code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
from __future__ import annotations
from collections.abc import Callable
SCREAMING_SNAKE_CASE__ : int = list[list[float | int]]
def __magic_name__ ( __lowerCAmelCase : Matrix , __lowerCAmelCase : Matrix ) -> Matrix:
__lowerCamelCase = len(__lowerCAmelCase )
__lowerCamelCase = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )]
__lowerCamelCase = 42
__lowerCamelCase = 42
__lowerCamelCase = 42
__lowerCamelCase = 42
__lowerCamelCase = 42
__lowerCamelCase = 42
for row in range(__lowerCAmelCase ):
for col in range(__lowerCAmelCase ):
__lowerCamelCase = matrix[row][col]
__lowerCamelCase = vector[row][0]
__lowerCamelCase = 0
__lowerCamelCase = 0
while row < size and col < size:
# pivoting
__lowerCamelCase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
__lowerCamelCase , __lowerCamelCase = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , __lowerCAmelCase ):
__lowerCamelCase = augmented[rowa][col] / augmented[row][col]
__lowerCamelCase = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , __lowerCAmelCase ):
for row in range(__lowerCAmelCase ):
__lowerCamelCase = augmented[row][col] / augmented[col][col]
for cola in range(__lowerCAmelCase , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase )
]
def __magic_name__ ( __lowerCAmelCase : list[int] ) -> Callable[[int], int]:
__lowerCamelCase = len(__lowerCAmelCase )
__lowerCamelCase = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )]
__lowerCamelCase = [[0] for _ in range(__lowerCAmelCase )]
__lowerCamelCase = 42
__lowerCamelCase = 42
__lowerCamelCase = 42
__lowerCamelCase = 42
for x_val, y_val in enumerate(__lowerCAmelCase ):
for col in range(__lowerCAmelCase ):
__lowerCamelCase = (x_val + 1) ** (size - col - 1)
__lowerCamelCase = y_val
__lowerCamelCase = solve(__lowerCAmelCase , __lowerCAmelCase )
def interpolated_func(__lowerCAmelCase : int ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(__lowerCAmelCase ) )
return interpolated_func
def __magic_name__ ( __lowerCAmelCase : int ) -> int:
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def __magic_name__ ( __lowerCAmelCase : Callable[[int], int] = question_function , __lowerCAmelCase : int = 10 ) -> int:
__lowerCamelCase = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )]
__lowerCamelCase = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
__lowerCamelCase = 0
__lowerCamelCase = 42
__lowerCamelCase = 42
for poly in polynomials:
__lowerCamelCase = 1
while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ):
x_val += 1
ret += poly(__lowerCAmelCase )
return ret
if __name__ == "__main__":
print(F'{solution() = }')
| 369 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
"vocab_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt"
),
"squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt",
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli": (
"https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json"
),
},
}
SCREAMING_SNAKE_CASE__ : List[Any] = {
"squeezebert/squeezebert-uncased": 512,
"squeezebert/squeezebert-mnli": 512,
"squeezebert/squeezebert-mnli-headless": 512,
}
SCREAMING_SNAKE_CASE__ : Dict = {
"squeezebert/squeezebert-uncased": {"do_lower_case": True},
"squeezebert/squeezebert-mnli": {"do_lower_case": True},
"squeezebert/squeezebert-mnli-headless": {"do_lower_case": True},
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Optional[int] = VOCAB_FILES_NAMES
a__ : Any = PRETRAINED_VOCAB_FILES_MAP
a__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : Optional[Any] = SqueezeBertTokenizer
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Tuple="[CLS]" , SCREAMING_SNAKE_CASE__ : str="[MASK]" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]:
super().__init__(
SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE__ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE__ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars
):
__lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('''type''' ) )
__lowerCamelCase = do_lower_case
__lowerCamelCase = strip_accents
__lowerCamelCase = tokenize_chinese_chars
__lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = do_lower_case
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> str:
__lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
__lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ )
return tuple(SCREAMING_SNAKE_CASE__ )
| 339 | 0 |
import cmath
import math
def __magic_name__ ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ) -> complex:
__lowerCamelCase = math.radians(__lowerCAmelCase )
__lowerCamelCase = math.radians(__lowerCAmelCase )
# Convert voltage and current to rectangular form
__lowerCamelCase = cmath.rect(__lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase = cmath.rect(__lowerCAmelCase , __lowerCAmelCase )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod()
| 370 |
from __future__ import annotations
def __magic_name__ ( __lowerCAmelCase : list[int] ) -> bool:
return len(set(__lowerCAmelCase ) ) == len(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 339 | 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AlignProcessor, EfficientNetImageProcessor
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Union[str, Any] ) -> str:
__lowerCamelCase = tempfile.mkdtemp()
__lowerCamelCase = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
__lowerCamelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.48145466, 0.4578275, 0.40821073],
'''image_std''': [0.26862954, 0.26130258, 0.27577711],
}
__lowerCamelCase = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : int , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str:
return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> int:
return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[int]:
return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[Any] ) -> Tuple:
shutil.rmtree(self.tmpdirname )
def __A ( self : List[str] ) -> Any:
__lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCamelCase = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : Union[str, Any] ) -> int:
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = self.get_rust_tokenizer()
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCamelCase = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCamelCase = AlignProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ )
def __A ( self : List[str] ) -> Optional[int]:
__lowerCamelCase = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCamelCase = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
__lowerCamelCase = AlignProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[Any] ) -> Tuple:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''np''' )
__lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __A ( self : Optional[Any] ) -> Optional[int]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ , padding='''max_length''' , max_length=64 )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self : List[str] ) -> Any:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
processor()
def __A ( self : Optional[Any] ) -> Union[str, Any]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCamelCase = processor.batch_decode(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : Dict ) -> Optional[Any]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 371 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ : Dict = {
"configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Tuple = [
"FALCON_PRETRAINED_MODEL_ARCHIVE_LIST",
"FalconForCausalLM",
"FalconModel",
"FalconPreTrainedModel",
"FalconForSequenceClassification",
"FalconForTokenClassification",
"FalconForQuestionAnswering",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 339 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Dict = """xmod"""
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=("en_XX",) , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : int , ) -> str:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = position_embedding_type
__lowerCamelCase = use_cache
__lowerCamelCase = classifier_dropout
__lowerCamelCase = pre_norm
__lowerCamelCase = adapter_reduction_factor
__lowerCamelCase = adapter_layer_norm
__lowerCamelCase = adapter_reuse_layer_norm
__lowerCamelCase = ln_before_adapter
__lowerCamelCase = list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = default_language
class lowerCAmelCase__ ( __lowercase ):
@property
def __A ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
__lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__lowerCamelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 350 |
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
__lowerCamelCase , __lowerCamelCase = y, x % y
return abs(__lowerCAmelCase )
def __magic_name__ ( ) -> Tuple:
try:
__lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
__lowerCamelCase = int(nums[0] )
__lowerCamelCase = int(nums[1] )
print(
f'''greatest_common_divisor({num_a}, {num_a}) = '''
f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' )
print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 339 | 0 |
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = [0, 2, 4, 6, 8]
SCREAMING_SNAKE_CASE__ : Dict = [1, 3, 5, 7, 9]
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : list[int] , __lowerCAmelCase : int ) -> int:
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1 , -1 , -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
__lowerCamelCase = 0
for digit in range(10 ):
__lowerCamelCase = digit
result += reversible_numbers(
0 , (remainder + 2 * digit) // 10 , __lowerCAmelCase , __lowerCAmelCase )
return result
__lowerCamelCase = 0
for digita in range(10 ):
__lowerCamelCase = digita
if (remainder + digita) % 2 == 0:
__lowerCamelCase = ODD_DIGITS
else:
__lowerCamelCase = EVEN_DIGITS
for digita in other_parity_digits:
__lowerCamelCase = digita
result += reversible_numbers(
remaining_length - 2 , (remainder + digita + digita) // 10 , __lowerCAmelCase , __lowerCAmelCase , )
return result
def __magic_name__ ( __lowerCAmelCase : int = 9 ) -> int:
__lowerCamelCase = 0
for length in range(1 , max_power + 1 ):
result += reversible_numbers(__lowerCAmelCase , 0 , [0] * length , __lowerCAmelCase )
return result
if __name__ == "__main__":
print(F'{solution() = }')
| 351 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __A ( self : Optional[int] ) -> Union[str, Any]:
__lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
__lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' )
__lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
__lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
__lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits
__lowerCamelCase = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean()
__lowerCamelCase = -(labels.shape[-1] * loss.item())
__lowerCamelCase = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 339 | 0 |
def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] ) -> List[Any]:
if index == r:
for j in range(__lowerCAmelCase ):
print(data[j] , end=''' ''' )
print(''' ''' )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
__lowerCamelCase = arr[i]
combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , index + 1 , __lowerCAmelCase , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] ) -> Optional[Any]:
# A temporary array to store all combination one by one
__lowerCamelCase = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 0 , __lowerCAmelCase , 0 )
if __name__ == "__main__":
# Driver code to check the function above
SCREAMING_SNAKE_CASE__ : int = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 352 |
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
SCREAMING_SNAKE_CASE__ : Optional[int] = "bart"
SCREAMING_SNAKE_CASE__ : Dict = True
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> str:
if LOAD_DENSE_INDEX:
__lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' )
__lowerCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' )
__lowerCamelCase = qar_model.eval()
else:
__lowerCamelCase , __lowerCamelCase = (None, None)
if MODEL_TYPE == "bart":
__lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' )
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' )
__lowerCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' )
sas_model.load_state_dict(save_dict['''model'''] )
__lowerCamelCase = sas_model.eval()
else:
__lowerCamelCase , __lowerCamelCase = make_qa_sas_model(
model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> Optional[int]:
if LOAD_DENSE_INDEX:
__lowerCamelCase = faiss.StandardGpuResources()
__lowerCamelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train''']
__lowerCamelCase = np.memmap(
'''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , )
__lowerCamelCase = faiss.IndexFlatIP(128 )
__lowerCamelCase = faiss.index_cpu_to_gpu(__lowerCAmelCase , 1 , __lowerCAmelCase )
wikiaab_gpu_index_flat.add(__lowerCAmelCase ) # TODO fix for larger GPU
else:
__lowerCamelCase , __lowerCamelCase = (None, None)
__lowerCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> List[str]:
__lowerCamelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' )
__lowerCamelCase = elia['''train_eli5''']
__lowerCamelCase = np.memmap(
'''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) )
__lowerCamelCase = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(__lowerCAmelCase )
return (elia_train, eli5_train_q_index)
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_indexes()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = load_models()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_train_data()
def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=10 ) -> List[str]:
__lowerCamelCase = embed_questions_for_retrieval([question] , __lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase , __lowerCamelCase = eli5_train_q_index.search(__lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase = [elia_train[int(__lowerCAmelCase )] for i in I[0]]
return nn_examples
def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict="wiki40b" , __lowerCAmelCase : Any="dense" , __lowerCAmelCase : Dict=10 ) -> Union[str, Any]:
if source == "none":
__lowerCamelCase , __lowerCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__lowerCamelCase , __lowerCamelCase = query_qa_dense_index(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
else:
__lowerCamelCase , __lowerCamelCase = query_es_index(
__lowerCAmelCase , __lowerCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=__lowerCAmelCase , )
__lowerCamelCase = [
(res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst
]
__lowerCamelCase = '''question: {} context: {}'''.format(__lowerCAmelCase , __lowerCAmelCase )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda __lowerCAmelCase : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __lowerCAmelCase : None),
} )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str=64 , __lowerCAmelCase : Dict=256 , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Optional[Any]=0.95 , __lowerCAmelCase : List[Any]=0.8 ) -> Any:
with torch.no_grad():
__lowerCamelCase = qa_sas_generate(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_answers=1 , num_beams=__lowerCAmelCase , min_len=__lowerCAmelCase , max_len=__lowerCAmelCase , do_sample=__lowerCAmelCase , temp=__lowerCAmelCase , top_p=__lowerCAmelCase , top_k=__lowerCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0]
return (answer, support_list)
st.title("Long Form Question Answering with ELI5")
# Start sidebar
SCREAMING_SNAKE_CASE__ : List[str] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>"
SCREAMING_SNAKE_CASE__ : Dict = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
SCREAMING_SNAKE_CASE__ : int = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n"
st.sidebar.markdown(description, unsafe_allow_html=True)
SCREAMING_SNAKE_CASE__ : str = [
"Answer the question",
"View the retrieved document only",
"View the most similar ELI5 question and answer",
"Show me everything, please!",
]
SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.checkbox("Demo options")
if demo_options:
SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.selectbox(
"",
action_list,
index=3,
)
SCREAMING_SNAKE_CASE__ : Optional[Any] = action_list.index(action_st)
SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox(
"",
["Show full text of passages", "Show passage section titles"],
index=0,
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = show_type == "Show full text of passages"
else:
SCREAMING_SNAKE_CASE__ : Any = 3
SCREAMING_SNAKE_CASE__ : Any = True
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.checkbox("Retrieval options")
if retrieval_options:
SCREAMING_SNAKE_CASE__ : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n "
st.sidebar.markdown(retriever_info)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"])
SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"])
else:
SCREAMING_SNAKE_CASE__ : List[str] = "wiki40b"
SCREAMING_SNAKE_CASE__ : Optional[Any] = "dense"
SCREAMING_SNAKE_CASE__ : str = "beam"
SCREAMING_SNAKE_CASE__ : List[Any] = 2
SCREAMING_SNAKE_CASE__ : Optional[Any] = 64
SCREAMING_SNAKE_CASE__ : List[Any] = 256
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.checkbox("Generation options")
if generate_options:
SCREAMING_SNAKE_CASE__ : Dict = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n "
st.sidebar.markdown(generate_info)
SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"])
SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider(
"Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : str = st.sidebar.slider(
"Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider(
"Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : Dict = st.sidebar.slider(
"Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
# start main text
SCREAMING_SNAKE_CASE__ : Any = [
"<MY QUESTION>",
"How do people make chocolate?",
"Why do we get a fever when we are sick?",
"How can different animals perceive different colors?",
"What is natural language processing?",
"What's the best way to treat a sunburn?",
"What exactly are vitamins ?",
"How does nuclear energy provide electricity?",
"What's the difference between viruses and bacteria?",
"Why are flutes classified as woodwinds when most of them are made out of metal ?",
"Why do people like drinking coffee even though it tastes so bad?",
"What happens when wine ages? How does it make the wine taste better?",
"If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?",
"How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?",
"How does New Zealand have so many large bird predators?",
]
SCREAMING_SNAKE_CASE__ : List[str] = st.selectbox(
"What would you like to ask? ---- select <MY QUESTION> to enter a new query",
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.text_input("Enter your question here:", "")
else:
SCREAMING_SNAKE_CASE__ : str = question_s
if st.button("Show me!"):
if action in [0, 1, 3]:
if index_type == "mixed":
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_support(question, source=wiki_source, method="dense", n_results=10)
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = make_support(question, source=wiki_source, method="sparse", n_results=10)
SCREAMING_SNAKE_CASE__ : int = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
SCREAMING_SNAKE_CASE__ : Optional[Any] = support_list[:10]
SCREAMING_SNAKE_CASE__ : Tuple = "<P> " + " <P> ".join([res[-1] for res in support_list])
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == "sampled"),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown("### The model generated answer is:")
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:")
for i, res in enumerate(support_list):
SCREAMING_SNAKE_CASE__ : Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_"))
SCREAMING_SNAKE_CASE__ : Tuple = res[1].strip()
if sec_titles == "":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = "[{}]({})".format(res[0], wiki_url)
else:
SCREAMING_SNAKE_CASE__ : Dict = sec_titles.split(" & ")
SCREAMING_SNAKE_CASE__ : int = " & ".join(
["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list]
)
st.markdown(
"{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
"> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True
)
if action in [2, 3]:
SCREAMING_SNAKE_CASE__ : Any = find_nearest_training(question)
SCREAMING_SNAKE_CASE__ : List[Any] = nn_train_list[0]
st.markdown(
"--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"])
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [
"{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""]))
for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"]))
if i == 0 or sc > 2
]
st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st)))
SCREAMING_SNAKE_CASE__ : List[Any] = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n"
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 339 | 0 |
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> str:
return "\n".join(
f'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) )
if __name__ == "__main__":
print(multiplication_table(number=5, number_of_terms=10))
| 353 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : str = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Dict = """xmod"""
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=("en_XX",) , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : int , ) -> str:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = position_embedding_type
__lowerCamelCase = use_cache
__lowerCamelCase = classifier_dropout
__lowerCamelCase = pre_norm
__lowerCamelCase = adapter_reduction_factor
__lowerCamelCase = adapter_layer_norm
__lowerCamelCase = adapter_reuse_layer_norm
__lowerCamelCase = ln_before_adapter
__lowerCamelCase = list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = default_language
class lowerCAmelCase__ ( __lowercase ):
@property
def __A ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
__lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__lowerCamelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 339 | 0 |
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.getLogger(__name__)
torch.set_grad_enabled(False)
SCREAMING_SNAKE_CASE__ : int = "cuda" if torch.cuda.is_available() else "cpu"
def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple=100 , __lowerCAmelCase : Optional[int]=" " ) -> List[str]:
__lowerCamelCase = text.split(__lowerCAmelCase )
return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )]
def __magic_name__ ( __lowerCAmelCase : dict ) -> dict:
__lowerCamelCase , __lowerCamelCase = [], []
for title, text in zip(documents['''title'''] , documents['''text'''] ):
if text is not None:
for passage in split_text(__lowerCAmelCase ):
titles.append(title if title is not None else '''''' )
texts.append(__lowerCAmelCase )
return {"title": titles, "text": texts}
def __magic_name__ ( __lowerCAmelCase : dict , __lowerCAmelCase : DPRContextEncoder , __lowerCAmelCase : DPRContextEncoderTokenizerFast ) -> dict:
__lowerCamelCase = ctx_tokenizer(
documents['''title'''] , documents['''text'''] , truncation=__lowerCAmelCase , padding='''longest''' , return_tensors='''pt''' )['''input_ids''']
__lowerCamelCase = ctx_encoder(input_ids.to(device=__lowerCAmelCase ) , return_dict=__lowerCAmelCase ).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def __magic_name__ ( __lowerCAmelCase : "RagExampleArguments" , __lowerCAmelCase : "ProcessingArguments" , __lowerCAmelCase : "IndexHnswArguments" , ) -> List[str]:
######################################
logger.info('''Step 1 - Create the dataset''' )
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
__lowerCamelCase = load_dataset(
'''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] )
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
__lowerCamelCase = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=processing_args.num_proc )
# And compute the embeddings
__lowerCamelCase = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowerCAmelCase )
__lowerCamelCase = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name )
__lowerCamelCase = Features(
{'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space
__lowerCamelCase = dataset.map(
partial(__lowerCAmelCase , ctx_encoder=__lowerCAmelCase , ctx_tokenizer=__lowerCAmelCase ) , batched=__lowerCAmelCase , batch_size=processing_args.batch_size , features=__lowerCAmelCase , )
# And finally save your dataset
__lowerCamelCase = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' )
dataset.save_to_disk(__lowerCAmelCase )
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info('''Step 2 - Index the dataset''' )
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
__lowerCamelCase = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT )
dataset.add_faiss_index('''embeddings''' , custom_index=__lowerCAmelCase )
# And save the index
__lowerCamelCase = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' )
dataset.get_index('''embeddings''' ).save(__lowerCAmelCase )
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class lowerCAmelCase__ :
a__ : str = field(
default=str(Path(__lowercase ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , )
a__ : str = field(
default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , )
a__ : str = field(
default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={
"""help""": (
"""The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"""
""" 'facebook/dpr-ctx_encoder-multiset-base'"""
)
} , )
a__ : Optional[str] = field(
default=str(Path(__lowercase ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , )
@dataclass
class lowerCAmelCase__ :
a__ : Optional[int] = field(
default=__lowercase , metadata={
"""help""": """The number of processes to use to split the documents into passages. Default is single process."""
} , )
a__ : int = field(
default=16 , metadata={
"""help""": """The batch size to use when computing the passages embeddings using the DPR context encoder."""
} , )
@dataclass
class lowerCAmelCase__ :
a__ : int = field(
default=768 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , )
a__ : int = field(
default=128 , metadata={
"""help""": (
"""The number of bi-directional links created for every new element during the HNSW index construction."""
)
} , )
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
SCREAMING_SNAKE_CASE__ : Any = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 354 |
from collections import namedtuple
import requests
from lxml import html # type: ignore
SCREAMING_SNAKE_CASE__ : List[Any] = namedtuple("covid_data", "cases deaths recovered")
def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
__lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()'''
return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) )
SCREAMING_SNAKE_CASE__ : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}"
print(fmt.format(*covid_stats()))
| 339 | 0 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __A ( self : Any ) -> List[str]:
__lowerCamelCase = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' )
__lowerCamelCase = tf.convert_to_tensor(
[[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state''']
__lowerCamelCase = tf.TensorShape((1, 10, 7_68) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ )
# compare the actual values for a slice.
__lowerCamelCase = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 355 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
SCREAMING_SNAKE_CASE__ : int = logging.getLogger(__name__)
@dataclass
class lowerCAmelCase__ :
a__ : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether tp freeze the encoder."""} )
a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether to freeze the embeddings."""} )
@dataclass
class lowerCAmelCase__ :
a__ : str = field(
metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} )
a__ : Optional[str] = field(
default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , )
a__ : Optional[int] = field(
default=1_024 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(
default=128 , metadata={
"""help""": (
"""The maximum total sequence length for target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(
default=142 , metadata={
"""help""": (
"""The maximum total sequence length for validation target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded. """
"""This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """
"""during ``evaluate`` and ``predict``."""
)
} , )
a__ : Optional[int] = field(
default=142 , metadata={
"""help""": (
"""The maximum total sequence length for test target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} )
a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Source language id for translation."""} )
a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Target language id for translation."""} )
a__ : Optional[int] = field(default=__lowercase , metadata={"""help""": """# num_beams to use for evaluation."""} )
a__ : bool = field(
default=__lowercase , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , )
def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int ) -> Dict:
logger.info(f'''***** {split} metrics *****''' )
for key in sorted(metrics.keys() ):
logger.info(f''' {key} = {metrics[key]}''' )
save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , f'''{split}_results.json''' ) )
def __magic_name__ ( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses()
check_output_dir(__lowerCAmelCase )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowerCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowerCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
assert hasattr(__lowerCAmelCase , __lowerCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute'''
setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) )
__lowerCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(__lowerCAmelCase , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
__lowerCamelCase = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(__lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
__lowerCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
__lowerCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(__lowerCAmelCase )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
__lowerCamelCase = SeqaSeqDataset
# Get datasets
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_train
else None
)
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
__lowerCamelCase = (
build_compute_metrics_fn(data_args.task , __lowerCAmelCase ) if training_args.predict_with_generate else None
)
__lowerCamelCase = SeqaSeqTrainer(
model=__lowerCAmelCase , args=__lowerCAmelCase , data_args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , data_collator=SeqaSeqDataCollator(
__lowerCAmelCase , __lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , )
__lowerCamelCase = {}
# Training
if training_args.do_train:
logger.info('''*** Train ***''' )
__lowerCamelCase = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
__lowerCamelCase = train_result.metrics
__lowerCamelCase = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('''train''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
__lowerCamelCase = trainer.evaluate(metric_key_prefix='''val''' )
__lowerCamelCase = data_args.n_val
__lowerCamelCase = round(metrics['''val_loss'''] , 4 )
if trainer.is_world_process_zero():
handle_metrics('''val''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
__lowerCamelCase = trainer.predict(test_dataset=__lowerCAmelCase , metric_key_prefix='''test''' )
__lowerCamelCase = test_output.metrics
__lowerCamelCase = data_args.n_test
if trainer.is_world_process_zero():
__lowerCamelCase = round(metrics['''test_loss'''] , 4 )
handle_metrics('''test''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
if training_args.predict_with_generate:
__lowerCamelCase = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )
__lowerCamelCase = lmap(str.strip , __lowerCAmelCase )
write_txt_file(__lowerCAmelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) )
if trainer.is_world_process_zero():
save_json(__lowerCAmelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) )
return all_metrics
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 339 | 0 |
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : int = {
"facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json",
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Tuple = """data2vec-audio"""
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=32 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_68 , SCREAMING_SNAKE_CASE__ : List[str]=12 , SCREAMING_SNAKE_CASE__ : Tuple=12 , SCREAMING_SNAKE_CASE__ : List[Any]=30_72 , SCREAMING_SNAKE_CASE__ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Any=1e-5 , SCREAMING_SNAKE_CASE__ : Dict="gelu" , SCREAMING_SNAKE_CASE__ : Tuple=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , SCREAMING_SNAKE_CASE__ : List[Any]=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE__ : Dict=(10, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : List[str]=16 , SCREAMING_SNAKE_CASE__ : Tuple=19 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.05 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=10 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : Dict=10 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]="sum" , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=2_56 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=(5_12, 5_12, 5_12, 5_12, 15_00) , SCREAMING_SNAKE_CASE__ : Dict=(5, 3, 3, 1, 1) , SCREAMING_SNAKE_CASE__ : List[str]=(1, 2, 3, 1, 1) , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : Dict=1 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : Any=None , **SCREAMING_SNAKE_CASE__ : Any , ) -> Any:
super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = hidden_size
__lowerCamelCase = feat_extract_activation
__lowerCamelCase = list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = conv_bias
__lowerCamelCase = num_conv_pos_embeddings
__lowerCamelCase = num_conv_pos_embedding_groups
__lowerCamelCase = conv_pos_kernel_size
__lowerCamelCase = len(self.conv_dim )
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_dropout
__lowerCamelCase = attention_dropout
__lowerCamelCase = activation_dropout
__lowerCamelCase = feat_proj_dropout
__lowerCamelCase = final_dropout
__lowerCamelCase = layerdrop
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = initializer_range
__lowerCamelCase = vocab_size
__lowerCamelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowerCamelCase = mask_time_prob
__lowerCamelCase = mask_time_length
__lowerCamelCase = mask_time_min_masks
__lowerCamelCase = mask_feature_prob
__lowerCamelCase = mask_feature_length
__lowerCamelCase = mask_feature_min_masks
# ctc loss
__lowerCamelCase = ctc_loss_reduction
__lowerCamelCase = ctc_zero_infinity
# adapter
__lowerCamelCase = add_adapter
__lowerCamelCase = adapter_kernel_size
__lowerCamelCase = adapter_stride
__lowerCamelCase = num_adapter_layers
__lowerCamelCase = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__lowerCamelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__lowerCamelCase = list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = xvector_output_dim
@property
def __A ( self : Tuple ) -> Optional[Any]:
return math.prod(self.conv_stride )
| 356 |
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowerCAmelCase__ ( unittest.TestCase ):
@property
def __A ( self : List[Any] ) -> Optional[Any]:
torch.manual_seed(0 )
__lowerCamelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def __A ( self : Optional[int] ) -> Optional[Any]:
__lowerCamelCase = self.dummy_uncond_unet
__lowerCamelCase = ScoreSdeVeScheduler()
__lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
sde_ve.to(SCREAMING_SNAKE_CASE__ )
sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ )[
0
]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Tuple ) -> str:
__lowerCamelCase = '''google/ncsnpp-church-256'''
__lowerCamelCase = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
sde_ve.to(SCREAMING_SNAKE_CASE__ )
sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
__lowerCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 339 | 0 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Optional[int] = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Optional[int] = """t5"""
a__ : List[Any] = ["""past_key_values"""]
a__ : List[str] = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""}
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str]=3_21_28 , SCREAMING_SNAKE_CASE__ : Any=5_12 , SCREAMING_SNAKE_CASE__ : str=64 , SCREAMING_SNAKE_CASE__ : Dict=20_48 , SCREAMING_SNAKE_CASE__ : Optional[Any]=6 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : str=8 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_28 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : int=1e-6 , SCREAMING_SNAKE_CASE__ : str=1.0 , SCREAMING_SNAKE_CASE__ : Optional[int]="relu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : int=1 , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> Optional[int]:
__lowerCamelCase = vocab_size
__lowerCamelCase = d_model
__lowerCamelCase = d_kv
__lowerCamelCase = d_ff
__lowerCamelCase = num_layers
__lowerCamelCase = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
__lowerCamelCase = num_heads
__lowerCamelCase = relative_attention_num_buckets
__lowerCamelCase = relative_attention_max_distance
__lowerCamelCase = dropout_rate
__lowerCamelCase = layer_norm_epsilon
__lowerCamelCase = initializer_factor
__lowerCamelCase = feed_forward_proj
__lowerCamelCase = use_cache
__lowerCamelCase = self.feed_forward_proj.split('''-''' )
__lowerCamelCase = act_info[-1]
__lowerCamelCase = act_info[0] == '''gated'''
if len(SCREAMING_SNAKE_CASE__ ) > 1 and act_info[0] != "gated" or len(SCREAMING_SNAKE_CASE__ ) > 2:
raise ValueError(
f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'''
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
__lowerCamelCase = '''gelu_new'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
class lowerCAmelCase__ ( __lowercase ):
@property
def __A ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
__lowerCamelCase = {
'''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''},
'''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''},
}
if self.use_past:
__lowerCamelCase = '''past_encoder_sequence + sequence'''
__lowerCamelCase = {0: '''batch'''}
__lowerCamelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
__lowerCamelCase = {0: '''batch''', 1: '''decoder_sequence'''}
__lowerCamelCase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ , direction='''inputs''' )
return common_inputs
@property
def __A ( self : int ) -> int:
return 13
| 357 |
from functools import lru_cache
def __magic_name__ ( __lowerCAmelCase : int ) -> set:
__lowerCamelCase = 2
__lowerCamelCase = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(__lowerCAmelCase )
if n > 1:
factors.add(__lowerCAmelCase )
return factors
@lru_cache
def __magic_name__ ( __lowerCAmelCase : int ) -> int:
return len(unique_prime_factors(__lowerCAmelCase ) )
def __magic_name__ ( __lowerCAmelCase : list ) -> bool:
return len(set(__lowerCAmelCase ) ) in (0, 1)
def __magic_name__ ( __lowerCAmelCase : int ) -> list:
__lowerCamelCase = 2
while True:
# Increment each value of a generated range
__lowerCamelCase = [base + i for i in range(__lowerCAmelCase )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
__lowerCamelCase = [upf_len(__lowerCAmelCase ) for x in group]
checker.append(__lowerCAmelCase )
# If all numbers in the list are equal, return the group variable.
if equality(__lowerCAmelCase ):
return group
# Increment our base variable by 1
base += 1
def __magic_name__ ( __lowerCAmelCase : int = 4 ) -> int:
__lowerCamelCase = run(__lowerCAmelCase )
return results[0] if len(__lowerCAmelCase ) else None
if __name__ == "__main__":
print(solution())
| 339 | 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Optional[int] ) -> Tuple:
__lowerCamelCase = tempfile.mkdtemp()
# fmt: off
__lowerCamelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) )
__lowerCamelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__lowerCamelCase = {'''unk_token''': '''<unk>'''}
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.48145466, 0.4578275, 0.40821073],
'''image_std''': [0.26862954, 0.26130258, 0.27577711],
}
__lowerCamelCase = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : List[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Union[str, Any]:
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Tuple , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]:
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Tuple ) -> Tuple:
shutil.rmtree(self.tmpdirname )
def __A ( self : str ) -> Dict:
__lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCamelCase = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : Optional[Any] ) -> List[Any]:
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = self.get_rust_tokenizer()
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCamelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCamelCase = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ )
def __A ( self : int ) -> Dict:
__lowerCamelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCamelCase = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
__lowerCamelCase = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def __A ( self : Any ) -> List[Any]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''np''' )
__lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __A ( self : Tuple ) -> Tuple:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self : Dict ) -> Optional[int]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
processor()
def __A ( self : Any ) -> List[str]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCamelCase = processor.batch_decode(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : Any ) -> List[str]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 358 |
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class lowerCAmelCase__ :
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=99 , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : int=9 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.002 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , ) -> Optional[Any]:
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = encoder_seq_length
__lowerCamelCase = decoder_seq_length
# For common tests
__lowerCamelCase = self.decoder_seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_attention_mask
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = d_ff
__lowerCamelCase = relative_attention_num_buckets
__lowerCamelCase = dropout_rate
__lowerCamelCase = initializer_factor
__lowerCamelCase = eos_token_id
__lowerCamelCase = pad_token_id
__lowerCamelCase = decoder_start_token_id
__lowerCamelCase = None
__lowerCamelCase = decoder_layers
def __A ( self : Any ) -> Tuple:
return TaConfig.from_pretrained('''google/umt5-base''' )
def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> Optional[int]:
if attention_mask is None:
__lowerCamelCase = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
__lowerCamelCase = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
__lowerCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ )
if decoder_head_mask is None:
__lowerCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ )
if cross_attn_head_mask is None:
__lowerCamelCase = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def __A ( self : List[Any] ) -> Tuple:
__lowerCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
__lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
__lowerCamelCase = input_ids.clamp(self.pad_token_id + 1 )
__lowerCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 )
__lowerCamelCase = self.get_config()
__lowerCamelCase = config.num_attention_heads
__lowerCamelCase = self.prepare_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return config, input_dict
def __A ( self : Tuple ) -> List[str]:
__lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def __A ( self : Optional[Any] ) -> Any:
return TaConfig(
vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def __A ( self : List[Any] ) -> Any:
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> int:
__lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
__lowerCamelCase = model(
input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = result.last_hidden_state
__lowerCamelCase = result.past_key_values
__lowerCamelCase = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Dict:
__lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder().to(SCREAMING_SNAKE_CASE__ ).eval()
# first forward pass
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ )
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) )
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) + 1 )
__lowerCamelCase , __lowerCamelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__lowerCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
__lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state''']
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )['''last_hidden_state''']
# select random slice
__lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__lowerCamelCase = output_from_no_past[:, -1, random_slice_idx].detach()
__lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Optional[int]:
__lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ).half().eval()
__lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ )['''last_hidden_state''']
self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE__ ).any().item() )
@require_torch
class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ):
a__ : List[Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
a__ : Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
a__ : Tuple = (
{
"""conversational""": UMTaForConditionalGeneration,
"""feature-extraction""": UMTaModel,
"""summarization""": UMTaForConditionalGeneration,
"""text2text-generation""": UMTaForConditionalGeneration,
"""translation""": UMTaForConditionalGeneration,
"""question-answering""": UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
a__ : int = True
a__ : int = False
a__ : Tuple = False
a__ : Optional[int] = True
a__ : Optional[int] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
a__ : Tuple = [0.8, 0.9]
def __A ( self : Tuple ) -> Tuple:
__lowerCamelCase = UMTaModelTester(self )
@unittest.skip('''Test has a segmentation fault on torch 1.8.0''' )
def __A ( self : List[str] ) -> Union[str, Any]:
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = UMTaModel(config_and_inputs[0] ).to(SCREAMING_SNAKE_CASE__ )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
SCREAMING_SNAKE_CASE__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=SCREAMING_SNAKE_CASE__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def __A ( self : Union[str, Any] ) -> Any:
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE__ )
def __A ( self : Any ) -> Any:
__lowerCamelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions''']
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = config_and_inputs[0]
__lowerCamelCase = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval()
model.to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {
'''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ),
'''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ),
'''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ),
}
for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE__ , head_masking.items() ):
__lowerCamelCase = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
__lowerCamelCase = torch.ones(
config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model.generate(
config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE__ , return_dict_in_generate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
# We check the state of decoder_attentions and cross_attentions just from the last step
__lowerCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' )
def __A ( self : Tuple ) -> Optional[Any]:
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
@unittest.skip(
'''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' )
def __A ( self : int ) -> Optional[Any]:
__lowerCamelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=SCREAMING_SNAKE_CASE__ , legacy=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = [
'''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''',
'''No se como puedo <extra_id_0>.''',
'''This is the reason why we <extra_id_0> them.''',
'''The <extra_id_0> walks in <extra_id_1>, seats''',
'''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''',
]
__lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , padding=SCREAMING_SNAKE_CASE__ ).input_ids
# fmt: off
__lowerCamelCase = torch.tensor(
[
[ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1],
] )
# fmt: on
torch.testing.assert_allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model.generate(input_ids.to(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = [
'''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''',
'''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
]
__lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ )
self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
| 339 | 0 |
SCREAMING_SNAKE_CASE__ : List[Any] = "0.18.2"
from .configuration_utils import ConfigMixin
from .utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_inflect_available,
is_invisible_watermark_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_librosa_available,
is_note_seq_available,
is_onnx_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
is_transformers_available,
is_transformers_version,
is_unidecode_available,
logging,
)
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_onnx_objects import * # noqa F403
else:
from .pipelines import OnnxRuntimeModel
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_pt_objects import * # noqa F403
else:
from .models import (
AutoencoderKL,
ControlNetModel,
ModelMixin,
PriorTransformer,
TaFilmDecoder,
TransformeraDModel,
UNetaDModel,
UNetaDConditionModel,
UNetaDModel,
UNetaDConditionModel,
VQModel,
)
from .optimization import (
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
get_scheduler,
)
from .pipelines import (
AudioPipelineOutput,
ConsistencyModelPipeline,
DanceDiffusionPipeline,
DDIMPipeline,
DDPMPipeline,
DiffusionPipeline,
DiTPipeline,
ImagePipelineOutput,
KarrasVePipeline,
LDMPipeline,
LDMSuperResolutionPipeline,
PNDMPipeline,
RePaintPipeline,
ScoreSdeVePipeline,
)
from .schedulers import (
CMStochasticIterativeScheduler,
DDIMInverseScheduler,
DDIMParallelScheduler,
DDIMScheduler,
DDPMParallelScheduler,
DDPMScheduler,
DEISMultistepScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
IPNDMScheduler,
KarrasVeScheduler,
KDPMaAncestralDiscreteScheduler,
KDPMaDiscreteScheduler,
PNDMScheduler,
RePaintScheduler,
SchedulerMixin,
ScoreSdeVeScheduler,
UnCLIPScheduler,
UniPCMultistepScheduler,
VQDiffusionScheduler,
)
from .training_utils import EMAModel
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .schedulers import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .schedulers import DPMSolverSDEScheduler
try:
if not (is_torch_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
AltDiffusionImgaImgPipeline,
AltDiffusionPipeline,
AudioLDMPipeline,
CycleDiffusionPipeline,
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
ImageTextPipelineOutput,
KandinskyImgaImgPipeline,
KandinskyInpaintPipeline,
KandinskyPipeline,
KandinskyPriorPipeline,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaControlnetPipeline,
KandinskyVaaImgaImgPipeline,
KandinskyVaaInpaintPipeline,
KandinskyVaaPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
KandinskyVaaPriorPipeline,
LDMTextToImagePipeline,
PaintByExamplePipeline,
SemanticStableDiffusionPipeline,
ShapEImgaImgPipeline,
ShapEPipeline,
StableDiffusionAttendAndExcitePipeline,
StableDiffusionControlNetImgaImgPipeline,
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionDepthaImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionImageVariationPipeline,
StableDiffusionImgaImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionInstructPixaPixPipeline,
StableDiffusionLatentUpscalePipeline,
StableDiffusionLDMaDPipeline,
StableDiffusionModelEditingPipeline,
StableDiffusionPanoramaPipeline,
StableDiffusionParadigmsPipeline,
StableDiffusionPipeline,
StableDiffusionPipelineSafe,
StableDiffusionPixaPixZeroPipeline,
StableDiffusionSAGPipeline,
StableDiffusionUpscalePipeline,
StableUnCLIPImgaImgPipeline,
StableUnCLIPPipeline,
TextToVideoSDPipeline,
TextToVideoZeroPipeline,
UnCLIPImageVariationPipeline,
UnCLIPPipeline,
UniDiffuserModel,
UniDiffuserPipeline,
UniDiffuserTextDecoder,
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
VideoToVideoSDPipeline,
VQDiffusionPipeline,
)
try:
if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403
else:
from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
else:
from .pipelines import StableDiffusionKDiffusionPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
else:
from .pipelines import (
OnnxStableDiffusionImgaImgPipeline,
OnnxStableDiffusionInpaintPipeline,
OnnxStableDiffusionInpaintPipelineLegacy,
OnnxStableDiffusionPipeline,
OnnxStableDiffusionUpscalePipeline,
StableDiffusionOnnxPipeline,
)
try:
if not (is_torch_available() and is_librosa_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_librosa_objects import * # noqa F403
else:
from .pipelines import AudioDiffusionPipeline, Mel
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .pipelines import SpectrogramDiffusionPipeline
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_objects import * # noqa F403
else:
from .models.controlnet_flax import FlaxControlNetModel
from .models.modeling_flax_utils import FlaxModelMixin
from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel
from .models.vae_flax import FlaxAutoencoderKL
from .pipelines import FlaxDiffusionPipeline
from .schedulers import (
FlaxDDIMScheduler,
FlaxDDPMScheduler,
FlaxDPMSolverMultistepScheduler,
FlaxKarrasVeScheduler,
FlaxLMSDiscreteScheduler,
FlaxPNDMScheduler,
FlaxSchedulerMixin,
FlaxScoreSdeVeScheduler,
)
try:
if not (is_flax_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
FlaxStableDiffusionControlNetPipeline,
FlaxStableDiffusionImgaImgPipeline,
FlaxStableDiffusionInpaintPipeline,
FlaxStableDiffusionPipeline,
)
try:
if not (is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_note_seq_objects import * # noqa F403
else:
from .pipelines import MidiProcessor
| 359 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Tuple = {
"s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json",
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Union[str, Any] = """open-llama"""
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any=10_00_00 , SCREAMING_SNAKE_CASE__ : Any=40_96 , SCREAMING_SNAKE_CASE__ : Any=1_10_08 , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Any="silu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=20_48 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-6 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Dict:
__lowerCamelCase = vocab_size
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = hidden_size
__lowerCamelCase = intermediate_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = initializer_range
__lowerCamelCase = rms_norm_eps
__lowerCamelCase = use_cache
__lowerCamelCase = kwargs.pop(
'''use_memorry_efficient_attention''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_dropout_prob
__lowerCamelCase = use_stable_embedding
__lowerCamelCase = shared_input_output_embedding
__lowerCamelCase = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
def __A ( self : Dict ) -> Optional[int]:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE__ ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
f'''got {self.rope_scaling}''' )
__lowerCamelCase = self.rope_scaling.get('''type''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.rope_scaling.get('''factor''' , SCREAMING_SNAKE_CASE__ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 339 | 0 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class lowerCAmelCase__ :
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int]=14 , SCREAMING_SNAKE_CASE__ : Any=7 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=99 , SCREAMING_SNAKE_CASE__ : Dict=32 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=5_12 , SCREAMING_SNAKE_CASE__ : Any=0.02 , ) -> Optional[int]:
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_input_mask
__lowerCamelCase = use_token_type_ids
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = rotary_dim
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = initializer_range
__lowerCamelCase = None
__lowerCamelCase = vocab_size - 1
__lowerCamelCase = vocab_size - 1
__lowerCamelCase = vocab_size - 1
def __A ( self : int ) -> Tuple:
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_input_mask:
__lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def __A ( self : List[str] ) -> Any:
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs
__lowerCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> int:
__lowerCamelCase = 20
__lowerCamelCase = model_class_name(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' )
__lowerCamelCase = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__lowerCamelCase = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , position_ids=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' )
__lowerCamelCase = model(
input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def __A ( self : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]:
__lowerCamelCase = 20
__lowerCamelCase = model_class_name(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
__lowerCamelCase = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__lowerCamelCase = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , position_ids=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' )
__lowerCamelCase = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE__ , position_ids=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class lowerCAmelCase__ ( __lowercase , __lowercase , unittest.TestCase ):
a__ : Any = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
a__ : Union[str, Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def __A ( self : Optional[Any] ) -> Tuple:
__lowerCamelCase = FlaxGPTJModelTester(self )
def __A ( self : Union[str, Any] ) -> Any:
for model_class_name in self.all_model_classes:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : List[str] ) -> Optional[Any]:
for model_class_name in self.all_model_classes:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@tooslow
def __A ( self : List[Any] ) -> Optional[Any]:
__lowerCamelCase = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' )
__lowerCamelCase = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' )
__lowerCamelCase = False
__lowerCamelCase = model.config.eos_token_id
__lowerCamelCase = jax.jit(model.generate )
__lowerCamelCase = jit_generate(
inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences
__lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = [
'''Hello this is a long string of text.\n\nI\'m trying to get the text of the''',
'''Hey, I\'m a little late to the party. I\'m going to''',
]
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@is_pt_flax_cross_test
def __A ( self : Dict ) -> List[str]:
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__lowerCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
__lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase , __lowerCamelCase = pt_inputs['''input_ids'''].shape
__lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = 0
__lowerCamelCase = 1
__lowerCamelCase = 0
__lowerCamelCase = 1
__lowerCamelCase = pt_model_class(SCREAMING_SNAKE_CASE__ ).eval()
__lowerCamelCase = model_class(SCREAMING_SNAKE_CASE__ , dtype=jnp.floataa )
__lowerCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = fx_state
with torch.no_grad():
__lowerCamelCase = pt_model(**SCREAMING_SNAKE_CASE__ ).to_tuple()
__lowerCamelCase = fx_model(**SCREAMING_SNAKE_CASE__ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model_class.from_pretrained(SCREAMING_SNAKE_CASE__ , from_pt=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = fx_model_loaded(**SCREAMING_SNAKE_CASE__ ).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def __A ( self : str ) -> Optional[Any]:
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__lowerCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
__lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pt_model_class(SCREAMING_SNAKE_CASE__ ).eval()
__lowerCamelCase = model_class(SCREAMING_SNAKE_CASE__ , dtype=jnp.floataa )
__lowerCamelCase = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE__ , fx_model.params )
__lowerCamelCase , __lowerCamelCase = pt_inputs['''input_ids'''].shape
__lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = 0
__lowerCamelCase = 1
__lowerCamelCase = 0
__lowerCamelCase = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
__lowerCamelCase = pt_model(**SCREAMING_SNAKE_CASE__ ).to_tuple()
__lowerCamelCase = fx_model(**SCREAMING_SNAKE_CASE__ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE__ , from_flax=SCREAMING_SNAKE_CASE__ )
with torch.no_grad():
__lowerCamelCase = pt_model_loaded(**SCREAMING_SNAKE_CASE__ ).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def __A ( self : Tuple ) -> Union[str, Any]:
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' )
__lowerCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
| 360 |
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY")
SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL")
@dataclass(frozen=__lowercase , slots=__lowercase )
class lowerCAmelCase__ ( Generic[KEY, VAL] ):
a__ : KEY
a__ : VAL
class lowerCAmelCase__ ( _Item ):
def __init__( self : str ) -> None:
super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __bool__( self : Tuple ) -> bool:
return False
SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem()
class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ):
def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None:
__lowerCamelCase = initial_block_size
__lowerCamelCase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__lowerCamelCase = capacity_factor
__lowerCamelCase = 0
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int:
return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets )
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int:
return (ind + 1) % len(self._buckets )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool:
__lowerCamelCase = self._buckets[ind]
if not stored:
__lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self._len += 1
return True
elif stored.key == key:
__lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return True
else:
return False
def __A ( self : Any ) -> bool:
__lowerCamelCase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(SCREAMING_SNAKE_CASE__ )
def __A ( self : List[Any] ) -> bool:
if len(self._buckets ) <= self._initial_block_size:
return False
__lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None:
__lowerCamelCase = self._buckets
__lowerCamelCase = [None] * new_size
__lowerCamelCase = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def __A ( self : str ) -> None:
self._resize(len(self._buckets ) * 2 )
def __A ( self : Dict ) -> None:
self._resize(len(self._buckets ) // 2 )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]:
__lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ )
for _ in range(len(self._buckets ) ):
yield ind
__lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
break
def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None:
if self._is_full():
self._size_up()
self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = self._buckets[ind]
if item is None:
raise KeyError(SCREAMING_SNAKE_CASE__ )
if item is _deleted:
continue
if item.key == key:
__lowerCamelCase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(SCREAMING_SNAKE_CASE__ )
def __len__( self : int ) -> int:
return self._len
def __iter__( self : Tuple ) -> Iterator[KEY]:
yield from (item.key for item in self._buckets if item)
def __repr__( self : Optional[Any] ) -> str:
__lowerCamelCase = ''' ,'''.join(
f'''{item.key}: {item.val}''' for item in self._buckets if item )
return f'''HashMap({val_string})'''
| 339 | 0 |
from typing import Optional, Union
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.modeling_utils import ModelMixin
class lowerCAmelCase__ ( __lowercase , __lowercase ):
@register_to_config
def __init__( self : str , SCREAMING_SNAKE_CASE__ : int = 7_68 , ) -> Optional[Any]:
super().__init__()
__lowerCamelCase = nn.Parameter(torch.zeros(1 , SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = nn.Parameter(torch.ones(1 , SCREAMING_SNAKE_CASE__ ) )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Union[str, torch.device]] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.dtype] = None , ) -> Dict:
__lowerCamelCase = nn.Parameter(self.mean.to(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = nn.Parameter(self.std.to(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) )
return self
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ) -> int:
__lowerCamelCase = (embeds - self.mean) * 1.0 / self.std
return embeds
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
__lowerCamelCase = (embeds * self.std) + self.mean
return embeds
| 361 |
from datetime import datetime as dt
import os
from github import Github
SCREAMING_SNAKE_CASE__ : Any = [
"good first issue",
"good second issue",
"good difficult issue",
"feature request",
"new model",
"wip",
]
def __magic_name__ ( ) -> Any:
__lowerCamelCase = Github(os.environ['''GITHUB_TOKEN'''] )
__lowerCamelCase = g.get_repo('''huggingface/transformers''' )
__lowerCamelCase = repo.get_issues(state='''open''' )
for issue in open_issues:
__lowerCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase )
__lowerCamelCase = comments[0] if len(__lowerCAmelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state='''closed''' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
if __name__ == "__main__":
main()
| 339 | 0 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : int ) -> Any:
__lowerCamelCase = inspect.getfile(accelerate.test_utils )
__lowerCamelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] )
__lowerCamelCase = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] )
__lowerCamelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] )
@require_multi_gpu
def __A ( self : Tuple ) -> Dict:
print(f'''Found {torch.cuda.device_count()} devices.''' )
__lowerCamelCase = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() )
@require_multi_gpu
def __A ( self : Union[str, Any] ) -> str:
print(f'''Found {torch.cuda.device_count()} devices.''' )
__lowerCamelCase = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path]
print(f'''Command: {cmd}''' )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() )
@require_multi_gpu
def __A ( self : Optional[int] ) -> Optional[Any]:
__lowerCamelCase = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() )
@require_multi_gpu
def __A ( self : List[Any] ) -> Any:
print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' )
__lowerCamelCase = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ):
execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : int = Accelerator()
SCREAMING_SNAKE_CASE : Dict = (accelerator.state.process_index + 2, 10)
SCREAMING_SNAKE_CASE : Optional[int] = torch.randint(0, 10, shape).to(accelerator.device)
SCREAMING_SNAKE_CASE : int = ""
SCREAMING_SNAKE_CASE : Dict = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
SCREAMING_SNAKE_CASE : int = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
SCREAMING_SNAKE_CASE : Optional[int] = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 362 |
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> str:
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
__lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b"
__lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b"
__lowerCamelCase = max(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) )
return "0b" + "".join(
str(int(char_a == '''1''' and char_b == '''1''' ) )
for char_a, char_b in zip(a_binary.zfill(__lowerCAmelCase ) , b_binary.zfill(__lowerCAmelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 339 | 0 |
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowerCAmelCase__ ( unittest.TestCase ):
@property
def __A ( self : List[Any] ) -> Optional[Any]:
torch.manual_seed(0 )
__lowerCamelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def __A ( self : Optional[int] ) -> Optional[Any]:
__lowerCamelCase = self.dummy_uncond_unet
__lowerCamelCase = ScoreSdeVeScheduler()
__lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
sde_ve.to(SCREAMING_SNAKE_CASE__ )
sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ )[
0
]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Tuple ) -> str:
__lowerCamelCase = '''google/ncsnpp-church-256'''
__lowerCamelCase = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
sde_ve.to(SCREAMING_SNAKE_CASE__ )
sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
__lowerCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 363 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : List[str] ) -> Dict:
__lowerCamelCase = tempfile.mkdtemp()
# fmt: off
__lowerCamelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) )
__lowerCamelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__lowerCamelCase = {'''unk_token''': '''<unk>'''}
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.48145466, 0.4578275, 0.40821073],
'''image_std''': [0.26862954, 0.26130258, 0.27577711],
}
__lowerCamelCase = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : int , **SCREAMING_SNAKE_CASE__ : int ) -> Any:
return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]:
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]:
return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Dict ) -> Dict:
shutil.rmtree(self.tmpdirname )
def __A ( self : str ) -> Any:
__lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCamelCase = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : List[Any] ) -> List[str]:
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = self.get_rust_tokenizer()
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ )
def __A ( self : Union[str, Any] ) -> int:
__lowerCamelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCamelCase = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
__lowerCamelCase = CLIPSegProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[Any] ) -> Union[str, Any]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''np''' )
__lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __A ( self : List[Any] ) -> Optional[int]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self : List[Any] ) -> Any:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
processor()
def __A ( self : Optional[Any] ) -> List[str]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , visual_prompt=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
processor()
def __A ( self : List[Any] ) -> Any:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCamelCase = processor.batch_decode(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
| 339 | 0 |
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
SCREAMING_SNAKE_CASE__ : List[Any] = open # noqa: we just need to have a builtin inside this module to test it properly
| 364 |
from __future__ import annotations
def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int | None = None , __lowerCAmelCase : int | None = None ) -> None:
if start is None:
__lowerCamelCase = 0
if end is None:
__lowerCamelCase = len(__lowerCAmelCase ) - 1
if start >= end:
return
__lowerCamelCase = (start + end) // 2
slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase )
if sequence[end] < sequence[mid]:
__lowerCamelCase , __lowerCamelCase = sequence[mid], sequence[end]
slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 339 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
SCREAMING_SNAKE_CASE__ : Dict = None
SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Any = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
SCREAMING_SNAKE_CASE__ : str = {
"vocab_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json"
),
},
}
SCREAMING_SNAKE_CASE__ : str = {
"facebook/nllb-large-en-ro": 1_024,
"facebook/nllb-200-distilled-600M": 1_024,
}
# fmt: off
SCREAMING_SNAKE_CASE__ : str = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"]
class lowerCAmelCase__ ( __lowercase ):
a__ : List[Any] = VOCAB_FILES_NAMES
a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : List[str] = PRETRAINED_VOCAB_FILES_MAP
a__ : int = ["""input_ids""", """attention_mask"""]
a__ : List[str] = NllbTokenizer
a__ : List[int] = []
a__ : List[int] = []
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : int="<s>" , SCREAMING_SNAKE_CASE__ : int="</s>" , SCREAMING_SNAKE_CASE__ : List[Any]="</s>" , SCREAMING_SNAKE_CASE__ : Dict="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="<unk>" , SCREAMING_SNAKE_CASE__ : Any="<pad>" , SCREAMING_SNAKE_CASE__ : List[Any]="<mask>" , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : str=False , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> List[str]:
# Mask token behave like a normal word, i.e. include the space before it
__lowerCamelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token
__lowerCamelCase = legacy_behaviour
super().__init__(
vocab_file=SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , src_lang=SCREAMING_SNAKE_CASE__ , tgt_lang=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , legacy_behaviour=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = vocab_file
__lowerCamelCase = False if not self.vocab_file else True
__lowerCamelCase = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
__lowerCamelCase = {
lang_code: self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
__lowerCamelCase = src_lang if src_lang is not None else '''eng_Latn'''
__lowerCamelCase = self.convert_tokens_to_ids(self._src_lang )
__lowerCamelCase = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __A ( self : int ) -> str:
return self._src_lang
@src_lang.setter
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> None:
__lowerCamelCase = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __A ( self : int , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] , SCREAMING_SNAKE_CASE__ : Optional[str] , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]:
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
__lowerCamelCase = src_lang
__lowerCamelCase = self(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tgt_lang_id
return inputs
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str = "eng_Latn" , SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None , SCREAMING_SNAKE_CASE__ : str = "fra_Latn" , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> BatchEncoding:
__lowerCamelCase = src_lang
__lowerCamelCase = tgt_lang
return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[Any] ) -> List[str]:
return self.set_src_lang_special_tokens(self.src_lang )
def __A ( self : Union[str, Any] ) -> Tuple:
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> None:
__lowerCamelCase = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
if self.legacy_behaviour:
__lowerCamelCase = []
__lowerCamelCase = [self.eos_token_id, self.cur_lang_code]
else:
__lowerCamelCase = [self.cur_lang_code]
__lowerCamelCase = [self.eos_token_id]
__lowerCamelCase = self.convert_ids_to_tokens(self.prefix_tokens )
__lowerCamelCase = self.convert_ids_to_tokens(self.suffix_tokens )
__lowerCamelCase = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __A ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> None:
__lowerCamelCase = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
if self.legacy_behaviour:
__lowerCamelCase = []
__lowerCamelCase = [self.eos_token_id, self.cur_lang_code]
else:
__lowerCamelCase = [self.cur_lang_code]
__lowerCamelCase = [self.eos_token_id]
__lowerCamelCase = self.convert_ids_to_tokens(self.prefix_tokens )
__lowerCamelCase = self.convert_ids_to_tokens(self.suffix_tokens )
__lowerCamelCase = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' )
return
__lowerCamelCase = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ )
return (out_vocab_file,)
| 365 |
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Optional[Any] = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
SCREAMING_SNAKE_CASE__ : str = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
SCREAMING_SNAKE_CASE__ : int = {"facebook/blenderbot_small-90M": 512}
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Tuple:
__lowerCamelCase = set()
__lowerCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__lowerCamelCase = char
__lowerCamelCase = set(__lowerCAmelCase )
return pairs
class lowerCAmelCase__ ( __lowercase ):
a__ : List[Any] = VOCAB_FILES_NAMES
a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : Dict = ["""input_ids""", """attention_mask"""]
def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple="__start__" , SCREAMING_SNAKE_CASE__ : Tuple="__end__" , SCREAMING_SNAKE_CASE__ : List[str]="__unk__" , SCREAMING_SNAKE_CASE__ : str="__null__" , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[Any]:
super().__init__(unk_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as vocab_handle:
__lowerCamelCase = json.load(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {v: k for k, v in self.encoder.items()}
with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as merges_handle:
__lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1]
__lowerCamelCase = [tuple(merge.split() ) for merge in merges]
__lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) )
__lowerCamelCase = {}
@property
def __A ( self : Dict ) -> int:
return len(self.encoder )
def __A ( self : str ) -> Dict:
return dict(self.encoder , **self.added_tokens_encoder )
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> str:
if token in self.cache:
return self.cache[token]
__lowerCamelCase = re.sub('''([.,!?()])''' , R''' \1''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = re.sub('''(\')''' , R''' \1 ''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = re.sub(R'''\s{2,}''' , ''' ''' , SCREAMING_SNAKE_CASE__ )
if "\n" in token:
__lowerCamelCase = token.replace('''\n''' , ''' __newln__''' )
__lowerCamelCase = token.split(''' ''' )
__lowerCamelCase = []
for token in tokens:
if not len(SCREAMING_SNAKE_CASE__ ):
continue
__lowerCamelCase = token.lower()
__lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] )
__lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ )
if not pairs:
words.append(SCREAMING_SNAKE_CASE__ )
continue
while True:
__lowerCamelCase = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
__lowerCamelCase , __lowerCamelCase = bigram
__lowerCamelCase = []
__lowerCamelCase = 0
while i < len(SCREAMING_SNAKE_CASE__ ):
try:
__lowerCamelCase = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
new_word.extend(word[i:j] )
__lowerCamelCase = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = new_word
if len(SCREAMING_SNAKE_CASE__ ) == 1:
break
else:
__lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''@@ '''.join(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = word[:-4]
__lowerCamelCase = word
words.append(SCREAMING_SNAKE_CASE__ )
return " ".join(SCREAMING_SNAKE_CASE__ )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
__lowerCamelCase = []
__lowerCamelCase = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE__ )
for token in words:
split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE__ ).split(''' ''' ) ) )
return split_tokens
def __A ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> int:
__lowerCamelCase = token.lower()
return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) )
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> str:
return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token )
def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
__lowerCamelCase = ''' '''.join(SCREAMING_SNAKE_CASE__ ).replace('''@@ ''' , '''''' ).strip()
return out_string
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__lowerCamelCase = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCamelCase = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '''\n''' )
__lowerCamelCase = 0
with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
''' Please check that the tokenizer is not corrupted!''' )
__lowerCamelCase = token_index
writer.write(''' '''.join(SCREAMING_SNAKE_CASE__ ) + '''\n''' )
index += 1
return vocab_file, merge_file
| 339 | 0 |
from functools import lru_cache
def __magic_name__ ( __lowerCAmelCase : int ) -> set:
__lowerCamelCase = 2
__lowerCamelCase = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(__lowerCAmelCase )
if n > 1:
factors.add(__lowerCAmelCase )
return factors
@lru_cache
def __magic_name__ ( __lowerCAmelCase : int ) -> int:
return len(unique_prime_factors(__lowerCAmelCase ) )
def __magic_name__ ( __lowerCAmelCase : list ) -> bool:
return len(set(__lowerCAmelCase ) ) in (0, 1)
def __magic_name__ ( __lowerCAmelCase : int ) -> list:
__lowerCamelCase = 2
while True:
# Increment each value of a generated range
__lowerCamelCase = [base + i for i in range(__lowerCAmelCase )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
__lowerCamelCase = [upf_len(__lowerCAmelCase ) for x in group]
checker.append(__lowerCAmelCase )
# If all numbers in the list are equal, return the group variable.
if equality(__lowerCAmelCase ):
return group
# Increment our base variable by 1
base += 1
def __magic_name__ ( __lowerCAmelCase : int = 4 ) -> int:
__lowerCamelCase = run(__lowerCAmelCase )
return results[0] if len(__lowerCAmelCase ) else None
if __name__ == "__main__":
print(solution())
| 366 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCAmelCase__ ( __lowercase , unittest.TestCase ):
a__ : str = ShapEImgaImgPipeline
a__ : Union[str, Any] = ["""image"""]
a__ : Optional[int] = ["""image"""]
a__ : Union[str, Any] = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
a__ : List[str] = False
@property
def __A ( self : Dict ) -> Optional[Any]:
return 32
@property
def __A ( self : Optional[int] ) -> Optional[int]:
return 32
@property
def __A ( self : Optional[int] ) -> List[Any]:
return self.time_input_dim * 4
@property
def __A ( self : str ) -> List[Any]:
return 8
@property
def __A ( self : Optional[Any] ) -> Union[str, Any]:
torch.manual_seed(0 )
__lowerCamelCase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
__lowerCamelCase = CLIPVisionModel(SCREAMING_SNAKE_CASE__ )
return model
@property
def __A ( self : Union[str, Any] ) -> Union[str, Any]:
__lowerCamelCase = CLIPImageProcessor(
crop_size=2_24 , do_center_crop=SCREAMING_SNAKE_CASE__ , do_normalize=SCREAMING_SNAKE_CASE__ , do_resize=SCREAMING_SNAKE_CASE__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , )
return image_processor
@property
def __A ( self : Dict ) -> int:
torch.manual_seed(0 )
__lowerCamelCase = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''embedding_proj_norm_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
__lowerCamelCase = PriorTransformer(**SCREAMING_SNAKE_CASE__ )
return model
@property
def __A ( self : Tuple ) -> Dict:
torch.manual_seed(0 )
__lowerCamelCase = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
__lowerCamelCase = ShapERenderer(**SCREAMING_SNAKE_CASE__ )
return model
def __A ( self : Optional[int] ) -> List[str]:
__lowerCamelCase = self.dummy_prior
__lowerCamelCase = self.dummy_image_encoder
__lowerCamelCase = self.dummy_image_processor
__lowerCamelCase = self.dummy_renderer
__lowerCamelCase = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=SCREAMING_SNAKE_CASE__ , clip_sample=SCREAMING_SNAKE_CASE__ , clip_sample_range=1.0 , )
__lowerCamelCase = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''image_processor''': image_processor,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def __A ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=0 ) -> int:
__lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ )
if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ):
__lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {
'''image''': input_image,
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def __A ( self : Union[str, Any] ) -> Dict:
__lowerCamelCase = '''cpu'''
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = output.images[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__lowerCamelCase = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __A ( self : str ) -> Tuple:
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def __A ( self : Optional[Any] ) -> str:
__lowerCamelCase = torch_device == '''cpu'''
__lowerCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE__ , relax_max_difference=SCREAMING_SNAKE_CASE__ , )
def __A ( self : Dict ) -> Optional[int]:
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = 1
__lowerCamelCase = 2
__lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
for key in inputs.keys():
if key in self.batch_params:
__lowerCamelCase = batch_size * [inputs[key]]
__lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : str ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self : str ) -> Union[str, Any]:
__lowerCamelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' )
__lowerCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_img2img_out.npy''' )
__lowerCamelCase = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 )
__lowerCamelCase = pipe(
SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
| 339 | 0 |
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
SCREAMING_SNAKE_CASE__ : Optional[int] = "bart"
SCREAMING_SNAKE_CASE__ : Dict = True
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> str:
if LOAD_DENSE_INDEX:
__lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' )
__lowerCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' )
__lowerCamelCase = qar_model.eval()
else:
__lowerCamelCase , __lowerCamelCase = (None, None)
if MODEL_TYPE == "bart":
__lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' )
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' )
__lowerCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' )
sas_model.load_state_dict(save_dict['''model'''] )
__lowerCamelCase = sas_model.eval()
else:
__lowerCamelCase , __lowerCamelCase = make_qa_sas_model(
model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> Optional[int]:
if LOAD_DENSE_INDEX:
__lowerCamelCase = faiss.StandardGpuResources()
__lowerCamelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train''']
__lowerCamelCase = np.memmap(
'''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , )
__lowerCamelCase = faiss.IndexFlatIP(128 )
__lowerCamelCase = faiss.index_cpu_to_gpu(__lowerCAmelCase , 1 , __lowerCAmelCase )
wikiaab_gpu_index_flat.add(__lowerCAmelCase ) # TODO fix for larger GPU
else:
__lowerCamelCase , __lowerCamelCase = (None, None)
__lowerCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> List[str]:
__lowerCamelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' )
__lowerCamelCase = elia['''train_eli5''']
__lowerCamelCase = np.memmap(
'''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) )
__lowerCamelCase = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(__lowerCAmelCase )
return (elia_train, eli5_train_q_index)
SCREAMING_SNAKE_CASE__ : int = load_indexes()
SCREAMING_SNAKE_CASE__ : List[Any] = load_models()
SCREAMING_SNAKE_CASE__ : int = load_train_data()
def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=10 ) -> List[str]:
__lowerCamelCase = embed_questions_for_retrieval([question] , __lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase , __lowerCamelCase = eli5_train_q_index.search(__lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase = [elia_train[int(__lowerCAmelCase )] for i in I[0]]
return nn_examples
def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict="wiki40b" , __lowerCAmelCase : Any="dense" , __lowerCAmelCase : Dict=10 ) -> Union[str, Any]:
if source == "none":
__lowerCamelCase , __lowerCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__lowerCamelCase , __lowerCamelCase = query_qa_dense_index(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
else:
__lowerCamelCase , __lowerCamelCase = query_es_index(
__lowerCAmelCase , __lowerCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=__lowerCAmelCase , )
__lowerCamelCase = [
(res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst
]
__lowerCamelCase = '''question: {} context: {}'''.format(__lowerCAmelCase , __lowerCAmelCase )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda __lowerCAmelCase : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __lowerCAmelCase : None),
} )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str=64 , __lowerCAmelCase : Dict=256 , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Optional[Any]=0.95 , __lowerCAmelCase : List[Any]=0.8 ) -> Any:
with torch.no_grad():
__lowerCamelCase = qa_sas_generate(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_answers=1 , num_beams=__lowerCAmelCase , min_len=__lowerCAmelCase , max_len=__lowerCAmelCase , do_sample=__lowerCAmelCase , temp=__lowerCAmelCase , top_p=__lowerCAmelCase , top_k=__lowerCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0]
return (answer, support_list)
st.title("Long Form Question Answering with ELI5")
# Start sidebar
SCREAMING_SNAKE_CASE__ : List[str] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>"
SCREAMING_SNAKE_CASE__ : Dict = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
SCREAMING_SNAKE_CASE__ : int = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n"
st.sidebar.markdown(description, unsafe_allow_html=True)
SCREAMING_SNAKE_CASE__ : str = [
"Answer the question",
"View the retrieved document only",
"View the most similar ELI5 question and answer",
"Show me everything, please!",
]
SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.checkbox("Demo options")
if demo_options:
SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.selectbox(
"",
action_list,
index=3,
)
SCREAMING_SNAKE_CASE__ : Optional[Any] = action_list.index(action_st)
SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox(
"",
["Show full text of passages", "Show passage section titles"],
index=0,
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = show_type == "Show full text of passages"
else:
SCREAMING_SNAKE_CASE__ : Any = 3
SCREAMING_SNAKE_CASE__ : Any = True
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.checkbox("Retrieval options")
if retrieval_options:
SCREAMING_SNAKE_CASE__ : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n "
st.sidebar.markdown(retriever_info)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"])
SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"])
else:
SCREAMING_SNAKE_CASE__ : List[str] = "wiki40b"
SCREAMING_SNAKE_CASE__ : Optional[Any] = "dense"
SCREAMING_SNAKE_CASE__ : str = "beam"
SCREAMING_SNAKE_CASE__ : List[Any] = 2
SCREAMING_SNAKE_CASE__ : Optional[Any] = 64
SCREAMING_SNAKE_CASE__ : List[Any] = 256
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.checkbox("Generation options")
if generate_options:
SCREAMING_SNAKE_CASE__ : Dict = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n "
st.sidebar.markdown(generate_info)
SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"])
SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider(
"Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : str = st.sidebar.slider(
"Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider(
"Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : Dict = st.sidebar.slider(
"Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
# start main text
SCREAMING_SNAKE_CASE__ : Any = [
"<MY QUESTION>",
"How do people make chocolate?",
"Why do we get a fever when we are sick?",
"How can different animals perceive different colors?",
"What is natural language processing?",
"What's the best way to treat a sunburn?",
"What exactly are vitamins ?",
"How does nuclear energy provide electricity?",
"What's the difference between viruses and bacteria?",
"Why are flutes classified as woodwinds when most of them are made out of metal ?",
"Why do people like drinking coffee even though it tastes so bad?",
"What happens when wine ages? How does it make the wine taste better?",
"If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?",
"How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?",
"How does New Zealand have so many large bird predators?",
]
SCREAMING_SNAKE_CASE__ : List[str] = st.selectbox(
"What would you like to ask? ---- select <MY QUESTION> to enter a new query",
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.text_input("Enter your question here:", "")
else:
SCREAMING_SNAKE_CASE__ : str = question_s
if st.button("Show me!"):
if action in [0, 1, 3]:
if index_type == "mixed":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_support(question, source=wiki_source, method="dense", n_results=10)
SCREAMING_SNAKE_CASE__ : str = make_support(question, source=wiki_source, method="sparse", n_results=10)
SCREAMING_SNAKE_CASE__ : int = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
SCREAMING_SNAKE_CASE__ : Optional[Any] = support_list[:10]
SCREAMING_SNAKE_CASE__ : Tuple = "<P> " + " <P> ".join([res[-1] for res in support_list])
else:
SCREAMING_SNAKE_CASE__ : Optional[int] = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
SCREAMING_SNAKE_CASE__ : Optional[Any] = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == "sampled"),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown("### The model generated answer is:")
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:")
for i, res in enumerate(support_list):
SCREAMING_SNAKE_CASE__ : Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_"))
SCREAMING_SNAKE_CASE__ : Tuple = res[1].strip()
if sec_titles == "":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = "[{}]({})".format(res[0], wiki_url)
else:
SCREAMING_SNAKE_CASE__ : Dict = sec_titles.split(" & ")
SCREAMING_SNAKE_CASE__ : int = " & ".join(
["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list]
)
st.markdown(
"{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
"> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True
)
if action in [2, 3]:
SCREAMING_SNAKE_CASE__ : Any = find_nearest_training(question)
SCREAMING_SNAKE_CASE__ : List[Any] = nn_train_list[0]
st.markdown(
"--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"])
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [
"{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""]))
for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"]))
if i == 0 or sc > 2
]
st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st)))
SCREAMING_SNAKE_CASE__ : List[Any] = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n"
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 367 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
SCREAMING_SNAKE_CASE__ : str = ""
SCREAMING_SNAKE_CASE__ : Any = ""
SCREAMING_SNAKE_CASE__ : Optional[Any] = ""
SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 # (0 is vertical, 1 is horizontal)
def __magic_name__ ( ) -> None:
__lowerCamelCase , __lowerCamelCase = get_dataset(__lowerCAmelCase , __lowerCAmelCase )
print('''Processing...''' )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for index, image in enumerate(__lowerCAmelCase ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
__lowerCamelCase = random_chars(32 )
__lowerCamelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0]
__lowerCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}'''
cva.imwrite(f'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' )
__lowerCamelCase = []
for anno in new_annos[index]:
__lowerCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}'''
annos_list.append(__lowerCAmelCase )
with open(f'''/{file_root}.txt''' , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> tuple[list, list]:
__lowerCamelCase = []
__lowerCamelCase = []
for label_file in glob.glob(os.path.join(__lowerCAmelCase , '''*.txt''' ) ):
__lowerCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(__lowerCAmelCase ) as in_file:
__lowerCamelCase = in_file.readlines()
__lowerCamelCase = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''' )
__lowerCamelCase = []
for obj_list in obj_lists:
__lowerCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__lowerCAmelCase )
labels.append(__lowerCAmelCase )
return img_paths, labels
def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ) -> tuple[list, list, list]:
__lowerCamelCase = []
__lowerCamelCase = []
__lowerCamelCase = []
for idx in range(len(__lowerCAmelCase ) ):
__lowerCamelCase = []
__lowerCamelCase = img_list[idx]
path_list.append(__lowerCAmelCase )
__lowerCamelCase = anno_list[idx]
__lowerCamelCase = cva.imread(__lowerCAmelCase )
if flip_type == 1:
__lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase )
for bbox in img_annos:
__lowerCamelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
__lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase )
for bbox in img_annos:
__lowerCamelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__lowerCAmelCase )
new_imgs_list.append(__lowerCAmelCase )
return new_imgs_list, new_annos_lists, path_list
def __magic_name__ ( __lowerCAmelCase : int = 32 ) -> str:
assert number_char > 1, "The number of character should greater than 1"
__lowerCamelCase = ascii_lowercase + digits
return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 339 | 0 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase__ ( __lowercase , __lowercase , unittest.TestCase ):
a__ : Dict = StableDiffusionDiffEditPipeline
a__ : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""}
a__ : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""}
a__ : int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
a__ : Tuple = frozenset([] )
def __A ( self : List[str] ) -> Any:
torch.manual_seed(0 )
__lowerCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = DDIMInverseScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_zero=SCREAMING_SNAKE_CASE__ , )
torch.manual_seed(0 )
__lowerCamelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
__lowerCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , )
__lowerCamelCase = CLIPTextModel(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__lowerCamelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''inverse_scheduler''': inverse_scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=0 ) -> Dict:
__lowerCamelCase = floats_tensor((1, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ )
if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ):
__lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {
'''prompt''': '''a dog and a newt''',
'''mask_image''': mask,
'''image_latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 2,
'''inpaint_strength''': 1.0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple=0 ) -> Dict:
__lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowerCamelCase = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert('''RGB''' )
if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ):
__lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {
'''image''': image,
'''source_prompt''': '''a cat and a frog''',
'''target_prompt''': '''a dog and a newt''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''num_maps_per_mask''': 2,
'''mask_encode_strength''': 1.0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int=0 ) -> Union[str, Any]:
__lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowerCamelCase = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert('''RGB''' )
if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ):
__lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {
'''image''': image,
'''prompt''': '''a cat and a frog''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''inpaint_strength''': 1.0,
'''guidance_scale''': 6.0,
'''decode_latents''': True,
'''output_type''': '''numpy''',
}
return inputs
def __A ( self : str ) -> Union[str, Any]:
if not hasattr(self.pipeline_class , '''_optional_components''' ):
return
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
__lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE__ )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.pipeline_class.from_pretrained(SCREAMING_SNAKE_CASE__ )
pipe_loaded.to(SCREAMING_SNAKE_CASE__ )
pipe_loaded.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , )
__lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe_loaded(**SCREAMING_SNAKE_CASE__ )[0]
__lowerCamelCase = np.abs(output - output_loaded ).max()
self.assertLess(SCREAMING_SNAKE_CASE__ , 1e-4 )
def __A ( self : List[Any] ) -> List[str]:
__lowerCamelCase = '''cpu'''
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.get_dummy_mask_inputs(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.generate_mask(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = mask[0, -3:, -3:]
self.assertEqual(mask.shape , (1, 16, 16) )
__lowerCamelCase = np.array([0] * 9 )
__lowerCamelCase = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 )
self.assertEqual(mask[0, -3, -4] , 0 )
def __A ( self : Tuple ) -> List[str]:
__lowerCamelCase = '''cpu'''
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.get_dummy_inversion_inputs(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.invert(**SCREAMING_SNAKE_CASE__ ).images
__lowerCamelCase = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
__lowerCamelCase = np.array(
[0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , )
__lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 )
def __A ( self : List[Any] ) -> Optional[Any]:
super().test_inference_batch_single_identical(expected_max_diff=5e-3 )
def __A ( self : Tuple ) -> Any:
__lowerCamelCase = '''cpu'''
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = {'''beta_start''': 0.00085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''}
__lowerCamelCase = DPMSolverMultistepScheduler(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = DPMSolverMultistepInverseScheduler(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.get_dummy_inversion_inputs(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.invert(**SCREAMING_SNAKE_CASE__ ).images
__lowerCamelCase = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
__lowerCamelCase = np.array(
[0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , )
__lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 )
@require_torch_gpu
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Optional[Any] ) -> List[Any]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def __A ( cls : Tuple ) -> List[str]:
__lowerCamelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' )
__lowerCamelCase = raw_image.convert('''RGB''' ).resize((7_68, 7_68) )
__lowerCamelCase = raw_image
def __A ( self : Optional[Any] ) -> Optional[int]:
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = StableDiffusionDiffEditPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-1''' , safety_checker=SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa )
__lowerCamelCase = DDIMScheduler.from_config(pipe.scheduler.config )
__lowerCamelCase = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''a bowl of fruit'''
__lowerCamelCase = '''a bowl of pears'''
__lowerCamelCase = pipe.generate_mask(
image=self.raw_image , source_prompt=SCREAMING_SNAKE_CASE__ , target_prompt=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = pipe.invert(
prompt=SCREAMING_SNAKE_CASE__ , image=self.raw_image , inpaint_strength=0.7 , generator=SCREAMING_SNAKE_CASE__ ).latents
__lowerCamelCase = pipe(
prompt=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , image_latents=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0]
__lowerCamelCase = (
np.array(
load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/diffedit/pears.png''' ).resize((7_68, 7_68) ) )
/ 2_55
)
assert np.abs((expected_image - image).max() ) < 5e-1
def __A ( self : Any ) -> str:
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = StableDiffusionDiffEditPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-1''' , safety_checker=SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa )
__lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
__lowerCamelCase = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''a bowl of fruit'''
__lowerCamelCase = '''a bowl of pears'''
__lowerCamelCase = pipe.generate_mask(
image=self.raw_image , source_prompt=SCREAMING_SNAKE_CASE__ , target_prompt=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = pipe.invert(
prompt=SCREAMING_SNAKE_CASE__ , image=self.raw_image , inpaint_strength=0.7 , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=25 , ).latents
__lowerCamelCase = pipe(
prompt=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , image_latents=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0]
__lowerCamelCase = (
np.array(
load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/diffedit/pears.png''' ).resize((7_68, 7_68) ) )
/ 2_55
)
assert np.abs((expected_image - image).max() ) < 5e-1
| 368 |
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
SCREAMING_SNAKE_CASE__ : Tuple = collections.namedtuple("_Datasets", ["train", "validation", "test"])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
SCREAMING_SNAKE_CASE__ : List[str] = "https://storage.googleapis.com/cvdf-datasets/mnist/"
def __magic_name__ ( __lowerCAmelCase : Any ) -> int:
__lowerCamelCase = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' )
return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowerCAmelCase )[0]
@deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' )
def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str:
print('''Extracting''' , f.name )
with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream:
__lowerCamelCase = _readaa(__lowerCAmelCase )
if magic != 2051:
raise ValueError(
'''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = bytestream.read(rows * cols * num_images )
__lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta )
__lowerCamelCase = data.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 )
return data
@deprecated(__lowerCAmelCase , '''Please use tf.one_hot on tensors.''' )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ) -> Dict:
__lowerCamelCase = labels_dense.shape[0]
__lowerCamelCase = numpy.arange(__lowerCAmelCase ) * num_classes
__lowerCamelCase = numpy.zeros((num_labels, num_classes) )
__lowerCamelCase = 1
return labels_one_hot
@deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' )
def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str=False , __lowerCAmelCase : List[str]=10 ) -> List[str]:
print('''Extracting''' , f.name )
with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream:
__lowerCamelCase = _readaa(__lowerCAmelCase )
if magic != 2049:
raise ValueError(
'''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = bytestream.read(__lowerCAmelCase )
__lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(__lowerCAmelCase , __lowerCAmelCase )
return labels
class lowerCAmelCase__ :
@deprecated(
SCREAMING_SNAKE_CASE__ , '''Please use alternatives such as official/mnist/_DataSet.py'''
''' from tensorflow/models.''' , )
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=dtypes.floataa , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=None , ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase = random_seed.get_seed(SCREAMING_SNAKE_CASE__ )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
__lowerCamelCase = dtypes.as_dtype(SCREAMING_SNAKE_CASE__ ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype )
if fake_data:
__lowerCamelCase = 1_00_00
__lowerCamelCase = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), f'''images.shape: {images.shape} labels.shape: {labels.shape}'''
__lowerCamelCase = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
__lowerCamelCase = images.reshape(
images.shape[0] , images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
__lowerCamelCase = images.astype(numpy.floataa )
__lowerCamelCase = numpy.multiply(SCREAMING_SNAKE_CASE__ , 1.0 / 255.0 )
__lowerCamelCase = images
__lowerCamelCase = labels
__lowerCamelCase = 0
__lowerCamelCase = 0
@property
def __A ( self : str ) -> Optional[int]:
return self._images
@property
def __A ( self : Any ) -> Dict:
return self._labels
@property
def __A ( self : List[Any] ) -> int:
return self._num_examples
@property
def __A ( self : str ) -> Any:
return self._epochs_completed
def __A ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : str=True ) -> str:
if fake_data:
__lowerCamelCase = [1] * 7_84
__lowerCamelCase = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(SCREAMING_SNAKE_CASE__ )],
[fake_label for _ in range(SCREAMING_SNAKE_CASE__ )],
)
__lowerCamelCase = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
__lowerCamelCase = numpy.arange(self._num_examples )
numpy.random.shuffle(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.images[perma]
__lowerCamelCase = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
__lowerCamelCase = self._num_examples - start
__lowerCamelCase = self._images[start : self._num_examples]
__lowerCamelCase = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
__lowerCamelCase = numpy.arange(self._num_examples )
numpy.random.shuffle(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.images[perm]
__lowerCamelCase = self.labels[perm]
# Start next epoch
__lowerCamelCase = 0
__lowerCamelCase = batch_size - rest_num_examples
__lowerCamelCase = self._index_in_epoch
__lowerCamelCase = self._images[start:end]
__lowerCamelCase = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ),
)
else:
self._index_in_epoch += batch_size
__lowerCamelCase = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(__lowerCAmelCase , '''Please write your own downloading logic.''' )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ) -> List[Any]:
if not gfile.Exists(__lowerCAmelCase ):
gfile.MakeDirs(__lowerCAmelCase )
__lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
if not gfile.Exists(__lowerCAmelCase ):
urllib.request.urlretrieve(__lowerCAmelCase , __lowerCAmelCase ) # noqa: S310
with gfile.GFile(__lowerCAmelCase ) as f:
__lowerCamelCase = f.size()
print('''Successfully downloaded''' , __lowerCAmelCase , __lowerCAmelCase , '''bytes.''' )
return filepath
@deprecated(
__lowerCAmelCase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' )
def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[str]=dtypes.floataa , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : int=5000 , __lowerCAmelCase : Any=None , __lowerCAmelCase : List[str]=DEFAULT_SOURCE_URL , ) -> Optional[Any]:
if fake_data:
def fake():
return _DataSet(
[] , [] , fake_data=__lowerCAmelCase , one_hot=__lowerCAmelCase , dtype=__lowerCAmelCase , seed=__lowerCAmelCase )
__lowerCamelCase = fake()
__lowerCamelCase = fake()
__lowerCamelCase = fake()
return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
if not source_url: # empty string check
__lowerCamelCase = DEFAULT_SOURCE_URL
__lowerCamelCase = '''train-images-idx3-ubyte.gz'''
__lowerCamelCase = '''train-labels-idx1-ubyte.gz'''
__lowerCamelCase = '''t10k-images-idx3-ubyte.gz'''
__lowerCamelCase = '''t10k-labels-idx1-ubyte.gz'''
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + train_images_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_images(__lowerCAmelCase )
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + train_labels_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase )
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + test_images_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_images(__lowerCAmelCase )
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + test_labels_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase )
if not 0 <= validation_size <= len(__lowerCAmelCase ):
__lowerCamelCase = (
'''Validation size should be between 0 and '''
f'''{len(__lowerCAmelCase )}. Received: {validation_size}.'''
)
raise ValueError(__lowerCAmelCase )
__lowerCamelCase = train_images[:validation_size]
__lowerCamelCase = train_labels[:validation_size]
__lowerCamelCase = train_images[validation_size:]
__lowerCamelCase = train_labels[validation_size:]
__lowerCamelCase = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed}
__lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
__lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
__lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
| 339 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
"vocab_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt"
),
"squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt",
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli": (
"https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json"
),
},
}
SCREAMING_SNAKE_CASE__ : List[Any] = {
"squeezebert/squeezebert-uncased": 512,
"squeezebert/squeezebert-mnli": 512,
"squeezebert/squeezebert-mnli-headless": 512,
}
SCREAMING_SNAKE_CASE__ : Dict = {
"squeezebert/squeezebert-uncased": {"do_lower_case": True},
"squeezebert/squeezebert-mnli": {"do_lower_case": True},
"squeezebert/squeezebert-mnli-headless": {"do_lower_case": True},
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Optional[int] = VOCAB_FILES_NAMES
a__ : Any = PRETRAINED_VOCAB_FILES_MAP
a__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : Optional[Any] = SqueezeBertTokenizer
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Tuple="[CLS]" , SCREAMING_SNAKE_CASE__ : str="[MASK]" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]:
super().__init__(
SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE__ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE__ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars
):
__lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('''type''' ) )
__lowerCamelCase = do_lower_case
__lowerCamelCase = strip_accents
__lowerCamelCase = tokenize_chinese_chars
__lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = do_lower_case
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> str:
__lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
__lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ )
return tuple(SCREAMING_SNAKE_CASE__ )
| 369 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
"vocab_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt"
),
"squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt",
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli": (
"https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json"
),
},
}
SCREAMING_SNAKE_CASE__ : List[Any] = {
"squeezebert/squeezebert-uncased": 512,
"squeezebert/squeezebert-mnli": 512,
"squeezebert/squeezebert-mnli-headless": 512,
}
SCREAMING_SNAKE_CASE__ : Dict = {
"squeezebert/squeezebert-uncased": {"do_lower_case": True},
"squeezebert/squeezebert-mnli": {"do_lower_case": True},
"squeezebert/squeezebert-mnli-headless": {"do_lower_case": True},
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Optional[int] = VOCAB_FILES_NAMES
a__ : Any = PRETRAINED_VOCAB_FILES_MAP
a__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : Optional[Any] = SqueezeBertTokenizer
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Tuple="[CLS]" , SCREAMING_SNAKE_CASE__ : str="[MASK]" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]:
super().__init__(
SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE__ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE__ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars
):
__lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('''type''' ) )
__lowerCamelCase = do_lower_case
__lowerCamelCase = strip_accents
__lowerCamelCase = tokenize_chinese_chars
__lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = do_lower_case
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> str:
__lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
__lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ )
return tuple(SCREAMING_SNAKE_CASE__ )
| 339 | 0 |
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase ):
a__ : Optional[Any] = [r"""h\.\d+\.attn\.bias""", r"""h\.\d+\.attn\.masked_bias"""]
@register_to_config
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 5_02_57 , SCREAMING_SNAKE_CASE__ : int = 10_24 , SCREAMING_SNAKE_CASE__ : int = 7_68 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "gelu_new" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 1e-5 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> List[Any]:
super().__init__()
__lowerCamelCase = prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and'''
f''' `n_embd`: {n_embd} are not equal.''' )
__lowerCamelCase = prefix_inner_dim
__lowerCamelCase = prefix_hidden_dim
__lowerCamelCase = (
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
__lowerCamelCase = (
nn.Linear(self.prefix_hidden_dim , SCREAMING_SNAKE_CASE__ ) if self.prefix_hidden_dim is not None else nn.Identity()
)
__lowerCamelCase = GPTaConfig(
vocab_size=SCREAMING_SNAKE_CASE__ , n_positions=SCREAMING_SNAKE_CASE__ , n_embd=SCREAMING_SNAKE_CASE__ , n_layer=SCREAMING_SNAKE_CASE__ , n_head=SCREAMING_SNAKE_CASE__ , n_inner=SCREAMING_SNAKE_CASE__ , activation_function=SCREAMING_SNAKE_CASE__ , resid_pdrop=SCREAMING_SNAKE_CASE__ , embd_pdrop=SCREAMING_SNAKE_CASE__ , attn_pdrop=SCREAMING_SNAKE_CASE__ , layer_norm_epsilon=SCREAMING_SNAKE_CASE__ , initializer_range=SCREAMING_SNAKE_CASE__ , scale_attn_weights=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ , scale_attn_by_inverse_layer_idx=SCREAMING_SNAKE_CASE__ , reorder_and_upcast_attn=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = GPTaLMHeadModel(SCREAMING_SNAKE_CASE__ )
def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , ) -> Optional[Any]:
__lowerCamelCase = self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.encode_prefix(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.decode_prefix(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
__lowerCamelCase = self.get_dummy_token(input_ids.shape[0] , input_ids.device )
__lowerCamelCase = torch.cat((dummy_token, input_ids) , dim=1 )
__lowerCamelCase = self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def __A ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : torch.device ) -> torch.Tensor:
return torch.zeros(SCREAMING_SNAKE_CASE__ , self.prefix_length , dtype=torch.intaa , device=SCREAMING_SNAKE_CASE__ )
def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple:
return self.encode_prefix(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> int:
__lowerCamelCase = torch.split(SCREAMING_SNAKE_CASE__ , 1 , dim=0 )
__lowerCamelCase = []
__lowerCamelCase = []
for feature in features:
__lowerCamelCase = self.decode_prefix(feature.to(SCREAMING_SNAKE_CASE__ ) ) # back to the clip feature
# Only support beam search for now
__lowerCamelCase , __lowerCamelCase = self.generate_beam(
input_embeds=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
__lowerCamelCase = torch.stack(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.stack(SCREAMING_SNAKE_CASE__ )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def __A ( self : str , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : int = 67 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Union[str, Any]:
__lowerCamelCase = eos_token_id
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = torch.ones(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.int )
__lowerCamelCase = torch.zeros(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.bool )
if input_embeds is not None:
__lowerCamelCase = input_embeds
else:
__lowerCamelCase = self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = outputs.logits
__lowerCamelCase = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
__lowerCamelCase = logits.softmax(-1 ).log()
if scores is None:
__lowerCamelCase , __lowerCamelCase = logits.topk(SCREAMING_SNAKE_CASE__ , -1 )
__lowerCamelCase = generated.expand(SCREAMING_SNAKE_CASE__ , *generated.shape[1:] )
__lowerCamelCase , __lowerCamelCase = next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
__lowerCamelCase = next_tokens
else:
__lowerCamelCase = tokens.expand(SCREAMING_SNAKE_CASE__ , *tokens.shape[1:] )
__lowerCamelCase = torch.cat((tokens, next_tokens) , dim=1 )
else:
__lowerCamelCase = -float(np.inf )
__lowerCamelCase = 0
__lowerCamelCase = scores[:, None] + logits
seq_lengths[~is_stopped] += 1
__lowerCamelCase = scores_sum / seq_lengths[:, None]
__lowerCamelCase , __lowerCamelCase = scores_sum_average.view(-1 ).topk(SCREAMING_SNAKE_CASE__ , -1 )
__lowerCamelCase = next_tokens // scores_sum.shape[1]
__lowerCamelCase = seq_lengths[next_tokens_source]
__lowerCamelCase = next_tokens % scores_sum.shape[1]
__lowerCamelCase = next_tokens.unsqueeze(1 )
__lowerCamelCase = tokens[next_tokens_source]
__lowerCamelCase = torch.cat((tokens, next_tokens) , dim=1 )
__lowerCamelCase = generated[next_tokens_source]
__lowerCamelCase = scores_sum_average * seq_lengths
__lowerCamelCase = is_stopped[next_tokens_source]
__lowerCamelCase = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
__lowerCamelCase = torch.cat((generated, next_token_embed) , dim=1 )
__lowerCamelCase = is_stopped + next_tokens.eq(SCREAMING_SNAKE_CASE__ ).squeeze()
if is_stopped.all():
break
__lowerCamelCase = scores / seq_lengths
__lowerCamelCase = scores.argsort(descending=SCREAMING_SNAKE_CASE__ )
# tokens tensors are already padded to max_seq_length
__lowerCamelCase = [tokens[i] for i in order]
__lowerCamelCase = torch.stack(SCREAMING_SNAKE_CASE__ , dim=0 )
__lowerCamelCase = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 370 |
from __future__ import annotations
def __magic_name__ ( __lowerCAmelCase : list[int] ) -> bool:
return len(set(__lowerCAmelCase ) ) == len(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 339 | 0 |
def __magic_name__ ( __lowerCAmelCase : int ) -> int:
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
__lowerCamelCase = 1
__lowerCamelCase = 1
while repunit:
__lowerCamelCase = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def __magic_name__ ( __lowerCAmelCase : int = 100_0000 ) -> int:
__lowerCamelCase = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(__lowerCAmelCase ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(F'{solution() = }')
| 371 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ : Dict = {
"configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Tuple = [
"FALCON_PRETRAINED_MODEL_ARCHIVE_LIST",
"FalconForCausalLM",
"FalconModel",
"FalconPreTrainedModel",
"FalconForSequenceClassification",
"FalconForTokenClassification",
"FalconForQuestionAnswering",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 339 | 0 |
from collections import namedtuple
import requests
from lxml import html # type: ignore
SCREAMING_SNAKE_CASE__ = namedtuple("covid_data", "cases deaths recovered")
def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
__lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()'''
return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) )
SCREAMING_SNAKE_CASE__ = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}"
print(fmt.format(*covid_stats()))
| 350 |
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
__lowerCamelCase , __lowerCamelCase = y, x % y
return abs(__lowerCAmelCase )
def __magic_name__ ( ) -> Tuple:
try:
__lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
__lowerCamelCase = int(nums[0] )
__lowerCamelCase = int(nums[1] )
print(
f'''greatest_common_divisor({num_a}, {num_a}) = '''
f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' )
print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 339 | 0 |
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"compel": "compel==0.1.8",
"black": "black~=23.1",
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.13.2",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"Jinja2": "Jinja2",
"k-diffusion": "k-diffusion>=0.0.12",
"torchsde": "torchsde",
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"ruff": "ruff>=0.0.241",
"safetensors": "safetensors",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"onnx": "onnx",
"regex": "regex!=2019.12.17",
"requests": "requests",
"tensorboard": "tensorboard",
"torch": "torch>=1.4",
"torchvision": "torchvision",
"transformers": "transformers>=4.25.1",
"urllib3": "urllib3<=2.0.0",
}
| 351 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __A ( self : Optional[int] ) -> Union[str, Any]:
__lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
__lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' )
__lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
__lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
__lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits
__lowerCamelCase = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean()
__lowerCamelCase = -(labels.shape[-1] * loss.item())
__lowerCamelCase = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 339 | 0 |
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class lowerCAmelCase__ ( __lowercase ):
def __init__( self : str ) -> List[str]:
__lowerCamelCase = []
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]:
self.events.append('''on_init_end''' )
def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Dict:
self.events.append('''on_train_begin''' )
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]:
self.events.append('''on_train_end''' )
def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
self.events.append('''on_epoch_begin''' )
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]:
self.events.append('''on_epoch_end''' )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]:
self.events.append('''on_step_begin''' )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
self.events.append('''on_step_end''' )
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict:
self.events.append('''on_evaluate''' )
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
self.events.append('''on_predict''' )
def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
self.events.append('''on_save''' )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : int ) -> List[Any]:
self.events.append('''on_log''' )
def __A ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Union[str, Any]:
self.events.append('''on_prediction_step''' )
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Dict ) -> int:
__lowerCamelCase = tempfile.mkdtemp()
def __A ( self : Tuple ) -> List[Any]:
shutil.rmtree(self.output_dir )
def __A ( self : str , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=64 , SCREAMING_SNAKE_CASE__ : Optional[Any]=64 , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : int=False , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]:
# disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure
# its set to False since the tests later on depend on its value.
__lowerCamelCase = RegressionDataset(length=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = RegressionDataset(length=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = RegressionModelConfig(a=SCREAMING_SNAKE_CASE__ , b=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE__ , report_to=[] , **SCREAMING_SNAKE_CASE__ )
return Trainer(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , train_dataset=SCREAMING_SNAKE_CASE__ , eval_dataset=SCREAMING_SNAKE_CASE__ , callbacks=SCREAMING_SNAKE_CASE__ , )
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> Any:
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) )
# Order doesn't matter
__lowerCamelCase = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : cb.__name__ if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cb.__class__.__name__ )
__lowerCamelCase = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : cb.__name__ if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cb.__class__.__name__ )
for cba, cba in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
self.assertEqual(SCREAMING_SNAKE_CASE__ , cba.__class__ )
elif not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE__ )
else:
self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]:
__lowerCamelCase = ['''on_init_end''', '''on_train_begin''']
__lowerCamelCase = 0
__lowerCamelCase = len(trainer.get_eval_dataloader() )
__lowerCamelCase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate''']
for _ in range(trainer.state.num_train_epochs ):
expected_events.append('''on_epoch_begin''' )
for _ in range(SCREAMING_SNAKE_CASE__ ):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append('''on_log''' )
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append('''on_save''' )
expected_events.append('''on_epoch_end''' )
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def __A ( self : List[str] ) -> str:
__lowerCamelCase = self.get_trainer()
__lowerCamelCase = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ )
# Callbacks passed at init are added to the default callbacks
__lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] )
expected_callbacks.append(SCREAMING_SNAKE_CASE__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ )
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
__lowerCamelCase = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ )
def __A ( self : str ) -> Optional[Any]:
__lowerCamelCase = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
__lowerCamelCase = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(SCREAMING_SNAKE_CASE__ )
expected_callbacks.remove(SCREAMING_SNAKE_CASE__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.get_trainer()
__lowerCamelCase = trainer.pop_callback(SCREAMING_SNAKE_CASE__ )
self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ )
trainer.add_callback(SCREAMING_SNAKE_CASE__ )
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ )
# We can also add, pop, or remove by instance
__lowerCamelCase = self.get_trainer()
__lowerCamelCase = trainer.callback_handler.callbacks[0]
trainer.remove_callback(SCREAMING_SNAKE_CASE__ )
expected_callbacks.remove(SCREAMING_SNAKE_CASE__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.get_trainer()
__lowerCamelCase = trainer.callback_handler.callbacks[0]
__lowerCamelCase = trainer.pop_callback(SCREAMING_SNAKE_CASE__ )
self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ )
trainer.add_callback(SCREAMING_SNAKE_CASE__ )
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ )
def __A ( self : List[str] ) -> Optional[int]:
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action='''ignore''' , category=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] )
trainer.train()
__lowerCamelCase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) )
# Independent log/save/eval
__lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 )
trainer.train()
__lowerCamelCase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 )
trainer.train()
__lowerCamelCase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='''steps''' )
trainer.train()
__lowerCamelCase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='''epoch''' )
trainer.train()
__lowerCamelCase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) )
# A bit of everything
__lowerCamelCase = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='''steps''' , )
trainer.train()
__lowerCamelCase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) )
# warning should be emitted for duplicated callbacks
with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock:
__lowerCamelCase = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(SCREAMING_SNAKE_CASE__ ) in warn_mock.call_args[0][0]
| 352 |
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
SCREAMING_SNAKE_CASE__ : Optional[int] = "bart"
SCREAMING_SNAKE_CASE__ : Dict = True
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> str:
if LOAD_DENSE_INDEX:
__lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' )
__lowerCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' )
__lowerCamelCase = qar_model.eval()
else:
__lowerCamelCase , __lowerCamelCase = (None, None)
if MODEL_TYPE == "bart":
__lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' )
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' )
__lowerCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' )
sas_model.load_state_dict(save_dict['''model'''] )
__lowerCamelCase = sas_model.eval()
else:
__lowerCamelCase , __lowerCamelCase = make_qa_sas_model(
model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> Optional[int]:
if LOAD_DENSE_INDEX:
__lowerCamelCase = faiss.StandardGpuResources()
__lowerCamelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train''']
__lowerCamelCase = np.memmap(
'''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , )
__lowerCamelCase = faiss.IndexFlatIP(128 )
__lowerCamelCase = faiss.index_cpu_to_gpu(__lowerCAmelCase , 1 , __lowerCAmelCase )
wikiaab_gpu_index_flat.add(__lowerCAmelCase ) # TODO fix for larger GPU
else:
__lowerCamelCase , __lowerCamelCase = (None, None)
__lowerCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> List[str]:
__lowerCamelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' )
__lowerCamelCase = elia['''train_eli5''']
__lowerCamelCase = np.memmap(
'''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) )
__lowerCamelCase = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(__lowerCAmelCase )
return (elia_train, eli5_train_q_index)
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_indexes()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = load_models()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_train_data()
def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=10 ) -> List[str]:
__lowerCamelCase = embed_questions_for_retrieval([question] , __lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase , __lowerCamelCase = eli5_train_q_index.search(__lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase = [elia_train[int(__lowerCAmelCase )] for i in I[0]]
return nn_examples
def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict="wiki40b" , __lowerCAmelCase : Any="dense" , __lowerCAmelCase : Dict=10 ) -> Union[str, Any]:
if source == "none":
__lowerCamelCase , __lowerCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__lowerCamelCase , __lowerCamelCase = query_qa_dense_index(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
else:
__lowerCamelCase , __lowerCamelCase = query_es_index(
__lowerCAmelCase , __lowerCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=__lowerCAmelCase , )
__lowerCamelCase = [
(res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst
]
__lowerCamelCase = '''question: {} context: {}'''.format(__lowerCAmelCase , __lowerCAmelCase )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda __lowerCAmelCase : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __lowerCAmelCase : None),
} )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str=64 , __lowerCAmelCase : Dict=256 , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Optional[Any]=0.95 , __lowerCAmelCase : List[Any]=0.8 ) -> Any:
with torch.no_grad():
__lowerCamelCase = qa_sas_generate(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_answers=1 , num_beams=__lowerCAmelCase , min_len=__lowerCAmelCase , max_len=__lowerCAmelCase , do_sample=__lowerCAmelCase , temp=__lowerCAmelCase , top_p=__lowerCAmelCase , top_k=__lowerCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0]
return (answer, support_list)
st.title("Long Form Question Answering with ELI5")
# Start sidebar
SCREAMING_SNAKE_CASE__ : List[str] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>"
SCREAMING_SNAKE_CASE__ : Dict = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
SCREAMING_SNAKE_CASE__ : int = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n"
st.sidebar.markdown(description, unsafe_allow_html=True)
SCREAMING_SNAKE_CASE__ : str = [
"Answer the question",
"View the retrieved document only",
"View the most similar ELI5 question and answer",
"Show me everything, please!",
]
SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.checkbox("Demo options")
if demo_options:
SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.selectbox(
"",
action_list,
index=3,
)
SCREAMING_SNAKE_CASE__ : Optional[Any] = action_list.index(action_st)
SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox(
"",
["Show full text of passages", "Show passage section titles"],
index=0,
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = show_type == "Show full text of passages"
else:
SCREAMING_SNAKE_CASE__ : Any = 3
SCREAMING_SNAKE_CASE__ : Any = True
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.checkbox("Retrieval options")
if retrieval_options:
SCREAMING_SNAKE_CASE__ : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n "
st.sidebar.markdown(retriever_info)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"])
SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"])
else:
SCREAMING_SNAKE_CASE__ : List[str] = "wiki40b"
SCREAMING_SNAKE_CASE__ : Optional[Any] = "dense"
SCREAMING_SNAKE_CASE__ : str = "beam"
SCREAMING_SNAKE_CASE__ : List[Any] = 2
SCREAMING_SNAKE_CASE__ : Optional[Any] = 64
SCREAMING_SNAKE_CASE__ : List[Any] = 256
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.checkbox("Generation options")
if generate_options:
SCREAMING_SNAKE_CASE__ : Dict = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n "
st.sidebar.markdown(generate_info)
SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"])
SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider(
"Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : str = st.sidebar.slider(
"Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider(
"Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : Dict = st.sidebar.slider(
"Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
# start main text
SCREAMING_SNAKE_CASE__ : Any = [
"<MY QUESTION>",
"How do people make chocolate?",
"Why do we get a fever when we are sick?",
"How can different animals perceive different colors?",
"What is natural language processing?",
"What's the best way to treat a sunburn?",
"What exactly are vitamins ?",
"How does nuclear energy provide electricity?",
"What's the difference between viruses and bacteria?",
"Why are flutes classified as woodwinds when most of them are made out of metal ?",
"Why do people like drinking coffee even though it tastes so bad?",
"What happens when wine ages? How does it make the wine taste better?",
"If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?",
"How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?",
"How does New Zealand have so many large bird predators?",
]
SCREAMING_SNAKE_CASE__ : List[str] = st.selectbox(
"What would you like to ask? ---- select <MY QUESTION> to enter a new query",
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.text_input("Enter your question here:", "")
else:
SCREAMING_SNAKE_CASE__ : str = question_s
if st.button("Show me!"):
if action in [0, 1, 3]:
if index_type == "mixed":
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_support(question, source=wiki_source, method="dense", n_results=10)
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = make_support(question, source=wiki_source, method="sparse", n_results=10)
SCREAMING_SNAKE_CASE__ : int = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
SCREAMING_SNAKE_CASE__ : Optional[Any] = support_list[:10]
SCREAMING_SNAKE_CASE__ : Tuple = "<P> " + " <P> ".join([res[-1] for res in support_list])
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == "sampled"),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown("### The model generated answer is:")
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:")
for i, res in enumerate(support_list):
SCREAMING_SNAKE_CASE__ : Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_"))
SCREAMING_SNAKE_CASE__ : Tuple = res[1].strip()
if sec_titles == "":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = "[{}]({})".format(res[0], wiki_url)
else:
SCREAMING_SNAKE_CASE__ : Dict = sec_titles.split(" & ")
SCREAMING_SNAKE_CASE__ : int = " & ".join(
["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list]
)
st.markdown(
"{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
"> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True
)
if action in [2, 3]:
SCREAMING_SNAKE_CASE__ : Any = find_nearest_training(question)
SCREAMING_SNAKE_CASE__ : List[Any] = nn_train_list[0]
st.markdown(
"--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"])
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [
"{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""]))
for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"]))
if i == 0 or sc > 2
]
st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st)))
SCREAMING_SNAKE_CASE__ : List[Any] = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n"
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 339 | 0 |
import math
import unittest
def __magic_name__ ( __lowerCAmelCase : int ) -> bool:
assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Optional[int] ) -> Tuple:
self.assertTrue(is_prime(2 ) )
self.assertTrue(is_prime(3 ) )
self.assertTrue(is_prime(5 ) )
self.assertTrue(is_prime(7 ) )
self.assertTrue(is_prime(11 ) )
self.assertTrue(is_prime(13 ) )
self.assertTrue(is_prime(17 ) )
self.assertTrue(is_prime(19 ) )
self.assertTrue(is_prime(23 ) )
self.assertTrue(is_prime(29 ) )
def __A ( self : List[str] ) -> Dict:
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
is_prime(-19 )
self.assertFalse(
is_prime(0 ) , '''Zero doesn\'t have any positive factors, primes must have exactly two.''' , )
self.assertFalse(
is_prime(1 ) , '''One only has 1 positive factor, primes must have exactly two.''' , )
self.assertFalse(is_prime(2 * 2 ) )
self.assertFalse(is_prime(2 * 3 ) )
self.assertFalse(is_prime(3 * 3 ) )
self.assertFalse(is_prime(3 * 5 ) )
self.assertFalse(is_prime(3 * 5 * 7 ) )
if __name__ == "__main__":
unittest.main()
| 353 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : str = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Dict = """xmod"""
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=("en_XX",) , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : int , ) -> str:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = position_embedding_type
__lowerCamelCase = use_cache
__lowerCamelCase = classifier_dropout
__lowerCamelCase = pre_norm
__lowerCamelCase = adapter_reduction_factor
__lowerCamelCase = adapter_layer_norm
__lowerCamelCase = adapter_reuse_layer_norm
__lowerCamelCase = ln_before_adapter
__lowerCamelCase = list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = default_language
class lowerCAmelCase__ ( __lowercase ):
@property
def __A ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
__lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__lowerCamelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 339 | 0 |
from itertools import product
from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey
from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros
def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]:
__lowerCamelCase = k_size // 2
__lowerCamelCase , __lowerCamelCase = mgrid[0 - center : k_size - center, 0 - center : k_size - center]
__lowerCamelCase = 1 / (2 * pi * sigma) * exp(-(square(__lowerCAmelCase ) + square(__lowerCAmelCase )) / (2 * square(__lowerCAmelCase )) )
return g
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int ) -> List[str]:
__lowerCamelCase , __lowerCamelCase = image.shape[0], image.shape[1]
# dst image height and width
__lowerCamelCase = height - k_size + 1
__lowerCamelCase = width - k_size + 1
# im2col, turn the k_size*k_size pixels into a row and np.vstack all rows
__lowerCamelCase = zeros((dst_height * dst_width, k_size * k_size) )
__lowerCamelCase = 0
for i, j in product(range(__lowerCAmelCase ) , range(__lowerCAmelCase ) ):
__lowerCamelCase = ravel(image[i : i + k_size, j : j + k_size] )
__lowerCamelCase = window
row += 1
# turn the kernel into shape(k*k, 1)
__lowerCamelCase = gen_gaussian_kernel(__lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase = ravel(__lowerCAmelCase )
# reshape and get the dst image
__lowerCamelCase = dot(__lowerCAmelCase , __lowerCAmelCase ).reshape(__lowerCAmelCase , __lowerCAmelCase ).astype(__lowerCAmelCase )
return dst
if __name__ == "__main__":
# read original image
SCREAMING_SNAKE_CASE__ : Optional[Any] = imread(r"../image_data/lena.jpg")
# turn image in gray scale value
SCREAMING_SNAKE_CASE__ : int = cvtColor(img, COLOR_BGR2GRAY)
# get values with two different mask size
SCREAMING_SNAKE_CASE__ : Optional[Any] = gaussian_filter(gray, 3, sigma=1)
SCREAMING_SNAKE_CASE__ : str = gaussian_filter(gray, 5, sigma=0.8)
# show result images
imshow("gaussian filter with 3x3 mask", gaussianaxa)
imshow("gaussian filter with 5x5 mask", gaussianaxa)
waitKey()
| 354 |
from collections import namedtuple
import requests
from lxml import html # type: ignore
SCREAMING_SNAKE_CASE__ : List[Any] = namedtuple("covid_data", "cases deaths recovered")
def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
__lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()'''
return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) )
SCREAMING_SNAKE_CASE__ : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}"
print(fmt.format(*covid_stats()))
| 339 | 0 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
SCREAMING_SNAKE_CASE__ : Union[str, Any] = "Create a default config file for Accelerate with only a few flags set."
def __magic_name__ ( __lowerCAmelCase : int="no" , __lowerCAmelCase : str = default_json_config_file , __lowerCAmelCase : bool = False ) -> int:
__lowerCamelCase = Path(__lowerCAmelCase )
path.parent.mkdir(parents=__lowerCAmelCase , exist_ok=__lowerCAmelCase )
if path.exists():
print(
f'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' )
return False
__lowerCamelCase = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
f'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' )
__lowerCamelCase = {
'''compute_environment''': '''LOCAL_MACHINE''',
'''mixed_precision''': mixed_precision,
}
if torch.cuda.is_available():
__lowerCamelCase = torch.cuda.device_count()
__lowerCamelCase = num_gpus
__lowerCamelCase = False
if num_gpus > 1:
__lowerCamelCase = '''MULTI_GPU'''
else:
__lowerCamelCase = '''NO'''
elif is_xpu_available() and use_xpu:
__lowerCamelCase = torch.xpu.device_count()
__lowerCamelCase = num_xpus
__lowerCamelCase = False
if num_xpus > 1:
__lowerCamelCase = '''MULTI_XPU'''
else:
__lowerCamelCase = '''NO'''
elif is_npu_available():
__lowerCamelCase = torch.npu.device_count()
__lowerCamelCase = num_npus
__lowerCamelCase = False
if num_npus > 1:
__lowerCamelCase = '''MULTI_NPU'''
else:
__lowerCamelCase = '''NO'''
else:
__lowerCamelCase = 0
__lowerCamelCase = True
__lowerCamelCase = 1
__lowerCamelCase = '''NO'''
__lowerCamelCase = ClusterConfig(**__lowerCAmelCase )
config.to_json_file(__lowerCAmelCase )
return path
def __magic_name__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] ) -> Optional[int]:
__lowerCamelCase = parser.add_parser('''default''' , parents=__lowerCAmelCase , help=__lowerCAmelCase , formatter_class=__lowerCAmelCase )
parser.add_argument(
'''--config_file''' , default=__lowerCAmelCase , help=(
'''The path to use to store the config file. Will default to a file named default_config.yaml in the cache '''
'''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '''
'''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '''
'''with \'huggingface\'.'''
) , dest='''save_location''' , )
parser.add_argument(
'''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=__lowerCAmelCase , help='''Whether or not to use mixed precision training. '''
'''Choose between FP16 and BF16 (bfloat16) training. '''
'''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , )
parser.set_defaults(func=__lowerCAmelCase )
return parser
def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> List[str]:
__lowerCamelCase = write_basic_config(args.mixed_precision , args.save_location )
if config_file:
print(f'''accelerate configuration saved at {config_file}''' )
| 355 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
SCREAMING_SNAKE_CASE__ : int = logging.getLogger(__name__)
@dataclass
class lowerCAmelCase__ :
a__ : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether tp freeze the encoder."""} )
a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether to freeze the embeddings."""} )
@dataclass
class lowerCAmelCase__ :
a__ : str = field(
metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} )
a__ : Optional[str] = field(
default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , )
a__ : Optional[int] = field(
default=1_024 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(
default=128 , metadata={
"""help""": (
"""The maximum total sequence length for target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(
default=142 , metadata={
"""help""": (
"""The maximum total sequence length for validation target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded. """
"""This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """
"""during ``evaluate`` and ``predict``."""
)
} , )
a__ : Optional[int] = field(
default=142 , metadata={
"""help""": (
"""The maximum total sequence length for test target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} )
a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Source language id for translation."""} )
a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Target language id for translation."""} )
a__ : Optional[int] = field(default=__lowercase , metadata={"""help""": """# num_beams to use for evaluation."""} )
a__ : bool = field(
default=__lowercase , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , )
def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int ) -> Dict:
logger.info(f'''***** {split} metrics *****''' )
for key in sorted(metrics.keys() ):
logger.info(f''' {key} = {metrics[key]}''' )
save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , f'''{split}_results.json''' ) )
def __magic_name__ ( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses()
check_output_dir(__lowerCAmelCase )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowerCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowerCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
assert hasattr(__lowerCAmelCase , __lowerCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute'''
setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) )
__lowerCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(__lowerCAmelCase , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
__lowerCamelCase = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(__lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
__lowerCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
__lowerCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(__lowerCAmelCase )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
__lowerCamelCase = SeqaSeqDataset
# Get datasets
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_train
else None
)
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
__lowerCamelCase = (
build_compute_metrics_fn(data_args.task , __lowerCAmelCase ) if training_args.predict_with_generate else None
)
__lowerCamelCase = SeqaSeqTrainer(
model=__lowerCAmelCase , args=__lowerCAmelCase , data_args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , data_collator=SeqaSeqDataCollator(
__lowerCAmelCase , __lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , )
__lowerCamelCase = {}
# Training
if training_args.do_train:
logger.info('''*** Train ***''' )
__lowerCamelCase = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
__lowerCamelCase = train_result.metrics
__lowerCamelCase = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('''train''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
__lowerCamelCase = trainer.evaluate(metric_key_prefix='''val''' )
__lowerCamelCase = data_args.n_val
__lowerCamelCase = round(metrics['''val_loss'''] , 4 )
if trainer.is_world_process_zero():
handle_metrics('''val''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
__lowerCamelCase = trainer.predict(test_dataset=__lowerCAmelCase , metric_key_prefix='''test''' )
__lowerCamelCase = test_output.metrics
__lowerCamelCase = data_args.n_test
if trainer.is_world_process_zero():
__lowerCamelCase = round(metrics['''test_loss'''] , 4 )
handle_metrics('''test''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
if training_args.predict_with_generate:
__lowerCamelCase = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )
__lowerCamelCase = lmap(str.strip , __lowerCAmelCase )
write_txt_file(__lowerCAmelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) )
if trainer.is_world_process_zero():
save_json(__lowerCAmelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) )
return all_metrics
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 339 | 0 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 356 |
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowerCAmelCase__ ( unittest.TestCase ):
@property
def __A ( self : List[Any] ) -> Optional[Any]:
torch.manual_seed(0 )
__lowerCamelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def __A ( self : Optional[int] ) -> Optional[Any]:
__lowerCamelCase = self.dummy_uncond_unet
__lowerCamelCase = ScoreSdeVeScheduler()
__lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
sde_ve.to(SCREAMING_SNAKE_CASE__ )
sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ )[
0
]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Tuple ) -> str:
__lowerCamelCase = '''google/ncsnpp-church-256'''
__lowerCamelCase = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
sde_ve.to(SCREAMING_SNAKE_CASE__ )
sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
__lowerCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 339 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
SCREAMING_SNAKE_CASE__ : int = {
"configuration_chinese_clip": [
"CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ChineseCLIPConfig",
"ChineseCLIPOnnxConfig",
"ChineseCLIPTextConfig",
"ChineseCLIPVisionConfig",
],
"processing_chinese_clip": ["ChineseCLIPProcessor"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : int = ["ChineseCLIPFeatureExtractor"]
SCREAMING_SNAKE_CASE__ : int = ["ChineseCLIPImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : int = [
"CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ChineseCLIPModel",
"ChineseCLIPPreTrainedModel",
"ChineseCLIPTextModel",
"ChineseCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_chinese_clip import (
CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
ChineseCLIPConfig,
ChineseCLIPOnnxConfig,
ChineseCLIPTextConfig,
ChineseCLIPVisionConfig,
)
from .processing_chinese_clip import ChineseCLIPProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_chinese_clip import (
CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
ChineseCLIPModel,
ChineseCLIPPreTrainedModel,
ChineseCLIPTextModel,
ChineseCLIPVisionModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 357 |
from functools import lru_cache
def __magic_name__ ( __lowerCAmelCase : int ) -> set:
__lowerCamelCase = 2
__lowerCamelCase = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(__lowerCAmelCase )
if n > 1:
factors.add(__lowerCAmelCase )
return factors
@lru_cache
def __magic_name__ ( __lowerCAmelCase : int ) -> int:
return len(unique_prime_factors(__lowerCAmelCase ) )
def __magic_name__ ( __lowerCAmelCase : list ) -> bool:
return len(set(__lowerCAmelCase ) ) in (0, 1)
def __magic_name__ ( __lowerCAmelCase : int ) -> list:
__lowerCamelCase = 2
while True:
# Increment each value of a generated range
__lowerCamelCase = [base + i for i in range(__lowerCAmelCase )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
__lowerCamelCase = [upf_len(__lowerCAmelCase ) for x in group]
checker.append(__lowerCAmelCase )
# If all numbers in the list are equal, return the group variable.
if equality(__lowerCAmelCase ):
return group
# Increment our base variable by 1
base += 1
def __magic_name__ ( __lowerCAmelCase : int = 4 ) -> int:
__lowerCamelCase = run(__lowerCAmelCase )
return results[0] if len(__lowerCAmelCase ) else None
if __name__ == "__main__":
print(solution())
| 339 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : int = {
"YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json",
"YituTech/conv-bert-medium-small": (
"https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"
),
"YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class lowerCAmelCase__ ( __lowercase ):
a__ : str = """convbert"""
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int=3_05_22 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_68 , SCREAMING_SNAKE_CASE__ : Tuple=12 , SCREAMING_SNAKE_CASE__ : str=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : str=0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1e-12 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Any=7_68 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Tuple=9 , SCREAMING_SNAKE_CASE__ : Dict=1 , SCREAMING_SNAKE_CASE__ : List[Any]=None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Optional[Any]:
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = embedding_size
__lowerCamelCase = head_ratio
__lowerCamelCase = conv_kernel_size
__lowerCamelCase = num_groups
__lowerCamelCase = classifier_dropout
class lowerCAmelCase__ ( __lowercase ):
@property
def __A ( self : Dict ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
__lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__lowerCamelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 358 |
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class lowerCAmelCase__ :
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=99 , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : int=9 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.002 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , ) -> Optional[Any]:
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = encoder_seq_length
__lowerCamelCase = decoder_seq_length
# For common tests
__lowerCamelCase = self.decoder_seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_attention_mask
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = d_ff
__lowerCamelCase = relative_attention_num_buckets
__lowerCamelCase = dropout_rate
__lowerCamelCase = initializer_factor
__lowerCamelCase = eos_token_id
__lowerCamelCase = pad_token_id
__lowerCamelCase = decoder_start_token_id
__lowerCamelCase = None
__lowerCamelCase = decoder_layers
def __A ( self : Any ) -> Tuple:
return TaConfig.from_pretrained('''google/umt5-base''' )
def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> Optional[int]:
if attention_mask is None:
__lowerCamelCase = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
__lowerCamelCase = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
__lowerCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ )
if decoder_head_mask is None:
__lowerCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ )
if cross_attn_head_mask is None:
__lowerCamelCase = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def __A ( self : List[Any] ) -> Tuple:
__lowerCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
__lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
__lowerCamelCase = input_ids.clamp(self.pad_token_id + 1 )
__lowerCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 )
__lowerCamelCase = self.get_config()
__lowerCamelCase = config.num_attention_heads
__lowerCamelCase = self.prepare_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return config, input_dict
def __A ( self : Tuple ) -> List[str]:
__lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def __A ( self : Optional[Any] ) -> Any:
return TaConfig(
vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def __A ( self : List[Any] ) -> Any:
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> int:
__lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
__lowerCamelCase = model(
input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = result.last_hidden_state
__lowerCamelCase = result.past_key_values
__lowerCamelCase = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Dict:
__lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder().to(SCREAMING_SNAKE_CASE__ ).eval()
# first forward pass
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ )
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) )
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) + 1 )
__lowerCamelCase , __lowerCamelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__lowerCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
__lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state''']
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )['''last_hidden_state''']
# select random slice
__lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__lowerCamelCase = output_from_no_past[:, -1, random_slice_idx].detach()
__lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Optional[int]:
__lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ).half().eval()
__lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ )['''last_hidden_state''']
self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE__ ).any().item() )
@require_torch
class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ):
a__ : List[Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
a__ : Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
a__ : Tuple = (
{
"""conversational""": UMTaForConditionalGeneration,
"""feature-extraction""": UMTaModel,
"""summarization""": UMTaForConditionalGeneration,
"""text2text-generation""": UMTaForConditionalGeneration,
"""translation""": UMTaForConditionalGeneration,
"""question-answering""": UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
a__ : int = True
a__ : int = False
a__ : Tuple = False
a__ : Optional[int] = True
a__ : Optional[int] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
a__ : Tuple = [0.8, 0.9]
def __A ( self : Tuple ) -> Tuple:
__lowerCamelCase = UMTaModelTester(self )
@unittest.skip('''Test has a segmentation fault on torch 1.8.0''' )
def __A ( self : List[str] ) -> Union[str, Any]:
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = UMTaModel(config_and_inputs[0] ).to(SCREAMING_SNAKE_CASE__ )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
SCREAMING_SNAKE_CASE__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=SCREAMING_SNAKE_CASE__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def __A ( self : Union[str, Any] ) -> Any:
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE__ )
def __A ( self : Any ) -> Any:
__lowerCamelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions''']
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = config_and_inputs[0]
__lowerCamelCase = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval()
model.to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {
'''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ),
'''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ),
'''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ),
}
for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE__ , head_masking.items() ):
__lowerCamelCase = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
__lowerCamelCase = torch.ones(
config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model.generate(
config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE__ , return_dict_in_generate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
# We check the state of decoder_attentions and cross_attentions just from the last step
__lowerCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' )
def __A ( self : Tuple ) -> Optional[Any]:
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
@unittest.skip(
'''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' )
def __A ( self : int ) -> Optional[Any]:
__lowerCamelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=SCREAMING_SNAKE_CASE__ , legacy=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = [
'''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''',
'''No se como puedo <extra_id_0>.''',
'''This is the reason why we <extra_id_0> them.''',
'''The <extra_id_0> walks in <extra_id_1>, seats''',
'''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''',
]
__lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , padding=SCREAMING_SNAKE_CASE__ ).input_ids
# fmt: off
__lowerCamelCase = torch.tensor(
[
[ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1],
] )
# fmt: on
torch.testing.assert_allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model.generate(input_ids.to(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = [
'''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''',
'''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
]
__lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ )
self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
| 339 | 0 |
def __magic_name__ ( __lowerCAmelCase : int = 50 ) -> int:
__lowerCamelCase = [[0] * 3 for _ in range(length + 1 )]
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
different_colour_ways_number[row_length][tile_length - 2] += (
different_colour_ways_number[row_length - tile_start - tile_length][
tile_length - 2
]
+ 1
)
return sum(different_colour_ways_number[length] )
if __name__ == "__main__":
print(F'{solution() = }')
| 359 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Tuple = {
"s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json",
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Union[str, Any] = """open-llama"""
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any=10_00_00 , SCREAMING_SNAKE_CASE__ : Any=40_96 , SCREAMING_SNAKE_CASE__ : Any=1_10_08 , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Any="silu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=20_48 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-6 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Dict:
__lowerCamelCase = vocab_size
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = hidden_size
__lowerCamelCase = intermediate_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = initializer_range
__lowerCamelCase = rms_norm_eps
__lowerCamelCase = use_cache
__lowerCamelCase = kwargs.pop(
'''use_memorry_efficient_attention''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_dropout_prob
__lowerCamelCase = use_stable_embedding
__lowerCamelCase = shared_input_output_embedding
__lowerCamelCase = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
def __A ( self : Dict ) -> Optional[int]:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE__ ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
f'''got {self.rope_scaling}''' )
__lowerCamelCase = self.rope_scaling.get('''type''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.rope_scaling.get('''factor''' , SCREAMING_SNAKE_CASE__ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 339 | 0 |
def __magic_name__ ( __lowerCAmelCase : int ) -> bool:
return str(__lowerCAmelCase ) == str(__lowerCAmelCase )[::-1]
def __magic_name__ ( __lowerCAmelCase : int ) -> int:
return int(__lowerCAmelCase ) + int(str(__lowerCAmelCase )[::-1] )
def __magic_name__ ( __lowerCAmelCase : int = 1_0000 ) -> int:
__lowerCamelCase = []
for num in range(1 , __lowerCAmelCase ):
__lowerCamelCase = 0
__lowerCamelCase = num
while iterations < 50:
__lowerCamelCase = sum_reverse(__lowerCAmelCase )
iterations += 1
if is_palindrome(__lowerCAmelCase ):
break
else:
lychrel_nums.append(__lowerCAmelCase )
return len(__lowerCAmelCase )
if __name__ == "__main__":
print(F'{solution() = }')
| 360 |
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY")
SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL")
@dataclass(frozen=__lowercase , slots=__lowercase )
class lowerCAmelCase__ ( Generic[KEY, VAL] ):
a__ : KEY
a__ : VAL
class lowerCAmelCase__ ( _Item ):
def __init__( self : str ) -> None:
super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __bool__( self : Tuple ) -> bool:
return False
SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem()
class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ):
def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None:
__lowerCamelCase = initial_block_size
__lowerCamelCase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__lowerCamelCase = capacity_factor
__lowerCamelCase = 0
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int:
return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets )
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int:
return (ind + 1) % len(self._buckets )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool:
__lowerCamelCase = self._buckets[ind]
if not stored:
__lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self._len += 1
return True
elif stored.key == key:
__lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return True
else:
return False
def __A ( self : Any ) -> bool:
__lowerCamelCase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(SCREAMING_SNAKE_CASE__ )
def __A ( self : List[Any] ) -> bool:
if len(self._buckets ) <= self._initial_block_size:
return False
__lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None:
__lowerCamelCase = self._buckets
__lowerCamelCase = [None] * new_size
__lowerCamelCase = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def __A ( self : str ) -> None:
self._resize(len(self._buckets ) * 2 )
def __A ( self : Dict ) -> None:
self._resize(len(self._buckets ) // 2 )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]:
__lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ )
for _ in range(len(self._buckets ) ):
yield ind
__lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
break
def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None:
if self._is_full():
self._size_up()
self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = self._buckets[ind]
if item is None:
raise KeyError(SCREAMING_SNAKE_CASE__ )
if item is _deleted:
continue
if item.key == key:
__lowerCamelCase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(SCREAMING_SNAKE_CASE__ )
def __len__( self : int ) -> int:
return self._len
def __iter__( self : Tuple ) -> Iterator[KEY]:
yield from (item.key for item in self._buckets if item)
def __repr__( self : Optional[Any] ) -> str:
__lowerCamelCase = ''' ,'''.join(
f'''{item.key}: {item.val}''' for item in self._buckets if item )
return f'''HashMap({val_string})'''
| 339 | 0 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : int = {
"openai/imagegpt-small": "",
"openai/imagegpt-medium": "",
"openai/imagegpt-large": "",
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Tuple = """imagegpt"""
a__ : Dict = ["""past_key_values"""]
a__ : int = {
"""hidden_size""": """n_embd""",
"""max_position_embeddings""": """n_positions""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=5_12 + 1 , SCREAMING_SNAKE_CASE__ : Dict=32 * 32 , SCREAMING_SNAKE_CASE__ : Dict=5_12 , SCREAMING_SNAKE_CASE__ : str=24 , SCREAMING_SNAKE_CASE__ : str=8 , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : int="quick_gelu" , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Dict=1e-5 , SCREAMING_SNAKE_CASE__ : Dict=0.02 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : Any=False , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Dict:
__lowerCamelCase = vocab_size
__lowerCamelCase = n_positions
__lowerCamelCase = n_embd
__lowerCamelCase = n_layer
__lowerCamelCase = n_head
__lowerCamelCase = n_inner
__lowerCamelCase = activation_function
__lowerCamelCase = resid_pdrop
__lowerCamelCase = embd_pdrop
__lowerCamelCase = attn_pdrop
__lowerCamelCase = layer_norm_epsilon
__lowerCamelCase = initializer_range
__lowerCamelCase = scale_attn_weights
__lowerCamelCase = use_cache
__lowerCamelCase = scale_attn_by_inverse_layer_idx
__lowerCamelCase = reorder_and_upcast_attn
__lowerCamelCase = tie_word_embeddings
super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
class lowerCAmelCase__ ( __lowercase ):
@property
def __A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''sequence'''}),
] )
def __A ( self : int , SCREAMING_SNAKE_CASE__ : "FeatureExtractionMixin" , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 32 , SCREAMING_SNAKE_CASE__ : int = 32 , ) -> Mapping[str, Any]:
__lowerCamelCase = self._generate_dummy_images(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = dict(preprocessor(images=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) )
return inputs
| 361 |
from datetime import datetime as dt
import os
from github import Github
SCREAMING_SNAKE_CASE__ : Any = [
"good first issue",
"good second issue",
"good difficult issue",
"feature request",
"new model",
"wip",
]
def __magic_name__ ( ) -> Any:
__lowerCamelCase = Github(os.environ['''GITHUB_TOKEN'''] )
__lowerCamelCase = g.get_repo('''huggingface/transformers''' )
__lowerCamelCase = repo.get_issues(state='''open''' )
for issue in open_issues:
__lowerCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase )
__lowerCamelCase = comments[0] if len(__lowerCAmelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state='''closed''' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
if __name__ == "__main__":
main()
| 339 | 0 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__)
@add_end_docstrings(__lowercase )
class lowerCAmelCase__ ( __lowercase ):
def __init__( self : str , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]:
super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
requires_backends(self , '''vision''' )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ) -> Optional[int]:
__lowerCamelCase = {}
__lowerCamelCase = {}
if prompt is not None:
__lowerCamelCase = prompt
if generate_kwargs is not None:
__lowerCamelCase = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
__lowerCamelCase = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
'''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,'''
''' please use only one''' )
__lowerCamelCase = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int:
return super().__call__(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def __A ( self : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=None ) -> Dict:
__lowerCamelCase = load_image(SCREAMING_SNAKE_CASE__ )
if prompt is not None:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise ValueError(
f'''Received an invalid text input, got - {type(SCREAMING_SNAKE_CASE__ )} - but expected a single string. '''
'''Note also that one single text can be provided for conditional image to text generation.''' )
__lowerCamelCase = self.model.config.model_type
if model_type == "git":
__lowerCamelCase = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors=self.framework )
__lowerCamelCase = self.tokenizer(text=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ).input_ids
__lowerCamelCase = [self.tokenizer.cls_token_id] + input_ids
__lowerCamelCase = torch.tensor(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 )
model_inputs.update({'''input_ids''': input_ids} )
elif model_type == "pix2struct":
__lowerCamelCase = self.image_processor(images=SCREAMING_SNAKE_CASE__ , header_text=SCREAMING_SNAKE_CASE__ , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
__lowerCamelCase = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors=self.framework )
__lowerCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors=self.framework )
model_inputs.update(SCREAMING_SNAKE_CASE__ )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
__lowerCamelCase = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
__lowerCamelCase = None
return model_inputs
def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> Optional[Any]:
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs['''input_ids'''] , SCREAMING_SNAKE_CASE__ )
and all(x is None for x in model_inputs['''input_ids'''] )
):
__lowerCamelCase = None
if generate_kwargs is None:
__lowerCamelCase = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
__lowerCamelCase = model_inputs.pop(self.model.main_input_name )
__lowerCamelCase = self.model.generate(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
return model_outputs
def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str:
__lowerCamelCase = []
for output_ids in model_outputs:
__lowerCamelCase = {
'''generated_text''': self.tokenizer.decode(
SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ , )
}
records.append(SCREAMING_SNAKE_CASE__ )
return records
| 362 |
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> str:
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
__lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b"
__lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b"
__lowerCamelCase = max(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) )
return "0b" + "".join(
str(int(char_a == '''1''' and char_b == '''1''' ) )
for char_a, char_b in zip(a_binary.zfill(__lowerCAmelCase ) , b_binary.zfill(__lowerCAmelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 339 | 0 |
SCREAMING_SNAKE_CASE__ : Tuple = {
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
SCREAMING_SNAKE_CASE__ : Optional[Any] = {value: key for key, value in encode_dict.items()}
def __magic_name__ ( __lowerCAmelCase : str ) -> str:
__lowerCamelCase = ''''''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('''encode() accepts only letters of the alphabet and spaces''' )
return encoded
def __magic_name__ ( __lowerCAmelCase : str ) -> str:
if set(__lowerCAmelCase ) - {"A", "B", " "} != set():
raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' )
__lowerCamelCase = ''''''
for word in coded.split():
while len(__lowerCAmelCase ) != 0:
decoded += decode_dict[word[:5]]
__lowerCamelCase = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 363 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : List[str] ) -> Dict:
__lowerCamelCase = tempfile.mkdtemp()
# fmt: off
__lowerCamelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) )
__lowerCamelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__lowerCamelCase = {'''unk_token''': '''<unk>'''}
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.48145466, 0.4578275, 0.40821073],
'''image_std''': [0.26862954, 0.26130258, 0.27577711],
}
__lowerCamelCase = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : int , **SCREAMING_SNAKE_CASE__ : int ) -> Any:
return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]:
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]:
return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Dict ) -> Dict:
shutil.rmtree(self.tmpdirname )
def __A ( self : str ) -> Any:
__lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCamelCase = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : List[Any] ) -> List[str]:
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = self.get_rust_tokenizer()
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ )
def __A ( self : Union[str, Any] ) -> int:
__lowerCamelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCamelCase = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
__lowerCamelCase = CLIPSegProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[Any] ) -> Union[str, Any]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''np''' )
__lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __A ( self : List[Any] ) -> Optional[int]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self : List[Any] ) -> Any:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
processor()
def __A ( self : Optional[Any] ) -> List[str]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , visual_prompt=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
processor()
def __A ( self : List[Any] ) -> Any:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCamelCase = processor.batch_decode(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
| 339 | 0 |
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class lowerCAmelCase__ ( __lowercase ):
a__ : Optional[int] = """"""
a__ : List[str] = """hf-legacy""" # "hf://"" is reserved for hffs
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[DatasetInfo] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = None , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> List[Any]:
super().__init__(self , **SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = repo_info
__lowerCamelCase = token
__lowerCamelCase = None
def __A ( self : int ) -> List[Any]:
if self.dir_cache is None:
__lowerCamelCase = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
__lowerCamelCase = {
'''name''': hf_file.rfilename,
'''size''': None,
'''type''': '''file''',
}
self.dir_cache.update(
{
str(SCREAMING_SNAKE_CASE__ ): {'''name''': str(SCREAMING_SNAKE_CASE__ ), '''size''': None, '''type''': '''directory'''}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str = "rb" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Tuple:
if not isinstance(self.repo_info , SCREAMING_SNAKE_CASE__ ):
raise NotImplementedError(f'''Open is only implemented for dataset repositories, but got {self.repo_info}''' )
__lowerCamelCase = hf_hub_url(self.repo_info.id , SCREAMING_SNAKE_CASE__ , revision=self.repo_info.sha )
return fsspec.open(
SCREAMING_SNAKE_CASE__ , mode=SCREAMING_SNAKE_CASE__ , headers=get_authentication_headers_for_url(SCREAMING_SNAKE_CASE__ , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open()
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]:
self._get_dirs()
__lowerCamelCase = self._strip_protocol(SCREAMING_SNAKE_CASE__ )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(SCREAMING_SNAKE_CASE__ )
def __A ( self : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict=False , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Any:
self._get_dirs()
__lowerCamelCase = PurePosixPath(path.strip('''/''' ) )
__lowerCamelCase = {}
for p, f in self.dir_cache.items():
__lowerCamelCase = PurePosixPath(p.strip('''/''' ) )
__lowerCamelCase = p.parent
if root == path:
__lowerCamelCase = f
__lowerCamelCase = list(paths.values() )
if detail:
return out
else:
return sorted(f['''name'''] for f in out )
| 364 |
from __future__ import annotations
def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int | None = None , __lowerCAmelCase : int | None = None ) -> None:
if start is None:
__lowerCamelCase = 0
if end is None:
__lowerCamelCase = len(__lowerCAmelCase ) - 1
if start >= end:
return
__lowerCamelCase = (start + end) // 2
slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase )
if sequence[end] < sequence[mid]:
__lowerCamelCase , __lowerCamelCase = sequence[mid], sequence[end]
slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 339 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ : Tuple = {
"configuration_roberta_prelayernorm": [
"ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP",
"RobertaPreLayerNormConfig",
"RobertaPreLayerNormOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Optional[int] = [
"ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST",
"RobertaPreLayerNormForCausalLM",
"RobertaPreLayerNormForMaskedLM",
"RobertaPreLayerNormForMultipleChoice",
"RobertaPreLayerNormForQuestionAnswering",
"RobertaPreLayerNormForSequenceClassification",
"RobertaPreLayerNormForTokenClassification",
"RobertaPreLayerNormModel",
"RobertaPreLayerNormPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : int = [
"TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRobertaPreLayerNormForCausalLM",
"TFRobertaPreLayerNormForMaskedLM",
"TFRobertaPreLayerNormForMultipleChoice",
"TFRobertaPreLayerNormForQuestionAnswering",
"TFRobertaPreLayerNormForSequenceClassification",
"TFRobertaPreLayerNormForTokenClassification",
"TFRobertaPreLayerNormMainLayer",
"TFRobertaPreLayerNormModel",
"TFRobertaPreLayerNormPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Dict = [
"FlaxRobertaPreLayerNormForCausalLM",
"FlaxRobertaPreLayerNormForMaskedLM",
"FlaxRobertaPreLayerNormForMultipleChoice",
"FlaxRobertaPreLayerNormForQuestionAnswering",
"FlaxRobertaPreLayerNormForSequenceClassification",
"FlaxRobertaPreLayerNormForTokenClassification",
"FlaxRobertaPreLayerNormModel",
"FlaxRobertaPreLayerNormPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP,
RobertaPreLayerNormConfig,
RobertaPreLayerNormOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaPreLayerNormForCausalLM,
RobertaPreLayerNormForMaskedLM,
RobertaPreLayerNormForMultipleChoice,
RobertaPreLayerNormForQuestionAnswering,
RobertaPreLayerNormForSequenceClassification,
RobertaPreLayerNormForTokenClassification,
RobertaPreLayerNormModel,
RobertaPreLayerNormPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta_prelayernorm import (
TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaPreLayerNormForCausalLM,
TFRobertaPreLayerNormForMaskedLM,
TFRobertaPreLayerNormForMultipleChoice,
TFRobertaPreLayerNormForQuestionAnswering,
TFRobertaPreLayerNormForSequenceClassification,
TFRobertaPreLayerNormForTokenClassification,
TFRobertaPreLayerNormMainLayer,
TFRobertaPreLayerNormModel,
TFRobertaPreLayerNormPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 365 |
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Optional[Any] = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
SCREAMING_SNAKE_CASE__ : str = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
SCREAMING_SNAKE_CASE__ : int = {"facebook/blenderbot_small-90M": 512}
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Tuple:
__lowerCamelCase = set()
__lowerCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__lowerCamelCase = char
__lowerCamelCase = set(__lowerCAmelCase )
return pairs
class lowerCAmelCase__ ( __lowercase ):
a__ : List[Any] = VOCAB_FILES_NAMES
a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : Dict = ["""input_ids""", """attention_mask"""]
def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple="__start__" , SCREAMING_SNAKE_CASE__ : Tuple="__end__" , SCREAMING_SNAKE_CASE__ : List[str]="__unk__" , SCREAMING_SNAKE_CASE__ : str="__null__" , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[Any]:
super().__init__(unk_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as vocab_handle:
__lowerCamelCase = json.load(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {v: k for k, v in self.encoder.items()}
with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as merges_handle:
__lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1]
__lowerCamelCase = [tuple(merge.split() ) for merge in merges]
__lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) )
__lowerCamelCase = {}
@property
def __A ( self : Dict ) -> int:
return len(self.encoder )
def __A ( self : str ) -> Dict:
return dict(self.encoder , **self.added_tokens_encoder )
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> str:
if token in self.cache:
return self.cache[token]
__lowerCamelCase = re.sub('''([.,!?()])''' , R''' \1''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = re.sub('''(\')''' , R''' \1 ''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = re.sub(R'''\s{2,}''' , ''' ''' , SCREAMING_SNAKE_CASE__ )
if "\n" in token:
__lowerCamelCase = token.replace('''\n''' , ''' __newln__''' )
__lowerCamelCase = token.split(''' ''' )
__lowerCamelCase = []
for token in tokens:
if not len(SCREAMING_SNAKE_CASE__ ):
continue
__lowerCamelCase = token.lower()
__lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] )
__lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ )
if not pairs:
words.append(SCREAMING_SNAKE_CASE__ )
continue
while True:
__lowerCamelCase = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
__lowerCamelCase , __lowerCamelCase = bigram
__lowerCamelCase = []
__lowerCamelCase = 0
while i < len(SCREAMING_SNAKE_CASE__ ):
try:
__lowerCamelCase = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
new_word.extend(word[i:j] )
__lowerCamelCase = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = new_word
if len(SCREAMING_SNAKE_CASE__ ) == 1:
break
else:
__lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''@@ '''.join(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = word[:-4]
__lowerCamelCase = word
words.append(SCREAMING_SNAKE_CASE__ )
return " ".join(SCREAMING_SNAKE_CASE__ )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
__lowerCamelCase = []
__lowerCamelCase = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE__ )
for token in words:
split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE__ ).split(''' ''' ) ) )
return split_tokens
def __A ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> int:
__lowerCamelCase = token.lower()
return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) )
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> str:
return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token )
def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
__lowerCamelCase = ''' '''.join(SCREAMING_SNAKE_CASE__ ).replace('''@@ ''' , '''''' ).strip()
return out_string
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__lowerCamelCase = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCamelCase = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '''\n''' )
__lowerCamelCase = 0
with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
''' Please check that the tokenizer is not corrupted!''' )
__lowerCamelCase = token_index
writer.write(''' '''.join(SCREAMING_SNAKE_CASE__ ) + '''\n''' )
index += 1
return vocab_file, merge_file
| 339 | 0 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : int = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
SCREAMING_SNAKE_CASE__ : int = {
"vocab_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
SCREAMING_SNAKE_CASE__ : Tuple = {
"vocab_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
SCREAMING_SNAKE_CASE__ : Tuple = {
"vocab_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"
),
},
}
SCREAMING_SNAKE_CASE__ : str = {
"facebook/dpr-ctx_encoder-single-nq-base": 512,
"facebook/dpr-ctx_encoder-multiset-base": 512,
}
SCREAMING_SNAKE_CASE__ : Any = {
"facebook/dpr-question_encoder-single-nq-base": 512,
"facebook/dpr-question_encoder-multiset-base": 512,
}
SCREAMING_SNAKE_CASE__ : List[str] = {
"facebook/dpr-reader-single-nq-base": 512,
"facebook/dpr-reader-multiset-base": 512,
}
SCREAMING_SNAKE_CASE__ : Optional[Any] = {
"facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True},
}
SCREAMING_SNAKE_CASE__ : List[Any] = {
"facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True},
}
SCREAMING_SNAKE_CASE__ : Dict = {
"facebook/dpr-reader-single-nq-base": {"do_lower_case": True},
"facebook/dpr-reader-multiset-base": {"do_lower_case": True},
}
class lowerCAmelCase__ ( __lowercase ):
a__ : int = VOCAB_FILES_NAMES
a__ : Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
a__ : Any = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
a__ : Dict = DPRContextEncoderTokenizer
class lowerCAmelCase__ ( __lowercase ):
a__ : Any = VOCAB_FILES_NAMES
a__ : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
a__ : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : int = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
a__ : int = DPRQuestionEncoderTokenizer
SCREAMING_SNAKE_CASE__ : Union[str, Any] = collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
SCREAMING_SNAKE_CASE__ : Optional[int] = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
SCREAMING_SNAKE_CASE__ : Optional[int] = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n "
@add_start_docstrings(__lowercase )
class lowerCAmelCase__ :
def __call__( self : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : Union[bool, str] = False , SCREAMING_SNAKE_CASE__ : Union[bool, str] = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , **SCREAMING_SNAKE_CASE__ : Any , ) -> BatchEncoding:
if titles is None and texts is None:
return super().__call__(
SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
elif titles is None or texts is None:
__lowerCamelCase = titles if texts is None else texts
return super().__call__(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = titles if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else [titles]
__lowerCamelCase = texts if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else [texts]
__lowerCamelCase = len(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = questions if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else [questions] * n_passages
assert len(SCREAMING_SNAKE_CASE__ ) == len(
SCREAMING_SNAKE_CASE__ ), f'''There should be as many titles than texts but got {len(SCREAMING_SNAKE_CASE__ )} titles and {len(SCREAMING_SNAKE_CASE__ )} texts.'''
__lowerCamelCase = super().__call__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ )['''input_ids''']
__lowerCamelCase = super().__call__(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ )['''input_ids''']
__lowerCamelCase = {
'''input_ids''': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
]
}
if return_attention_mask is not False:
__lowerCamelCase = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
__lowerCamelCase = attention_mask
return self.pad(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : BatchEncoding , SCREAMING_SNAKE_CASE__ : DPRReaderOutput , SCREAMING_SNAKE_CASE__ : int = 16 , SCREAMING_SNAKE_CASE__ : int = 64 , SCREAMING_SNAKE_CASE__ : int = 4 , ) -> List[DPRSpanPrediction]:
__lowerCamelCase = reader_input['''input_ids''']
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = reader_output[:3]
__lowerCamelCase = len(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = sorted(range(SCREAMING_SNAKE_CASE__ ) , reverse=SCREAMING_SNAKE_CASE__ , key=relevance_logits.__getitem__ )
__lowerCamelCase = []
for doc_id in sorted_docs:
__lowerCamelCase = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
__lowerCamelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
__lowerCamelCase = sequence_ids.index(self.pad_token_id )
else:
__lowerCamelCase = len(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=SCREAMING_SNAKE_CASE__ , top_spans=SCREAMING_SNAKE_CASE__ , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=SCREAMING_SNAKE_CASE__ , start_index=SCREAMING_SNAKE_CASE__ , end_index=SCREAMING_SNAKE_CASE__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(SCREAMING_SNAKE_CASE__ ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , ) -> List[DPRSpanPrediction]:
__lowerCamelCase = []
for start_index, start_score in enumerate(SCREAMING_SNAKE_CASE__ ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
__lowerCamelCase = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x[1] , reverse=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]'''
__lowerCamelCase = end_index - start_index + 1
assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}'''
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(SCREAMING_SNAKE_CASE__ ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(__lowercase )
class lowerCAmelCase__ ( __lowercase , __lowercase ):
a__ : Tuple = VOCAB_FILES_NAMES
a__ : Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP
a__ : List[Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : List[str] = READER_PRETRAINED_INIT_CONFIGURATION
a__ : Optional[int] = ["""input_ids""", """attention_mask"""]
a__ : List[Any] = DPRReaderTokenizer
| 366 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCAmelCase__ ( __lowercase , unittest.TestCase ):
a__ : str = ShapEImgaImgPipeline
a__ : Union[str, Any] = ["""image"""]
a__ : Optional[int] = ["""image"""]
a__ : Union[str, Any] = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
a__ : List[str] = False
@property
def __A ( self : Dict ) -> Optional[Any]:
return 32
@property
def __A ( self : Optional[int] ) -> Optional[int]:
return 32
@property
def __A ( self : Optional[int] ) -> List[Any]:
return self.time_input_dim * 4
@property
def __A ( self : str ) -> List[Any]:
return 8
@property
def __A ( self : Optional[Any] ) -> Union[str, Any]:
torch.manual_seed(0 )
__lowerCamelCase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
__lowerCamelCase = CLIPVisionModel(SCREAMING_SNAKE_CASE__ )
return model
@property
def __A ( self : Union[str, Any] ) -> Union[str, Any]:
__lowerCamelCase = CLIPImageProcessor(
crop_size=2_24 , do_center_crop=SCREAMING_SNAKE_CASE__ , do_normalize=SCREAMING_SNAKE_CASE__ , do_resize=SCREAMING_SNAKE_CASE__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , )
return image_processor
@property
def __A ( self : Dict ) -> int:
torch.manual_seed(0 )
__lowerCamelCase = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''embedding_proj_norm_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
__lowerCamelCase = PriorTransformer(**SCREAMING_SNAKE_CASE__ )
return model
@property
def __A ( self : Tuple ) -> Dict:
torch.manual_seed(0 )
__lowerCamelCase = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
__lowerCamelCase = ShapERenderer(**SCREAMING_SNAKE_CASE__ )
return model
def __A ( self : Optional[int] ) -> List[str]:
__lowerCamelCase = self.dummy_prior
__lowerCamelCase = self.dummy_image_encoder
__lowerCamelCase = self.dummy_image_processor
__lowerCamelCase = self.dummy_renderer
__lowerCamelCase = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=SCREAMING_SNAKE_CASE__ , clip_sample=SCREAMING_SNAKE_CASE__ , clip_sample_range=1.0 , )
__lowerCamelCase = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''image_processor''': image_processor,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def __A ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=0 ) -> int:
__lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ )
if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ):
__lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {
'''image''': input_image,
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def __A ( self : Union[str, Any] ) -> Dict:
__lowerCamelCase = '''cpu'''
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = output.images[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__lowerCamelCase = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __A ( self : str ) -> Tuple:
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def __A ( self : Optional[Any] ) -> str:
__lowerCamelCase = torch_device == '''cpu'''
__lowerCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE__ , relax_max_difference=SCREAMING_SNAKE_CASE__ , )
def __A ( self : Dict ) -> Optional[int]:
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = 1
__lowerCamelCase = 2
__lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
for key in inputs.keys():
if key in self.batch_params:
__lowerCamelCase = batch_size * [inputs[key]]
__lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : str ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self : str ) -> Union[str, Any]:
__lowerCamelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' )
__lowerCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_img2img_out.npy''' )
__lowerCamelCase = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 )
__lowerCamelCase = pipe(
SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
| 339 | 0 |
# flake8: noqa
# Lint as: python3
SCREAMING_SNAKE_CASE__ : Any = [
"VerificationMode",
"Version",
"disable_progress_bar",
"enable_progress_bar",
"is_progress_bar_enabled",
"experimental",
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 367 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
SCREAMING_SNAKE_CASE__ : str = ""
SCREAMING_SNAKE_CASE__ : Any = ""
SCREAMING_SNAKE_CASE__ : Optional[Any] = ""
SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 # (0 is vertical, 1 is horizontal)
def __magic_name__ ( ) -> None:
__lowerCamelCase , __lowerCamelCase = get_dataset(__lowerCAmelCase , __lowerCAmelCase )
print('''Processing...''' )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for index, image in enumerate(__lowerCAmelCase ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
__lowerCamelCase = random_chars(32 )
__lowerCamelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0]
__lowerCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}'''
cva.imwrite(f'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' )
__lowerCamelCase = []
for anno in new_annos[index]:
__lowerCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}'''
annos_list.append(__lowerCAmelCase )
with open(f'''/{file_root}.txt''' , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> tuple[list, list]:
__lowerCamelCase = []
__lowerCamelCase = []
for label_file in glob.glob(os.path.join(__lowerCAmelCase , '''*.txt''' ) ):
__lowerCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(__lowerCAmelCase ) as in_file:
__lowerCamelCase = in_file.readlines()
__lowerCamelCase = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''' )
__lowerCamelCase = []
for obj_list in obj_lists:
__lowerCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__lowerCAmelCase )
labels.append(__lowerCAmelCase )
return img_paths, labels
def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ) -> tuple[list, list, list]:
__lowerCamelCase = []
__lowerCamelCase = []
__lowerCamelCase = []
for idx in range(len(__lowerCAmelCase ) ):
__lowerCamelCase = []
__lowerCamelCase = img_list[idx]
path_list.append(__lowerCAmelCase )
__lowerCamelCase = anno_list[idx]
__lowerCamelCase = cva.imread(__lowerCAmelCase )
if flip_type == 1:
__lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase )
for bbox in img_annos:
__lowerCamelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
__lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase )
for bbox in img_annos:
__lowerCamelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__lowerCAmelCase )
new_imgs_list.append(__lowerCAmelCase )
return new_imgs_list, new_annos_lists, path_list
def __magic_name__ ( __lowerCAmelCase : int = 32 ) -> str:
assert number_char > 1, "The number of character should greater than 1"
__lowerCamelCase = ascii_lowercase + digits
return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 339 | 0 |
from __future__ import annotations
SCREAMING_SNAKE_CASE__ : Dict = 8.988E9 # units = N * m^s * C^-2
def __magic_name__ ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ) -> dict[str, float]:
__lowerCamelCase = abs(chargea * chargea )
if (force, chargea, chargea, distance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if distance < 0:
raise ValueError('''Distance cannot be negative''' )
if force == 0:
__lowerCamelCase = COULOMBS_CONSTANT * charge_product / (distance**2)
return {"force": force}
elif chargea == 0:
__lowerCamelCase = abs(__lowerCAmelCase ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge1": chargea}
elif chargea == 0:
__lowerCamelCase = abs(__lowerCAmelCase ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge2": chargea}
elif distance == 0:
__lowerCamelCase = (COULOMBS_CONSTANT * charge_product / abs(__lowerCAmelCase )) ** 0.5
return {"distance": distance}
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 368 |
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
SCREAMING_SNAKE_CASE__ : Tuple = collections.namedtuple("_Datasets", ["train", "validation", "test"])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
SCREAMING_SNAKE_CASE__ : List[str] = "https://storage.googleapis.com/cvdf-datasets/mnist/"
def __magic_name__ ( __lowerCAmelCase : Any ) -> int:
__lowerCamelCase = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' )
return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowerCAmelCase )[0]
@deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' )
def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str:
print('''Extracting''' , f.name )
with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream:
__lowerCamelCase = _readaa(__lowerCAmelCase )
if magic != 2051:
raise ValueError(
'''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = bytestream.read(rows * cols * num_images )
__lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta )
__lowerCamelCase = data.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 )
return data
@deprecated(__lowerCAmelCase , '''Please use tf.one_hot on tensors.''' )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ) -> Dict:
__lowerCamelCase = labels_dense.shape[0]
__lowerCamelCase = numpy.arange(__lowerCAmelCase ) * num_classes
__lowerCamelCase = numpy.zeros((num_labels, num_classes) )
__lowerCamelCase = 1
return labels_one_hot
@deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' )
def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str=False , __lowerCAmelCase : List[str]=10 ) -> List[str]:
print('''Extracting''' , f.name )
with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream:
__lowerCamelCase = _readaa(__lowerCAmelCase )
if magic != 2049:
raise ValueError(
'''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = bytestream.read(__lowerCAmelCase )
__lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(__lowerCAmelCase , __lowerCAmelCase )
return labels
class lowerCAmelCase__ :
@deprecated(
SCREAMING_SNAKE_CASE__ , '''Please use alternatives such as official/mnist/_DataSet.py'''
''' from tensorflow/models.''' , )
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=dtypes.floataa , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=None , ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase = random_seed.get_seed(SCREAMING_SNAKE_CASE__ )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
__lowerCamelCase = dtypes.as_dtype(SCREAMING_SNAKE_CASE__ ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype )
if fake_data:
__lowerCamelCase = 1_00_00
__lowerCamelCase = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), f'''images.shape: {images.shape} labels.shape: {labels.shape}'''
__lowerCamelCase = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
__lowerCamelCase = images.reshape(
images.shape[0] , images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
__lowerCamelCase = images.astype(numpy.floataa )
__lowerCamelCase = numpy.multiply(SCREAMING_SNAKE_CASE__ , 1.0 / 255.0 )
__lowerCamelCase = images
__lowerCamelCase = labels
__lowerCamelCase = 0
__lowerCamelCase = 0
@property
def __A ( self : str ) -> Optional[int]:
return self._images
@property
def __A ( self : Any ) -> Dict:
return self._labels
@property
def __A ( self : List[Any] ) -> int:
return self._num_examples
@property
def __A ( self : str ) -> Any:
return self._epochs_completed
def __A ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : str=True ) -> str:
if fake_data:
__lowerCamelCase = [1] * 7_84
__lowerCamelCase = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(SCREAMING_SNAKE_CASE__ )],
[fake_label for _ in range(SCREAMING_SNAKE_CASE__ )],
)
__lowerCamelCase = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
__lowerCamelCase = numpy.arange(self._num_examples )
numpy.random.shuffle(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.images[perma]
__lowerCamelCase = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
__lowerCamelCase = self._num_examples - start
__lowerCamelCase = self._images[start : self._num_examples]
__lowerCamelCase = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
__lowerCamelCase = numpy.arange(self._num_examples )
numpy.random.shuffle(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.images[perm]
__lowerCamelCase = self.labels[perm]
# Start next epoch
__lowerCamelCase = 0
__lowerCamelCase = batch_size - rest_num_examples
__lowerCamelCase = self._index_in_epoch
__lowerCamelCase = self._images[start:end]
__lowerCamelCase = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ),
)
else:
self._index_in_epoch += batch_size
__lowerCamelCase = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(__lowerCAmelCase , '''Please write your own downloading logic.''' )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ) -> List[Any]:
if not gfile.Exists(__lowerCAmelCase ):
gfile.MakeDirs(__lowerCAmelCase )
__lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
if not gfile.Exists(__lowerCAmelCase ):
urllib.request.urlretrieve(__lowerCAmelCase , __lowerCAmelCase ) # noqa: S310
with gfile.GFile(__lowerCAmelCase ) as f:
__lowerCamelCase = f.size()
print('''Successfully downloaded''' , __lowerCAmelCase , __lowerCAmelCase , '''bytes.''' )
return filepath
@deprecated(
__lowerCAmelCase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' )
def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[str]=dtypes.floataa , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : int=5000 , __lowerCAmelCase : Any=None , __lowerCAmelCase : List[str]=DEFAULT_SOURCE_URL , ) -> Optional[Any]:
if fake_data:
def fake():
return _DataSet(
[] , [] , fake_data=__lowerCAmelCase , one_hot=__lowerCAmelCase , dtype=__lowerCAmelCase , seed=__lowerCAmelCase )
__lowerCamelCase = fake()
__lowerCamelCase = fake()
__lowerCamelCase = fake()
return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
if not source_url: # empty string check
__lowerCamelCase = DEFAULT_SOURCE_URL
__lowerCamelCase = '''train-images-idx3-ubyte.gz'''
__lowerCamelCase = '''train-labels-idx1-ubyte.gz'''
__lowerCamelCase = '''t10k-images-idx3-ubyte.gz'''
__lowerCamelCase = '''t10k-labels-idx1-ubyte.gz'''
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + train_images_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_images(__lowerCAmelCase )
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + train_labels_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase )
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + test_images_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_images(__lowerCAmelCase )
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + test_labels_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase )
if not 0 <= validation_size <= len(__lowerCAmelCase ):
__lowerCamelCase = (
'''Validation size should be between 0 and '''
f'''{len(__lowerCAmelCase )}. Received: {validation_size}.'''
)
raise ValueError(__lowerCAmelCase )
__lowerCamelCase = train_images[:validation_size]
__lowerCamelCase = train_labels[:validation_size]
__lowerCamelCase = train_images[validation_size:]
__lowerCamelCase = train_labels[validation_size:]
__lowerCamelCase = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed}
__lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
__lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
__lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
| 339 | 0 |
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__)
class lowerCAmelCase__ ( __lowercase ):
def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> None:
warnings.warn(
'''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use YolosImageProcessor instead.''' , SCREAMING_SNAKE_CASE__ , )
super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
| 369 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
"vocab_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt"
),
"squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt",
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli": (
"https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json"
),
},
}
SCREAMING_SNAKE_CASE__ : List[Any] = {
"squeezebert/squeezebert-uncased": 512,
"squeezebert/squeezebert-mnli": 512,
"squeezebert/squeezebert-mnli-headless": 512,
}
SCREAMING_SNAKE_CASE__ : Dict = {
"squeezebert/squeezebert-uncased": {"do_lower_case": True},
"squeezebert/squeezebert-mnli": {"do_lower_case": True},
"squeezebert/squeezebert-mnli-headless": {"do_lower_case": True},
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Optional[int] = VOCAB_FILES_NAMES
a__ : Any = PRETRAINED_VOCAB_FILES_MAP
a__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : Optional[Any] = SqueezeBertTokenizer
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Tuple="[CLS]" , SCREAMING_SNAKE_CASE__ : str="[MASK]" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]:
super().__init__(
SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE__ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE__ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars
):
__lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('''type''' ) )
__lowerCamelCase = do_lower_case
__lowerCamelCase = strip_accents
__lowerCamelCase = tokenize_chinese_chars
__lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = do_lower_case
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> str:
__lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
__lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ )
return tuple(SCREAMING_SNAKE_CASE__ )
| 339 | 0 |
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
SCREAMING_SNAKE_CASE__ : Union[str, Any] = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n"
SCREAMING_SNAKE_CASE__ : Tuple = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n"
SCREAMING_SNAKE_CASE__ : str = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
def __A ( self : str ) -> MetricInfo:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ),
'''references''': datasets.Sequence(
datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ),
} ) , )
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : List[List[List[str]]] , SCREAMING_SNAKE_CASE__ : List[List[str]] , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 4 , ) -> Dict[str, float]:
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=SCREAMING_SNAKE_CASE__ , hypotheses=SCREAMING_SNAKE_CASE__ , min_len=SCREAMING_SNAKE_CASE__ , max_len=SCREAMING_SNAKE_CASE__ )
}
| 370 |
from __future__ import annotations
def __magic_name__ ( __lowerCAmelCase : list[int] ) -> bool:
return len(set(__lowerCAmelCase ) ) == len(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 339 | 0 |
from __future__ import annotations
SCREAMING_SNAKE_CASE__ : Any = list[list[int]]
# assigning initial values to the grid
SCREAMING_SNAKE_CASE__ : Matrix = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
SCREAMING_SNAKE_CASE__ : Matrix = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def __magic_name__ ( __lowerCAmelCase : Matrix , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> bool:
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def __magic_name__ ( __lowerCAmelCase : Matrix ) -> tuple[int, int] | None:
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def __magic_name__ ( __lowerCAmelCase : Matrix ) -> Matrix | None:
if location := find_empty_location(__lowerCAmelCase ):
__lowerCamelCase , __lowerCamelCase = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
__lowerCamelCase = digit
if sudoku(__lowerCAmelCase ) is not None:
return grid
__lowerCamelCase = 0
return None
def __magic_name__ ( __lowerCAmelCase : Matrix ) -> None:
for row in grid:
for cell in row:
print(__lowerCAmelCase , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("\nExample grid:\n" + "=" * 20)
print_solution(example_grid)
print("\nExample grid solution:")
SCREAMING_SNAKE_CASE__ : Dict = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("Cannot find a solution.")
| 371 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ : Dict = {
"configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Tuple = [
"FALCON_PRETRAINED_MODEL_ARCHIVE_LIST",
"FalconForCausalLM",
"FalconModel",
"FalconPreTrainedModel",
"FalconForSequenceClassification",
"FalconForTokenClassification",
"FalconForQuestionAnswering",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 339 | 0 |
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]:
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() )
def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int ) -> str:
__lowerCamelCase = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
__lowerCamelCase = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' )
__lowerCamelCase = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' )
__lowerCamelCase = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' )
__lowerCamelCase = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' )
__lowerCamelCase = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' )
__lowerCamelCase = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' )
__lowerCamelCase = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' )
__lowerCamelCase = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' )
__lowerCamelCase = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' )
__lowerCamelCase = key.replace('''image_encoder.module''' , '''flava.image_model''' )
__lowerCamelCase = key.replace('''text_encoder.module''' , '''flava.text_model''' )
__lowerCamelCase = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' )
__lowerCamelCase = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' )
__lowerCamelCase = key.replace('''text_projection''' , '''flava.text_projection''' )
__lowerCamelCase = key.replace('''image_projection''' , '''flava.image_projection''' )
__lowerCamelCase = value.float()
for key, value in codebook_state_dict.items():
__lowerCamelCase = value
return upgrade
@torch.no_grad()
def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any=None ) -> Any:
if config_path is not None:
__lowerCamelCase = FlavaConfig.from_pretrained(__lowerCAmelCase )
else:
__lowerCamelCase = FlavaConfig()
__lowerCamelCase = FlavaForPreTraining(__lowerCAmelCase ).eval()
__lowerCamelCase = convert_dalle_checkpoint(__lowerCAmelCase , __lowerCAmelCase , save_checkpoint=__lowerCAmelCase )
if os.path.exists(__lowerCAmelCase ):
__lowerCamelCase = torch.load(__lowerCAmelCase , map_location='''cpu''' )
else:
__lowerCamelCase = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location='''cpu''' )
__lowerCamelCase = upgrade_state_dict(__lowerCAmelCase , __lowerCAmelCase )
hf_model.load_state_dict(__lowerCAmelCase )
__lowerCamelCase = hf_model.state_dict()
__lowerCamelCase = count_parameters(__lowerCAmelCase )
__lowerCamelCase = count_parameters(__lowerCAmelCase ) + count_parameters(__lowerCAmelCase )
assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 )
hf_model.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint")
parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 350 |
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
__lowerCamelCase , __lowerCamelCase = y, x % y
return abs(__lowerCAmelCase )
def __magic_name__ ( ) -> Tuple:
try:
__lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
__lowerCamelCase = int(nums[0] )
__lowerCamelCase = int(nums[1] )
print(
f'''greatest_common_divisor({num_a}, {num_a}) = '''
f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' )
print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 339 | 0 |
"""simple docstring"""
def __magic_name__ ( __lowerCAmelCase : int ) -> int:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
__lowerCamelCase = f'''Input value of [number={number}] must be an integer'''
raise TypeError(__lowerCAmelCase )
if number < 1:
__lowerCamelCase = f'''Input value of [number={number}] must be > 0'''
raise ValueError(__lowerCAmelCase )
__lowerCamelCase = 1
for i in range(1 , __lowerCAmelCase ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 351 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __A ( self : Optional[int] ) -> Union[str, Any]:
__lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
__lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' )
__lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
__lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
__lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits
__lowerCamelCase = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean()
__lowerCamelCase = -(labels.shape[-1] * loss.item())
__lowerCamelCase = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 339 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
SCREAMING_SNAKE_CASE__ : Any = {"tokenization_herbert": ["HerbertTokenizer"]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : List[Any] = ["HerbertTokenizerFast"]
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
SCREAMING_SNAKE_CASE__ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 352 |
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
SCREAMING_SNAKE_CASE__ : Optional[int] = "bart"
SCREAMING_SNAKE_CASE__ : Dict = True
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> str:
if LOAD_DENSE_INDEX:
__lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' )
__lowerCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' )
__lowerCamelCase = qar_model.eval()
else:
__lowerCamelCase , __lowerCamelCase = (None, None)
if MODEL_TYPE == "bart":
__lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' )
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' )
__lowerCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' )
sas_model.load_state_dict(save_dict['''model'''] )
__lowerCamelCase = sas_model.eval()
else:
__lowerCamelCase , __lowerCamelCase = make_qa_sas_model(
model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> Optional[int]:
if LOAD_DENSE_INDEX:
__lowerCamelCase = faiss.StandardGpuResources()
__lowerCamelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train''']
__lowerCamelCase = np.memmap(
'''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , )
__lowerCamelCase = faiss.IndexFlatIP(128 )
__lowerCamelCase = faiss.index_cpu_to_gpu(__lowerCAmelCase , 1 , __lowerCAmelCase )
wikiaab_gpu_index_flat.add(__lowerCAmelCase ) # TODO fix for larger GPU
else:
__lowerCamelCase , __lowerCamelCase = (None, None)
__lowerCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> List[str]:
__lowerCamelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' )
__lowerCamelCase = elia['''train_eli5''']
__lowerCamelCase = np.memmap(
'''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) )
__lowerCamelCase = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(__lowerCAmelCase )
return (elia_train, eli5_train_q_index)
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_indexes()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = load_models()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_train_data()
def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=10 ) -> List[str]:
__lowerCamelCase = embed_questions_for_retrieval([question] , __lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase , __lowerCamelCase = eli5_train_q_index.search(__lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase = [elia_train[int(__lowerCAmelCase )] for i in I[0]]
return nn_examples
def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict="wiki40b" , __lowerCAmelCase : Any="dense" , __lowerCAmelCase : Dict=10 ) -> Union[str, Any]:
if source == "none":
__lowerCamelCase , __lowerCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__lowerCamelCase , __lowerCamelCase = query_qa_dense_index(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
else:
__lowerCamelCase , __lowerCamelCase = query_es_index(
__lowerCAmelCase , __lowerCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=__lowerCAmelCase , )
__lowerCamelCase = [
(res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst
]
__lowerCamelCase = '''question: {} context: {}'''.format(__lowerCAmelCase , __lowerCAmelCase )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda __lowerCAmelCase : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __lowerCAmelCase : None),
} )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str=64 , __lowerCAmelCase : Dict=256 , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Optional[Any]=0.95 , __lowerCAmelCase : List[Any]=0.8 ) -> Any:
with torch.no_grad():
__lowerCamelCase = qa_sas_generate(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_answers=1 , num_beams=__lowerCAmelCase , min_len=__lowerCAmelCase , max_len=__lowerCAmelCase , do_sample=__lowerCAmelCase , temp=__lowerCAmelCase , top_p=__lowerCAmelCase , top_k=__lowerCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0]
return (answer, support_list)
st.title("Long Form Question Answering with ELI5")
# Start sidebar
SCREAMING_SNAKE_CASE__ : List[str] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>"
SCREAMING_SNAKE_CASE__ : Dict = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
SCREAMING_SNAKE_CASE__ : int = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n"
st.sidebar.markdown(description, unsafe_allow_html=True)
SCREAMING_SNAKE_CASE__ : str = [
"Answer the question",
"View the retrieved document only",
"View the most similar ELI5 question and answer",
"Show me everything, please!",
]
SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.checkbox("Demo options")
if demo_options:
SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.selectbox(
"",
action_list,
index=3,
)
SCREAMING_SNAKE_CASE__ : Optional[Any] = action_list.index(action_st)
SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox(
"",
["Show full text of passages", "Show passage section titles"],
index=0,
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = show_type == "Show full text of passages"
else:
SCREAMING_SNAKE_CASE__ : Any = 3
SCREAMING_SNAKE_CASE__ : Any = True
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.checkbox("Retrieval options")
if retrieval_options:
SCREAMING_SNAKE_CASE__ : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n "
st.sidebar.markdown(retriever_info)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"])
SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"])
else:
SCREAMING_SNAKE_CASE__ : List[str] = "wiki40b"
SCREAMING_SNAKE_CASE__ : Optional[Any] = "dense"
SCREAMING_SNAKE_CASE__ : str = "beam"
SCREAMING_SNAKE_CASE__ : List[Any] = 2
SCREAMING_SNAKE_CASE__ : Optional[Any] = 64
SCREAMING_SNAKE_CASE__ : List[Any] = 256
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.checkbox("Generation options")
if generate_options:
SCREAMING_SNAKE_CASE__ : Dict = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n "
st.sidebar.markdown(generate_info)
SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"])
SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider(
"Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : str = st.sidebar.slider(
"Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider(
"Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : Dict = st.sidebar.slider(
"Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
# start main text
SCREAMING_SNAKE_CASE__ : Any = [
"<MY QUESTION>",
"How do people make chocolate?",
"Why do we get a fever when we are sick?",
"How can different animals perceive different colors?",
"What is natural language processing?",
"What's the best way to treat a sunburn?",
"What exactly are vitamins ?",
"How does nuclear energy provide electricity?",
"What's the difference between viruses and bacteria?",
"Why are flutes classified as woodwinds when most of them are made out of metal ?",
"Why do people like drinking coffee even though it tastes so bad?",
"What happens when wine ages? How does it make the wine taste better?",
"If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?",
"How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?",
"How does New Zealand have so many large bird predators?",
]
SCREAMING_SNAKE_CASE__ : List[str] = st.selectbox(
"What would you like to ask? ---- select <MY QUESTION> to enter a new query",
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.text_input("Enter your question here:", "")
else:
SCREAMING_SNAKE_CASE__ : str = question_s
if st.button("Show me!"):
if action in [0, 1, 3]:
if index_type == "mixed":
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_support(question, source=wiki_source, method="dense", n_results=10)
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = make_support(question, source=wiki_source, method="sparse", n_results=10)
SCREAMING_SNAKE_CASE__ : int = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
SCREAMING_SNAKE_CASE__ : Optional[Any] = support_list[:10]
SCREAMING_SNAKE_CASE__ : Tuple = "<P> " + " <P> ".join([res[-1] for res in support_list])
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == "sampled"),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown("### The model generated answer is:")
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:")
for i, res in enumerate(support_list):
SCREAMING_SNAKE_CASE__ : Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_"))
SCREAMING_SNAKE_CASE__ : Tuple = res[1].strip()
if sec_titles == "":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = "[{}]({})".format(res[0], wiki_url)
else:
SCREAMING_SNAKE_CASE__ : Dict = sec_titles.split(" & ")
SCREAMING_SNAKE_CASE__ : int = " & ".join(
["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list]
)
st.markdown(
"{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
"> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True
)
if action in [2, 3]:
SCREAMING_SNAKE_CASE__ : Any = find_nearest_training(question)
SCREAMING_SNAKE_CASE__ : List[Any] = nn_train_list[0]
st.markdown(
"--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"])
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [
"{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""]))
for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"]))
if i == 0 or sc > 2
]
st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st)))
SCREAMING_SNAKE_CASE__ : List[Any] = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n"
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 339 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
SCREAMING_SNAKE_CASE__ : List[Any] = {
"configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = [
"NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST",
"NezhaForNextSentencePrediction",
"NezhaForMaskedLM",
"NezhaForPreTraining",
"NezhaForMultipleChoice",
"NezhaForQuestionAnswering",
"NezhaForSequenceClassification",
"NezhaForTokenClassification",
"NezhaModel",
"NezhaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nezha import (
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
NezhaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 353 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : str = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Dict = """xmod"""
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=("en_XX",) , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : int , ) -> str:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = position_embedding_type
__lowerCamelCase = use_cache
__lowerCamelCase = classifier_dropout
__lowerCamelCase = pre_norm
__lowerCamelCase = adapter_reduction_factor
__lowerCamelCase = adapter_layer_norm
__lowerCamelCase = adapter_reuse_layer_norm
__lowerCamelCase = ln_before_adapter
__lowerCamelCase = list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = default_language
class lowerCAmelCase__ ( __lowercase ):
@property
def __A ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
__lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__lowerCamelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 339 | 0 |
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class lowerCAmelCase__ ( unittest.TestCase ):
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]=13 , SCREAMING_SNAKE_CASE__ : int=7 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=99 , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : Dict=5 , SCREAMING_SNAKE_CASE__ : Any=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=5_12 , SCREAMING_SNAKE_CASE__ : Tuple=16 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE__ : int=4 , ) -> List[str]:
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_attention_mask
__lowerCamelCase = use_token_type_ids
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = type_sequence_label_size
__lowerCamelCase = initializer_range
__lowerCamelCase = num_choices
def __A ( self : str ) -> List[Any]:
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_attention_mask:
__lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase = None
if self.use_token_type_ids:
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowerCamelCase = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def __A ( self : Union[str, Any] ) -> int:
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs
__lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_flax
class lowerCAmelCase__ ( __lowercase , unittest.TestCase ):
a__ : str = True
a__ : Dict = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __A ( self : List[Any] ) -> List[Any]:
__lowerCamelCase = FlaxRoFormerModelTester(self )
@slow
def __A ( self : Tuple ) -> Optional[Any]:
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''' , from_pt=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __A ( self : Optional[int] ) -> List[Any]:
__lowerCamelCase = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' )
__lowerCamelCase = jnp.array([[0, 1, 2, 3, 4, 5]] )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )[0]
__lowerCamelCase = 5_00_00
__lowerCamelCase = (1, 6, vocab_size)
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = jnp.array(
[[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
| 354 |
from collections import namedtuple
import requests
from lxml import html # type: ignore
SCREAMING_SNAKE_CASE__ : List[Any] = namedtuple("covid_data", "cases deaths recovered")
def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
__lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()'''
return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) )
SCREAMING_SNAKE_CASE__ : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}"
print(fmt.format(*covid_stats()))
| 339 | 0 |
def __magic_name__ ( __lowerCAmelCase : list[int] ) -> float:
if not nums: # Makes sure that the list is not empty
raise ValueError('''List is empty''' )
__lowerCamelCase = sum(__lowerCAmelCase ) / len(__lowerCAmelCase ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 355 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
SCREAMING_SNAKE_CASE__ : int = logging.getLogger(__name__)
@dataclass
class lowerCAmelCase__ :
a__ : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether tp freeze the encoder."""} )
a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether to freeze the embeddings."""} )
@dataclass
class lowerCAmelCase__ :
a__ : str = field(
metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} )
a__ : Optional[str] = field(
default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , )
a__ : Optional[int] = field(
default=1_024 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(
default=128 , metadata={
"""help""": (
"""The maximum total sequence length for target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(
default=142 , metadata={
"""help""": (
"""The maximum total sequence length for validation target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded. """
"""This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """
"""during ``evaluate`` and ``predict``."""
)
} , )
a__ : Optional[int] = field(
default=142 , metadata={
"""help""": (
"""The maximum total sequence length for test target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} )
a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Source language id for translation."""} )
a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Target language id for translation."""} )
a__ : Optional[int] = field(default=__lowercase , metadata={"""help""": """# num_beams to use for evaluation."""} )
a__ : bool = field(
default=__lowercase , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , )
def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int ) -> Dict:
logger.info(f'''***** {split} metrics *****''' )
for key in sorted(metrics.keys() ):
logger.info(f''' {key} = {metrics[key]}''' )
save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , f'''{split}_results.json''' ) )
def __magic_name__ ( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses()
check_output_dir(__lowerCAmelCase )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowerCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowerCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
assert hasattr(__lowerCAmelCase , __lowerCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute'''
setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) )
__lowerCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(__lowerCAmelCase , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
__lowerCamelCase = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(__lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
__lowerCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
__lowerCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(__lowerCAmelCase )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
__lowerCamelCase = SeqaSeqDataset
# Get datasets
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_train
else None
)
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
__lowerCamelCase = (
build_compute_metrics_fn(data_args.task , __lowerCAmelCase ) if training_args.predict_with_generate else None
)
__lowerCamelCase = SeqaSeqTrainer(
model=__lowerCAmelCase , args=__lowerCAmelCase , data_args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , data_collator=SeqaSeqDataCollator(
__lowerCAmelCase , __lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , )
__lowerCamelCase = {}
# Training
if training_args.do_train:
logger.info('''*** Train ***''' )
__lowerCamelCase = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
__lowerCamelCase = train_result.metrics
__lowerCamelCase = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('''train''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
__lowerCamelCase = trainer.evaluate(metric_key_prefix='''val''' )
__lowerCamelCase = data_args.n_val
__lowerCamelCase = round(metrics['''val_loss'''] , 4 )
if trainer.is_world_process_zero():
handle_metrics('''val''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
__lowerCamelCase = trainer.predict(test_dataset=__lowerCAmelCase , metric_key_prefix='''test''' )
__lowerCamelCase = test_output.metrics
__lowerCamelCase = data_args.n_test
if trainer.is_world_process_zero():
__lowerCamelCase = round(metrics['''test_loss'''] , 4 )
handle_metrics('''test''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
if training_args.predict_with_generate:
__lowerCamelCase = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )
__lowerCamelCase = lmap(str.strip , __lowerCAmelCase )
write_txt_file(__lowerCAmelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) )
if trainer.is_world_process_zero():
save_json(__lowerCAmelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) )
return all_metrics
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 339 | 0 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( __lowercase ):
a__ : str = ["""image_processor""", """tokenizer"""]
a__ : List[Any] = """AutoImageProcessor"""
a__ : Optional[Any] = """AutoTokenizer"""
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> str:
super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.image_processor
def __call__( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , **SCREAMING_SNAKE_CASE__ : int ) -> str:
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
__lowerCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
if images is not None:
__lowerCamelCase = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
if text is not None and images is not None:
__lowerCamelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE__ ) , tensor_type=SCREAMING_SNAKE_CASE__ )
def __A ( self : Tuple , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> List[Any]:
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Tuple , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]:
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
@property
def __A ( self : str ) -> Any:
return ["input_ids", "attention_mask", "pixel_values"]
| 356 |
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowerCAmelCase__ ( unittest.TestCase ):
@property
def __A ( self : List[Any] ) -> Optional[Any]:
torch.manual_seed(0 )
__lowerCamelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def __A ( self : Optional[int] ) -> Optional[Any]:
__lowerCamelCase = self.dummy_uncond_unet
__lowerCamelCase = ScoreSdeVeScheduler()
__lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
sde_ve.to(SCREAMING_SNAKE_CASE__ )
sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ )[
0
]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Tuple ) -> str:
__lowerCamelCase = '''google/ncsnpp-church-256'''
__lowerCamelCase = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
sde_ve.to(SCREAMING_SNAKE_CASE__ )
sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
__lowerCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 339 | 0 |
from math import sqrt
def __magic_name__ ( __lowerCAmelCase : int ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __magic_name__ ( __lowerCAmelCase : int = 1_0001 ) -> int:
"""simple docstring"""
__lowerCamelCase = 0
__lowerCamelCase = 1
while count != nth and number < 3:
number += 1
if is_prime(__lowerCAmelCase ):
count += 1
while count != nth:
number += 2
if is_prime(__lowerCAmelCase ):
count += 1
return number
if __name__ == "__main__":
print(F'{solution() = }')
| 357 |
from functools import lru_cache
def __magic_name__ ( __lowerCAmelCase : int ) -> set:
__lowerCamelCase = 2
__lowerCamelCase = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(__lowerCAmelCase )
if n > 1:
factors.add(__lowerCAmelCase )
return factors
@lru_cache
def __magic_name__ ( __lowerCAmelCase : int ) -> int:
return len(unique_prime_factors(__lowerCAmelCase ) )
def __magic_name__ ( __lowerCAmelCase : list ) -> bool:
return len(set(__lowerCAmelCase ) ) in (0, 1)
def __magic_name__ ( __lowerCAmelCase : int ) -> list:
__lowerCamelCase = 2
while True:
# Increment each value of a generated range
__lowerCamelCase = [base + i for i in range(__lowerCAmelCase )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
__lowerCamelCase = [upf_len(__lowerCAmelCase ) for x in group]
checker.append(__lowerCAmelCase )
# If all numbers in the list are equal, return the group variable.
if equality(__lowerCAmelCase ):
return group
# Increment our base variable by 1
base += 1
def __magic_name__ ( __lowerCAmelCase : int = 4 ) -> int:
__lowerCamelCase = run(__lowerCAmelCase )
return results[0] if len(__lowerCAmelCase ) else None
if __name__ == "__main__":
print(solution())
| 339 | 0 |
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
SCREAMING_SNAKE_CASE__ : Dict = TypeVar("T")
def __magic_name__ ( __lowerCAmelCase : int ) -> int:
return (position - 1) // 2
def __magic_name__ ( __lowerCAmelCase : int ) -> int:
return (2 * position) + 1
def __magic_name__ ( __lowerCAmelCase : int ) -> int:
return (2 * position) + 2
class lowerCAmelCase__ ( Generic[T] ):
def __init__( self : Optional[Any] ) -> None:
__lowerCamelCase = []
__lowerCamelCase = {}
__lowerCamelCase = 0
def __len__( self : Tuple ) -> int:
return self.elements
def __repr__( self : str ) -> str:
return str(self.heap )
def __A ( self : Optional[Any] ) -> bool:
# Check if the priority queue is empty
return self.elements == 0
def __A ( self : str , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ) -> None:
# Add an element with given priority to the queue
self.heap.append((elem, weight) )
__lowerCamelCase = self.elements
self.elements += 1
self._bubble_up(SCREAMING_SNAKE_CASE__ )
def __A ( self : Union[str, Any] ) -> T:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
__lowerCamelCase , __lowerCamelCase = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
__lowerCamelCase , __lowerCamelCase = self.heap[0]
self._bubble_down(SCREAMING_SNAKE_CASE__ )
return elem
def __A ( self : int , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ) -> None:
# Update the weight of the given key
__lowerCamelCase = self.position_map[elem]
__lowerCamelCase = (elem, weight)
if position > 0:
__lowerCamelCase = get_parent_position(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase , __lowerCamelCase = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(SCREAMING_SNAKE_CASE__ )
else:
self._bubble_down(SCREAMING_SNAKE_CASE__ )
else:
self._bubble_down(SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : T ) -> None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
__lowerCamelCase = self.position_map[elem]
if curr_pos == 0:
return None
__lowerCamelCase = get_parent_position(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase , __lowerCamelCase = self.heap[curr_pos]
__lowerCamelCase , __lowerCamelCase = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_up(SCREAMING_SNAKE_CASE__ )
return None
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : T ) -> None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
__lowerCamelCase = self.position_map[elem]
__lowerCamelCase , __lowerCamelCase = self.heap[curr_pos]
__lowerCamelCase = get_child_left_position(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = get_child_right_position(SCREAMING_SNAKE_CASE__ )
if child_left_position < self.elements and child_right_position < self.elements:
__lowerCamelCase , __lowerCamelCase = self.heap[child_left_position]
__lowerCamelCase , __lowerCamelCase = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_down(SCREAMING_SNAKE_CASE__ )
if child_left_position < self.elements:
__lowerCamelCase , __lowerCamelCase = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_down(SCREAMING_SNAKE_CASE__ )
else:
return None
if child_right_position < self.elements:
__lowerCamelCase , __lowerCamelCase = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._bubble_down(SCREAMING_SNAKE_CASE__ )
return None
def __A ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> None:
# Swap the nodes at the given positions
__lowerCamelCase = self.heap[nodea_pos][0]
__lowerCamelCase = self.heap[nodea_pos][0]
__lowerCamelCase , __lowerCamelCase = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
__lowerCamelCase = nodea_pos
__lowerCamelCase = nodea_pos
class lowerCAmelCase__ ( Generic[T] ):
def __init__( self : Tuple ) -> None:
__lowerCamelCase = {}
__lowerCamelCase = 0
def __repr__( self : int ) -> str:
return str(self.connections )
def __len__( self : int ) -> int:
return self.nodes
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : T ) -> None:
# Add a node in the graph if it is not in the graph
if node not in self.connections:
__lowerCamelCase = {}
self.nodes += 1
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ) -> None:
# Add an edge between 2 nodes in the graph
self.add_node(SCREAMING_SNAKE_CASE__ )
self.add_node(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = weight
__lowerCamelCase = weight
def __magic_name__ ( __lowerCAmelCase : GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]:
__lowerCamelCase = {node: maxsize for node in graph.connections}
__lowerCamelCase = {node: None for node in graph.connections}
__lowerCamelCase = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(__lowerCAmelCase , __lowerCAmelCase )
if priority_queue.is_empty():
return dist, parent
# initialization
__lowerCamelCase = priority_queue.extract_min()
__lowerCamelCase = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
__lowerCamelCase = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(__lowerCAmelCase , dist[neighbour] )
__lowerCamelCase = node
# running prim's algorithm
while not priority_queue.is_empty():
__lowerCamelCase = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
__lowerCamelCase = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(__lowerCAmelCase , dist[neighbour] )
__lowerCamelCase = node
return dist, parent
| 358 |
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class lowerCAmelCase__ :
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=99 , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : int=9 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.002 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , ) -> Optional[Any]:
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = encoder_seq_length
__lowerCamelCase = decoder_seq_length
# For common tests
__lowerCamelCase = self.decoder_seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_attention_mask
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = d_ff
__lowerCamelCase = relative_attention_num_buckets
__lowerCamelCase = dropout_rate
__lowerCamelCase = initializer_factor
__lowerCamelCase = eos_token_id
__lowerCamelCase = pad_token_id
__lowerCamelCase = decoder_start_token_id
__lowerCamelCase = None
__lowerCamelCase = decoder_layers
def __A ( self : Any ) -> Tuple:
return TaConfig.from_pretrained('''google/umt5-base''' )
def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> Optional[int]:
if attention_mask is None:
__lowerCamelCase = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
__lowerCamelCase = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
__lowerCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ )
if decoder_head_mask is None:
__lowerCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ )
if cross_attn_head_mask is None:
__lowerCamelCase = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def __A ( self : List[Any] ) -> Tuple:
__lowerCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
__lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
__lowerCamelCase = input_ids.clamp(self.pad_token_id + 1 )
__lowerCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 )
__lowerCamelCase = self.get_config()
__lowerCamelCase = config.num_attention_heads
__lowerCamelCase = self.prepare_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return config, input_dict
def __A ( self : Tuple ) -> List[str]:
__lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def __A ( self : Optional[Any] ) -> Any:
return TaConfig(
vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def __A ( self : List[Any] ) -> Any:
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> int:
__lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
__lowerCamelCase = model(
input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = result.last_hidden_state
__lowerCamelCase = result.past_key_values
__lowerCamelCase = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Dict:
__lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder().to(SCREAMING_SNAKE_CASE__ ).eval()
# first forward pass
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ )
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) )
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) + 1 )
__lowerCamelCase , __lowerCamelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__lowerCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
__lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state''']
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )['''last_hidden_state''']
# select random slice
__lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__lowerCamelCase = output_from_no_past[:, -1, random_slice_idx].detach()
__lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Optional[int]:
__lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ).half().eval()
__lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ )['''last_hidden_state''']
self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE__ ).any().item() )
@require_torch
class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ):
a__ : List[Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
a__ : Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
a__ : Tuple = (
{
"""conversational""": UMTaForConditionalGeneration,
"""feature-extraction""": UMTaModel,
"""summarization""": UMTaForConditionalGeneration,
"""text2text-generation""": UMTaForConditionalGeneration,
"""translation""": UMTaForConditionalGeneration,
"""question-answering""": UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
a__ : int = True
a__ : int = False
a__ : Tuple = False
a__ : Optional[int] = True
a__ : Optional[int] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
a__ : Tuple = [0.8, 0.9]
def __A ( self : Tuple ) -> Tuple:
__lowerCamelCase = UMTaModelTester(self )
@unittest.skip('''Test has a segmentation fault on torch 1.8.0''' )
def __A ( self : List[str] ) -> Union[str, Any]:
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = UMTaModel(config_and_inputs[0] ).to(SCREAMING_SNAKE_CASE__ )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
SCREAMING_SNAKE_CASE__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=SCREAMING_SNAKE_CASE__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def __A ( self : Union[str, Any] ) -> Any:
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE__ )
def __A ( self : Any ) -> Any:
__lowerCamelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions''']
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = config_and_inputs[0]
__lowerCamelCase = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval()
model.to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {
'''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ),
'''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ),
'''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ),
}
for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE__ , head_masking.items() ):
__lowerCamelCase = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
__lowerCamelCase = torch.ones(
config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model.generate(
config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE__ , return_dict_in_generate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
# We check the state of decoder_attentions and cross_attentions just from the last step
__lowerCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' )
def __A ( self : Tuple ) -> Optional[Any]:
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
@unittest.skip(
'''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' )
def __A ( self : int ) -> Optional[Any]:
__lowerCamelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=SCREAMING_SNAKE_CASE__ , legacy=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = [
'''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''',
'''No se como puedo <extra_id_0>.''',
'''This is the reason why we <extra_id_0> them.''',
'''The <extra_id_0> walks in <extra_id_1>, seats''',
'''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''',
]
__lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , padding=SCREAMING_SNAKE_CASE__ ).input_ids
# fmt: off
__lowerCamelCase = torch.tensor(
[
[ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1],
] )
# fmt: on
torch.testing.assert_allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model.generate(input_ids.to(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = [
'''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''',
'''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
]
__lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ )
self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
| 339 | 0 |
from __future__ import annotations
from collections import Counter
from random import random
class lowerCAmelCase__ :
def __init__( self : Dict ) -> Dict:
__lowerCamelCase = {}
def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : str ) -> None:
__lowerCamelCase = {}
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : float ) -> None:
if nodea not in self.connections:
self.add_node(SCREAMING_SNAKE_CASE__ )
if nodea not in self.connections:
self.add_node(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = probability
def __A ( self : Optional[int] ) -> list[str]:
return list(self.connections )
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> str:
__lowerCamelCase = 0
__lowerCamelCase = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : list[tuple[str, str, float]] , __lowerCAmelCase : int ) -> dict[str, int]:
__lowerCamelCase = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase = Counter(graph.get_nodes() )
__lowerCamelCase = start
for _ in range(__lowerCAmelCase ):
__lowerCamelCase = graph.transition(__lowerCAmelCase )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 359 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Tuple = {
"s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json",
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Union[str, Any] = """open-llama"""
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any=10_00_00 , SCREAMING_SNAKE_CASE__ : Any=40_96 , SCREAMING_SNAKE_CASE__ : Any=1_10_08 , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Any="silu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=20_48 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-6 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Dict:
__lowerCamelCase = vocab_size
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = hidden_size
__lowerCamelCase = intermediate_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = initializer_range
__lowerCamelCase = rms_norm_eps
__lowerCamelCase = use_cache
__lowerCamelCase = kwargs.pop(
'''use_memorry_efficient_attention''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_dropout_prob
__lowerCamelCase = use_stable_embedding
__lowerCamelCase = shared_input_output_embedding
__lowerCamelCase = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
def __A ( self : Dict ) -> Optional[int]:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE__ ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
f'''got {self.rope_scaling}''' )
__lowerCamelCase = self.rope_scaling.get('''type''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.rope_scaling.get('''factor''' , SCREAMING_SNAKE_CASE__ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 339 | 0 |
from graphs.minimum_spanning_tree_kruskal import kruskal
def __magic_name__ ( ) -> Union[str, Any]:
__lowerCamelCase = 9
__lowerCamelCase = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
__lowerCamelCase = kruskal(__lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
assert sorted(__lowerCAmelCase ) == sorted(__lowerCAmelCase )
| 360 |
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY")
SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL")
@dataclass(frozen=__lowercase , slots=__lowercase )
class lowerCAmelCase__ ( Generic[KEY, VAL] ):
a__ : KEY
a__ : VAL
class lowerCAmelCase__ ( _Item ):
def __init__( self : str ) -> None:
super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __bool__( self : Tuple ) -> bool:
return False
SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem()
class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ):
def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None:
__lowerCamelCase = initial_block_size
__lowerCamelCase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__lowerCamelCase = capacity_factor
__lowerCamelCase = 0
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int:
return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets )
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int:
return (ind + 1) % len(self._buckets )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool:
__lowerCamelCase = self._buckets[ind]
if not stored:
__lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self._len += 1
return True
elif stored.key == key:
__lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return True
else:
return False
def __A ( self : Any ) -> bool:
__lowerCamelCase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(SCREAMING_SNAKE_CASE__ )
def __A ( self : List[Any] ) -> bool:
if len(self._buckets ) <= self._initial_block_size:
return False
__lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None:
__lowerCamelCase = self._buckets
__lowerCamelCase = [None] * new_size
__lowerCamelCase = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def __A ( self : str ) -> None:
self._resize(len(self._buckets ) * 2 )
def __A ( self : Dict ) -> None:
self._resize(len(self._buckets ) // 2 )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]:
__lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ )
for _ in range(len(self._buckets ) ):
yield ind
__lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
break
def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None:
if self._is_full():
self._size_up()
self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = self._buckets[ind]
if item is None:
raise KeyError(SCREAMING_SNAKE_CASE__ )
if item is _deleted:
continue
if item.key == key:
__lowerCamelCase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(SCREAMING_SNAKE_CASE__ )
def __len__( self : int ) -> int:
return self._len
def __iter__( self : Tuple ) -> Iterator[KEY]:
yield from (item.key for item in self._buckets if item)
def __repr__( self : Optional[Any] ) -> str:
__lowerCamelCase = ''' ,'''.join(
f'''{item.key}: {item.val}''' for item in self._buckets if item )
return f'''HashMap({val_string})'''
| 339 | 0 |
from datetime import datetime as dt
import os
from github import Github
SCREAMING_SNAKE_CASE__ : Any = [
"good first issue",
"good second issue",
"good difficult issue",
"feature request",
"new model",
"wip",
]
def __magic_name__ ( ) -> Any:
__lowerCamelCase = Github(os.environ['''GITHUB_TOKEN'''] )
__lowerCamelCase = g.get_repo('''huggingface/transformers''' )
__lowerCamelCase = repo.get_issues(state='''open''' )
for issue in open_issues:
__lowerCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase )
__lowerCamelCase = comments[0] if len(__lowerCAmelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state='''closed''' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
if __name__ == "__main__":
main()
| 361 |
from datetime import datetime as dt
import os
from github import Github
SCREAMING_SNAKE_CASE__ : Any = [
"good first issue",
"good second issue",
"good difficult issue",
"feature request",
"new model",
"wip",
]
def __magic_name__ ( ) -> Any:
__lowerCamelCase = Github(os.environ['''GITHUB_TOKEN'''] )
__lowerCamelCase = g.get_repo('''huggingface/transformers''' )
__lowerCamelCase = repo.get_issues(state='''open''' )
for issue in open_issues:
__lowerCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase )
__lowerCamelCase = comments[0] if len(__lowerCAmelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state='''closed''' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
if __name__ == "__main__":
main()
| 339 | 0 |
from typing import Callable, List, Optional, Union
import PIL
import torch
from transformers import (
CLIPImageProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
CLIPTextModel,
CLIPTokenizer,
)
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, is_accelerate_available, logging
SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowerCAmelCase__ ( __lowercase ):
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : CLIPSegForImageSegmentation , SCREAMING_SNAKE_CASE__ : CLIPSegProcessor , SCREAMING_SNAKE_CASE__ : AutoencoderKL , SCREAMING_SNAKE_CASE__ : CLIPTextModel , SCREAMING_SNAKE_CASE__ : CLIPTokenizer , SCREAMING_SNAKE_CASE__ : UNetaDConditionModel , SCREAMING_SNAKE_CASE__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , SCREAMING_SNAKE_CASE__ : StableDiffusionSafetyChecker , SCREAMING_SNAKE_CASE__ : CLIPImageProcessor , ) -> Dict:
super().__init__()
if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1:
__lowerCamelCase = (
f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`'''
f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure '''
'''to update the config accordingly as leaving `steps_offset` might led to incorrect results'''
''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,'''
''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`'''
''' file'''
)
deprecate('''steps_offset!=1''' , '''1.0.0''' , SCREAMING_SNAKE_CASE__ , standard_warn=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = dict(scheduler.config )
__lowerCamelCase = 1
__lowerCamelCase = FrozenDict(SCREAMING_SNAKE_CASE__ )
if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False:
__lowerCamelCase = (
f'''The configuration file of this scheduler: {scheduler} has not set the configuration'''
''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make'''
''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to'''
''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face'''
''' Hub, it would be very nice if you could open a Pull request for the'''
''' `scheduler/scheduler_config.json` file'''
)
deprecate('''skip_prk_steps not set''' , '''1.0.0''' , SCREAMING_SNAKE_CASE__ , standard_warn=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = dict(scheduler.config )
__lowerCamelCase = True
__lowerCamelCase = FrozenDict(SCREAMING_SNAKE_CASE__ )
if safety_checker is None:
logger.warning(
f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'''
''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'''
''' results in services or applications open to the public. Both the diffusers team and Hugging Face'''
''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'''
''' it only for use-cases that involve analyzing network behavior or auditing its results. For more'''
''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' )
self.register_modules(
segmentation_model=SCREAMING_SNAKE_CASE__ , segmentation_processor=SCREAMING_SNAKE_CASE__ , vae=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Union[str, int]] = "auto" ) -> str:
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowerCamelCase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(SCREAMING_SNAKE_CASE__ )
def __A ( self : Any ) -> Dict:
self.enable_attention_slicing(SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[Any] ) -> Union[str, Any]:
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''' )
__lowerCamelCase = torch.device('''cuda''' )
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def __A ( self : Optional[Any] ) -> List[str]:
if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ):
return self.device
for module in self.unet.modules():
if (
hasattr(SCREAMING_SNAKE_CASE__ , '''_hf_hook''' )
and hasattr(module._hf_hook , '''execution_device''' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, List[str]] , SCREAMING_SNAKE_CASE__ : Union[torch.FloatTensor, PIL.Image.Image] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int = 5_12 , SCREAMING_SNAKE_CASE__ : int = 5_12 , SCREAMING_SNAKE_CASE__ : int = 50 , SCREAMING_SNAKE_CASE__ : float = 7.5 , SCREAMING_SNAKE_CASE__ : Optional[Union[str, List[str]]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = 1 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE__ : int = 1 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Union[str, Any]:
__lowerCamelCase = self.segmentation_processor(
text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device )
__lowerCamelCase = self.segmentation_model(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy()
__lowerCamelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ )[0].resize(image.size )
# Run inpainting pipeline with the generated mask
__lowerCamelCase = StableDiffusionInpaintPipeline(
vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , )
return inpainting_pipeline(
prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , height=SCREAMING_SNAKE_CASE__ , width=SCREAMING_SNAKE_CASE__ , num_inference_steps=SCREAMING_SNAKE_CASE__ , guidance_scale=SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , latents=SCREAMING_SNAKE_CASE__ , output_type=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , callback=SCREAMING_SNAKE_CASE__ , callback_steps=SCREAMING_SNAKE_CASE__ , )
| 362 |
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> str:
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
__lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b"
__lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b"
__lowerCamelCase = max(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) )
return "0b" + "".join(
str(int(char_a == '''1''' and char_b == '''1''' ) )
for char_a, char_b in zip(a_binary.zfill(__lowerCAmelCase ) , b_binary.zfill(__lowerCAmelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 339 | 0 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotSmallConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
SCREAMING_SNAKE_CASE__ : Any = "platform"
import jax
import jax.numpy as jnp
from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
shift_tokens_right,
)
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Dict=None , __lowerCAmelCase : str=None , __lowerCAmelCase : int=None , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Optional[int]=None , ) -> Optional[Any]:
if attention_mask is None:
__lowerCamelCase = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
__lowerCamelCase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
__lowerCamelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__lowerCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__lowerCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class lowerCAmelCase__ :
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str]=13 , SCREAMING_SNAKE_CASE__ : Dict=7 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : List[str]=99 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Any=4 , SCREAMING_SNAKE_CASE__ : Any=4 , SCREAMING_SNAKE_CASE__ : Dict="gelu" , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=32 , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : int=0.02 , ) -> List[str]:
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = eos_token_id
__lowerCamelCase = pad_token_id
__lowerCamelCase = bos_token_id
__lowerCamelCase = initializer_range
def __A ( self : Dict ) -> str:
__lowerCamelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
__lowerCamelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
__lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , 1 , 2 )
__lowerCamelCase = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = prepare_blenderbot_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return config, inputs_dict
def __A ( self : Any ) -> Dict:
__lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]:
__lowerCamelCase = 20
__lowerCamelCase = model_class_name(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model.encode(inputs_dict['''input_ids'''] )
__lowerCamelCase , __lowerCamelCase = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
__lowerCamelCase = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' )
__lowerCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__lowerCamelCase = model.decode(
decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' )
__lowerCamelCase = model.decode(
decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = model.decode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
__lowerCamelCase = 20
__lowerCamelCase = model_class_name(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model.encode(inputs_dict['''input_ids'''] )
__lowerCamelCase , __lowerCamelCase = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
__lowerCamelCase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__lowerCamelCase = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__lowerCamelCase = model.decode(
decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' )
__lowerCamelCase = model.decode(
decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = model.decode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
a__ : Optional[Any] = 99
def __A ( self : str ) -> List[Any]:
__lowerCamelCase = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
__lowerCamelCase = input_ids.shape[0]
__lowerCamelCase = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def __A ( self : str ) -> int:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self._get_config_and_data()
__lowerCamelCase = FlaxBlenderbotSmallForConditionalGeneration(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = lm_model(input_ids=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs['''logits'''].shape , SCREAMING_SNAKE_CASE__ )
def __A ( self : int ) -> str:
__lowerCamelCase = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
__lowerCamelCase = FlaxBlenderbotSmallForConditionalGeneration(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
__lowerCamelCase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
__lowerCamelCase = lm_model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = (*summary.shape, config.vocab_size)
self.assertEqual(outputs['''logits'''].shape , SCREAMING_SNAKE_CASE__ )
def __A ( self : List[str] ) -> List[Any]:
__lowerCamelCase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
__lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , 1 , 2 )
__lowerCamelCase = np.equal(SCREAMING_SNAKE_CASE__ , 1 ).astype(np.floataa ).sum()
__lowerCamelCase = np.equal(SCREAMING_SNAKE_CASE__ , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(SCREAMING_SNAKE_CASE__ , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class lowerCAmelCase__ ( __lowercase , unittest.TestCase , __lowercase ):
a__ : Tuple = True
a__ : List[Any] = (
(
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallForConditionalGeneration,
)
if is_flax_available()
else ()
)
a__ : Tuple = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else ()
def __A ( self : List[Any] ) -> Optional[int]:
__lowerCamelCase = FlaxBlenderbotSmallModelTester(self )
def __A ( self : Tuple ) -> List[Any]:
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : List[Any] ) -> int:
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : List[str] ) -> List[str]:
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model_class(SCREAMING_SNAKE_CASE__ )
@jax.jit
def encode_jitted(SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , **SCREAMING_SNAKE_CASE__ : int ):
return model.encode(input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )
with self.subTest('''JIT Enabled''' ):
__lowerCamelCase = encode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
__lowerCamelCase = encode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) )
for jitted_output, output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
self.assertEqual(jitted_output.shape , output.shape )
def __A ( self : Tuple ) -> Tuple:
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase = model_class(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] )
__lowerCamelCase = {
'''decoder_input_ids''': inputs_dict['''decoder_input_ids'''],
'''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''],
'''encoder_outputs''': encoder_outputs,
}
@jax.jit
def decode_jitted(SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ):
return model.decode(
decoder_input_ids=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , encoder_outputs=SCREAMING_SNAKE_CASE__ , )
with self.subTest('''JIT Enabled''' ):
__lowerCamelCase = decode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
__lowerCamelCase = decode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) )
for jitted_output, output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def __A ( self : Dict ) -> int:
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
__lowerCamelCase = np.ones((1, 1) ) * model.config.eos_token_id
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
| 363 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : List[str] ) -> Dict:
__lowerCamelCase = tempfile.mkdtemp()
# fmt: off
__lowerCamelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) )
__lowerCamelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__lowerCamelCase = {'''unk_token''': '''<unk>'''}
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.48145466, 0.4578275, 0.40821073],
'''image_std''': [0.26862954, 0.26130258, 0.27577711],
}
__lowerCamelCase = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : int , **SCREAMING_SNAKE_CASE__ : int ) -> Any:
return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]:
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]:
return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Dict ) -> Dict:
shutil.rmtree(self.tmpdirname )
def __A ( self : str ) -> Any:
__lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCamelCase = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : List[Any] ) -> List[str]:
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = self.get_rust_tokenizer()
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ )
def __A ( self : Union[str, Any] ) -> int:
__lowerCamelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCamelCase = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
__lowerCamelCase = CLIPSegProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[Any] ) -> Union[str, Any]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''np''' )
__lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __A ( self : List[Any] ) -> Optional[int]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self : List[Any] ) -> Any:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
processor()
def __A ( self : Optional[Any] ) -> List[str]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , visual_prompt=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
processor()
def __A ( self : List[Any] ) -> Any:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCamelCase = processor.batch_decode(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
| 339 | 0 |
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : str ) -> Optional[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self : int ) -> Optional[Any]:
__lowerCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
__lowerCamelCase = sd_pipe.to(SCREAMING_SNAKE_CASE__ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
sd_pipe.set_scheduler('''sample_euler''' )
__lowerCamelCase = '''A painting of a squirrel eating a burger'''
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sd_pipe([prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
__lowerCamelCase = output.images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__lowerCamelCase = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __A ( self : int ) -> Tuple:
__lowerCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
__lowerCamelCase = sd_pipe.to(SCREAMING_SNAKE_CASE__ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
sd_pipe.set_scheduler('''sample_euler''' )
__lowerCamelCase = '''A painting of a squirrel eating a burger'''
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sd_pipe([prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
__lowerCamelCase = output.images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__lowerCamelCase = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1
def __A ( self : str ) -> str:
__lowerCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
__lowerCamelCase = sd_pipe.to(SCREAMING_SNAKE_CASE__ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
sd_pipe.set_scheduler('''sample_dpmpp_2m''' )
__lowerCamelCase = '''A painting of a squirrel eating a burger'''
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sd_pipe(
[prompt] , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = output.images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__lowerCamelCase = np.array(
[0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 364 |
from __future__ import annotations
def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int | None = None , __lowerCAmelCase : int | None = None ) -> None:
if start is None:
__lowerCamelCase = 0
if end is None:
__lowerCamelCase = len(__lowerCAmelCase ) - 1
if start >= end:
return
__lowerCamelCase = (start + end) // 2
slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase )
if sequence[end] < sequence[mid]:
__lowerCamelCase , __lowerCamelCase = sequence[mid], sequence[end]
slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 339 | 0 |
import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from hashlib import shaaaa
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import cva
import numpy as np
import requests
import wget
from filelock import FileLock
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load
try:
import torch
SCREAMING_SNAKE_CASE__ : Any = True
except ImportError:
SCREAMING_SNAKE_CASE__ : str = False
try:
from torch.hub import _get_torch_home
SCREAMING_SNAKE_CASE__ : Optional[Any] = _get_torch_home()
except ImportError:
SCREAMING_SNAKE_CASE__ : List[Any] = os.path.expanduser(
os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch"))
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(torch_cache_home, "transformers")
SCREAMING_SNAKE_CASE__ : List[Any] = "https://cdn.huggingface.co"
SCREAMING_SNAKE_CASE__ : Dict = "https://s3.amazonaws.com/models.huggingface.co/bert"
SCREAMING_SNAKE_CASE__ : List[str] = "/".join(str(Path(__file__).resolve()).split("/")[:-1])
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(PATH, "config.yaml")
SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(PATH, "attributes.txt")
SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(PATH, "objects.txt")
SCREAMING_SNAKE_CASE__ : Dict = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path)
SCREAMING_SNAKE_CASE__ : Tuple = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE)
SCREAMING_SNAKE_CASE__ : Dict = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE)
SCREAMING_SNAKE_CASE__ : Tuple = "pytorch_model.bin"
SCREAMING_SNAKE_CASE__ : Union[str, Any] = "config.yaml"
def __magic_name__ ( __lowerCAmelCase : Optional[int]=OBJECTS , __lowerCAmelCase : Any=ATTRIBUTES ) -> Any:
__lowerCamelCase = []
with open(__lowerCAmelCase ) as f:
for object in f.readlines():
vg_classes.append(object.split(''',''' )[0].lower().strip() )
__lowerCamelCase = []
with open(__lowerCAmelCase ) as f:
for object in f.readlines():
vg_attrs.append(object.split(''',''' )[0].lower().strip() )
return vg_classes, vg_attrs
def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Tuple:
__lowerCamelCase = OrderedDict()
with open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = pkl.load(__lowerCAmelCase )['''model''']
for k in copy.deepcopy(list(ckp.keys() ) ):
__lowerCamelCase = ckp.pop(__lowerCAmelCase )
if isinstance(__lowerCAmelCase , np.ndarray ):
__lowerCamelCase = torch.tensor(__lowerCAmelCase )
else:
assert isinstance(__lowerCAmelCase , torch.tensor ), type(__lowerCAmelCase )
__lowerCamelCase = v
return r
class lowerCAmelCase__ :
a__ : Optional[Any] = {}
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : str = "root" , SCREAMING_SNAKE_CASE__ : Tuple=0 ) -> Optional[Any]:
__lowerCamelCase = name
__lowerCamelCase = level
__lowerCamelCase = {}
for k, v in dictionary.items():
if v is None:
raise ValueError()
__lowerCamelCase = copy.deepcopy(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = copy.deepcopy(SCREAMING_SNAKE_CASE__ )
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = Config(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ , level=level + 1 )
__lowerCamelCase = v
setattr(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = d
def __repr__( self : int ) -> Union[str, Any]:
return str(list((self._pointer.keys()) ) )
def __setattr__( self : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]:
__lowerCamelCase = val
__lowerCamelCase = val
__lowerCamelCase = key.split('''.''' )
__lowerCamelCase = len(SCREAMING_SNAKE_CASE__ ) - 1
__lowerCamelCase = self._pointer
if len(SCREAMING_SNAKE_CASE__ ) > 1:
for i, l in enumerate(SCREAMING_SNAKE_CASE__ ):
if hasattr(self , SCREAMING_SNAKE_CASE__ ) and isinstance(getattr(self , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ):
setattr(getattr(self , SCREAMING_SNAKE_CASE__ ) , '''.'''.join(levels[i:] ) , SCREAMING_SNAKE_CASE__ )
if l == last_level:
__lowerCamelCase = val
else:
__lowerCamelCase = pointer[l]
def __A ( self : List[str] ) -> Dict:
return self._pointer
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any:
with open(f'''{file_name}''' , '''w''' ) as stream:
dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ) -> Dict:
with open(f'''{file_name}''' , '''w''' ) as stream:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@staticmethod
def __A ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]:
with open(SCREAMING_SNAKE_CASE__ ) as stream:
__lowerCamelCase = load(SCREAMING_SNAKE_CASE__ , Loader=SCREAMING_SNAKE_CASE__ )
return data
def __str__( self : int ) -> Any:
__lowerCamelCase = ''' '''
if self._name != "root":
__lowerCamelCase = f'''{t * (self._level-1)}{self._name}:\n'''
else:
__lowerCamelCase = ''''''
__lowerCamelCase = self._level
for i, (k, v) in enumerate(self._pointer.items() ):
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
r += f'''{t * (self._level)}{v}\n'''
self._level += 1
else:
r += f'''{t * (self._level)}{k}: {v} ({type(SCREAMING_SNAKE_CASE__ ).__name__})\n'''
__lowerCamelCase = level
return r[:-1]
@classmethod
def __A ( cls : List[str] , SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : str ) -> Any:
__lowerCamelCase , __lowerCamelCase = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
return cls(SCREAMING_SNAKE_CASE__ )
@classmethod
def __A ( cls : str , SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Dict:
__lowerCamelCase = kwargs.pop('''cache_dir''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = kwargs.pop('''force_download''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = kwargs.pop('''resume_download''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = kwargs.pop('''proxies''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = kwargs.pop('''local_files_only''' , SCREAMING_SNAKE_CASE__ )
if os.path.isdir(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif os.path.isfile(SCREAMING_SNAKE_CASE__ ) or is_remote_url(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = pretrained_model_name_or_path
else:
__lowerCamelCase = hf_bucket_url(SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , use_cdn=SCREAMING_SNAKE_CASE__ )
try:
# Load from URL or cache if already cached
__lowerCamelCase = cached_path(
SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , )
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
__lowerCamelCase = Config.load_yaml(SCREAMING_SNAKE_CASE__ )
except EnvironmentError:
__lowerCamelCase = '''Can\'t load config for'''
raise EnvironmentError(SCREAMING_SNAKE_CASE__ )
if resolved_config_file == config_file:
print('''loading configuration file from path''' )
else:
print('''loading configuration file cache''' )
return Config.load_yaml(SCREAMING_SNAKE_CASE__ ), kwargs
def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Tuple:
__lowerCamelCase = torch.load('''dump.pt''' , map_location=in_tensor.device )
__lowerCamelCase = in_tensor.numpy()
__lowerCamelCase = out_tensor.numpy()[0]
print(na.shape , na[0, 0, :5] )
print(na.shape , na[0, 0, :5] )
assert np.allclose(__lowerCAmelCase , __lowerCAmelCase , rtol=0.01 , atol=0.1 ), (
f'''{sum([1 for x in np.isclose(__lowerCAmelCase , __lowerCAmelCase , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %'''
" element-wise mismatch"
)
raise Exception('''tensors are all good''' )
# Hugging face functions below
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]:
__lowerCamelCase = urlparse(__lowerCAmelCase )
return parsed.scheme in ("http", "https")
def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=True ) -> str:
__lowerCamelCase = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
__lowerCamelCase = '''/''' not in model_id
if legacy_format:
return f'''{endpoint}/{model_id}-{filename}'''
else:
return f'''{endpoint}/{model_id}/{filename}'''
def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=0 , __lowerCAmelCase : Tuple=None , ) -> Optional[Any]:
__lowerCamelCase = '''python/{}'''.format(sys.version.split()[0] )
if _torch_available:
ua += "; torch/{}".format(torch.__version__ )
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
ua += "; " + "; ".join('''{}/{}'''.format(__lowerCAmelCase , __lowerCAmelCase ) for k, v in user_agent.items() )
elif isinstance(__lowerCAmelCase , __lowerCAmelCase ):
ua += "; " + user_agent
__lowerCamelCase = {'''user-agent''': ua}
if resume_size > 0:
__lowerCamelCase = '''bytes=%d-''' % (resume_size,)
__lowerCamelCase = requests.get(__lowerCAmelCase , stream=__lowerCAmelCase , proxies=__lowerCAmelCase , headers=__lowerCAmelCase )
if response.status_code == 416: # Range not satisfiable
return
__lowerCamelCase = response.headers.get('''Content-Length''' )
__lowerCamelCase = resume_size + int(__lowerCAmelCase ) if content_length is not None else None
__lowerCamelCase = tqdm(
unit='''B''' , unit_scale=__lowerCAmelCase , total=__lowerCAmelCase , initial=__lowerCAmelCase , desc='''Downloading''' , )
for chunk in response.iter_content(chunk_size=1024 ):
if chunk: # filter out keep-alive new chunks
progress.update(len(__lowerCAmelCase ) )
temp_file.write(__lowerCAmelCase )
progress.close()
def __magic_name__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Any=False , __lowerCAmelCase : str=None , __lowerCAmelCase : Optional[Any]=10 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Union[str, Any]=False , ) -> Dict:
if cache_dir is None:
__lowerCamelCase = TRANSFORMERS_CACHE
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
__lowerCamelCase = str(__lowerCAmelCase )
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
__lowerCamelCase = None
if not local_files_only:
try:
__lowerCamelCase = requests.head(__lowerCAmelCase , allow_redirects=__lowerCAmelCase , proxies=__lowerCAmelCase , timeout=__lowerCAmelCase )
if response.status_code == 200:
__lowerCamelCase = response.headers.get('''ETag''' )
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
__lowerCamelCase = url_to_filename(__lowerCAmelCase , __lowerCAmelCase )
# get cache path to put the file
__lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(__lowerCAmelCase ):
return cache_path
else:
__lowerCamelCase = [
file
for file in fnmatch.filter(os.listdir(__lowerCAmelCase ) , filename + '''.*''' )
if not file.endswith('''.json''' ) and not file.endswith('''.lock''' )
]
if len(__lowerCAmelCase ) > 0:
return os.path.join(__lowerCAmelCase , matching_files[-1] )
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
'''Cannot find the requested files in the cached path and outgoing traffic has been'''
''' disabled. To enable model look-ups and downloads online, set \'local_files_only\''''
''' to False.''' )
return None
# From now on, etag is not None.
if os.path.exists(__lowerCAmelCase ) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
__lowerCamelCase = cache_path + '''.lock'''
with FileLock(__lowerCAmelCase ):
# If the download just completed while the lock was activated.
if os.path.exists(__lowerCAmelCase ) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
__lowerCamelCase = cache_path + '''.incomplete'''
@contextmanager
def _resumable_file_manager():
with open(__lowerCAmelCase , '''a+b''' ) as f:
yield f
__lowerCamelCase = _resumable_file_manager
if os.path.exists(__lowerCAmelCase ):
__lowerCamelCase = os.stat(__lowerCAmelCase ).st_size
else:
__lowerCamelCase = 0
else:
__lowerCamelCase = partial(tempfile.NamedTemporaryFile , dir=__lowerCAmelCase , delete=__lowerCAmelCase )
__lowerCamelCase = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
print(
'''%s not found in cache or force_download set to True, downloading to %s''' , __lowerCAmelCase , temp_file.name , )
http_get(
__lowerCAmelCase , __lowerCAmelCase , proxies=__lowerCAmelCase , resume_size=__lowerCAmelCase , user_agent=__lowerCAmelCase , )
os.replace(temp_file.name , __lowerCAmelCase )
__lowerCamelCase = {'''url''': url, '''etag''': etag}
__lowerCamelCase = cache_path + '''.json'''
with open(__lowerCAmelCase , '''w''' ) as meta_file:
json.dump(__lowerCAmelCase , __lowerCAmelCase )
return cache_path
def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any]=None ) -> int:
__lowerCamelCase = url.encode('''utf-8''' )
__lowerCamelCase = shaaaa(__lowerCAmelCase )
__lowerCamelCase = url_hash.hexdigest()
if etag:
__lowerCamelCase = etag.encode('''utf-8''' )
__lowerCamelCase = shaaaa(__lowerCAmelCase )
filename += "." + etag_hash.hexdigest()
if url.endswith('''.h5''' ):
filename += ".h5"
return filename
def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Dict=False , ) -> List[str]:
if cache_dir is None:
__lowerCamelCase = TRANSFORMERS_CACHE
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
__lowerCamelCase = str(__lowerCAmelCase )
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
__lowerCamelCase = str(__lowerCAmelCase )
if is_remote_url(__lowerCAmelCase ):
# URL, so get it from the cache (downloading if necessary)
__lowerCamelCase = get_from_cache(
__lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , proxies=__lowerCAmelCase , resume_download=__lowerCAmelCase , user_agent=__lowerCAmelCase , local_files_only=__lowerCAmelCase , )
elif os.path.exists(__lowerCAmelCase ):
# File, and it exists.
__lowerCamelCase = url_or_filename
elif urlparse(__lowerCAmelCase ).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError('''file {} not found'''.format(__lowerCAmelCase ) )
else:
# Something unknown
raise ValueError('''unable to parse {} as a URL or as a local path'''.format(__lowerCAmelCase ) )
if extract_compressed_file:
if not is_zipfile(__lowerCAmelCase ) and not tarfile.is_tarfile(__lowerCAmelCase ):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
__lowerCamelCase , __lowerCamelCase = os.path.split(__lowerCAmelCase )
__lowerCamelCase = output_file.replace('''.''' , '''-''' ) + '''-extracted'''
__lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
if os.path.isdir(__lowerCAmelCase ) and os.listdir(__lowerCAmelCase ) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
__lowerCamelCase = output_path + '''.lock'''
with FileLock(__lowerCAmelCase ):
shutil.rmtree(__lowerCAmelCase , ignore_errors=__lowerCAmelCase )
os.makedirs(__lowerCAmelCase )
if is_zipfile(__lowerCAmelCase ):
with ZipFile(__lowerCAmelCase , '''r''' ) as zip_file:
zip_file.extractall(__lowerCAmelCase )
zip_file.close()
elif tarfile.is_tarfile(__lowerCAmelCase ):
__lowerCamelCase = tarfile.open(__lowerCAmelCase )
tar_file.extractall(__lowerCAmelCase )
tar_file.close()
else:
raise EnvironmentError('''Archive format of {} could not be identified'''.format(__lowerCAmelCase ) )
return output_path_extracted
return output_path
def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any]="," ) -> Any:
assert isinstance(__lowerCAmelCase , __lowerCAmelCase )
if os.path.isfile(__lowerCAmelCase ):
with open(__lowerCAmelCase ) as f:
__lowerCamelCase = eval(f.read() )
else:
__lowerCamelCase = requests.get(__lowerCAmelCase )
try:
__lowerCamelCase = requests.json()
except Exception:
__lowerCamelCase = req.content.decode()
assert data is not None, "could not connect"
try:
__lowerCamelCase = eval(__lowerCAmelCase )
except Exception:
__lowerCamelCase = data.split('''\n''' )
req.close()
return data
def __magic_name__ ( __lowerCAmelCase : Optional[Any] ) -> List[str]:
__lowerCamelCase = requests.get(__lowerCAmelCase )
__lowerCamelCase = np.array(Image.open(BytesIO(response.content ) ) )
return img
def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str:
__lowerCamelCase = url.split('''/''' )[-1]
if fn not in os.listdir(os.getcwd() ):
wget.download(__lowerCAmelCase )
with open(__lowerCAmelCase , '''rb''' ) as stream:
__lowerCamelCase = pkl.load(__lowerCAmelCase )
__lowerCamelCase = weights.pop('''model''' )
__lowerCamelCase = {}
for k, v in model.items():
__lowerCamelCase = torch.from_numpy(__lowerCAmelCase )
if "running_var" in k:
__lowerCamelCase = torch.tensor([0] )
__lowerCamelCase = k.replace('''running_var''' , '''num_batches_tracked''' )
__lowerCamelCase = zero
return new
def __magic_name__ ( ) -> Any:
print(f'''{os.path.abspath(os.path.join(__lowerCAmelCase , os.pardir ) )}/demo.ipynb''' )
def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict="RGB" ) -> str:
assert isinstance(__lowerCAmelCase , __lowerCAmelCase )
if os.path.isfile(__lowerCAmelCase ):
__lowerCamelCase = cva.imread(__lowerCAmelCase )
else:
__lowerCamelCase = get_image_from_url(__lowerCAmelCase )
assert img is not None, f'''could not connect to: {im}'''
__lowerCamelCase = cva.cvtColor(__lowerCAmelCase , cva.COLOR_BGR2RGB )
if input_format == "RGB":
__lowerCamelCase = img[:, :, ::-1]
return img
def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple=1 ) -> Optional[int]:
return (images[i : i + batch] for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ))
| 365 |
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Optional[Any] = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
SCREAMING_SNAKE_CASE__ : str = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
SCREAMING_SNAKE_CASE__ : int = {"facebook/blenderbot_small-90M": 512}
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Tuple:
__lowerCamelCase = set()
__lowerCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__lowerCamelCase = char
__lowerCamelCase = set(__lowerCAmelCase )
return pairs
class lowerCAmelCase__ ( __lowercase ):
a__ : List[Any] = VOCAB_FILES_NAMES
a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : Dict = ["""input_ids""", """attention_mask"""]
def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple="__start__" , SCREAMING_SNAKE_CASE__ : Tuple="__end__" , SCREAMING_SNAKE_CASE__ : List[str]="__unk__" , SCREAMING_SNAKE_CASE__ : str="__null__" , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[Any]:
super().__init__(unk_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as vocab_handle:
__lowerCamelCase = json.load(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {v: k for k, v in self.encoder.items()}
with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as merges_handle:
__lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1]
__lowerCamelCase = [tuple(merge.split() ) for merge in merges]
__lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) )
__lowerCamelCase = {}
@property
def __A ( self : Dict ) -> int:
return len(self.encoder )
def __A ( self : str ) -> Dict:
return dict(self.encoder , **self.added_tokens_encoder )
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> str:
if token in self.cache:
return self.cache[token]
__lowerCamelCase = re.sub('''([.,!?()])''' , R''' \1''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = re.sub('''(\')''' , R''' \1 ''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = re.sub(R'''\s{2,}''' , ''' ''' , SCREAMING_SNAKE_CASE__ )
if "\n" in token:
__lowerCamelCase = token.replace('''\n''' , ''' __newln__''' )
__lowerCamelCase = token.split(''' ''' )
__lowerCamelCase = []
for token in tokens:
if not len(SCREAMING_SNAKE_CASE__ ):
continue
__lowerCamelCase = token.lower()
__lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] )
__lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ )
if not pairs:
words.append(SCREAMING_SNAKE_CASE__ )
continue
while True:
__lowerCamelCase = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
__lowerCamelCase , __lowerCamelCase = bigram
__lowerCamelCase = []
__lowerCamelCase = 0
while i < len(SCREAMING_SNAKE_CASE__ ):
try:
__lowerCamelCase = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
new_word.extend(word[i:j] )
__lowerCamelCase = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = new_word
if len(SCREAMING_SNAKE_CASE__ ) == 1:
break
else:
__lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''@@ '''.join(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = word[:-4]
__lowerCamelCase = word
words.append(SCREAMING_SNAKE_CASE__ )
return " ".join(SCREAMING_SNAKE_CASE__ )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
__lowerCamelCase = []
__lowerCamelCase = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE__ )
for token in words:
split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE__ ).split(''' ''' ) ) )
return split_tokens
def __A ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> int:
__lowerCamelCase = token.lower()
return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) )
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> str:
return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token )
def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
__lowerCamelCase = ''' '''.join(SCREAMING_SNAKE_CASE__ ).replace('''@@ ''' , '''''' ).strip()
return out_string
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__lowerCamelCase = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCamelCase = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '''\n''' )
__lowerCamelCase = 0
with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
''' Please check that the tokenizer is not corrupted!''' )
__lowerCamelCase = token_index
writer.write(''' '''.join(SCREAMING_SNAKE_CASE__ ) + '''\n''' )
index += 1
return vocab_file, merge_file
| 339 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
SCREAMING_SNAKE_CASE__ : Tuple = {
"configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : int = [
"GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"GraphormerForGraphClassification",
"GraphormerModel",
"GraphormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 366 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCAmelCase__ ( __lowercase , unittest.TestCase ):
a__ : str = ShapEImgaImgPipeline
a__ : Union[str, Any] = ["""image"""]
a__ : Optional[int] = ["""image"""]
a__ : Union[str, Any] = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
a__ : List[str] = False
@property
def __A ( self : Dict ) -> Optional[Any]:
return 32
@property
def __A ( self : Optional[int] ) -> Optional[int]:
return 32
@property
def __A ( self : Optional[int] ) -> List[Any]:
return self.time_input_dim * 4
@property
def __A ( self : str ) -> List[Any]:
return 8
@property
def __A ( self : Optional[Any] ) -> Union[str, Any]:
torch.manual_seed(0 )
__lowerCamelCase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
__lowerCamelCase = CLIPVisionModel(SCREAMING_SNAKE_CASE__ )
return model
@property
def __A ( self : Union[str, Any] ) -> Union[str, Any]:
__lowerCamelCase = CLIPImageProcessor(
crop_size=2_24 , do_center_crop=SCREAMING_SNAKE_CASE__ , do_normalize=SCREAMING_SNAKE_CASE__ , do_resize=SCREAMING_SNAKE_CASE__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , )
return image_processor
@property
def __A ( self : Dict ) -> int:
torch.manual_seed(0 )
__lowerCamelCase = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''embedding_proj_norm_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
__lowerCamelCase = PriorTransformer(**SCREAMING_SNAKE_CASE__ )
return model
@property
def __A ( self : Tuple ) -> Dict:
torch.manual_seed(0 )
__lowerCamelCase = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
__lowerCamelCase = ShapERenderer(**SCREAMING_SNAKE_CASE__ )
return model
def __A ( self : Optional[int] ) -> List[str]:
__lowerCamelCase = self.dummy_prior
__lowerCamelCase = self.dummy_image_encoder
__lowerCamelCase = self.dummy_image_processor
__lowerCamelCase = self.dummy_renderer
__lowerCamelCase = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=SCREAMING_SNAKE_CASE__ , clip_sample=SCREAMING_SNAKE_CASE__ , clip_sample_range=1.0 , )
__lowerCamelCase = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''image_processor''': image_processor,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def __A ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=0 ) -> int:
__lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ )
if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ):
__lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {
'''image''': input_image,
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def __A ( self : Union[str, Any] ) -> Dict:
__lowerCamelCase = '''cpu'''
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = output.images[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__lowerCamelCase = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __A ( self : str ) -> Tuple:
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def __A ( self : Optional[Any] ) -> str:
__lowerCamelCase = torch_device == '''cpu'''
__lowerCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE__ , relax_max_difference=SCREAMING_SNAKE_CASE__ , )
def __A ( self : Dict ) -> Optional[int]:
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = 1
__lowerCamelCase = 2
__lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
for key in inputs.keys():
if key in self.batch_params:
__lowerCamelCase = batch_size * [inputs[key]]
__lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : str ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self : str ) -> Union[str, Any]:
__lowerCamelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' )
__lowerCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_img2img_out.npy''' )
__lowerCamelCase = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 )
__lowerCamelCase = pipe(
SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
| 339 | 0 |
from __future__ import annotations
def __magic_name__ ( __lowerCAmelCase : list[int] ) -> bool:
return len(set(__lowerCAmelCase ) ) == len(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 367 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
SCREAMING_SNAKE_CASE__ : str = ""
SCREAMING_SNAKE_CASE__ : Any = ""
SCREAMING_SNAKE_CASE__ : Optional[Any] = ""
SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 # (0 is vertical, 1 is horizontal)
def __magic_name__ ( ) -> None:
__lowerCamelCase , __lowerCamelCase = get_dataset(__lowerCAmelCase , __lowerCAmelCase )
print('''Processing...''' )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for index, image in enumerate(__lowerCAmelCase ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
__lowerCamelCase = random_chars(32 )
__lowerCamelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0]
__lowerCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}'''
cva.imwrite(f'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' )
__lowerCamelCase = []
for anno in new_annos[index]:
__lowerCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}'''
annos_list.append(__lowerCAmelCase )
with open(f'''/{file_root}.txt''' , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> tuple[list, list]:
__lowerCamelCase = []
__lowerCamelCase = []
for label_file in glob.glob(os.path.join(__lowerCAmelCase , '''*.txt''' ) ):
__lowerCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(__lowerCAmelCase ) as in_file:
__lowerCamelCase = in_file.readlines()
__lowerCamelCase = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''' )
__lowerCamelCase = []
for obj_list in obj_lists:
__lowerCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__lowerCAmelCase )
labels.append(__lowerCAmelCase )
return img_paths, labels
def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ) -> tuple[list, list, list]:
__lowerCamelCase = []
__lowerCamelCase = []
__lowerCamelCase = []
for idx in range(len(__lowerCAmelCase ) ):
__lowerCamelCase = []
__lowerCamelCase = img_list[idx]
path_list.append(__lowerCAmelCase )
__lowerCamelCase = anno_list[idx]
__lowerCamelCase = cva.imread(__lowerCAmelCase )
if flip_type == 1:
__lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase )
for bbox in img_annos:
__lowerCamelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
__lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase )
for bbox in img_annos:
__lowerCamelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__lowerCAmelCase )
new_imgs_list.append(__lowerCAmelCase )
return new_imgs_list, new_annos_lists, path_list
def __magic_name__ ( __lowerCAmelCase : int = 32 ) -> str:
assert number_char > 1, "The number of character should greater than 1"
__lowerCamelCase = ascii_lowercase + digits
return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 339 | 0 |
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
__lowerCamelCase , __lowerCamelCase = y, x % y
return abs(__lowerCAmelCase )
def __magic_name__ ( ) -> Tuple:
try:
__lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
__lowerCamelCase = int(nums[0] )
__lowerCamelCase = int(nums[1] )
print(
f'''greatest_common_divisor({num_a}, {num_a}) = '''
f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' )
print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 368 |
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
SCREAMING_SNAKE_CASE__ : Tuple = collections.namedtuple("_Datasets", ["train", "validation", "test"])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
SCREAMING_SNAKE_CASE__ : List[str] = "https://storage.googleapis.com/cvdf-datasets/mnist/"
def __magic_name__ ( __lowerCAmelCase : Any ) -> int:
__lowerCamelCase = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' )
return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowerCAmelCase )[0]
@deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' )
def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str:
print('''Extracting''' , f.name )
with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream:
__lowerCamelCase = _readaa(__lowerCAmelCase )
if magic != 2051:
raise ValueError(
'''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = bytestream.read(rows * cols * num_images )
__lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta )
__lowerCamelCase = data.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 )
return data
@deprecated(__lowerCAmelCase , '''Please use tf.one_hot on tensors.''' )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ) -> Dict:
__lowerCamelCase = labels_dense.shape[0]
__lowerCamelCase = numpy.arange(__lowerCAmelCase ) * num_classes
__lowerCamelCase = numpy.zeros((num_labels, num_classes) )
__lowerCamelCase = 1
return labels_one_hot
@deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' )
def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str=False , __lowerCAmelCase : List[str]=10 ) -> List[str]:
print('''Extracting''' , f.name )
with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream:
__lowerCamelCase = _readaa(__lowerCAmelCase )
if magic != 2049:
raise ValueError(
'''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = bytestream.read(__lowerCAmelCase )
__lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(__lowerCAmelCase , __lowerCAmelCase )
return labels
class lowerCAmelCase__ :
@deprecated(
SCREAMING_SNAKE_CASE__ , '''Please use alternatives such as official/mnist/_DataSet.py'''
''' from tensorflow/models.''' , )
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=dtypes.floataa , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=None , ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase = random_seed.get_seed(SCREAMING_SNAKE_CASE__ )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
__lowerCamelCase = dtypes.as_dtype(SCREAMING_SNAKE_CASE__ ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype )
if fake_data:
__lowerCamelCase = 1_00_00
__lowerCamelCase = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), f'''images.shape: {images.shape} labels.shape: {labels.shape}'''
__lowerCamelCase = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
__lowerCamelCase = images.reshape(
images.shape[0] , images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
__lowerCamelCase = images.astype(numpy.floataa )
__lowerCamelCase = numpy.multiply(SCREAMING_SNAKE_CASE__ , 1.0 / 255.0 )
__lowerCamelCase = images
__lowerCamelCase = labels
__lowerCamelCase = 0
__lowerCamelCase = 0
@property
def __A ( self : str ) -> Optional[int]:
return self._images
@property
def __A ( self : Any ) -> Dict:
return self._labels
@property
def __A ( self : List[Any] ) -> int:
return self._num_examples
@property
def __A ( self : str ) -> Any:
return self._epochs_completed
def __A ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : str=True ) -> str:
if fake_data:
__lowerCamelCase = [1] * 7_84
__lowerCamelCase = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(SCREAMING_SNAKE_CASE__ )],
[fake_label for _ in range(SCREAMING_SNAKE_CASE__ )],
)
__lowerCamelCase = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
__lowerCamelCase = numpy.arange(self._num_examples )
numpy.random.shuffle(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.images[perma]
__lowerCamelCase = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
__lowerCamelCase = self._num_examples - start
__lowerCamelCase = self._images[start : self._num_examples]
__lowerCamelCase = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
__lowerCamelCase = numpy.arange(self._num_examples )
numpy.random.shuffle(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.images[perm]
__lowerCamelCase = self.labels[perm]
# Start next epoch
__lowerCamelCase = 0
__lowerCamelCase = batch_size - rest_num_examples
__lowerCamelCase = self._index_in_epoch
__lowerCamelCase = self._images[start:end]
__lowerCamelCase = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ),
)
else:
self._index_in_epoch += batch_size
__lowerCamelCase = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(__lowerCAmelCase , '''Please write your own downloading logic.''' )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ) -> List[Any]:
if not gfile.Exists(__lowerCAmelCase ):
gfile.MakeDirs(__lowerCAmelCase )
__lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
if not gfile.Exists(__lowerCAmelCase ):
urllib.request.urlretrieve(__lowerCAmelCase , __lowerCAmelCase ) # noqa: S310
with gfile.GFile(__lowerCAmelCase ) as f:
__lowerCamelCase = f.size()
print('''Successfully downloaded''' , __lowerCAmelCase , __lowerCAmelCase , '''bytes.''' )
return filepath
@deprecated(
__lowerCAmelCase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' )
def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[str]=dtypes.floataa , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : int=5000 , __lowerCAmelCase : Any=None , __lowerCAmelCase : List[str]=DEFAULT_SOURCE_URL , ) -> Optional[Any]:
if fake_data:
def fake():
return _DataSet(
[] , [] , fake_data=__lowerCAmelCase , one_hot=__lowerCAmelCase , dtype=__lowerCAmelCase , seed=__lowerCAmelCase )
__lowerCamelCase = fake()
__lowerCamelCase = fake()
__lowerCamelCase = fake()
return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
if not source_url: # empty string check
__lowerCamelCase = DEFAULT_SOURCE_URL
__lowerCamelCase = '''train-images-idx3-ubyte.gz'''
__lowerCamelCase = '''train-labels-idx1-ubyte.gz'''
__lowerCamelCase = '''t10k-images-idx3-ubyte.gz'''
__lowerCamelCase = '''t10k-labels-idx1-ubyte.gz'''
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + train_images_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_images(__lowerCAmelCase )
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + train_labels_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase )
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + test_images_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_images(__lowerCAmelCase )
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + test_labels_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase )
if not 0 <= validation_size <= len(__lowerCAmelCase ):
__lowerCamelCase = (
'''Validation size should be between 0 and '''
f'''{len(__lowerCAmelCase )}. Received: {validation_size}.'''
)
raise ValueError(__lowerCAmelCase )
__lowerCamelCase = train_images[:validation_size]
__lowerCamelCase = train_labels[:validation_size]
__lowerCamelCase = train_images[validation_size:]
__lowerCamelCase = train_labels[validation_size:]
__lowerCamelCase = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed}
__lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
__lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
__lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
| 339 | 0 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=__lowercase )
class lowerCAmelCase__ ( __lowercase ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
a__ : str = field(default="""question-answering-extractive""" , metadata={"""include_in_asdict_even_if_is_default""": True} )
a__ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} )
a__ : ClassVar[Features] = Features(
{
"""answers""": Sequence(
{
"""text""": Value("""string""" ),
"""answer_start""": Value("""int32""" ),
} )
} )
a__ : str = "question"
a__ : str = "context"
a__ : str = "answers"
@property
def __A ( self : str ) -> Dict[str, str]:
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 369 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
"vocab_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt"
),
"squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt",
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli": (
"https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json"
),
},
}
SCREAMING_SNAKE_CASE__ : List[Any] = {
"squeezebert/squeezebert-uncased": 512,
"squeezebert/squeezebert-mnli": 512,
"squeezebert/squeezebert-mnli-headless": 512,
}
SCREAMING_SNAKE_CASE__ : Dict = {
"squeezebert/squeezebert-uncased": {"do_lower_case": True},
"squeezebert/squeezebert-mnli": {"do_lower_case": True},
"squeezebert/squeezebert-mnli-headless": {"do_lower_case": True},
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Optional[int] = VOCAB_FILES_NAMES
a__ : Any = PRETRAINED_VOCAB_FILES_MAP
a__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : Optional[Any] = SqueezeBertTokenizer
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Tuple="[CLS]" , SCREAMING_SNAKE_CASE__ : str="[MASK]" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]:
super().__init__(
SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE__ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE__ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars
):
__lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('''type''' ) )
__lowerCamelCase = do_lower_case
__lowerCamelCase = strip_accents
__lowerCamelCase = tokenize_chinese_chars
__lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = do_lower_case
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> str:
__lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
__lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ )
return tuple(SCREAMING_SNAKE_CASE__ )
| 339 | 0 |
def __magic_name__ ( __lowerCAmelCase : dict ) -> set:
__lowerCamelCase = set()
# edges = list of graph's edges
__lowerCamelCase = get_edges(__lowerCAmelCase )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
__lowerCamelCase , __lowerCamelCase = edges.pop()
chosen_vertices.add(__lowerCAmelCase )
chosen_vertices.add(__lowerCAmelCase )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(__lowerCAmelCase )
return chosen_vertices
def __magic_name__ ( __lowerCAmelCase : dict ) -> set:
__lowerCamelCase = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 370 |
from __future__ import annotations
def __magic_name__ ( __lowerCAmelCase : list[int] ) -> bool:
return len(set(__lowerCAmelCase ) ) == len(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 339 | 0 |
# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny -
# all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and
# emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files.
# The latter is done by `fsmt-make-super-tiny-model.py`.
#
# It will be used then as "stas/tiny-wmt19-en-ru"
from pathlib import Path
import json
import tempfile
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ : str = "tiny-wmt19-en-ru"
# Build
# borrowed from a test
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"w</w>",
"r</w>",
"t</w>",
"lo",
"low",
"er</w>",
"low</w>",
"lowest</w>",
"newer</w>",
"wider</w>",
"<unk>",
]
SCREAMING_SNAKE_CASE__ : Dict = dict(zip(vocab, range(len(vocab))))
SCREAMING_SNAKE_CASE__ : List[Any] = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
with tempfile.TemporaryDirectory() as tmpdirname:
SCREAMING_SNAKE_CASE__ : str = Path(tmpdirname)
SCREAMING_SNAKE_CASE__ : List[Any] = build_dir / VOCAB_FILES_NAMES["src_vocab_file"]
SCREAMING_SNAKE_CASE__ : Tuple = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = build_dir / VOCAB_FILES_NAMES["merges_file"]
with open(src_vocab_file, "w") as fp:
fp.write(json.dumps(vocab_tokens))
with open(tgt_vocab_file, "w") as fp:
fp.write(json.dumps(vocab_tokens))
with open(merges_file, "w") as fp:
fp.write("\n".join(merges))
SCREAMING_SNAKE_CASE__ : Optional[int] = FSMTTokenizer(
langs=["en", "ru"],
src_vocab_size=len(vocab),
tgt_vocab_size=len(vocab),
src_vocab_file=src_vocab_file,
tgt_vocab_file=tgt_vocab_file,
merges_file=merges_file,
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = FSMTConfig(
langs=["ru", "en"],
src_vocab_size=1_000,
tgt_vocab_size=1_000,
d_model=4,
encoder_layers=1,
decoder_layers=1,
encoder_ffn_dim=4,
decoder_ffn_dim=4,
encoder_attention_heads=1,
decoder_attention_heads=1,
)
SCREAMING_SNAKE_CASE__ : int = FSMTForConditionalGeneration(config)
print(F'num of params {tiny_model.num_parameters()}')
# Test
SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer(["Making tiny model"], return_tensors="pt")
SCREAMING_SNAKE_CASE__ : int = tiny_model(**batch)
print("test output:", len(outputs.logits[0]))
# Save
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(F'Generated {mname_tiny}')
# Upload
# transformers-cli upload tiny-wmt19-en-ru
| 371 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ : Dict = {
"configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Tuple = [
"FALCON_PRETRAINED_MODEL_ARCHIVE_LIST",
"FalconForCausalLM",
"FalconModel",
"FalconPreTrainedModel",
"FalconForSequenceClassification",
"FalconForTokenClassification",
"FalconForQuestionAnswering",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 339 | 0 |
import argparse
import torch
from torch import nn
from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration
def __magic_name__ ( __lowerCAmelCase : Union[str, Any] ) -> Tuple:
__lowerCamelCase = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Any:
__lowerCamelCase = list(s_dict.keys() )
for key in keys:
if "transformer_layers" in key:
__lowerCamelCase = s_dict.pop(__lowerCAmelCase )
elif "subsample" in key:
__lowerCamelCase = s_dict.pop(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Any:
__lowerCamelCase , __lowerCamelCase = emb.weight.shape
__lowerCamelCase = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase )
__lowerCamelCase = emb.weight.data
return lin_layer
def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] ) -> Optional[Any]:
__lowerCamelCase = torch.load(__lowerCAmelCase , map_location='''cpu''' )
__lowerCamelCase = mam_aaa['''args''']
__lowerCamelCase = mam_aaa['''model''']
__lowerCamelCase = state_dict['''decoder.output_projection.weight''']
remove_ignore_keys_(__lowerCAmelCase )
rename_keys(__lowerCAmelCase )
__lowerCamelCase = state_dict['''decoder.embed_tokens.weight'''].shape[0]
__lowerCamelCase = args.share_decoder_input_output_embed
__lowerCamelCase = [int(__lowerCAmelCase ) for i in args.conv_kernel_sizes.split(''',''' )]
__lowerCamelCase = SpeechaTextConfig(
vocab_size=__lowerCAmelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(__lowerCAmelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=__lowerCAmelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=__lowerCAmelCase , num_beams=5 , max_length=200 , use_cache=__lowerCAmelCase , decoder_start_token_id=2 , early_stopping=__lowerCAmelCase , )
__lowerCamelCase = SpeechaTextForConditionalGeneration(__lowerCAmelCase )
__lowerCamelCase , __lowerCamelCase = model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
if len(__lowerCAmelCase ) > 0 and not set(__lowerCAmelCase ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
'''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,'''
f''' but all the following weights are missing {missing}''' )
if tie_embeds:
__lowerCamelCase = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
__lowerCamelCase = lm_head_weights
model.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.")
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
| 350 |
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
__lowerCamelCase , __lowerCamelCase = y, x % y
return abs(__lowerCAmelCase )
def __magic_name__ ( ) -> Tuple:
try:
__lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
__lowerCamelCase = int(nums[0] )
__lowerCamelCase = int(nums[1] )
print(
f'''greatest_common_divisor({num_a}, {num_a}) = '''
f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' )
print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 339 | 0 |
"""simple docstring"""
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class lowerCAmelCase__ ( nn.Module ):
a__ : int
a__ : int
a__ : float = 0.0
a__ : int = 1
a__ : int = 1
a__ : bool = True
a__ : bool = False
a__ : bool = False
a__ : bool = False
a__ : jnp.dtype = jnp.floataa
def __A ( self : int ) -> Optional[Any]:
__lowerCamelCase = []
__lowerCamelCase = []
for i in range(self.num_layers ):
__lowerCamelCase = self.in_channels if i == 0 else self.out_channels
__lowerCamelCase = FlaxResnetBlockaD(
in_channels=SCREAMING_SNAKE_CASE__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = resnets
__lowerCamelCase = attentions
if self.add_downsample:
__lowerCamelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple=True ) -> Optional[int]:
__lowerCamelCase = ()
for resnet, attn in zip(self.resnets , self.attentions ):
__lowerCamelCase = resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = attn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
output_states += (hidden_states,)
if self.add_downsample:
__lowerCamelCase = self.downsamplers_a(SCREAMING_SNAKE_CASE__ )
output_states += (hidden_states,)
return hidden_states, output_states
class lowerCAmelCase__ ( nn.Module ):
a__ : int
a__ : int
a__ : float = 0.0
a__ : int = 1
a__ : bool = True
a__ : jnp.dtype = jnp.floataa
def __A ( self : Optional[Any] ) -> List[Any]:
__lowerCamelCase = []
for i in range(self.num_layers ):
__lowerCamelCase = self.in_channels if i == 0 else self.out_channels
__lowerCamelCase = FlaxResnetBlockaD(
in_channels=SCREAMING_SNAKE_CASE__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = resnets
if self.add_downsample:
__lowerCamelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]=True ) -> Union[str, Any]:
__lowerCamelCase = ()
for resnet in self.resnets:
__lowerCamelCase = resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
output_states += (hidden_states,)
if self.add_downsample:
__lowerCamelCase = self.downsamplers_a(SCREAMING_SNAKE_CASE__ )
output_states += (hidden_states,)
return hidden_states, output_states
class lowerCAmelCase__ ( nn.Module ):
a__ : int
a__ : int
a__ : int
a__ : float = 0.0
a__ : int = 1
a__ : int = 1
a__ : bool = True
a__ : bool = False
a__ : bool = False
a__ : bool = False
a__ : jnp.dtype = jnp.floataa
def __A ( self : str ) -> Dict:
__lowerCamelCase = []
__lowerCamelCase = []
for i in range(self.num_layers ):
__lowerCamelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels
__lowerCamelCase = self.prev_output_channel if i == 0 else self.out_channels
__lowerCamelCase = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = resnets
__lowerCamelCase = attentions
if self.add_upsample:
__lowerCamelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any=True ) -> List[str]:
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
__lowerCamelCase = res_hidden_states_tuple[-1]
__lowerCamelCase = res_hidden_states_tuple[:-1]
__lowerCamelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
__lowerCamelCase = resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = attn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
if self.add_upsample:
__lowerCamelCase = self.upsamplers_a(SCREAMING_SNAKE_CASE__ )
return hidden_states
class lowerCAmelCase__ ( nn.Module ):
a__ : int
a__ : int
a__ : int
a__ : float = 0.0
a__ : int = 1
a__ : bool = True
a__ : jnp.dtype = jnp.floataa
def __A ( self : Tuple ) -> int:
__lowerCamelCase = []
for i in range(self.num_layers ):
__lowerCamelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels
__lowerCamelCase = self.prev_output_channel if i == 0 else self.out_channels
__lowerCamelCase = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = resnets
if self.add_upsample:
__lowerCamelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple=True ) -> Dict:
for resnet in self.resnets:
# pop res hidden states
__lowerCamelCase = res_hidden_states_tuple[-1]
__lowerCamelCase = res_hidden_states_tuple[:-1]
__lowerCamelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
__lowerCamelCase = resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
if self.add_upsample:
__lowerCamelCase = self.upsamplers_a(SCREAMING_SNAKE_CASE__ )
return hidden_states
class lowerCAmelCase__ ( nn.Module ):
a__ : int
a__ : float = 0.0
a__ : int = 1
a__ : int = 1
a__ : bool = False
a__ : bool = False
a__ : jnp.dtype = jnp.floataa
def __A ( self : List[str] ) -> str:
# there is always at least one resnet
__lowerCamelCase = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
__lowerCamelCase = []
for _ in range(self.num_layers ):
__lowerCamelCase = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = resnets
__lowerCamelCase = attentions
def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str]=True ) -> Any:
__lowerCamelCase = self.resnets[0](SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
__lowerCamelCase = attn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
return hidden_states
| 351 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __A ( self : Optional[int] ) -> Union[str, Any]:
__lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
__lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' )
__lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
__lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
__lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits
__lowerCamelCase = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean()
__lowerCamelCase = -(labels.shape[-1] * loss.item())
__lowerCamelCase = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 339 | 0 |
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( __lowercase ):
a__ : List[str] = (EulerDiscreteScheduler,)
a__ : Any = 10
def __A ( self : Any , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any:
__lowerCamelCase = {
'''num_train_timesteps''': 11_00,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**SCREAMING_SNAKE_CASE__ )
return config
def __A ( self : int ) -> Dict:
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ )
def __A ( self : List[str] ) -> int:
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ )
def __A ( self : Any ) -> str:
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[int] ) -> int:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ )
def __A ( self : Dict ) -> str:
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config()
__lowerCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ )
scheduler.set_timesteps(self.num_inference_steps )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = self.dummy_model()
__lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
__lowerCamelCase = sample.to(SCREAMING_SNAKE_CASE__ )
for i, t in enumerate(scheduler.timesteps ):
__lowerCamelCase = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = output.prev_sample
__lowerCamelCase = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def __A ( self : Union[str, Any] ) -> str:
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''' )
__lowerCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ )
scheduler.set_timesteps(self.num_inference_steps )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = self.dummy_model()
__lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
__lowerCamelCase = sample.to(SCREAMING_SNAKE_CASE__ )
for i, t in enumerate(scheduler.timesteps ):
__lowerCamelCase = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = output.prev_sample
__lowerCamelCase = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 0.0002 ) < 1e-2
assert abs(result_mean.item() - 2.2_676e-06 ) < 1e-3
def __A ( self : Optional[Any] ) -> Tuple:
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config()
__lowerCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ )
scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = self.dummy_model()
__lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
__lowerCamelCase = sample.to(SCREAMING_SNAKE_CASE__ )
for t in scheduler.timesteps:
__lowerCamelCase = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = output.prev_sample
__lowerCamelCase = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def __A ( self : int ) -> Optional[int]:
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config()
__lowerCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ , use_karras_sigmas=SCREAMING_SNAKE_CASE__ )
scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = self.dummy_model()
__lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
__lowerCamelCase = sample.to(SCREAMING_SNAKE_CASE__ )
for t in scheduler.timesteps:
__lowerCamelCase = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = output.prev_sample
__lowerCamelCase = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2
assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
| 352 |
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
SCREAMING_SNAKE_CASE__ : Optional[int] = "bart"
SCREAMING_SNAKE_CASE__ : Dict = True
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> str:
if LOAD_DENSE_INDEX:
__lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' )
__lowerCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' )
__lowerCamelCase = qar_model.eval()
else:
__lowerCamelCase , __lowerCamelCase = (None, None)
if MODEL_TYPE == "bart":
__lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' )
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' )
__lowerCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' )
sas_model.load_state_dict(save_dict['''model'''] )
__lowerCamelCase = sas_model.eval()
else:
__lowerCamelCase , __lowerCamelCase = make_qa_sas_model(
model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> Optional[int]:
if LOAD_DENSE_INDEX:
__lowerCamelCase = faiss.StandardGpuResources()
__lowerCamelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train''']
__lowerCamelCase = np.memmap(
'''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , )
__lowerCamelCase = faiss.IndexFlatIP(128 )
__lowerCamelCase = faiss.index_cpu_to_gpu(__lowerCAmelCase , 1 , __lowerCAmelCase )
wikiaab_gpu_index_flat.add(__lowerCAmelCase ) # TODO fix for larger GPU
else:
__lowerCamelCase , __lowerCamelCase = (None, None)
__lowerCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> List[str]:
__lowerCamelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' )
__lowerCamelCase = elia['''train_eli5''']
__lowerCamelCase = np.memmap(
'''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) )
__lowerCamelCase = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(__lowerCAmelCase )
return (elia_train, eli5_train_q_index)
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_indexes()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = load_models()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_train_data()
def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=10 ) -> List[str]:
__lowerCamelCase = embed_questions_for_retrieval([question] , __lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase , __lowerCamelCase = eli5_train_q_index.search(__lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase = [elia_train[int(__lowerCAmelCase )] for i in I[0]]
return nn_examples
def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict="wiki40b" , __lowerCAmelCase : Any="dense" , __lowerCAmelCase : Dict=10 ) -> Union[str, Any]:
if source == "none":
__lowerCamelCase , __lowerCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__lowerCamelCase , __lowerCamelCase = query_qa_dense_index(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
else:
__lowerCamelCase , __lowerCamelCase = query_es_index(
__lowerCAmelCase , __lowerCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=__lowerCAmelCase , )
__lowerCamelCase = [
(res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst
]
__lowerCamelCase = '''question: {} context: {}'''.format(__lowerCAmelCase , __lowerCAmelCase )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda __lowerCAmelCase : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __lowerCAmelCase : None),
} )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str=64 , __lowerCAmelCase : Dict=256 , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Optional[Any]=0.95 , __lowerCAmelCase : List[Any]=0.8 ) -> Any:
with torch.no_grad():
__lowerCamelCase = qa_sas_generate(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_answers=1 , num_beams=__lowerCAmelCase , min_len=__lowerCAmelCase , max_len=__lowerCAmelCase , do_sample=__lowerCAmelCase , temp=__lowerCAmelCase , top_p=__lowerCAmelCase , top_k=__lowerCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0]
return (answer, support_list)
st.title("Long Form Question Answering with ELI5")
# Start sidebar
SCREAMING_SNAKE_CASE__ : List[str] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>"
SCREAMING_SNAKE_CASE__ : Dict = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
SCREAMING_SNAKE_CASE__ : int = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n"
st.sidebar.markdown(description, unsafe_allow_html=True)
SCREAMING_SNAKE_CASE__ : str = [
"Answer the question",
"View the retrieved document only",
"View the most similar ELI5 question and answer",
"Show me everything, please!",
]
SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.checkbox("Demo options")
if demo_options:
SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.selectbox(
"",
action_list,
index=3,
)
SCREAMING_SNAKE_CASE__ : Optional[Any] = action_list.index(action_st)
SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox(
"",
["Show full text of passages", "Show passage section titles"],
index=0,
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = show_type == "Show full text of passages"
else:
SCREAMING_SNAKE_CASE__ : Any = 3
SCREAMING_SNAKE_CASE__ : Any = True
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.checkbox("Retrieval options")
if retrieval_options:
SCREAMING_SNAKE_CASE__ : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n "
st.sidebar.markdown(retriever_info)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"])
SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"])
else:
SCREAMING_SNAKE_CASE__ : List[str] = "wiki40b"
SCREAMING_SNAKE_CASE__ : Optional[Any] = "dense"
SCREAMING_SNAKE_CASE__ : str = "beam"
SCREAMING_SNAKE_CASE__ : List[Any] = 2
SCREAMING_SNAKE_CASE__ : Optional[Any] = 64
SCREAMING_SNAKE_CASE__ : List[Any] = 256
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.checkbox("Generation options")
if generate_options:
SCREAMING_SNAKE_CASE__ : Dict = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n "
st.sidebar.markdown(generate_info)
SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"])
SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider(
"Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : str = st.sidebar.slider(
"Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider(
"Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : Dict = st.sidebar.slider(
"Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
# start main text
SCREAMING_SNAKE_CASE__ : Any = [
"<MY QUESTION>",
"How do people make chocolate?",
"Why do we get a fever when we are sick?",
"How can different animals perceive different colors?",
"What is natural language processing?",
"What's the best way to treat a sunburn?",
"What exactly are vitamins ?",
"How does nuclear energy provide electricity?",
"What's the difference between viruses and bacteria?",
"Why are flutes classified as woodwinds when most of them are made out of metal ?",
"Why do people like drinking coffee even though it tastes so bad?",
"What happens when wine ages? How does it make the wine taste better?",
"If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?",
"How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?",
"How does New Zealand have so many large bird predators?",
]
SCREAMING_SNAKE_CASE__ : List[str] = st.selectbox(
"What would you like to ask? ---- select <MY QUESTION> to enter a new query",
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.text_input("Enter your question here:", "")
else:
SCREAMING_SNAKE_CASE__ : str = question_s
if st.button("Show me!"):
if action in [0, 1, 3]:
if index_type == "mixed":
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_support(question, source=wiki_source, method="dense", n_results=10)
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = make_support(question, source=wiki_source, method="sparse", n_results=10)
SCREAMING_SNAKE_CASE__ : int = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
SCREAMING_SNAKE_CASE__ : Optional[Any] = support_list[:10]
SCREAMING_SNAKE_CASE__ : Tuple = "<P> " + " <P> ".join([res[-1] for res in support_list])
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == "sampled"),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown("### The model generated answer is:")
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:")
for i, res in enumerate(support_list):
SCREAMING_SNAKE_CASE__ : Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_"))
SCREAMING_SNAKE_CASE__ : Tuple = res[1].strip()
if sec_titles == "":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = "[{}]({})".format(res[0], wiki_url)
else:
SCREAMING_SNAKE_CASE__ : Dict = sec_titles.split(" & ")
SCREAMING_SNAKE_CASE__ : int = " & ".join(
["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list]
)
st.markdown(
"{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
"> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True
)
if action in [2, 3]:
SCREAMING_SNAKE_CASE__ : Any = find_nearest_training(question)
SCREAMING_SNAKE_CASE__ : List[Any] = nn_train_list[0]
st.markdown(
"--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"])
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [
"{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""]))
for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"]))
if i == 0 or sc > 2
]
st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st)))
SCREAMING_SNAKE_CASE__ : List[Any] = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n"
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 339 | 0 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
SCREAMING_SNAKE_CASE__ : str = ""
SCREAMING_SNAKE_CASE__ : Any = ""
SCREAMING_SNAKE_CASE__ : Optional[Any] = ""
SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 # (0 is vertical, 1 is horizontal)
def __magic_name__ ( ) -> None:
__lowerCamelCase , __lowerCamelCase = get_dataset(__lowerCAmelCase , __lowerCAmelCase )
print('''Processing...''' )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for index, image in enumerate(__lowerCAmelCase ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
__lowerCamelCase = random_chars(32 )
__lowerCamelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0]
__lowerCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}'''
cva.imwrite(f'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' )
__lowerCamelCase = []
for anno in new_annos[index]:
__lowerCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}'''
annos_list.append(__lowerCAmelCase )
with open(f'''/{file_root}.txt''' , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> tuple[list, list]:
__lowerCamelCase = []
__lowerCamelCase = []
for label_file in glob.glob(os.path.join(__lowerCAmelCase , '''*.txt''' ) ):
__lowerCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(__lowerCAmelCase ) as in_file:
__lowerCamelCase = in_file.readlines()
__lowerCamelCase = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''' )
__lowerCamelCase = []
for obj_list in obj_lists:
__lowerCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__lowerCAmelCase )
labels.append(__lowerCAmelCase )
return img_paths, labels
def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ) -> tuple[list, list, list]:
__lowerCamelCase = []
__lowerCamelCase = []
__lowerCamelCase = []
for idx in range(len(__lowerCAmelCase ) ):
__lowerCamelCase = []
__lowerCamelCase = img_list[idx]
path_list.append(__lowerCAmelCase )
__lowerCamelCase = anno_list[idx]
__lowerCamelCase = cva.imread(__lowerCAmelCase )
if flip_type == 1:
__lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase )
for bbox in img_annos:
__lowerCamelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
__lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase )
for bbox in img_annos:
__lowerCamelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__lowerCAmelCase )
new_imgs_list.append(__lowerCAmelCase )
return new_imgs_list, new_annos_lists, path_list
def __magic_name__ ( __lowerCAmelCase : int = 32 ) -> str:
assert number_char > 1, "The number of character should greater than 1"
__lowerCamelCase = ascii_lowercase + digits
return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 353 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : str = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Dict = """xmod"""
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=("en_XX",) , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : int , ) -> str:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = position_embedding_type
__lowerCamelCase = use_cache
__lowerCamelCase = classifier_dropout
__lowerCamelCase = pre_norm
__lowerCamelCase = adapter_reduction_factor
__lowerCamelCase = adapter_layer_norm
__lowerCamelCase = adapter_reuse_layer_norm
__lowerCamelCase = ln_before_adapter
__lowerCamelCase = list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = default_language
class lowerCAmelCase__ ( __lowercase ):
@property
def __A ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
__lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__lowerCamelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 339 | 0 |
import gc
import unittest
from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline
from diffusers.utils import is_flax_available, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : List[str] ) -> Optional[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def __A ( self : Tuple ) -> List[Any]:
__lowerCamelCase , __lowerCamelCase = FlaxStableDiffusionPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , )
__lowerCamelCase = '''A painting of a squirrel eating a burger'''
__lowerCamelCase = jax.device_count()
__lowerCamelCase = num_samples * [prompt]
__lowerCamelCase = sd_pipe.prepare_inputs(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = replicate(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = shard(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = jax.random.PRNGKey(0 )
__lowerCamelCase = jax.random.split(SCREAMING_SNAKE_CASE__ , jax.device_count() )
__lowerCamelCase = sd_pipe(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_inference_steps=25 , jit=SCREAMING_SNAKE_CASE__ )[0]
assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3)
__lowerCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__lowerCamelCase = images[0, 2_53:2_56, 2_53:2_56, -1]
__lowerCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__lowerCamelCase = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] )
print(f'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
def __A ( self : List[str] ) -> Tuple:
__lowerCamelCase = '''stabilityai/stable-diffusion-2'''
__lowerCamelCase , __lowerCamelCase = FlaxDPMSolverMultistepScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ , subfolder='''scheduler''' )
__lowerCamelCase , __lowerCamelCase = FlaxStableDiffusionPipeline.from_pretrained(
SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , revision='''bf16''' , dtype=jnp.bfloataa , )
__lowerCamelCase = scheduler_params
__lowerCamelCase = '''A painting of a squirrel eating a burger'''
__lowerCamelCase = jax.device_count()
__lowerCamelCase = num_samples * [prompt]
__lowerCamelCase = sd_pipe.prepare_inputs(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = replicate(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = shard(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = jax.random.PRNGKey(0 )
__lowerCamelCase = jax.random.split(SCREAMING_SNAKE_CASE__ , jax.device_count() )
__lowerCamelCase = sd_pipe(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_inference_steps=25 , jit=SCREAMING_SNAKE_CASE__ )[0]
assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3)
__lowerCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__lowerCamelCase = images[0, 2_53:2_56, 2_53:2_56, -1]
__lowerCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__lowerCamelCase = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] )
print(f'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 354 |
from collections import namedtuple
import requests
from lxml import html # type: ignore
SCREAMING_SNAKE_CASE__ : List[Any] = namedtuple("covid_data", "cases deaths recovered")
def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
__lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()'''
return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) )
SCREAMING_SNAKE_CASE__ : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}"
print(fmt.format(*covid_stats()))
| 339 | 0 |
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> bool:
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 355 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
SCREAMING_SNAKE_CASE__ : int = logging.getLogger(__name__)
@dataclass
class lowerCAmelCase__ :
a__ : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether tp freeze the encoder."""} )
a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether to freeze the embeddings."""} )
@dataclass
class lowerCAmelCase__ :
a__ : str = field(
metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} )
a__ : Optional[str] = field(
default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , )
a__ : Optional[int] = field(
default=1_024 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(
default=128 , metadata={
"""help""": (
"""The maximum total sequence length for target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(
default=142 , metadata={
"""help""": (
"""The maximum total sequence length for validation target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded. """
"""This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """
"""during ``evaluate`` and ``predict``."""
)
} , )
a__ : Optional[int] = field(
default=142 , metadata={
"""help""": (
"""The maximum total sequence length for test target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} )
a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Source language id for translation."""} )
a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Target language id for translation."""} )
a__ : Optional[int] = field(default=__lowercase , metadata={"""help""": """# num_beams to use for evaluation."""} )
a__ : bool = field(
default=__lowercase , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , )
def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int ) -> Dict:
logger.info(f'''***** {split} metrics *****''' )
for key in sorted(metrics.keys() ):
logger.info(f''' {key} = {metrics[key]}''' )
save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , f'''{split}_results.json''' ) )
def __magic_name__ ( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses()
check_output_dir(__lowerCAmelCase )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowerCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowerCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
assert hasattr(__lowerCAmelCase , __lowerCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute'''
setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) )
__lowerCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(__lowerCAmelCase , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
__lowerCamelCase = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(__lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
__lowerCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
__lowerCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(__lowerCAmelCase )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
__lowerCamelCase = SeqaSeqDataset
# Get datasets
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_train
else None
)
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
__lowerCamelCase = (
build_compute_metrics_fn(data_args.task , __lowerCAmelCase ) if training_args.predict_with_generate else None
)
__lowerCamelCase = SeqaSeqTrainer(
model=__lowerCAmelCase , args=__lowerCAmelCase , data_args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , data_collator=SeqaSeqDataCollator(
__lowerCAmelCase , __lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , )
__lowerCamelCase = {}
# Training
if training_args.do_train:
logger.info('''*** Train ***''' )
__lowerCamelCase = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
__lowerCamelCase = train_result.metrics
__lowerCamelCase = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('''train''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
__lowerCamelCase = trainer.evaluate(metric_key_prefix='''val''' )
__lowerCamelCase = data_args.n_val
__lowerCamelCase = round(metrics['''val_loss'''] , 4 )
if trainer.is_world_process_zero():
handle_metrics('''val''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
__lowerCamelCase = trainer.predict(test_dataset=__lowerCAmelCase , metric_key_prefix='''test''' )
__lowerCamelCase = test_output.metrics
__lowerCamelCase = data_args.n_test
if trainer.is_world_process_zero():
__lowerCamelCase = round(metrics['''test_loss'''] , 4 )
handle_metrics('''test''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
if training_args.predict_with_generate:
__lowerCamelCase = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )
__lowerCamelCase = lmap(str.strip , __lowerCAmelCase )
write_txt_file(__lowerCAmelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) )
if trainer.is_world_process_zero():
save_json(__lowerCAmelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) )
return all_metrics
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 339 | 0 |
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
SCREAMING_SNAKE_CASE__ : Dict = {
"distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
"roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
"bert": (BertConfig, BertForMaskedLM, BertTokenizer),
"gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def __magic_name__ ( __lowerCAmelCase : Optional[int] ) -> List[Any]:
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] ) -> Optional[Any]:
if args.student_type == "roberta":
__lowerCamelCase = False
elif args.student_type == "gpt2":
__lowerCamelCase = False
def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str ) -> List[Any]:
if args.student_type == "roberta":
__lowerCamelCase = False
def __magic_name__ ( ) -> int:
__lowerCamelCase = argparse.ArgumentParser(description='''Training''' )
parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' )
parser.add_argument(
'''--dump_path''' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='''The output directory (log, checkpoints, parameters, etc.)''' )
parser.add_argument(
'''--data_file''' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , )
parser.add_argument(
'''--student_type''' , type=__lowerCAmelCase , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=__lowerCAmelCase , help='''The student type (DistilBERT, RoBERTa).''' , )
parser.add_argument('''--student_config''' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='''Path to the student configuration.''' )
parser.add_argument(
'''--student_pretrained_weights''' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='''Load student initialization checkpoint.''' )
parser.add_argument(
'''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=__lowerCAmelCase , help='''Teacher type (BERT, RoBERTa).''' )
parser.add_argument('''--teacher_name''' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='''The teacher model.''' )
parser.add_argument('''--temperature''' , default=2.0 , type=__lowerCAmelCase , help='''Temperature for the softmax temperature.''' )
parser.add_argument(
'''--alpha_ce''' , default=0.5 , type=__lowerCAmelCase , help='''Linear weight for the distillation loss. Must be >=0.''' )
parser.add_argument(
'''--alpha_mlm''' , default=0.0 , type=__lowerCAmelCase , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , )
parser.add_argument('''--alpha_clm''' , default=0.5 , type=__lowerCAmelCase , help='''Linear weight for the CLM loss. Must be >=0.''' )
parser.add_argument('''--alpha_mse''' , default=0.0 , type=__lowerCAmelCase , help='''Linear weight of the MSE loss. Must be >=0.''' )
parser.add_argument(
'''--alpha_cos''' , default=0.0 , type=__lowerCAmelCase , help='''Linear weight of the cosine embedding loss. Must be >=0.''' )
parser.add_argument(
'''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' )
parser.add_argument(
'''--mlm_mask_prop''' , default=0.15 , type=__lowerCAmelCase , help='''Proportion of tokens for which we need to make a prediction.''' , )
parser.add_argument('''--word_mask''' , default=0.8 , type=__lowerCAmelCase , help='''Proportion of tokens to mask out.''' )
parser.add_argument('''--word_keep''' , default=0.1 , type=__lowerCAmelCase , help='''Proportion of tokens to keep.''' )
parser.add_argument('''--word_rand''' , default=0.1 , type=__lowerCAmelCase , help='''Proportion of tokens to randomly replace.''' )
parser.add_argument(
'''--mlm_smoothing''' , default=0.7 , type=__lowerCAmelCase , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , )
parser.add_argument('''--token_counts''' , type=__lowerCAmelCase , help='''The token counts in the data_file for MLM.''' )
parser.add_argument(
'''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , )
parser.add_argument(
'''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , )
parser.add_argument(
'''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , )
parser.add_argument('''--n_epoch''' , type=__lowerCAmelCase , default=3 , help='''Number of pass on the whole dataset.''' )
parser.add_argument('''--batch_size''' , type=__lowerCAmelCase , default=5 , help='''Batch size (for each process).''' )
parser.add_argument(
'''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , )
parser.add_argument(
'''--gradient_accumulation_steps''' , type=__lowerCAmelCase , default=50 , help='''Gradient accumulation for larger training batches.''' , )
parser.add_argument('''--warmup_prop''' , default=0.05 , type=__lowerCAmelCase , help='''Linear warmup proportion.''' )
parser.add_argument('''--weight_decay''' , default=0.0 , type=__lowerCAmelCase , help='''Weight decay if we apply some.''' )
parser.add_argument('''--learning_rate''' , default=5E-4 , type=__lowerCAmelCase , help='''The initial learning rate for Adam.''' )
parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=__lowerCAmelCase , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--max_grad_norm''' , default=5.0 , type=__lowerCAmelCase , help='''Max gradient norm.''' )
parser.add_argument('''--initializer_range''' , default=0.02 , type=__lowerCAmelCase , help='''Random initialization range.''' )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=__lowerCAmelCase , default='''O1''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_gpu''' , type=__lowerCAmelCase , default=1 , help='''Number of GPUs in the node.''' )
parser.add_argument('''--local_rank''' , type=__lowerCAmelCase , default=-1 , help='''Distributed training - Local rank''' )
parser.add_argument('''--seed''' , type=__lowerCAmelCase , default=56 , help='''Random seed''' )
parser.add_argument('''--log_interval''' , type=__lowerCAmelCase , default=500 , help='''Tensorboard logging interval.''' )
parser.add_argument('''--checkpoint_interval''' , type=__lowerCAmelCase , default=4000 , help='''Checkpoint interval.''' )
__lowerCamelCase = parser.parse_args()
sanity_checks(__lowerCAmelCase )
# ARGS #
init_gpu_params(__lowerCAmelCase )
set_seed(__lowerCAmelCase )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
f'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'''
''' itUse `--force` if you want to overwrite it''' )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(f'''Experiment will be dumped and logged in {args.dump_path}''' )
# SAVE PARAMS #
logger.info(f'''Param: {args}''' )
with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f:
json.dump(vars(__lowerCAmelCase ) , __lowerCAmelCase , indent=4 )
git_log(args.dump_path )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = MODEL_CLASSES[args.student_type]
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
__lowerCamelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name )
__lowerCamelCase = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
__lowerCamelCase = tokenizer.all_special_tokens.index(__lowerCAmelCase )
__lowerCamelCase = tokenizer.all_special_ids[idx]
logger.info(f'''Special tokens {special_tok_ids}''' )
__lowerCamelCase = special_tok_ids
__lowerCamelCase = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(f'''Loading data from {args.data_file}''' )
with open(args.data_file , '''rb''' ) as fp:
__lowerCamelCase = pickle.load(__lowerCAmelCase )
if args.mlm:
logger.info(f'''Loading token counts from {args.token_counts} (already pre-computed)''' )
with open(args.token_counts , '''rb''' ) as fp:
__lowerCamelCase = pickle.load(__lowerCAmelCase )
__lowerCamelCase = np.maximum(__lowerCAmelCase , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
__lowerCamelCase = 0.0 # do not predict special tokens
__lowerCamelCase = torch.from_numpy(__lowerCAmelCase )
else:
__lowerCamelCase = None
__lowerCamelCase = LmSeqsDataset(params=__lowerCAmelCase , data=__lowerCAmelCase )
logger.info('''Data loader created.''' )
# STUDENT #
logger.info(f'''Loading student config from {args.student_config}''' )
__lowerCamelCase = student_config_class.from_pretrained(args.student_config )
__lowerCamelCase = True
if args.student_pretrained_weights is not None:
logger.info(f'''Loading pretrained weights from {args.student_pretrained_weights}''' )
__lowerCamelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=__lowerCAmelCase )
else:
__lowerCamelCase = student_model_class(__lowerCAmelCase )
if args.n_gpu > 0:
student.to(f'''cuda:{args.local_rank}''' )
logger.info('''Student loaded.''' )
# TEACHER #
__lowerCamelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__lowerCAmelCase )
if args.n_gpu > 0:
teacher.to(f'''cuda:{args.local_rank}''' )
logger.info(f'''Teacher loaded from {args.teacher_name}.''' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(__lowerCAmelCase , __lowerCAmelCase )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(__lowerCAmelCase , __lowerCAmelCase )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
__lowerCamelCase = Distiller(
params=__lowerCAmelCase , dataset=__lowerCAmelCase , token_probs=__lowerCAmelCase , student=__lowerCAmelCase , teacher=__lowerCAmelCase )
distiller.train()
logger.info('''Let\'s go get some drinks.''' )
if __name__ == "__main__":
main()
| 356 |
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowerCAmelCase__ ( unittest.TestCase ):
@property
def __A ( self : List[Any] ) -> Optional[Any]:
torch.manual_seed(0 )
__lowerCamelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def __A ( self : Optional[int] ) -> Optional[Any]:
__lowerCamelCase = self.dummy_uncond_unet
__lowerCamelCase = ScoreSdeVeScheduler()
__lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
sde_ve.to(SCREAMING_SNAKE_CASE__ )
sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ )[
0
]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Tuple ) -> str:
__lowerCamelCase = '''google/ncsnpp-church-256'''
__lowerCamelCase = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
sde_ve.to(SCREAMING_SNAKE_CASE__ )
sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
__lowerCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 339 | 0 |
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
SCREAMING_SNAKE_CASE__ : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8")
SCREAMING_SNAKE_CASE__ : Dict = subprocess.check_output(F'git diff --name-only {fork_point_sha}'.split()).decode("utf-8").split()
SCREAMING_SNAKE_CASE__ : Optional[int] = "|".join(sys.argv[1:])
SCREAMING_SNAKE_CASE__ : List[str] = re.compile(rF'^({joined_dirs}).*?\.py$')
SCREAMING_SNAKE_CASE__ : Optional[int] = [x for x in modified_files if regex.match(x)]
print(" ".join(relevant_modified_files), end="")
| 357 |
from functools import lru_cache
def __magic_name__ ( __lowerCAmelCase : int ) -> set:
__lowerCamelCase = 2
__lowerCamelCase = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(__lowerCAmelCase )
if n > 1:
factors.add(__lowerCAmelCase )
return factors
@lru_cache
def __magic_name__ ( __lowerCAmelCase : int ) -> int:
return len(unique_prime_factors(__lowerCAmelCase ) )
def __magic_name__ ( __lowerCAmelCase : list ) -> bool:
return len(set(__lowerCAmelCase ) ) in (0, 1)
def __magic_name__ ( __lowerCAmelCase : int ) -> list:
__lowerCamelCase = 2
while True:
# Increment each value of a generated range
__lowerCamelCase = [base + i for i in range(__lowerCAmelCase )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
__lowerCamelCase = [upf_len(__lowerCAmelCase ) for x in group]
checker.append(__lowerCAmelCase )
# If all numbers in the list are equal, return the group variable.
if equality(__lowerCAmelCase ):
return group
# Increment our base variable by 1
base += 1
def __magic_name__ ( __lowerCAmelCase : int = 4 ) -> int:
__lowerCamelCase = run(__lowerCAmelCase )
return results[0] if len(__lowerCAmelCase ) else None
if __name__ == "__main__":
print(solution())
| 339 | 0 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Dict ) -> List[Any]:
__lowerCamelCase = '''ylacombe/bark-small'''
__lowerCamelCase = tempfile.mkdtemp()
__lowerCamelCase = '''en_speaker_1'''
__lowerCamelCase = '''This is a test string'''
__lowerCamelCase = '''speaker_embeddings_path.json'''
__lowerCamelCase = '''speaker_embeddings'''
def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Tuple ) -> str:
return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE__ )
def __A ( self : str ) -> int:
shutil.rmtree(self.tmpdirname )
def __A ( self : Optional[Any] ) -> Optional[int]:
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
__lowerCamelCase = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def __A ( self : Union[str, Any] ) -> Tuple:
__lowerCamelCase = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
__lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCamelCase = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def __A ( self : Union[str, Any] ) -> Tuple:
__lowerCamelCase = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
__lowerCamelCase = 35
__lowerCamelCase = 2
__lowerCamelCase = 8
__lowerCamelCase = {
'''semantic_prompt''': np.ones(SCREAMING_SNAKE_CASE__ ),
'''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ),
'''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
__lowerCamelCase = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = inputs['''history_prompt''']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE__ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
__lowerCamelCase = os.path.join(self.tmpdirname , '''file.npz''' )
np.savez(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = inputs['''history_prompt''']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE__ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
__lowerCamelCase = processor(text=self.input_string , voice_preset=self.voice_preset )
def __A ( self : Union[str, Any] ) -> List[str]:
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = processor(text=self.input_string )
__lowerCamelCase = tokenizer(
self.input_string , padding='''max_length''' , max_length=2_56 , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 358 |
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class lowerCAmelCase__ :
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=99 , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : int=9 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.002 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , ) -> Optional[Any]:
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = encoder_seq_length
__lowerCamelCase = decoder_seq_length
# For common tests
__lowerCamelCase = self.decoder_seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_attention_mask
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = d_ff
__lowerCamelCase = relative_attention_num_buckets
__lowerCamelCase = dropout_rate
__lowerCamelCase = initializer_factor
__lowerCamelCase = eos_token_id
__lowerCamelCase = pad_token_id
__lowerCamelCase = decoder_start_token_id
__lowerCamelCase = None
__lowerCamelCase = decoder_layers
def __A ( self : Any ) -> Tuple:
return TaConfig.from_pretrained('''google/umt5-base''' )
def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> Optional[int]:
if attention_mask is None:
__lowerCamelCase = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
__lowerCamelCase = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
__lowerCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ )
if decoder_head_mask is None:
__lowerCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ )
if cross_attn_head_mask is None:
__lowerCamelCase = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def __A ( self : List[Any] ) -> Tuple:
__lowerCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
__lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
__lowerCamelCase = input_ids.clamp(self.pad_token_id + 1 )
__lowerCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 )
__lowerCamelCase = self.get_config()
__lowerCamelCase = config.num_attention_heads
__lowerCamelCase = self.prepare_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return config, input_dict
def __A ( self : Tuple ) -> List[str]:
__lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def __A ( self : Optional[Any] ) -> Any:
return TaConfig(
vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def __A ( self : List[Any] ) -> Any:
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> int:
__lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
__lowerCamelCase = model(
input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = result.last_hidden_state
__lowerCamelCase = result.past_key_values
__lowerCamelCase = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Dict:
__lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder().to(SCREAMING_SNAKE_CASE__ ).eval()
# first forward pass
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ )
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) )
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) + 1 )
__lowerCamelCase , __lowerCamelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__lowerCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
__lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state''']
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )['''last_hidden_state''']
# select random slice
__lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__lowerCamelCase = output_from_no_past[:, -1, random_slice_idx].detach()
__lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Optional[int]:
__lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ).half().eval()
__lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ )['''last_hidden_state''']
self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE__ ).any().item() )
@require_torch
class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ):
a__ : List[Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
a__ : Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
a__ : Tuple = (
{
"""conversational""": UMTaForConditionalGeneration,
"""feature-extraction""": UMTaModel,
"""summarization""": UMTaForConditionalGeneration,
"""text2text-generation""": UMTaForConditionalGeneration,
"""translation""": UMTaForConditionalGeneration,
"""question-answering""": UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
a__ : int = True
a__ : int = False
a__ : Tuple = False
a__ : Optional[int] = True
a__ : Optional[int] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
a__ : Tuple = [0.8, 0.9]
def __A ( self : Tuple ) -> Tuple:
__lowerCamelCase = UMTaModelTester(self )
@unittest.skip('''Test has a segmentation fault on torch 1.8.0''' )
def __A ( self : List[str] ) -> Union[str, Any]:
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = UMTaModel(config_and_inputs[0] ).to(SCREAMING_SNAKE_CASE__ )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
SCREAMING_SNAKE_CASE__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=SCREAMING_SNAKE_CASE__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def __A ( self : Union[str, Any] ) -> Any:
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE__ )
def __A ( self : Any ) -> Any:
__lowerCamelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions''']
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = config_and_inputs[0]
__lowerCamelCase = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval()
model.to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {
'''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ),
'''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ),
'''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ),
}
for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE__ , head_masking.items() ):
__lowerCamelCase = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
__lowerCamelCase = torch.ones(
config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model.generate(
config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE__ , return_dict_in_generate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
# We check the state of decoder_attentions and cross_attentions just from the last step
__lowerCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' )
def __A ( self : Tuple ) -> Optional[Any]:
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
@unittest.skip(
'''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' )
def __A ( self : int ) -> Optional[Any]:
__lowerCamelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=SCREAMING_SNAKE_CASE__ , legacy=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = [
'''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''',
'''No se como puedo <extra_id_0>.''',
'''This is the reason why we <extra_id_0> them.''',
'''The <extra_id_0> walks in <extra_id_1>, seats''',
'''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''',
]
__lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , padding=SCREAMING_SNAKE_CASE__ ).input_ids
# fmt: off
__lowerCamelCase = torch.tensor(
[
[ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1],
] )
# fmt: on
torch.testing.assert_allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model.generate(input_ids.to(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = [
'''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''',
'''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
]
__lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ )
self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
| 339 | 0 |
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
SCREAMING_SNAKE_CASE__ : List[Any] = pytest.mark.integration
SCREAMING_SNAKE_CASE__ : Dict = {"comet"}
SCREAMING_SNAKE_CASE__ : Union[str, Any] = importlib.util.find_spec("fairseq") is not None
SCREAMING_SNAKE_CASE__ : Optional[Any] = {"code_eval"}
SCREAMING_SNAKE_CASE__ : str = os.name == "nt"
SCREAMING_SNAKE_CASE__ : Optional[int] = {"bertscore", "frugalscore", "perplexity"}
SCREAMING_SNAKE_CASE__ : Tuple = importlib.util.find_spec("transformers") is not None
def __magic_name__ ( __lowerCAmelCase : Union[str, Any] ) -> Optional[int]:
@wraps(__lowerCAmelCase )
def wrapper(self : Tuple , __lowerCAmelCase : int ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest('''"test requires Fairseq"''' )
else:
test_case(self , __lowerCAmelCase )
return wrapper
def __magic_name__ ( __lowerCAmelCase : Dict ) -> List[Any]:
@wraps(__lowerCAmelCase )
def wrapper(self : Tuple , __lowerCAmelCase : Tuple ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest('''"test requires transformers"''' )
else:
test_case(self , __lowerCAmelCase )
return wrapper
def __magic_name__ ( __lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]:
@wraps(__lowerCAmelCase )
def wrapper(self : Optional[int] , __lowerCAmelCase : Any ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest('''"test not supported on Windows"''' )
else:
test_case(self , __lowerCAmelCase )
return wrapper
def __magic_name__ ( ) -> str:
__lowerCamelCase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
__lowercase , __lowercase , __lowercase )
@local
class lowerCAmelCase__ ( parameterized.TestCase ):
a__ : str = {}
a__ : str = None
@pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' )
@pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' )
def __A ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> Tuple:
__lowerCamelCase = '''[...]'''
__lowerCamelCase = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('''metrics''' , SCREAMING_SNAKE_CASE__ ) ).module_path )
__lowerCamelCase = datasets.load.import_main_class(metric_module.__name__ , dataset=SCREAMING_SNAKE_CASE__ )
# check parameters
__lowerCamelCase = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(SCREAMING_SNAKE_CASE__ , metric_module.__name__ ):
with self.use_local_metrics():
try:
__lowerCamelCase = doctest.testmod(SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , raise_on_error=SCREAMING_SNAKE_CASE__ )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]:
__lowerCamelCase = '''[...]'''
__lowerCamelCase = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('''metrics''' , SCREAMING_SNAKE_CASE__ ) ).module_path )
# run doctest
with self.use_local_metrics():
__lowerCamelCase = doctest.testmod(SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , raise_on_error=SCREAMING_SNAKE_CASE__ )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any ) -> str:
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](SCREAMING_SNAKE_CASE__ ):
yield
else:
yield
@contextmanager
def __A ( self : Optional[Any] ) -> Optional[Any]:
def load_local_metric(SCREAMING_SNAKE_CASE__ : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
return load_metric(os.path.join('''metrics''' , SCREAMING_SNAKE_CASE__ ) , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
with patch('''datasets.load_metric''' ) as mock_load_metric:
__lowerCamelCase = load_local_metric
yield
@classmethod
def __A ( cls : Dict , SCREAMING_SNAKE_CASE__ : Dict ) -> Tuple:
def wrapper(SCREAMING_SNAKE_CASE__ : List[Any] ):
__lowerCamelCase = contextmanager(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher('''bleurt''' )
def __magic_name__ ( __lowerCAmelCase : int ) -> Optional[Any]:
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags
class lowerCAmelCase__ ( __lowercase ):
def __A ( self : int , SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]:
assert len(input_dict['''input_ids'''] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor:
__lowerCamelCase = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher('''bertscore''' )
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> List[str]:
import torch
def bert_cos_score_idf(__lowerCAmelCase : Dict , __lowerCAmelCase : int , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : Optional[int] ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(__lowerCAmelCase ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch('''bert_score.scorer.get_model''' ), patch(
'''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf:
__lowerCamelCase = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher('''comet''' )
def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Optional[Any]:
def load_from_checkpoint(__lowerCAmelCase : Optional[int] ):
class lowerCAmelCase__ :
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple:
assert len(SCREAMING_SNAKE_CASE__ ) == 2
__lowerCamelCase = [0.19, 0.92]
return scores, sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch('''comet.download_model''' ) as mock_download_model:
__lowerCamelCase = None
with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint:
__lowerCamelCase = load_from_checkpoint
yield
def __magic_name__ ( ) -> Union[str, Any]:
__lowerCamelCase = load_metric(os.path.join('''metrics''' , '''seqeval''' ) )
__lowerCamelCase = '''ERROR'''
__lowerCamelCase = f'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}'''
with pytest.raises(__lowerCAmelCase , match=re.escape(__lowerCAmelCase ) ):
metric.compute(predictions=[] , references=[] , scheme=__lowerCAmelCase )
| 359 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Tuple = {
"s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json",
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Union[str, Any] = """open-llama"""
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any=10_00_00 , SCREAMING_SNAKE_CASE__ : Any=40_96 , SCREAMING_SNAKE_CASE__ : Any=1_10_08 , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Any="silu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=20_48 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-6 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Dict:
__lowerCamelCase = vocab_size
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = hidden_size
__lowerCamelCase = intermediate_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = initializer_range
__lowerCamelCase = rms_norm_eps
__lowerCamelCase = use_cache
__lowerCamelCase = kwargs.pop(
'''use_memorry_efficient_attention''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_dropout_prob
__lowerCamelCase = use_stable_embedding
__lowerCamelCase = shared_input_output_embedding
__lowerCamelCase = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
def __A ( self : Dict ) -> Optional[int]:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE__ ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
f'''got {self.rope_scaling}''' )
__lowerCamelCase = self.rope_scaling.get('''type''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.rope_scaling.get('''factor''' , SCREAMING_SNAKE_CASE__ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 339 | 0 |
# This code is adapted from OpenAI's release
# https://github.com/openai/human-eval/blob/master/human_eval/execution.py
import contextlib
import faulthandler
import io
import multiprocessing
import os
import platform
import signal
import tempfile
def __magic_name__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] ) -> List[Any]:
__lowerCamelCase = multiprocessing.Manager()
__lowerCamelCase = manager.list()
__lowerCamelCase = multiprocessing.Process(target=__lowerCAmelCase , args=(check_program, result, timeout) )
p.start()
p.join(timeout=timeout + 1 )
if p.is_alive():
p.kill()
if not result:
result.append('''timed out''' )
return {
"task_id": task_id,
"passed": result[0] == "passed",
"result": result[0],
"completion_id": completion_id,
}
def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : List[str] ) -> Dict:
with create_tempdir():
# These system calls are needed when cleaning up tempdir.
import os
import shutil
__lowerCamelCase = shutil.rmtree
__lowerCamelCase = os.rmdir
__lowerCamelCase = os.chdir
# Disable functionalities that can make destructive changes to the test.
reliability_guard()
# Run program.
try:
__lowerCamelCase = {}
with swallow_io():
with time_limit(__lowerCAmelCase ):
exec(__lowerCAmelCase , __lowerCAmelCase )
result.append('''passed''' )
except TimeoutException:
result.append('''timed out''' )
except BaseException as e:
result.append(f'''failed: {e}''' )
# Needed for cleaning up.
__lowerCamelCase = rmtree
__lowerCamelCase = rmdir
__lowerCamelCase = chdir
@contextlib.contextmanager
def __magic_name__ ( __lowerCAmelCase : Any ) -> str:
def signal_handler(__lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] ):
raise TimeoutException('''Timed out!''' )
signal.setitimer(signal.ITIMER_REAL , __lowerCAmelCase )
signal.signal(signal.SIGALRM , __lowerCAmelCase )
try:
yield
finally:
signal.setitimer(signal.ITIMER_REAL , 0 )
@contextlib.contextmanager
def __magic_name__ ( ) -> List[str]:
__lowerCamelCase = WriteOnlyStringIO()
with contextlib.redirect_stdout(__lowerCAmelCase ):
with contextlib.redirect_stderr(__lowerCAmelCase ):
with redirect_stdin(__lowerCAmelCase ):
yield
@contextlib.contextmanager
def __magic_name__ ( ) -> Tuple:
with tempfile.TemporaryDirectory() as dirname:
with chdir(__lowerCAmelCase ):
yield dirname
class lowerCAmelCase__ ( __lowercase ):
pass
class lowerCAmelCase__ ( io.StringIO ):
def __A ( self : List[str] , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
raise OSError
def __A ( self : List[Any] , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> int:
raise OSError
def __A ( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : str ) -> str:
raise OSError
def __A ( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[str]:
return False
class lowerCAmelCase__ ( contextlib._RedirectStream ): # type: ignore
a__ : Dict = """stdin"""
@contextlib.contextmanager
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> List[Any]:
if root == ".":
yield
return
__lowerCamelCase = os.getcwd()
os.chdir(__lowerCAmelCase )
try:
yield
except BaseException as exc:
raise exc
finally:
os.chdir(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Optional[int]=None ) -> str:
if maximum_memory_bytes is not None:
import resource
resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) )
resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) )
if not platform.uname().system == "Darwin":
resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) )
faulthandler.disable()
import builtins
__lowerCamelCase = None
__lowerCamelCase = None
import os
__lowerCamelCase = '''1'''
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
import shutil
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
import subprocess
__lowerCamelCase = None # type: ignore
__lowerCamelCase = None
import sys
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
| 360 |
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY")
SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL")
@dataclass(frozen=__lowercase , slots=__lowercase )
class lowerCAmelCase__ ( Generic[KEY, VAL] ):
a__ : KEY
a__ : VAL
class lowerCAmelCase__ ( _Item ):
def __init__( self : str ) -> None:
super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __bool__( self : Tuple ) -> bool:
return False
SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem()
class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ):
def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None:
__lowerCamelCase = initial_block_size
__lowerCamelCase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__lowerCamelCase = capacity_factor
__lowerCamelCase = 0
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int:
return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets )
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int:
return (ind + 1) % len(self._buckets )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool:
__lowerCamelCase = self._buckets[ind]
if not stored:
__lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self._len += 1
return True
elif stored.key == key:
__lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return True
else:
return False
def __A ( self : Any ) -> bool:
__lowerCamelCase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(SCREAMING_SNAKE_CASE__ )
def __A ( self : List[Any] ) -> bool:
if len(self._buckets ) <= self._initial_block_size:
return False
__lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None:
__lowerCamelCase = self._buckets
__lowerCamelCase = [None] * new_size
__lowerCamelCase = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def __A ( self : str ) -> None:
self._resize(len(self._buckets ) * 2 )
def __A ( self : Dict ) -> None:
self._resize(len(self._buckets ) // 2 )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]:
__lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ )
for _ in range(len(self._buckets ) ):
yield ind
__lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
break
def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None:
if self._is_full():
self._size_up()
self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = self._buckets[ind]
if item is None:
raise KeyError(SCREAMING_SNAKE_CASE__ )
if item is _deleted:
continue
if item.key == key:
__lowerCamelCase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(SCREAMING_SNAKE_CASE__ )
def __len__( self : int ) -> int:
return self._len
def __iter__( self : Tuple ) -> Iterator[KEY]:
yield from (item.key for item in self._buckets if item)
def __repr__( self : Optional[Any] ) -> str:
__lowerCamelCase = ''' ,'''.join(
f'''{item.key}: {item.val}''' for item in self._buckets if item )
return f'''HashMap({val_string})'''
| 339 | 0 |
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class lowerCAmelCase__ ( __lowercase , __lowercase , unittest.TestCase ):
a__ : str = IFPipeline
a__ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""}
a__ : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS
a__ : Optional[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""}
def __A ( self : Optional[Any] ) -> Tuple:
return self._get_dummy_components()
def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict=0 ) -> Optional[Any]:
if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ):
__lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __A ( self : Any ) -> Tuple:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' )
def __A ( self : Dict ) -> List[Any]:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def __A ( self : Dict ) -> Any:
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def __A ( self : Any ) -> str:
self._test_save_load_local()
def __A ( self : Tuple ) -> Optional[int]:
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def __A ( self : List[str] ) -> Optional[Any]:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Dict ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self : List[Any] ) -> Optional[int]:
# if
__lowerCamelCase = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa )
__lowerCamelCase = IFSuperResolutionPipeline.from_pretrained(
'''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to('''cuda''' )
__lowerCamelCase , __lowerCamelCase = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''' )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
__lowerCamelCase = None
__lowerCamelCase = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
__lowerCamelCase = IFImgaImgPipeline(**pipe_a.components )
__lowerCamelCase = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
__lowerCamelCase = IFInpaintingPipeline(**pipe_a.components )
__lowerCamelCase = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]:
# pipeline 1
_start_torch_memory_measurement()
__lowerCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__lowerCamelCase = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type='''np''' , )
__lowerCamelCase = output.images[0]
assert image.shape == (64, 64, 3)
__lowerCamelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
__lowerCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# pipeline 2
_start_torch_memory_measurement()
__lowerCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type='''np''' , )
__lowerCamelCase = output.images[0]
assert image.shape == (2_56, 2_56, 3)
__lowerCamelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
__lowerCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]:
# pipeline 1
_start_torch_memory_measurement()
__lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__lowerCamelCase = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type='''np''' , )
__lowerCamelCase = output.images[0]
assert image.shape == (64, 64, 3)
__lowerCamelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
__lowerCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# pipeline 2
_start_torch_memory_measurement()
__lowerCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__lowerCamelCase = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , original_image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type='''np''' , )
__lowerCamelCase = output.images[0]
assert image.shape == (2_56, 2_56, 3)
__lowerCamelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
__lowerCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]:
# pipeline 1
_start_torch_memory_measurement()
__lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__lowerCamelCase = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type='''np''' , )
__lowerCamelCase = output.images[0]
assert image.shape == (64, 64, 3)
__lowerCamelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
__lowerCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# pipeline 2
_start_torch_memory_measurement()
__lowerCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , original_image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type='''np''' , )
__lowerCamelCase = output.images[0]
assert image.shape == (2_56, 2_56, 3)
__lowerCamelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
__lowerCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __magic_name__ ( ) -> int:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 361 |
from datetime import datetime as dt
import os
from github import Github
SCREAMING_SNAKE_CASE__ : Any = [
"good first issue",
"good second issue",
"good difficult issue",
"feature request",
"new model",
"wip",
]
def __magic_name__ ( ) -> Any:
__lowerCamelCase = Github(os.environ['''GITHUB_TOKEN'''] )
__lowerCamelCase = g.get_repo('''huggingface/transformers''' )
__lowerCamelCase = repo.get_issues(state='''open''' )
for issue in open_issues:
__lowerCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase )
__lowerCamelCase = comments[0] if len(__lowerCAmelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state='''closed''' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
if __name__ == "__main__":
main()
| 339 | 0 |
def __magic_name__ ( __lowerCAmelCase : str ) -> bool:
return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') )
def __magic_name__ ( __lowerCAmelCase : str ) -> bool:
__lowerCamelCase = credit_card_number
__lowerCamelCase = 0
__lowerCamelCase = len(__lowerCAmelCase ) - 2
for i in range(__lowerCAmelCase , -1 , -2 ):
# double the value of every second digit
__lowerCamelCase = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 10
digit += 1
__lowerCamelCase = cc_number[:i] + str(__lowerCAmelCase ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(__lowerCAmelCase ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 10 == 0
def __magic_name__ ( __lowerCAmelCase : str ) -> bool:
__lowerCamelCase = f'''{credit_card_number} is an invalid credit card number because'''
if not credit_card_number.isdigit():
print(f'''{error_message} it has nonnumerical characters.''' )
return False
if not 13 <= len(__lowerCAmelCase ) <= 16:
print(f'''{error_message} of its length.''' )
return False
if not validate_initial_digits(__lowerCAmelCase ):
print(f'''{error_message} of its first two digits.''' )
return False
if not luhn_validation(__lowerCAmelCase ):
print(f'''{error_message} it fails the Luhn check.''' )
return False
print(f'''{credit_card_number} is a valid credit card number.''' )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number("4111111111111111")
validate_credit_card_number("32323")
| 362 |
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> str:
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
__lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b"
__lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b"
__lowerCamelCase = max(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) )
return "0b" + "".join(
str(int(char_a == '''1''' and char_b == '''1''' ) )
for char_a, char_b in zip(a_binary.zfill(__lowerCAmelCase ) , b_binary.zfill(__lowerCAmelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 339 | 0 |
from ...configuration_utils import PretrainedConfig
class lowerCAmelCase__ ( __lowercase ):
a__ : List[Any] = """bert-generation"""
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict=5_03_58 , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : Dict=24 , SCREAMING_SNAKE_CASE__ : List[str]=16 , SCREAMING_SNAKE_CASE__ : Optional[int]=40_96 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE__ : Tuple=0.02 , SCREAMING_SNAKE_CASE__ : str=1e-12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : int="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Dict:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = position_embedding_type
__lowerCamelCase = use_cache
| 363 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : List[str] ) -> Dict:
__lowerCamelCase = tempfile.mkdtemp()
# fmt: off
__lowerCamelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) )
__lowerCamelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__lowerCamelCase = {'''unk_token''': '''<unk>'''}
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.48145466, 0.4578275, 0.40821073],
'''image_std''': [0.26862954, 0.26130258, 0.27577711],
}
__lowerCamelCase = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : int , **SCREAMING_SNAKE_CASE__ : int ) -> Any:
return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]:
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]:
return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Dict ) -> Dict:
shutil.rmtree(self.tmpdirname )
def __A ( self : str ) -> Any:
__lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCamelCase = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : List[Any] ) -> List[str]:
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = self.get_rust_tokenizer()
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ )
def __A ( self : Union[str, Any] ) -> int:
__lowerCamelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCamelCase = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
__lowerCamelCase = CLIPSegProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[Any] ) -> Union[str, Any]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''np''' )
__lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __A ( self : List[Any] ) -> Optional[int]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self : List[Any] ) -> Any:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
processor()
def __A ( self : Optional[Any] ) -> List[str]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , visual_prompt=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
processor()
def __A ( self : List[Any] ) -> Any:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCamelCase = processor.batch_decode(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
| 339 | 0 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, ClassLabel, Features
from .base import TaskTemplate
@dataclass(frozen=__lowercase )
class lowerCAmelCase__ ( __lowercase ):
a__ : str = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} )
a__ : ClassVar[Features] = Features({"""audio""": Audio()} )
a__ : ClassVar[Features] = Features({"""labels""": ClassLabel} )
a__ : str = "audio"
a__ : str = "labels"
def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]:
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , SCREAMING_SNAKE_CASE__ ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
__lowerCamelCase = copy.deepcopy(self )
__lowerCamelCase = self.label_schema.copy()
__lowerCamelCase = features[self.label_column]
__lowerCamelCase = label_schema
return task_template
@property
def __A ( self : Union[str, Any] ) -> Dict[str, str]:
return {
self.audio_column: "audio",
self.label_column: "labels",
}
| 364 |
from __future__ import annotations
def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int | None = None , __lowerCAmelCase : int | None = None ) -> None:
if start is None:
__lowerCamelCase = 0
if end is None:
__lowerCamelCase = len(__lowerCAmelCase ) - 1
if start >= end:
return
__lowerCamelCase = (start + end) // 2
slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase )
if sequence[end] < sequence[mid]:
__lowerCamelCase , __lowerCamelCase = sequence[mid], sequence[end]
slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 339 | 0 |
def __magic_name__ ( __lowerCAmelCase : int ) -> bool:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError('''check_bouncy() accepts only integer arguments''' )
__lowerCamelCase = str(__lowerCAmelCase )
__lowerCamelCase = ''''''.join(sorted(__lowerCAmelCase ) )
return sorted_str_n != str_n and sorted_str_n[::-1] != str_n
def __magic_name__ ( __lowerCAmelCase : float = 99 ) -> int:
if not 0 < percent < 100:
raise ValueError('''solution() only accepts values from 0 to 100''' )
__lowerCamelCase = 0
__lowerCamelCase = 1
while True:
if check_bouncy(__lowerCAmelCase ):
bouncy_num += 1
if (bouncy_num / num) * 100 >= percent:
return num
num += 1
if __name__ == "__main__":
from doctest import testmod
testmod()
print(F'{solution(99)}')
| 365 |
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Optional[Any] = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
SCREAMING_SNAKE_CASE__ : str = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
SCREAMING_SNAKE_CASE__ : int = {"facebook/blenderbot_small-90M": 512}
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Tuple:
__lowerCamelCase = set()
__lowerCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__lowerCamelCase = char
__lowerCamelCase = set(__lowerCAmelCase )
return pairs
class lowerCAmelCase__ ( __lowercase ):
a__ : List[Any] = VOCAB_FILES_NAMES
a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : Dict = ["""input_ids""", """attention_mask"""]
def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple="__start__" , SCREAMING_SNAKE_CASE__ : Tuple="__end__" , SCREAMING_SNAKE_CASE__ : List[str]="__unk__" , SCREAMING_SNAKE_CASE__ : str="__null__" , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[Any]:
super().__init__(unk_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as vocab_handle:
__lowerCamelCase = json.load(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {v: k for k, v in self.encoder.items()}
with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as merges_handle:
__lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1]
__lowerCamelCase = [tuple(merge.split() ) for merge in merges]
__lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) )
__lowerCamelCase = {}
@property
def __A ( self : Dict ) -> int:
return len(self.encoder )
def __A ( self : str ) -> Dict:
return dict(self.encoder , **self.added_tokens_encoder )
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> str:
if token in self.cache:
return self.cache[token]
__lowerCamelCase = re.sub('''([.,!?()])''' , R''' \1''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = re.sub('''(\')''' , R''' \1 ''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = re.sub(R'''\s{2,}''' , ''' ''' , SCREAMING_SNAKE_CASE__ )
if "\n" in token:
__lowerCamelCase = token.replace('''\n''' , ''' __newln__''' )
__lowerCamelCase = token.split(''' ''' )
__lowerCamelCase = []
for token in tokens:
if not len(SCREAMING_SNAKE_CASE__ ):
continue
__lowerCamelCase = token.lower()
__lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] )
__lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ )
if not pairs:
words.append(SCREAMING_SNAKE_CASE__ )
continue
while True:
__lowerCamelCase = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
__lowerCamelCase , __lowerCamelCase = bigram
__lowerCamelCase = []
__lowerCamelCase = 0
while i < len(SCREAMING_SNAKE_CASE__ ):
try:
__lowerCamelCase = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
new_word.extend(word[i:j] )
__lowerCamelCase = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = new_word
if len(SCREAMING_SNAKE_CASE__ ) == 1:
break
else:
__lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''@@ '''.join(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = word[:-4]
__lowerCamelCase = word
words.append(SCREAMING_SNAKE_CASE__ )
return " ".join(SCREAMING_SNAKE_CASE__ )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
__lowerCamelCase = []
__lowerCamelCase = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE__ )
for token in words:
split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE__ ).split(''' ''' ) ) )
return split_tokens
def __A ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> int:
__lowerCamelCase = token.lower()
return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) )
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> str:
return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token )
def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
__lowerCamelCase = ''' '''.join(SCREAMING_SNAKE_CASE__ ).replace('''@@ ''' , '''''' ).strip()
return out_string
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__lowerCamelCase = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCamelCase = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '''\n''' )
__lowerCamelCase = 0
with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
''' Please check that the tokenizer is not corrupted!''' )
__lowerCamelCase = token_index
writer.write(''' '''.join(SCREAMING_SNAKE_CASE__ ) + '''\n''' )
index += 1
return vocab_file, merge_file
| 339 | 0 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import platform
import sys
SCREAMING_SNAKE_CASE__ : List[Any] = "3"
print("Python version:", sys.version)
print("OS platform:", platform.platform())
print("OS architecture:", platform.machine())
try:
import torch
print("Torch version:", torch.__version__)
print("Cuda available:", torch.cuda.is_available())
print("Cuda version:", torch.version.cuda)
print("CuDNN version:", torch.backends.cudnn.version())
print("Number of GPUs available:", torch.cuda.device_count())
except ImportError:
print("Torch version:", None)
try:
import transformers
print("transformers version:", transformers.__version__)
except ImportError:
print("transformers version:", None)
| 366 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCAmelCase__ ( __lowercase , unittest.TestCase ):
a__ : str = ShapEImgaImgPipeline
a__ : Union[str, Any] = ["""image"""]
a__ : Optional[int] = ["""image"""]
a__ : Union[str, Any] = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
a__ : List[str] = False
@property
def __A ( self : Dict ) -> Optional[Any]:
return 32
@property
def __A ( self : Optional[int] ) -> Optional[int]:
return 32
@property
def __A ( self : Optional[int] ) -> List[Any]:
return self.time_input_dim * 4
@property
def __A ( self : str ) -> List[Any]:
return 8
@property
def __A ( self : Optional[Any] ) -> Union[str, Any]:
torch.manual_seed(0 )
__lowerCamelCase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
__lowerCamelCase = CLIPVisionModel(SCREAMING_SNAKE_CASE__ )
return model
@property
def __A ( self : Union[str, Any] ) -> Union[str, Any]:
__lowerCamelCase = CLIPImageProcessor(
crop_size=2_24 , do_center_crop=SCREAMING_SNAKE_CASE__ , do_normalize=SCREAMING_SNAKE_CASE__ , do_resize=SCREAMING_SNAKE_CASE__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , )
return image_processor
@property
def __A ( self : Dict ) -> int:
torch.manual_seed(0 )
__lowerCamelCase = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''embedding_proj_norm_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
__lowerCamelCase = PriorTransformer(**SCREAMING_SNAKE_CASE__ )
return model
@property
def __A ( self : Tuple ) -> Dict:
torch.manual_seed(0 )
__lowerCamelCase = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
__lowerCamelCase = ShapERenderer(**SCREAMING_SNAKE_CASE__ )
return model
def __A ( self : Optional[int] ) -> List[str]:
__lowerCamelCase = self.dummy_prior
__lowerCamelCase = self.dummy_image_encoder
__lowerCamelCase = self.dummy_image_processor
__lowerCamelCase = self.dummy_renderer
__lowerCamelCase = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=SCREAMING_SNAKE_CASE__ , clip_sample=SCREAMING_SNAKE_CASE__ , clip_sample_range=1.0 , )
__lowerCamelCase = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''image_processor''': image_processor,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def __A ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=0 ) -> int:
__lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ )
if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ):
__lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {
'''image''': input_image,
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def __A ( self : Union[str, Any] ) -> Dict:
__lowerCamelCase = '''cpu'''
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = output.images[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__lowerCamelCase = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __A ( self : str ) -> Tuple:
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def __A ( self : Optional[Any] ) -> str:
__lowerCamelCase = torch_device == '''cpu'''
__lowerCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE__ , relax_max_difference=SCREAMING_SNAKE_CASE__ , )
def __A ( self : Dict ) -> Optional[int]:
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = 1
__lowerCamelCase = 2
__lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
for key in inputs.keys():
if key in self.batch_params:
__lowerCamelCase = batch_size * [inputs[key]]
__lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : str ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self : str ) -> Union[str, Any]:
__lowerCamelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' )
__lowerCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_img2img_out.npy''' )
__lowerCamelCase = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 )
__lowerCamelCase = pipe(
SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
| 339 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import (
DiffusionPipeline,
UnCLIPImageVariationPipeline,
UnCLIPScheduler,
UNetaDConditionModel,
UNetaDModel,
)
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel
from diffusers.utils import floats_tensor, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps
from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class lowerCAmelCase__ ( __lowercase , unittest.TestCase ):
a__ : Optional[int] = UnCLIPImageVariationPipeline
a__ : Optional[Any] = IMAGE_VARIATION_PARAMS - {"""height""", """width""", """guidance_scale"""}
a__ : Union[str, Any] = IMAGE_VARIATION_BATCH_PARAMS
a__ : int = [
"""generator""",
"""return_dict""",
"""decoder_num_inference_steps""",
"""super_res_num_inference_steps""",
]
a__ : int = False
@property
def __A ( self : Optional[Any] ) -> Optional[Any]:
return 32
@property
def __A ( self : Tuple ) -> str:
return 32
@property
def __A ( self : Optional[int] ) -> Tuple:
return self.time_input_dim
@property
def __A ( self : Dict ) -> Optional[Any]:
return self.time_input_dim * 4
@property
def __A ( self : Optional[Any] ) -> List[Any]:
return 1_00
@property
def __A ( self : int ) -> Optional[Any]:
__lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def __A ( self : int ) -> Optional[Any]:
torch.manual_seed(0 )
__lowerCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE__ )
@property
def __A ( self : Any ) -> str:
torch.manual_seed(0 )
__lowerCamelCase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , )
return CLIPVisionModelWithProjection(SCREAMING_SNAKE_CASE__ )
@property
def __A ( self : Dict ) -> Tuple:
torch.manual_seed(0 )
__lowerCamelCase = {
'''clip_embeddings_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''cross_attention_dim''': self.cross_attention_dim,
}
__lowerCamelCase = UnCLIPTextProjModel(**SCREAMING_SNAKE_CASE__ )
return model
@property
def __A ( self : str ) -> Optional[int]:
torch.manual_seed(0 )
__lowerCamelCase = {
'''sample_size''': 32,
# RGB in channels
'''in_channels''': 3,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 6,
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': '''identity''',
}
__lowerCamelCase = UNetaDConditionModel(**SCREAMING_SNAKE_CASE__ )
return model
@property
def __A ( self : Optional[int] ) -> List[Any]:
return {
"sample_size": 64,
"layers_per_block": 1,
"down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"),
"up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"),
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"in_channels": 6,
"out_channels": 3,
}
@property
def __A ( self : int ) -> List[str]:
torch.manual_seed(0 )
__lowerCamelCase = UNetaDModel(**self.dummy_super_res_kwargs )
return model
@property
def __A ( self : List[str] ) -> List[Any]:
# seeded differently to get different unet than `self.dummy_super_res_first`
torch.manual_seed(1 )
__lowerCamelCase = UNetaDModel(**self.dummy_super_res_kwargs )
return model
def __A ( self : Union[str, Any] ) -> List[str]:
__lowerCamelCase = self.dummy_decoder
__lowerCamelCase = self.dummy_text_proj
__lowerCamelCase = self.dummy_text_encoder
__lowerCamelCase = self.dummy_tokenizer
__lowerCamelCase = self.dummy_super_res_first
__lowerCamelCase = self.dummy_super_res_last
__lowerCamelCase = UnCLIPScheduler(
variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=10_00 , )
__lowerCamelCase = UnCLIPScheduler(
variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=10_00 , )
__lowerCamelCase = CLIPImageProcessor(crop_size=32 , size=32 )
__lowerCamelCase = self.dummy_image_encoder
return {
"decoder": decoder,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_proj": text_proj,
"feature_extractor": feature_extractor,
"image_encoder": image_encoder,
"super_res_first": super_res_first,
"super_res_last": super_res_last,
"decoder_scheduler": decoder_scheduler,
"super_res_scheduler": super_res_scheduler,
}
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True ) -> List[Any]:
__lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ )
if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ):
__lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
if pil_image:
__lowerCamelCase = input_image * 0.5 + 0.5
__lowerCamelCase = input_image.clamp(0 , 1 )
__lowerCamelCase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__lowerCamelCase = DiffusionPipeline.numpy_to_pil(SCREAMING_SNAKE_CASE__ )[0]
return {
"image": input_image,
"generator": generator,
"decoder_num_inference_steps": 2,
"super_res_num_inference_steps": 2,
"output_type": "np",
}
def __A ( self : Dict ) -> Optional[Any]:
__lowerCamelCase = '''cpu'''
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ , pil_image=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = output.images
__lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ , pil_image=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe(
**SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , )[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__lowerCamelCase = np.array(
[
0.9997,
0.0002,
0.9997,
0.9997,
0.9969,
0.0023,
0.9997,
0.9969,
0.9970,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def __A ( self : Optional[int] ) -> Dict:
__lowerCamelCase = '''cpu'''
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ , pil_image=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = output.images
__lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ , pil_image=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe(
**SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , )[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__lowerCamelCase = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def __A ( self : List[Any] ) -> str:
__lowerCamelCase = '''cpu'''
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ , pil_image=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = [
pipeline_inputs['''image'''],
pipeline_inputs['''image'''],
]
__lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = output.images
__lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ , pil_image=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = [
tuple_pipeline_inputs['''image'''],
tuple_pipeline_inputs['''image'''],
]
__lowerCamelCase = pipe(
**SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , )[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (2, 64, 64, 3)
__lowerCamelCase = np.array(
[
0.9997,
0.9989,
0.0008,
0.0021,
0.9960,
0.0018,
0.0014,
0.0002,
0.9933,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def __A ( self : List[Any] ) -> str:
__lowerCamelCase = torch.device('''cpu''' )
class lowerCAmelCase__ :
a__ : List[Any] = 1
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 )
__lowerCamelCase = pipe.decoder.dtype
__lowerCamelCase = 1
__lowerCamelCase = (
batch_size,
pipe.decoder.config.in_channels,
pipe.decoder.config.sample_size,
pipe.decoder.config.sample_size,
)
__lowerCamelCase = pipe.prepare_latents(
SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , latents=SCREAMING_SNAKE_CASE__ , scheduler=DummyScheduler() )
__lowerCamelCase = (
batch_size,
pipe.super_res_first.config.in_channels // 2,
pipe.super_res_first.config.sample_size,
pipe.super_res_first.config.sample_size,
)
__lowerCamelCase = pipe.prepare_latents(
SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , latents=SCREAMING_SNAKE_CASE__ , scheduler=DummyScheduler() )
__lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ , pil_image=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe(
**SCREAMING_SNAKE_CASE__ , decoder_latents=SCREAMING_SNAKE_CASE__ , super_res_latents=SCREAMING_SNAKE_CASE__ ).images
__lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ , pil_image=SCREAMING_SNAKE_CASE__ )
# Don't pass image, instead pass embedding
__lowerCamelCase = pipeline_inputs.pop('''image''' )
__lowerCamelCase = pipe.image_encoder(SCREAMING_SNAKE_CASE__ ).image_embeds
__lowerCamelCase = pipe(
**SCREAMING_SNAKE_CASE__ , decoder_latents=SCREAMING_SNAKE_CASE__ , super_res_latents=SCREAMING_SNAKE_CASE__ , image_embeddings=SCREAMING_SNAKE_CASE__ , ).images
# make sure passing text embeddings manually is identical
assert np.abs(img_out_a - img_out_a ).max() < 1e-4
@skip_mps
def __A ( self : List[Any] ) -> int:
__lowerCamelCase = torch_device == '''cpu'''
# Check is relaxed because there is not a torch 2.0 sliced attention added kv processor
__lowerCamelCase = 1e-2
self._test_attention_slicing_forward_pass(
test_max_difference=SCREAMING_SNAKE_CASE__ , expected_max_diff=SCREAMING_SNAKE_CASE__ )
@skip_mps
def __A ( self : Union[str, Any] ) -> Tuple:
__lowerCamelCase = torch_device == '''cpu'''
__lowerCamelCase = True
__lowerCamelCase = [
'''decoder_num_inference_steps''',
'''super_res_num_inference_steps''',
]
self._test_inference_batch_single_identical(
test_max_difference=SCREAMING_SNAKE_CASE__ , relax_max_difference=SCREAMING_SNAKE_CASE__ , additional_params_copy_to_batched_inputs=SCREAMING_SNAKE_CASE__ , )
def __A ( self : Tuple ) -> Any:
__lowerCamelCase = [
'''decoder_num_inference_steps''',
'''super_res_num_inference_steps''',
]
if torch_device == "mps":
# TODO: MPS errors with larger batch sizes
__lowerCamelCase = [2, 3]
self._test_inference_batch_consistent(
batch_sizes=SCREAMING_SNAKE_CASE__ , additional_params_copy_to_batched_inputs=SCREAMING_SNAKE_CASE__ , )
else:
self._test_inference_batch_consistent(
additional_params_copy_to_batched_inputs=SCREAMING_SNAKE_CASE__ )
@skip_mps
def __A ( self : int ) -> int:
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def __A ( self : List[Any] ) -> Any:
return super().test_save_load_local()
@skip_mps
def __A ( self : Tuple ) -> str:
return super().test_save_load_optional_components()
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : List[Any] ) -> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self : Optional[int] ) -> Union[str, Any]:
__lowerCamelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' )
__lowerCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' )
__lowerCamelCase = UnCLIPImageVariationPipeline.from_pretrained(
'''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa )
__lowerCamelCase = pipeline.to(SCREAMING_SNAKE_CASE__ )
pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__lowerCamelCase = pipeline(
SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , output_type='''np''' , )
__lowerCamelCase = output.images[0]
assert image.shape == (2_56, 2_56, 3)
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 15 )
| 367 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
SCREAMING_SNAKE_CASE__ : str = ""
SCREAMING_SNAKE_CASE__ : Any = ""
SCREAMING_SNAKE_CASE__ : Optional[Any] = ""
SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 # (0 is vertical, 1 is horizontal)
def __magic_name__ ( ) -> None:
__lowerCamelCase , __lowerCamelCase = get_dataset(__lowerCAmelCase , __lowerCAmelCase )
print('''Processing...''' )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for index, image in enumerate(__lowerCAmelCase ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
__lowerCamelCase = random_chars(32 )
__lowerCamelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0]
__lowerCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}'''
cva.imwrite(f'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' )
__lowerCamelCase = []
for anno in new_annos[index]:
__lowerCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}'''
annos_list.append(__lowerCAmelCase )
with open(f'''/{file_root}.txt''' , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> tuple[list, list]:
__lowerCamelCase = []
__lowerCamelCase = []
for label_file in glob.glob(os.path.join(__lowerCAmelCase , '''*.txt''' ) ):
__lowerCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(__lowerCAmelCase ) as in_file:
__lowerCamelCase = in_file.readlines()
__lowerCamelCase = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''' )
__lowerCamelCase = []
for obj_list in obj_lists:
__lowerCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__lowerCAmelCase )
labels.append(__lowerCAmelCase )
return img_paths, labels
def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ) -> tuple[list, list, list]:
__lowerCamelCase = []
__lowerCamelCase = []
__lowerCamelCase = []
for idx in range(len(__lowerCAmelCase ) ):
__lowerCamelCase = []
__lowerCamelCase = img_list[idx]
path_list.append(__lowerCAmelCase )
__lowerCamelCase = anno_list[idx]
__lowerCamelCase = cva.imread(__lowerCAmelCase )
if flip_type == 1:
__lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase )
for bbox in img_annos:
__lowerCamelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
__lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase )
for bbox in img_annos:
__lowerCamelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__lowerCAmelCase )
new_imgs_list.append(__lowerCAmelCase )
return new_imgs_list, new_annos_lists, path_list
def __magic_name__ ( __lowerCAmelCase : int = 32 ) -> str:
assert number_char > 1, "The number of character should greater than 1"
__lowerCamelCase = ascii_lowercase + digits
return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 339 | 0 |
import os
import sys
import unittest
SCREAMING_SNAKE_CASE__ : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
SCREAMING_SNAKE_CASE__ : Any = os.path.join(git_repo_path, "src", "diffusers")
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Dict ) -> str:
__lowerCamelCase = find_backend(''' if not is_torch_available():''' )
self.assertEqual(SCREAMING_SNAKE_CASE__ , '''torch''' )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
__lowerCamelCase = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' )
self.assertEqual(SCREAMING_SNAKE_CASE__ , '''torch_and_transformers''' )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
__lowerCamelCase = find_backend(
''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' )
self.assertEqual(SCREAMING_SNAKE_CASE__ , '''torch_and_transformers_and_onnx''' )
def __A ( self : Optional[int] ) -> Union[str, Any]:
__lowerCamelCase = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn('''torch''' , SCREAMING_SNAKE_CASE__ )
self.assertIn('''torch_and_transformers''' , SCREAMING_SNAKE_CASE__ )
self.assertIn('''flax_and_transformers''' , SCREAMING_SNAKE_CASE__ )
self.assertIn('''torch_and_transformers_and_onnx''' , SCREAMING_SNAKE_CASE__ )
# Likewise, we can't assert on the exact content of a key
self.assertIn('''UNet2DModel''' , objects['''torch'''] )
self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] )
self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] )
self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] )
self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] )
self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] )
def __A ( self : Tuple ) -> List[Any]:
__lowerCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''' )
self.assertEqual(SCREAMING_SNAKE_CASE__ , '''\nCONSTANT = None\n''' )
__lowerCamelCase = create_dummy_object('''function''' , '''\'torch\'''' )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' )
__lowerCamelCase = '''
class FakeClass(metaclass=DummyObject):
_backends = \'torch\'
def __init__(self, *args, **kwargs):
requires_backends(self, \'torch\')
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, \'torch\')
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, \'torch\')
'''
__lowerCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''' )
self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[Any] ) -> Union[str, Any]:
__lowerCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, ["torch"])
class FakeClass(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
'''
__lowerCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} )
self.assertEqual(dummy_files['''torch'''] , SCREAMING_SNAKE_CASE__ )
| 368 |
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
SCREAMING_SNAKE_CASE__ : Tuple = collections.namedtuple("_Datasets", ["train", "validation", "test"])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
SCREAMING_SNAKE_CASE__ : List[str] = "https://storage.googleapis.com/cvdf-datasets/mnist/"
def __magic_name__ ( __lowerCAmelCase : Any ) -> int:
__lowerCamelCase = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' )
return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowerCAmelCase )[0]
@deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' )
def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str:
print('''Extracting''' , f.name )
with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream:
__lowerCamelCase = _readaa(__lowerCAmelCase )
if magic != 2051:
raise ValueError(
'''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = bytestream.read(rows * cols * num_images )
__lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta )
__lowerCamelCase = data.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 )
return data
@deprecated(__lowerCAmelCase , '''Please use tf.one_hot on tensors.''' )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ) -> Dict:
__lowerCamelCase = labels_dense.shape[0]
__lowerCamelCase = numpy.arange(__lowerCAmelCase ) * num_classes
__lowerCamelCase = numpy.zeros((num_labels, num_classes) )
__lowerCamelCase = 1
return labels_one_hot
@deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' )
def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str=False , __lowerCAmelCase : List[str]=10 ) -> List[str]:
print('''Extracting''' , f.name )
with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream:
__lowerCamelCase = _readaa(__lowerCAmelCase )
if magic != 2049:
raise ValueError(
'''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = bytestream.read(__lowerCAmelCase )
__lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(__lowerCAmelCase , __lowerCAmelCase )
return labels
class lowerCAmelCase__ :
@deprecated(
SCREAMING_SNAKE_CASE__ , '''Please use alternatives such as official/mnist/_DataSet.py'''
''' from tensorflow/models.''' , )
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=dtypes.floataa , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=None , ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase = random_seed.get_seed(SCREAMING_SNAKE_CASE__ )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
__lowerCamelCase = dtypes.as_dtype(SCREAMING_SNAKE_CASE__ ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype )
if fake_data:
__lowerCamelCase = 1_00_00
__lowerCamelCase = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), f'''images.shape: {images.shape} labels.shape: {labels.shape}'''
__lowerCamelCase = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
__lowerCamelCase = images.reshape(
images.shape[0] , images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
__lowerCamelCase = images.astype(numpy.floataa )
__lowerCamelCase = numpy.multiply(SCREAMING_SNAKE_CASE__ , 1.0 / 255.0 )
__lowerCamelCase = images
__lowerCamelCase = labels
__lowerCamelCase = 0
__lowerCamelCase = 0
@property
def __A ( self : str ) -> Optional[int]:
return self._images
@property
def __A ( self : Any ) -> Dict:
return self._labels
@property
def __A ( self : List[Any] ) -> int:
return self._num_examples
@property
def __A ( self : str ) -> Any:
return self._epochs_completed
def __A ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : str=True ) -> str:
if fake_data:
__lowerCamelCase = [1] * 7_84
__lowerCamelCase = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(SCREAMING_SNAKE_CASE__ )],
[fake_label for _ in range(SCREAMING_SNAKE_CASE__ )],
)
__lowerCamelCase = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
__lowerCamelCase = numpy.arange(self._num_examples )
numpy.random.shuffle(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.images[perma]
__lowerCamelCase = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
__lowerCamelCase = self._num_examples - start
__lowerCamelCase = self._images[start : self._num_examples]
__lowerCamelCase = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
__lowerCamelCase = numpy.arange(self._num_examples )
numpy.random.shuffle(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.images[perm]
__lowerCamelCase = self.labels[perm]
# Start next epoch
__lowerCamelCase = 0
__lowerCamelCase = batch_size - rest_num_examples
__lowerCamelCase = self._index_in_epoch
__lowerCamelCase = self._images[start:end]
__lowerCamelCase = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ),
)
else:
self._index_in_epoch += batch_size
__lowerCamelCase = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(__lowerCAmelCase , '''Please write your own downloading logic.''' )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ) -> List[Any]:
if not gfile.Exists(__lowerCAmelCase ):
gfile.MakeDirs(__lowerCAmelCase )
__lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
if not gfile.Exists(__lowerCAmelCase ):
urllib.request.urlretrieve(__lowerCAmelCase , __lowerCAmelCase ) # noqa: S310
with gfile.GFile(__lowerCAmelCase ) as f:
__lowerCamelCase = f.size()
print('''Successfully downloaded''' , __lowerCAmelCase , __lowerCAmelCase , '''bytes.''' )
return filepath
@deprecated(
__lowerCAmelCase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' )
def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[str]=dtypes.floataa , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : int=5000 , __lowerCAmelCase : Any=None , __lowerCAmelCase : List[str]=DEFAULT_SOURCE_URL , ) -> Optional[Any]:
if fake_data:
def fake():
return _DataSet(
[] , [] , fake_data=__lowerCAmelCase , one_hot=__lowerCAmelCase , dtype=__lowerCAmelCase , seed=__lowerCAmelCase )
__lowerCamelCase = fake()
__lowerCamelCase = fake()
__lowerCamelCase = fake()
return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
if not source_url: # empty string check
__lowerCamelCase = DEFAULT_SOURCE_URL
__lowerCamelCase = '''train-images-idx3-ubyte.gz'''
__lowerCamelCase = '''train-labels-idx1-ubyte.gz'''
__lowerCamelCase = '''t10k-images-idx3-ubyte.gz'''
__lowerCamelCase = '''t10k-labels-idx1-ubyte.gz'''
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + train_images_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_images(__lowerCAmelCase )
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + train_labels_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase )
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + test_images_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_images(__lowerCAmelCase )
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + test_labels_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase )
if not 0 <= validation_size <= len(__lowerCAmelCase ):
__lowerCamelCase = (
'''Validation size should be between 0 and '''
f'''{len(__lowerCAmelCase )}. Received: {validation_size}.'''
)
raise ValueError(__lowerCAmelCase )
__lowerCamelCase = train_images[:validation_size]
__lowerCamelCase = train_labels[:validation_size]
__lowerCamelCase = train_images[validation_size:]
__lowerCamelCase = train_labels[validation_size:]
__lowerCamelCase = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed}
__lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
__lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
__lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
| 339 | 0 |
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def __magic_name__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str]=0.999 , __lowerCAmelCase : int="cosine" , ) -> int:
if alpha_transform_type == "cosine":
def alpha_bar_fn(__lowerCAmelCase : int ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__lowerCAmelCase : List[Any] ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
__lowerCamelCase = []
for i in range(__lowerCAmelCase ):
__lowerCamelCase = i / num_diffusion_timesteps
__lowerCamelCase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__lowerCAmelCase ) / alpha_bar_fn(__lowerCAmelCase ) , __lowerCAmelCase ) )
return torch.tensor(__lowerCAmelCase , dtype=torch.floataa )
class lowerCAmelCase__ ( __lowercase , __lowercase ):
a__ : Any = [e.name for e in KarrasDiffusionSchedulers]
a__ : Tuple = 2
@register_to_config
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : int = 10_00 , SCREAMING_SNAKE_CASE__ : float = 0.00085 , SCREAMING_SNAKE_CASE__ : float = 0.012 , SCREAMING_SNAKE_CASE__ : str = "linear" , SCREAMING_SNAKE_CASE__ : Optional[Union[np.ndarray, List[float]]] = None , SCREAMING_SNAKE_CASE__ : str = "epsilon" , SCREAMING_SNAKE_CASE__ : Optional[bool] = False , SCREAMING_SNAKE_CASE__ : Optional[bool] = False , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : str = "linspace" , SCREAMING_SNAKE_CASE__ : int = 0 , ) -> List[str]:
if trained_betas is not None:
__lowerCamelCase = torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa )
elif beta_schedule == "linear":
__lowerCamelCase = torch.linspace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
__lowerCamelCase = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
__lowerCamelCase = betas_for_alpha_bar(SCREAMING_SNAKE_CASE__ , alpha_transform_type='''cosine''' )
elif beta_schedule == "exp":
__lowerCamelCase = betas_for_alpha_bar(SCREAMING_SNAKE_CASE__ , alpha_transform_type='''exp''' )
else:
raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' )
__lowerCamelCase = 1.0 - self.betas
__lowerCamelCase = torch.cumprod(self.alphas , dim=0 )
# set all values
self.set_timesteps(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = use_karras_sigmas
def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int=None ) -> Optional[int]:
if schedule_timesteps is None:
__lowerCamelCase = self.timesteps
__lowerCamelCase = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
__lowerCamelCase = 1 if len(SCREAMING_SNAKE_CASE__ ) > 1 else 0
else:
__lowerCamelCase = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE__ ) else timestep
__lowerCamelCase = self._index_counter[timestep_int]
return indices[pos].item()
@property
def __A ( self : Union[str, Any] ) -> Any:
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : Union[float, torch.FloatTensor] , ) -> torch.FloatTensor:
__lowerCamelCase = self.index_for_timestep(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.sigmas[step_index]
__lowerCamelCase = sample / ((sigma**2 + 1) ** 0.5)
return sample
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, torch.device] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Any:
__lowerCamelCase = num_inference_steps
__lowerCamelCase = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
__lowerCamelCase = np.linspace(0 , num_train_timesteps - 1 , SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ )[::-1].copy()
elif self.config.timestep_spacing == "leading":
__lowerCamelCase = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__lowerCamelCase = (np.arange(0 , SCREAMING_SNAKE_CASE__ ) * step_ratio).round()[::-1].copy().astype(SCREAMING_SNAKE_CASE__ )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
__lowerCamelCase = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__lowerCamelCase = (np.arange(SCREAMING_SNAKE_CASE__ , 0 , -step_ratio )).round().copy().astype(SCREAMING_SNAKE_CASE__ )
timesteps -= 1
else:
raise ValueError(
f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' )
__lowerCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
__lowerCamelCase = np.log(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = np.interp(SCREAMING_SNAKE_CASE__ , np.arange(0 , len(SCREAMING_SNAKE_CASE__ ) ) , SCREAMING_SNAKE_CASE__ )
if self.config.use_karras_sigmas:
__lowerCamelCase = self._convert_to_karras(in_sigmas=SCREAMING_SNAKE_CASE__ , num_inference_steps=self.num_inference_steps )
__lowerCamelCase = np.array([self._sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for sigma in sigmas] )
__lowerCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
__lowerCamelCase = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(device=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] )
__lowerCamelCase = torch.from_numpy(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] )
if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ):
# mps does not support float64
__lowerCamelCase = timesteps.to(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa )
else:
__lowerCamelCase = timesteps.to(device=SCREAMING_SNAKE_CASE__ )
# empty dt and derivative
__lowerCamelCase = None
__lowerCamelCase = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
__lowerCamelCase = defaultdict(SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]:
# get log sigma
__lowerCamelCase = np.log(SCREAMING_SNAKE_CASE__ )
# get distribution
__lowerCamelCase = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
__lowerCamelCase = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 )
__lowerCamelCase = low_idx + 1
__lowerCamelCase = log_sigmas[low_idx]
__lowerCamelCase = log_sigmas[high_idx]
# interpolate sigmas
__lowerCamelCase = (low - log_sigma) / (low - high)
__lowerCamelCase = np.clip(SCREAMING_SNAKE_CASE__ , 0 , 1 )
# transform interpolation to time range
__lowerCamelCase = (1 - w) * low_idx + w * high_idx
__lowerCamelCase = t.reshape(sigma.shape )
return t
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> torch.FloatTensor:
__lowerCamelCase = in_sigmas[-1].item()
__lowerCamelCase = in_sigmas[0].item()
__lowerCamelCase = 7.0 # 7.0 is the value used in the paper
__lowerCamelCase = np.linspace(0 , 1 , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = sigma_min ** (1 / rho)
__lowerCamelCase = sigma_max ** (1 / rho)
__lowerCamelCase = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
@property
def __A ( self : str ) -> Tuple:
return self.dt is None
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[torch.FloatTensor, np.ndarray] , SCREAMING_SNAKE_CASE__ : Union[float, torch.FloatTensor] , SCREAMING_SNAKE_CASE__ : Union[torch.FloatTensor, np.ndarray] , SCREAMING_SNAKE_CASE__ : bool = True , ) -> Union[SchedulerOutput, Tuple]:
__lowerCamelCase = self.index_for_timestep(SCREAMING_SNAKE_CASE__ )
# advance index counter by 1
__lowerCamelCase = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE__ ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
__lowerCamelCase = self.sigmas[step_index]
__lowerCamelCase = self.sigmas[step_index + 1]
else:
# 2nd order / Heun's method
__lowerCamelCase = self.sigmas[step_index - 1]
__lowerCamelCase = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
__lowerCamelCase = 0
__lowerCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
__lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_next
__lowerCamelCase = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
__lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_next
__lowerCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
__lowerCamelCase = model_output
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' )
if self.config.clip_sample:
__lowerCamelCase = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
__lowerCamelCase = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
__lowerCamelCase = sigma_next - sigma_hat
# store for 2nd order step
__lowerCamelCase = derivative
__lowerCamelCase = dt
__lowerCamelCase = sample
else:
# 2. 2nd order / Heun's method
__lowerCamelCase = (sample - pred_original_sample) / sigma_next
__lowerCamelCase = (self.prev_derivative + derivative) / 2
# 3. take prev timestep & sample
__lowerCamelCase = self.dt
__lowerCamelCase = self.sample
# free dt and derivative
# Note, this puts the scheduler in "first order mode"
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE__ )
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , ) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
__lowerCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(SCREAMING_SNAKE_CASE__ ):
# mps does not support float64
__lowerCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa )
__lowerCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa )
else:
__lowerCamelCase = self.timesteps.to(original_samples.device )
__lowerCamelCase = timesteps.to(original_samples.device )
__lowerCamelCase = [self.index_for_timestep(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for t in timesteps]
__lowerCamelCase = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
__lowerCamelCase = sigma.unsqueeze(-1 )
__lowerCamelCase = original_samples + noise * sigma
return noisy_samples
def __len__( self : List[Any] ) -> Tuple:
return self.config.num_train_timesteps
| 369 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
"vocab_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt"
),
"squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt",
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli": (
"https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json"
),
},
}
SCREAMING_SNAKE_CASE__ : List[Any] = {
"squeezebert/squeezebert-uncased": 512,
"squeezebert/squeezebert-mnli": 512,
"squeezebert/squeezebert-mnli-headless": 512,
}
SCREAMING_SNAKE_CASE__ : Dict = {
"squeezebert/squeezebert-uncased": {"do_lower_case": True},
"squeezebert/squeezebert-mnli": {"do_lower_case": True},
"squeezebert/squeezebert-mnli-headless": {"do_lower_case": True},
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Optional[int] = VOCAB_FILES_NAMES
a__ : Any = PRETRAINED_VOCAB_FILES_MAP
a__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : Optional[Any] = SqueezeBertTokenizer
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Tuple="[CLS]" , SCREAMING_SNAKE_CASE__ : str="[MASK]" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]:
super().__init__(
SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE__ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE__ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars
):
__lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('''type''' ) )
__lowerCamelCase = do_lower_case
__lowerCamelCase = strip_accents
__lowerCamelCase = tokenize_chinese_chars
__lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = do_lower_case
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> str:
__lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
__lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ )
return tuple(SCREAMING_SNAKE_CASE__ )
| 339 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ : List[Any] = {
"configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Any = [
"GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTBigCodeForSequenceClassification",
"GPTBigCodeForTokenClassification",
"GPTBigCodeForCausalLM",
"GPTBigCodeModel",
"GPTBigCodePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_bigcode import (
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTBigCodeForCausalLM,
GPTBigCodeForSequenceClassification,
GPTBigCodeForTokenClassification,
GPTBigCodeModel,
GPTBigCodePreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 370 |
from __future__ import annotations
def __magic_name__ ( __lowerCAmelCase : list[int] ) -> bool:
return len(set(__lowerCAmelCase ) ) == len(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 339 | 0 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( __lowercase ):
a__ : List[Any] = """ClapFeatureExtractor"""
a__ : int = ("""RobertaTokenizer""", """RobertaTokenizerFast""")
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __call__( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , **SCREAMING_SNAKE_CASE__ : int ) -> Any:
__lowerCamelCase = kwargs.pop('''sampling_rate''' , SCREAMING_SNAKE_CASE__ )
if text is None and audios is None:
raise ValueError('''You have to specify either text or audios. Both cannot be none.''' )
if text is not None:
__lowerCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
if audios is not None:
__lowerCamelCase = self.feature_extractor(
SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
if text is not None and audios is not None:
__lowerCamelCase = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE__ ) , tensor_type=SCREAMING_SNAKE_CASE__ )
def __A ( self : str , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[str]:
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def __A ( self : str , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> List[Any]:
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
@property
def __A ( self : List[Any] ) -> Optional[Any]:
__lowerCamelCase = self.tokenizer.model_input_names
__lowerCamelCase = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 371 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ : Dict = {
"configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Tuple = [
"FALCON_PRETRAINED_MODEL_ARCHIVE_LIST",
"FalconForCausalLM",
"FalconModel",
"FalconPreTrainedModel",
"FalconForSequenceClassification",
"FalconForTokenClassification",
"FalconForQuestionAnswering",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 339 | 0 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class A_ ( _a ):
lowerCAmelCase__ = ['image_processor', 'tokenizer']
lowerCAmelCase__ = 'CLIPImageProcessor'
lowerCAmelCase__ = ('CLIPTokenizer', 'CLIPTokenizerFast')
def __init__( self: int ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Any=None ,**__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." ,__lowerCAmelCase ,)
_lowerCamelCase : List[str] = kwargs.pop("feature_extractor" )
_lowerCamelCase : Dict = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(__lowerCAmelCase ,__lowerCAmelCase )
def __call__( self: Optional[int] ,__lowerCAmelCase: Any=None ,__lowerCAmelCase: int=None ,__lowerCAmelCase: int=None ,**__lowerCAmelCase: Union[str, Any] ):
'''simple docstring'''
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
_lowerCamelCase : List[Any] = self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
if images is not None:
_lowerCamelCase : str = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
if text is not None and images is not None:
_lowerCamelCase : List[Any] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__lowerCAmelCase ) ,tensor_type=__lowerCAmelCase )
def _lowercase ( self: int ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Any ):
'''simple docstring'''
return self.tokenizer.batch_decode(*__lowerCAmelCase ,**__lowerCAmelCase )
def _lowercase ( self: Any ,*__lowerCAmelCase: Optional[int] ,**__lowerCAmelCase: List[str] ):
'''simple docstring'''
return self.tokenizer.decode(*__lowerCAmelCase ,**__lowerCAmelCase )
@property
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.tokenizer.model_input_names
_lowerCamelCase : List[str] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." ,__lowerCAmelCase ,)
return self.image_processor_class
@property
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." ,__lowerCAmelCase ,)
return self.image_processor | 340 |
"""simple docstring"""
from collections import defaultdict
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Optional[int] = 1
_lowerCamelCase : str = True
for v in tree[start]:
if v not in visited:
ret += dfs(_lowerCamelCase )
if ret % 2 == 0:
cuts.append(_lowerCamelCase )
return ret
def lowerCamelCase_( ) -> int:
'''simple docstring'''
dfs(1 )
if __name__ == "__main__":
_lowerCAmelCase , _lowerCAmelCase : Optional[Any] = 10, 9
_lowerCAmelCase : str = defaultdict(list)
_lowerCAmelCase : dict[int, bool] = {}
_lowerCAmelCase : list[int] = []
_lowerCAmelCase : Any = 0
_lowerCAmelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)]
for u, v in edges:
tree[u].append(v)
tree[v].append(u)
even_tree()
print(len(cuts) - 1) | 340 | 1 |
"""simple docstring"""
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers import is_faiss_available
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch
if is_faiss_available():
import faiss
@require_faiss
class A_ ( _a ):
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Dict = tempfile.mkdtemp()
_lowerCamelCase : List[str] = 8
# DPR tok
_lowerCamelCase : List[Any] = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
_lowerCamelCase : Any = os.path.join(self.tmpdirname ,"dpr_tokenizer" )
os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase )
_lowerCamelCase : Tuple = os.path.join(__lowerCAmelCase ,DPR_VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
# BART tok
_lowerCamelCase : Union[str, Any] = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
_lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) )
_lowerCamelCase : int = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
_lowerCamelCase : List[str] = {"unk_token": "<unk>"}
_lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname ,"bart_tokenizer" )
os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = os.path.join(__lowerCAmelCase ,BART_VOCAB_FILES_NAMES["vocab_file"] )
_lowerCamelCase : Dict = os.path.join(__lowerCAmelCase ,BART_VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp:
fp.write(json.dumps(__lowerCAmelCase ) + "\n" )
with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp:
fp.write("\n".join(__lowerCAmelCase ) )
def _lowercase ( self: List[str] ):
'''simple docstring'''
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"dpr_tokenizer" ) )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"dpr_tokenizer" ) )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"bart_tokenizer" ) )
def _lowercase ( self: Any ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : Any = Dataset.from_dict(
{
"id": ["0", "1"],
"text": ["foo", "bar"],
"title": ["Foo", "Bar"],
"embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )],
} )
dataset.add_faiss_index("embeddings" ,string_factory="Flat" ,metric_type=faiss.METRIC_INNER_PRODUCT )
return dataset
def _lowercase ( self: int ):
'''simple docstring'''
_lowerCamelCase : int = self.get_dummy_dataset()
_lowerCamelCase : str = RagConfig(
retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,)
with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset:
_lowerCamelCase : List[Any] = dataset
_lowerCamelCase : Dict = RagRetriever(
__lowerCAmelCase ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,)
return retriever
def _lowercase ( self: List[Any] ,__lowerCAmelCase: bool ):
'''simple docstring'''
_lowerCamelCase : List[Any] = self.get_dummy_dataset()
_lowerCamelCase : Optional[int] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name="custom" ,)
if from_disk:
_lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname ,"dataset" )
_lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname ,"index.faiss" )
dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname ,"index.faiss" ) )
dataset.drop_index("embeddings" )
dataset.save_to_disk(os.path.join(self.tmpdirname ,"dataset" ) )
del dataset
_lowerCamelCase : Optional[Any] = RagRetriever(
__lowerCAmelCase ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,)
else:
_lowerCamelCase : Optional[Any] = RagRetriever(
__lowerCAmelCase ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,index=CustomHFIndex(config.retrieval_vector_size ,__lowerCAmelCase ) ,)
return retriever
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : int = Dataset.from_dict(
{
"id": ["0", "1"],
"text": ["foo", "bar"],
"title": ["Foo", "Bar"],
"embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )],
} )
dataset.add_faiss_index("embeddings" ,string_factory="Flat" ,metric_type=faiss.METRIC_INNER_PRODUCT )
_lowerCamelCase : str = os.path.join(self.tmpdirname ,"hf_bert_base.hnswSQ8_correct_phi_128.c_index" )
dataset.save_faiss_index("embeddings" ,index_file_name + ".index.dpr" )
pickle.dump(dataset["id"] ,open(index_file_name + ".index_meta.dpr" ,"wb" ) )
_lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname ,"psgs_w100.tsv.pkl" )
_lowerCamelCase : Optional[int] = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset}
pickle.dump(__lowerCAmelCase ,open(__lowerCAmelCase ,"wb" ) )
_lowerCamelCase : Dict = RagConfig(
retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name="legacy" ,index_path=self.tmpdirname ,)
_lowerCamelCase : Optional[Any] = RagRetriever(
__lowerCAmelCase ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() )
return retriever
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : str = 1
_lowerCamelCase : Optional[Any] = self.get_dummy_canonical_hf_index_retriever()
_lowerCamelCase : int = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa )
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = retriever.retrieve(__lowerCAmelCase ,n_docs=__lowerCAmelCase )
self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__lowerCAmelCase ) ,2 )
self.assertEqual(sorted(doc_dicts[0] ) ,["embeddings", "id", "text", "title"] )
self.assertEqual(len(doc_dicts[0]["id"] ) ,__lowerCAmelCase )
self.assertEqual(doc_dicts[0]["id"][0] ,"1" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["id"][0] ,"0" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() ,[[1], [0]] )
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = self.get_dummy_canonical_hf_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset:
_lowerCamelCase : Union[str, Any] = self.get_dummy_dataset()
retriever.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : List[Any] = RagRetriever.from_pretrained(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Tuple = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa )
_lowerCamelCase : Any = retriever.retrieve(__lowerCAmelCase ,n_docs=1 )
self.assertTrue(out is not None )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Tuple = 1
_lowerCamelCase : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa )
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = retriever.retrieve(__lowerCAmelCase ,n_docs=__lowerCAmelCase )
self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__lowerCAmelCase ) ,2 )
self.assertEqual(sorted(doc_dicts[0] ) ,["embeddings", "id", "text", "title"] )
self.assertEqual(len(doc_dicts[0]["id"] ) ,__lowerCAmelCase )
self.assertEqual(doc_dicts[0]["id"][0] ,"1" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["id"][0] ,"0" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() ,[[1], [0]] )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : str = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : int = RagRetriever.from_pretrained(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : int = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa )
_lowerCamelCase : Optional[Any] = retriever.retrieve(__lowerCAmelCase ,n_docs=1 )
self.assertTrue(out is not None )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = 1
_lowerCamelCase : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCAmelCase )
_lowerCamelCase : Optional[int] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa )
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = retriever.retrieve(__lowerCAmelCase ,n_docs=__lowerCAmelCase )
self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__lowerCAmelCase ) ,2 )
self.assertEqual(sorted(doc_dicts[0] ) ,["embeddings", "id", "text", "title"] )
self.assertEqual(len(doc_dicts[0]["id"] ) ,__lowerCAmelCase )
self.assertEqual(doc_dicts[0]["id"][0] ,"1" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["id"][0] ,"0" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() ,[[1], [0]] )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : int = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : str = RagRetriever.from_pretrained(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Any = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa )
_lowerCamelCase : int = retriever.retrieve(__lowerCAmelCase ,n_docs=1 )
self.assertTrue(out is not None )
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : Dict = 1
_lowerCamelCase : Union[str, Any] = self.get_dummy_legacy_index_retriever()
_lowerCamelCase : Tuple = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa )
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = retriever.retrieve(__lowerCAmelCase ,n_docs=__lowerCAmelCase )
self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__lowerCAmelCase ) ,2 )
self.assertEqual(sorted(doc_dicts[0] ) ,["text", "title"] )
self.assertEqual(len(doc_dicts[0]["text"] ) ,__lowerCAmelCase )
self.assertEqual(doc_dicts[0]["text"][0] ,"bar" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["text"][0] ,"foo" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() ,[[1], [0]] )
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.get_dummy_legacy_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : int = RagRetriever.from_pretrained(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : int = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa )
_lowerCamelCase : List[Any] = retriever.retrieve(__lowerCAmelCase ,n_docs=1 )
self.assertTrue(out is not None )
@require_torch
@require_tokenizers
@require_sentencepiece
def _lowercase ( self: str ):
'''simple docstring'''
import torch
_lowerCamelCase : List[Any] = 1
_lowerCamelCase : Tuple = self.get_dummy_canonical_hf_index_retriever()
_lowerCamelCase : List[str] = [[5, 7], [10, 11]]
_lowerCamelCase : str = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa )
_lowerCamelCase : List[str] = retriever(__lowerCAmelCase ,__lowerCAmelCase ,prefix=retriever.config.generator.prefix ,n_docs=__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = (
out["context_input_ids"],
out["context_attention_mask"],
out["retrieved_doc_embeds"],
)
self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase ,np.ndarray )
_lowerCamelCase : Union[str, Any] = retriever(
__lowerCAmelCase ,__lowerCAmelCase ,prefix=retriever.config.generator.prefix ,n_docs=__lowerCAmelCase ,return_tensors="pt" ,)
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = ( # noqa: F841
out["context_input_ids"],
out["context_attention_mask"],
out["retrieved_doc_embeds"],
out["doc_ids"],
)
self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(__lowerCAmelCase ,torch.Tensor )
self.assertIsInstance(__lowerCAmelCase ,torch.Tensor )
self.assertIsInstance(__lowerCAmelCase ,torch.Tensor )
@require_torch
@require_tokenizers
@require_sentencepiece
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.get_dpr_ctx_encoder_tokenizer()
_lowerCamelCase : Tuple = 1
_lowerCamelCase : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCAmelCase )
retriever.set_ctx_encoder_tokenizer(__lowerCAmelCase )
_lowerCamelCase : Any = [[5, 7], [10, 11]]
_lowerCamelCase : List[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa )
_lowerCamelCase : List[Any] = retriever(__lowerCAmelCase ,__lowerCAmelCase ,prefix=retriever.config.generator.prefix ,n_docs=__lowerCAmelCase )
self.assertEqual(
len(__lowerCAmelCase ) ,6 ) # check whether the retriever output consist of 6 attributes including tokenized docs
self.assertEqual(
all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) ,__lowerCAmelCase ) # check for doc token related keys in dictionary. | 340 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
_lowerCAmelCase : Optional[int] = '''__DUMMY_TRANSFORMERS_USER__'''
_lowerCAmelCase : Dict = '''Dummy User'''
_lowerCAmelCase : Optional[int] = '''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'''
_lowerCAmelCase : Tuple = '''https://hub-ci.huggingface.co'''
_lowerCAmelCase : Any = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}'''
_lowerCAmelCase : Tuple = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}'''
_lowerCAmelCase : Dict = Path('''~/.huggingface/hub_ci_token''').expanduser()
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
monkeypatch.setattr(
"huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Tuple:
'''simple docstring'''
monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _lowerCamelCase )
monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
HfFolder.save_token(_lowerCamelCase )
yield
HfFolder.delete_token()
@pytest.fixture(scope="session" )
def lowerCamelCase_( ) -> str:
'''simple docstring'''
return HfApi(endpoint=_lowerCamelCase )
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Dict = HfFolder.get_token()
HfFolder.save_token(_lowerCamelCase )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(_lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
def _cleanup_repo(_lowerCamelCase ):
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
return _cleanup_repo
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> List[str]:
'''simple docstring'''
@contextmanager
def _temporary_repo(_lowerCamelCase ):
try:
yield repo_id
finally:
cleanup_repo(_lowerCamelCase )
return _temporary_repo
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : Tuple = F"""repo_txt_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : List[str] = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data/text_data.txt" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : List[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : Dict = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : Any = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : List[Any] = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_ | 340 | 1 |
"""simple docstring"""
from decimal import Decimal, getcontext
from math import ceil, factorial
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise TypeError("Undefined for non-integers" )
elif precision < 1:
raise ValueError("Undefined for non-natural numbers" )
_lowerCamelCase : int = precision
_lowerCamelCase : Dict = ceil(precision / 14 )
_lowerCamelCase : Optional[Any] = 426880 * Decimal(10005 ).sqrt()
_lowerCamelCase : int = 1
_lowerCamelCase : Optional[int] = 13591409
_lowerCamelCase : int = Decimal(_lowerCamelCase )
for k in range(1 , _lowerCamelCase ):
_lowerCamelCase : Union[str, Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCamelCase ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
_lowerCAmelCase : Union[str, Any] = 50
print(f'''The first {n} digits of pi is: {pi(n)}''') | 340 |
"""simple docstring"""
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
_lowerCAmelCase : Dict = logging.get_logger(__name__)
class A_ ( _a ):
def __init__( self: List[Any] ,__lowerCAmelCase: Union[List[ControlNetModel], Tuple[ControlNetModel]] ):
'''simple docstring'''
super().__init__()
_lowerCamelCase : Tuple = nn.ModuleList(__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Union[torch.Tensor, float, int] ,__lowerCAmelCase: torch.Tensor ,__lowerCAmelCase: List[torch.tensor] ,__lowerCAmelCase: List[float] ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[Dict[str, Any]] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,):
'''simple docstring'''
for i, (image, scale, controlnet) in enumerate(zip(__lowerCAmelCase ,__lowerCAmelCase ,self.nets ) ):
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = controlnet(
__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,)
# merge samples
if i == 0:
_lowerCamelCase, _lowerCamelCase : Optional[Any] = down_samples, mid_sample
else:
_lowerCamelCase : Optional[int] = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(__lowerCAmelCase ,__lowerCAmelCase )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Union[str, os.PathLike] ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Callable = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[str] = None ,):
'''simple docstring'''
_lowerCamelCase : List[Any] = 0
_lowerCamelCase : str = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
__lowerCAmelCase ,is_main_process=__lowerCAmelCase ,save_function=__lowerCAmelCase ,safe_serialization=__lowerCAmelCase ,variant=__lowerCAmelCase ,)
idx += 1
_lowerCamelCase : int = model_path_to_save + F"""_{idx}"""
@classmethod
def _lowercase ( cls: Any ,__lowerCAmelCase: Optional[Union[str, os.PathLike]] ,**__lowerCAmelCase: int ):
'''simple docstring'''
_lowerCamelCase : int = 0
_lowerCamelCase : str = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
_lowerCamelCase : Dict = pretrained_model_path
while os.path.isdir(__lowerCAmelCase ):
_lowerCamelCase : List[Any] = ControlNetModel.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase )
controlnets.append(__lowerCAmelCase )
idx += 1
_lowerCamelCase : Tuple = pretrained_model_path + F"""_{idx}"""
logger.info(F"""{len(__lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.""" )
if len(__lowerCAmelCase ) == 0:
raise ValueError(
F"""No ControlNets found under {os.path.dirname(__lowerCAmelCase )}. Expected at least {pretrained_model_path + '_0'}.""" )
return cls(__lowerCAmelCase ) | 340 | 1 |
"""simple docstring"""
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def lowerCamelCase_( ) -> str:
'''simple docstring'''
_lowerCamelCase : Any = ArgumentParser(
description=(
"PyTorch TPU distributed training launch "
"helper utility that will spawn up "
"multiple distributed processes"
) )
# Optional arguments for the launch helper
parser.add_argument("--num_cores" , type=_lowerCamelCase , default=1 , help="Number of TPU cores to use (1 or 8)." )
# positional
parser.add_argument(
"training_script" , type=_lowerCamelCase , help=(
"The full path to the single TPU training "
"program/script to be launched in parallel, "
"followed by all the arguments for the "
"training script"
) , )
# rest from the training program
parser.add_argument("training_script_args" , nargs=_lowerCamelCase )
return parser.parse_args()
def lowerCamelCase_( ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Any = parse_args()
# Import training_script as a module.
_lowerCamelCase : List[Any] = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
_lowerCamelCase : List[Any] = script_fpath.stem
_lowerCamelCase : Union[str, Any] = importlib.import_module(_lowerCamelCase )
# Patch sys.argv
_lowerCamelCase : Dict = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main() | 340 |
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : int = logging.get_logger(__name__)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Tuple = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith("head" ):
_lowerCamelCase : Tuple = "segformer.encoder." + key
if key.startswith("backbone" ):
_lowerCamelCase : Any = key.replace("backbone" , "segformer.encoder" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_lowerCamelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )]
_lowerCamelCase : int = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_lowerCamelCase )-1}""" )
if "norm" in key:
_lowerCamelCase : Optional[Any] = key.replace("norm" , "layer_norm" )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_lowerCamelCase : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )]
_lowerCamelCase : Tuple = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_lowerCamelCase )-1}""" )
if "layer_norm1" in key:
_lowerCamelCase : Union[str, Any] = key.replace("layer_norm1" , "layer_norm_1" )
if "layer_norm2" in key:
_lowerCamelCase : int = key.replace("layer_norm2" , "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
_lowerCamelCase : Union[str, Any] = key[key.find("block" ) + len("block" )]
_lowerCamelCase : Optional[Any] = key.replace(F"""block{idx}""" , F"""block.{int(_lowerCamelCase )-1}""" )
if "attn.q" in key:
_lowerCamelCase : Optional[int] = key.replace("attn.q" , "attention.self.query" )
if "attn.proj" in key:
_lowerCamelCase : List[str] = key.replace("attn.proj" , "attention.output.dense" )
if "attn" in key:
_lowerCamelCase : Tuple = key.replace("attn" , "attention.self" )
if "fc1" in key:
_lowerCamelCase : Optional[Any] = key.replace("fc1" , "dense1" )
if "fc2" in key:
_lowerCamelCase : Dict = key.replace("fc2" , "dense2" )
if "linear_pred" in key:
_lowerCamelCase : int = key.replace("linear_pred" , "classifier" )
if "linear_fuse" in key:
_lowerCamelCase : str = key.replace("linear_fuse.conv" , "linear_fuse" )
_lowerCamelCase : Optional[Any] = key.replace("linear_fuse.bn" , "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_lowerCamelCase : Union[str, Any] = key[key.find("linear_c" ) + len("linear_c" )]
_lowerCamelCase : Optional[int] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_lowerCamelCase )-1}""" )
if key.startswith("head" ):
_lowerCamelCase : List[str] = key.replace("head" , "classifier" )
_lowerCamelCase : Union[str, Any] = value
return new_state_dict
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" )
_lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
_lowerCamelCase : int = kv_weight[
: config.hidden_sizes[i], :
]
_lowerCamelCase : int = kv_bias[: config.hidden_sizes[i]]
_lowerCamelCase : Optional[int] = kv_weight[
config.hidden_sizes[i] :, :
]
_lowerCamelCase : Optional[Any] = kv_bias[
config.hidden_sizes[i] :
]
def lowerCamelCase_( ) -> Dict:
'''simple docstring'''
_lowerCamelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg"
_lowerCamelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw )
return image
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
_lowerCamelCase : Any = SegformerConfig()
_lowerCamelCase : int = False
# set attributes based on model_name
_lowerCamelCase : Any = "huggingface/label-files"
if "segformer" in model_name:
_lowerCamelCase : str = model_name[len("segformer." ) : len("segformer." ) + 2]
if "ade" in model_name:
_lowerCamelCase : str = 150
_lowerCamelCase : Dict = "ade20k-id2label.json"
_lowerCamelCase : Dict = (1, 150, 128, 128)
elif "city" in model_name:
_lowerCamelCase : List[str] = 19
_lowerCamelCase : Tuple = "cityscapes-id2label.json"
_lowerCamelCase : Tuple = (1, 19, 128, 128)
else:
raise ValueError(F"""Model {model_name} not supported""" )
elif "mit" in model_name:
_lowerCamelCase : List[str] = True
_lowerCamelCase : Tuple = model_name[4:6]
_lowerCamelCase : Tuple = 1000
_lowerCamelCase : List[Any] = "imagenet-1k-id2label.json"
_lowerCamelCase : List[Any] = (1, 1000)
else:
raise ValueError(F"""Model {model_name} not supported""" )
# set config attributes
_lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) )
_lowerCamelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCamelCase : Optional[Any] = idalabel
_lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
_lowerCamelCase : int = [64, 128, 320, 512]
_lowerCamelCase : int = 256
elif size == "b2":
_lowerCamelCase : Tuple = [64, 128, 320, 512]
_lowerCamelCase : List[Any] = 768
_lowerCamelCase : Any = [3, 4, 6, 3]
elif size == "b3":
_lowerCamelCase : Tuple = [64, 128, 320, 512]
_lowerCamelCase : Union[str, Any] = 768
_lowerCamelCase : Optional[Any] = [3, 4, 18, 3]
elif size == "b4":
_lowerCamelCase : str = [64, 128, 320, 512]
_lowerCamelCase : Optional[Any] = 768
_lowerCamelCase : Dict = [3, 8, 27, 3]
elif size == "b5":
_lowerCamelCase : int = [64, 128, 320, 512]
_lowerCamelCase : Tuple = 768
_lowerCamelCase : Tuple = [3, 6, 40, 3]
else:
raise ValueError(F"""Size {size} not supported""" )
# load image processor (only resize + normalize)
_lowerCamelCase : Dict = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase )
# prepare image
_lowerCamelCase : List[str] = prepare_img()
_lowerCamelCase : Dict = image_processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values
logger.info(F"""Converting model {model_name}...""" )
# load original state dict
if encoder_only:
_lowerCamelCase : Tuple = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )
else:
_lowerCamelCase : int = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )["state_dict"]
# rename keys
_lowerCamelCase : str = rename_keys(_lowerCamelCase , encoder_only=_lowerCamelCase )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(_lowerCamelCase , _lowerCamelCase )
# create HuggingFace model and load state dict
if encoder_only:
_lowerCamelCase : Tuple = False
_lowerCamelCase : Optional[int] = SegformerForImageClassification(_lowerCamelCase )
else:
_lowerCamelCase : List[str] = SegformerForSemanticSegmentation(_lowerCamelCase )
model.load_state_dict(_lowerCamelCase )
model.eval()
# forward pass
_lowerCamelCase : Any = model(_lowerCamelCase )
_lowerCamelCase : Dict = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
_lowerCamelCase : str = torch.tensor(
[
[[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]],
[[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]],
[[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
_lowerCamelCase : Any = torch.tensor(
[
[[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]],
[[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]],
[[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
_lowerCamelCase : int = torch.tensor(
[
[[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]],
[[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]],
[[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
_lowerCamelCase : Optional[Any] = torch.tensor(
[
[[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]],
[[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]],
[[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
_lowerCamelCase : List[str] = torch.tensor(
[
[[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]],
[[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]],
[[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
_lowerCamelCase : Any = torch.tensor(
[
[[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]],
[[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]],
[[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
_lowerCamelCase : Dict = torch.tensor(
[
[[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]],
[[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]],
[[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
_lowerCamelCase : Optional[int] = torch.tensor(
[
[[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]],
[[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]],
[[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
_lowerCamelCase : Tuple = torch.tensor(
[
[
[-1.13_72e01, -1.27_87e01, -1.34_77e01],
[-1.25_36e01, -1.41_94e01, -1.44_09e01],
[-1.32_17e01, -1.48_88e01, -1.53_27e01],
],
[
[-1.47_91e01, -1.71_22e01, -1.82_77e01],
[-1.71_63e01, -1.91_92e01, -1.95_33e01],
[-1.78_97e01, -1.99_91e01, -2.03_15e01],
],
[
[7.67_23e-01, 4.19_21e-01, -7.78_78e-02],
[4.77_72e-01, 9.55_57e-03, -2.80_82e-01],
[3.60_32e-01, -2.48_26e-01, -5.11_68e-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
_lowerCamelCase : Union[str, Any] = torch.tensor(
[
[[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]],
[[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]],
[[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
_lowerCamelCase : List[Any] = torch.tensor(
[
[[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]],
[[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]],
[[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
_lowerCamelCase : Tuple = torch.tensor(
[
[[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]],
[[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]],
[[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
_lowerCamelCase : Any = torch.tensor(
[
[[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]],
[[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]],
[[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
_lowerCamelCase : List[str] = torch.tensor(
[
[[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]],
[[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]],
[[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
_lowerCamelCase : str = torch.tensor(
[
[[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]],
[[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]],
[[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]],
] )
else:
_lowerCamelCase : Dict = logits.argmax(-1 ).item()
print("Predicted class:" , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-2 )
# finally, save model and image processor
logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
model.save_pretrained(_lowerCamelCase )
image_processor.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : str = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''segformer.b0.512x512.ade.160k''',
type=str,
help='''Name of the model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
_lowerCAmelCase : str = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path) | 340 | 1 |
"""simple docstring"""
import random
from .binary_exp_mod import bin_exp_mod
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=1000 ) -> int:
'''simple docstring'''
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
_lowerCamelCase : Any = n - 1
_lowerCamelCase : int = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
_lowerCamelCase : int = 0
while count < prec:
_lowerCamelCase : Union[str, Any] = random.randint(2 , n - 1 )
_lowerCamelCase : Union[str, Any] = bin_exp_mod(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
if b != 1:
_lowerCamelCase : Dict = True
for _ in range(_lowerCamelCase ):
if b == n - 1:
_lowerCamelCase : Optional[Any] = False
break
_lowerCamelCase : Optional[Any] = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
_lowerCAmelCase : Optional[int] = abs(int(input('''Enter bound : ''').strip()))
print('''Here\'s the list of primes:''')
print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i))) | 340 |
"""simple docstring"""
_lowerCAmelCase : dict[tuple[int, int, int], int] = {}
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
_lowerCamelCase : Optional[int] = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
_lowerCamelCase : int = _calculate(days - 1 , _lowerCamelCase , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
_lowerCamelCase : Tuple = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
_lowerCamelCase : str = _calculate(days - 1 , _lowerCamelCase , 0 )
_lowerCamelCase : List[Any] = state_late + state_absent + state_ontime
_lowerCamelCase : int = prizestrings
return prizestrings
def lowerCamelCase_( _lowerCamelCase = 30 ) -> int:
'''simple docstring'''
return _calculate(_lowerCamelCase , absent=0 , late=0 )
if __name__ == "__main__":
print(solution()) | 340 | 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class A_ ( _a ):
lowerCAmelCase__ = 'microsoft/speecht5_tts'
lowerCAmelCase__ = (
'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the '
'text to read (in English) and returns a waveform object containing the sound.'
)
lowerCAmelCase__ = 'text_reader'
lowerCAmelCase__ = SpeechTaProcessor
lowerCAmelCase__ = SpeechTaForTextToSpeech
lowerCAmelCase__ = SpeechTaHifiGan
lowerCAmelCase__ = ['text']
lowerCAmelCase__ = ['audio']
def _lowercase ( self: int ):
'''simple docstring'''
if self.post_processor is None:
_lowerCamelCase : str = "microsoft/speecht5_hifigan"
super().setup()
def _lowercase ( self: str ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any]=None ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = self.pre_processor(text=__lowerCAmelCase ,return_tensors="pt" ,truncation=__lowerCAmelCase )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError("Datasets needs to be installed if not passing speaker embeddings." )
_lowerCamelCase : Optional[Any] = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" )
_lowerCamelCase : List[str] = torch.tensor(embeddings_dataset[7_305]["xvector"] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def _lowercase ( self: List[Any] ,__lowerCAmelCase: int ):
'''simple docstring'''
with torch.no_grad():
return self.model.generate_speech(**__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ):
'''simple docstring'''
with torch.no_grad():
return self.post_processor(__lowerCAmelCase ).cpu().detach() | 340 |
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase_( _lowerCamelCase ) -> bool:
'''simple docstring'''
_lowerCamelCase : int = str(_lowerCamelCase )
return len(_lowerCamelCase ) == 9 and set(_lowerCamelCase ) == set("123456789" )
def lowerCamelCase_( ) -> int | None:
'''simple docstring'''
for base_num in range(9999 , 4999 , -1 ):
_lowerCamelCase : Union[str, Any] = 100002 * base_num
if is_9_pandigital(_lowerCamelCase ):
return candidate
for base_num in range(333 , 99 , -1 ):
_lowerCamelCase : Tuple = 1002003 * base_num
if is_9_pandigital(_lowerCamelCase ):
return candidate
return None
if __name__ == "__main__":
print(f'''{solution() = }''') | 340 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
_lowerCAmelCase : str = {
'''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class A_ ( _a ):
lowerCAmelCase__ = 'gpt_neo'
lowerCAmelCase__ = ['past_key_values']
lowerCAmelCase__ = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'}
def __init__( self: Union[str, Any] ,__lowerCAmelCase: List[str]=50_257 ,__lowerCAmelCase: str=2_048 ,__lowerCAmelCase: Optional[int]=2_048 ,__lowerCAmelCase: Any=24 ,__lowerCAmelCase: Union[str, Any]=[[["global", "local"], 12]] ,__lowerCAmelCase: Any=16 ,__lowerCAmelCase: Any=None ,__lowerCAmelCase: Union[str, Any]=256 ,__lowerCAmelCase: Optional[Any]="gelu_new" ,__lowerCAmelCase: Optional[Any]=0.0 ,__lowerCAmelCase: str=0.0 ,__lowerCAmelCase: Dict=0.0 ,__lowerCAmelCase: Dict=0.1 ,__lowerCAmelCase: int=1e-5 ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: int=True ,__lowerCAmelCase: Dict=50_256 ,__lowerCAmelCase: List[str]=50_256 ,**__lowerCAmelCase: Optional[int] ,):
'''simple docstring'''
_lowerCamelCase : Tuple = vocab_size
_lowerCamelCase : Tuple = max_position_embeddings
_lowerCamelCase : Any = hidden_size
_lowerCamelCase : List[Any] = num_layers
_lowerCamelCase : str = num_heads
_lowerCamelCase : Union[str, Any] = intermediate_size
_lowerCamelCase : Any = window_size
_lowerCamelCase : List[str] = activation_function
_lowerCamelCase : Union[str, Any] = resid_dropout
_lowerCamelCase : List[Any] = embed_dropout
_lowerCamelCase : Dict = attention_dropout
_lowerCamelCase : Optional[int] = classifier_dropout
_lowerCamelCase : Optional[int] = layer_norm_epsilon
_lowerCamelCase : str = initializer_range
_lowerCamelCase : List[str] = use_cache
_lowerCamelCase : Optional[int] = bos_token_id
_lowerCamelCase : Tuple = eos_token_id
_lowerCamelCase : List[Any] = attention_types
_lowerCamelCase : Optional[int] = self.expand_attention_types_params(__lowerCAmelCase )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.attention_layers)` == `config.num_layers` "
F"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """
F"""`config.num_layers = {self.num_layers}`. """
"`config.attention_layers` is prepared using `config.attention_types`. "
"Please verify the value of `config.attention_types` argument." )
super().__init__(bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase )
@staticmethod
def _lowercase ( __lowerCAmelCase: Any ):
'''simple docstring'''
_lowerCamelCase : int = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple:
'''simple docstring'''
import torch
_lowerCamelCase : Union[str, Any] = input.size()
_lowerCamelCase : List[Any] = len(_lowerCamelCase )
_lowerCamelCase : Dict = shape[dimension]
_lowerCamelCase : str = torch.arange(0 , _lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : Optional[int] = torch.div(sizedim - size , _lowerCamelCase , rounding_mode="floor" ) + 1
_lowerCamelCase : Dict = torch.arange(_lowerCamelCase ) + low_indices[:min_length][:, None]
_lowerCamelCase : Any = [slice(_lowerCamelCase )] * rank
_lowerCamelCase : Dict = indices
_lowerCamelCase : Optional[Any] = input[s]
_lowerCamelCase : str = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Any:
'''simple docstring'''
import torch
_lowerCamelCase : int = torch.arange(1 , _lowerCamelCase )
_lowerCamelCase : List[Any] = torch.remainder(_lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : Any = remainders == 0
_lowerCamelCase : Dict = candidates[divisor_indices]
_lowerCamelCase : Any = torch.max(_lowerCamelCase )
return largest_divisor, torch.div(_lowerCamelCase , _lowerCamelCase , rounding_mode="floor" )
class A_ ( _a ):
@property
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : int = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} )
if self.use_past:
self.fill_with_past_key_values_(__lowerCAmelCase ,direction="inputs" )
_lowerCamelCase : Tuple = {0: "batch", 1: "past_sequence + sequence"}
else:
_lowerCamelCase : Optional[Any] = {0: "batch", 1: "sequence"}
return common_inputs
@property
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
return self._config.num_heads
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: PreTrainedTokenizer ,__lowerCAmelCase: int = -1 ,__lowerCAmelCase: int = -1 ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[TensorType] = None ,):
'''simple docstring'''
_lowerCamelCase : Tuple = super(__lowerCAmelCase ,self ).generate_dummy_inputs(
__lowerCAmelCase ,batch_size=__lowerCAmelCase ,seq_length=__lowerCAmelCase ,is_pair=__lowerCAmelCase ,framework=__lowerCAmelCase )
# We need to order the input in the way they appears in the forward()
_lowerCamelCase : int = OrderedDict({"input_ids": common_inputs["input_ids"]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
_lowerCamelCase, _lowerCamelCase : List[Any] = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
_lowerCamelCase : Any = seqlen + 2
_lowerCamelCase : int = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
_lowerCamelCase : str = [
(torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase )) for _ in range(self.num_layers )
]
_lowerCamelCase : Any = common_inputs["attention_mask"]
if self.use_past:
_lowerCamelCase : Optional[Any] = ordered_inputs["attention_mask"].dtype
_lowerCamelCase : Optional[Any] = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(__lowerCAmelCase ,__lowerCAmelCase ,dtype=__lowerCAmelCase )] ,dim=1 )
return ordered_inputs
@property
def _lowercase ( self: Any ):
'''simple docstring'''
return 13 | 340 |
"""simple docstring"""
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class A_ ( _a ):
lowerCAmelCase__ = 'char'
lowerCAmelCase__ = 'bpe'
lowerCAmelCase__ = 'wp'
_lowerCAmelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class A_ ( _a ):
lowerCAmelCase__ = ['image_processor', 'char_tokenizer']
lowerCAmelCase__ = 'ViTImageProcessor'
lowerCAmelCase__ = 'MgpstrTokenizer'
def __init__( self: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." ,__lowerCAmelCase ,)
_lowerCamelCase : List[Any] = kwargs.pop("feature_extractor" )
_lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
_lowerCamelCase : List[str] = tokenizer
_lowerCamelCase : str = AutoTokenizer.from_pretrained("gpt2" )
_lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" )
super().__init__(__lowerCAmelCase ,__lowerCAmelCase )
def __call__( self: Optional[int] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ):
'''simple docstring'''
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process." )
if images is not None:
_lowerCamelCase : Optional[int] = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
if text is not None:
_lowerCamelCase : int = self.char_tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
_lowerCamelCase : Tuple = encodings["input_ids"]
return inputs
def _lowercase ( self: int ,__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = sequences
_lowerCamelCase : Dict = char_preds.size(0 )
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self._decode_helper(__lowerCAmelCase ,"char" )
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(__lowerCAmelCase ,"bpe" )
_lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(__lowerCAmelCase ,"wp" )
_lowerCamelCase : List[str] = []
_lowerCamelCase : str = []
for i in range(__lowerCAmelCase ):
_lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]]
_lowerCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]]
_lowerCamelCase : Optional[Any] = scores.index(max(__lowerCAmelCase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
_lowerCamelCase : Tuple = {}
_lowerCamelCase : Tuple = final_strs
_lowerCamelCase : int = final_scores
_lowerCamelCase : str = char_strs
_lowerCamelCase : Dict = bpe_strs
_lowerCamelCase : int = wp_strs
return out
def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ):
'''simple docstring'''
if format == DecodeType.CHARACTER:
_lowerCamelCase : int = self.char_decode
_lowerCamelCase : List[str] = 1
_lowerCamelCase : Optional[int] = "[s]"
elif format == DecodeType.BPE:
_lowerCamelCase : Dict = self.bpe_decode
_lowerCamelCase : str = 2
_lowerCamelCase : Union[str, Any] = "#"
elif format == DecodeType.WORDPIECE:
_lowerCamelCase : int = self.wp_decode
_lowerCamelCase : List[str] = 102
_lowerCamelCase : List[Any] = "[SEP]"
else:
raise ValueError(F"""Format {format} is not supported.""" )
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], []
_lowerCamelCase : Any = pred_logits.size(0 )
_lowerCamelCase : int = pred_logits.size(1 )
_lowerCamelCase, _lowerCamelCase : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=__lowerCAmelCase ,sorted=__lowerCAmelCase )
_lowerCamelCase : Optional[int] = preds_index.view(-1 ,__lowerCAmelCase )[:, 1:]
_lowerCamelCase : List[str] = decoder(__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase : str = torch.nn.functional.softmax(__lowerCAmelCase ,dim=2 ).max(dim=2 )
_lowerCamelCase : Any = preds_max_prob[:, 1:]
for index in range(__lowerCAmelCase ):
_lowerCamelCase : List[Any] = preds_str[index].find(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = preds_str[index][:pred_eos]
_lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist()
_lowerCamelCase : List[str] = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1
_lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1]
_lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(__lowerCAmelCase )
conf_scores.append(__lowerCAmelCase )
return dec_strs, conf_scores
def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )]
return decode_strs
def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str] ):
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(__lowerCAmelCase )
def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )]
return decode_strs | 340 | 1 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase ) -> bool:
'''simple docstring'''
_lowerCamelCase : List[str] = [int(_lowerCamelCase ) for i in ip_va_address.split("." ) if i.isdigit()]
return len(_lowerCamelCase ) == 4 and all(0 <= int(_lowerCamelCase ) <= 254 for octet in octets )
if __name__ == "__main__":
_lowerCAmelCase : List[str] = input().strip()
_lowerCAmelCase : List[str] = '''valid''' if is_ip_va_address_valid(ip) else '''invalid'''
print(f'''{ip} is a {valid_or_invalid} IP v4 address.''') | 340 |
"""simple docstring"""
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
_lowerCAmelCase : List[Any] = get_logger(__name__)
class A_ :
lowerCAmelCase__ = 'dummy_data'
lowerCAmelCase__ = 'datasets'
lowerCAmelCase__ = False
def __init__( self: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[Version, str] ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[List[Callable]] = None ,):
'''simple docstring'''
_lowerCamelCase : str = 0
_lowerCamelCase : List[str] = dataset_name
_lowerCamelCase : Optional[int] = cache_dir
_lowerCamelCase : Optional[int] = use_local_dummy_data
_lowerCamelCase : int = config
# download_callbacks take a single url as input
_lowerCamelCase : List[Callable] = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
_lowerCamelCase : int = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
_lowerCamelCase : Tuple = str(__lowerCAmelCase )
# to be downloaded
_lowerCamelCase : Optional[Any] = None
_lowerCamelCase : Dict = None
@property
def _lowercase ( self: str ):
'''simple docstring'''
if self._dummy_file is None:
_lowerCamelCase : List[str] = self.download_dummy_data()
return self._dummy_file
@property
def _lowercase ( self: str ):
'''simple docstring'''
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("dummy" ,self.config.name ,self.version_name )
# structure is dummy / version_name
return os.path.join("dummy" ,self.version_name )
@property
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
return os.path.join(self.dummy_data_folder ,"dummy_data.zip" )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
_lowerCamelCase : Optional[int] = cached_path(
__lowerCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=__lowerCAmelCase ,force_extract=__lowerCAmelCase )
return os.path.join(__lowerCAmelCase ,self.dummy_file_name )
@property
def _lowercase ( self: Tuple ):
'''simple docstring'''
return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file )
@property
def _lowercase ( self: List[str] ):
'''simple docstring'''
if self._bucket_url is None:
_lowerCamelCase : List[str] = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) )
return self._bucket_url
@property
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] )
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,*__lowerCAmelCase: List[Any] ):
'''simple docstring'''
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
_lowerCamelCase : Tuple = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
_lowerCamelCase : Optional[Any] = self.dummy_file_name
# special case when data_url is a dict
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
return self.create_dummy_data_dict(__lowerCAmelCase ,__lowerCAmelCase )
elif isinstance(__lowerCAmelCase ,(list, tuple) ):
return self.create_dummy_data_list(__lowerCAmelCase ,__lowerCAmelCase )
else:
return self.create_dummy_data_single(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
return self.download_and_extract(__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ):
'''simple docstring'''
return self.download_and_extract(__lowerCAmelCase )
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
return path
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
return {}
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : str = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
for single_url in single_urls:
download_callback(__lowerCAmelCase )
else:
_lowerCamelCase : Union[str, Any] = single_urls
download_callback(__lowerCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : Dict = [os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) for x in single_urls]
else:
_lowerCamelCase : Union[str, Any] = single_urls
_lowerCamelCase : List[str] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) )
_lowerCamelCase : List[Any] = value
# make sure that values are unique
if all(isinstance(__lowerCAmelCase ,__lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
_lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : Dict = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
_lowerCamelCase : List[str] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,__lowerCAmelCase ) ) for url in data_url )
_lowerCamelCase : Optional[Any] = all(
url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
_lowerCamelCase : Tuple = [data_url[0]] * len(__lowerCAmelCase )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(__lowerCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
_lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) )
dummy_data_list.append(__lowerCAmelCase )
return dummy_data_list
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ):
'''simple docstring'''
for download_callback in self.download_callbacks:
download_callback(__lowerCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
_lowerCamelCase : Optional[int] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) )
if os.path.exists(__lowerCAmelCase ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
pass
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
pass
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
def _iter_archive_members(__lowerCAmelCase: Any ):
# this preserves the order of the members inside the ZIP archive
_lowerCamelCase : Tuple = Path(self.dummy_file ).parent
_lowerCamelCase : str = path.relative_to(__lowerCAmelCase )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
_lowerCamelCase : Optional[int] = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = Path(__lowerCAmelCase )
_lowerCamelCase : int = _iter_archive_members(__lowerCAmelCase ) if self.use_local_dummy_data else path.rglob("*" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((".", "__") ):
yield file_path.relative_to(__lowerCAmelCase ).as_posix(), file_path.open("rb" )
def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : List[Any] = [paths]
for path in paths:
if os.path.isfile(__lowerCAmelCase ):
if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(__lowerCAmelCase ):
if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ):
continue
dirnames.sort()
for filename in sorted(__lowerCAmelCase ):
if filename.startswith((".", "__") ):
continue
yield os.path.join(__lowerCAmelCase ,__lowerCAmelCase ) | 340 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowerCAmelCase : List[Any] = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Optional[int] = [
'''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OPTForCausalLM''',
'''OPTModel''',
'''OPTPreTrainedModel''',
'''OPTForSequenceClassification''',
'''OPTForQuestionAnswering''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Optional[int] = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Optional[int] = [
'''FlaxOPTForCausalLM''',
'''FlaxOPTModel''',
'''FlaxOPTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
_lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 340 |
"""simple docstring"""
from decimal import Decimal, getcontext
from math import ceil, factorial
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise TypeError("Undefined for non-integers" )
elif precision < 1:
raise ValueError("Undefined for non-natural numbers" )
_lowerCamelCase : int = precision
_lowerCamelCase : Dict = ceil(precision / 14 )
_lowerCamelCase : Optional[Any] = 426880 * Decimal(10005 ).sqrt()
_lowerCamelCase : int = 1
_lowerCamelCase : Optional[int] = 13591409
_lowerCamelCase : int = Decimal(_lowerCamelCase )
for k in range(1 , _lowerCamelCase ):
_lowerCamelCase : Union[str, Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCamelCase ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
_lowerCAmelCase : Union[str, Any] = 50
print(f'''The first {n} digits of pi is: {pi(n)}''') | 340 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.