( self: str ,__lowerCAmelCase: int = 1_000 ,__lowerCAmelCase: str = "fixed_small_log" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[float] = 1.0 ,__lowerCAmelCase: str = "epsilon" ,__lowerCAmelCase: str = "squaredcos_cap_v2" ,): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) _lowerCamelCase : Union[str, Any] = betas_for_alpha_bar(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = 1.0 - self.betas _lowerCamelCase : Dict = torch.cumprod(self.alphas ,dim=0 ) _lowerCamelCase : int = torch.tensor(1.0 ) # standard deviation of the initial noise distribution _lowerCamelCase : Tuple = 1.0 # setable values _lowerCamelCase : List[Any] = None _lowerCamelCase : Union[str, Any] = torch.from_numpy(np.arange(0 ,__lowerCAmelCase )[::-1].copy() ) _lowerCamelCase : List[str] = variance_type def _lowercase ( self: Any ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ): '''simple docstring''' return sample def _lowercase ( self: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, torch.device] = None ): '''simple docstring''' _lowerCamelCase : str = num_inference_steps _lowerCamelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _lowerCamelCase : Union[str, Any] = (np.arange(0 ,__lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) _lowerCamelCase : int = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: str=None ): '''simple docstring''' if prev_timestep is None: _lowerCamelCase : List[str] = t - 1 _lowerCamelCase : Optional[int] = self.alphas_cumprod[t] _lowerCamelCase : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Dict = 1 - alpha_prod_t _lowerCamelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : List[Any] = self.betas[t] else: _lowerCamelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _lowerCamelCase : int = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _lowerCamelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _lowerCamelCase : Dict = torch.log(torch.clamp(__lowerCAmelCase ,min=1e-20 ) ) _lowerCamelCase : str = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _lowerCamelCase : str = variance.log() _lowerCamelCase : str = beta.log() _lowerCamelCase : Optional[int] = (predicted_variance + 1) / 2 _lowerCamelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: int ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : str = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _lowerCamelCase, _lowerCamelCase : int = torch.split(__lowerCAmelCase ,sample.shape[1] ,dim=1 ) else: _lowerCamelCase : List[Any] = None # 1. compute alphas, betas if prev_timestep is None: _lowerCamelCase : List[Any] = t - 1 _lowerCamelCase : Dict = self.alphas_cumprod[t] _lowerCamelCase : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Dict = 1 - alpha_prod_t _lowerCamelCase : List[str] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : Any = self.betas[t] _lowerCamelCase : str = self.alphas[t] else: _lowerCamelCase : Any = 1 - alpha_prod_t / alpha_prod_t_prev _lowerCamelCase : Optional[Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _lowerCamelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _lowerCamelCase : List[Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: _lowerCamelCase : Any = torch.clamp( __lowerCAmelCase ,-self.config.clip_sample_range ,self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : List[str] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _lowerCamelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _lowerCamelCase : Union[str, Any] = 0 if t > 0: _lowerCamelCase : Dict = randn_tensor( model_output.shape ,dtype=model_output.dtype ,generator=__lowerCAmelCase ,device=model_output.device ) _lowerCamelCase : Any = self._get_variance( __lowerCAmelCase ,predicted_variance=__lowerCAmelCase ,prev_timestep=__lowerCAmelCase ,) if self.variance_type == "fixed_small_log": _lowerCamelCase : Optional[Any] = variance elif self.variance_type == "learned_range": _lowerCamelCase : Optional[int] = (0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) _lowerCamelCase : Dict = variance * variance_noise _lowerCamelCase : List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase ,pred_original_sample=__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.IntTensor ,): '''simple docstring''' _lowerCamelCase : int = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype ) _lowerCamelCase : Any = timesteps.to(original_samples.device ) _lowerCamelCase : List[Any] = alphas_cumprod[timesteps] ** 0.5 _lowerCamelCase : List[Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : int = sqrt_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Union[str, Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 _lowerCamelCase : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : Union[str, Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
340
0
"""simple docstring""" import logging import os from .state import PartialState class A_ ( logging.LoggerAdapter ): @staticmethod def _lowercase ( __lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _lowercase ( self: List[str] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) _lowerCamelCase : int = kwargs.pop("main_process_only" ,__UpperCamelCase ) _lowerCamelCase : List[Any] = kwargs.pop("in_order" ,__UpperCamelCase ) if self.isEnabledFor(__UpperCamelCase ): if self._should_log(__UpperCamelCase ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.process(__UpperCamelCase ,__UpperCamelCase ) self.logger.log(__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,**__UpperCamelCase ) elif in_order: _lowerCamelCase : Dict = PartialState() for i in range(state.num_processes ): if i == state.process_index: _lowerCamelCase, _lowerCamelCase : Any = self.process(__UpperCamelCase ,__UpperCamelCase ) self.logger.log(__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,**__UpperCamelCase ) state.wait_for_everyone() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = None ) -> int: '''simple docstring''' if log_level is None: _lowerCamelCase : Optional[int] = os.environ.get("ACCELERATE_LOG_LEVEL" , a__ ) _lowerCamelCase : Any = logging.getLogger(a__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(a__ , {} )
360
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : str = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' for attribute in key.split("." ): _lowerCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: _lowerCamelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: _lowerCamelCase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCamelCase : Tuple = value elif weight_type == "weight_g": _lowerCamelCase : List[str] = value elif weight_type == "weight_v": _lowerCamelCase : List[Any] = value elif weight_type == "bias": _lowerCamelCase : str = value elif weight_type == "running_mean": _lowerCamelCase : Optional[int] = value elif weight_type == "running_var": _lowerCamelCase : Optional[Any] = value elif weight_type == "num_batches_tracked": _lowerCamelCase : int = value elif weight_type == "inv_freq": _lowerCamelCase : List[str] = value else: _lowerCamelCase : Optional[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[Any] = fairseq_model.state_dict() _lowerCamelCase : List[Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) _lowerCamelCase : List[Any] = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase : Dict = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowerCamelCase : int = True if "*" in mapped_key: _lowerCamelCase : Tuple = name.split(_lowerCamelCase )[0].split("." )[-2] _lowerCamelCase : int = mapped_key.replace("*" , _lowerCamelCase ) if "pos_bias_u" in name: _lowerCamelCase : int = None elif "pos_bias_v" in name: _lowerCamelCase : Any = None elif "weight_g" in name: _lowerCamelCase : Any = "weight_g" elif "weight_v" in name: _lowerCamelCase : Any = "weight_v" elif "bias" in name: _lowerCamelCase : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase : Dict = "weight" elif "running_mean" in name: _lowerCamelCase : str = "running_mean" elif "inv_freq" in name: _lowerCamelCase : List[Any] = "inv_freq" elif "running_var" in name: _lowerCamelCase : Tuple = "running_var" elif "num_batches_tracked" in name: _lowerCamelCase : str = "num_batches_tracked" else: _lowerCamelCase : Dict = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = full_name.split("conv_layers." )[-1] _lowerCamelCase : List[Any] = name.split("." ) _lowerCamelCase : Union[str, Any] = int(items[0] ) _lowerCamelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCamelCase : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCamelCase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _lowerCamelCase : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCamelCase : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> Dict: '''simple docstring''' if config_path is not None: _lowerCamelCase : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" ) else: _lowerCamelCase : Dict = WavaVecaConformerConfig() if "rope" in checkpoint_path: _lowerCamelCase : List[Any] = "rotary" if is_finetuned: if dict_path: _lowerCamelCase : Dict = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase : Optional[int] = target_dict.pad_index _lowerCamelCase : Dict = target_dict.bos_index _lowerCamelCase : Optional[Any] = target_dict.eos_index _lowerCamelCase : str = len(target_dict.symbols ) _lowerCamelCase : int = os.path.join(_lowerCamelCase , "vocab.json" ) if not os.path.isdir(_lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCamelCase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase : List[str] = 0 _lowerCamelCase : List[Any] = 1 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) _lowerCamelCase : Tuple = True if config.feat_extract_norm == "layer" else False _lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) _lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCamelCase : List[Any] = WavaVecaConformerForCTC(_lowerCamelCase ) else: _lowerCamelCase : Any = WavaVecaConformerForPreTraining(_lowerCamelCase ) if is_finetuned: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _lowerCamelCase : List[Any] = argparse.Namespace(task="audio_pretraining" ) _lowerCamelCase : Optional[Any] = fairseq.tasks.setup_task(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) _lowerCamelCase : Dict = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCAmelCase : str = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
340
0
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCAmelCase : Optional[Any] = '''\ @inproceedings{lin-2004-rouge, title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\", author = \"Lin, Chin-Yew\", booktitle = \"Text Summarization Branches Out\", month = jul, year = \"2004\", address = \"Barcelona, Spain\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W04-1013\", pages = \"74--81\", } ''' _lowerCAmelCase : Tuple = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _lowerCAmelCase : Tuple = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring, `\"rougeL\"`: Longest common subsequence based scoring. `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results[\"rouge1\"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results[\"rouge1\"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def _lowercase ( self: Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Value("string" ,id="sequence" ), "references": datasets.Value("string" ,id="sequence" ), } ) ,codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] ,reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] ,) def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Any ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: List[str]=False ): '''simple docstring''' if rouge_types is None: _lowerCamelCase : str = ["rouge1", "rouge2", "rougeL", "rougeLsum"] _lowerCamelCase : List[str] = rouge_scorer.RougeScorer(rouge_types=UpperCAmelCase__ ,use_stemmer=UpperCAmelCase__ ) if use_aggregator: _lowerCamelCase : Optional[Any] = scoring.BootstrapAggregator() else: _lowerCamelCase : Optional[Any] = [] for ref, pred in zip(UpperCAmelCase__ ,UpperCAmelCase__ ): _lowerCamelCase : Any = scorer.score(UpperCAmelCase__ ,UpperCAmelCase__ ) if use_aggregator: aggregator.add_scores(UpperCAmelCase__ ) else: scores.append(UpperCAmelCase__ ) if use_aggregator: _lowerCamelCase : List[str] = aggregator.aggregate() else: _lowerCamelCase : List[str] = {} for key in scores[0]: _lowerCamelCase : Dict = [score[key] for score in scores] return result
361
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ) ) ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if point: if isinstance(_lowerCamelCase , _lowerCamelCase ): for item in point: if not isinstance(_lowerCamelCase , (int, float) ): _lowerCamelCase : Dict = ( "Expected a list of numbers as input, found " F"""{type(_lowerCamelCase ).__name__}""" ) raise TypeError(_lowerCamelCase ) else: _lowerCamelCase : Optional[int] = F"""Expected a list of numbers as input, found {type(_lowerCamelCase ).__name__}""" raise TypeError(_lowerCamelCase ) else: raise ValueError("Missing an input" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(_lowerCamelCase , _lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
340
0
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCamelCase_( ) -> str: '''simple docstring''' with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" _lowerCamelCase : Any = [1, 2, 3] with pytest.raises(__lowerCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=2 ) with pytest.raises(__lowerCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Tuple = [1, 2] _lowerCamelCase : Dict = {"""a""": 1, """b""": 2} _lowerCamelCase : List[str] = {"""a""": [1, 2], """b""": [3, 4]} _lowerCamelCase : Optional[Any] = {"""a""": {"""1""": 1}, """b""": 2} _lowerCamelCase : Optional[Any] = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} _lowerCamelCase : List[Any] = [2, 3] _lowerCamelCase : Union[str, Any] = {"""a""": 2, """b""": 3} _lowerCamelCase : str = {"""a""": [2, 3], """b""": [4, 5]} _lowerCamelCase : Tuple = {"""a""": {"""1""": 2}, """b""": 3} _lowerCamelCase : Tuple = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("spark" ): assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa
362
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[Any] = np.inf def set_batch_size(_lowerCamelCase ) -> None: nonlocal batch_size if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Optional[int] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary": _lowerCamelCase : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_lowerCamelCase , _lowerCamelCase ) return None if batch_size is np.inf else batch_size class A_ ( _a ): def __init__( self: Optional[int] ,__lowerCAmelCase: NestedDataStructureLike[PathLike] ,__lowerCAmelCase: Optional[NamedSplit] = None ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__( __lowerCAmelCase ,split=__lowerCAmelCase ,features=__lowerCAmelCase ,cache_dir=__lowerCAmelCase ,keep_in_memory=__lowerCAmelCase ,streaming=__lowerCAmelCase ,num_proc=__lowerCAmelCase ,**__lowerCAmelCase ,) _lowerCamelCase : Tuple = path_or_paths if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else {self.split: path_or_paths} _lowerCamelCase : Any = _PACKAGED_DATASETS_MODULES["parquet"][1] _lowerCamelCase : int = Parquet( cache_dir=__lowerCAmelCase ,data_files=__lowerCAmelCase ,features=__lowerCAmelCase ,hash=__lowerCAmelCase ,**__lowerCAmelCase ,) def _lowercase ( self: Optional[int] ): '''simple docstring''' if self.streaming: _lowerCamelCase : List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCamelCase : Tuple = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : List[str] = None _lowerCamelCase : str = None self.builder.download_and_prepare( download_config=__lowerCAmelCase ,download_mode=__lowerCAmelCase ,verification_mode=__lowerCAmelCase ,base_path=__lowerCAmelCase ,num_proc=self.num_proc ,) _lowerCamelCase : Any = self.builder.as_dataset( split=self.split ,verification_mode=__lowerCAmelCase ,in_memory=self.keep_in_memory ) return dataset class A_ : def __init__( self: str ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: Union[PathLike, BinaryIO] ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' _lowerCamelCase : Any = dataset _lowerCamelCase : Any = path_or_buf _lowerCamelCase : Any = batch_size or get_writer_batch_size(dataset.features ) _lowerCamelCase : List[str] = parquet_writer_kwargs def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ): with open(self.path_or_buf ,"wb+" ) as buffer: _lowerCamelCase : str = self._write(file_obj=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) else: _lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) return written def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: BinaryIO ,__lowerCAmelCase: int ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" ,__lowerCAmelCase ) _lowerCamelCase : List[str] = self.dataset.features.arrow_schema _lowerCamelCase : str = pq.ParquetWriter(__lowerCAmelCase ,schema=__lowerCAmelCase ,**__lowerCAmelCase ) for offset in logging.tqdm( range(0 ,len(self.dataset ) ,__lowerCAmelCase ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating parquet from Arrow format" ,): _lowerCamelCase : List[str] = query_table( table=self.dataset._data ,key=slice(__lowerCAmelCase ,offset + batch_size ) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,) writer.write_table(__lowerCAmelCase ) written += batch.nbytes writer.close() return written
340
0
"""simple docstring""" from __future__ import annotations class A_ : def __init__( self: Optional[Any] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Any = text, pattern _lowerCamelCase, _lowerCamelCase : Tuple = len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ): '''simple docstring''' for i in range(self.patLen - 1 ,-1 ,-1 ): if char == self.pattern[i]: return i return -1 def _lowercase ( self: str ,__lowerCAmelCase: int ): '''simple docstring''' for i in range(self.patLen - 1 ,-1 ,-1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCamelCase : str = self.mismatch_in_text(__SCREAMING_SNAKE_CASE ) if mismatch_index == -1: positions.append(__SCREAMING_SNAKE_CASE ) else: _lowerCamelCase : List[str] = self.match_in_pattern(self.text[mismatch_index] ) _lowerCamelCase : Tuple = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowerCAmelCase : int = 'ABAABA' _lowerCAmelCase : Optional[Any] = 'AB' _lowerCAmelCase : Any = BoyerMooreSearch(text, pattern) _lowerCAmelCase : Any = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
363
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Optional[int] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"] _lowerCamelCase : Dict = len(example["content"] ) / len(output["input_ids"] ) return output _lowerCAmelCase : Tuple = HfArgumentParser(PretokenizationArguments) _lowerCAmelCase : Optional[int] = parser.parse_args() if args.num_workers is None: _lowerCAmelCase : Any = multiprocessing.cpu_count() _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir) _lowerCAmelCase : Union[str, Any] = time.time() _lowerCAmelCase : Optional[int] = load_dataset(args.dataset_name, split='''train''') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') _lowerCAmelCase : Any = time.time() _lowerCAmelCase : Dict = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') _lowerCAmelCase : str = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
340
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class A_ ( __SCREAMING_SNAKE_CASE ): lowerCAmelCase__ = 4_2 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Optional[Any] = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
0
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _lowerCAmelCase : Dict = logging.get_logger(__name__) class A_ ( __snake_case ): lowerCAmelCase__ = "vision-encoder-decoder" lowerCAmelCase__ = True def __init__( self: Union[str, Any] ,**__lowerCAmelCase: Any ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"""A configuraton of type {self.model_type} cannot be instantiated because """ F"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) _lowerCamelCase : List[str] = kwargs.pop("encoder" ) _lowerCamelCase : Any = encoder_config.pop("model_type" ) _lowerCamelCase : str = kwargs.pop("decoder" ) _lowerCamelCase : Tuple = decoder_config.pop("model_type" ) _lowerCamelCase : int = AutoConfig.for_model(lowerCamelCase_ ,**lowerCamelCase_ ) _lowerCamelCase : str = AutoConfig.for_model(lowerCamelCase_ ,**lowerCamelCase_ ) _lowerCamelCase : Any = True @classmethod def _lowercase ( cls: Tuple ,__lowerCAmelCase: PretrainedConfig ,__lowerCAmelCase: PretrainedConfig ,**__lowerCAmelCase: str ): '''simple docstring''' logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) _lowerCamelCase : List[str] = True _lowerCamelCase : List[str] = True return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**lowerCamelCase_ ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[int] = copy.deepcopy(self.__dict__ ) _lowerCamelCase : Any = self.encoder.to_dict() _lowerCamelCase : str = self.decoder.to_dict() _lowerCamelCase : Union[str, Any] = self.__class__.model_type return output class A_ ( __snake_case ): lowerCAmelCase__ = version.parse('1.11' ) @property def _lowercase ( self: List[str] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' return 1e-4 @property def _lowercase ( self: Any ): '''simple docstring''' return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} ) class A_ ( __snake_case ): @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = OrderedDict() _lowerCamelCase : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _lowerCamelCase : Optional[int] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _lowerCamelCase : List[str] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: "PreTrainedTokenizerBase" ,__lowerCAmelCase: int = -1 ,__lowerCAmelCase: int = -1 ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional["TensorType"] = None ,): '''simple docstring''' import torch _lowerCamelCase : Dict = OrderedDict() _lowerCamelCase : Union[str, Any] = super().generate_dummy_inputs( lowerCamelCase_ ,batch_size=lowerCamelCase_ ,seq_length=lowerCamelCase_ ,is_pair=lowerCamelCase_ ,framework=lowerCamelCase_ ) _lowerCamelCase : Dict = dummy_input["""input_ids"""].shape _lowerCamelCase : Tuple = (batch, encoder_sequence, self._config.encoder_hidden_size) _lowerCamelCase : Union[str, Any] = dummy_input.pop("input_ids" ) _lowerCamelCase : List[str] = dummy_input.pop("attention_mask" ) _lowerCamelCase : List[str] = torch.zeros(lowerCamelCase_ ) return common_inputs class A_ ( __snake_case ): @property def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: PretrainedConfig ): '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(lowerCamelCase_ ) def _lowercase ( self: int ,__lowerCAmelCase: PretrainedConfig ,__lowerCAmelCase: PretrainedConfig ,__lowerCAmelCase: str = "default" ): '''simple docstring''' _lowerCamelCase : List[Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(lowerCamelCase_ ,lowerCamelCase_ )
365
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) class A_ ( _a ): lowerCAmelCase__ = 'masked_bert' def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=30_522 ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Dict=12 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-12 ,__lowerCAmelCase: Union[str, Any]=0 ,__lowerCAmelCase: List[Any]="topK" ,__lowerCAmelCase: Optional[Any]="constant" ,__lowerCAmelCase: Optional[Any]=0.0 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : int = pruning_method _lowerCamelCase : str = mask_init _lowerCamelCase : List[Any] = mask_scale
340
0
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _lowerCAmelCase : Optional[int] = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(42) _lowerCAmelCase : int = """sshleifer/student_marian_en_ro_6_1""" _lowerCAmelCase : List[str] = """sshleifer/tiny-mbart""" @require_torch class A_ ( _a ): def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Tuple=False ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: List[str]=True ,): '''simple docstring''' _lowerCamelCase : Optional[int] = self.run_trainer( eval_steps=1 ,max_len=12 ,model_name=_lowercase ,num_train_epochs=1 ,distributed=_lowercase ,extra_args_str=_lowercase ,predict_with_generate=_lowercase ,do_train=_lowercase ,do_eval=_lowercase ,do_predict=_lowercase ,) _lowerCamelCase : str = TrainerState.load_from_json(os.path.join(_lowercase ,"trainer_state.json" ) ).log_history if not do_eval: return _lowerCamelCase : Optional[Any] = [log for log in logs if "eval_loss" in log.keys()] _lowerCamelCase : List[Any] = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats _lowerCamelCase : List[str] = eval_metrics[-1] assert isinstance(last_step_stats["eval_bleu"] ,_lowercase ) assert not math.isnan(float(last_step_stats["eval_loss"] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def _lowercase ( self: int ): '''simple docstring''' self.run_seqaseq_quick() @require_torch_multi_gpu def _lowercase ( self: Dict ): '''simple docstring''' self.run_seqaseq_quick(distributed=_lowercase ) @require_torch_multi_gpu def _lowercase ( self: int ): '''simple docstring''' self.run_seqaseq_quick(distributed=_lowercase ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def _lowercase ( self: Optional[Any] ): '''simple docstring''' self.run_seqaseq_quick(distributed=_lowercase ,extra_args_str="--sharded_ddp simple" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def _lowercase ( self: str ): '''simple docstring''' self.run_seqaseq_quick(distributed=_lowercase ,extra_args_str="--sharded_ddp simple --fp16" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def _lowercase ( self: List[Any] ): '''simple docstring''' self.run_seqaseq_quick(distributed=_lowercase ,extra_args_str="--sharded_ddp zero_dp_2" ,predict_with_generate=_lowercase ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def _lowercase ( self: List[str] ): '''simple docstring''' self.run_seqaseq_quick( distributed=_lowercase ,extra_args_str="--sharded_ddp zero_dp_2 --fp16" ,predict_with_generate=_lowercase ) @require_apex @require_torch_gpu def _lowercase ( self: Optional[Any] ): '''simple docstring''' self.run_seqaseq_quick(distributed=_lowercase ,extra_args_str="--fp16 --fp16_backend=apex" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_lowercase ,extra_args_str="--fp16 --fp16_backend=apex" ) @parameterized.expand(["base", "low", "high", "mixed"] ) @require_torch_multi_gpu def _lowercase ( self: List[str] ,__lowerCAmelCase: Any ): '''simple docstring''' _lowerCamelCase : int = { # test with the default log_level - should be info and thus log info once "base": {"extra_args_str": "", "n_matches": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes "low": {"extra_args_str": "--log_level debug --log_level_replica debug", "n_matches": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica "high": {"extra_args_str": "--log_level error --log_level_replica debug", "n_matches": 1}, # test with high log_level and log_level_replica - should be quiet on all processes "mixed": {"extra_args_str": "--log_level error --log_level_replica error", "n_matches": 0}, } _lowerCamelCase : Optional[Any] = experiments[experiment_id] _lowerCamelCase : Dict = {"distributed": True, "predict_with_generate": False, "do_eval": False, "do_predict": False} _lowerCamelCase : Tuple = "Running training" with CaptureStderr() as cl: self.run_seqaseq_quick(**_lowercase ,extra_args_str=data["extra_args_str"] ) _lowerCamelCase : Tuple = len(re.findall(_lowercase ,cl.err ) ) self.assertEqual(_lowercase ,data["n_matches"] ) @slow def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : str = self.run_trainer( eval_steps=2 ,max_len=128 ,model_name=_lowercase ,learning_rate=3e-4 ,num_train_epochs=10 ,distributed=_lowercase ,) # Check metrics _lowerCamelCase : Optional[Any] = TrainerState.load_from_json(os.path.join(_lowercase ,"trainer_state.json" ) ).log_history _lowerCamelCase : Dict = [log for log in logs if "eval_loss" in log.keys()] _lowerCamelCase : Tuple = eval_metrics[0] _lowerCamelCase : List[Any] = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["eval_bleu"] ,_lowercase ) # test if do_predict saves generations and metrics _lowerCamelCase : Dict = os.listdir(_lowercase ) _lowerCamelCase : Tuple = {os.path.basename(_lowercase ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def _lowercase ( self: List[str] ): '''simple docstring''' from transformers.training_args import OptimizerNames def train_and_return_metrics(__lowerCAmelCase: str ) -> Tuple[int, float]: _lowerCamelCase : Tuple = "--skip_memory_metrics 0" _lowerCamelCase : str = self.run_trainer( max_len=128 ,model_name=_lowercase ,learning_rate=3e-4 ,num_train_epochs=1 ,optim=_lowercase ,distributed=_lowercase ,extra_args_str=_lowercase ,do_eval=_lowercase ,do_predict=_lowercase ,n_gpus_to_use=1 ,) # Check metrics _lowerCamelCase : Any = TrainerState.load_from_json(Path(_lowercase ,"trainer_state.json" ) ).log_history _lowerCamelCase : int = int(logs[0]["train_mem_gpu_peaked_delta"] / 2**20 ) _lowerCamelCase : Optional[Any] = int(logs[0]["train_mem_gpu_alloc_delta"] / 2**20 ) _lowerCamelCase : Tuple = logs[0]["train_loss"] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) _lowerCamelCase : int = gpu_alloc_mem_orig - gpu_alloc_mem_bnb _lowerCamelCase : Tuple = gpu_peak_mem_orig + gpu_alloc_mem_orig _lowerCamelCase : List[str] = gpu_peak_mem_bnb + gpu_alloc_mem_bnb _lowerCamelCase : int = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings _lowerCamelCase : Tuple = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _lowercase ,_lowercase ,"should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got" F""" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and""" F""" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB""" ,) self.assertGreater( _lowercase ,_lowercase ,"should use ~150MB less total gpu memory with BNB, compared to without it for this model but got" F""" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and""" F""" gpu_total_mem_bnb={gpu_total_mem_bnb}MB""" ,) self.assertEqual( _lowercase ,_lowercase ,F"""loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}""" ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[str] = 3e-3 ,__lowerCAmelCase: int = "adafactor" ,__lowerCAmelCase: Tuple = False ,__lowerCAmelCase: Optional[Any] = None ,__lowerCAmelCase: List[str] = 0 ,__lowerCAmelCase: Optional[Any] = True ,__lowerCAmelCase: Any = True ,__lowerCAmelCase: str = True ,__lowerCAmelCase: Dict = True ,__lowerCAmelCase: int = None ,): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro" _lowerCamelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() _lowerCamelCase : List[str] = F"""\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(_lowercase )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(_lowercase )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n """.split() _lowerCamelCase : List[Any] = F"""\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(_lowercase )}\n """.split() _lowerCamelCase : Optional[int] = "\n --do_predict\n ".split() _lowerCamelCase : List[str] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"""--optim {optim}""".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: _lowerCamelCase : Optional[Any] = get_gpu_count() _lowerCamelCase : List[str] = get_torch_dist_unique_port() _lowerCamelCase : Optional[int] = F"""\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n """.split() _lowerCamelCase : Optional[int] = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowercase ,env=self.get_env() ) else: _lowerCamelCase : Optional[int] = ["run_translation.py"] + args with patch.object(_lowercase ,"argv" ,_lowercase ): main() return output_dir
366
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowerCAmelCase : str = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]: '''simple docstring''' if rng is None: _lowerCamelCase : Union[str, Any] = random.Random() _lowerCamelCase : Union[str, Any] = 1 for dim in shape: total_dims *= dim _lowerCamelCase : Optional[int] = [] for _ in range(_lowerCamelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) _lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase ) return output def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase ) # make sure that at least one token is attended to for each batch _lowerCamelCase : List[str] = 1 return attn_mask @require_flax class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = () def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _lowerCamelCase : List[str] = 2 _lowerCamelCase : str = inputs["input_ids"].shape[-1] // 2 _lowerCamelCase : Tuple = inputs["input_ids"][:max_batch_size, :sequence_length] _lowerCamelCase : Any = jnp.ones_like(__lowerCAmelCase ) _lowerCamelCase : List[Any] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _lowerCamelCase : Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _lowerCamelCase : List[str] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = False _lowerCamelCase : Dict = max_length _lowerCamelCase : Tuple = 0 for model_class in self.all_generative_model_classes: _lowerCamelCase : str = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCamelCase : Any = getattr(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = pt_model_class(__lowerCAmelCase ).eval() _lowerCamelCase : Optional[Any] = load_flax_weights_in_pytorch_model(__lowerCAmelCase ,flax_model.params ) _lowerCamelCase : int = flax_model.generate(__lowerCAmelCase ).sequences _lowerCamelCase : Optional[int] = pt_model.generate(torch.tensor(__lowerCAmelCase ,dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _lowerCamelCase : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = self._get_input_ids_and_config() _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = True _lowerCamelCase : Optional[int] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : int = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : int = False _lowerCamelCase : Optional[Any] = max_length _lowerCamelCase : Dict = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) _lowerCamelCase : Dict = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = self._get_input_ids_and_config() _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = max_length _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[int] = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : str = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() _lowerCamelCase : int = True _lowerCamelCase : List[Any] = max_length _lowerCamelCase : Optional[Any] = 0.8 _lowerCamelCase : Union[str, Any] = 10 _lowerCamelCase : List[str] = 0.3 _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : str = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Any = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : int = jit(model.generate ) _lowerCamelCase : Optional[int] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[str] = max_length _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : Dict = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Any = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : Any = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() _lowerCamelCase : Dict = max_length _lowerCamelCase : List[Any] = 2 _lowerCamelCase : Tuple = 1 _lowerCamelCase : List[str] = 8 _lowerCamelCase : List[Any] = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : int = model_class(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : Optional[Any] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : Dict = False _lowerCamelCase : Any = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Optional[Any] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : List[str] = True _lowerCamelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[Any] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : int = 2 _lowerCamelCase : int = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : int = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : Dict = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) @require_flax class A_ ( unittest.TestCase ): def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) _lowerCamelCase : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) _lowerCamelCase : Optional[Any] = "Hello world" _lowerCamelCase : str = tokenizer(__lowerCAmelCase ,return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowerCAmelCase ,"do_samples" ): model.generate(__lowerCAmelCase ,do_samples=__lowerCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowerCAmelCase ,"foo" ): _lowerCamelCase : List[str] = {"foo": "bar"} model.generate(__lowerCAmelCase ,**__lowerCAmelCase )
340
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Dict = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Optional[Any] = emb.weight.shape _lowerCamelCase : Optional[Any] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Any = emb.weight.data return lin_layer def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Tuple = torch.load(SCREAMING_SNAKE_CASE__ , map_location="cpu" ) _lowerCamelCase : Optional[Any] = mam_aaa["args"] or mam_aaa["cfg"]["model"] _lowerCamelCase : List[str] = mam_aaa["model"] remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : int = state_dict["encoder.embed_tokens.weight"].shape[0] _lowerCamelCase : Optional[Any] = MaMaaaConfig( vocab_size=SCREAMING_SNAKE_CASE__ , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) _lowerCamelCase : Dict = state_dict["decoder.embed_tokens.weight"] _lowerCamelCase : int = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) model.model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Any = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _lowerCAmelCase : int = parser.parse_args() _lowerCAmelCase : Any = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
367
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class A_ ( _a ): lowerCAmelCase__ = 'mobilenet_v1' def __init__( self: Tuple ,__lowerCAmelCase: int=3 ,__lowerCAmelCase: Dict=224 ,__lowerCAmelCase: int=1.0 ,__lowerCAmelCase: Tuple=8 ,__lowerCAmelCase: List[str]="relu6" ,__lowerCAmelCase: int=True ,__lowerCAmelCase: List[Any]=0.9_99 ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: Optional[int]=0.0_01 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : List[Any] = depth_multiplier _lowerCamelCase : Any = min_depth _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Dict = tf_padding _lowerCamelCase : Union[str, Any] = classifier_dropout_prob _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps class A_ ( _a ): lowerCAmelCase__ = version.parse('1.11' ) @property def _lowercase ( self: Optional[int] ): '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def _lowercase ( self: Any ): '''simple docstring''' return 1e-4
340
0
"""simple docstring""" from sklearn.metrics import fa_score import datasets _lowerCAmelCase : Optional[Any] = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' _lowerCAmelCase : Dict = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' _lowerCAmelCase : Union[str, Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def _lowercase ( self: int ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) ,reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] ,) def _lowercase ( self: Any ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[int]=1 ,__lowerCAmelCase: str="binary" ,__lowerCAmelCase: Tuple=None ): '''simple docstring''' _lowerCamelCase : Any = fa_score( __lowerCamelCase ,__lowerCamelCase ,labels=__lowerCamelCase ,pos_label=__lowerCamelCase ,average=__lowerCamelCase ,sample_weight=__lowerCamelCase ) return {"f1": float(__lowerCamelCase ) if score.size == 1 else score}
368
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' for param in module.parameters(): _lowerCamelCase : Optional[int] = False def lowerCamelCase_( ) -> List[str]: '''simple docstring''' _lowerCamelCase : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _lowerCamelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Dict = plt.imshow(_lowerCamelCase ) fig.axes.get_xaxis().set_visible(_lowerCamelCase ) fig.axes.get_yaxis().set_visible(_lowerCamelCase ) plt.show() def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Tuple = datetime.now() _lowerCamelCase : Tuple = current_time.strftime("%H:%M:%S" ) return timestamp
340
0
"""simple docstring""" import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer __snake_case : Optional[int] = logging.getLogger(__name__) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name" , type=a__ , default="wikitext" , help="Name of the training. Explore datasets at: hf.co/datasets." , ) parser.add_argument( "--dataset_config" , type=a__ , default="wikitext-103-raw-v1" , help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path" , type=a__ , default="sayakpaul/unigram-tokenizer-wikitext" , help="Tokenizer identifier. Can be a local filepath or a Hub identifier." , ) parser.add_argument( "--shard_size" , type=a__ , default=1000 , help="Number of entries to go in a single shard." , ) parser.add_argument("--split" , type=a__ , default="train" , choices=["train", "test", "validation"] ) parser.add_argument( "--limit" , default=a__ , type=a__ , help="Limit the number of shards (used for debugging)." , ) parser.add_argument( "--max_length" , type=a__ , default=512 , help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8." , ) parser.add_argument( "--output_dir" , default="tf-tpu" , type=a__ , help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket." , ) _lowerCamelCase : Union[str, Any] = parser.parse_args() return args def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' def fn(_lowerCamelCase ): return tokenizer(examples["text"] ) return fn def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = [] for i in range(len(tokenized_data["input_ids"] ) ): _lowerCamelCase : List[str] = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ), } _lowerCamelCase : List[Any] = tf.train.Features(feature=a__ ) _lowerCamelCase : List[str] = tf.train.Example(features=a__ ) _lowerCamelCase : Tuple = example.SerializeToString() records.append(a__ ) return records def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Any = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: _lowerCamelCase : Optional[Any] = min(len(a__ ) , args.limit ) _lowerCamelCase : Any = dataset.select(range(a__ ) ) print(F"""Limiting the dataset to {args.limit} entries.""" ) _lowerCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) _lowerCamelCase : Optional[int] = os.path.join(args.output_dir , args.split ) if not os.path.exists(a__ ): os.makedirs(a__ ) else: _lowerCamelCase : Union[str, Any] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. _lowerCamelCase : List[Any] = tokenize_function(a__ ) _lowerCamelCase : Optional[Any] = dataset.map(a__ , batched=a__ , num_proc=4 , remove_columns=["text"] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_lowerCamelCase ): # Concatenate all texts. _lowerCamelCase : int = {k: sum(examples[k] , [] ) for k in examples.keys()} _lowerCamelCase : Optional[int] = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 _lowerCamelCase : str = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. _lowerCamelCase : int = { k: [t[i : i + args.max_length] for i in range(0 , a__ , args.max_length )] for k, t in concatenated_examples.items() } return result _lowerCamelCase : List[str] = dataset_tokenized.map(a__ , batched=a__ , batch_size=1000 , num_proc=4 ) _lowerCamelCase : int = 0 _lowerCamelCase : List[Any] = 0 for shard in range(0 , len(a__ ) , args.shard_size ): _lowerCamelCase : Tuple = grouped_dataset[shard : shard + args.shard_size] _lowerCamelCase : Tuple = len(dataset_snapshot["input_ids"] ) _lowerCamelCase : Optional[int] = os.path.join(a__ , F"""dataset-{shard_count}-{records_containing}.tfrecord""" ) _lowerCamelCase : str = get_serialized_examples(a__ ) with tf.io.TFRecordWriter(a__ ) as out_file: for i in range(len(a__ ) ): _lowerCamelCase : str = serialized_examples[i] out_file.write(a__ ) print("Wrote file {} containing {} records".format(a__ , a__ ) ) shard_count += 1 total_records += records_containing with open(F"""split-{args.split}-records-count.txt""" , "w" ) as f: print(F"""Total {args.split} records: {total_records}""" , file=a__ ) if __name__ == "__main__": __snake_case : List[str] = parse_args() main(args)
369
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) _lowerCamelCase : list = [] for char_count in range(_lowerCamelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_lowerCamelCase ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
340
0
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class A_ ( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self: Dict ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[Any] = ort.SessionOptions() _lowerCamelCase : List[Any] = False return options def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) _lowerCamelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) _lowerCamelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default _lowerCamelCase : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" ,revision="onnx" ,safety_checker=__lowerCAmelCase ,feature_extractor=__lowerCAmelCase ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Dict = "A red cat sitting on a park bench" _lowerCamelCase : List[str] = np.random.RandomState(0 ) _lowerCamelCase : str = pipe( prompt=__lowerCAmelCase ,image=__lowerCAmelCase ,mask_image=__lowerCAmelCase ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=15 ,generator=__lowerCAmelCase ,output_type="np" ,) _lowerCamelCase : Dict = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
370
"""simple docstring""" _lowerCAmelCase : Tuple = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Any = [False] * len(_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = [s] _lowerCamelCase : str = True while queue: _lowerCamelCase : Optional[int] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) _lowerCamelCase : Any = True _lowerCamelCase : Any = u return visited[t] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : List[str] = [-1] * (len(_lowerCamelCase )) _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Any = float("Inf" ) _lowerCamelCase : Dict = sink while s != source: # Find the minimum value in select path _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , graph[parent[s]][s] ) _lowerCamelCase : Union[str, Any] = parent[s] max_flow += path_flow _lowerCamelCase : Optional[Any] = sink while v != source: _lowerCamelCase : Union[str, Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCamelCase : List[str] = parent[v] for i in range(len(_lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
340
0
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _lowerCAmelCase : Any = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def lowerCamelCase_( _lowerCamelCase = "dhaka" , _lowerCamelCase = 5 ) -> str: '''simple docstring''' _lowerCamelCase : Dict = min(_lowerCamelCase , 50 ) # Prevent abuse! _lowerCamelCase : Optional[Any] = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } _lowerCamelCase : Dict = requests.get("https://www.google.com/search" , params=_lowerCamelCase , headers=_lowerCamelCase ) _lowerCamelCase : str = BeautifulSoup(html.text , "html.parser" ) _lowerCamelCase : Optional[Any] = ''''''.join( re.findall(R"AF_initDataCallback\(([^<]+)\);" , str(soup.select("script" ) ) ) ) _lowerCamelCase : Dict = json.dumps(_lowerCamelCase ) _lowerCamelCase : Optional[Any] = json.loads(_lowerCamelCase ) _lowerCamelCase : List[str] = re.findall( R"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\"," , _lowerCamelCase , ) if not matched_google_image_data: return 0 _lowerCamelCase : Tuple = re.sub( R"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]" , "" , str(_lowerCamelCase ) , ) _lowerCamelCase : Optional[Any] = re.findall( R"(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]" , _lowerCamelCase , ) for index, fixed_full_res_image in enumerate(_lowerCamelCase ): if index >= max_images: return index _lowerCamelCase : Any = bytes(_lowerCamelCase , "ascii" ).decode( "unicode-escape" ) _lowerCamelCase : str = bytes(_lowerCamelCase , "ascii" ).decode( "unicode-escape" ) _lowerCamelCase : Tuple = urllib.request.build_opener() _lowerCamelCase : List[Any] = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(_lowerCamelCase ) _lowerCamelCase : Optional[int] = F"""query_{query.replace(' ' , '_' )}""" if not os.path.exists(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) urllib.request.urlretrieve( # noqa: S310 _lowerCamelCase , F"""{path_name}/original_size_img_{index}.jpg""" ) return index if __name__ == "__main__": try: _lowerCAmelCase : str = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print('''Please provide a search term.''') raise
371
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class A_ ( _a ): lowerCAmelCase__ = 'camembert' def __init__( self: Tuple ,__lowerCAmelCase: Union[str, Any]=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: int=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: int=512 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Any="absolute" ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Tuple=None ,**__lowerCAmelCase: Dict ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Tuple = position_embedding_type _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : Dict = classifier_dropout class A_ ( _a ): @property def _lowercase ( self: Any ): '''simple docstring''' if self.task == "multiple-choice": _lowerCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
340
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class A_ : def __init__( self: Dict ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Tuple=13 ,__lowerCAmelCase: List[Any]=7 ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: int=True ,__lowerCAmelCase: Union[str, Any]=True ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Optional[int]=99 ,__lowerCAmelCase: Union[str, Any]=32 ,__lowerCAmelCase: Tuple=2 ,__lowerCAmelCase: Any=4 ,__lowerCAmelCase: List[Any]=37 ,__lowerCAmelCase: Optional[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: Dict=512 ,__lowerCAmelCase: List[Any]=16 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: int=0.02 ,__lowerCAmelCase: Optional[int]=False ,__lowerCAmelCase: Any=True ,__lowerCAmelCase: List[str]="None" ,__lowerCAmelCase: Optional[int]=3 ,__lowerCAmelCase: Optional[int]=4 ,__lowerCAmelCase: Dict=None ,): '''simple docstring''' _lowerCamelCase : Dict = parent _lowerCamelCase : int = batch_size _lowerCamelCase : Union[str, Any] = seq_length _lowerCamelCase : List[str] = is_training _lowerCamelCase : List[str] = use_input_mask _lowerCamelCase : Dict = use_token_type_ids _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : Optional[Any] = num_attention_heads _lowerCamelCase : str = intermediate_size _lowerCamelCase : int = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : List[str] = type_sequence_label_size _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : List[Any] = num_labels _lowerCamelCase : Any = num_choices _lowerCamelCase : Optional[int] = relative_attention _lowerCamelCase : Any = position_biased_input _lowerCamelCase : List[Any] = pos_att_type _lowerCamelCase : int = scope def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCamelCase : List[Any] = None if self.use_input_mask: _lowerCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Tuple = None if self.use_token_type_ids: _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowerCamelCase : List[Any] = None _lowerCamelCase : Dict = None _lowerCamelCase : str = None if self.use_labels: _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowerCamelCase : Dict = DebertaVaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,relative_attention=self.relative_attention ,position_biased_input=self.position_biased_input ,initializer_range=self.initializer_range ,return_dict=__lowerCAmelCase ,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: str ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : str = TFDebertaVaModel(config=__lowerCAmelCase ) _lowerCamelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCamelCase : List[str] = [input_ids, input_mask] _lowerCamelCase : int = model(__lowerCAmelCase ) _lowerCamelCase : str = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = TFDebertaVaForMaskedLM(config=__lowerCAmelCase ) _lowerCamelCase : List[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _lowerCamelCase : List[Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Any ): '''simple docstring''' _lowerCamelCase : Dict = self.num_labels _lowerCamelCase : str = TFDebertaVaForSequenceClassification(config=__lowerCAmelCase ) _lowerCamelCase : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _lowerCamelCase : Any = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _lowercase ( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: str ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: str ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : Any = self.num_labels _lowerCamelCase : List[str] = TFDebertaVaForTokenClassification(config=__lowerCAmelCase ) _lowerCamelCase : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _lowerCamelCase : Tuple = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : str = TFDebertaVaForQuestionAnswering(config=__lowerCAmelCase ) _lowerCamelCase : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _lowerCamelCase : Dict = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : List[str] = config_and_inputs _lowerCamelCase : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A_ ( a_ , a_ , unittest.TestCase ): lowerCAmelCase__ = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase__ = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = TFDebertaVaModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self ,config_class=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : str = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class A_ ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def _lowercase ( self: Tuple ): '''simple docstring''' pass @slow def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Any = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) _lowerCamelCase : Optional[Any] = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _lowerCamelCase : str = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : int = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase )[0] _lowerCamelCase : Union[str, Any] = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] ,__lowerCAmelCase ,atol=1e-4 )
350
"""simple docstring""" from collections import defaultdict def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : str = True for v in tree[start]: if v not in visited: ret += dfs(_lowerCamelCase ) if ret % 2 == 0: cuts.append(_lowerCamelCase ) return ret def lowerCamelCase_( ) -> int: '''simple docstring''' dfs(1 ) if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = 10, 9 _lowerCAmelCase : str = defaultdict(list) _lowerCAmelCase : dict[int, bool] = {} _lowerCAmelCase : list[int] = [] _lowerCAmelCase : Any = 0 _lowerCAmelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
0
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _lowerCAmelCase : Tuple = logging.getLogger(__name__) _lowerCAmelCase : List[str] = '''pytorch_model.bin''' @dataclasses.dataclass class A_ : lowerCAmelCase__ = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) lowerCAmelCase__ = dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class A_ : lowerCAmelCase__ = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) lowerCAmelCase__ = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) lowerCAmelCase__ = dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'A csv or a json file containing the validation data.'} ) lowerCAmelCase__ = dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The name of the task to train on.'} , ) lowerCAmelCase__ = dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class A_ : lowerCAmelCase__ = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) lowerCAmelCase__ = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) lowerCAmelCase__ = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]' } , ) lowerCAmelCase__ = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) lowerCAmelCase__ = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) lowerCAmelCase__ = dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) lowerCAmelCase__ = dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) lowerCAmelCase__ = dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) lowerCAmelCase__ = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) lowerCAmelCase__ = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) lowerCAmelCase__ = dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Random seed for initialization.'} , ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : List[str] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _lowerCamelCase : Optional[Any] = dataset.filter(lambda _lowerCamelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _lowerCamelCase : Tuple = int(eval_result * len(_SCREAMING_SNAKE_CASE ) ) print(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[Any] = dataset.sort("probability" , reverse=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Dict = dataset.select(range(_SCREAMING_SNAKE_CASE ) ) _lowerCamelCase : Optional[int] = dataset.remove_columns(["label", "probability"] ) _lowerCamelCase : str = dataset.rename_column("prediction" , "label" ) _lowerCamelCase : Tuple = dataset.map(lambda _lowerCamelCase : {"label": idalabel[example["label"]]} ) _lowerCamelCase : List[Any] = dataset.shuffle(seed=args.seed ) _lowerCamelCase : int = os.path.join(_SCREAMING_SNAKE_CASE , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(_SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE ) else: dataset.to_json(_SCREAMING_SNAKE_CASE ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Dict = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _lowerCamelCase : Optional[Any] = STModelArguments(model_name_or_path=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[int] = STDataArguments(train_file=_SCREAMING_SNAKE_CASE , infer_file=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Union[str, Any] = STTrainingArguments(output_dir=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : str = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_SCREAMING_SNAKE_CASE ).items(): setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for key, value in kwargs.items(): if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Sanity checks _lowerCamelCase : str = {} _lowerCamelCase : List[str] = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _lowerCamelCase : Tuple = args.train_file _lowerCamelCase : List[str] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _lowerCamelCase : List[str] = args.eval_file for key in data_files: _lowerCamelCase : List[str] = data_files[key].split("." )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _lowerCamelCase : List[Any] = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) _lowerCamelCase : Optional[int] = F"""{args.output_dir}/self-train_iter-{{}}""".format _lowerCamelCase : Any = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_SCREAMING_SNAKE_CASE ) os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() _lowerCamelCase : int = None _lowerCamelCase : Any = None _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[Any] = False # Show the progress bar _lowerCamelCase : Optional[int] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _lowerCamelCase : List[Any] = data_dir_format(_SCREAMING_SNAKE_CASE ) assert os.path.exists(_SCREAMING_SNAKE_CASE ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _lowerCamelCase : str = os.path.join(_SCREAMING_SNAKE_CASE , "stage-1" ) _lowerCamelCase : Optional[Any] = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): arguments_dict.update({key: value} ) _lowerCamelCase : str = os.path.join(_SCREAMING_SNAKE_CASE , "best-checkpoint" , _SCREAMING_SNAKE_CASE ) if os.path.exists(_SCREAMING_SNAKE_CASE ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , _SCREAMING_SNAKE_CASE ) finetune(**_SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() assert os.path.exists(_SCREAMING_SNAKE_CASE ) logger.info("Self-training job completed: iteration: %d, stage: 1." , _SCREAMING_SNAKE_CASE ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _lowerCamelCase : Any = os.path.join(_SCREAMING_SNAKE_CASE , "best-checkpoint" ) _lowerCamelCase : List[str] = os.path.join(_SCREAMING_SNAKE_CASE , "stage-2" ) # Update arguments_dict _lowerCamelCase : Optional[int] = model_path _lowerCamelCase : List[str] = data_files["train"] _lowerCamelCase : str = current_output_dir _lowerCamelCase : Tuple = os.path.join(_SCREAMING_SNAKE_CASE , "best-checkpoint" , _SCREAMING_SNAKE_CASE ) if os.path.exists(_SCREAMING_SNAKE_CASE ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , _SCREAMING_SNAKE_CASE ) finetune(**_SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() assert os.path.exists(_SCREAMING_SNAKE_CASE ) logger.info("Self-training job completed: iteration: %d, stage: 2." , _SCREAMING_SNAKE_CASE ) _lowerCamelCase : int = iteration _lowerCamelCase : int = data_dir_format(iteration + 1 ) _lowerCamelCase : Dict = AutoConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , "best-checkpoint" ) ) _lowerCamelCase : str = config.idalabel _lowerCamelCase : Dict = os.path.join(_SCREAMING_SNAKE_CASE , "eval_results_best-checkpoint.json" ) _lowerCamelCase : Union[str, Any] = os.path.join(_SCREAMING_SNAKE_CASE , "test_results_best-checkpoint.json" ) assert os.path.exists(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , "r" ) as f: _lowerCamelCase : str = float(json.load(_SCREAMING_SNAKE_CASE )[args.eval_metric] ) _lowerCamelCase : List[Any] = os.path.join(_SCREAMING_SNAKE_CASE , "infer_output_best-checkpoint.csv" ) assert os.path.exists(_SCREAMING_SNAKE_CASE ) # Loading the dataset from local csv or json files. _lowerCamelCase : int = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] _lowerCamelCase : Tuple = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) shutil.copy(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(_SCREAMING_SNAKE_CASE ): shutil.copy(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() _lowerCamelCase : Dict = os.path.join(_SCREAMING_SNAKE_CASE , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _lowerCamelCase : int = eval_result if best_iteration is None: _lowerCamelCase : Any = new_iteration _lowerCamelCase : Union[str, Any] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _lowerCamelCase : Optional[int] = new_iteration _lowerCamelCase : str = new_eval_result _lowerCamelCase : str = 0 else: if new_eval_result == best_eval_result: _lowerCamelCase : Union[str, Any] = new_iteration _lowerCamelCase : List[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _lowerCamelCase : Any = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , _SCREAMING_SNAKE_CASE ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , _SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_SCREAMING_SNAKE_CASE , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(_SCREAMING_SNAKE_CASE , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , _SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_SCREAMING_SNAKE_CASE , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(_SCREAMING_SNAKE_CASE , "eval_results_best-iteration.json" ) , )
351
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _lowerCAmelCase : Optional[int] = '''__DUMMY_TRANSFORMERS_USER__''' _lowerCAmelCase : Dict = '''Dummy User''' _lowerCAmelCase : Optional[int] = '''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''' _lowerCAmelCase : Tuple = '''https://hub-ci.huggingface.co''' _lowerCAmelCase : Any = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' _lowerCAmelCase : Tuple = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' _lowerCAmelCase : Dict = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' HfFolder.save_token(_lowerCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def lowerCamelCase_( ) -> str: '''simple docstring''' return HfApi(endpoint=_lowerCamelCase ) @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Dict = HfFolder.get_token() HfFolder.save_token(_lowerCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' def _cleanup_repo(_lowerCamelCase ): hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' @contextmanager def _temporary_repo(_lowerCamelCase ): try: yield repo_id finally: cleanup_repo(_lowerCamelCase ) return _temporary_repo @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Tuple = F"""repo_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[str] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data/text_data.txt" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : List[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : Dict = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Any = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[Any] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
340
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch _lowerCAmelCase : Union[str, Any] = random.Random() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=1.0 , _lowerCamelCase=None , _lowerCamelCase=None ) -> List[str]: '''simple docstring''' if rng is None: _lowerCamelCase : Union[str, Any] = global_rng _lowerCamelCase : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class A_ ( unittest.TestCase ): def __init__( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int]=7 ,__lowerCAmelCase: List[Any]=400 ,__lowerCAmelCase: Union[str, Any]=2_000 ,__lowerCAmelCase: Optional[int]=1 ,__lowerCAmelCase: Dict=0.0 ,__lowerCAmelCase: Union[str, Any]=16_000 ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Any=80 ,__lowerCAmelCase: List[str]=16 ,__lowerCAmelCase: Any=64 ,__lowerCAmelCase: str="hann_window" ,__lowerCAmelCase: Dict=80 ,__lowerCAmelCase: List[Any]=7_600 ,__lowerCAmelCase: Dict=1e-10 ,__lowerCAmelCase: List[Any]=True ,): '''simple docstring''' _lowerCamelCase : Dict = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : str = min_seq_length _lowerCamelCase : int = max_seq_length _lowerCamelCase : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCamelCase : int = feature_size _lowerCamelCase : List[Any] = padding_value _lowerCamelCase : Optional[Any] = sampling_rate _lowerCamelCase : int = do_normalize _lowerCamelCase : Optional[Any] = num_mel_bins _lowerCamelCase : Optional[int] = hop_length _lowerCamelCase : str = win_length _lowerCamelCase : Union[str, Any] = win_function _lowerCamelCase : Dict = fmin _lowerCamelCase : str = fmax _lowerCamelCase : Optional[int] = mel_floor _lowerCamelCase : str = return_attention_mask def _lowercase ( self: List[str] ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def _lowercase ( self: Optional[int] ,__lowerCAmelCase: List[str]=False ,__lowerCAmelCase: Dict=False ): '''simple docstring''' def _flatten(__lowerCAmelCase: Optional[int] ): return list(itertools.chain(*__lowerCAmelCase ) ) if equal_length: _lowerCamelCase : Tuple = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _lowerCamelCase : List[str] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: _lowerCamelCase : Optional[int] = [np.asarray(__lowerCAmelCase ) for x in speech_inputs] return speech_inputs def _lowercase ( self: int ,__lowerCAmelCase: int=False ,__lowerCAmelCase: Union[str, Any]=False ): '''simple docstring''' if equal_length: _lowerCamelCase : List[Any] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _lowerCamelCase : Union[str, Any] = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: _lowerCamelCase : Optional[int] = [np.asarray(__lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = SpeechTaFeatureExtractor def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[int] = SpeechTaFeatureExtractionTester(self ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' self.assertTrue(np.all(np.mean(__lowerCAmelCase ,axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__lowerCAmelCase ,axis=0 ) - 1 ) < 1e-3 ) ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCamelCase : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] _lowerCamelCase : Dict = [np.asarray(__lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input _lowerCamelCase : List[Any] = feat_extract(speech_inputs[0] ,return_tensors="np" ).input_values _lowerCamelCase : Any = feat_extract(np_speech_inputs[0] ,return_tensors="np" ).input_values self.assertTrue(np.allclose(__lowerCAmelCase ,__lowerCAmelCase ,atol=1e-3 ) ) # Test batched _lowerCamelCase : Tuple = feat_extract(__lowerCAmelCase ,return_tensors="np" ).input_values _lowerCamelCase : Any = feat_extract(__lowerCAmelCase ,return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase ,__lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase ,__lowerCAmelCase ,atol=1e-3 ) ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : Tuple = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] _lowerCamelCase : str = ['''longest''', '''max_length''', '''do_not_pad'''] _lowerCamelCase : List[str] = [None, 1_600, None] for max_length, padding in zip(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Optional[Any] = feat_extract(__lowerCAmelCase ,padding=__lowerCAmelCase ,max_length=__lowerCAmelCase ,return_tensors="np" ) _lowerCamelCase : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : Dict = range(800 ,1_400 ,200 ) _lowerCamelCase : str = [floats_list((1, x) )[0] for x in lengths] _lowerCamelCase : Union[str, Any] = ['''longest''', '''max_length''', '''do_not_pad'''] _lowerCamelCase : List[Any] = [None, 1_600, None] for max_length, padding in zip(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[str] = feat_extract(__lowerCAmelCase ,max_length=__lowerCAmelCase ,padding=__lowerCAmelCase ) _lowerCamelCase : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : List[str] = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] _lowerCamelCase : str = feat_extract( __lowerCAmelCase ,truncation=__lowerCAmelCase ,max_length=1_000 ,padding="max_length" ,return_tensors="np" ) _lowerCamelCase : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : Dict = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] _lowerCamelCase : Optional[int] = feat_extract( __lowerCAmelCase ,truncation=__lowerCAmelCase ,max_length=1_000 ,padding="longest" ,return_tensors="np" ) _lowerCamelCase : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) _lowerCamelCase : int = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] _lowerCamelCase : Optional[Any] = feat_extract( __lowerCAmelCase ,truncation=__lowerCAmelCase ,max_length=2_000 ,padding="longest" ,return_tensors="np" ) _lowerCamelCase : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : Dict = np.random.rand(100 ).astype(np.floataa ) _lowerCamelCase : List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCamelCase : int = feature_extractor.pad([{"input_values": inputs}] ,return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _lowerCamelCase : Optional[int] = feature_extractor.pad([{"input_values": inputs}] ,return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCamelCase : int = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] _lowerCamelCase : int = [np.asarray(__lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size _lowerCamelCase : Union[str, Any] = feature_extractor(audio_target=__lowerCAmelCase ,padding=__lowerCAmelCase ,return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input _lowerCamelCase : Tuple = feature_extractor(speech_inputs[0] ,return_tensors="np" ).input_values _lowerCamelCase : int = feature_extractor(np_speech_inputs[0] ,return_tensors="np" ).input_values self.assertTrue(np.allclose(__lowerCAmelCase ,__lowerCAmelCase ,atol=1e-3 ) ) # Test batched _lowerCamelCase : Any = feature_extractor(__lowerCAmelCase ,return_tensors="np" ).input_values _lowerCamelCase : Any = feature_extractor(__lowerCAmelCase ,return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase ,__lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase ,__lowerCAmelCase ,atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _lowerCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _lowerCamelCase : Tuple = np.asarray(__lowerCAmelCase ) _lowerCamelCase : str = feature_extractor(__lowerCAmelCase ,return_tensors="np" ).input_values _lowerCamelCase : Optional[int] = feature_extractor(__lowerCAmelCase ,return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase ,__lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase ,__lowerCAmelCase ,atol=1e-3 ) ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() _lowerCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCamelCase : List[Any] = feat_extract.model_input_names[0] _lowerCamelCase : Optional[Any] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__lowerCAmelCase ) == len(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase ,processed_features[input_name] ) ) ) _lowerCamelCase : Tuple = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__lowerCAmelCase ) _lowerCamelCase : Dict = BatchFeature({input_name: speech_inputs} ,tensor_type="np" ) _lowerCamelCase : Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCamelCase : Any = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : int = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__lowerCAmelCase ) _lowerCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCamelCase : str = feat_extract.model_input_names[0] _lowerCamelCase : Optional[Any] = BatchFeature({input_name: speech_inputs} ,tensor_type="pt" ) _lowerCamelCase : str = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCamelCase : str = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCamelCase : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() _lowerCamelCase : Union[str, Any] = feat_extract.model_input_names[0] _lowerCamelCase : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) _lowerCamelCase : Dict = feat_extract.num_mel_bins # hack! _lowerCamelCase : str = feat_extract.pad(__lowerCAmelCase ,padding="longest" ,return_tensors="np" )[input_name] _lowerCamelCase : List[str] = feat_extract.pad(__lowerCAmelCase ,padding="longest" ,return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : str = self.feat_extract_dict _lowerCamelCase : List[Any] = True _lowerCamelCase : List[str] = self.feature_extraction_class(**__lowerCAmelCase ) _lowerCamelCase : List[Any] = self.feat_extract_tester.prepare_inputs_for_target() _lowerCamelCase : List[Any] = [len(__lowerCAmelCase ) for x in speech_inputs] _lowerCamelCase : List[str] = feat_extract.model_input_names[0] _lowerCamelCase : str = BatchFeature({input_name: speech_inputs} ) _lowerCamelCase : int = feat_extract.num_mel_bins # hack! _lowerCamelCase : Optional[Any] = feat_extract.pad(__lowerCAmelCase ,padding="longest" ,return_tensors="np" ) self.assertIn("attention_mask" ,__lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Dict = self.feat_extract_dict _lowerCamelCase : Optional[int] = True _lowerCamelCase : List[str] = self.feature_extraction_class(**__lowerCAmelCase ) _lowerCamelCase : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() _lowerCamelCase : List[Any] = [len(__lowerCAmelCase ) for x in speech_inputs] _lowerCamelCase : Optional[int] = feat_extract.model_input_names[0] _lowerCamelCase : Optional[int] = BatchFeature({input_name: speech_inputs} ) _lowerCamelCase : Tuple = min(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = feat_extract.num_mel_bins # hack! _lowerCamelCase : Dict = feat_extract.pad( __lowerCAmelCase ,padding="max_length" ,max_length=__lowerCAmelCase ,truncation=__lowerCAmelCase ,return_tensors="np" ) self.assertIn("attention_mask" ,__lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] ) def _lowercase ( self: Dict ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' from datasets import load_dataset _lowerCamelCase : Optional[int] = load_dataset("hf-internal-testing/librispeech_asr_dummy" ,"clean" ,split="validation" ) # automatic decoding with librispeech _lowerCamelCase : List[str] = ds.sort("id" ).select(range(__lowerCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[str] = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on _lowerCamelCase : Union[str, Any] = self._load_datasamples(1 ) _lowerCamelCase : Optional[int] = SpeechTaFeatureExtractor() _lowerCamelCase : Any = feature_extractor(__lowerCAmelCase ,return_tensors="pt" ).input_values self.assertEquals(input_values.shape ,(1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] ,__lowerCAmelCase ,atol=1e-6 ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = torch.tensor( [-2.68_70, -3.01_04, -3.13_56, -3.53_52, -3.00_44, -3.03_53, -3.47_19, -3.67_77, -3.15_20, -2.94_35, -2.65_53, -2.87_95, -2.99_44, -2.59_21, -3.02_79, -3.03_86, -3.08_64, -3.12_91, -3.23_53, -2.74_44, -2.68_31, -2.72_87, -3.17_61, -3.15_71, -3.27_26, -3.05_82, -3.10_07, -3.45_33, -3.46_95, -3.09_98] ) # fmt: on _lowerCamelCase : Optional[Any] = self._load_datasamples(1 ) _lowerCamelCase : List[str] = SpeechTaFeatureExtractor() _lowerCamelCase : List[str] = feature_extractor(audio_target=__lowerCAmelCase ,return_tensors="pt" ).input_values self.assertEquals(input_values.shape ,(1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] ,__lowerCAmelCase ,atol=1e-4 ) )
352
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class A_ ( _a ): def __init__( self: List[Any] ,__lowerCAmelCase: Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() _lowerCamelCase : Tuple = nn.ModuleList(__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Union[torch.Tensor, float, int] ,__lowerCAmelCase: torch.Tensor ,__lowerCAmelCase: List[torch.tensor] ,__lowerCAmelCase: List[float] ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[Dict[str, Any]] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(__lowerCAmelCase ,__lowerCAmelCase ,self.nets ) ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = controlnet( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,) # merge samples if i == 0: _lowerCamelCase, _lowerCamelCase : Optional[Any] = down_samples, mid_sample else: _lowerCamelCase : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__lowerCAmelCase ,__lowerCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Union[str, os.PathLike] ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Callable = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[str] = None ,): '''simple docstring''' _lowerCamelCase : List[Any] = 0 _lowerCamelCase : str = save_directory for controlnet in self.nets: controlnet.save_pretrained( __lowerCAmelCase ,is_main_process=__lowerCAmelCase ,save_function=__lowerCAmelCase ,safe_serialization=__lowerCAmelCase ,variant=__lowerCAmelCase ,) idx += 1 _lowerCamelCase : int = model_path_to_save + F"""_{idx}""" @classmethod def _lowercase ( cls: Any ,__lowerCAmelCase: Optional[Union[str, os.PathLike]] ,**__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : int = 0 _lowerCamelCase : str = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _lowerCamelCase : Dict = pretrained_model_path while os.path.isdir(__lowerCAmelCase ): _lowerCamelCase : List[Any] = ControlNetModel.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) controlnets.append(__lowerCAmelCase ) idx += 1 _lowerCamelCase : Tuple = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(__lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.""" ) if len(__lowerCAmelCase ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(__lowerCAmelCase )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(__lowerCAmelCase )
340
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A_ ( _lowerCamelCase ): lowerCAmelCase__ = (UniPCMultistepScheduler,) lowerCAmelCase__ = (('num_inference_steps', 2_5),) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = { "num_train_timesteps": 1_000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**__lowerCAmelCase ) return config def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Any=0 ,**__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Tuple = dict(self.forward_default_kwargs ) _lowerCamelCase : Optional[Any] = kwargs.pop("num_inference_steps" ,__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.dummy_sample _lowerCamelCase : Optional[int] = 0.1 * sample _lowerCamelCase : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCamelCase : int = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : str = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals _lowerCamelCase : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = scheduler_class.from_pretrained(__lowerCAmelCase ) new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals _lowerCamelCase : List[str] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCamelCase, _lowerCamelCase : Union[str, Any] = sample, sample for t in range(__lowerCAmelCase ,time_step + scheduler.config.solver_order + 1 ): _lowerCamelCase : Optional[int] = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase ).prev_sample _lowerCamelCase : Tuple = new_scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowercase ( self: str ,__lowerCAmelCase: Optional[Any]=0 ,**__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = dict(self.forward_default_kwargs ) _lowerCamelCase : List[str] = kwargs.pop("num_inference_steps" ,__lowerCAmelCase ) _lowerCamelCase : str = self.dummy_sample _lowerCamelCase : str = 0.1 * sample _lowerCamelCase : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCamelCase : Union[str, Any] = self.get_scheduler_config() _lowerCamelCase : Dict = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCamelCase : int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) _lowerCamelCase : List[Any] = scheduler_class.from_pretrained(__lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _lowerCamelCase : Any = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCamelCase : Optional[Any] = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase ).prev_sample _lowerCamelCase : str = new_scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowercase ( self: Dict ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: int ): '''simple docstring''' if scheduler is None: _lowerCamelCase : Dict = self.scheduler_classes[0] _lowerCamelCase : List[str] = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : Any = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase : Tuple = 10 _lowerCamelCase : int = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCamelCase : str = model(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Optional[int] = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample return sample def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = dict(self.forward_default_kwargs ) _lowerCamelCase : List[str] = kwargs.pop("num_inference_steps" ,__lowerCAmelCase ) for scheduler_class in self.scheduler_classes: _lowerCamelCase : List[str] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.dummy_sample _lowerCamelCase : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(__lowerCAmelCase ,"set_timesteps" ): scheduler.set_timesteps(__lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(__lowerCAmelCase ,"set_timesteps" ): _lowerCamelCase : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCamelCase : Any = [residual + 0.2, residual + 0.15, residual + 0.10] _lowerCamelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] _lowerCamelCase : Dict = scheduler.timesteps[5] _lowerCamelCase : int = scheduler.timesteps[6] _lowerCamelCase : str = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase ).prev_sample _lowerCamelCase : str = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCamelCase : Dict = self.full_loop(scheduler=__lowerCAmelCase ) _lowerCamelCase : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 _lowerCamelCase : Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCamelCase : Union[str, Any] = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase : Union[str, Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase : List[str] = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase : Tuple = self.full_loop(scheduler=__lowerCAmelCase ) _lowerCamelCase : Any = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 def _lowercase ( self: Optional[Any] ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,sample_max_value=__lowerCAmelCase ,solver_order=__lowerCAmelCase ,solver_type=__lowerCAmelCase ,) def _lowercase ( self: int ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowerCAmelCase ,solver_type=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,) _lowerCamelCase : Any = self.full_loop( solver_order=__lowerCAmelCase ,solver_type=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,) assert not torch.isnan(__lowerCAmelCase ).any(), "Samples have nan numbers" def _lowercase ( self: Any ): '''simple docstring''' self.check_over_configs(lower_order_final=__lowerCAmelCase ) self.check_over_configs(lower_order_final=__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=__lowerCAmelCase ,time_step=0 ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.full_loop() _lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Any = self.full_loop(prediction_type="v_prediction" ) _lowerCamelCase : Any = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.10_14 ) < 1e-3 def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Dict = self.get_scheduler_config(thresholding=__lowerCAmelCase ,dynamic_thresholding_ratio=0 ) _lowerCamelCase : Optional[Any] = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase : List[Any] = 10 _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : str = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa def _lowercase ( self: List[str] ,**__lowerCAmelCase: Any ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _lowerCamelCase : int = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : Tuple = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
353
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : int = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]: '''simple docstring''' _lowerCamelCase : Tuple = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): _lowerCamelCase : Tuple = "segformer.encoder." + key if key.startswith("backbone" ): _lowerCamelCase : Any = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowerCamelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _lowerCamelCase : int = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_lowerCamelCase )-1}""" ) if "norm" in key: _lowerCamelCase : Optional[Any] = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowerCamelCase : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] _lowerCamelCase : Tuple = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_lowerCamelCase )-1}""" ) if "layer_norm1" in key: _lowerCamelCase : Union[str, Any] = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: _lowerCamelCase : int = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _lowerCamelCase : Union[str, Any] = key[key.find("block" ) + len("block" )] _lowerCamelCase : Optional[Any] = key.replace(F"""block{idx}""" , F"""block.{int(_lowerCamelCase )-1}""" ) if "attn.q" in key: _lowerCamelCase : Optional[int] = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: _lowerCamelCase : List[str] = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: _lowerCamelCase : Tuple = key.replace("attn" , "attention.self" ) if "fc1" in key: _lowerCamelCase : Optional[Any] = key.replace("fc1" , "dense1" ) if "fc2" in key: _lowerCamelCase : Dict = key.replace("fc2" , "dense2" ) if "linear_pred" in key: _lowerCamelCase : int = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: _lowerCamelCase : str = key.replace("linear_fuse.conv" , "linear_fuse" ) _lowerCamelCase : Optional[Any] = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowerCamelCase : Union[str, Any] = key[key.find("linear_c" ) + len("linear_c" )] _lowerCamelCase : Optional[int] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_lowerCamelCase )-1}""" ) if key.startswith("head" ): _lowerCamelCase : List[str] = key.replace("head" , "classifier" ) _lowerCamelCase : Union[str, Any] = value return new_state_dict def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _lowerCamelCase : int = kv_weight[ : config.hidden_sizes[i], : ] _lowerCamelCase : int = kv_bias[: config.hidden_sizes[i]] _lowerCamelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _lowerCamelCase : Optional[Any] = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase_( ) -> Dict: '''simple docstring''' _lowerCamelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Any = SegformerConfig() _lowerCamelCase : int = False # set attributes based on model_name _lowerCamelCase : Any = "huggingface/label-files" if "segformer" in model_name: _lowerCamelCase : str = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: _lowerCamelCase : str = 150 _lowerCamelCase : Dict = "ade20k-id2label.json" _lowerCamelCase : Dict = (1, 150, 128, 128) elif "city" in model_name: _lowerCamelCase : List[str] = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" _lowerCamelCase : Tuple = (1, 19, 128, 128) else: raise ValueError(F"""Model {model_name} not supported""" ) elif "mit" in model_name: _lowerCamelCase : List[str] = True _lowerCamelCase : Tuple = model_name[4:6] _lowerCamelCase : Tuple = 1000 _lowerCamelCase : List[Any] = "imagenet-1k-id2label.json" _lowerCamelCase : List[Any] = (1, 1000) else: raise ValueError(F"""Model {model_name} not supported""" ) # set config attributes _lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : int = 256 elif size == "b2": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : List[Any] = 768 _lowerCamelCase : Any = [3, 4, 6, 3] elif size == "b3": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : Union[str, Any] = 768 _lowerCamelCase : Optional[Any] = [3, 4, 18, 3] elif size == "b4": _lowerCamelCase : str = [64, 128, 320, 512] _lowerCamelCase : Optional[Any] = 768 _lowerCamelCase : Dict = [3, 8, 27, 3] elif size == "b5": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : Tuple = 768 _lowerCamelCase : Tuple = [3, 6, 40, 3] else: raise ValueError(F"""Size {size} not supported""" ) # load image processor (only resize + normalize) _lowerCamelCase : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase ) # prepare image _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Dict = image_processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values logger.info(F"""Converting model {model_name}...""" ) # load original state dict if encoder_only: _lowerCamelCase : Tuple = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) ) else: _lowerCamelCase : int = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )["state_dict"] # rename keys _lowerCamelCase : str = rename_keys(_lowerCamelCase , encoder_only=_lowerCamelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_lowerCamelCase , _lowerCamelCase ) # create HuggingFace model and load state dict if encoder_only: _lowerCamelCase : Tuple = False _lowerCamelCase : Optional[int] = SegformerForImageClassification(_lowerCamelCase ) else: _lowerCamelCase : List[str] = SegformerForSemanticSegmentation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # forward pass _lowerCamelCase : Any = model(_lowerCamelCase ) _lowerCamelCase : Dict = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _lowerCamelCase : str = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]], [[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _lowerCamelCase : int = torch.tensor( [ [[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]], [[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]], [[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _lowerCamelCase : Optional[Any] = torch.tensor( [ [[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]], [[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]], [[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]], [[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]], [[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]], [[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]], [[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _lowerCamelCase : Dict = torch.tensor( [ [[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]], [[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _lowerCamelCase : Optional[int] = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]], [[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [ [-1.13_72e01, -1.27_87e01, -1.34_77e01], [-1.25_36e01, -1.41_94e01, -1.44_09e01], [-1.32_17e01, -1.48_88e01, -1.53_27e01], ], [ [-1.47_91e01, -1.71_22e01, -1.82_77e01], [-1.71_63e01, -1.91_92e01, -1.95_33e01], [-1.78_97e01, -1.99_91e01, -2.03_15e01], ], [ [7.67_23e-01, 4.19_21e-01, -7.78_78e-02], [4.77_72e-01, 9.55_57e-03, -2.80_82e-01], [3.60_32e-01, -2.48_26e-01, -5.11_68e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _lowerCamelCase : Union[str, Any] = torch.tensor( [ [[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]], [[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _lowerCamelCase : List[Any] = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]], [[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _lowerCamelCase : Any = torch.tensor( [ [[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]], [[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]], [[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _lowerCamelCase : str = torch.tensor( [ [[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]], [[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: _lowerCamelCase : Dict = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : str = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
340
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class A_ ( lowerCamelCase__ ): lowerCAmelCase__ = 'gpt_neo' lowerCAmelCase__ = ['past_key_values'] lowerCAmelCase__ = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self: Tuple ,__lowerCAmelCase: List[Any]=50_257 ,__lowerCAmelCase: Optional[Any]=2_048 ,__lowerCAmelCase: List[str]=2_048 ,__lowerCAmelCase: Any=24 ,__lowerCAmelCase: Tuple=[[["global", "local"], 12]] ,__lowerCAmelCase: Union[str, Any]=16 ,__lowerCAmelCase: Optional[int]=None ,__lowerCAmelCase: int=256 ,__lowerCAmelCase: List[Any]="gelu_new" ,__lowerCAmelCase: int=0.0 ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: Any=0.1 ,__lowerCAmelCase: List[str]=1e-5 ,__lowerCAmelCase: Any=0.02 ,__lowerCAmelCase: Union[str, Any]=True ,__lowerCAmelCase: int=50_256 ,__lowerCAmelCase: Optional[Any]=50_256 ,**__lowerCAmelCase: int ,): '''simple docstring''' _lowerCamelCase : Union[str, Any] = vocab_size _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : str = hidden_size _lowerCamelCase : Optional[int] = num_layers _lowerCamelCase : Any = num_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Dict = window_size _lowerCamelCase : Union[str, Any] = activation_function _lowerCamelCase : Dict = resid_dropout _lowerCamelCase : int = embed_dropout _lowerCamelCase : List[Any] = attention_dropout _lowerCamelCase : str = classifier_dropout _lowerCamelCase : List[str] = layer_norm_epsilon _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : Dict = use_cache _lowerCamelCase : str = bos_token_id _lowerCamelCase : Optional[int] = eos_token_id _lowerCamelCase : Dict = attention_types _lowerCamelCase : int = self.expand_attention_types_params(__lowerCAmelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " F"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ F"""`config.num_layers = {self.num_layers}`. """ "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) @staticmethod def _lowercase ( __lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Any = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' import torch _lowerCamelCase : Optional[int] = input.size() _lowerCamelCase : List[Any] = len(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = shape[dimension] _lowerCamelCase : Tuple = torch.arange(0 , _lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : str = torch.div(sizedim - size , _lowerCAmelCase , rounding_mode="floor" ) + 1 _lowerCamelCase : int = torch.arange(_lowerCAmelCase ) + low_indices[:min_length][:, None] _lowerCamelCase : str = [slice(_lowerCAmelCase )] * rank _lowerCamelCase : Union[str, Any] = indices _lowerCamelCase : Tuple = input[s] _lowerCamelCase : int = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(_lowerCAmelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' import torch _lowerCamelCase : Dict = torch.arange(1 , _lowerCAmelCase ) _lowerCamelCase : int = torch.remainder(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = remainders == 0 _lowerCamelCase : Dict = candidates[divisor_indices] _lowerCamelCase : Optional[Any] = torch.max(_lowerCAmelCase ) return largest_divisor, torch.div(_lowerCAmelCase , _lowerCAmelCase , rounding_mode="floor" ) class A_ ( lowerCamelCase__ ): @property def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCAmelCase ,direction="inputs" ) _lowerCamelCase : int = {0: "batch", 1: "past_sequence + sequence"} else: _lowerCamelCase : str = {0: "batch", 1: "sequence"} return common_inputs @property def _lowercase ( self: Tuple ): '''simple docstring''' return self._config.num_heads def _lowercase ( self: List[str] ,__lowerCAmelCase: PreTrainedTokenizer ,__lowerCAmelCase: int = -1 ,__lowerCAmelCase: int = -1 ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[TensorType] = None ,): '''simple docstring''' _lowerCamelCase : List[Any] = super(__lowerCAmelCase ,self ).generate_dummy_inputs( __lowerCAmelCase ,batch_size=__lowerCAmelCase ,seq_length=__lowerCAmelCase ,is_pair=__lowerCAmelCase ,framework=__lowerCAmelCase ) # We need to order the input in the way they appears in the forward() _lowerCamelCase : str = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCamelCase : Union[str, Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCamelCase : Tuple = seqlen + 2 _lowerCamelCase : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowerCamelCase : Union[str, Any] = [ (torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase )) for _ in range(self.num_layers ) ] _lowerCamelCase : Optional[Any] = common_inputs["attention_mask"] if self.use_past: _lowerCamelCase : Optional[Any] = ordered_inputs["attention_mask"].dtype _lowerCamelCase : str = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowerCAmelCase ,__lowerCAmelCase ,dtype=__lowerCAmelCase )] ,dim=1 ) return ordered_inputs @property def _lowercase ( self: Dict ): '''simple docstring''' return 13
354
"""simple docstring""" _lowerCAmelCase : dict[tuple[int, int, int], int] = {} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _lowerCamelCase : Optional[int] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _lowerCamelCase : int = _calculate(days - 1 , _lowerCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _lowerCamelCase : Tuple = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _lowerCamelCase : str = _calculate(days - 1 , _lowerCamelCase , 0 ) _lowerCamelCase : List[Any] = state_late + state_absent + state_ontime _lowerCamelCase : int = prizestrings return prizestrings def lowerCamelCase_( _lowerCamelCase = 30 ) -> int: '''simple docstring''' return _calculate(_lowerCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
340
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ) -> bool: '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) _lowerCamelCase : str = sorted(string.lower() ) return len(_lowerCamelCase ) == len(set(_lowerCamelCase ) ) if __name__ == "__main__": _lowerCAmelCase : int = input('''Enter a string ''').strip() _lowerCAmelCase : Dict = is_isogram(input_str) print(f'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
355
"""simple docstring""" from __future__ import annotations def lowerCamelCase_( _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : int = str(_lowerCamelCase ) return len(_lowerCamelCase ) == 9 and set(_lowerCamelCase ) == set("123456789" ) def lowerCamelCase_( ) -> int | None: '''simple docstring''' for base_num in range(9999 , 4999 , -1 ): _lowerCamelCase : Union[str, Any] = 100002 * base_num if is_9_pandigital(_lowerCamelCase ): return candidate for base_num in range(333 , 99 , -1 ): _lowerCamelCase : Tuple = 1002003 * base_num if is_9_pandigital(_lowerCamelCase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
340
0
"""simple docstring""" import unittest import numpy as np def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , ) -> np.ndarray: '''simple docstring''' _lowerCamelCase : Dict = np.shape(__UpperCAmelCase ) _lowerCamelCase : Optional[Any] = np.shape(__UpperCAmelCase ) _lowerCamelCase : Dict = np.shape(__UpperCAmelCase ) if shape_a[0] != shape_b[0]: _lowerCamelCase : Union[str, Any] = ( "Expected the same number of rows for A and B. " F"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(__UpperCAmelCase ) if shape_b[1] != shape_c[1]: _lowerCamelCase : Dict = ( "Expected the same number of columns for B and C. " F"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(__UpperCAmelCase ) _lowerCamelCase : int = pseudo_inv if a_inv is None: try: _lowerCamelCase : Dict = np.linalg.inv(__UpperCAmelCase ) except np.linalg.LinAlgError: raise ValueError( "Input matrix A is not invertible. Cannot compute Schur complement." ) return mat_c - mat_b.T @ a_inv @ mat_b class A_ ( unittest.TestCase ): def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _lowerCamelCase : str = np.array([[0, 3], [3, 0], [2, 3]] ) _lowerCamelCase : Tuple = np.array([[2, 1], [6, 3]] ) _lowerCamelCase : Union[str, Any] = schur_complement(lowercase_ ,lowercase_ ,lowercase_ ) _lowerCamelCase : List[Any] = np.block([[a, b], [b.T, c]] ) _lowerCamelCase : List[str] = np.linalg.det(lowercase_ ) _lowerCamelCase : int = np.linalg.det(lowercase_ ) _lowerCamelCase : List[Any] = np.linalg.det(lowercase_ ) self.assertAlmostEqual(lowercase_ ,det_a * det_s ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Dict = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _lowerCamelCase : Dict = np.array([[0, 3], [3, 0], [2, 3]] ) _lowerCamelCase : Optional[int] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowercase_ ): schur_complement(lowercase_ ,lowercase_ ,lowercase_ ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _lowerCamelCase : List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) _lowerCamelCase : Union[str, Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowercase_ ): schur_complement(lowercase_ ,lowercase_ ,lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
356
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class A_ ( _a ): lowerCAmelCase__ = 'char' lowerCAmelCase__ = 'bpe' lowerCAmelCase__ = 'wp' _lowerCAmelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class A_ ( _a ): lowerCAmelCase__ = ['image_processor', 'char_tokenizer'] lowerCAmelCase__ = 'ViTImageProcessor' lowerCAmelCase__ = 'MgpstrTokenizer' def __init__( self: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,__lowerCAmelCase ,) _lowerCamelCase : List[Any] = kwargs.pop("feature_extractor" ) _lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : str = AutoTokenizer.from_pretrained("gpt2" ) _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) def __call__( self: Optional[int] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ): '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _lowerCamelCase : Optional[int] = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is not None: _lowerCamelCase : int = self.char_tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: _lowerCamelCase : Tuple = encodings["input_ids"] return inputs def _lowercase ( self: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = sequences _lowerCamelCase : Dict = char_preds.size(0 ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._decode_helper(__lowerCAmelCase ,"char" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(__lowerCAmelCase ,"bpe" ) _lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(__lowerCAmelCase ,"wp" ) _lowerCamelCase : List[str] = [] _lowerCamelCase : str = [] for i in range(__lowerCAmelCase ): _lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowerCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowerCamelCase : Optional[Any] = scores.index(max(__lowerCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = final_strs _lowerCamelCase : int = final_scores _lowerCamelCase : str = char_strs _lowerCamelCase : Dict = bpe_strs _lowerCamelCase : int = wp_strs return out def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ): '''simple docstring''' if format == DecodeType.CHARACTER: _lowerCamelCase : int = self.char_decode _lowerCamelCase : List[str] = 1 _lowerCamelCase : Optional[int] = "[s]" elif format == DecodeType.BPE: _lowerCamelCase : Dict = self.bpe_decode _lowerCamelCase : str = 2 _lowerCamelCase : Union[str, Any] = "#" elif format == DecodeType.WORDPIECE: _lowerCamelCase : int = self.wp_decode _lowerCamelCase : List[str] = 102 _lowerCamelCase : List[Any] = "[SEP]" else: raise ValueError(F"""Format {format} is not supported.""" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], [] _lowerCamelCase : Any = pred_logits.size(0 ) _lowerCamelCase : int = pred_logits.size(1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=__lowerCAmelCase ,sorted=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_index.view(-1 ,__lowerCAmelCase )[:, 1:] _lowerCamelCase : List[str] = decoder(__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : str = torch.nn.functional.softmax(__lowerCAmelCase ,dim=2 ).max(dim=2 ) _lowerCamelCase : Any = preds_max_prob[:, 1:] for index in range(__lowerCAmelCase ): _lowerCamelCase : List[Any] = preds_str[index].find(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_str[index][:pred_eos] _lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist() _lowerCamelCase : List[str] = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1 _lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1] _lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__lowerCAmelCase ) conf_scores.append(__lowerCAmelCase ) return dec_strs, conf_scores def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str] ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(__lowerCAmelCase ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs
340
0
"""simple docstring""" _lowerCAmelCase : List[str] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Any = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _lowerCAmelCase : list[bool | None] = [None] * 1000_0000 _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : Optional[int] = False def lowerCamelCase_( _lowerCamelCase ) -> bool: '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _lowerCamelCase : Union[str, Any] = chain(next_number(lowercase_ ) ) _lowerCamelCase : Union[str, Any] = number_chain while number < 10000000: _lowerCamelCase : Tuple = number_chain number *= 10 return number_chain def lowerCamelCase_( _lowerCamelCase = 10000000 ) -> int: '''simple docstring''' for i in range(1 , lowercase_ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution() = }''')
357
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _lowerCAmelCase : List[Any] = get_logger(__name__) class A_ : lowerCAmelCase__ = 'dummy_data' lowerCAmelCase__ = 'datasets' lowerCAmelCase__ = False def __init__( self: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[Version, str] ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[List[Callable]] = None ,): '''simple docstring''' _lowerCamelCase : str = 0 _lowerCamelCase : List[str] = dataset_name _lowerCamelCase : Optional[int] = cache_dir _lowerCamelCase : Optional[int] = use_local_dummy_data _lowerCamelCase : int = config # download_callbacks take a single url as input _lowerCamelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowerCamelCase : int = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowerCamelCase : Tuple = str(__lowerCAmelCase ) # to be downloaded _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Dict = None @property def _lowercase ( self: str ): '''simple docstring''' if self._dummy_file is None: _lowerCamelCase : List[str] = self.download_dummy_data() return self._dummy_file @property def _lowercase ( self: str ): '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" ,self.config.name ,self.version_name ) # structure is dummy / version_name return os.path.join("dummy" ,self.version_name ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' return os.path.join(self.dummy_data_folder ,"dummy_data.zip" ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowerCamelCase : Optional[int] = cached_path( __lowerCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=__lowerCAmelCase ,force_extract=__lowerCAmelCase ) return os.path.join(__lowerCAmelCase ,self.dummy_file_name ) @property def _lowercase ( self: Tuple ): '''simple docstring''' return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file ) @property def _lowercase ( self: List[str] ): '''simple docstring''' if self._bucket_url is None: _lowerCamelCase : List[str] = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) ) return self._bucket_url @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,*__lowerCAmelCase: List[Any] ): '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowerCamelCase : Tuple = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowerCamelCase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.create_dummy_data_dict(__lowerCAmelCase ,__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,(list, tuple) ): return self.create_dummy_data_list(__lowerCAmelCase ,__lowerCAmelCase ) else: return self.create_dummy_data_single(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: Optional[int] ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' return path def _lowercase ( self: Optional[int] ): '''simple docstring''' return {} def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : str = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): for single_url in single_urls: download_callback(__lowerCAmelCase ) else: _lowerCamelCase : Union[str, Any] = single_urls download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Dict = [os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) for x in single_urls] else: _lowerCamelCase : Union[str, Any] = single_urls _lowerCamelCase : List[str] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) _lowerCamelCase : List[Any] = value # make sure that values are unique if all(isinstance(__lowerCAmelCase ,__lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowerCamelCase : List[str] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,__lowerCAmelCase ) ) for url in data_url ) _lowerCamelCase : Optional[Any] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _lowerCamelCase : Tuple = [data_url[0]] * len(__lowerCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(__lowerCAmelCase ) return dummy_data_list def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : Optional[int] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(__lowerCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass def _lowercase ( self: Optional[int] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' def _iter_archive_members(__lowerCAmelCase: Any ): # this preserves the order of the members inside the ZIP archive _lowerCamelCase : Tuple = Path(self.dummy_file ).parent _lowerCamelCase : str = path.relative_to(__lowerCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _lowerCamelCase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = Path(__lowerCAmelCase ) _lowerCamelCase : int = _iter_archive_members(__lowerCAmelCase ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(__lowerCAmelCase ).as_posix(), file_path.open("rb" ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [paths] for path in paths: if os.path.isfile(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(__lowerCAmelCase ): if filename.startswith((".", "__") ): continue yield os.path.join(__lowerCAmelCase ,__lowerCAmelCase )
340
0
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class A_ : def __init__( self: List[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = {} def _lowercase ( self: int ,__lowerCAmelCase: str ,__lowerCAmelCase: Any ,__lowerCAmelCase: Union[str, Any]=1 ): '''simple docstring''' if self.graph.get(lowercase_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _lowerCamelCase : Optional[Any] = [[w, v]] if not self.graph.get(lowercase_ ): _lowerCamelCase : Tuple = [] def _lowercase ( self: Any ): '''simple docstring''' return list(self.graph ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[str] ): '''simple docstring''' if self.graph.get(lowercase_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase_ ) def _lowercase ( self: List[str] ,__lowerCAmelCase: str=-2 ,__lowerCAmelCase: Dict=-1 ): '''simple docstring''' if s == d: return [] _lowerCamelCase : List[str] = [] _lowerCamelCase : Tuple = [] if s == -2: _lowerCamelCase : str = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) _lowerCamelCase : Optional[int] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCamelCase : Union[str, Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _lowerCamelCase : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase_ ) != 0: _lowerCamelCase : Optional[int] = stack[len(lowercase_ ) - 1] else: _lowerCamelCase : Any = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return visited def _lowercase ( self: List[Any] ,__lowerCAmelCase: List[Any]=-1 ): '''simple docstring''' if c == -1: _lowerCamelCase : Dict = floor(random() * 10_000 ) + 10 for i in range(lowercase_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _lowerCamelCase : Any = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase_ ,lowercase_ ,1 ) def _lowercase ( self: str ,__lowerCAmelCase: int=-2 ): '''simple docstring''' _lowerCamelCase : Any = deque() _lowerCamelCase : Optional[Any] = [] if s == -2: _lowerCamelCase : Any = list(self.graph )[0] d.append(lowercase_ ) visited.append(lowercase_ ) while d: _lowerCamelCase : List[str] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _lowercase ( self: str ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[str] ): '''simple docstring''' return len(self.graph[u] ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: List[str]=-2 ): '''simple docstring''' _lowerCamelCase : str = [] _lowerCamelCase : str = [] if s == -2: _lowerCamelCase : List[str] = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) _lowerCamelCase : str = s _lowerCamelCase : Optional[int] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCamelCase : Tuple = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _lowerCamelCase : str = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowercase_ ) != 0: _lowerCamelCase : List[str] = stack[len(lowercase_ ) - 1] else: _lowerCamelCase : Optional[Any] = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return sorted_nodes def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : str = [] _lowerCamelCase : str = [] _lowerCamelCase : str = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) _lowerCamelCase : Union[str, Any] = -2 _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Tuple = s _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCamelCase : List[str] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _lowerCamelCase : Tuple = len(lowercase_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _lowerCamelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() _lowerCamelCase : int = True if len(lowercase_ ) != 0: _lowerCamelCase : Optional[int] = stack[len(lowercase_ ) - 1] else: _lowerCamelCase : Optional[Any] = False indirect_parents.append(lowercase_ ) _lowerCamelCase : str = s _lowerCamelCase : Optional[int] = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return list(lowercase_ ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Optional[Any] = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) _lowerCamelCase : Optional[Any] = -2 _lowerCamelCase : List[str] = [] _lowerCamelCase : Tuple = s _lowerCamelCase : Any = False _lowerCamelCase : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCamelCase : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _lowerCamelCase : Union[str, Any] = len(lowercase_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _lowerCamelCase : int = node[1] break # check if all the children are visited if s == ss: stack.pop() _lowerCamelCase : List[Any] = True if len(lowercase_ ) != 0: _lowerCamelCase : Optional[Any] = stack[len(lowercase_ ) - 1] else: _lowerCamelCase : Union[str, Any] = False indirect_parents.append(lowercase_ ) _lowerCamelCase : Optional[Any] = s _lowerCamelCase : Tuple = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return False def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Dict=-2 ,__lowerCAmelCase: List[str]=-1 ): '''simple docstring''' _lowerCamelCase : str = time() self.dfs(lowercase_ ,lowercase_ ) _lowerCamelCase : int = time() return end - begin def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int]=-2 ): '''simple docstring''' _lowerCamelCase : List[str] = time() self.bfs(lowercase_ ) _lowerCamelCase : Union[str, Any] = time() return end - begin class A_ : def __init__( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = {} def _lowercase ( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: str=1 ): '''simple docstring''' if self.graph.get(lowercase_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _lowerCamelCase : List[Any] = [[w, v]] # add the other way if self.graph.get(lowercase_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _lowerCamelCase : Dict = [[w, u]] def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' if self.graph.get(lowercase_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase_ ) # the other way round if self.graph.get(lowercase_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowercase_ ) def _lowercase ( self: int ,__lowerCAmelCase: str=-2 ,__lowerCAmelCase: str=-1 ): '''simple docstring''' if s == d: return [] _lowerCamelCase : Tuple = [] _lowerCamelCase : int = [] if s == -2: _lowerCamelCase : str = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) _lowerCamelCase : Optional[Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCamelCase : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _lowerCamelCase : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase_ ) != 0: _lowerCamelCase : Optional[Any] = stack[len(lowercase_ ) - 1] else: _lowerCamelCase : Optional[int] = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return visited def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Optional[Any]=-1 ): '''simple docstring''' if c == -1: _lowerCamelCase : int = floor(random() * 10_000 ) + 10 for i in range(lowercase_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _lowerCamelCase : List[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase_ ,lowercase_ ,1 ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Optional[Any]=-2 ): '''simple docstring''' _lowerCamelCase : Tuple = deque() _lowerCamelCase : List[str] = [] if s == -2: _lowerCamelCase : Union[str, Any] = list(self.graph )[0] d.append(lowercase_ ) visited.append(lowercase_ ) while d: _lowerCamelCase : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _lowercase ( self: Any ,__lowerCAmelCase: int ): '''simple docstring''' return len(self.graph[u] ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = [] _lowerCamelCase : Optional[int] = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) _lowerCamelCase : int = -2 _lowerCamelCase : str = [] _lowerCamelCase : Optional[Any] = s _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCamelCase : List[str] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _lowerCamelCase : Union[str, Any] = len(lowercase_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _lowerCamelCase : int = node[1] break # check if all the children are visited if s == ss: stack.pop() _lowerCamelCase : int = True if len(lowercase_ ) != 0: _lowerCamelCase : Union[str, Any] = stack[len(lowercase_ ) - 1] else: _lowerCamelCase : Union[str, Any] = False indirect_parents.append(lowercase_ ) _lowerCamelCase : Tuple = s _lowerCamelCase : List[Any] = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return list(lowercase_ ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : str = [] _lowerCamelCase : str = list(self.graph )[0] stack.append(lowercase_ ) visited.append(lowercase_ ) _lowerCamelCase : str = -2 _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : Optional[int] = s _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCamelCase : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _lowerCamelCase : List[str] = len(lowercase_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _lowerCamelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() _lowerCamelCase : str = True if len(lowercase_ ) != 0: _lowerCamelCase : int = stack[len(lowercase_ ) - 1] else: _lowerCamelCase : int = False indirect_parents.append(lowercase_ ) _lowerCamelCase : List[Any] = s _lowerCamelCase : str = ss # check if se have reached the starting point if len(lowercase_ ) == 0: return False def _lowercase ( self: List[Any] ): '''simple docstring''' return list(self.graph ) def _lowercase ( self: Any ,__lowerCAmelCase: List[str]=-2 ,__lowerCAmelCase: Tuple=-1 ): '''simple docstring''' _lowerCamelCase : List[str] = time() self.dfs(lowercase_ ,lowercase_ ) _lowerCamelCase : Optional[Any] = time() return end - begin def _lowercase ( self: Tuple ,__lowerCAmelCase: List[str]=-2 ): '''simple docstring''' _lowerCamelCase : int = time() self.bfs(lowercase_ ) _lowerCamelCase : Optional[int] = time() return end - begin
358
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) _lowerCamelCase : int = precision _lowerCamelCase : Dict = ceil(precision / 14 ) _lowerCamelCase : Optional[Any] = 426880 * Decimal(10005 ).sqrt() _lowerCamelCase : int = 1 _lowerCamelCase : Optional[int] = 13591409 _lowerCamelCase : int = Decimal(_lowerCamelCase ) for k in range(1 , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCamelCase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
340
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : str = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class A_ ( _a ): lowerCAmelCase__ = 'dpr' def __init__( self: List[Any] ,__lowerCAmelCase: List[str]=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Optional[Any]=12 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: Optional[Any]=3_072 ,__lowerCAmelCase: Union[str, Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Dict=512 ,__lowerCAmelCase: int=2 ,__lowerCAmelCase: Dict=0.02 ,__lowerCAmelCase: str=1e-12 ,__lowerCAmelCase: str=0 ,__lowerCAmelCase: List[str]="absolute" ,__lowerCAmelCase: int = 0 ,**__lowerCAmelCase: Dict ,): '''simple docstring''' super().__init__(pad_token_id=__A ,**__A ) _lowerCamelCase : int = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Dict = type_vocab_size _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : Dict = layer_norm_eps _lowerCamelCase : Union[str, Any] = projection_dim _lowerCamelCase : str = position_embedding_type
359
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class A_ ( _a ): lowerCAmelCase__ = 42 lowerCAmelCase__ = None def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=0.9_9_9 , _lowerCamelCase="cosine" , ) -> List[str]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowerCamelCase : str = [] for i in range(_lowerCamelCase ): _lowerCamelCase : Any = i / num_diffusion_timesteps _lowerCamelCase : Optional[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) ) return torch.tensor(_lowerCamelCase , dtype=torch.floataa ) class A_ ( _a , _a ): @register_to_config def __init__( self: str ,__lowerCAmelCase: int = 1_000 ,__lowerCAmelCase: str = "fixed_small_log" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[float] = 1.0 ,__lowerCAmelCase: str = "epsilon" ,__lowerCAmelCase: str = "squaredcos_cap_v2" ,): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) _lowerCamelCase : Union[str, Any] = betas_for_alpha_bar(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = 1.0 - self.betas _lowerCamelCase : Dict = torch.cumprod(self.alphas ,dim=0 ) _lowerCamelCase : int = torch.tensor(1.0 ) # standard deviation of the initial noise distribution _lowerCamelCase : Tuple = 1.0 # setable values _lowerCamelCase : List[Any] = None _lowerCamelCase : Union[str, Any] = torch.from_numpy(np.arange(0 ,__lowerCAmelCase )[::-1].copy() ) _lowerCamelCase : List[str] = variance_type def _lowercase ( self: Any ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ): '''simple docstring''' return sample def _lowercase ( self: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, torch.device] = None ): '''simple docstring''' _lowerCamelCase : str = num_inference_steps _lowerCamelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _lowerCamelCase : Union[str, Any] = (np.arange(0 ,__lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) _lowerCamelCase : int = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: str=None ): '''simple docstring''' if prev_timestep is None: _lowerCamelCase : List[str] = t - 1 _lowerCamelCase : Optional[int] = self.alphas_cumprod[t] _lowerCamelCase : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Dict = 1 - alpha_prod_t _lowerCamelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : List[Any] = self.betas[t] else: _lowerCamelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _lowerCamelCase : int = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _lowerCamelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _lowerCamelCase : Dict = torch.log(torch.clamp(__lowerCAmelCase ,min=1e-20 ) ) _lowerCamelCase : str = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _lowerCamelCase : str = variance.log() _lowerCamelCase : str = beta.log() _lowerCamelCase : Optional[int] = (predicted_variance + 1) / 2 _lowerCamelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: int ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : str = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _lowerCamelCase, _lowerCamelCase : int = torch.split(__lowerCAmelCase ,sample.shape[1] ,dim=1 ) else: _lowerCamelCase : List[Any] = None # 1. compute alphas, betas if prev_timestep is None: _lowerCamelCase : List[Any] = t - 1 _lowerCamelCase : Dict = self.alphas_cumprod[t] _lowerCamelCase : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Dict = 1 - alpha_prod_t _lowerCamelCase : List[str] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : Any = self.betas[t] _lowerCamelCase : str = self.alphas[t] else: _lowerCamelCase : Any = 1 - alpha_prod_t / alpha_prod_t_prev _lowerCamelCase : Optional[Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _lowerCamelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _lowerCamelCase : List[Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: _lowerCamelCase : Any = torch.clamp( __lowerCAmelCase ,-self.config.clip_sample_range ,self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : List[str] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _lowerCamelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _lowerCamelCase : Union[str, Any] = 0 if t > 0: _lowerCamelCase : Dict = randn_tensor( model_output.shape ,dtype=model_output.dtype ,generator=__lowerCAmelCase ,device=model_output.device ) _lowerCamelCase : Any = self._get_variance( __lowerCAmelCase ,predicted_variance=__lowerCAmelCase ,prev_timestep=__lowerCAmelCase ,) if self.variance_type == "fixed_small_log": _lowerCamelCase : Optional[Any] = variance elif self.variance_type == "learned_range": _lowerCamelCase : Optional[int] = (0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) _lowerCamelCase : Dict = variance * variance_noise _lowerCamelCase : List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase ,pred_original_sample=__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.IntTensor ,): '''simple docstring''' _lowerCamelCase : int = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype ) _lowerCamelCase : Any = timesteps.to(original_samples.device ) _lowerCamelCase : List[Any] = alphas_cumprod[timesteps] ** 0.5 _lowerCamelCase : List[Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : int = sqrt_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Union[str, Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 _lowerCamelCase : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : Union[str, Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
340
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = UnCLIPImageVariationPipeline lowerCAmelCase__ = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowerCAmelCase__ = IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowerCAmelCase__ = False @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return 32 @property def _lowercase ( self: Dict ): '''simple docstring''' return 32 @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' return self.time_input_dim @property def _lowercase ( self: List[str] ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowercase ( self: str ): '''simple docstring''' return 100 @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[str] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : List[str] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModelWithProjection(_SCREAMING_SNAKE_CASE ) @property def _lowercase ( self: Dict ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : str = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,num_hidden_layers=5 ,num_attention_heads=4 ,image_size=32 ,intermediate_size=37 ,patch_size=1 ,) return CLIPVisionModelWithProjection(_SCREAMING_SNAKE_CASE ) @property def _lowercase ( self: Dict ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : Any = { """clip_embeddings_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """cross_attention_dim""": self.cross_attention_dim, } _lowerCamelCase : List[str] = UnCLIPTextProjModel(**_SCREAMING_SNAKE_CASE ) return model @property def _lowercase ( self: List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = { """sample_size""": 32, # RGB in channels """in_channels""": 3, # Out channels is double in channels because predicts mean and variance """out_channels""": 6, """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": """identity""", } _lowerCamelCase : List[Any] = UNetaDConditionModel(**_SCREAMING_SNAKE_CASE ) return model @property def _lowercase ( self: Dict ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _lowercase ( self: int ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : Dict = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _lowercase ( self: Optional[int] ): '''simple docstring''' torch.manual_seed(1 ) _lowerCamelCase : List[Any] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = self.dummy_decoder _lowerCamelCase : Tuple = self.dummy_text_proj _lowerCamelCase : Optional[Any] = self.dummy_text_encoder _lowerCamelCase : Optional[Any] = self.dummy_tokenizer _lowerCamelCase : Optional[Any] = self.dummy_super_res_first _lowerCamelCase : Tuple = self.dummy_super_res_last _lowerCamelCase : Tuple = UnCLIPScheduler( variance_type="learned_range" ,prediction_type="epsilon" ,num_train_timesteps=1_000 ,) _lowerCamelCase : int = UnCLIPScheduler( variance_type="fixed_small_log" ,prediction_type="epsilon" ,num_train_timesteps=1_000 ,) _lowerCamelCase : List[Any] = CLIPImageProcessor(crop_size=32 ,size=32 ) _lowerCamelCase : int = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Tuple=True ): '''simple docstring''' _lowerCamelCase : List[str] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): _lowerCamelCase : int = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) if pil_image: _lowerCamelCase : Union[str, Any] = input_image * 0.5 + 0.5 _lowerCamelCase : List[str] = input_image.clamp(0 ,1 ) _lowerCamelCase : Optional[Any] = input_image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() _lowerCamelCase : Union[str, Any] = DiffusionPipeline.numpy_to_pil(_SCREAMING_SNAKE_CASE )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = """cpu""" _lowerCamelCase : List[str] = self.get_dummy_components() _lowerCamelCase : str = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Tuple = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Union[str, Any] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ,pil_image=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : List[str] = pipe(**_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Tuple = output.images _lowerCamelCase : Optional[int] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ,pil_image=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Any = pipe( **_SCREAMING_SNAKE_CASE ,return_dict=_SCREAMING_SNAKE_CASE ,)[0] _lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCamelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : int = np.array( [ 0.99_97, 0.00_02, 0.99_97, 0.99_97, 0.99_69, 0.00_23, 0.99_97, 0.99_69, 0.99_70, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = """cpu""" _lowerCamelCase : List[Any] = self.get_dummy_components() _lowerCamelCase : List[str] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) _lowerCamelCase : List[Any] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : List[str] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ,pil_image=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : List[Any] = pipe(**_SCREAMING_SNAKE_CASE ) _lowerCamelCase : List[str] = output.images _lowerCamelCase : Any = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ,pil_image=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Tuple = pipe( **_SCREAMING_SNAKE_CASE ,return_dict=_SCREAMING_SNAKE_CASE ,)[0] _lowerCamelCase : Tuple = image[0, -3:, -3:, -1] _lowerCamelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : Optional[int] = np.array([0.99_97, 0.00_03, 0.99_97, 0.99_97, 0.99_70, 0.00_24, 0.99_97, 0.99_71, 0.99_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : List[str] = """cpu""" _lowerCamelCase : str = self.get_dummy_components() _lowerCamelCase : Union[str, Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[int] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Any = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ,pil_image=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : str = [ pipeline_inputs["""image"""], pipeline_inputs["""image"""], ] _lowerCamelCase : str = pipe(**_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Union[str, Any] = output.images _lowerCamelCase : str = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ,pil_image=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Dict = [ tuple_pipeline_inputs["""image"""], tuple_pipeline_inputs["""image"""], ] _lowerCamelCase : Dict = pipe( **_SCREAMING_SNAKE_CASE ,return_dict=_SCREAMING_SNAKE_CASE ,)[0] _lowerCamelCase : str = image[0, -3:, -3:, -1] _lowerCamelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) _lowerCamelCase : Any = np.array( [ 0.99_97, 0.99_89, 0.00_08, 0.00_21, 0.99_60, 0.00_18, 0.00_14, 0.00_02, 0.99_33, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = torch.device("cpu" ) class A_ : lowerCAmelCase__ = 1 _lowerCamelCase : List[Any] = self.get_dummy_components() _lowerCamelCase : str = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) _lowerCamelCase : int = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : List[str] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) _lowerCamelCase : Tuple = pipe.decoder.dtype _lowerCamelCase : Any = 1 _lowerCamelCase : List[str] = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) _lowerCamelCase : Dict = pipe.prepare_latents( _SCREAMING_SNAKE_CASE ,dtype=_SCREAMING_SNAKE_CASE ,device=_SCREAMING_SNAKE_CASE ,generator=_SCREAMING_SNAKE_CASE ,latents=_SCREAMING_SNAKE_CASE ,scheduler=DummyScheduler() ) _lowerCamelCase : List[Any] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) _lowerCamelCase : Optional[int] = pipe.prepare_latents( _SCREAMING_SNAKE_CASE ,dtype=_SCREAMING_SNAKE_CASE ,device=_SCREAMING_SNAKE_CASE ,generator=_SCREAMING_SNAKE_CASE ,latents=_SCREAMING_SNAKE_CASE ,scheduler=DummyScheduler() ) _lowerCamelCase : str = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ,pil_image=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : str = pipe( **_SCREAMING_SNAKE_CASE ,decoder_latents=_SCREAMING_SNAKE_CASE ,super_res_latents=_SCREAMING_SNAKE_CASE ).images _lowerCamelCase : Union[str, Any] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ,pil_image=_SCREAMING_SNAKE_CASE ) # Don't pass image, instead pass embedding _lowerCamelCase : Dict = pipeline_inputs.pop("image" ) _lowerCamelCase : int = pipe.image_encoder(_SCREAMING_SNAKE_CASE ).image_embeds _lowerCamelCase : Dict = pipe( **_SCREAMING_SNAKE_CASE ,decoder_latents=_SCREAMING_SNAKE_CASE ,super_res_latents=_SCREAMING_SNAKE_CASE ,image_embeddings=_SCREAMING_SNAKE_CASE ,).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = torch_device == """cpu""" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor _lowerCamelCase : str = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=_SCREAMING_SNAKE_CASE ,expected_max_diff=_SCREAMING_SNAKE_CASE ) @skip_mps def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : int = torch_device == """cpu""" _lowerCamelCase : int = True _lowerCamelCase : Optional[Any] = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] self._test_inference_batch_single_identical( test_max_difference=_SCREAMING_SNAKE_CASE ,relax_max_difference=_SCREAMING_SNAKE_CASE ,additional_params_copy_to_batched_inputs=_SCREAMING_SNAKE_CASE ,) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes _lowerCamelCase : Optional[int] = [2, 3] self._test_inference_batch_consistent( batch_sizes=_SCREAMING_SNAKE_CASE ,additional_params_copy_to_batched_inputs=_SCREAMING_SNAKE_CASE ,) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=_SCREAMING_SNAKE_CASE ) @skip_mps def _lowercase ( self: List[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowercase ( self: Optional[int] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowercase ( self: int ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class A_ ( unittest.TestCase ): def _lowercase ( self: Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png" ) _lowerCamelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/unclip/karlo_v1_alpha_cat_variation_fp16.npy" ) _lowerCamelCase : Optional[Any] = UnCLIPImageVariationPipeline.from_pretrained( "kakaobrain/karlo-v1-alpha-image-variations" ,torch_dtype=torch.floataa ) _lowerCamelCase : Dict = pipeline.to(_SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : str = torch.Generator(device="cpu" ).manual_seed(0 ) _lowerCamelCase : List[Any] = pipeline( _SCREAMING_SNAKE_CASE ,generator=_SCREAMING_SNAKE_CASE ,output_type="np" ,) _lowerCamelCase : str = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,15 )
360
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : str = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' for attribute in key.split("." ): _lowerCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: _lowerCamelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: _lowerCamelCase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCamelCase : Tuple = value elif weight_type == "weight_g": _lowerCamelCase : List[str] = value elif weight_type == "weight_v": _lowerCamelCase : List[Any] = value elif weight_type == "bias": _lowerCamelCase : str = value elif weight_type == "running_mean": _lowerCamelCase : Optional[int] = value elif weight_type == "running_var": _lowerCamelCase : Optional[Any] = value elif weight_type == "num_batches_tracked": _lowerCamelCase : int = value elif weight_type == "inv_freq": _lowerCamelCase : List[str] = value else: _lowerCamelCase : Optional[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[Any] = fairseq_model.state_dict() _lowerCamelCase : List[Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) _lowerCamelCase : List[Any] = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase : Dict = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowerCamelCase : int = True if "*" in mapped_key: _lowerCamelCase : Tuple = name.split(_lowerCamelCase )[0].split("." )[-2] _lowerCamelCase : int = mapped_key.replace("*" , _lowerCamelCase ) if "pos_bias_u" in name: _lowerCamelCase : int = None elif "pos_bias_v" in name: _lowerCamelCase : Any = None elif "weight_g" in name: _lowerCamelCase : Any = "weight_g" elif "weight_v" in name: _lowerCamelCase : Any = "weight_v" elif "bias" in name: _lowerCamelCase : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase : Dict = "weight" elif "running_mean" in name: _lowerCamelCase : str = "running_mean" elif "inv_freq" in name: _lowerCamelCase : List[Any] = "inv_freq" elif "running_var" in name: _lowerCamelCase : Tuple = "running_var" elif "num_batches_tracked" in name: _lowerCamelCase : str = "num_batches_tracked" else: _lowerCamelCase : Dict = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = full_name.split("conv_layers." )[-1] _lowerCamelCase : List[Any] = name.split("." ) _lowerCamelCase : Union[str, Any] = int(items[0] ) _lowerCamelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCamelCase : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCamelCase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _lowerCamelCase : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCamelCase : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> Dict: '''simple docstring''' if config_path is not None: _lowerCamelCase : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" ) else: _lowerCamelCase : Dict = WavaVecaConformerConfig() if "rope" in checkpoint_path: _lowerCamelCase : List[Any] = "rotary" if is_finetuned: if dict_path: _lowerCamelCase : Dict = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase : Optional[int] = target_dict.pad_index _lowerCamelCase : Dict = target_dict.bos_index _lowerCamelCase : Optional[Any] = target_dict.eos_index _lowerCamelCase : str = len(target_dict.symbols ) _lowerCamelCase : int = os.path.join(_lowerCamelCase , "vocab.json" ) if not os.path.isdir(_lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCamelCase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase : List[str] = 0 _lowerCamelCase : List[Any] = 1 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) _lowerCamelCase : Tuple = True if config.feat_extract_norm == "layer" else False _lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) _lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCamelCase : List[Any] = WavaVecaConformerForCTC(_lowerCamelCase ) else: _lowerCamelCase : Any = WavaVecaConformerForPreTraining(_lowerCamelCase ) if is_finetuned: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _lowerCamelCase : List[Any] = argparse.Namespace(task="audio_pretraining" ) _lowerCamelCase : Optional[Any] = fairseq.tasks.setup_task(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) _lowerCamelCase : Dict = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCAmelCase : str = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
340
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowerCAmelCase : Dict = logging.get_logger(__name__) class A_ ( _a ): def __init__( self: str ,*__lowerCAmelCase: Tuple ,**__lowerCAmelCase: int ): '''simple docstring''' warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." ,lowerCamelCase_ ,) super().__init__(*lowerCamelCase_ ,**lowerCamelCase_ )
361
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ) ) ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if point: if isinstance(_lowerCamelCase , _lowerCamelCase ): for item in point: if not isinstance(_lowerCamelCase , (int, float) ): _lowerCamelCase : Dict = ( "Expected a list of numbers as input, found " F"""{type(_lowerCamelCase ).__name__}""" ) raise TypeError(_lowerCamelCase ) else: _lowerCamelCase : Optional[int] = F"""Expected a list of numbers as input, found {type(_lowerCamelCase ).__name__}""" raise TypeError(_lowerCamelCase ) else: raise ValueError("Missing an input" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(_lowerCamelCase , _lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
340
0
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A_ ( lowerCamelCase__ ): def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case__ ,"embed_dim" ) ) self.parent.assertTrue(hasattr(snake_case__ ,"num_heads" ) ) class A_ : def __init__( self: Tuple ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any]=13 ,__lowerCAmelCase: int=64 ,__lowerCAmelCase: List[Any]=3 ,__lowerCAmelCase: Dict=[16, 48, 96] ,__lowerCAmelCase: List[str]=[1, 3, 6] ,__lowerCAmelCase: int=[1, 2, 10] ,__lowerCAmelCase: Union[str, Any]=[7, 3, 3] ,__lowerCAmelCase: Optional[Any]=[4, 2, 2] ,__lowerCAmelCase: List[str]=[2, 1, 1] ,__lowerCAmelCase: Optional[Any]=[2, 2, 2] ,__lowerCAmelCase: Dict=[False, False, True] ,__lowerCAmelCase: Dict=[0.0, 0.0, 0.0] ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: List[str]=1e-12 ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: Any=True ,__lowerCAmelCase: List[Any]=2 ,): '''simple docstring''' _lowerCamelCase : Optional[Any] = parent _lowerCamelCase : int = batch_size _lowerCamelCase : int = image_size _lowerCamelCase : Union[str, Any] = patch_sizes _lowerCamelCase : int = patch_stride _lowerCamelCase : Optional[Any] = patch_padding _lowerCamelCase : List[str] = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[str] = num_labels _lowerCamelCase : int = num_channels _lowerCamelCase : List[str] = embed_dim _lowerCamelCase : str = num_heads _lowerCamelCase : Union[str, Any] = stride_kv _lowerCamelCase : int = depth _lowerCamelCase : Dict = cls_token _lowerCamelCase : int = attention_drop_rate _lowerCamelCase : int = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : List[str] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCamelCase : Any = self.get_config() return config, pixel_values, labels def _lowercase ( self: Optional[int] ): '''simple docstring''' return CvtConfig( image_size=self.image_size ,num_labels=self.num_labels ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,num_heads=self.num_heads ,patch_sizes=self.patch_sizes ,patch_padding=self.patch_padding ,patch_stride=self.patch_stride ,stride_kv=self.stride_kv ,depth=self.depth ,cls_token=self.cls_token ,attention_drop_rate=self.attention_drop_rate ,initializer_range=self.initializer_range ,) def _lowercase ( self: List[str] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : int = CvtModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCamelCase : Optional[Any] = model(snake_case__ ) _lowerCamelCase : Dict = (self.image_size, self.image_size) _lowerCamelCase : Optional[int] = image_size[0], image_size[1] for i in range(len(self.depth ) ): _lowerCamelCase : Any = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _lowerCamelCase : str = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.embed_dim[-1], height, width) ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: List[Any] ): '''simple docstring''' _lowerCamelCase : int = self.num_labels _lowerCamelCase : str = CvtForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCamelCase : Dict = model(snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = self.prepare_config_and_inputs() _lowerCamelCase : Optional[int] = config_and_inputs _lowerCamelCase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A_ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowerCAmelCase__ = (CvtModel, CvtForImageClassification) if is_torch_available() else () lowerCAmelCase__ = ( {"""feature-extraction""": CvtModel, """image-classification""": CvtForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[int] = CvtModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self ,config_class=snake_case__ ,has_text_modality=snake_case__ ,hidden_size=37 ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self: str ): '''simple docstring''' return @unittest.skip(reason="Cvt does not output attentions" ) def _lowercase ( self: Tuple ): '''simple docstring''' pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def _lowercase ( self: Dict ): '''simple docstring''' pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def _lowercase ( self: Optional[int] ): '''simple docstring''' pass def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(snake_case__ ) _lowerCamelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Dict = [*signature.parameters.keys()] _lowerCamelCase : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,snake_case__ ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _lowercase ( self: Tuple ): '''simple docstring''' def check_hidden_states_output(__lowerCAmelCase: Dict ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: str ): _lowerCamelCase : Tuple = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): _lowerCamelCase : str = model(**self._prepare_for_class(snake_case__ ,snake_case__ ) ) _lowerCamelCase : List[str] = outputs.hidden_states _lowerCamelCase : Tuple = len(self.model_tester.depth ) self.assertEqual(len(snake_case__ ) ,snake_case__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) ,[ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] ,) _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : int = True check_hidden_states_output(snake_case__ ,snake_case__ ,snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True check_hidden_states_output(snake_case__ ,snake_case__ ,snake_case__ ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass @slow def _lowercase ( self: Tuple ): '''simple docstring''' for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Tuple = CvtModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: Optional[Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[Any] = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case__ ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : List[Any] = image_processor(images=snake_case__ ,return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): _lowerCamelCase : int = model(**snake_case__ ) # verify the logits _lowerCamelCase : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,snake_case__ ) _lowerCamelCase : List[str] = torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,snake_case__ ,atol=1e-4 ) )
362
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[Any] = np.inf def set_batch_size(_lowerCamelCase ) -> None: nonlocal batch_size if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Optional[int] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary": _lowerCamelCase : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_lowerCamelCase , _lowerCamelCase ) return None if batch_size is np.inf else batch_size class A_ ( _a ): def __init__( self: Optional[int] ,__lowerCAmelCase: NestedDataStructureLike[PathLike] ,__lowerCAmelCase: Optional[NamedSplit] = None ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__( __lowerCAmelCase ,split=__lowerCAmelCase ,features=__lowerCAmelCase ,cache_dir=__lowerCAmelCase ,keep_in_memory=__lowerCAmelCase ,streaming=__lowerCAmelCase ,num_proc=__lowerCAmelCase ,**__lowerCAmelCase ,) _lowerCamelCase : Tuple = path_or_paths if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else {self.split: path_or_paths} _lowerCamelCase : Any = _PACKAGED_DATASETS_MODULES["parquet"][1] _lowerCamelCase : int = Parquet( cache_dir=__lowerCAmelCase ,data_files=__lowerCAmelCase ,features=__lowerCAmelCase ,hash=__lowerCAmelCase ,**__lowerCAmelCase ,) def _lowercase ( self: Optional[int] ): '''simple docstring''' if self.streaming: _lowerCamelCase : List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCamelCase : Tuple = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : List[str] = None _lowerCamelCase : str = None self.builder.download_and_prepare( download_config=__lowerCAmelCase ,download_mode=__lowerCAmelCase ,verification_mode=__lowerCAmelCase ,base_path=__lowerCAmelCase ,num_proc=self.num_proc ,) _lowerCamelCase : Any = self.builder.as_dataset( split=self.split ,verification_mode=__lowerCAmelCase ,in_memory=self.keep_in_memory ) return dataset class A_ : def __init__( self: str ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: Union[PathLike, BinaryIO] ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' _lowerCamelCase : Any = dataset _lowerCamelCase : Any = path_or_buf _lowerCamelCase : Any = batch_size or get_writer_batch_size(dataset.features ) _lowerCamelCase : List[str] = parquet_writer_kwargs def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ): with open(self.path_or_buf ,"wb+" ) as buffer: _lowerCamelCase : str = self._write(file_obj=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) else: _lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) return written def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: BinaryIO ,__lowerCAmelCase: int ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" ,__lowerCAmelCase ) _lowerCamelCase : List[str] = self.dataset.features.arrow_schema _lowerCamelCase : str = pq.ParquetWriter(__lowerCAmelCase ,schema=__lowerCAmelCase ,**__lowerCAmelCase ) for offset in logging.tqdm( range(0 ,len(self.dataset ) ,__lowerCAmelCase ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating parquet from Arrow format" ,): _lowerCamelCase : List[str] = query_table( table=self.dataset._data ,key=slice(__lowerCAmelCase ,offset + batch_size ) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,) writer.write_table(__lowerCAmelCase ) written += batch.nbytes writer.close() return written
340
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase = 100 ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = n * (n + 1) * (2 * n + 1) / 6 _lowerCamelCase : Optional[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
363
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Optional[int] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"] _lowerCamelCase : Dict = len(example["content"] ) / len(output["input_ids"] ) return output _lowerCAmelCase : Tuple = HfArgumentParser(PretokenizationArguments) _lowerCAmelCase : Optional[int] = parser.parse_args() if args.num_workers is None: _lowerCAmelCase : Any = multiprocessing.cpu_count() _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir) _lowerCAmelCase : Union[str, Any] = time.time() _lowerCAmelCase : Optional[int] = load_dataset(args.dataset_name, split='''train''') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') _lowerCAmelCase : Any = time.time() _lowerCAmelCase : Dict = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') _lowerCAmelCase : str = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
340
0
"""simple docstring""" from __future__ import annotations _lowerCAmelCase : List[Any] = list[tuple[int, int]] _lowerCAmelCase : Tuple = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _lowerCAmelCase : List[str] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class A_ : def __init__( self: Union[str, Any] ,__lowerCAmelCase: str ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[Any] ,): '''simple docstring''' _lowerCamelCase : Dict = pos_x _lowerCamelCase : Any = pos_y _lowerCamelCase : Dict = (pos_y, pos_x) _lowerCamelCase : List[Any] = goal_x _lowerCamelCase : str = goal_y _lowerCamelCase : Optional[Any] = g_cost _lowerCamelCase : Tuple = parent _lowerCamelCase : int = self.calculate_heuristic() def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Optional[int] = abs(self.pos_x - self.goal_x ) _lowerCamelCase : List[Any] = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self: Any ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return self.f_cost < other.f_cost class A_ : def __init__( self: Tuple ,__lowerCAmelCase: str ,__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,a__ ) _lowerCamelCase : Any = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99_999 ,a__ ) _lowerCamelCase : List[Any] = [self.start] _lowerCamelCase : Tuple = [] _lowerCamelCase : str = False def _lowercase ( self: str ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCamelCase : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: _lowerCamelCase : str = True return self.retrace_path(a__ ) self.closed_nodes.append(a__ ) _lowerCamelCase : int = self.get_successors(a__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(a__ ) else: # retrieve the best current path _lowerCamelCase : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(a__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(a__ ) else: self.open_nodes.append(a__ ) if not self.reached: return [self.start.pos] return None def _lowercase ( self: List[Any] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [] for action in delta: _lowerCamelCase : int = parent.pos_x + action[1] _lowerCamelCase : Optional[int] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(a__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( a__ ,a__ ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,a__ ,) ) return successors def _lowercase ( self: str ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Optional[int] = node _lowerCamelCase : List[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCamelCase : int = current_node.parent path.reverse() return path if __name__ == "__main__": _lowerCAmelCase : str = (0, 0) _lowerCAmelCase : Tuple = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') _lowerCAmelCase : List[str] = GreedyBestFirst(init, goal) _lowerCAmelCase : Optional[int] = greedy_bf.search() if path: for pos_x, pos_y in path: _lowerCAmelCase : Optional[Any] = 2 for elem in grid: print(elem)
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Optional[Any] = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
0
"""simple docstring""" import numpy as np def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1e-12 , _lowerCamelCase = 100 , ) -> tuple[float, np.ndarray]: '''simple docstring''' assert np.shape(snake_case__ )[0] == np.shape(snake_case__ )[1] # Ensure proper dimensionality. assert np.shape(snake_case__ )[0] == np.shape(snake_case__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(snake_case__ ) == np.iscomplexobj(snake_case__ ) _lowerCamelCase : Union[str, Any] = np.iscomplexobj(snake_case__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(snake_case__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _lowerCamelCase : str = False _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Tuple = 0 _lowerCamelCase : Dict = 1e12 while not convergence: # Multiple matrix by the vector. _lowerCamelCase : str = np.dot(snake_case__ , snake_case__ ) # Normalize the resulting output vector. _lowerCamelCase : List[Any] = w / np.linalg.norm(snake_case__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _lowerCamelCase : str = vector.conj().T if is_complex else vector.T _lowerCamelCase : Tuple = np.dot(snake_case__ , np.dot(snake_case__ , snake_case__ ) ) # Check convergence. _lowerCamelCase : Optional[int] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : Tuple = lambda_ if is_complex: _lowerCamelCase : Dict = np.real(lambda_ ) return lambda_, vector def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : str = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _lowerCamelCase : str = np.array([41, 4, 20] ) _lowerCamelCase : Union[str, Any] = real_input_matrix.astype(np.complexaaa ) _lowerCamelCase : Dict = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _lowerCamelCase : Dict = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _lowerCamelCase : List[Any] = real_input_matrix _lowerCamelCase : Tuple = real_vector elif problem_type == "complex": _lowerCamelCase : Tuple = complex_input_matrix _lowerCamelCase : str = complex_vector # Our implementation. _lowerCamelCase, _lowerCamelCase : str = power_iteration(snake_case__ , snake_case__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _lowerCamelCase, _lowerCamelCase : Optional[Any] = np.linalg.eigh(snake_case__ ) # Last eigenvalue is the maximum one. _lowerCamelCase : Optional[Any] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _lowerCamelCase : Optional[int] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(snake_case__ ) - np.abs(snake_case__ ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
365
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) class A_ ( _a ): lowerCAmelCase__ = 'masked_bert' def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=30_522 ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Dict=12 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-12 ,__lowerCAmelCase: Union[str, Any]=0 ,__lowerCAmelCase: List[Any]="topK" ,__lowerCAmelCase: Optional[Any]="constant" ,__lowerCAmelCase: Optional[Any]=0.0 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : int = pruning_method _lowerCamelCase : str = mask_init _lowerCamelCase : List[Any] = mask_scale
340
0
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Optional[Any] = old_name if "patch_embed" in old_name: _lowerCamelCase : int = old_name.split("." ) if layer == "0": _lowerCamelCase : Optional[int] = old_name.replace("0" , "convolution1" ) elif layer == "1": _lowerCamelCase : List[Any] = old_name.replace("1" , "batchnorm_before" ) elif layer == "3": _lowerCamelCase : int = old_name.replace("3" , "convolution2" ) else: _lowerCamelCase : int = old_name.replace("4" , "batchnorm_after" ) if "network" in old_name and re.search(R"\d\.\d" , lowerCAmelCase__ ): _lowerCamelCase : int = r"""\b\d{2}\b""" if bool(re.search(lowerCAmelCase__ , lowerCAmelCase__ ) ): _lowerCamelCase : Optional[int] = re.search(R"\d\.\d\d." , lowerCAmelCase__ ).group() else: _lowerCamelCase : str = re.search(R"\d\.\d." , lowerCAmelCase__ ).group() if int(match[0] ) < 6: _lowerCamelCase : Optional[int] = old_name.replace(lowerCAmelCase__ , "" ) _lowerCamelCase : Optional[int] = trimmed_name.replace("network" , match[0] + ".meta4D_layers.blocks." + match[2:-1] ) _lowerCamelCase : Tuple = """intermediate_stages.""" + trimmed_name else: _lowerCamelCase : Union[str, Any] = old_name.replace(lowerCAmelCase__ , "" ) if int(match[2] ) < num_meta4D_last_stage: _lowerCamelCase : Optional[int] = trimmed_name.replace("network" , "meta4D_layers.blocks." + match[2] ) else: _lowerCamelCase : str = str(int(match[2] ) - num_meta4D_last_stage ) _lowerCamelCase : Any = trimmed_name.replace("network" , "meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: _lowerCamelCase : Optional[int] = trimmed_name.replace("norm1" , "layernorm1" ) elif "norm2" in old_name: _lowerCamelCase : Optional[Any] = trimmed_name.replace("norm2" , "layernorm2" ) elif "fc1" in old_name: _lowerCamelCase : Dict = trimmed_name.replace("fc1" , "linear_in" ) elif "fc2" in old_name: _lowerCamelCase : Any = trimmed_name.replace("fc2" , "linear_out" ) _lowerCamelCase : str = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(R".\d." , lowerCAmelCase__ ): _lowerCamelCase : Tuple = old_name.replace("network" , "intermediate_stages" ) if "fc" in new_name: _lowerCamelCase : List[Any] = new_name.replace("fc" , "convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): _lowerCamelCase : List[str] = new_name.replace("norm1" , "batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): _lowerCamelCase : Union[str, Any] = new_name.replace("norm2" , "batchnorm_after" ) if "proj" in new_name: _lowerCamelCase : List[str] = new_name.replace("proj" , "projection" ) if "dist_head" in new_name: _lowerCamelCase : Optional[int] = new_name.replace("dist_head" , "distillation_classifier" ) elif "head" in new_name: _lowerCamelCase : Tuple = new_name.replace("head" , "classifier" ) elif "patch_embed" in new_name: _lowerCamelCase : Optional[int] = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": _lowerCamelCase : Any = new_name.replace("norm" , "layernorm" ) _lowerCamelCase : str = """efficientformer.""" + new_name else: _lowerCamelCase : Optional[Any] = """efficientformer.encoder.""" + new_name return new_name def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' for key in checkpoint.copy().keys(): _lowerCamelCase : Tuple = checkpoint.pop(lowerCAmelCase__ ) _lowerCamelCase : Tuple = val return checkpoint def lowerCamelCase_( ) -> Tuple: '''simple docstring''' _lowerCamelCase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCamelCase : Union[str, Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return image def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : int = torch.load(lowerCAmelCase__ , map_location="cpu" )["""model"""] _lowerCamelCase : int = EfficientFormerConfig.from_json_file(lowerCAmelCase__ ) _lowerCamelCase : Any = EfficientFormerForImageClassificationWithTeacher(lowerCAmelCase__ ) _lowerCamelCase : Dict = """_""".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) _lowerCamelCase : List[str] = config.depths[-1] - config.num_metaad_blocks + 1 _lowerCamelCase : Any = convert_torch_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() _lowerCamelCase : Tuple = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image _lowerCamelCase : Optional[Any] = prepare_img() _lowerCamelCase : List[Any] = 256 _lowerCamelCase : Any = 224 _lowerCamelCase : Dict = EfficientFormerImageProcessor( size={"shortest_edge": image_size} , crop_size={"height": crop_size, "width": crop_size} , resample=pillow_resamplings["bicubic"] , ) _lowerCamelCase : Union[str, Any] = processor(images=lowerCAmelCase__ , return_tensors="pt" ).pixel_values # original processing pipeline _lowerCamelCase : Tuple = Compose( [ Resize(lowerCAmelCase__ , interpolation=pillow_resamplings["bicubic"] ), CenterCrop(lowerCAmelCase__ ), ToTensor(), Normalize(lowerCAmelCase__ , lowerCAmelCase__ ), ] ) _lowerCamelCase : Dict = image_transforms(lowerCAmelCase__ ).unsqueeze(0 ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) _lowerCamelCase : List[str] = model(lowerCAmelCase__ ) _lowerCamelCase : Union[str, Any] = outputs.logits _lowerCamelCase : Optional[Any] = (1, 1000) if "l1" in model_name: _lowerCamelCase : int = torch.Tensor( [-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9, -0.5_1_2_4, 0.4_1_8_3, -0.6_7_9_3, -1.3_7_7_7, -0.0_8_9_3, -0.7_3_5_8, -2.4_3_2_8] ) assert torch.allclose(logits[0, :10] , lowerCAmelCase__ , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: _lowerCamelCase : Union[str, Any] = torch.Tensor( [-1.3_1_5_0, -1.5_4_5_6, -1.2_5_5_6, -0.8_4_9_6, -0.7_1_2_7, -0.7_8_9_7, -0.9_7_2_8, -0.3_0_5_2, 0.3_7_5_1, -0.3_1_2_7] ) assert torch.allclose(logits[0, :10] , lowerCAmelCase__ , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: _lowerCamelCase : Tuple = torch.Tensor( [-1.0_2_8_3, -1.4_1_3_1, -0.5_6_4_4, -1.3_1_1_5, -0.5_7_8_5, -1.2_0_4_9, -0.7_5_2_8, 0.1_9_9_2, -0.3_8_2_2, -0.0_8_7_8] ) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(lowerCAmelCase__ ) print(F"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" , commit_message="Add model" , use_temp_dir=lowerCAmelCase__ , ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" , commit_message="Add image processor" , use_temp_dir=lowerCAmelCase__ , ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) _lowerCAmelCase : int = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
366
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowerCAmelCase : str = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]: '''simple docstring''' if rng is None: _lowerCamelCase : Union[str, Any] = random.Random() _lowerCamelCase : Union[str, Any] = 1 for dim in shape: total_dims *= dim _lowerCamelCase : Optional[int] = [] for _ in range(_lowerCamelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) _lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase ) return output def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase ) # make sure that at least one token is attended to for each batch _lowerCamelCase : List[str] = 1 return attn_mask @require_flax class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = () def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _lowerCamelCase : List[str] = 2 _lowerCamelCase : str = inputs["input_ids"].shape[-1] // 2 _lowerCamelCase : Tuple = inputs["input_ids"][:max_batch_size, :sequence_length] _lowerCamelCase : Any = jnp.ones_like(__lowerCAmelCase ) _lowerCamelCase : List[Any] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _lowerCamelCase : Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _lowerCamelCase : List[str] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = False _lowerCamelCase : Dict = max_length _lowerCamelCase : Tuple = 0 for model_class in self.all_generative_model_classes: _lowerCamelCase : str = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCamelCase : Any = getattr(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = pt_model_class(__lowerCAmelCase ).eval() _lowerCamelCase : Optional[Any] = load_flax_weights_in_pytorch_model(__lowerCAmelCase ,flax_model.params ) _lowerCamelCase : int = flax_model.generate(__lowerCAmelCase ).sequences _lowerCamelCase : Optional[int] = pt_model.generate(torch.tensor(__lowerCAmelCase ,dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _lowerCamelCase : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = self._get_input_ids_and_config() _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = True _lowerCamelCase : Optional[int] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : int = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : int = False _lowerCamelCase : Optional[Any] = max_length _lowerCamelCase : Dict = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) _lowerCamelCase : Dict = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = self._get_input_ids_and_config() _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = max_length _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[int] = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : str = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() _lowerCamelCase : int = True _lowerCamelCase : List[Any] = max_length _lowerCamelCase : Optional[Any] = 0.8 _lowerCamelCase : Union[str, Any] = 10 _lowerCamelCase : List[str] = 0.3 _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : str = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Any = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : int = jit(model.generate ) _lowerCamelCase : Optional[int] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[str] = max_length _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : Dict = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Any = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : Any = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() _lowerCamelCase : Dict = max_length _lowerCamelCase : List[Any] = 2 _lowerCamelCase : Tuple = 1 _lowerCamelCase : List[str] = 8 _lowerCamelCase : List[Any] = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : int = model_class(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : Optional[Any] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : Dict = False _lowerCamelCase : Any = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Optional[Any] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : List[str] = True _lowerCamelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[Any] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : int = 2 _lowerCamelCase : int = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : int = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : Dict = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) @require_flax class A_ ( unittest.TestCase ): def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) _lowerCamelCase : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) _lowerCamelCase : Optional[Any] = "Hello world" _lowerCamelCase : str = tokenizer(__lowerCAmelCase ,return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowerCAmelCase ,"do_samples" ): model.generate(__lowerCAmelCase ,do_samples=__lowerCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowerCAmelCase ,"foo" ): _lowerCamelCase : List[str] = {"foo": "bar"} model.generate(__lowerCAmelCase ,**__lowerCAmelCase )
340
0
"""simple docstring""" from math import sqrt def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = 0 for i in range(1 , int(sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) ): if n % i == 0 and i != sqrt(SCREAMING_SNAKE_CASE__ ): total += i + n // i elif i == sqrt(SCREAMING_SNAKE_CASE__ ): total += i return total - n def lowerCamelCase_( _lowerCamelCase = 10000 ) -> int: '''simple docstring''' _lowerCamelCase : Optional[Any] = sum( i for i in range(1 , SCREAMING_SNAKE_CASE__ ) if sum_of_divisors(sum_of_divisors(SCREAMING_SNAKE_CASE__ ) ) == i and sum_of_divisors(SCREAMING_SNAKE_CASE__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
367
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class A_ ( _a ): lowerCAmelCase__ = 'mobilenet_v1' def __init__( self: Tuple ,__lowerCAmelCase: int=3 ,__lowerCAmelCase: Dict=224 ,__lowerCAmelCase: int=1.0 ,__lowerCAmelCase: Tuple=8 ,__lowerCAmelCase: List[str]="relu6" ,__lowerCAmelCase: int=True ,__lowerCAmelCase: List[Any]=0.9_99 ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: Optional[int]=0.0_01 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : List[Any] = depth_multiplier _lowerCamelCase : Any = min_depth _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Dict = tf_padding _lowerCamelCase : Union[str, Any] = classifier_dropout_prob _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps class A_ ( _a ): lowerCAmelCase__ = version.parse('1.11' ) @property def _lowercase ( self: Optional[int] ): '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def _lowercase ( self: Any ): '''simple docstring''' return 1e-4
340
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' assert column_title.isupper() _lowerCamelCase : Tuple = 0 _lowerCamelCase : int = len(lowerCamelCase_ ) - 1 _lowerCamelCase : Any = 0 while index >= 0: _lowerCamelCase : Dict = (ord(column_title[index] ) - 64) * pow(26 , lowerCamelCase_ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
368
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' for param in module.parameters(): _lowerCamelCase : Optional[int] = False def lowerCamelCase_( ) -> List[str]: '''simple docstring''' _lowerCamelCase : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _lowerCamelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Dict = plt.imshow(_lowerCamelCase ) fig.axes.get_xaxis().set_visible(_lowerCamelCase ) fig.axes.get_yaxis().set_visible(_lowerCamelCase ) plt.show() def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Tuple = datetime.now() _lowerCamelCase : Tuple = current_time.strftime("%H:%M:%S" ) return timestamp
340
0
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' def decorator(_lowerCamelCase ): _lowerCamelCase : str = getattr(__UpperCamelCase , "handle_key" , [] ) handle += [key] setattr(__UpperCamelCase , "handle_key" , __UpperCamelCase ) return func return decorator def lowerCamelCase_( *_lowerCamelCase ) -> List[str]: '''simple docstring''' def decorator(_lowerCamelCase ): _lowerCamelCase : str = getattr(__UpperCamelCase , "handle_key" , [] ) handle += keys setattr(__UpperCamelCase , "handle_key" , __UpperCamelCase ) return func return decorator class A_ ( __a ): def __new__( cls: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[str] = super().__new__(cls ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) if not hasattr(UpperCamelCase__ ,"key_handler" ): setattr(UpperCamelCase__ ,"key_handler" ,{} ) setattr(UpperCamelCase__ ,"handle_input" ,KeyHandler.handle_input ) for value in attrs.values(): _lowerCamelCase : Tuple = getattr(UpperCamelCase__ ,"handle_key" ,[] ) for key in handled_keys: _lowerCamelCase : Union[str, Any] = value return new_cls @staticmethod def _lowercase ( cls: List[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = get_character() if char != KEYMAP["undefined"]: _lowerCamelCase : Any = ord(UpperCamelCase__ ) _lowerCamelCase : Optional[Any] = cls.key_handler.get(UpperCamelCase__ ) if handler: _lowerCamelCase : Optional[int] = char return handler(cls ) else: return None def lowerCamelCase_( cls ) -> Dict: '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
369
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) _lowerCamelCase : list = [] for char_count in range(_lowerCamelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_lowerCamelCase ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
340
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A_ : """simple docstring""" @staticmethod def _lowercase ( *__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class A_ ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = MODEL_FOR_OBJECT_DETECTION_MAPPING def _lowercase ( self: Tuple ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = ObjectDetectionPipeline(model=_lowercase ,image_processor=_lowercase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def _lowercase ( self: int ,__lowerCAmelCase: str ,__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Tuple = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" ,threshold=0.0 ) self.assertGreater(len(_lowercase ) ,0 ) for detected_object in outputs: self.assertEqual( _lowercase ,{ "score": ANY(_lowercase ), "label": ANY(_lowercase ), "box": {"xmin": ANY(_lowercase ), "ymin": ANY(_lowercase ), "xmax": ANY(_lowercase ), "ymax": ANY(_lowercase )}, } ,) import datasets _lowerCamelCase : int = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" ,"image" ,split="test" ) _lowerCamelCase : Tuple = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] _lowerCamelCase : Any = object_detector(_lowercase ,threshold=0.0 ) self.assertEqual(len(_lowercase ) ,len(_lowercase ) ) for outputs in batch_outputs: self.assertGreater(len(_lowercase ) ,0 ) for detected_object in outputs: self.assertEqual( _lowercase ,{ "score": ANY(_lowercase ), "label": ANY(_lowercase ), "box": {"xmin": ANY(_lowercase ), "ymin": ANY(_lowercase ), "xmax": ANY(_lowercase ), "ymax": ANY(_lowercase )}, } ,) @require_tf @unittest.skip("Object detection not implemented in TF" ) def _lowercase ( self: int ): '''simple docstring''' pass @require_torch def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Tuple = "hf-internal-testing/tiny-detr-mobilenetsv3" _lowerCamelCase : int = AutoModelForObjectDetection.from_pretrained(_lowercase ) _lowerCamelCase : int = AutoFeatureExtractor.from_pretrained(_lowercase ) _lowerCamelCase : int = ObjectDetectionPipeline(model=_lowercase ,feature_extractor=_lowercase ) _lowerCamelCase : List[str] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ,threshold=0.0 ) self.assertEqual( nested_simplify(_lowercase ,decimals=4 ) ,[ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] ,) _lowerCamelCase : Any = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ,threshold=0.0 ,) self.assertEqual( nested_simplify(_lowercase ,decimals=4 ) ,[ [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] ,) @require_torch @slow def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Any = "facebook/detr-resnet-50" _lowerCamelCase : Optional[Any] = AutoModelForObjectDetection.from_pretrained(_lowercase ) _lowerCamelCase : Optional[int] = AutoFeatureExtractor.from_pretrained(_lowercase ) _lowerCamelCase : Dict = ObjectDetectionPipeline(model=_lowercase ,feature_extractor=_lowercase ) _lowerCamelCase : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(_lowercase ,decimals=4 ) ,[ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] ,) _lowerCamelCase : Optional[Any] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(_lowercase ,decimals=4 ) ,[ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] ,) @require_torch @slow def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = "facebook/detr-resnet-50" _lowerCamelCase : Tuple = pipeline("object-detection" ,model=_lowercase ) _lowerCamelCase : Any = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(_lowercase ,decimals=4 ) ,[ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] ,) _lowerCamelCase : Tuple = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(_lowercase ,decimals=4 ) ,[ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] ,) @require_torch @slow def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[Any] = 0.99_85 _lowerCamelCase : Union[str, Any] = "facebook/detr-resnet-50" _lowerCamelCase : str = pipeline("object-detection" ,model=_lowercase ) _lowerCamelCase : Optional[Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ,threshold=_lowercase ) self.assertEqual( nested_simplify(_lowercase ,decimals=4 ) ,[ {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] ,) @require_torch @require_pytesseract @slow def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Any = "Narsil/layoutlmv3-finetuned-funsd" _lowerCamelCase : Tuple = 0.99_93 _lowerCamelCase : Optional[int] = pipeline("object-detection" ,model=_lowercase ,threshold=_lowercase ) _lowerCamelCase : Optional[Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(_lowercase ,decimals=4 ) ,[ {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] ,)
370
"""simple docstring""" _lowerCAmelCase : Tuple = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Any = [False] * len(_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = [s] _lowerCamelCase : str = True while queue: _lowerCamelCase : Optional[int] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) _lowerCamelCase : Any = True _lowerCamelCase : Any = u return visited[t] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : List[str] = [-1] * (len(_lowerCamelCase )) _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Any = float("Inf" ) _lowerCamelCase : Dict = sink while s != source: # Find the minimum value in select path _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , graph[parent[s]][s] ) _lowerCamelCase : Union[str, Any] = parent[s] max_flow += path_flow _lowerCamelCase : Optional[Any] = sink while v != source: _lowerCamelCase : Union[str, Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCamelCase : List[str] = parent[v] for i in range(len(_lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
340
0
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : List[str] = [] _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : int = [] for rt in rc.restypes: _lowerCamelCase : Tuple = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) _lowerCamelCase : Union[str, Any] = {name: i for i, name in enumerate(a__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) _lowerCamelCase : Union[str, Any] = torch.tensor( a__ , dtype=torch.intaa , device=protein["aatype"].device , ) _lowerCamelCase : str = torch.tensor( a__ , dtype=torch.intaa , device=protein["aatype"].device , ) _lowerCamelCase : Any = torch.tensor( a__ , dtype=torch.floataa , device=protein["aatype"].device , ) _lowerCamelCase : Optional[int] = protein["aatype"].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein _lowerCamelCase : List[str] = restype_atomaa_to_atomaa[protein_aatype] _lowerCamelCase : Any = restype_atomaa_mask[protein_aatype] _lowerCamelCase : List[Any] = residx_atomaa_mask _lowerCamelCase : List[Any] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back _lowerCamelCase : List[Any] = restype_atomaa_to_atomaa[protein_aatype] _lowerCamelCase : Optional[Any] = residx_atomaa_to_atomaa.long() # create the corresponding mask _lowerCamelCase : int = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["aatype"].device ) for restype, restype_letter in enumerate(rc.restypes ): _lowerCamelCase : Optional[Any] = rc.restype_atoa[restype_letter] _lowerCamelCase : Tuple = rc.residue_atoms[restype_name] for atom_name in atom_names: _lowerCamelCase : List[str] = rc.atom_order[atom_name] _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = restype_atomaa_mask[protein_aatype] _lowerCamelCase : List[Any] = residx_atomaa_mask return protein def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Dict = tree_map(lambda _lowerCamelCase : torch.tensor(a__ , device=batch["aatype"].device ) , a__ , np.ndarray ) _lowerCamelCase : Dict = tensor_tree_map(lambda _lowerCamelCase : np.array(a__ ) , make_atomaa_masks(a__ ) ) return out
371
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class A_ ( _a ): lowerCAmelCase__ = 'camembert' def __init__( self: Tuple ,__lowerCAmelCase: Union[str, Any]=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: int=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: int=512 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Any="absolute" ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Tuple=None ,**__lowerCAmelCase: Dict ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Tuple = position_embedding_type _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : Dict = classifier_dropout class A_ ( _a ): @property def _lowercase ( self: Any ): '''simple docstring''' if self.task == "multiple-choice": _lowerCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
340
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class A_ ( snake_case_ ): lowerCAmelCase__ = "vit_msn" def __init__( self: List[str] ,__lowerCAmelCase: List[Any]=768 ,__lowerCAmelCase: Tuple=12 ,__lowerCAmelCase: Optional[int]=12 ,__lowerCAmelCase: Optional[Any]=3_072 ,__lowerCAmelCase: int="gelu" ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: Optional[int]=0.0 ,__lowerCAmelCase: int=0.02 ,__lowerCAmelCase: Any=1e-06 ,__lowerCAmelCase: List[Any]=224 ,__lowerCAmelCase: Tuple=16 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Union[str, Any]=True ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__(**_A ) _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Optional[Any] = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : int = hidden_act _lowerCamelCase : List[Any] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Tuple = image_size _lowerCamelCase : Optional[int] = patch_size _lowerCamelCase : List[Any] = num_channels _lowerCamelCase : Tuple = qkv_bias
350
"""simple docstring""" from collections import defaultdict def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : str = True for v in tree[start]: if v not in visited: ret += dfs(_lowerCamelCase ) if ret % 2 == 0: cuts.append(_lowerCamelCase ) return ret def lowerCamelCase_( ) -> int: '''simple docstring''' dfs(1 ) if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = 10, 9 _lowerCAmelCase : str = defaultdict(list) _lowerCAmelCase : dict[int, bool] = {} _lowerCAmelCase : list[int] = [] _lowerCAmelCase : Any = 0 _lowerCAmelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
0