code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : Tuple = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Tuple: UpperCAmelCase : int = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Tuple = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : Any = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : str = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : str = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
338
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
1
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil a : Union[str, Any] = 1_0_0 a : Dict = set(range(3, NUM_PRIMES, 2)) primes.add(2) a : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def __lowerCamelCase ( _lowercase ) -> set[int]: if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} UpperCAmelCase : set[int] = set() UpperCAmelCase : int UpperCAmelCase : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def __lowerCamelCase ( _lowercase = 5_0_0_0 ) -> int | None: for number_to_partition in range(1 , _lowercase ): if len(partition(_lowercase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'''{solution() = }''')
338
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
1
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __lowerCamelCase ( ) -> List[str]: raise RuntimeError("""CUDA out of memory.""" ) class UpperCamelCase_ ( nn.Module ): def __init__( self ) -> List[str]: super().__init__() UpperCAmelCase : Optional[Any] = nn.Linear(3 , 4 ) UpperCAmelCase : Any = nn.BatchNormad(4 ) UpperCAmelCase : Union[str, Any] = nn.Linear(4 , 5 ) def _lowercase( self , A ) -> List[str]: return self.lineara(self.batchnorm(self.lineara(A ) ) ) class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Tuple = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(A ): nonlocal batch_sizes batch_sizes.append(A ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(A , [128, 64, 32, 16, 8] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(A , A ): nonlocal batch_sizes batch_sizes.append(A ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCAmelCase , UpperCAmelCase : int = mock_training_loop_function("""hello""" ) self.assertListEqual(A , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, """hello"""] ) def _lowercase( self ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(A ): pass with self.assertRaises(A ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def _lowercase( self ) -> Tuple: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(A ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(A ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def _lowercase( self ) -> Any: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(A , A , A ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(A ) as cm: mock_training_loop_function(128 , """hello""" , """world""" ) self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0] ) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0] ) def _lowercase( self ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(A ): raise ValueError("""Oops, we had an error!""" ) with self.assertRaises(A ) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0] ) @require_cuda def _lowercase( self ) -> List[str]: UpperCAmelCase : int = torch.cuda.memory_allocated() UpperCAmelCase : Any = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , A ) UpperCAmelCase : Union[str, Any] = release_memory(A ) self.assertEqual(torch.cuda.memory_allocated() , A )
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __lowerCamelCase ( _lowercase ) -> str: UpperCAmelCase : Optional[Any] = FileLock(str(tmpdir / """foo.lock""" ) ) UpperCAmelCase : List[str] = FileLock(str(tmpdir / """foo.lock""" ) ) UpperCAmelCase : List[Any] = 0.01 with locka.acquire(): with pytest.raises(_lowercase ): UpperCAmelCase : Any = time.time() locka.acquire(_lowercase ) assert time.time() - _start > timeout def __lowerCamelCase ( _lowercase ) -> Dict: UpperCAmelCase : List[Any] = """a""" * 1_0_0_0 + """.lock""" UpperCAmelCase : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(_lowercase ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 UpperCAmelCase : Optional[Any] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_lowercase ): locka.acquire(0 )
338
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
1
'''simple docstring''' from __future__ import annotations import time import numpy as np a : Optional[Any] = [8, 5, 9, 7] a : List[Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] a : Any = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class UpperCamelCase_ : def __init__( self , A , A , A , ) -> None: UpperCAmelCase : Optional[int] = claim_vector UpperCAmelCase : List[Any] = allocated_resources_table UpperCAmelCase : Optional[int] = maximum_claim_table def _lowercase( self ) -> list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def _lowercase( self ) -> list[int]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def _lowercase( self ) -> list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(A ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def _lowercase( self ) -> dict[int, list[int]]: return {self.__need().index(A ): i for i in self.__need()} def _lowercase( self , **A ) -> None: UpperCAmelCase : str = self.__need() UpperCAmelCase : Optional[int] = self.__allocated_resources_table UpperCAmelCase : Union[str, Any] = self.__available_resources() UpperCAmelCase : List[str] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: UpperCAmelCase : List[Any] = False for each_need in need_list: UpperCAmelCase : Dict = True for index, need in enumerate(A ): if need > available_resources[index]: UpperCAmelCase : Any = False break if execution: UpperCAmelCase : Tuple = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: UpperCAmelCase : Tuple = original_need_index print(f'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(A ) # update available/freed resources stack UpperCAmelCase : Union[str, Any] = np.array(A ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(A ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def _lowercase( self ) -> Dict: print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( f'''P{self.__allocated_resources_table.index(A ) + 1}''' + """ """.join(f'''{it:>8}''' for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( f'''P{self.__maximum_claim_table.index(A ) + 1}''' + """ """.join(f'''{it:>8}''' for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(A ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(A ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
1
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __lowerCamelCase ( _lowercase ) -> str: UpperCAmelCase : Tuple = [] for line in lines: UpperCAmelCase : List[str] = re.sub(R"""#.*""" , """""" , _lowercase ) # remove comments if line: filtered_lines.append(_lowercase ) UpperCAmelCase : Optional[int] = """\n""".join(_lowercase ) # Make a hash from all this code UpperCAmelCase : Optional[Any] = full_str.encode("""utf-8""" ) return shaaaa(_lowercase ).hexdigest() # get importable module names and hash for caching a : str = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions a : int = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) a : str = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name a : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
338
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
1
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( _lowercase , _lowercase ) -> list[int]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = len(_lowercase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCAmelCase : Dict = i + 1 else: UpperCAmelCase : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 1_1, 1_5], 9) = }''')
338
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
1
'''simple docstring''' from math import factorial def __lowerCamelCase ( _lowercase = 2_0 ) -> int: UpperCAmelCase : List[Any] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... UpperCAmelCase : Any = n // 2 return int(factorial(_lowercase ) / (factorial(_lowercase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: a : str = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
338
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
1
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin a : str = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = SpeechTaTokenizer lowercase = False lowercase = True def _lowercase( self ) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : str = SpeechTaTokenizer(A ) UpperCAmelCase : Optional[int] = AddedToken("""<mask>""" , lstrip=A , rstrip=A ) UpperCAmelCase : Any = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Dict = """this is a test""" UpperCAmelCase : str = """this is a test""" return input_text, output_text def _lowercase( self , A , A=False , A=20 , A=5 ) -> List[str]: UpperCAmelCase , UpperCAmelCase : Dict = self.get_input_output_texts(A ) UpperCAmelCase : Union[str, Any] = tokenizer.encode(A , add_special_tokens=A ) UpperCAmelCase : Union[str, Any] = tokenizer.decode(A , clean_up_tokenization_spaces=A ) return text, ids def _lowercase( self ) -> Optional[int]: UpperCAmelCase : str = """<pad>""" UpperCAmelCase : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> List[str]: UpperCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-4] , """œ""" ) self.assertEqual(vocab_keys[-2] , """<mask>""" ) self.assertEqual(vocab_keys[-1] , """<ctc_blank>""" ) self.assertEqual(len(A ) , 81 ) def _lowercase( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def _lowercase( self ) -> str: UpperCAmelCase : Optional[Any] = self.get_tokenizers(do_lower_case=A ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCAmelCase : List[Any] = tokenizer.vocab_size UpperCAmelCase : Union[str, Any] = len(A ) self.assertNotEqual(A , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) UpperCAmelCase : List[str] = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] UpperCAmelCase : Any = tokenizer.add_tokens(A ) UpperCAmelCase : List[Any] = tokenizer.vocab_size UpperCAmelCase : str = len(A ) self.assertNotEqual(A , 0 ) self.assertEqual(A , A ) self.assertEqual(A , len(A ) ) self.assertEqual(A , all_size + len(A ) ) UpperCAmelCase : Optional[Any] = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=A ) self.assertGreaterEqual(len(A ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) UpperCAmelCase : int = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} UpperCAmelCase : int = tokenizer.add_special_tokens(A ) UpperCAmelCase : Union[str, Any] = tokenizer.vocab_size UpperCAmelCase : Any = len(A ) self.assertNotEqual(A , 0 ) self.assertEqual(A , A ) self.assertEqual(A , len(A ) ) self.assertEqual(A , all_size_a + len(A ) ) UpperCAmelCase : Optional[Any] = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=A ) self.assertGreaterEqual(len(A ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def _lowercase( self ) -> List[str]: pass def _lowercase( self ) -> Union[str, Any]: pass def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.get_tokenizer() UpperCAmelCase : List[str] = tokenizer.tokenize("""This is a test""" ) # fmt: off self.assertListEqual(A , [SPIECE_UNDERLINE, """T""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """a""", SPIECE_UNDERLINE, """t""", """e""", """s""", """t"""] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """92000""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(A ) # fmt: off self.assertListEqual(A , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on UpperCAmelCase : int = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """<unk>""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) @slow def _lowercase( self ) -> Union[str, Any]: # Use custom sequence because this tokenizer does not handle numbers. UpperCAmelCase : str = [ """Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides """ """general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural """ """Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained """ """models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.""", """BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly """ """conditioning on both left and right context in all layers.""", """The quick brown fox jumps over the lazy dog.""", ] # fmt: off UpperCAmelCase : Any = { """input_ids""": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""microsoft/speecht5_asr""" , revision="""c5ef64c71905caeccde0e4462ef3f9077224c524""" , sequences=A , )
338
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Any = { """configuration_blip_2""": [ """BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Blip2Config""", """Blip2QFormerConfig""", """Blip2VisionConfig""", ], """processing_blip_2""": ["""Blip2Processor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ """BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Blip2Model""", """Blip2QFormerModel""", """Blip2PreTrainedModel""", """Blip2ForConditionalGeneration""", """Blip2VisionModel""", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys a : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu a : Optional[Any] = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def __lowerCamelCase ( _lowercase , _lowercase=None , _lowercase=None , _lowercase=None ) -> str: UpperCAmelCase : Dict = True while ask_again: UpperCAmelCase : Any = input(_lowercase ) try: if default is not None and len(_lowercase ) == 0: return default return convert_value(_lowercase ) if convert_value is not None else result except Exception: if error_message is not None: print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase=[] , _lowercase=None , _lowercase=0 ) -> List[str]: UpperCAmelCase : int = BulletMenu(_lowercase , _lowercase ) UpperCAmelCase : List[str] = menu.run(default_choice=_lowercase ) return convert_value(_lowercase ) if convert_value is not None else result def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : Any = int(_lowercase ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = int(_lowercase ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Optional[Any] = int(_lowercase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: UpperCAmelCase : int = int(_lowercase ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Optional[int] = int(_lowercase ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def __lowerCamelCase ( _lowercase ) -> str: return {"yes": True, "no": False}[value.lower()] class UpperCamelCase_ ( argparse.RawDescriptionHelpFormatter ): def _lowercase( self , A , A , A , A ) -> Dict: UpperCAmelCase : Optional[Any] = super()._format_usage(A , A , A , A ) UpperCAmelCase : Tuple = usage.replace("""<command> [<args>] """ , """""" ) return usage
338
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase_ ( __magic_name__ ): lowercase = ['image_processor', 'tokenizer'] lowercase = 'CLIPImageProcessor' lowercase = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , A=None , A=None , **A ) -> Union[str, Any]: UpperCAmelCase : int = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A , ) UpperCAmelCase : List[Any] = kwargs.pop("""feature_extractor""" ) UpperCAmelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A , A ) def __call__( self , A=None , A=None , A=None , **A ) -> Tuple: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: UpperCAmelCase : int = self.tokenizer(A , return_tensors=A , **A ) if images is not None: UpperCAmelCase : List[str] = self.image_processor(A , return_tensors=A , **A ) if text is not None and images is not None: UpperCAmelCase : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A ) , tensor_type=A ) def _lowercase( self , *A , **A ) -> str: return self.tokenizer.batch_decode(*A , **A ) def _lowercase( self , *A , **A ) -> List[str]: return self.tokenizer.decode(*A , **A ) @property def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = self.tokenizer.model_input_names UpperCAmelCase : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowercase( self ) -> Optional[int]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A , ) return self.image_processor_class @property def _lowercase( self ) -> Optional[int]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , A , ) return self.image_processor
338
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Dict = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys a : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> bool: if not isinstance(_lowercase , _lowercase ): UpperCAmelCase : List[str] = F'''Input value of [number={number}] must be an integer''' raise TypeError(_lowercase ) if number < 0: return False UpperCAmelCase : List[Any] = number * number while number > 0: if number % 1_0 != number_square % 1_0: return False number //= 1_0 number_square //= 1_0 return True if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
1
'''simple docstring''' from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging a : Optional[Any] = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A = 101 ) -> Tuple: UpperCAmelCase : Optional[int] = length def __len__( self ) -> str: return self.length def __getitem__( self , A ) -> int: return i class UpperCamelCase_ : def __call__( self , A ) -> int: return {"input_ids": torch.tensor(A ), "labels": torch.tensor(A )} class UpperCamelCase_ ( nn.Module ): def __init__( self ) -> Union[str, Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCAmelCase : Any = nn.Linear(120 , 80 ) def _lowercase( self , A , A=None ) -> int: if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class UpperCamelCase_ ( __magic_name__ ): @require_torch_neuroncore def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : str = f'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() UpperCAmelCase : Tuple = f'''--output_dir {output_dir}'''.split() UpperCAmelCase : Optional[int] = ["""torchrun"""] + distributed_args + args execute_subprocess_async(A , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class UpperCamelCase_ ( __magic_name__ ): @require_torch_multi_gpu def _lowercase( self ) -> Dict: UpperCAmelCase : Union[str, Any] = f'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() UpperCAmelCase : Union[str, Any] = f'''--output_dir {output_dir}'''.split() UpperCAmelCase : List[str] = ["""torchrun"""] + distributed_args + args execute_subprocess_async(A , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py a : List[Any] = HfArgumentParser((TrainingArguments,)) a : Optional[int] = parser.parse_args_into_dataclasses()[0] logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' F'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_0_1, 4_0, 7]: a : Dict = DummyDataset(dataset_length) def __lowerCamelCase ( _lowercase ) -> Dict: UpperCAmelCase : Dict = list(range(len(_lowercase ) ) ) UpperCAmelCase : Union[str, Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( """Predictions and/or labels do not match expected results:\n - predictions: """ F'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} a : Tuple = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) a : Any = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) a : List[str] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) a : List[str] = 2 a : Optional[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) a : Any = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) a : int = None
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
1
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a : str = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a : Any = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a : Dict = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a : Tuple = { """num_train_timesteps""": 4_0, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a : List[str] = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a : Any = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } def __lowerCamelCase ( _lowercase ) -> List[str]: if isinstance(_lowercase , _lowercase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=False ) -> int: UpperCAmelCase : str = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] UpperCAmelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] UpperCAmelCase : Any = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] UpperCAmelCase : Dict = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] UpperCAmelCase : Optional[int] = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] UpperCAmelCase : str = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] UpperCAmelCase : Tuple = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] UpperCAmelCase : Dict = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] UpperCAmelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] UpperCAmelCase : List[str] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: UpperCAmelCase : Tuple = checkpoint[F'''{old_prefix}.skip_connection.weight'''] UpperCAmelCase : Optional[int] = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) UpperCAmelCase : Tuple = checkpoint[F'''{old_prefix}.norm.weight'''] UpperCAmelCase : Optional[int] = checkpoint[F'''{old_prefix}.norm.bias'''] UpperCAmelCase : Optional[Any] = weight_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase : Any = bias_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase : str = weight_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase : str = bias_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase : str = weight_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase : Optional[int] = bias_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase : List[str] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) UpperCAmelCase : Optional[int] = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : int = torch.load(_lowercase , map_location="""cpu""" ) UpperCAmelCase : List[str] = {} UpperCAmelCase : Any = checkpoint["""time_embed.0.weight"""] UpperCAmelCase : Optional[int] = checkpoint["""time_embed.0.bias"""] UpperCAmelCase : Any = checkpoint["""time_embed.2.weight"""] UpperCAmelCase : List[Any] = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: UpperCAmelCase : List[str] = checkpoint["""label_emb.weight"""] UpperCAmelCase : Optional[int] = checkpoint["""input_blocks.0.0.weight"""] UpperCAmelCase : Dict = checkpoint["""input_blocks.0.0.bias"""] UpperCAmelCase : List[Any] = unet_config["""down_block_types"""] UpperCAmelCase : Optional[int] = unet_config["""layers_per_block"""] UpperCAmelCase : Union[str, Any] = unet_config["""attention_head_dim"""] UpperCAmelCase : Any = unet_config["""block_out_channels"""] UpperCAmelCase : Any = 1 UpperCAmelCase : str = channels_list[0] for i, layer_type in enumerate(_lowercase ): UpperCAmelCase : List[str] = channels_list[i] UpperCAmelCase : Optional[int] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_lowercase ): UpperCAmelCase : Union[str, Any] = F'''down_blocks.{i}.resnets.{j}''' UpperCAmelCase : int = F'''input_blocks.{current_layer}.0''' UpperCAmelCase : int = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase : Dict = convert_resnet(_lowercase , _lowercase , _lowercase , _lowercase , has_skip=_lowercase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_lowercase ): UpperCAmelCase : str = F'''down_blocks.{i}.resnets.{j}''' UpperCAmelCase : Union[str, Any] = F'''input_blocks.{current_layer}.0''' UpperCAmelCase : Dict = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase : str = convert_resnet(_lowercase , _lowercase , _lowercase , _lowercase , has_skip=_lowercase ) UpperCAmelCase : Union[str, Any] = F'''down_blocks.{i}.attentions.{j}''' UpperCAmelCase : Any = F'''input_blocks.{current_layer}.1''' UpperCAmelCase : Optional[Any] = convert_attention( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) current_layer += 1 if i != len(_lowercase ) - 1: UpperCAmelCase : Dict = F'''down_blocks.{i}.downsamplers.0''' UpperCAmelCase : Dict = F'''input_blocks.{current_layer}.0''' UpperCAmelCase : Optional[Any] = convert_resnet(_lowercase , _lowercase , _lowercase , _lowercase ) current_layer += 1 UpperCAmelCase : Any = current_channels # hardcoded the mid-block for now UpperCAmelCase : Any = """mid_block.resnets.0""" UpperCAmelCase : Any = """middle_block.0""" UpperCAmelCase : Any = convert_resnet(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[str] = """mid_block.attentions.0""" UpperCAmelCase : List[str] = """middle_block.1""" UpperCAmelCase : Union[str, Any] = convert_attention(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = """mid_block.resnets.1""" UpperCAmelCase : List[Any] = """middle_block.2""" UpperCAmelCase : Dict = convert_resnet(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[str] = 0 UpperCAmelCase : Optional[Any] = unet_config["""up_block_types"""] for i, layer_type in enumerate(_lowercase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase : str = F'''up_blocks.{i}.resnets.{j}''' UpperCAmelCase : Tuple = F'''output_blocks.{current_layer}.0''' UpperCAmelCase : int = convert_resnet(_lowercase , _lowercase , _lowercase , _lowercase , has_skip=_lowercase ) current_layer += 1 if i != len(_lowercase ) - 1: UpperCAmelCase : Dict = F'''up_blocks.{i}.upsamplers.0''' UpperCAmelCase : str = F'''output_blocks.{current_layer-1}.1''' UpperCAmelCase : Dict = convert_resnet(_lowercase , _lowercase , _lowercase , _lowercase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase : Union[str, Any] = F'''up_blocks.{i}.resnets.{j}''' UpperCAmelCase : List[str] = F'''output_blocks.{current_layer}.0''' UpperCAmelCase : Any = convert_resnet(_lowercase , _lowercase , _lowercase , _lowercase , has_skip=_lowercase ) UpperCAmelCase : int = F'''up_blocks.{i}.attentions.{j}''' UpperCAmelCase : Optional[int] = F'''output_blocks.{current_layer}.1''' UpperCAmelCase : Dict = convert_attention( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) current_layer += 1 if i != len(_lowercase ) - 1: UpperCAmelCase : List[str] = F'''up_blocks.{i}.upsamplers.0''' UpperCAmelCase : List[str] = F'''output_blocks.{current_layer-1}.2''' UpperCAmelCase : List[Any] = convert_resnet(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = checkpoint["""out.0.weight"""] UpperCAmelCase : Tuple = checkpoint["""out.0.bias"""] UpperCAmelCase : Dict = checkpoint["""out.2.weight"""] UpperCAmelCase : List[str] = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") a : List[str] = parser.parse_args() a : Any = strabool(args.class_cond) a : Union[str, Any] = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a : Any = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a : str = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a : str = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a : Tuple = None a : Tuple = con_pt_to_diffuser(args.unet_path, unet_config) a : Union[str, Any] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a : Optional[int] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a : int = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a : List[Any] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a : Any = CMStochasticIterativeScheduler(**scheduler_config) a : List[str] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
338
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
1
'''simple docstring''' import argparse a : Optional[int] = """docs/source/_static/js/custom.js""" def __lowerCamelCase ( _lowercase ) -> Tuple: with open(_lowercase , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase : List[str] = f.readlines() UpperCAmelCase : str = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 UpperCAmelCase : Optional[int] = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(_lowercase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") a : Any = parser.parse_args() update_custom_js(args.version)
338
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> list[int]: UpperCAmelCase : List[str] = int(_lowercase ) # Initialize Result UpperCAmelCase : Tuple = [] # Traverse through all denomination for denomination in reversed(_lowercase ): # Find denominations while int(_lowercase ) >= int(_lowercase ): total_value -= int(_lowercase ) answer.append(_lowercase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": a : Dict = [] a : Any = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): a : List[Any] = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) a : Optional[Any] = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter a : List[str] = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] a : int = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F'''Following is minimal change for {value}: ''') a : str = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a : int = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
1
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
1
'''simple docstring''' class UpperCamelCase_ : def __init__( self , A , A , A ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = name UpperCAmelCase : Any = value UpperCAmelCase : Dict = weight def __repr__( self ) -> List[Any]: return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def _lowercase( self ) -> str: return self.value def _lowercase( self ) -> Dict: return self.name def _lowercase( self ) -> Union[str, Any]: return self.weight def _lowercase( self ) -> List[Any]: return self.value / self.weight def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : List[Any] = [] for i in range(len(_lowercase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Any: UpperCAmelCase : List[Any] = sorted(_lowercase , key=_lowercase , reverse=_lowercase ) UpperCAmelCase : str = [] UpperCAmelCase , UpperCAmelCase : Optional[int] = 0.0, 0.0 for i in range(len(_lowercase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __lowerCamelCase ( ) -> Optional[int]: pass if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a : Optional[Any] = logging.get_logger(__name__) a : List[str] = { """microsoft/focalnet-tiny""": """https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ , __magic_name__ ): lowercase = 'focalnet' def __init__( self , A=224 , A=4 , A=3 , A=96 , A=False , A=[192, 384, 768, 768] , A=[2, 2, 6, 2] , A=[2, 2, 2, 2] , A=[3, 3, 3, 3] , A="gelu" , A=4.0 , A=0.0 , A=0.1 , A=False , A=1e-4 , A=False , A=False , A=False , A=0.0_2 , A=1e-5 , A=32 , A=None , A=None , **A , ) -> Any: super().__init__(**A ) UpperCAmelCase : str = image_size UpperCAmelCase : str = patch_size UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = embed_dim UpperCAmelCase : List[Any] = use_conv_embed UpperCAmelCase : Optional[Any] = hidden_sizes UpperCAmelCase : Optional[int] = depths UpperCAmelCase : str = focal_levels UpperCAmelCase : Any = focal_windows UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : str = mlp_ratio UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : Dict = drop_path_rate UpperCAmelCase : Tuple = use_layerscale UpperCAmelCase : List[str] = layerscale_value UpperCAmelCase : Tuple = use_post_layernorm UpperCAmelCase : Tuple = use_post_layernorm_in_modulation UpperCAmelCase : Optional[int] = normalize_modulator UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : Dict = layer_norm_eps UpperCAmelCase : List[str] = encoder_stride UpperCAmelCase : str = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] UpperCAmelCase , UpperCAmelCase : Optional[int] = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names )
338
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
1
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput a : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: warnings.warn( """The preprocess method is deprecated and will be removed in a future version. Please""" """ use VaeImageProcessor.preprocess instead""" , _lowercase , ) if isinstance(_lowercase , torch.Tensor ): return image elif isinstance(_lowercase , PIL.Image.Image ): UpperCAmelCase : int = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = image[0].size UpperCAmelCase , UpperCAmelCase : List[Any] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 UpperCAmelCase : Dict = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] UpperCAmelCase : str = np.concatenate(_lowercase , axis=0 ) UpperCAmelCase : str = np.array(_lowercase ).astype(np.floataa ) / 255.0 UpperCAmelCase : Union[str, Any] = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase : List[str] = 2.0 * image - 1.0 UpperCAmelCase : List[Any] = torch.from_numpy(_lowercase ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase : Tuple = torch.cat(_lowercase , dim=0 ) return image def __lowerCamelCase ( _lowercase ) -> List[Any]: if isinstance(_lowercase , torch.Tensor ): return mask elif isinstance(_lowercase , PIL.Image.Image ): UpperCAmelCase : Optional[Any] = [mask] if isinstance(mask[0] , PIL.Image.Image ): UpperCAmelCase , UpperCAmelCase : str = mask[0].size UpperCAmelCase , UpperCAmelCase : Optional[int] = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 UpperCAmelCase : Any = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask] UpperCAmelCase : Union[str, Any] = np.concatenate(_lowercase , axis=0 ) UpperCAmelCase : List[Any] = mask.astype(np.floataa ) / 255.0 UpperCAmelCase : List[Any] = 0 UpperCAmelCase : Dict = 1 UpperCAmelCase : Dict = torch.from_numpy(_lowercase ) elif isinstance(mask[0] , torch.Tensor ): UpperCAmelCase : Union[str, Any] = torch.cat(_lowercase , dim=0 ) return mask class UpperCamelCase_ ( __magic_name__ ): lowercase = 42 lowercase = 42 def __init__( self , A , A ) -> str: super().__init__() self.register_modules(unet=A , scheduler=A ) @torch.no_grad() def __call__( self , A , A , A = 250 , A = 0.0 , A = 10 , A = 10 , A = None , A = "pil" , A = True , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase : str = image UpperCAmelCase : Dict = _preprocess_image(A ) UpperCAmelCase : Optional[int] = original_image.to(device=self.device , dtype=self.unet.dtype ) UpperCAmelCase : str = _preprocess_mask(A ) UpperCAmelCase : List[str] = mask_image.to(device=self.device , dtype=self.unet.dtype ) UpperCAmelCase : Union[str, Any] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(A , A ) and len(A ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(A )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCAmelCase : str = original_image.shape UpperCAmelCase : Optional[Any] = randn_tensor(A , generator=A , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(A , A , A , self.device ) UpperCAmelCase : List[str] = eta UpperCAmelCase : Optional[int] = self.scheduler.timesteps[0] + 1 UpperCAmelCase : List[Any] = generator[0] if isinstance(A , A ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual UpperCAmelCase : List[Any] = self.unet(A , A ).sample # compute previous image: x_t -> x_t-1 UpperCAmelCase : str = self.scheduler.step(A , A , A , A , A , A ).prev_sample else: # compute the reverse: x_t-1 -> x_t UpperCAmelCase : Tuple = self.scheduler.undo_step(A , A , A ) UpperCAmelCase : str = t UpperCAmelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Optional[Any] = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
338
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: a : Dict = None a : Optional[int] = logging.get_logger(__name__) a : int = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} a : List[Any] = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } a : Dict = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } a : Dict = """▁""" # Segments (not really needed) a : Dict = 0 a : Any = 1 a : Optional[Any] = 2 a : Tuple = 3 a : str = 4 class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = 'left' lowercase = XLNetTokenizer def __init__( self , A=None , A=None , A=False , A=True , A=False , A="<s>" , A="</s>" , A="<unk>" , A="<sep>" , A="<pad>" , A="<cls>" , A="<mask>" , A=["<eop>", "<eod>"] , **A , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Any = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) UpperCAmelCase : Optional[Any] = 3 UpperCAmelCase : Union[str, Any] = do_lower_case UpperCAmelCase : str = remove_space UpperCAmelCase : List[str] = keep_accents UpperCAmelCase : str = vocab_file UpperCAmelCase : List[str] = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : str = [self.sep_token_id] UpperCAmelCase : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : Union[str, Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A=7 , A=3 , A=30 , A=400 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , A=True , A=1 / 255 , A=True , ) -> Optional[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCAmelCase : str = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} UpperCAmelCase : str = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = min_resolution UpperCAmelCase : str = max_resolution UpperCAmelCase : Dict = do_resize UpperCAmelCase : List[Any] = size UpperCAmelCase : List[str] = do_normalize UpperCAmelCase : str = image_mean UpperCAmelCase : Optional[Any] = image_std UpperCAmelCase : Dict = do_rescale UpperCAmelCase : Optional[Any] = rescale_factor UpperCAmelCase : Union[str, Any] = do_pad def _lowercase( self ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase( self , A , A=False ) -> Any: if not batched: UpperCAmelCase : List[str] = image_inputs[0] if isinstance(A , Image.Image ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = image.size else: UpperCAmelCase , UpperCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: UpperCAmelCase : Optional[Any] = int(self.size["""shortest_edge"""] * h / w ) UpperCAmelCase : Any = self.size["""shortest_edge"""] elif w > h: UpperCAmelCase : Dict = self.size["""shortest_edge"""] UpperCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * w / h ) else: UpperCAmelCase : Optional[int] = self.size["""shortest_edge"""] UpperCAmelCase : Tuple = self.size["""shortest_edge"""] else: UpperCAmelCase : Union[str, Any] = [] for image in image_inputs: UpperCAmelCase , UpperCAmelCase : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase : List[Any] = max(A , key=lambda A : item[0] )[0] UpperCAmelCase : Tuple = max(A , key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = ConditionalDetrImageProcessor if is_vision_available() else None def _lowercase( self ) -> Dict: UpperCAmelCase : Optional[int] = ConditionalDetrImageProcessingTester(self ) @property def _lowercase( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase( self ) -> List[Any]: UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , """image_mean""" ) ) self.assertTrue(hasattr(A , """image_std""" ) ) self.assertTrue(hasattr(A , """do_normalize""" ) ) self.assertTrue(hasattr(A , """do_resize""" ) ) self.assertTrue(hasattr(A , """size""" ) ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , A ) UpperCAmelCase : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , A ) def _lowercase( self ) -> str: pass def _lowercase( self ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input UpperCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase , UpperCAmelCase : str = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase , UpperCAmelCase : Any = self.image_processor_tester.get_expected_values(A , batched=A ) UpperCAmelCase : List[Any] = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase( self ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase , UpperCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase : Dict = image_processing(A , return_tensors="""pt""" ).pixel_values UpperCAmelCase , UpperCAmelCase : Tuple = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase( self ) -> Optional[int]: # Initialize image_processing UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input UpperCAmelCase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase , UpperCAmelCase : Tuple = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase : Tuple = image_processing(A , return_tensors="""pt""" ).pixel_values UpperCAmelCase , UpperCAmelCase : Dict = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase( self ) -> List[Any]: # prepare image and target UpperCAmelCase : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCAmelCase : str = json.loads(f.read() ) UpperCAmelCase : Optional[int] = {"""image_id""": 39769, """annotations""": target} # encode them UpperCAmelCase : Optional[int] = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" ) UpperCAmelCase : Tuple = image_processing(images=A , annotations=A , return_tensors="""pt""" ) # verify pixel values UpperCAmelCase : Dict = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , A ) UpperCAmelCase : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , A , atol=1e-4 ) ) # verify area UpperCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , A ) ) # verify boxes UpperCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , A ) UpperCAmelCase : Any = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , A , atol=1e-3 ) ) # verify image_id UpperCAmelCase : Union[str, Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , A ) ) # verify is_crowd UpperCAmelCase : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , A ) ) # verify class_labels UpperCAmelCase : Tuple = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , A ) ) # verify orig_size UpperCAmelCase : Any = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , A ) ) # verify size UpperCAmelCase : Dict = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , A ) ) @slow def _lowercase( self ) -> Optional[Any]: # prepare image, target and masks_path UpperCAmelCase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCAmelCase : str = json.loads(f.read() ) UpperCAmelCase : Tuple = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} UpperCAmelCase : Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCAmelCase : str = ConditionalDetrImageProcessor(format="""coco_panoptic""" ) UpperCAmelCase : Any = image_processing(images=A , annotations=A , masks_path=A , return_tensors="""pt""" ) # verify pixel values UpperCAmelCase : List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , A ) UpperCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , A , atol=1e-4 ) ) # verify area UpperCAmelCase : Dict = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , A ) ) # verify boxes UpperCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , A ) UpperCAmelCase : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , A , atol=1e-3 ) ) # verify image_id UpperCAmelCase : Dict = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , A ) ) # verify is_crowd UpperCAmelCase : int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , A ) ) # verify class_labels UpperCAmelCase : int = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , A ) ) # verify masks UpperCAmelCase : Optional[Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , A ) # verify orig_size UpperCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , A ) ) # verify size UpperCAmelCase : Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , A ) )
338
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( __magic_name__ ): lowercase = (DEISMultistepScheduler,) lowercase = (('num_inference_steps', 25),) def _lowercase( self , **A ) -> str: UpperCAmelCase : Any = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """solver_order""": 2, } config.update(**A ) return config def _lowercase( self , A=0 , **A ) -> Any: UpperCAmelCase : str = dict(self.forward_default_kwargs ) UpperCAmelCase : Any = kwargs.pop("""num_inference_steps""" , A ) UpperCAmelCase : List[Any] = self.dummy_sample UpperCAmelCase : Optional[int] = 0.1 * sample UpperCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase : Optional[int] = self.get_scheduler_config(**A ) UpperCAmelCase : str = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals UpperCAmelCase : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) UpperCAmelCase : Dict = scheduler_class.from_pretrained(A ) new_scheduler.set_timesteps(A ) # copy over dummy past residuals UpperCAmelCase : Any = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase , UpperCAmelCase : Optional[Any] = sample, sample for t in range(A , time_step + scheduler.config.solver_order + 1 ): UpperCAmelCase : int = scheduler.step(A , A , A , **A ).prev_sample UpperCAmelCase : Any = new_scheduler.step(A , A , A , **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowercase( self ) -> Optional[Any]: pass def _lowercase( self , A=0 , **A ) -> Optional[Any]: UpperCAmelCase : Optional[int] = dict(self.forward_default_kwargs ) UpperCAmelCase : Union[str, Any] = kwargs.pop("""num_inference_steps""" , A ) UpperCAmelCase : Optional[int] = self.dummy_sample UpperCAmelCase : Tuple = 0.1 * sample UpperCAmelCase : Any = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase : Any = self.get_scheduler_config() UpperCAmelCase : str = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) UpperCAmelCase : Optional[int] = scheduler_class.from_pretrained(A ) # copy over dummy past residuals new_scheduler.set_timesteps(A ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase : List[str] = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase : int = scheduler.step(A , A , A , **A ).prev_sample UpperCAmelCase : Tuple = new_scheduler.step(A , A , A , **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowercase( self , A=None , **A ) -> int: if scheduler is None: UpperCAmelCase : List[str] = self.scheduler_classes[0] UpperCAmelCase : Optional[Any] = self.get_scheduler_config(**A ) UpperCAmelCase : int = scheduler_class(**A ) UpperCAmelCase : List[Any] = self.scheduler_classes[0] UpperCAmelCase : Dict = self.get_scheduler_config(**A ) UpperCAmelCase : Any = scheduler_class(**A ) UpperCAmelCase : Any = 10 UpperCAmelCase : int = self.dummy_model() UpperCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : List[str] = model(A , A ) UpperCAmelCase : str = scheduler.step(A , A , A ).prev_sample return sample def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase : List[str] = kwargs.pop("""num_inference_steps""" , A ) for scheduler_class in self.scheduler_classes: UpperCAmelCase : Union[str, Any] = self.get_scheduler_config() UpperCAmelCase : Any = scheduler_class(**A ) UpperCAmelCase : str = self.dummy_sample UpperCAmelCase : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(A , """set_timesteps""" ): scheduler.set_timesteps(A ) elif num_inference_steps is not None and not hasattr(A , """set_timesteps""" ): UpperCAmelCase : Optional[int] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase : List[str] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] UpperCAmelCase : int = dummy_past_residuals[: scheduler.config.solver_order] UpperCAmelCase : Optional[int] = scheduler.timesteps[5] UpperCAmelCase : List[Any] = scheduler.timesteps[6] UpperCAmelCase : Dict = scheduler.step(A , A , A , **A ).prev_sample UpperCAmelCase : Tuple = scheduler.step(A , A , A , **A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowercase( self ) -> List[str]: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase : int = DEISMultistepScheduler(**self.get_scheduler_config() ) UpperCAmelCase : int = self.full_loop(scheduler=A ) UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 UpperCAmelCase : Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase : int = DEISMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase : Optional[Any] = self.full_loop(scheduler=A ) UpperCAmelCase : str = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def _lowercase( self ) -> List[str]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=A ) def _lowercase( self ) -> Tuple: self.check_over_configs(thresholding=A ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=A , prediction_type=A , sample_max_value=A , algorithm_type="""deis""" , solver_order=A , solver_type=A , ) def _lowercase( self ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def _lowercase( self ) -> Union[str, Any]: for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=A , solver_type=A , prediction_type=A , algorithm_type=A , ) UpperCAmelCase : Dict = self.full_loop( solver_order=A , solver_type=A , prediction_type=A , algorithm_type=A , ) assert not torch.isnan(A ).any(), "Samples have nan numbers" def _lowercase( self ) -> List[Any]: self.check_over_configs(lower_order_final=A ) self.check_over_configs(lower_order_final=A ) def _lowercase( self ) -> Any: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=A , time_step=0 ) def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = self.full_loop() UpperCAmelCase : Any = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def _lowercase( self ) -> List[Any]: UpperCAmelCase : Tuple = self.full_loop(prediction_type="""v_prediction""" ) UpperCAmelCase : Tuple = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.0_9_1 ) < 1e-3 def _lowercase( self ) -> Optional[int]: UpperCAmelCase : List[Any] = self.scheduler_classes[0] UpperCAmelCase : List[Any] = self.get_scheduler_config(thresholding=A , dynamic_thresholding_ratio=0 ) UpperCAmelCase : Any = scheduler_class(**A ) UpperCAmelCase : List[Any] = 10 UpperCAmelCase : List[Any] = self.dummy_model() UpperCAmelCase : List[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Any = model(A , A ) UpperCAmelCase : Tuple = scheduler.step(A , A , A ).prev_sample assert sample.dtype == torch.floataa
338
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a : Optional[int] = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a : Tuple = logging.get_logger(__name__) a : int = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} a : Optional[Any] = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } a : List[Any] = { """gpt-neox-20b""": 2_0_4_8, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self , A=None , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , **A , ) -> Any: super().__init__( A , A , tokenizer_file=A , unk_token=A , bos_token=A , eos_token=A , add_prefix_space=A , **A , ) UpperCAmelCase : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , A ) != add_prefix_space: UpperCAmelCase : Any = getattr(A , pre_tok_state.pop("""type""" ) ) UpperCAmelCase : Dict = add_prefix_space UpperCAmelCase : Optional[Any] = pre_tok_class(**A ) UpperCAmelCase : int = add_prefix_space def _lowercase( self , A , A = None ) -> Tuple[str]: UpperCAmelCase : str = self._tokenizer.model.save(A , name=A ) return tuple(A ) def _lowercase( self , A ) -> List[int]: UpperCAmelCase : Optional[int] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(A , add_special_tokens=A ) + [self.eos_token_id] ) if len(A ) > self.model_max_length: UpperCAmelCase : str = input_ids[-self.model_max_length :] return input_ids
338
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
1
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0 , _lowercase = 1_0 ) -> int: UpperCAmelCase : defaultdict = defaultdict(_lowercase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCAmelCase : Optional[Any] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCAmelCase : Tuple = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_lowercase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(F'''{solution() = }''')
338
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
1
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
350
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
0
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase_ ( A__ , unittest.TestCase ): lowercase = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def _lowercase( self , A=0 ) -> int: UpperCAmelCase : Tuple = np.random.RandomState(__A ) UpperCAmelCase : List[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=__A ) UpperCAmelCase : Any = self.get_dummy_inputs() UpperCAmelCase : List[Any] = pipe(**__A ).images UpperCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase : List[Any] = np.array([0.6_5_0_7_2, 0.5_8_4_9_2, 0.4_8_2_1_9, 0.5_5_5_2_1, 0.5_3_1_8_0, 0.5_5_9_3_9, 0.5_0_6_9_7, 0.3_9_8_0_0, 0.4_6_4_5_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCAmelCase : Union[str, Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__A ) pipe.set_progress_bar_config(disable=__A ) UpperCAmelCase : List[str] = self.get_dummy_inputs() UpperCAmelCase : Optional[int] = pipe(**__A ).images UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase : List[Any] = np.array([0.6_5_8_6_3, 0.5_9_4_2_5, 0.4_9_3_2_6, 0.5_6_3_1_3, 0.5_3_8_7_5, 0.5_6_6_2_7, 0.5_1_0_6_5, 0.3_9_7_7_7, 0.4_6_3_3_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase( self ) -> Any: UpperCAmelCase : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCAmelCase : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__A ) UpperCAmelCase : Optional[Any] = self.get_dummy_inputs() UpperCAmelCase : Union[str, Any] = pipe(**__A ).images UpperCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase : Any = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase( self ) -> List[Any]: UpperCAmelCase : int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCAmelCase : Optional[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__A ) UpperCAmelCase : List[str] = self.get_dummy_inputs() UpperCAmelCase : List[Any] = pipe(**__A ).images UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase : List[str] = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase( self ) -> Any: UpperCAmelCase : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCAmelCase : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__A ) UpperCAmelCase : Dict = self.get_dummy_inputs() UpperCAmelCase : Optional[int] = pipe(**__A ).images UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase : int = np.array([0.5_3_8_1_7, 0.6_0_8_1_2, 0.4_7_3_8_4, 0.4_9_5_3_0, 0.5_1_8_9_4, 0.4_9_8_1_4, 0.4_7_9_8_4, 0.3_8_9_5_8, 0.4_4_2_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase( self ) -> int: UpperCAmelCase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCAmelCase : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__A ) UpperCAmelCase : List[Any] = self.get_dummy_inputs() UpperCAmelCase : Union[str, Any] = pipe(**__A ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase : Optional[Any] = np.array([0.5_3_8_9_5, 0.6_0_8_0_8, 0.4_7_9_3_3, 0.4_9_6_0_8, 0.5_1_8_8_6, 0.4_9_9_5_0, 0.4_8_0_5_3, 0.3_8_9_5_7, 0.4_4_2_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase( self ) -> str: UpperCAmelCase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=__A ) UpperCAmelCase : str = self.get_dummy_inputs() UpperCAmelCase : Tuple = 3 * [inputs["""prompt"""]] # forward UpperCAmelCase : Tuple = pipe(**__A ) UpperCAmelCase : Any = output.images[0, -3:, -3:, -1] UpperCAmelCase : List[Any] = self.get_dummy_inputs() UpperCAmelCase : Any = 3 * [inputs.pop("""prompt""" )] UpperCAmelCase : Optional[int] = pipe.tokenizer( __A , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=__A , return_tensors="""np""" , ) UpperCAmelCase : Dict = text_inputs["""input_ids"""] UpperCAmelCase : str = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] UpperCAmelCase : Optional[int] = prompt_embeds # forward UpperCAmelCase : Union[str, Any] = pipe(**__A ) UpperCAmelCase : List[str] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _lowercase( self ) -> str: UpperCAmelCase : Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=__A ) UpperCAmelCase : List[Any] = self.get_dummy_inputs() UpperCAmelCase : Union[str, Any] = 3 * ["""this is a negative prompt"""] UpperCAmelCase : List[Any] = negative_prompt UpperCAmelCase : Optional[Any] = 3 * [inputs["""prompt"""]] # forward UpperCAmelCase : str = pipe(**__A ) UpperCAmelCase : Any = output.images[0, -3:, -3:, -1] UpperCAmelCase : List[Any] = self.get_dummy_inputs() UpperCAmelCase : Any = 3 * [inputs.pop("""prompt""" )] UpperCAmelCase : Optional[Any] = [] for p in [prompt, negative_prompt]: UpperCAmelCase : Union[str, Any] = pipe.tokenizer( __A , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=__A , return_tensors="""np""" , ) UpperCAmelCase : List[Any] = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) UpperCAmelCase : List[str] = embeds # forward UpperCAmelCase : Union[str, Any] = pipe(**__A ) UpperCAmelCase : Union[str, Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): @property def _lowercase( self ) -> List[Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = ort.SessionOptions() UpperCAmelCase : Optional[Any] = False return options def _lowercase( self ) -> Dict: # using the PNDM scheduler by default UpperCAmelCase : Dict = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=__A , feature_extractor=__A , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__A ) UpperCAmelCase : Dict = """A painting of a squirrel eating a burger""" np.random.seed(0 ) UpperCAmelCase : Any = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) UpperCAmelCase : List[Any] = output.images UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_5_2, 0.0_3_9_0, 0.0_0_8_7, 0.0_3_5_0, 0.0_6_1_7, 0.0_3_6_4, 0.0_5_4_4, 0.0_5_2_3, 0.0_7_2_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase( self ) -> Tuple: UpperCAmelCase : int = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) UpperCAmelCase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=__A , safety_checker=__A , feature_extractor=__A , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__A ) UpperCAmelCase : Any = """open neural network exchange""" UpperCAmelCase : str = np.random.RandomState(0 ) UpperCAmelCase : int = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=__A , output_type="""np""" ) UpperCAmelCase : Optional[int] = output.images UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Tuple = np.array([0.2_8_6_7, 0.1_9_7_4, 0.1_4_8_1, 0.7_2_9_4, 0.7_2_5_1, 0.6_6_6_7, 0.4_1_9_4, 0.5_6_4_2, 0.6_4_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase( self ) -> str: UpperCAmelCase : List[Any] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) UpperCAmelCase : int = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=__A , safety_checker=__A , feature_extractor=__A , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__A ) UpperCAmelCase : Dict = """open neural network exchange""" UpperCAmelCase : str = np.random.RandomState(0 ) UpperCAmelCase : str = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=__A , output_type="""np""" ) UpperCAmelCase : Dict = output.images UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Optional[int] = np.array([0.2_3_0_6, 0.1_9_5_9, 0.1_5_9_3, 0.6_5_4_9, 0.6_3_9_4, 0.5_4_0_8, 0.5_0_6_5, 0.6_0_1_0, 0.6_1_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase( self ) -> Tuple: UpperCAmelCase : List[Any] = 0 def test_callback_fn(A , A , A ) -> None: UpperCAmelCase : Dict = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) UpperCAmelCase : Union[str, Any] = latents[0, -3:, -3:, -1] UpperCAmelCase : List[str] = np.array( [-0.6_7_7_2, -0.3_8_3_5, -1.2_4_5_6, 0.1_9_0_5, -1.0_9_7_4, 0.6_9_6_7, -1.9_3_5_3, 0.0_1_7_8, 1.0_1_6_7] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) UpperCAmelCase : Union[str, Any] = latents[0, -3:, -3:, -1] UpperCAmelCase : Dict = np.array( [-0.3_3_5_1, 0.2_2_4_1, -0.1_8_3_7, -0.2_3_2_5, -0.6_5_7_7, 0.3_3_9_3, -0.0_2_4_1, 0.5_8_9_9, 1.3_8_7_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 UpperCAmelCase : List[str] = False UpperCAmelCase : List[str] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=__A , feature_extractor=__A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__A ) UpperCAmelCase : Optional[Any] = """Andromeda galaxy in a bottle""" UpperCAmelCase : Dict = np.random.RandomState(0 ) pipe( prompt=__A , num_inference_steps=5 , guidance_scale=7.5 , generator=__A , callback=__A , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _lowercase( self ) -> List[str]: UpperCAmelCase : List[str] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=__A , feature_extractor=__A , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(__A , __A ) assert pipe.safety_checker is None UpperCAmelCase : str = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__A ) UpperCAmelCase : int = OnnxStableDiffusionPipeline.from_pretrained(__A ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase : Optional[int] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
351
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Any = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0 ) -> int: UpperCAmelCase : Any = set(range(3 , __lowerCAmelCase , 2 ) ) primes.add(2 ) for p in range(3 , __lowerCAmelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , __lowerCAmelCase , __lowerCAmelCase ) ) ) UpperCAmelCase : str = [float(__lowerCAmelCase ) for n in range(limit + 1 )] for p in primes: for n in range(__lowerCAmelCase , limit + 1 , __lowerCAmelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
353
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Dict: UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Any = is_training UpperCAmelCase : Optional[int] = use_input_mask UpperCAmelCase : str = use_token_type_ids UpperCAmelCase : Any = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Any = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : Tuple = attention_probs_dropout_prob UpperCAmelCase : Optional[Any] = max_position_embeddings UpperCAmelCase : Dict = type_vocab_size UpperCAmelCase : List[Any] = type_sequence_label_size UpperCAmelCase : int = initializer_range UpperCAmelCase : Optional[int] = num_labels UpperCAmelCase : Tuple = num_choices UpperCAmelCase : Optional[Any] = scope def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : List[str] = None if self.use_input_mask: UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : List[str] = None if self.use_token_type_ids: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Tuple = None UpperCAmelCase : List[str] = None UpperCAmelCase : int = None if self.use_labels: UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> List[str]: return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = NystromformerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase : List[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) UpperCAmelCase : Tuple = model(_lowerCamelCase , token_type_ids=_lowerCamelCase ) UpperCAmelCase : Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A ) -> Any: UpperCAmelCase : Optional[int] = NystromformerForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase : Tuple = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A ) -> Dict: UpperCAmelCase : Optional[Any] = NystromformerForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase : List[str] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase( self , A , A , A , A , A , A , A ) -> List[Any]: UpperCAmelCase : List[Any] = self.num_labels UpperCAmelCase : Tuple = NystromformerForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase : int = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A , A , A , A , A ) -> Tuple: UpperCAmelCase : Union[str, Any] = self.num_labels UpperCAmelCase : int = NystromformerForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase : Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase( self , A , A , A , A , A , A , A ) -> List[str]: UpperCAmelCase : Dict = self.num_choices UpperCAmelCase : Optional[int] = NystromformerForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( UpperCAmelCase ) : Tuple = config_and_inputs UpperCAmelCase : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( a__ , a__ , unittest.TestCase ): lowercase = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) lowercase = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : List[Any] = NystromformerModelTester(self ) UpperCAmelCase : int = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def _lowercase( self ) -> int: self.config_tester.run_common_tests() def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : Any = type self.model_tester.create_and_check_model(*_lowerCamelCase ) def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def _lowercase( self ) -> Dict: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCamelCase ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) def _lowercase( self ) -> int: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @slow def _lowercase( self ) -> List[str]: for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] = NystromformerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> List[str]: UpperCAmelCase : List[Any] = NystromformerModel.from_pretrained("""uw-madison/nystromformer-512""" ) UpperCAmelCase : Optional[int] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): UpperCAmelCase : str = model(_lowerCamelCase )[0] UpperCAmelCase : int = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , _lowerCamelCase ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[[-0.4_5_3_2, -0.0_9_3_6, 0.5_1_3_7], [-0.2_6_7_6, 0.0_6_2_8, 0.6_1_8_6], [-0.3_6_2_9, -0.1_7_2_6, 0.4_7_1_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow def _lowercase( self ) -> str: UpperCAmelCase : List[Any] = '''the [MASK] of Belgium is Brussels''' UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""uw-madison/nystromformer-512""" ) UpperCAmelCase : Dict = NystromformerForMaskedLM.from_pretrained("""uw-madison/nystromformer-512""" ) UpperCAmelCase : Optional[int] = tokenizer(_lowerCamelCase , return_tensors="""pt""" ) with torch.no_grad(): UpperCAmelCase : Optional[int] = model(encoding.input_ids ).logits UpperCAmelCase : Optional[int] = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(_lowerCamelCase ) , """capital""" )
354
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
0
from typing import Any def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> Optional[int]: _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step UpperCAmelCase : dict = {} UpperCAmelCase : dict = {} for state in states_space: UpperCAmelCase : List[str] = observations_space[0] UpperCAmelCase : Union[str, Any] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) UpperCAmelCase : Union[str, Any] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): UpperCAmelCase : List[Any] = observations_space[o] UpperCAmelCase : List[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function UpperCAmelCase : Tuple = '' UpperCAmelCase : Tuple = -1 for k_state in states_space: UpperCAmelCase : Dict = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: UpperCAmelCase : Any = probability UpperCAmelCase : Optional[int] = k_state # Update probabilities and pointers dicts UpperCAmelCase : str = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) UpperCAmelCase : Any = arg_max # The final observation UpperCAmelCase : str = observations_space[len(__a ) - 1] # argmax for given final observation UpperCAmelCase : str = '' UpperCAmelCase : Any = -1 for k_state in states_space: UpperCAmelCase : int = probabilities[(k_state, final_observation)] if probability > max_probability: UpperCAmelCase : Tuple = probability UpperCAmelCase : Optional[int] = k_state UpperCAmelCase : str = arg_max # Process pointers backwards UpperCAmelCase : Union[str, Any] = last_state UpperCAmelCase : Optional[int] = [] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) UpperCAmelCase : List[Any] = pointers[previous, observations_space[o]] result.reverse() return result def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> Dict: _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> str: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("""There\'s an empty parameter""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Dict: _validate_list(__a , """observations_space""" ) _validate_list(__a , """states_space""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: if not isinstance(_object , __a ): UpperCAmelCase : Any = F'''{var_name} must be a list''' raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): UpperCAmelCase : Union[str, Any] = F'''{var_name} must be a list of strings''' raise ValueError(__a ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , ) -> Tuple: _validate_dict(__a , """initial_probabilities""" , __a ) _validate_nested_dict(__a , """transition_probabilities""" ) _validate_nested_dict(__a , """emission_probabilities""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> List[Any]: _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase = False ) -> List[Any]: if not isinstance(_object , __a ): UpperCAmelCase : List[Any] = F'''{var_name} must be a dict''' raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): UpperCAmelCase : Union[str, Any] = F'''{var_name} all keys must be strings''' raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): UpperCAmelCase : str = 'nested dictionary ' if nested else '' UpperCAmelCase : Union[str, Any] = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a : Tuple = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
356
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
0
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> List[Any]: UpperCAmelCase : Dict = 10 def _lowercase( self ) -> List[str]: UpperCAmelCase : List[Any] = [1, 2, 3, 4] UpperCAmelCase : Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0 ) , _snake_case ) def _lowercase( self ) -> int: UpperCAmelCase : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0 ) , _snake_case ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Union[str, Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0 ) , _snake_case ) def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" UpperCAmelCase , UpperCAmelCase : Tuple = process_story(_snake_case ) self.assertEqual(_snake_case , [] ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : int = """""" UpperCAmelCase , UpperCAmelCase : Union[str, Any] = process_story(_snake_case ) self.assertEqual(_snake_case , [] ) self.assertEqual(_snake_case , [] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = process_story(_snake_case ) UpperCAmelCase : Any = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(_snake_case , _snake_case ) UpperCAmelCase : int = ["""It was the best of times."""] self.assertEqual(_snake_case , _snake_case ) def _lowercase( self ) -> int: UpperCAmelCase : str = torch.tensor([1, 2, 3, 4] ) UpperCAmelCase : int = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_snake_case , 0 ).numpy() , expected.numpy() ) def _lowercase( self ) -> Dict: UpperCAmelCase : Optional[int] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) UpperCAmelCase : Dict = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_snake_case , 23 ).numpy() , expected.numpy() ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) UpperCAmelCase : Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_snake_case , 1 ).numpy() , expected.numpy() ) def _lowercase( self ) -> Tuple: UpperCAmelCase : int = 101 UpperCAmelCase : Tuple = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) UpperCAmelCase : Union[str, Any] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) UpperCAmelCase : Union[str, Any] = compute_token_type_ids(_snake_case , _snake_case ) np.testing.assert_array_equal(_snake_case , _snake_case )
357
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> int: return int((input_a, input_a).count(0 ) == 0 ) def __lowerCamelCase ( ) -> List[Any]: assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
358
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
0
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json a : str = """sshleifer/mar_enro_6_3_student""" class UpperCamelCase_ ( __A ): def _lowercase( self ) -> str: super().setUp() UpperCAmelCase : Union[str, Any] = cached_path( """https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" , extract_compressed_file=__lowercase , ) UpperCAmelCase : Optional[int] = f'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def _lowercase( self ) -> Union[str, Any]: MarianMTModel.from_pretrained(__lowercase ) @slow @require_torch_gpu def _lowercase( self ) -> Dict: UpperCAmelCase : Any = { """$MAX_LEN""": 64, """$BS""": 64, """$GAS""": 1, """$ENRO_DIR""": self.data_dir, """facebook/mbart-large-cc25""": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", """--learning_rate=3e-5""": """--learning_rate 3e-4""", """--num_train_epochs 6""": """--num_train_epochs 1""", } # Clean up bash script UpperCAmelCase : Tuple = (self.test_file_dir / """train_mbart_cc25_enro.sh""").open().read().split("""finetune.py""" )[1].strip() UpperCAmelCase : Any = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) for k, v in env_vars_to_replace.items(): UpperCAmelCase : List[str] = bash_script.replace(__lowercase , str(__lowercase ) ) UpperCAmelCase : List[str] = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") UpperCAmelCase : List[str] = f''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future UpperCAmelCase : Union[str, Any] = ["""finetune.py"""] + bash_script.split() + args with patch.object(__lowercase , """argv""" , __lowercase ): UpperCAmelCase : Tuple = argparse.ArgumentParser() UpperCAmelCase : Optional[Any] = pl.Trainer.add_argparse_args(__lowercase ) UpperCAmelCase : str = SummarizationModule.add_model_specific_args(__lowercase , os.getcwd() ) UpperCAmelCase : Dict = parser.parse_args() UpperCAmelCase : List[Any] = main(__lowercase ) # Check metrics UpperCAmelCase : List[Any] = load_json(model.metrics_save_path ) UpperCAmelCase : Optional[int] = metrics["""val"""][0] UpperCAmelCase : int = metrics["""val"""][-1] self.assertEqual(len(metrics["""val"""] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f'''val_avg_{model.val_metric}'''] , __lowercase ) self.assertGreater(last_step_stats["""val_avg_gen_time"""] , 0.0_1 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["""val_avg_bleu"""] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase : Any = os.listdir(__lowercase ) UpperCAmelCase : Dict = [x for x in contents if x.endswith(""".ckpt""" )][0] UpperCAmelCase : Dict = os.path.join(args.output_dir , __lowercase ) UpperCAmelCase : Optional[int] = torch.load(__lowercase , map_location="""cpu""" ) UpperCAmelCase : Any = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase : str = {os.path.basename(__lowercase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1 class UpperCamelCase_ ( __A ): @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def _lowercase( self ) -> Dict: UpperCAmelCase : Union[str, Any] = f'''{self.test_file_dir_str}/test_data/wmt_en_ro''' UpperCAmelCase : Tuple = { """--fp16_opt_level=O1""": """""", """$MAX_LEN""": 128, """$BS""": 16, """$GAS""": 1, """$ENRO_DIR""": data_dir, """$m""": """sshleifer/student_marian_en_ro_6_1""", """val_check_interval=0.25""": """val_check_interval=1.0""", } # Clean up bash script UpperCAmelCase : Optional[Any] = ( (self.test_file_dir / """distil_marian_no_teacher.sh""").open().read().split("""distillation.py""" )[1].strip() ) UpperCAmelCase : Dict = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) UpperCAmelCase : Optional[int] = bash_script.replace("""--fp16 """ , """ """ ) for k, v in env_vars_to_replace.items(): UpperCAmelCase : Optional[int] = bash_script.replace(__lowercase , str(__lowercase ) ) UpperCAmelCase : int = self.get_auto_remove_tmp_dir() UpperCAmelCase : List[str] = bash_script.replace("""--fp16""" , """""" ) UpperCAmelCase : List[Any] = 6 UpperCAmelCase : List[str] = ( ["""distillation.py"""] + bash_script.split() + [ f'''--output_dir={output_dir}''', """--gpus=1""", """--learning_rate=1e-3""", f'''--num_train_epochs={epochs}''', """--warmup_steps=10""", """--val_check_interval=1.0""", """--do_predict""", ] ) with patch.object(__lowercase , """argv""" , __lowercase ): UpperCAmelCase : Tuple = argparse.ArgumentParser() UpperCAmelCase : Union[str, Any] = pl.Trainer.add_argparse_args(__lowercase ) UpperCAmelCase : List[str] = SummarizationDistiller.add_model_specific_args(__lowercase , os.getcwd() ) UpperCAmelCase : str = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu UpperCAmelCase : int = distill_main(__lowercase ) # Check metrics UpperCAmelCase : Union[str, Any] = load_json(model.metrics_save_path ) UpperCAmelCase : List[Any] = metrics["""val"""][0] UpperCAmelCase : Dict = metrics["""val"""][-1] assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.0_1 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f'''val_avg_{model.val_metric}'''] , __lowercase ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase : Optional[int] = os.listdir(__lowercase ) UpperCAmelCase : Optional[Any] = [x for x in contents if x.endswith(""".ckpt""" )][0] UpperCAmelCase : List[str] = os.path.join(args.output_dir , __lowercase ) UpperCAmelCase : str = torch.load(__lowercase , map_location="""cpu""" ) UpperCAmelCase : str = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase : Dict = {os.path.basename(__lowercase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCamelCase_ : def _lowercase( self , A ) -> Dict: raise NotImplementedError() def _lowercase( self ) -> Union[str, Any]: raise NotImplementedError() class UpperCamelCase_ ( A_ ): def __init__( self , A , A = False , **A ) -> str: UpperCAmelCase : str = tokenizer UpperCAmelCase : List[Any] = skip_prompt UpperCAmelCase : List[str] = decode_kwargs # variables used in the streaming process UpperCAmelCase : Tuple = [] UpperCAmelCase : List[str] = 0 UpperCAmelCase : Optional[int] = True def _lowercase( self , A ) -> Optional[int]: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: UpperCAmelCase : Dict = value[0] if self.skip_prompt and self.next_tokens_are_prompt: UpperCAmelCase : str = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) UpperCAmelCase : Union[str, Any] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): UpperCAmelCase : Dict = text[self.print_len :] UpperCAmelCase : Dict = [] UpperCAmelCase : Optional[Any] = 0 # If the last token is a CJK character, we print the characters. elif len(snake_case__ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): UpperCAmelCase : str = text[self.print_len :] self.print_len += len(snake_case__ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: UpperCAmelCase : int = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(snake_case__ ) self.on_finalized_text(snake_case__ ) def _lowercase( self ) -> List[Any]: if len(self.token_cache ) > 0: UpperCAmelCase : Dict = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) UpperCAmelCase : int = text[self.print_len :] UpperCAmelCase : Tuple = [] UpperCAmelCase : Dict = 0 else: UpperCAmelCase : Tuple = "" UpperCAmelCase : List[str] = True self.on_finalized_text(snake_case__ , stream_end=snake_case__ ) def _lowercase( self , A , A = False ) -> Tuple: print(snake_case__ , flush=snake_case__ , end="""""" if not stream_end else None ) def _lowercase( self , A ) -> Optional[int]: if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X20000 and cp <= 0X2a6df) # or (cp >= 0X2a700 and cp <= 0X2b73f) # or (cp >= 0X2b740 and cp <= 0X2b81f) # or (cp >= 0X2b820 and cp <= 0X2ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2f800 and cp <= 0X2fa1f) # ): # return True return False class UpperCamelCase_ ( A_ ): def __init__( self , A , A = False , A = None , **A ) -> List[Any]: super().__init__(snake_case__ , snake_case__ , **snake_case__ ) UpperCAmelCase : Tuple = Queue() UpperCAmelCase : Dict = None UpperCAmelCase : Dict = timeout def _lowercase( self , A , A = False ) -> List[str]: self.text_queue.put(snake_case__ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ) -> Tuple: return self def _lowercase( self ) -> int: UpperCAmelCase : Any = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
360
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
0
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a : Any = TypeVar("""T""") class UpperCamelCase_ ( Generic[T] ): lowercase = 42 # Cache store of keys lowercase = 42 # References of the keys in cache lowercase = 10 # Maximum capacity of cache def __init__( self , A ) -> Optional[int]: UpperCAmelCase : int = deque() UpperCAmelCase : Optional[int] = set() if not n: UpperCAmelCase : List[Any] = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: UpperCAmelCase : Optional[Any] = n def _lowercase( self , A ) -> Tuple: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Any = self.dq_store.pop() self.key_reference.remove(_a ) else: self.dq_store.remove(_a ) self.dq_store.appendleft(_a ) self.key_reference.add(_a ) def _lowercase( self ) -> Optional[int]: for k in self.dq_store: print(_a ) def __repr__( self ) -> Union[str, Any]: return f'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() a : Optional[Any] = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
361
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
0
'''simple docstring''' from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class UpperCamelCase_ ( __magic_name__ ): lowercase = 'philschmid/bart-large-cnn-samsum' lowercase = ( 'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ' 'and returns a summary of the text.' ) lowercase = 'summarizer' lowercase = AutoTokenizer lowercase = AutoModelForSeqaSeqLM lowercase = ['text'] lowercase = ['text'] def _lowercase( self , A ) -> List[str]: return self.pre_processor(A , return_tensors="""pt""" , truncation=A ) def _lowercase( self , A ) -> Union[str, Any]: return self.model.generate(**A )[0] def _lowercase( self , A ) -> List[str]: return self.pre_processor.decode(A , skip_special_tokens=A , clean_up_tokenization_spaces=A )
362
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
0
import warnings from functools import wraps from typing import Callable def __lowerCamelCase ( _lowercase ) -> Callable: @wraps(_lowerCamelCase ) def _inner_fn(*_lowercase , **_lowercase ): warnings.warn( (F'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , _lowerCamelCase , ) return fn(*_lowerCamelCase , **_lowerCamelCase ) return _inner_fn
363
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
0
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A=2 , A=56 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=2 , A=2 , A=7 , A="gelu_new" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=4 , A="block_sparse" , A=True , A=False , A=2 , A=3 , ) -> str: UpperCAmelCase : Dict = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : str = use_attention_mask UpperCAmelCase : Optional[Any] = use_token_type_ids UpperCAmelCase : str = use_labels UpperCAmelCase : Tuple = vocab_size UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : List[str] = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : int = hidden_act UpperCAmelCase : Optional[Any] = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : Any = max_position_embeddings UpperCAmelCase : Tuple = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : Any = initializer_range UpperCAmelCase : Tuple = num_choices UpperCAmelCase : List[str] = rescale_embeddings UpperCAmelCase : int = attention_type UpperCAmelCase : Union[str, Any] = use_bias UpperCAmelCase : Dict = block_size UpperCAmelCase : Optional[Any] = num_random_blocks def _lowercase( self ) -> Any: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : List[Any] = None if self.use_attention_mask: UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict = None if self.use_token_type_ids: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def _lowercase( self ) -> List[str]: UpperCAmelCase : int = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = config_and_inputs UpperCAmelCase : List[str] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class UpperCamelCase_ ( a_ , unittest.TestCase ): lowercase = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : str = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowercase( self ) -> Any: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowercase( self ) -> Dict: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowercase( self ) -> Tuple: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowercase( self ) -> Optional[Any]: super().test_hidden_states_output() @slow def _lowercase( self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(lowercase_ ) def _lowercase( self ) -> Union[str, Any]: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase : Optional[Any] = self._prepare_for_class(lowercase_ , lowercase_ ) UpperCAmelCase : Dict = model_class(lowercase_ ) @jax.jit def model_jitted(A , A=None , **A ): return model(input_ids=lowercase_ , attention_mask=lowercase_ , **lowercase_ ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase : Optional[int] = model_jitted(**lowercase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase : str = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def _lowercase( self , A , A , A , A=1e-5 , A="outputs" , A=None ) -> Optional[int]: if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
364
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
0
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig a = logging.get_logger(__name__) # General docstring a = """RegNetConfig""" # Base docstring a = """facebook/regnet-y-040""" a = [1, 1_0_8_8, 7, 7] # Image classification docstring a = """facebook/regnet-y-040""" a = """tabby, tabby cat""" a = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCamelCase_ ( tf.keras.layers.Layer ): def __init__( self , A , A = 3 , A = 1 , A = 1 , A = "relu" , **A , ) -> str: super().__init__(**_a ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) UpperCAmelCase : Tuple = tf.keras.layers.ConvaD( filters=_a , kernel_size=_a , strides=_a , padding="""VALID""" , groups=_a , use_bias=_a , name="""convolution""" , ) UpperCAmelCase : Optional[Any] = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) UpperCAmelCase : List[str] = ACTaFN[activation] if activation is not None else tf.identity def _lowercase( self , A ) -> List[Any]: UpperCAmelCase : List[Any] = self.convolution(self.padding(_a ) ) UpperCAmelCase : Tuple = self.normalization(_a ) UpperCAmelCase : Union[str, Any] = self.activation(_a ) return hidden_state class UpperCamelCase_ ( tf.keras.layers.Layer ): def __init__( self , A , **A ) -> Tuple: super().__init__(**_a ) UpperCAmelCase : List[str] = config.num_channels UpperCAmelCase : Dict = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def _lowercase( self , A ) -> Union[str, Any]: UpperCAmelCase : List[str] = shape_list(_a )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) UpperCAmelCase : Dict = tf.transpose(_a , perm=(0, 2, 3, 1) ) UpperCAmelCase : List[str] = self.embedder(_a ) return hidden_state class UpperCamelCase_ ( tf.keras.layers.Layer ): def __init__( self , A , A = 2 , **A ) -> int: super().__init__(**_a ) UpperCAmelCase : Optional[Any] = tf.keras.layers.ConvaD( filters=_a , kernel_size=1 , strides=_a , use_bias=_a , name="""convolution""" ) UpperCAmelCase : str = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) def _lowercase( self , A , A = False ) -> tf.Tensor: return self.normalization(self.convolution(_a ) , training=_a ) class UpperCamelCase_ ( tf.keras.layers.Layer ): def __init__( self , A , A , **A ) -> int: super().__init__(**_a ) UpperCAmelCase : List[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_a , name="""pooler""" ) UpperCAmelCase : Optional[int] = [ tf.keras.layers.ConvaD(filters=_a , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=_a , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def _lowercase( self , A ) -> List[Any]: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] UpperCAmelCase : str = self.pooler(_a ) for layer_module in self.attention: UpperCAmelCase : Dict = layer_module(_a ) UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class UpperCamelCase_ ( tf.keras.layers.Layer ): def __init__( self , A , A , A , A = 1 , **A ) -> Union[str, Any]: super().__init__(**_a ) UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 UpperCAmelCase : str = max(1 , out_channels // config.groups_width ) UpperCAmelCase : Tuple = ( TFRegNetShortCut(_a , stride=_a , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. UpperCAmelCase : Tuple = [ TFRegNetConvLayer(_a , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( _a , stride=_a , groups=_a , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(_a , kernel_size=1 , activation=_a , name="""layer.2""" ), ] UpperCAmelCase : int = ACTaFN[config.hidden_act] def _lowercase( self , A ) -> Any: UpperCAmelCase : Tuple = hidden_state for layer_module in self.layers: UpperCAmelCase : List[str] = layer_module(_a ) UpperCAmelCase : Optional[int] = self.shortcut(_a ) hidden_state += residual UpperCAmelCase : Union[str, Any] = self.activation(_a ) return hidden_state class UpperCamelCase_ ( tf.keras.layers.Layer ): def __init__( self , A , A , A , A = 1 , **A ) -> List[str]: super().__init__(**_a ) UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 UpperCAmelCase : Union[str, Any] = max(1 , out_channels // config.groups_width ) UpperCAmelCase : int = ( TFRegNetShortCut(_a , stride=_a , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) UpperCAmelCase : Any = [ TFRegNetConvLayer(_a , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( _a , stride=_a , groups=_a , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(_a , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(_a , kernel_size=1 , activation=_a , name="""layer.3""" ), ] UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def _lowercase( self , A ) -> List[str]: UpperCAmelCase : Tuple = hidden_state for layer_module in self.layers: UpperCAmelCase : str = layer_module(_a ) UpperCAmelCase : int = self.shortcut(_a ) hidden_state += residual UpperCAmelCase : List[Any] = self.activation(_a ) return hidden_state class UpperCamelCase_ ( tf.keras.layers.Layer ): def __init__( self , A , A , A , A = 2 , A = 2 , **A ) -> Union[str, Any]: super().__init__(**_a ) UpperCAmelCase : Union[str, Any] = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer UpperCAmelCase : Any = [ # downsampling is done in the first layer with stride of 2 layer(_a , _a , _a , stride=_a , name="""layers.0""" ), *[layer(_a , _a , _a , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def _lowercase( self , A ) -> Any: for layer_module in self.layers: UpperCAmelCase : Tuple = layer_module(_a ) return hidden_state class UpperCamelCase_ ( tf.keras.layers.Layer ): def __init__( self , A , **A ) -> List[str]: super().__init__(**_a ) UpperCAmelCase : int = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _a , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) UpperCAmelCase : Any = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_a , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_a , _a , _a , depth=_a , name=f'''stages.{i+1}''' ) ) def _lowercase( self , A , A = False , A = True ) -> TFBaseModelOutputWithNoAttention: UpperCAmelCase : List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) UpperCAmelCase : Union[str, Any] = stage_module(_a ) if output_hidden_states: UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_a , hidden_states=_a ) @keras_serializable class UpperCamelCase_ ( tf.keras.layers.Layer ): lowercase = RegNetConfig def __init__( self , A , **A ) -> Optional[int]: super().__init__(**_a ) UpperCAmelCase : List[Any] = config UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(_a , name="""embedder""" ) UpperCAmelCase : List[str] = TFRegNetEncoder(_a , name="""encoder""" ) UpperCAmelCase : Optional[int] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_a , name="""pooler""" ) @unpack_inputs def _lowercase( self , A , A = None , A = None , A = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: UpperCAmelCase : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase : Union[str, Any] = self.embedder(_a , training=_a ) UpperCAmelCase : Any = self.encoder( _a , output_hidden_states=_a , return_dict=_a , training=_a ) UpperCAmelCase : Tuple = encoder_outputs[0] UpperCAmelCase : int = self.pooler(_a ) # Change to NCHW output format have uniformity in the modules UpperCAmelCase : Union[str, Any] = tf.transpose(_a , perm=(0, 3, 1, 2) ) UpperCAmelCase : Optional[int] = tf.transpose(_a , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: UpperCAmelCase : int = tuple([tf.transpose(_a , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_a , pooler_output=_a , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class UpperCamelCase_ ( __lowercase ): lowercase = RegNetConfig lowercase = "regnet" lowercase = "pixel_values" @property def _lowercase( self ) -> Tuple: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} a = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ a = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , __lowercase , ) class UpperCamelCase_ ( __lowercase ): def __init__( self , A , *A , **A ) -> Any: super().__init__(_a , *_a , **_a ) UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(_a , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_a , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowercase( self , A , A = None , A = None , A=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase : Tuple = self.regnet( pixel_values=_a , output_hidden_states=_a , return_dict=_a , training=_a , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __lowercase , ) class UpperCamelCase_ ( __lowercase , __lowercase ): def __init__( self , A , *A , **A ) -> Tuple: super().__init__(_a , *_a , **_a ) UpperCAmelCase : str = config.num_labels UpperCAmelCase : int = TFRegNetMainLayer(_a , name="""regnet""" ) # classification head UpperCAmelCase : Optional[int] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowercase( self , A = None , A = None , A = None , A = None , A=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: UpperCAmelCase : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase : List[str] = self.regnet( _a , output_hidden_states=_a , return_dict=_a , training=_a ) UpperCAmelCase : Dict = outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase : Dict = self.classifier[0](_a ) UpperCAmelCase : List[str] = self.classifier[1](_a ) UpperCAmelCase : List[Any] = None if labels is None else self.hf_compute_loss(labels=_a , logits=_a ) if not return_dict: UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_a , logits=_a , hidden_states=outputs.hidden_states )
365
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' class UpperCamelCase_ : def __init__( self , A , A , A ) -> Any: UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = value UpperCAmelCase : int = weight def __repr__( self ) -> Dict: return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def _lowercase( self ) -> Dict: return self.value def _lowercase( self ) -> List[Any]: return self.name def _lowercase( self ) -> Optional[int]: return self.weight def _lowercase( self ) -> str: return self.value / self.weight def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = [] for i in range(len(lowerCAmelCase__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = sorted(lowerCAmelCase__ , key=lowerCAmelCase__ , reverse=lowerCAmelCase__ ) UpperCAmelCase : str = [] UpperCAmelCase : Tuple = 0.0, 0.0 for i in range(len(lowerCAmelCase__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __lowerCamelCase ( ) -> Optional[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
366
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
0
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A ) -> str: UpperCAmelCase : Dict = 3 UpperCAmelCase : Optional[int] = 250 UpperCAmelCase : Union[str, Any] = ids_tensor((batch_size, length) , lowerCAmelCase__ ) UpperCAmelCase : List[Any] = torch.ones((batch_size, length) , device=lowerCAmelCase__ , dtype=torch.float ) / length return input_ids, scores def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = self._get_tensors(5 ) UpperCAmelCase : Any = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCAmelCase : Tuple = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCAmelCase : Union[str, Any] = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : str = MaxLengthCriteria(max_length=10 ) UpperCAmelCase : Optional[int] = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCAmelCase : List[Any] = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Any = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCAmelCase : Optional[Any] = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCAmelCase : int = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) UpperCAmelCase : Tuple = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCAmelCase : Optional[int] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) def _lowercase( self ) -> Tuple: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase__ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase : Union[str, Any] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase__ ) , 1 )
367
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
0
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a : Optional[Any] = logging.get_logger(__name__) a : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} a : Optional[Any] = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } a : Tuple = {'allegro/herbert-base-cased': 5_1_4} a : List[str] = {} class UpperCamelCase_ ( _UpperCamelCase ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = HerbertTokenizer def __init__( self , A=None , A=None , A=None , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A="</s>" , **A , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Dict = [self.cls_token_id] UpperCAmelCase : Optional[int] = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowercase( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Tuple = [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase( self , A , A = None ) -> Tuple[str]: UpperCAmelCase : Any = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
368
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
0
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __lowerCamelCase ( _lowercase ) -> List[Any]: return (data["data"], data["target"]) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(a__ , a__ ) # Predict target for test data UpperCAmelCase : Tuple = xgb.predict(a__ ) UpperCAmelCase : List[Any] = predictions.reshape(len(a__ ) , 1 ) return predictions def __lowerCamelCase ( ) -> str: UpperCAmelCase : Union[str, Any] = fetch_california_housing() UpperCAmelCase : Union[str, Any] = data_handling(a__ ) UpperCAmelCase : List[str] = train_test_split( a__ , a__ , test_size=0.25 , random_state=1 ) UpperCAmelCase : Dict = xgboost(a__ , a__ , a__ ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(a__ , a__ )}''' ) print(F'''Mean Square Error : {mean_squared_error(a__ , a__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
369
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig a : Union[str, Any] = logging.get_logger(__name__) # General docstring a : List[str] = """RegNetConfig""" # Base docstring a : Any = """facebook/regnet-y-040""" a : str = [1, 1_0_8_8, 7, 7] # Image classification docstring a : List[str] = """facebook/regnet-y-040""" a : Optional[Any] = """tabby, tabby cat""" a : Any = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCamelCase_ ( tf.keras.layers.Layer ): def __init__( self , A , A = 3 , A = 1 , A = 1 , A = "relu" , **A , ) -> int: super().__init__(**_lowerCAmelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb UpperCAmelCase : Dict = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) UpperCAmelCase : Optional[Any] = tf.keras.layers.ConvaD( filters=_lowerCAmelCase , kernel_size=_lowerCAmelCase , strides=_lowerCAmelCase , padding="""VALID""" , groups=_lowerCAmelCase , use_bias=_lowerCAmelCase , name="""convolution""" , ) UpperCAmelCase : str = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : List[Any] = self.convolution(self.padding(_lowerCAmelCase ) ) UpperCAmelCase : List[str] = self.normalization(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = self.activation(_lowerCAmelCase ) return hidden_state class UpperCamelCase_ ( tf.keras.layers.Layer ): def __init__( self , A , **A ) -> str: super().__init__(**_lowerCAmelCase ) UpperCAmelCase : Tuple = config.num_channels UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def _lowercase( self , A ) -> Any: UpperCAmelCase : List[str] = shape_list(_lowerCAmelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) UpperCAmelCase : Tuple = tf.transpose(_lowerCAmelCase , perm=(0, 2, 3, 1) ) UpperCAmelCase : Union[str, Any] = self.embedder(_lowerCAmelCase ) return hidden_state class UpperCamelCase_ ( tf.keras.layers.Layer ): def __init__( self , A , A = 2 , **A ) -> List[str]: super().__init__(**_lowerCAmelCase ) UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=_lowerCAmelCase , kernel_size=1 , strides=_lowerCAmelCase , use_bias=_lowerCAmelCase , name="""convolution""" ) UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) def _lowercase( self , A , A = False ) -> Dict: return self.normalization(self.convolution(_lowerCAmelCase ) , training=_lowerCAmelCase ) class UpperCamelCase_ ( tf.keras.layers.Layer ): def __init__( self , A , A , **A ) -> Tuple: super().__init__(**_lowerCAmelCase ) UpperCAmelCase : str = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_lowerCAmelCase , name="""pooler""" ) UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=_lowerCAmelCase , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=_lowerCAmelCase , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def _lowercase( self , A ) -> List[str]: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] UpperCAmelCase : Optional[int] = self.pooler(_lowerCAmelCase ) for layer_module in self.attention: UpperCAmelCase : int = layer_module(_lowerCAmelCase ) UpperCAmelCase : List[Any] = hidden_state * pooled return hidden_state class UpperCamelCase_ ( tf.keras.layers.Layer ): def __init__( self , A , A , A , A = 1 , **A ) -> List[Any]: super().__init__(**_lowerCAmelCase ) UpperCAmelCase : str = in_channels != out_channels or stride != 1 UpperCAmelCase : int = max(1 , out_channels // config.groups_width ) UpperCAmelCase : Dict = ( TFRegNetShortCut(_lowerCAmelCase , stride=_lowerCAmelCase , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. UpperCAmelCase : Any = [ TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( _lowerCAmelCase , stride=_lowerCAmelCase , groups=_lowerCAmelCase , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=_lowerCAmelCase , name="""layer.2""" ), ] UpperCAmelCase : Optional[int] = ACTaFN[config.hidden_act] def _lowercase( self , A ) -> List[Any]: UpperCAmelCase : Optional[Any] = hidden_state for layer_module in self.layers: UpperCAmelCase : List[str] = layer_module(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = self.shortcut(_lowerCAmelCase ) hidden_state += residual UpperCAmelCase : Any = self.activation(_lowerCAmelCase ) return hidden_state class UpperCamelCase_ ( tf.keras.layers.Layer ): def __init__( self , A , A , A , A = 1 , **A ) -> Optional[Any]: super().__init__(**_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = in_channels != out_channels or stride != 1 UpperCAmelCase : Dict = max(1 , out_channels // config.groups_width ) UpperCAmelCase : Optional[Any] = ( TFRegNetShortCut(_lowerCAmelCase , stride=_lowerCAmelCase , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) UpperCAmelCase : int = [ TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( _lowerCAmelCase , stride=_lowerCAmelCase , groups=_lowerCAmelCase , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(_lowerCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=_lowerCAmelCase , name="""layer.3""" ), ] UpperCAmelCase : Tuple = ACTaFN[config.hidden_act] def _lowercase( self , A ) -> List[str]: UpperCAmelCase : int = hidden_state for layer_module in self.layers: UpperCAmelCase : List[str] = layer_module(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = self.shortcut(_lowerCAmelCase ) hidden_state += residual UpperCAmelCase : int = self.activation(_lowerCAmelCase ) return hidden_state class UpperCamelCase_ ( tf.keras.layers.Layer ): def __init__( self , A , A , A , A = 2 , A = 2 , **A ) -> List[Any]: super().__init__(**_lowerCAmelCase ) UpperCAmelCase : Tuple = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer UpperCAmelCase : Optional[Any] = [ # downsampling is done in the first layer with stride of 2 layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , stride=_lowerCAmelCase , name="""layers.0""" ), *[layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def _lowercase( self , A ) -> Dict: for layer_module in self.layers: UpperCAmelCase : int = layer_module(_lowerCAmelCase ) return hidden_state class UpperCamelCase_ ( tf.keras.layers.Layer ): def __init__( self , A , **A ) -> Optional[Any]: super().__init__(**_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) UpperCAmelCase : Optional[int] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_lowerCAmelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , depth=_lowerCAmelCase , name=f'''stages.{i+1}''' ) ) def _lowercase( self , A , A = False , A = True ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) UpperCAmelCase : Optional[Any] = stage_module(_lowerCAmelCase ) if output_hidden_states: UpperCAmelCase : int = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_lowerCAmelCase , hidden_states=_lowerCAmelCase ) @keras_serializable class UpperCamelCase_ ( tf.keras.layers.Layer ): lowercase = RegNetConfig def __init__( self , A , **A ) -> Any: super().__init__(**_lowerCAmelCase ) UpperCAmelCase : List[str] = config UpperCAmelCase : List[str] = TFRegNetEmbeddings(_lowerCAmelCase , name="""embedder""" ) UpperCAmelCase : Any = TFRegNetEncoder(_lowerCAmelCase , name="""encoder""" ) UpperCAmelCase : Optional[int] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_lowerCAmelCase , name="""pooler""" ) @unpack_inputs def _lowercase( self , A , A = None , A = None , A = False , ) -> Optional[Any]: UpperCAmelCase : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase : Tuple = self.embedder(_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase : str = self.encoder( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase : str = encoder_outputs[0] UpperCAmelCase : List[Any] = self.pooler(_lowerCAmelCase ) # Change to NCHW output format have uniformity in the modules UpperCAmelCase : Dict = tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) UpperCAmelCase : int = tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: UpperCAmelCase : Tuple = tuple([tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCAmelCase , pooler_output=_lowerCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class UpperCamelCase_ ( __UpperCamelCase ): lowercase = RegNetConfig lowercase = "regnet" lowercase = "pixel_values" @property def _lowercase( self ) -> Union[str, Any]: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} a : Tuple = R"""\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n""" a : List[Any] = R"""\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n""" @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , __UpperCamelCase , ) class UpperCamelCase_ ( __UpperCamelCase ): def __init__( self , A , *A , **A ) -> str: super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase : Optional[int] = TFRegNetMainLayer(_lowerCAmelCase , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowercase( self , A , A = None , A = None , A=False , ) -> Any: UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase : List[Any] = self.regnet( pixel_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __UpperCamelCase , ) class UpperCamelCase_ ( __UpperCamelCase , __UpperCamelCase ): def __init__( self , A , *A , **A ) -> List[str]: super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = config.num_labels UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(_lowerCAmelCase , name="""regnet""" ) # classification head UpperCAmelCase : List[Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowercase( self , A = None , A = None , A = None , A = None , A=False , ) -> str: UpperCAmelCase : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase : int = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase : List[str] = self.regnet( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase : Dict = outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase : Dict = self.classifier[0](_lowerCAmelCase ) UpperCAmelCase : Any = self.classifier[1](_lowerCAmelCase ) UpperCAmelCase : Optional[int] = None if labels is None else self.hf_compute_loss(labels=_lowerCAmelCase , logits=_lowerCAmelCase ) if not return_dict: UpperCAmelCase : Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_lowerCAmelCase , logits=_lowerCAmelCase , hidden_states=outputs.hidden_states )
370
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a : Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys a : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
371
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a : Dict = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ["""YolosFeatureExtractor"""] a : Any = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
350
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a : int = None a : List[str] = logging.get_logger(__name__) a : Union[str, Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : List[Any] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } a : Union[str, Any] = { """facebook/mbart-large-en-ro""": 1_0_2_4, """facebook/mbart-large-cc25""": 1_0_2_4, } # fmt: off a : Any = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class UpperCamelCase_ ( lowercase__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = ["""input_ids""", """attention_mask"""] lowercase = MBartTokenizer lowercase = [] lowercase = [] def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=None , A=None , A=None , **A , ) -> int: UpperCAmelCase : int = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( vocab_file=lowercase_ , tokenizer_file=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , src_lang=lowercase_ , tgt_lang=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) UpperCAmelCase : str = vocab_file UpperCAmelCase : Dict = False if not self.vocab_file else True UpperCAmelCase : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) UpperCAmelCase : List[str] = { lang_code: self.convert_tokens_to_ids(lowercase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCAmelCase : Optional[Any] = src_lang if src_lang is not None else "en_XX" UpperCAmelCase : Any = self.convert_tokens_to_ids(self._src_lang ) UpperCAmelCase : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase( self ) -> Any: return self._src_lang @src_lang.setter def _lowercase( self , A ) -> List[Any]: UpperCAmelCase : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase( self , A , A = None ) -> str: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase( self , A , A = None ) -> int: UpperCAmelCase : Union[str, Any] = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A , A , A , **A ) -> str: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) UpperCAmelCase : str = src_lang UpperCAmelCase : Optional[Any] = self(lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , **lowercase_ ) UpperCAmelCase : Optional[int] = self.convert_tokens_to_ids(lowercase_ ) UpperCAmelCase : Union[str, Any] = tgt_lang_id return inputs def _lowercase( self , A , A = "en_XX" , A = None , A = "ro_RO" , **A , ) -> List[Any]: UpperCAmelCase : Union[str, Any] = src_lang UpperCAmelCase : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(lowercase_ , lowercase_ , **lowercase_ ) def _lowercase( self ) -> Any: return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase( self ) -> Optional[int]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : str = self.convert_tokens_to_ids(lowercase_ ) UpperCAmelCase : List[str] = [] UpperCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase( self , A ) -> Union[str, Any]: UpperCAmelCase : int = self.convert_tokens_to_ids(lowercase_ ) UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase( self , A , A = None ) -> Tuple: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return UpperCAmelCase : Optional[Any] = os.path.join( lowercase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
351
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
0
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase = 1_0_0 , ) -> float: UpperCAmelCase : Optional[int] = x_start UpperCAmelCase : int = fnc(_snake_case ) UpperCAmelCase : List[str] = 0.0 for _ in range(_snake_case ): # Approximates curve as a sequence of linear lines and sums their length UpperCAmelCase : int = (x_end - x_start) / steps + xa UpperCAmelCase : Dict = fnc(_snake_case ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step UpperCAmelCase : Tuple = xa UpperCAmelCase : Dict = fxa return length if __name__ == "__main__": def __lowerCamelCase ( _lowercase ) -> Optional[int]: return math.sin(1_0 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") a : Union[str, Any] = 1_0 while i <= 1_0_0_0_0_0: print(F'''With {i} steps: {line_length(f, -1_0, 1_0, i)}''') i *= 1_0
352
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase = 2_0_0 ) -> Any: UpperCAmelCase : Tuple = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase : List[str] = [0] * (pence + 1) UpperCAmelCase : Tuple = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_A , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_0_0) == 7_3_6_8_2
353
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> bool: # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: # Base Case if curr_ind == len(_lowercase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_lowercase ) ): if valid_connection(_lowercase , _lowercase , _lowercase , _lowercase ): # Insert current vertex into path as next transition UpperCAmelCase : Optional[int] = next_ver # Validate created path if util_hamilton_cycle(_lowercase , _lowercase , curr_ind + 1 ): return True # Backtrack UpperCAmelCase : Union[str, Any] = -1 return False def __lowerCamelCase ( _lowercase , _lowercase = 0 ) -> list[int]: UpperCAmelCase : Tuple = [-1] * (len(_lowercase ) + 1) # initialize start and end of path with starting index UpperCAmelCase : Optional[int] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_lowercase , _lowercase , 1 ) else []
354
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
0
a : Dict = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on a : List[Any] = {value: key for key, value in MORSE_CODE_DICT.items()} def __lowerCamelCase ( _lowercase ) -> Tuple: return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def __lowerCamelCase ( _lowercase ) -> int: return "".join(REVERSE_DICT[char] for char in message.split() ) def __lowerCamelCase ( ) -> Any: UpperCAmelCase : List[str] = """Morse code here!""" print(snake_case_ ) UpperCAmelCase : List[str] = encrypt(snake_case_ ) print(snake_case_ ) UpperCAmelCase : Optional[Any] = decrypt(snake_case_ ) print(snake_case_ ) if __name__ == "__main__": main()
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' import math class UpperCamelCase_ : def __init__( self , A=0 ) -> Any: # a graph with Node 0,1,...,N-1 UpperCAmelCase : List[str] = n UpperCAmelCase : Any = [ [math.inf for j in range(0 , A )] for i in range(0 , A ) ] # adjacency matrix for weight UpperCAmelCase : int = [ [math.inf for j in range(0 , A )] for i in range(0 , A ) ] # dp[i][j] stores minimum distance from i to j def _lowercase( self , A , A , A ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = w def _lowercase( self ) -> List[Any]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): UpperCAmelCase : str = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def _lowercase( self , A , A ) -> List[str]: return self.dp[u][v] if __name__ == "__main__": a : int = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
356
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : List[str] = { """google/vivit-b-16x2-kinetics400""": ( """https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json""" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class UpperCamelCase_ ( __lowerCamelCase ): lowercase = 'vivit' def __init__( self , A=224 , A=32 , A=[2, 16, 16] , A=3 , A=768 , A=12 , A=12 , A=3072 , A="gelu_fast" , A=0.0 , A=0.0 , A=0.0_2 , A=1e-06 , A=True , **A , ) -> Any: UpperCAmelCase : str = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : List[str] = num_attention_heads UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : List[Any] = hidden_dropout_prob UpperCAmelCase : Tuple = attention_probs_dropout_prob UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : List[str] = layer_norm_eps UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_frames UpperCAmelCase : Optional[Any] = tubelet_size UpperCAmelCase : Any = num_channels UpperCAmelCase : Tuple = qkv_bias super().__init__(**UpperCamelCase_ )
357
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
0
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS a : Any = logging.get_logger(__name__) a : int = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class UpperCamelCase_ ( lowerCAmelCase_ ): def __init__( self , A=None , A=None , *A , **A ) -> Union[str, Any]: super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) if config is None: assert isinstance(self.model , __lowerCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) UpperCAmelCase : Union[str, Any] = self.model.config else: UpperCAmelCase : List[Any] = config UpperCAmelCase : str = data_args UpperCAmelCase : str = self.config.tgt_vocab_size if isinstance(self.config , __lowerCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: UpperCAmelCase : int = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss UpperCAmelCase : List[Any] = label_smoothed_nll_loss def _lowercase( self , A ) -> Tuple: if self.optimizer is None: UpperCAmelCase : Optional[int] = ["""bias""", """LayerNorm.weight"""] UpperCAmelCase : Dict = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] UpperCAmelCase : Optional[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: UpperCAmelCase : Optional[int] = Adafactor UpperCAmelCase : List[str] = {"""scale_parameter""": False, """relative_step""": False} else: UpperCAmelCase : Tuple = AdamW UpperCAmelCase : Tuple = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } UpperCAmelCase : Union[str, Any] = self.args.learning_rate if self.sharded_ddp: UpperCAmelCase : Dict = OSS( params=__lowerCAmelCase , optim=__lowerCAmelCase , **__lowerCAmelCase , ) else: UpperCAmelCase : List[str] = optimizer_cls(__lowerCAmelCase , **__lowerCAmelCase ) if self.lr_scheduler is None: UpperCAmelCase : List[Any] = self._get_lr_scheduler(__lowerCAmelCase ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def _lowercase( self , A ) -> List[str]: UpperCAmelCase : List[Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": UpperCAmelCase : int = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": UpperCAmelCase : str = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: UpperCAmelCase : List[Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__lowerCAmelCase ) return scheduler def _lowercase( self ) -> List[Any]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _lowercase( self , A , A , A ) -> List[str]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token UpperCAmelCase : Dict = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] UpperCAmelCase : Tuple = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models UpperCAmelCase , UpperCAmelCase : Any = model(**__lowerCAmelCase , labels=__lowerCAmelCase , use_cache=__lowerCAmelCase )[:2] else: # compute label smoothed loss UpperCAmelCase : int = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] UpperCAmelCase : Dict = torch.nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) UpperCAmelCase , UpperCAmelCase : int = self.loss_fn(__lowerCAmelCase , __lowerCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _lowercase( self , A , A ) -> Tuple: UpperCAmelCase : Any = inputs.pop("""labels""" ) UpperCAmelCase , UpperCAmelCase : str = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return loss def _lowercase( self , A , A , A , A = None , ) -> List[Any]: UpperCAmelCase : Dict = self._prepare_inputs(__lowerCAmelCase ) UpperCAmelCase : Dict = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: UpperCAmelCase : Union[str, Any] = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **__lowerCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: UpperCAmelCase : str = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) UpperCAmelCase : int = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data UpperCAmelCase , UpperCAmelCase : List[Any] = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Optional[Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) UpperCAmelCase : str = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: UpperCAmelCase : Optional[Any] = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def _lowercase( self , A , A ) -> Union[str, Any]: # If PAD token is not defined at least EOS token has to be defined UpperCAmelCase : Dict = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f''' padded to `max_length`={max_length}''' ) UpperCAmelCase : int = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) UpperCAmelCase : Dict = tensor return padded_tensor
358
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
0
'''simple docstring''' import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Tuple: try: UpperCAmelCase : Tuple = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCAmelCase : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: UpperCAmelCase : List[str] = strtobool(_UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value a : Union[str, Any] = parse_flag_from_env("""RUN_SLOW""", default=False) def __lowerCamelCase ( _lowercase ) -> Optional[Any]: return unittest.skip("""Test was skipped""" )(_UpperCamelCase ) def __lowerCamelCase ( _lowercase ) -> str: return unittest.skipUnless(_run_slow_tests , """test is slow""" )(_UpperCamelCase ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(_UpperCamelCase ) def __lowerCamelCase ( _lowercase ) -> Any: return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(_UpperCamelCase ) def __lowerCamelCase ( _lowercase ) -> Tuple: return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(_UpperCamelCase ) def __lowerCamelCase ( _lowercase ) -> List[str]: return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(_UpperCamelCase ) def __lowerCamelCase ( _lowercase ) -> Optional[Any]: return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(_UpperCamelCase ) def __lowerCamelCase ( _lowercase ) -> Dict: return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(_UpperCamelCase ) def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(_UpperCamelCase ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(_UpperCamelCase ) def __lowerCamelCase ( _lowercase ) -> str: return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(_UpperCamelCase ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(_UpperCamelCase ) def __lowerCamelCase ( _lowercase ) -> List[str]: return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(_UpperCamelCase ) def __lowerCamelCase ( _lowercase ) -> Optional[Any]: return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(_UpperCamelCase ) def __lowerCamelCase ( _lowercase ) -> str: return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(_UpperCamelCase ) def __lowerCamelCase ( _lowercase ) -> Tuple: return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(_UpperCamelCase ) def __lowerCamelCase ( _lowercase=None , _lowercase=None ) -> int: if test_case is None: return partial(_UpperCamelCase , version=_UpperCamelCase ) return unittest.skipUnless(is_torch_version(""">=""" , _UpperCamelCase ) , F'''test requires torch version >= {version}''' )(_UpperCamelCase ) def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(_UpperCamelCase ) def __lowerCamelCase ( _lowercase ) -> str: return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(_UpperCamelCase ) def __lowerCamelCase ( _lowercase ) -> Any: return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(_UpperCamelCase ) a : Optional[int] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def __lowerCamelCase ( _lowercase ) -> Dict: return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(_UpperCamelCase ) class UpperCamelCase_ ( unittest.TestCase ): lowercase = True @classmethod def _lowercase( cls ) -> Union[str, Any]: UpperCAmelCase : Dict = tempfile.mkdtemp() @classmethod def _lowercase( cls ) -> List[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def _lowercase( self ) -> List[Any]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(a_ ) class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> int: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A ) -> int: UpperCAmelCase : Any = mocks if isinstance(a_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Any = AcceleratorState() UpperCAmelCase : Union[str, Any] = tensor[None].clone().to(state.device ) UpperCAmelCase : Optional[int] = gather(_UpperCamelCase ).cpu() UpperCAmelCase : Union[str, Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _UpperCamelCase ): return False return True class UpperCamelCase_ : def __init__( self , A , A , A ) -> Dict: UpperCAmelCase : List[Any] = returncode UpperCAmelCase : int = stdout UpperCAmelCase : Union[str, Any] = stderr async def __lowerCamelCase ( _lowercase , _lowercase ) -> int: while True: UpperCAmelCase : Optional[Any] = await stream.readline() if line: callback(_UpperCamelCase ) else: break async def __lowerCamelCase ( _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=False , _lowercase=False ) -> _RunOutput: if echo: print("""\nRunning: """ , """ """.join(_UpperCamelCase ) ) UpperCAmelCase : Optional[int] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCAmelCase : Any = [] UpperCAmelCase : List[Any] = [] def tee(_lowercase , _lowercase , _lowercase , _lowercase="" ): UpperCAmelCase : List[Any] = line.decode("""utf-8""" ).rstrip() sink.append(_UpperCamelCase ) if not quiet: print(_UpperCamelCase , _UpperCamelCase , file=_UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowercase : tee(_UpperCamelCase , _UpperCamelCase , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _lowercase : tee(_UpperCamelCase , _UpperCamelCase , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=_UpperCamelCase , ) return _RunOutput(await p.wait() , _UpperCamelCase , _UpperCamelCase ) def __lowerCamelCase ( _lowercase , _lowercase=None , _lowercase=None , _lowercase=1_8_0 , _lowercase=False , _lowercase=True ) -> _RunOutput: UpperCAmelCase : str = asyncio.get_event_loop() UpperCAmelCase : Any = loop.run_until_complete( _stream_subprocess(_UpperCamelCase , env=_UpperCamelCase , stdin=_UpperCamelCase , timeout=_UpperCamelCase , quiet=_UpperCamelCase , echo=_UpperCamelCase ) ) UpperCAmelCase : Any = """ """.join(_UpperCamelCase ) if result.returncode > 0: UpperCAmelCase : Any = """\n""".join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) return result class UpperCamelCase_ ( SCREAMING_SNAKE_CASE__ ): pass def __lowerCamelCase ( _lowercase , _lowercase=False ) -> List[Any]: try: UpperCAmelCase : List[str] = subprocess.check_output(_UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_UpperCamelCase , """decode""" ): UpperCAmelCase : List[Any] = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'''Command `{' '.join(_UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' from PIL import Image def __lowerCamelCase ( _lowercase ) -> Image: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = image.size UpperCAmelCase : Tuple = 0 UpperCAmelCase : Optional[int] = image.load() for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): UpperCAmelCase : List[str] = pixels[j, i] mean += pixel mean //= width * height for j in range(lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): UpperCAmelCase : Dict = 2_5_5 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": a : Tuple = mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
360
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys a : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
361
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> float: return base * power(lowercase_ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") a = int(input("""Enter the base: """).strip()) a = int(input("""Enter the exponent: """).strip()) a = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents a = 1 / result print(F'''{base} to the power of {exponent} is {result}''')
362
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> List[str]: UpperCAmelCase : str = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) UpperCAmelCase : Tuple = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase : str = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase : str = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(_a )["""last_hidden_state"""].detach() self.assertEqual(output.shape , _a ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _a , atol=1e-3 ) ) @slow def _lowercase( self ) -> Any: UpperCAmelCase : Optional[int] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) UpperCAmelCase : Tuple = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase : Optional[int] = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase : Optional[int] = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(_a )["""last_hidden_state"""].detach() self.assertEqual(output.shape , _a ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _a , atol=1e-3 ) )
363
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : int = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
364
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
0
'''simple docstring''' from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a = logging.get_logger(__name__) a = { "nielsr/canine-s": 2_0_4_8, } # Unicode defines 1,114,112 total “codepoints” a = 1_1_1_4_1_1_2 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py a = 0 a = 0xE_000 a = 0xE_001 a = 0xE_002 a = 0xE_003 a = 0xE_004 # Maps special codepoints to human-readable names. a = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. a = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCamelCase_ ( snake_case__ ): lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A=chr(UpperCAmelCase_ ) , A=chr(UpperCAmelCase_ ) , A=chr(UpperCAmelCase_ ) , A=chr(UpperCAmelCase_ ) , A=chr(UpperCAmelCase_ ) , A=chr(UpperCAmelCase_ ) , A=False , A=2048 , **A , ) -> List[str]: UpperCAmelCase : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else bos_token UpperCAmelCase : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else eos_token UpperCAmelCase : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else sep_token UpperCAmelCase : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else cls_token UpperCAmelCase : List[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : List[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , model_max_length=UpperCAmelCase_ , **UpperCAmelCase_ , ) # Creates a mapping for looking up the IDs of special symbols. UpperCAmelCase : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): UpperCAmelCase : Optional[Any] = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. UpperCAmelCase : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } UpperCAmelCase : List[Any] = UNICODE_VOCAB_SIZE UpperCAmelCase : str = len(self._special_codepoints ) @property def _lowercase( self ) -> str: return self._unicode_vocab_size def _lowercase( self , A ) -> Union[str, Any]: return list(UpperCAmelCase_ ) def _lowercase( self , A ) -> List[str]: try: return ord(UpperCAmelCase_ ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def _lowercase( self , A ) -> int: try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCAmelCase_ ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def _lowercase( self , A ) -> Tuple: return "".join(UpperCAmelCase_ ) def _lowercase( self , A , A = None ) -> Optional[Any]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : List[str] = [self.cls_token_id] UpperCAmelCase : Union[str, Any] = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _lowercase( self , A , A = None , A = False ) -> List[Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) UpperCAmelCase : List[str] = [1] + ([0] * len(UpperCAmelCase_ )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCAmelCase_ )) + [1] return result def _lowercase( self , A , A = None ) -> Union[str, Any]: UpperCAmelCase : List[str] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] UpperCAmelCase : Optional[Any] = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _lowercase( self , A , A = None ) -> str: return ()
365
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class UpperCamelCase_ ( lowerCamelCase_ ): lowercase = (DPMSolverSDEScheduler,) lowercase = 10 def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[Any] = { """num_train_timesteps""": 1100, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**lowerCAmelCase__ ) return config def _lowercase( self ) -> str: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowercase( self ) -> str: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowercase( self ) -> Union[str, Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowercase( self ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : int = self.scheduler_classes[0] UpperCAmelCase : List[Any] = self.get_scheduler_config() UpperCAmelCase : List[str] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : Optional[int] = self.dummy_model() UpperCAmelCase : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : Optional[Any] = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Optional[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : List[str] = model(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : List[str] = output.prev_sample UpperCAmelCase : Optional[int] = torch.sum(torch.abs(lowerCAmelCase__ ) ) UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1e-3 def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : Dict = self.dummy_model() UpperCAmelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Optional[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : Optional[int] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : str = output.prev_sample UpperCAmelCase : str = torch.sum(torch.abs(lowerCAmelCase__ ) ) UpperCAmelCase : Dict = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1e-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1e-3 def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = self.scheduler_classes[0] UpperCAmelCase : Tuple = self.get_scheduler_config() UpperCAmelCase : Optional[Any] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) UpperCAmelCase : Any = self.dummy_model() UpperCAmelCase : int = self.dummy_sample_deter.to(lowerCAmelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : List[Any] = output.prev_sample UpperCAmelCase : Any = torch.sum(torch.abs(lowerCAmelCase__ ) ) UpperCAmelCase : List[str] = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1e-3 def _lowercase( self ) -> Optional[int]: UpperCAmelCase : List[Any] = self.scheduler_classes[0] UpperCAmelCase : Tuple = self.get_scheduler_config() UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) UpperCAmelCase : Dict = self.dummy_model() UpperCAmelCase : Any = self.dummy_sample_deter.to(lowerCAmelCase__ ) * scheduler.init_noise_sigma UpperCAmelCase : Dict = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : List[Any] = model(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : Any = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : Dict = output.prev_sample UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) UpperCAmelCase : int = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2
366
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
0
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCamelCase_ ( UpperCamelCase__ ): lowercase = 42 lowercase = 42 class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ): lowercase = 1 @register_to_config def __init__( self , A = 2000 , A = 0.1_5 , A = 0.0_1 , A = 1_3_4_8.0 , A = 1e-5 , A = 1 , ) -> List[str]: # standard deviation of the initial noise distribution UpperCAmelCase : Union[str, Any] = sigma_max # setable values UpperCAmelCase : str = None self.set_sigmas(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowercase( self , A , A = None ) -> List[Any]: return sample def _lowercase( self , A , A = None , A = None ) -> Tuple: UpperCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps UpperCAmelCase : List[str] = torch.linspace(1 , __lowerCamelCase , __lowerCamelCase , device=__lowerCamelCase ) def _lowercase( self , A , A = None , A = None , A = None ) -> Optional[int]: UpperCAmelCase : Optional[int] = sigma_min if sigma_min is not None else self.config.sigma_min UpperCAmelCase : List[Any] = sigma_max if sigma_max is not None else self.config.sigma_max UpperCAmelCase : Tuple = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase : Optional[Any] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) UpperCAmelCase : List[Any] = torch.exp(torch.linspace(math.log(__lowerCamelCase ) , math.log(__lowerCamelCase ) , __lowerCamelCase ) ) UpperCAmelCase : Optional[int] = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _lowercase( self , A , A ) -> str: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _lowercase( self , A , A , A , A = None , A = True , ) -> Any: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler""" ) UpperCAmelCase : Any = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) UpperCAmelCase : int = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda UpperCAmelCase : str = timesteps.to(self.discrete_sigmas.device ) UpperCAmelCase : List[str] = self.discrete_sigmas[timesteps].to(sample.device ) UpperCAmelCase : List[Any] = self.get_adjacent_sigma(__lowerCamelCase , __lowerCamelCase ).to(sample.device ) UpperCAmelCase : Any = torch.zeros_like(__lowerCamelCase ) UpperCAmelCase : Optional[int] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods UpperCAmelCase : int = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): UpperCAmelCase : Any = diffusion.unsqueeze(-1 ) UpperCAmelCase : Optional[Any] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of UpperCAmelCase : List[Any] = randn_tensor( sample.shape , layout=sample.layout , generator=__lowerCamelCase , device=sample.device , dtype=sample.dtype ) UpperCAmelCase : List[str] = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? UpperCAmelCase : Dict = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__lowerCamelCase , prev_sample_mean=__lowerCamelCase ) def _lowercase( self , A , A , A = None , A = True , ) -> str: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction UpperCAmelCase : Any = randn_tensor(sample.shape , layout=sample.layout , generator=__lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr UpperCAmelCase : Tuple = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() UpperCAmelCase : Optional[int] = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() UpperCAmelCase : int = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 UpperCAmelCase : Dict = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term UpperCAmelCase : List[Any] = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): UpperCAmelCase : int = step_size.unsqueeze(-1 ) UpperCAmelCase : Union[str, Any] = sample + step_size * model_output UpperCAmelCase : str = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCamelCase ) def _lowercase( self , A , A , A , ) -> Union[str, Any]: # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCAmelCase : List[Any] = timesteps.to(original_samples.device ) UpperCAmelCase : List[Any] = self.discrete_sigmas.to(original_samples.device )[timesteps] UpperCAmelCase : Tuple = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__lowerCamelCase ) * sigmas[:, None, None, None] ) UpperCAmelCase : Optional[int] = noise + original_samples return noisy_samples def __len__( self ) -> Any: return self.config.num_train_timesteps
367
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
0
'''simple docstring''' import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase_ ( A_ ): lowercase = 'microsoft/speecht5_tts' lowercase = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) lowercase = 'text_reader' lowercase = SpeechTaProcessor lowercase = SpeechTaForTextToSpeech lowercase = SpeechTaHifiGan lowercase = ['text'] lowercase = ['audio'] def _lowercase( self ) -> Any: if self.post_processor is None: UpperCAmelCase : Optional[int] = """microsoft/speecht5_hifigan""" super().setup() def _lowercase( self , A , A=None ) -> Dict: UpperCAmelCase : int = self.pre_processor(text=_lowerCamelCase , return_tensors="""pt""" , truncation=_lowerCamelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) UpperCAmelCase : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) UpperCAmelCase : List[str] = torch.tensor(embeddings_dataset[7305]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _lowercase( self , A ) -> str: with torch.no_grad(): return self.model.generate_speech(**_lowerCamelCase ) def _lowercase( self , A ) -> Any: with torch.no_grad(): return self.post_processor(_lowerCamelCase ).cpu().detach()
368
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
0
from __future__ import annotations def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: if len(_snake_case ) == 0: return False UpperCAmelCase : Dict = len(_snake_case ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _snake_case ) else: return binary_search(a_list[midpoint + 1 :] , _snake_case ) if __name__ == "__main__": a : str = input("""Enter numbers separated by comma:\n""").strip() a : Union[str, Any] = [int(item.strip()) for item in user_input.split(""",""")] a : Optional[int] = int(input("""Enter the number to be found in the list:\n""").strip()) a : str = "" if binary_search(sequence, target) else "not " print(F'''{target} was {not_str}found in {sequence}''')
369
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
0
import os import numpy import onnx def __lowerCamelCase ( _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : Dict = a.name UpperCAmelCase : Optional[int] = b.name UpperCAmelCase : Union[str, Any] = "" UpperCAmelCase : Dict = "" UpperCAmelCase : str = a == b UpperCAmelCase : str = name_a UpperCAmelCase : List[str] = name_b return res def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowercase , _lowercase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowercase , _lowercase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowercase , _lowercase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowercase , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: for n in graph_proto.node: _node_replace_input_with(_lowercase , _lowercase , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : Dict = list(model.graph.initializer ) UpperCAmelCase : Optional[int] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i UpperCAmelCase : List[str] = inits[i].name UpperCAmelCase : str = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowercase , _lowercase ) def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Any = os.path.dirname(_lowercase ) UpperCAmelCase : Optional[int] = os.path.basename(_lowercase ) UpperCAmelCase : List[Any] = onnx.load(os.path.join(_lowercase , _lowercase ) ) UpperCAmelCase : Optional[Any] = list(model.graph.initializer ) UpperCAmelCase : str = set() UpperCAmelCase : List[str] = {} UpperCAmelCase : Tuple = [] UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowercase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowercase ) dup_set.add(_lowercase ) UpperCAmelCase : Union[str, Any] = inits[j].data_type UpperCAmelCase : Tuple = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print("""unexpected data type: """ , _lowercase ) total_reduced_size += mem_size UpperCAmelCase : str = inits[i].name UpperCAmelCase : List[Any] = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowercase ) else: UpperCAmelCase : Any = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , """GB""" ) UpperCAmelCase : List[Any] = sorted(_lowercase ) _remove_dup_initializers_from_model(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : Optional[int] = "optimized_" + model_file_name UpperCAmelCase : List[Any] = os.path.join(_lowercase , _lowercase ) onnx.save(_lowercase , _lowercase ) return new_model
370
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Any: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. UpperCAmelCase : int = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase : List[str] = DisjunctiveConstraint(snake_case_ ) self.assertTrue(isinstance(dc.token_ids , snake_case_ ) ) with self.assertRaises(snake_case_ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(snake_case_ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _lowercase( self ) -> Optional[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). UpperCAmelCase : Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(snake_case_ ): DisjunctiveConstraint(snake_case_ ) # fails here def _lowercase( self ) -> str: UpperCAmelCase : List[Any] = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase : Tuple = DisjunctiveConstraint(snake_case_ ) UpperCAmelCase : int = dc.update(1 ) UpperCAmelCase : int = stepped is True and completed is False and reset is False self.assertTrue(snake_case_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase : int = dc.update(2 ) UpperCAmelCase : int = stepped is True and completed is False and reset is False self.assertTrue(snake_case_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase : str = dc.update(3 ) UpperCAmelCase : Union[str, Any] = stepped is True and completed is True and reset is False self.assertTrue(snake_case_ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _lowercase( self ) -> int: UpperCAmelCase : Tuple = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase : str = DisjunctiveConstraint(snake_case_ ) UpperCAmelCase : Dict = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase : List[str] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase : Optional[Any] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase : Union[str, Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase : Union[str, Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase : Optional[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase : str = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
371
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
0
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
350
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : int = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
351
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
0
'''simple docstring''' class UpperCamelCase_ : def __init__( self , A ) -> List[Any]: UpperCAmelCase : Any = val UpperCAmelCase : Optional[int] = None UpperCAmelCase : int = None def _lowercase( self , A ) -> Dict: if self.val: if val < self.val: if self.left is None: UpperCAmelCase : str = Node(__SCREAMING_SNAKE_CASE ) else: self.left.insert(__SCREAMING_SNAKE_CASE ) elif val > self.val: if self.right is None: UpperCAmelCase : Any = Node(__SCREAMING_SNAKE_CASE ) else: self.right.insert(__SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : Dict = val def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: # Recursive traversal if root: inorder(root.left , _lowercase ) res.append(root.val ) inorder(root.right , _lowercase ) def __lowerCamelCase ( _lowercase ) -> List[Any]: # Build BST if len(_lowercase ) == 0: return arr UpperCAmelCase : Any = Node(arr[0] ) for i in range(1 , len(_lowercase ) ): root.insert(arr[i] ) # Traverse BST in order. UpperCAmelCase : Dict = [] inorder(_lowercase , _lowercase ) return res if __name__ == "__main__": print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
352
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
0
'''simple docstring''' import os def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Any = len(grid[0] ) UpperCAmelCase : List[str] = len(lowerCamelCase__ ) UpperCAmelCase : List[str] = 0 UpperCAmelCase : str = 0 UpperCAmelCase : int = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(lowerCamelCase__ ): for j in range(n_rows - 3 ): UpperCAmelCase : Optional[int] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] UpperCAmelCase : Tuple = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: UpperCAmelCase : Dict = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: UpperCAmelCase : List[Any] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) UpperCAmelCase : Optional[Any] = max( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if max_product > largest: UpperCAmelCase : str = max_product return largest def __lowerCamelCase ( ) -> List[str]: UpperCAmelCase : Any = [] with open(os.path.dirname(lowerCamelCase__ ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) UpperCAmelCase : Optional[int] = [[int(lowerCamelCase__ ) for i in grid[j]] for j in range(len(lowerCamelCase__ ) )] return largest_product(lowerCamelCase__ ) if __name__ == "__main__": print(solution())
353
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
0
'''simple docstring''' import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a : Tuple = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a : Tuple = { # fairseq: """wmt19-ru-en""": {"""length_penalty""": 1.1}, """wmt19-en-ru""": {"""length_penalty""": 1.1_5}, """wmt19-en-de""": {"""length_penalty""": 1.0}, """wmt19-de-en""": {"""length_penalty""": 1.1}, # allenai: """wmt16-en-de-dist-12-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-dist-6-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-12-1""": {"""length_penalty""": 0.8}, """wmt19-de-en-6-6-base""": {"""length_penalty""": 0.6}, """wmt19-de-en-6-6-big""": {"""length_penalty""": 0.6}, } # this remaps the different models to their organization names a : int = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a : Tuple = """facebook""" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a : Any = """allenai""" def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : Optional[int] = dict((re.sub(R"""@@$""" , """""" , _lowerCAmelCase ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , _lowerCAmelCase ), v) for k, v in d.items() ) UpperCAmelCase : Optional[Any] = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] UpperCAmelCase : Dict = d[k] # restore return da def __lowerCamelCase ( _lowercase , _lowercase ) -> Union[str, Any]: assert os.path.exists(_lowerCAmelCase ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models UpperCAmelCase : Optional[int] = basename(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = dirname(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel UpperCAmelCase : Union[str, Any] = cls.hub_models() UpperCAmelCase : Dict = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} UpperCAmelCase : int = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'''using checkpoint {checkpoint_file}''' ) UpperCAmelCase : Optional[int] = hub_utils.from_pretrained( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , archive_map=_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase : List[str] = vars(chkpt["""args"""]["""model"""] ) UpperCAmelCase : Optional[int] = args["""source_lang"""] UpperCAmelCase : str = args["""target_lang"""] UpperCAmelCase : List[Any] = dirname(_lowerCAmelCase ) UpperCAmelCase : int = basename(_lowerCAmelCase ) # dicts UpperCAmelCase : int = os.path.join(_lowerCAmelCase , F'''dict.{src_lang}.txt''' ) UpperCAmelCase : Any = os.path.join(_lowerCAmelCase , F'''dict.{tgt_lang}.txt''' ) UpperCAmelCase : int = Dictionary.load(_lowerCAmelCase ) UpperCAmelCase : str = rewrite_dict_keys(src_dict.indices ) UpperCAmelCase : int = len(_lowerCAmelCase ) UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , """vocab-src.json""" ) print(F'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_lowerCAmelCase , ensure_ascii=_lowerCAmelCase , indent=_lowerCAmelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab UpperCAmelCase : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): UpperCAmelCase : Any = False break UpperCAmelCase : List[Any] = Dictionary.load(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = rewrite_dict_keys(tgt_dict.indices ) UpperCAmelCase : int = len(_lowerCAmelCase ) UpperCAmelCase : Any = os.path.join(_lowerCAmelCase , """vocab-tgt.json""" ) print(F'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_lowerCAmelCase , ensure_ascii=_lowerCAmelCase , indent=_lowerCAmelCase ) ) # merges_file (bpecodes) UpperCAmelCase : Any = os.path.join(_lowerCAmelCase , VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" UpperCAmelCase : str = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) if os.path.exists(_lowerCAmelCase ): break with open(_lowerCAmelCase , encoding="""utf-8""" ) as fin: UpperCAmelCase : Tuple = fin.read() UpperCAmelCase : int = re.sub(R""" \d+$""" , """""" , _lowerCAmelCase , 0 , re.M ) # remove frequency number print(F'''Generating {merges_file}''' ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as fout: fout.write(_lowerCAmelCase ) # model config UpperCAmelCase : List[str] = os.path.join(_lowerCAmelCase , """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", F'''need to extend tokenizer to support bpe={args['tokenizer']}''' UpperCAmelCase : Dict = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with UpperCAmelCase : Optional[int] = 5 UpperCAmelCase : str = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: UpperCAmelCase : Union[str, Any] = best_score_hparams[model_dir]["""length_penalty"""] else: UpperCAmelCase : Optional[int] = 1.0 print(F'''Generating {fsmt_model_config_file}''' ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_lowerCAmelCase , ensure_ascii=_lowerCAmelCase , indent=_lowerCAmelCase ) ) # tokenizer config UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : str = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1_0_2_4, """do_lower_case""": do_lower_case, } print(F'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_lowerCAmelCase , ensure_ascii=_lowerCAmelCase , indent=_lowerCAmelCase ) ) # model UpperCAmelCase : Dict = chkpt["""models"""][0] UpperCAmelCase : Tuple = model.state_dict() # rename keys to start with 'model.' UpperCAmelCase : List[str] = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys UpperCAmelCase : Any = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : int = FSMTConfig.from_pretrained(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration(_lowerCAmelCase ) # check that it loads ok model_new.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) # save UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCAmelCase , _lowerCAmelCase ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(F'''cd {data_root}''' ) print(F'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fsmt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a : List[str] = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
354
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES a : Optional[Any] = 'tiny-wmt19-en-ru' # Build # borrowed from a test a : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] a : Any = dict(zip(vocab, range(len(vocab)))) a : str = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: a : Dict = Path(tmpdirname) a : Any = build_dir / VOCAB_FILES_NAMES['src_vocab_file'] a : List[str] = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] a : Tuple = build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) a : Dict = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) a : Any = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=1_0_0_0, tgt_vocab_size=1_0_0_0, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) a : Optional[int] = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test a : Any = tokenizer(["""Making tiny model"""], return_tensors="""pt""") a : Union[str, Any] = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : Dict = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: UpperCAmelCase : int = [1_4_4, 1_9_2, 2_4_0] UpperCAmelCase : int = [1_6, 3_2, 6_4, 9_6, 1_2_8, 1_6_0, 6_4_0] elif "mobilevit_xs" in mobilevit_name: UpperCAmelCase : List[Any] = [9_6, 1_2_0, 1_4_4] UpperCAmelCase : Dict = [1_6, 3_2, 4_8, 6_4, 8_0, 9_6, 3_8_4] elif "mobilevit_xxs" in mobilevit_name: UpperCAmelCase : Tuple = [6_4, 8_0, 9_6] UpperCAmelCase : List[Any] = [1_6, 1_6, 2_4, 4_8, 6_4, 8_0, 3_2_0] UpperCAmelCase : Optional[int] = 0.05 UpperCAmelCase : List[str] = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): UpperCAmelCase : List[str] = 5_1_2 UpperCAmelCase : Union[str, Any] = 1_6 UpperCAmelCase : List[str] = 2_1 UpperCAmelCase : Optional[int] = 'pascal-voc-id2label.json' else: UpperCAmelCase : Tuple = 1_0_0_0 UpperCAmelCase : str = 'imagenet-1k-id2label.json' UpperCAmelCase : str = 'huggingface/label-files' UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Union[str, Any] = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : List[Any] = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} return config def __lowerCamelCase ( _lowercase , _lowercase=False ) -> int: for i in range(1 , 6 ): if F'''layer_{i}.''' in name: UpperCAmelCase : str = name.replace(F'''layer_{i}.''' , F'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: UpperCAmelCase : Tuple = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: UpperCAmelCase : Optional[int] = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: UpperCAmelCase : int = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: UpperCAmelCase : List[Any] = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: UpperCAmelCase : Optional[Any] = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: UpperCAmelCase : Dict = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: UpperCAmelCase : Any = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: UpperCAmelCase : Optional[Any] = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: UpperCAmelCase : Dict = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F'''.{i}.{j}.''' in name: UpperCAmelCase : Tuple = name.replace(F'''.{i}.{j}.''' , F'''.{i}.layer.{j}.''' ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F'''.{i}.{j}.''' in name: UpperCAmelCase : List[str] = name.replace(F'''.{i}.{j}.''' , F'''.{i}.''' ) if "expand_1x1" in name: UpperCAmelCase : Dict = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: UpperCAmelCase : Union[str, Any] = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: UpperCAmelCase : Optional[Any] = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F'''.global_rep.{i}.weight''' in name: UpperCAmelCase : List[Any] = name.replace(F'''.global_rep.{i}.weight''' , """.layernorm.weight""" ) if F'''.global_rep.{i}.bias''' in name: UpperCAmelCase : Dict = name.replace(F'''.global_rep.{i}.bias''' , """.layernorm.bias""" ) if ".global_rep." in name: UpperCAmelCase : Tuple = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: UpperCAmelCase : Optional[Any] = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: UpperCAmelCase : int = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: UpperCAmelCase : Optional[Any] = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: UpperCAmelCase : Tuple = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: UpperCAmelCase : int = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: UpperCAmelCase : Optional[Any] = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: UpperCAmelCase : Tuple = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: UpperCAmelCase : Any = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: UpperCAmelCase : Union[str, Any] = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: UpperCAmelCase : str = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: UpperCAmelCase : Optional[int] = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): UpperCAmelCase : List[str] = 'mobilevit.' + name return name def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=False ) -> Optional[Any]: if base_model: UpperCAmelCase : str = '' else: UpperCAmelCase : List[Any] = 'mobilevit.' for key in orig_state_dict.copy().keys(): UpperCAmelCase : int = orig_state_dict.pop(_lowercase ) if key[:8] == "encoder.": UpperCAmelCase : Dict = key[8:] if "qkv" in key: UpperCAmelCase : Tuple = key.split(""".""" ) UpperCAmelCase : List[str] = int(key_split[0][6:] ) - 1 UpperCAmelCase : Any = int(key_split[3] ) UpperCAmelCase : Optional[int] = model.get_submodule(F'''{model_prefix}encoder.layer.{layer_num}''' ) UpperCAmelCase : int = layer.transformer.layer[transformer_num].attention.attention.all_head_size UpperCAmelCase : Dict = ( F'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: UpperCAmelCase : Union[str, Any] = val[:dim, :] UpperCAmelCase : List[Any] = val[dim : dim * 2, :] UpperCAmelCase : str = val[-dim:, :] else: UpperCAmelCase : Dict = val[:dim] UpperCAmelCase : List[Any] = val[dim : dim * 2] UpperCAmelCase : List[Any] = val[-dim:] else: UpperCAmelCase : int = val return orig_state_dict def __lowerCamelCase ( ) -> Optional[Any]: UpperCAmelCase : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCAmelCase : int = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Dict: UpperCAmelCase : Optional[int] = get_mobilevit_config(_lowercase ) # load original state_dict UpperCAmelCase : Union[str, Any] = torch.load(_lowercase , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): UpperCAmelCase : Union[str, Any] = MobileViTForSemanticSegmentation(_lowercase ).eval() else: UpperCAmelCase : Tuple = MobileViTForImageClassification(_lowercase ).eval() UpperCAmelCase : int = convert_state_dict(_lowercase , _lowercase ) model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase : Optional[int] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 3_2 ) UpperCAmelCase : int = image_processor(images=prepare_img() , return_tensors="""pt""" ) UpperCAmelCase : List[str] = model(**_lowercase ) UpperCAmelCase : Any = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 2_1, 3_2, 3_2) if mobilevit_name == "deeplabv3_mobilevit_s": UpperCAmelCase : Tuple = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": UpperCAmelCase : Optional[Any] = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": UpperCAmelCase : Union[str, Any] = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-1_0.5_5_3_6, -1_0.2_3_3_2, -1_0.2_9_2_4], [-1_0.2_3_3_6, -9.8624, -9.5964], [-1_0.8_8_4_0, -1_0.8_1_5_8, -1_0.6_6_5_9]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-4 ) else: assert logits.shape == (1, 1_0_0_0) if mobilevit_name == "mobilevit_s": UpperCAmelCase : Any = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": UpperCAmelCase : Optional[Any] = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": UpperCAmelCase : List[str] = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowercase ) if push_to_hub: UpperCAmelCase : List[str] = { 'mobilevit_s': 'mobilevit-small', 'mobilevit_xs': 'mobilevit-x-small', 'mobilevit_xxs': 'mobilevit-xx-small', 'deeplabv3_mobilevit_s': 'deeplabv3-mobilevit-small', 'deeplabv3_mobilevit_xs': 'deeplabv3-mobilevit-x-small', 'deeplabv3_mobilevit_xxs': 'deeplabv3-mobilevit-xx-small', } print("""Pushing to the hub...""" ) UpperCAmelCase : Optional[int] = model_mapping[mobilevit_name] image_processor.push_to_hub(_lowercase , organization="""apple""" ) model.push_to_hub(_lowercase , organization="""apple""" ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--mobilevit_name""", default="""mobilevit_s""", type=str, help=( """Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',""" """ \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.""" ), ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) a : Tuple = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
356
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> Dict: return "".join([hex(_lowercase )[2:].zfill(2 ).upper() for byte in list(_lowercase )] ) def __lowerCamelCase ( _lowercase ) -> Dict: if (len(_lowercase ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid: Data does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_lowercase ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(_lowercase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
357
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin a : Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right a : Dict = 2_5_0_0_0_4 a : Any = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( lowerCamelCase__ , unittest.TestCase ): lowercase = MBartTokenizer lowercase = MBartTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : List[str] = MBartTokenizer(lowercase__ , keep_accents=lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase( self ) -> Dict: UpperCAmelCase : Union[str, Any] = MBartTokenizer(lowercase__ , keep_accents=lowercase__ ) UpperCAmelCase : Dict = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowercase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCAmelCase : Any = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual( lowercase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def _lowercase( self ) -> Tuple: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase : Any = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) UpperCAmelCase : List[Any] = tempfile.mkdtemp() UpperCAmelCase : Optional[Any] = tokenizer_r.save_pretrained(lowercase__ ) UpperCAmelCase : Any = tokenizer_p.save_pretrained(lowercase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) UpperCAmelCase : Dict = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(lowercase__ , lowercase__ ) # Checks everything loads correctly in the same way UpperCAmelCase : Dict = tokenizer_r.from_pretrained(lowercase__ ) UpperCAmelCase : Union[str, Any] = tokenizer_p.from_pretrained(lowercase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase__ , lowercase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase__ ) # Save tokenizer rust, legacy_format=True UpperCAmelCase : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase : int = tokenizer_r.save_pretrained(lowercase__ , legacy_format=lowercase__ ) UpperCAmelCase : Optional[Any] = tokenizer_p.save_pretrained(lowercase__ ) # Checks it save with the same files self.assertSequenceEqual(lowercase__ , lowercase__ ) # Checks everything loads correctly in the same way UpperCAmelCase : Dict = tokenizer_r.from_pretrained(lowercase__ ) UpperCAmelCase : Tuple = tokenizer_p.from_pretrained(lowercase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase__ , lowercase__ ) ) shutil.rmtree(lowercase__ ) # Save tokenizer rust, legacy_format=False UpperCAmelCase : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase : Optional[Any] = tokenizer_r.save_pretrained(lowercase__ , legacy_format=lowercase__ ) UpperCAmelCase : str = tokenizer_p.save_pretrained(lowercase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase : List[Any] = tokenizer_r.from_pretrained(lowercase__ ) UpperCAmelCase : Optional[int] = tokenizer_p.from_pretrained(lowercase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase__ , lowercase__ ) ) shutil.rmtree(lowercase__ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( unittest.TestCase ): lowercase = 'facebook/mbart-large-en-ro' lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowercase = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def _lowercase( cls ) -> List[str]: UpperCAmelCase : Any = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) UpperCAmelCase : int = 1 return cls def _lowercase( self ) -> int: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250020 ) def _lowercase( self ) -> str: UpperCAmelCase : Union[str, Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase__ ) def _lowercase( self ) -> Union[str, Any]: self.assertIn(lowercase__ , self.tokenizer.all_special_ids ) UpperCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] UpperCAmelCase : int = self.tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) UpperCAmelCase : Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) self.assertNotIn(self.tokenizer.eos_token , lowercase__ ) def _lowercase( self ) -> int: UpperCAmelCase : int = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , lowercase__ ) UpperCAmelCase : int = 10 UpperCAmelCase : int = self.tokenizer(lowercase__ , max_length=lowercase__ , truncation=lowercase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowercase__ ) self.assertEqual(len(lowercase__ ) , lowercase__ ) def _lowercase( self ) -> Any: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250026, 250001] ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[int] = tempfile.mkdtemp() UpperCAmelCase : str = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase__ ) UpperCAmelCase : Any = MBartTokenizer.from_pretrained(lowercase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase__ ) @require_torch def _lowercase( self ) -> str: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase__ , return_tensors="""pt""" ) UpperCAmelCase : Any = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase__ , truncation=lowercase__ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) UpperCAmelCase : Tuple = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCAmelCase : Any = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : int = self.tokenizer(self.src_text , padding=lowercase__ , truncation=lowercase__ , max_length=3 , return_tensors="""pt""" ) UpperCAmelCase : Any = self.tokenizer( text_target=self.tgt_text , padding=lowercase__ , truncation=lowercase__ , max_length=10 , return_tensors="""pt""" ) UpperCAmelCase : Optional[Any] = targets["""input_ids"""] UpperCAmelCase : Dict = shift_tokens_right(lowercase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _lowercase( self ) -> str: UpperCAmelCase : List[str] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(lowercase__ ) , { # A, test, EOS, en_XX """input_ids""": [[62, 3034, 2, 250004]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 250001, } , )
358
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
0
'''simple docstring''' from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge a : List[str] = [ 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe' ' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', 'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal' ' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s' ' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the' ' body.', 'Amnesty International releases its annual report on the death penalty. The report catalogs the use of' ' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the' ' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital' ' punishment.', ] a : List[str] = [ 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .' ' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz' ' had informed his Lufthansa training school of an episode of severe depression, airline says .', 'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .' ' Israel and the United States opposed the move, which could open the door to war crimes investigations against' ' Israelis .', 'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to' ' death . Organization claims that governments around the world are using the threat of terrorism to advance' ' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death' ' sentences up by 28% .', ] def __lowerCamelCase ( ) -> Union[str, Any]: UpperCAmelCase : List[str] = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , bootstrap_aggregation=_UpperCAmelCase , rouge_keys=["""rouge2""", """rougeL"""] ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase : Dict = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , bootstrap_aggregation=_UpperCAmelCase , rouge_keys=["""rouge2"""] ) assert ( pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean() ) def __lowerCamelCase ( ) -> int: UpperCAmelCase : Optional[Any] = 'rougeLsum' UpperCAmelCase : Tuple = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase , rouge_keys=[k] )[k] UpperCAmelCase : Dict = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase , rouge_keys=[k] )[k] assert score > score_no_sep def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : Any = ['rouge1', 'rouge2', 'rougeL'] UpperCAmelCase : int = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase , rouge_keys=_UpperCAmelCase ) UpperCAmelCase : int = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase , rouge_keys=_UpperCAmelCase ) assert score_sep == score_no_sep def __lowerCamelCase ( ) -> List[Any]: UpperCAmelCase : List[Any] = [ 'Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.', 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .', ] UpperCAmelCase : int = [ 'Margot Frank, died in 1945, a month earlier than previously thought.', 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of' ' the final seconds on board Flight 9525.', ] assert calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase ) == calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase ) def __lowerCamelCase ( ) -> Any: UpperCAmelCase : Any = [ '" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ' ] UpperCAmelCase : Optional[int] = [ ' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .' ] UpperCAmelCase : int = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , rouge_keys=["""rougeLsum"""] , newline_sep=_UpperCAmelCase )['rougeLsum'] UpperCAmelCase : Union[str, Any] = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , rouge_keys=["""rougeLsum"""] )['rougeLsum'] assert new_score > prev_score def __lowerCamelCase ( ) -> int: UpperCAmelCase : Optional[Any] = Path("""examples/seq2seq/test_data/wmt_en_ro""" ) UpperCAmelCase : Optional[Any] = calculate_rouge_path(data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase : int = calculate_rouge_path( data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) , bootstrap_aggregation=_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase )
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
360
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> Optional[int]: # initialize config if "resnet-50" in model_name: UpperCAmelCase : Union[str, Any] = ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: UpperCAmelCase : Optional[Any] = ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) UpperCAmelCase : Optional[Any] = DetrConfig(use_timm_backbone=_lowercase , backbone_config=_lowercase ) # set label attributes UpperCAmelCase : Optional[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Tuple = 2_5_0 else: UpperCAmelCase : str = 9_1 UpperCAmelCase : List[Any] = """huggingface/label-files""" UpperCAmelCase : Optional[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Any = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Dict = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} return config, is_panoptic def __lowerCamelCase ( _lowercase ) -> Optional[int]: # here we list all keys to be renamed (original name on the left, our name on the right) UpperCAmelCase : Optional[Any] = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[Any]: UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : Any = val def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Tuple: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Any = """detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : Tuple = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : str = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[int] = in_proj_bias[:2_5_6] UpperCAmelCase : Any = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : int = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : Dict = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[Any] = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase : int = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[str] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : int = in_proj_weight[:2_5_6, :] UpperCAmelCase : Tuple = in_proj_bias[:2_5_6] UpperCAmelCase : Any = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : Dict = in_proj_weight[-2_5_6:, :] UpperCAmelCase : Union[str, Any] = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase : Optional[int] = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase : List[Any] = in_proj_weight_cross_attn[:2_5_6, :] UpperCAmelCase : int = in_proj_bias_cross_attn[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight_cross_attn[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias_cross_attn[2_5_6:5_1_2] UpperCAmelCase : Optional[int] = in_proj_weight_cross_attn[-2_5_6:, :] UpperCAmelCase : int = in_proj_bias_cross_attn[-2_5_6:] def __lowerCamelCase ( ) -> Tuple: UpperCAmelCase : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : List[str] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase=None , _lowercase=False ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : str = get_detr_config(_lowercase ) # load original model from torch hub UpperCAmelCase : Any = { """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(F'''Converting model {model_name}...''' ) UpperCAmelCase : int = torch.hub.load("""facebookresearch/detr""" , model_name_to_original_name[model_name] , pretrained=_lowercase ).eval() UpperCAmelCase : Optional[int] = detr.state_dict() # rename keys for src, dest in create_rename_keys(_lowercase ): if is_panoptic: UpperCAmelCase : Union[str, Any] = """detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : Tuple = """detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Dict = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : str = state_dict.pop(_lowercase ) UpperCAmelCase : Dict = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = DetrForSegmentation(_lowercase ) if is_panoptic else DetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() # verify our conversion on an image UpperCAmelCase : Optional[int] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : Union[str, Any] = DetrImageProcessor(format=_lowercase ) UpperCAmelCase : List[str] = processor(images=prepare_img() , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] UpperCAmelCase : Tuple = detr(_lowercase ) UpperCAmelCase : Optional[Any] = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": a : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") a : Optional[Any] = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
361
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
0
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class UpperCamelCase_ ( nn.Module ): lowercase = 42 lowercase = jnp.floataa def _lowercase( self ) -> List[Any]: UpperCAmelCase : Union[str, Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , A ) -> Any: UpperCAmelCase : int = hidden_states.shape UpperCAmelCase : str = jax.image.resize( _a , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) UpperCAmelCase : Dict = self.conv(_a ) return hidden_states class UpperCamelCase_ ( nn.Module ): lowercase = 42 lowercase = jnp.floataa def _lowercase( self ) -> str: UpperCAmelCase : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , A ) -> Dict: UpperCAmelCase : int = self.conv(_a ) return hidden_states class UpperCamelCase_ ( nn.Module ): lowercase = 42 lowercase = None lowercase = 0.0 lowercase = None lowercase = jnp.floataa def _lowercase( self ) -> str: UpperCAmelCase : Any = self.in_channels if self.out_channels is None else self.out_channels UpperCAmelCase : List[Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) UpperCAmelCase : Any = nn.Conv( _a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCAmelCase : Union[str, Any] = nn.Dense(_a , dtype=self.dtype ) UpperCAmelCase : str = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) UpperCAmelCase : List[str] = nn.Dropout(self.dropout_prob ) UpperCAmelCase : List[str] = nn.Conv( _a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCAmelCase : Dict = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut UpperCAmelCase : Any = None if use_nin_shortcut: UpperCAmelCase : Union[str, Any] = nn.Conv( _a , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self , A , A , A=True ) -> List[Any]: UpperCAmelCase : Optional[int] = hidden_states UpperCAmelCase : Dict = self.norma(_a ) UpperCAmelCase : str = nn.swish(_a ) UpperCAmelCase : List[str] = self.conva(_a ) UpperCAmelCase : List[Any] = self.time_emb_proj(nn.swish(_a ) ) UpperCAmelCase : Any = jnp.expand_dims(jnp.expand_dims(_a , 1 ) , 1 ) UpperCAmelCase : Dict = hidden_states + temb UpperCAmelCase : int = self.norma(_a ) UpperCAmelCase : List[Any] = nn.swish(_a ) UpperCAmelCase : Tuple = self.dropout(_a , _a ) UpperCAmelCase : Optional[int] = self.conva(_a ) if self.conv_shortcut is not None: UpperCAmelCase : str = self.conv_shortcut(_a ) return hidden_states + residual
362
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : int = { 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
363
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
0
'''simple docstring''' import argparse import struct import unittest class UpperCamelCase_ : def __init__( self , A ) -> None: UpperCAmelCase : str = data # Initialize hash values UpperCAmelCase : Optional[int] = [ 0X6a09e667, 0Xbb67ae85, 0X3c6ef372, 0Xa54ff53a, 0X510e527f, 0X9b05688c, 0X1f83d9ab, 0X5be0cd19, ] # Initialize round constants UpperCAmelCase : Tuple = [ 0X428a2f98, 0X71374491, 0Xb5c0fbcf, 0Xe9b5dba5, 0X3956c25b, 0X59f111f1, 0X923f82a4, 0Xab1c5ed5, 0Xd807aa98, 0X12835b01, 0X243185be, 0X550c7dc3, 0X72be5d74, 0X80deb1fe, 0X9bdc06a7, 0Xc19bf174, 0Xe49b69c1, 0Xefbe4786, 0X0fc19dc6, 0X240ca1cc, 0X2de92c6f, 0X4a7484aa, 0X5cb0a9dc, 0X76f988da, 0X983e5152, 0Xa831c66d, 0Xb00327c8, 0Xbf597fc7, 0Xc6e00bf3, 0Xd5a79147, 0X06ca6351, 0X14292967, 0X27b70a85, 0X2e1b2138, 0X4d2c6dfc, 0X53380d13, 0X650a7354, 0X766a0abb, 0X81c2c92e, 0X92722c85, 0Xa2bfe8a1, 0Xa81a664b, 0Xc24b8b70, 0Xc76c51a3, 0Xd192e819, 0Xd6990624, 0Xf40e3585, 0X106aa070, 0X19a4c116, 0X1e376c08, 0X2748774c, 0X34b0bcb5, 0X391c0cb3, 0X4ed8aa4a, 0X5b9cca4f, 0X682e6ff3, 0X748f82ee, 0X78a5636f, 0X84c87814, 0X8cc70208, 0X90befffa, 0Xa4506ceb, 0Xbef9a3f7, 0Xc67178f2, ] UpperCAmelCase : str = self.preprocessing(self.data ) self.final_hash() @staticmethod def _lowercase( A ) -> bytes: UpperCAmelCase : List[Any] = b"\x80" + (b"\x00" * (63 - (len(_SCREAMING_SNAKE_CASE ) + 8) % 64)) UpperCAmelCase : Any = struct.pack(""">Q""" , (len(_SCREAMING_SNAKE_CASE ) * 8) ) return data + padding + big_endian_integer def _lowercase( self ) -> None: UpperCAmelCase : Optional[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCAmelCase : Union[str, Any] = list(struct.unpack(""">16L""" , _SCREAMING_SNAKE_CASE ) ) # add 48 0-ed integers words += [0] * 48 UpperCAmelCase : Optional[Any] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array UpperCAmelCase : List[Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) UpperCAmelCase : Optional[int] = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) UpperCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100000000 # Compression UpperCAmelCase : Optional[Any] = self.ror(_SCREAMING_SNAKE_CASE , 6 ) ^ self.ror(_SCREAMING_SNAKE_CASE , 11 ) ^ self.ror(_SCREAMING_SNAKE_CASE , 25 ) UpperCAmelCase : Optional[int] = (e & f) ^ ((~e & 0Xffffffff) & g) UpperCAmelCase : Optional[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100000000 UpperCAmelCase : Optional[int] = self.ror(_SCREAMING_SNAKE_CASE , 2 ) ^ self.ror(_SCREAMING_SNAKE_CASE , 13 ) ^ self.ror(_SCREAMING_SNAKE_CASE , 22 ) UpperCAmelCase : Optional[int] = (a & b) ^ (a & c) ^ (b & c) UpperCAmelCase : Dict = (sa + maj) % 0X100000000 UpperCAmelCase : List[Any] = ( g, f, e, ((d + tempa) % 0X100000000), c, b, a, ((tempa + tempa) % 0X100000000), ) UpperCAmelCase : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values UpperCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0X100000000) for index, element in enumerate(self.hashes ) ] UpperCAmelCase : Tuple = "".join([hex(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for value in self.hashes] ) def _lowercase( self , A , A ) -> int: return 0Xffffffff & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> None: import hashlib UpperCAmelCase : List[Any] = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(_SCREAMING_SNAKE_CASE ).hash , hashlib.shaaaa(_SCREAMING_SNAKE_CASE ).hexdigest() ) def __lowerCamelCase ( ) -> None: """simple docstring""" import doctest doctest.testmod() UpperCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) UpperCAmelCase : List[str] = parser.parse_args() UpperCAmelCase : Optional[int] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: UpperCAmelCase : List[str] = f.read() else: UpperCAmelCase : List[Any] = bytes(__snake_case , """utf-8""" ) print(SHAaaa(__snake_case ).hash ) if __name__ == "__main__": main()
364
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer a = logging.get_logger(__name__) # pylint: disable=invalid-name a = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class UpperCamelCase_ ( __snake_case ): lowercase = 42 class UpperCamelCase_ ( __snake_case ): def __init__( self , A , A , A , A , A , ) -> int: super().__init__() self.register_modules( prior=lowerCamelCase_ , image_encoder=lowerCamelCase_ , image_processor=lowerCamelCase_ , scheduler=lowerCamelCase_ , renderer=lowerCamelCase_ , ) def _lowercase( self , A , A , A , A , A , A ) -> List[Any]: if latents is None: UpperCAmelCase : Dict = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ , device=lowerCamelCase_ , dtype=lowerCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) UpperCAmelCase : int = latents.to(lowerCamelCase_ ) UpperCAmelCase : Optional[int] = latents * scheduler.init_noise_sigma return latents def _lowercase( self , A=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCAmelCase : Optional[int] = torch.device(f'''cuda:{gpu_id}''' ) UpperCAmelCase : Dict = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase_ , lowerCamelCase_ ) @property def _lowercase( self ) -> str: if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowerCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def _lowercase( self , A , A , A , A , ) -> Dict: if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(image[0] , torch.Tensor ): UpperCAmelCase : int = torch.cat(lowerCamelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(lowerCamelCase_ , axis=0 ) if not isinstance(lowerCamelCase_ , torch.Tensor ): UpperCAmelCase : Dict = self.image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) UpperCAmelCase : Any = image.to(dtype=self.image_encoder.dtype , device=lowerCamelCase_ ) UpperCAmelCase : Dict = self.image_encoder(lowerCamelCase_ )["""last_hidden_state"""] UpperCAmelCase : Union[str, Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 UpperCAmelCase : Dict = image_embeds.repeat_interleave(lowerCamelCase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase : Optional[Any] = torch.zeros_like(lowerCamelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowerCamelCase_ ) def __call__( self , A , A = 1 , A = 25 , A = None , A = None , A = 4.0 , A = 64 , A = "pil" , A = True , ) -> str: if isinstance(lowerCamelCase_ , PIL.Image.Image ): UpperCAmelCase : int = 1 elif isinstance(lowerCamelCase_ , torch.Tensor ): UpperCAmelCase : str = image.shape[0] elif isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): UpperCAmelCase : Optional[int] = len(lowerCamelCase_ ) else: raise ValueError( f'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowerCamelCase_ )}''' ) UpperCAmelCase : Union[str, Any] = self._execution_device UpperCAmelCase : Optional[Any] = batch_size * num_images_per_prompt UpperCAmelCase : Tuple = guidance_scale > 1.0 UpperCAmelCase : Union[str, Any] = self._encode_image(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # prior self.scheduler.set_timesteps(lowerCamelCase_ , device=lowerCamelCase_ ) UpperCAmelCase : Dict = self.scheduler.timesteps UpperCAmelCase : List[Any] = self.prior.config.num_embeddings UpperCAmelCase : List[str] = self.prior.config.embedding_dim UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim UpperCAmelCase : List[Any] = latents.reshape(latents.shape[0] , lowerCamelCase_ , lowerCamelCase_ ) for i, t in enumerate(self.progress_bar(lowerCamelCase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : Tuple = self.scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase : Dict = self.prior( lowerCamelCase_ , timestep=lowerCamelCase_ , proj_embedding=lowerCamelCase_ , ).predicted_image_embedding # remove the variance UpperCAmelCase : Optional[int] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: UpperCAmelCase : Optional[int] = noise_pred.chunk(2 ) UpperCAmelCase : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) UpperCAmelCase : List[Any] = self.scheduler.step( lowerCamelCase_ , timestep=lowerCamelCase_ , sample=lowerCamelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowerCamelCase_ ) UpperCAmelCase : Optional[int] = [] for i, latent in enumerate(lowerCamelCase_ ): print() UpperCAmelCase : List[Any] = self.renderer.decode( latent[None, :] , lowerCamelCase_ , size=lowerCamelCase_ , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(lowerCamelCase_ ) UpperCAmelCase : Union[str, Any] = torch.stack(lowerCamelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(f'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) UpperCAmelCase : List[Any] = images.cpu().numpy() if output_type == "pil": UpperCAmelCase : Optional[Any] = [self.numpy_to_pil(lowerCamelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowerCamelCase_ )
365
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : str = len(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : Dict = len(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : Dict = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] UpperCAmelCase : int = True for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: UpperCAmelCase : int = True if a[i].islower(): UpperCAmelCase : Union[str, Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
366
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
0
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __lowerCamelCase ( ) -> List[str]: UpperCAmelCase : str = { """repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""], """path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""], """content""": ["""a """ * 2_0, """a """ * 3_0, """b """ * 7], } UpperCAmelCase : Any = Dataset.from_dict(SCREAMING_SNAKE_CASE__ ) return dataset class UpperCamelCase_ ( lowerCamelCase_ ): def _lowercase( self ) -> str: UpperCAmelCase : Dict = get_dataset() UpperCAmelCase : Any = make_duplicate_clusters(_UpperCAmelCase , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _lowercase( self ) -> str: UpperCAmelCase : List[Any] = get_dataset() UpperCAmelCase , UpperCAmelCase : List[str] = deduplicate_dataset(_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , 2 ) print(_UpperCAmelCase ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , _UpperCAmelCase )
367
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Optional[Any]: UpperCAmelCase : Tuple = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : Optional[Any] = seq_length UpperCAmelCase : Any = is_training UpperCAmelCase : Any = use_input_mask UpperCAmelCase : Dict = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : Tuple = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : Any = attention_probs_dropout_prob UpperCAmelCase : int = max_position_embeddings UpperCAmelCase : Union[str, Any] = type_vocab_size UpperCAmelCase : int = type_sequence_label_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : Union[str, Any] = num_labels UpperCAmelCase : Tuple = num_choices UpperCAmelCase : str = scope def _lowercase( self ) -> Optional[int]: UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Tuple = None if self.use_input_mask: UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : List[str] = None if self.use_token_type_ids: UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Tuple = None UpperCAmelCase : int = None UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> List[str]: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , use_stable_embedding=__lowerCamelCase , ) def _lowercase( self , A , A , A , A , A , A , A ) -> List[Any]: UpperCAmelCase : Optional[Any] = OpenLlamaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCAmelCase : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) UpperCAmelCase : List[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : Optional[int] = OpenLlamaModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCAmelCase : Any = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , ) UpperCAmelCase : Any = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , ) UpperCAmelCase : Union[str, Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> Optional[int]: UpperCAmelCase : Any = OpenLlamaForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCAmelCase : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Optional[Any] = True UpperCAmelCase : Dict = OpenLlamaForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() # first forward pass UpperCAmelCase : Tuple = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase , ) UpperCAmelCase : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : Dict = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )["""hidden_states"""][0] UpperCAmelCase : Optional[int] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )["""hidden_states"""][0] # select random slice UpperCAmelCase : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( UpperCAmelCase ) : Union[str, Any] = config_and_inputs UpperCAmelCase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( _a , _a , _a , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { """feature-extraction""": OpenLlamaModel, """text-classification""": OpenLlamaForSequenceClassification, """text-generation""": OpenLlamaForCausalLM, """zero-shot""": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> List[str]: UpperCAmelCase : Union[str, Any] = OpenLlamaModelTester(self ) UpperCAmelCase : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _lowercase( self ) -> int: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : Any = type self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : str = input_dict["""input_ids"""] UpperCAmelCase : Dict = input_ids.ne(1 ).to(__lowerCamelCase ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : int = OpenLlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Any: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : int = """single_label_classification""" UpperCAmelCase : List[Any] = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(__lowerCamelCase ) UpperCAmelCase : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Dict = OpenLlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCAmelCase : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = 3 UpperCAmelCase : Union[str, Any] = """multi_label_classification""" UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__lowerCamelCase ) UpperCAmelCase : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : int = OpenLlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCAmelCase : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> List[Any]: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Optional[Any] = OpenLlamaModel(__lowerCamelCase ) original_model.to(__lowerCamelCase ) original_model.eval() UpperCAmelCase : Tuple = original_model(__lowerCamelCase ).last_hidden_state UpperCAmelCase : Optional[Any] = original_model(__lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Optional[int] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : Tuple = OpenLlamaModel(__lowerCamelCase ) scaled_model.to(__lowerCamelCase ) scaled_model.eval() UpperCAmelCase : Optional[Any] = scaled_model(__lowerCamelCase ).last_hidden_state UpperCAmelCase : Any = scaled_model(__lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-5 ) )
368
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
0
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 a : Dict = data_utils.TransfoXLTokenizer a : str = data_utils.TransfoXLCorpus a : List[str] = data_utils a : Optional[Any] = data_utils def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[Any]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(a__ , """rb""" ) as fp: UpperCAmelCase : Union[str, Any] = pickle.load(a__ , encoding="""latin1""" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCAmelCase : List[Any] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) UpperCAmelCase : Optional[int] = corpus.vocab.__dict__ torch.save(a__ , a__ ) UpperCAmelCase : str = corpus.__dict__ corpus_dict_no_vocab.pop("""vocab""" , a__ ) UpperCAmelCase : int = pytorch_dump_folder_path + """/""" + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(a__ , a__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCAmelCase : Any = os.path.abspath(a__ ) UpperCAmelCase : Dict = os.path.abspath(a__ ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCAmelCase : Dict = TransfoXLConfig() else: UpperCAmelCase : List[Any] = TransfoXLConfig.from_json_file(a__ ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase : int = TransfoXLLMHeadModel(a__ ) UpperCAmelCase : Any = load_tf_weights_in_transfo_xl(a__ , a__ , a__ ) # Save pytorch-model UpperCAmelCase : List[Any] = os.path.join(a__ , a__ ) UpperCAmelCase : Optional[int] = os.path.join(a__ , a__ ) print(F'''Save PyTorch model to {os.path.abspath(a__ )}''' ) torch.save(model.state_dict() , a__ ) print(F'''Save configuration file to {os.path.abspath(a__ )}''' ) with open(a__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) a : List[str] = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
369
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
0
from math import log from scipy.constants import Boltzmann, physical_constants a : Optional[Any] = 3_0_0 # TEMPERATURE (unit = K) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , ) -> float: if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
0
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a : Dict = logging.get_logger(__name__) a : Tuple = """▁""" a : Optional[int] = {"""vocab_file""": """vocab.txt""", """sentencepiece_model_ckpt""": """sentencepiece.bpe.model"""} a : List[Any] = { """sentencepiece_model_file""": """sentencepiece.bpe.model""", """vocab_file""": """vocab.txt""", } a : Tuple = { """vocab_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", }, """sentencepiece_model_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", }, } a : Any = { """ernie-m-base""": 5_1_4, """ernie-m-large""": 5_1_4, } a : Optional[Any] = { """ernie-m-base""": {"""do_lower_case""": False}, """ernie-m-large""": {"""do_lower_case""": False}, } class UpperCamelCase_ ( __magic_name__ ): lowercase = ['input_ids'] lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = RESOURCE_FILES_NAMES def __init__( self , A , A=None , A=False , A="utf8" , A="[UNK]" , A="[SEP]" , A="[PAD]" , A="[CLS]" , A="[MASK]" , A = None , **A , ) -> None: UpperCAmelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , vocab_file=_SCREAMING_SNAKE_CASE , encoding=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : int = do_lower_case UpperCAmelCase : Optional[int] = sentencepiece_model_ckpt UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCAmelCase : Union[str, Any] = self.load_vocab(filepath=_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : Dict = {self.sp_model.id_to_piece(_SCREAMING_SNAKE_CASE ): id for id in range(self.sp_model.get_piece_size() )} UpperCAmelCase : Optional[int] = {v: k for k, v in self.vocab.items()} def _lowercase( self , A ) -> int: if text is None: return None UpperCAmelCase : Optional[Any] = self.tokenize(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = '''''', [] for i, ch in enumerate(_SCREAMING_SNAKE_CASE ): if ch in self.SP_CHAR_MAPPING: UpperCAmelCase : Tuple = self.SP_CHAR_MAPPING.get(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : List[str] = unicodedata.normalize("""NFKC""" , _SCREAMING_SNAKE_CASE ) if self.is_whitespace(_SCREAMING_SNAKE_CASE ): continue normalized_text += ch char_mapping.extend([i] * len(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : Dict = normalized_text, [], 0 if self.do_lower_case: UpperCAmelCase : Union[str, Any] = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCAmelCase : str = token[1:] UpperCAmelCase : Optional[Any] = text[offset:].index(_SCREAMING_SNAKE_CASE ) + offset UpperCAmelCase : List[str] = start + len(_SCREAMING_SNAKE_CASE ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCAmelCase : Any = end return token_mapping @property def _lowercase( self ) -> List[Any]: return len(self.vocab ) def _lowercase( self ) -> List[str]: return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ) -> str: UpperCAmelCase : Dict = self.__dict__.copy() UpperCAmelCase : int = None return state def __setstate__( self , A ) -> Union[str, Any]: UpperCAmelCase : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase : str = {} UpperCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _lowercase( self , A ) -> Optional[Any]: return "".join((self.SP_CHAR_MAPPING.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for c in text) ) def _lowercase( self , A , A=False , A=64 , A=0.1 ) -> str: if self.sp_model_kwargs.get("""enable_sampling""" ) is True: UpperCAmelCase : List[str] = True if self.sp_model_kwargs.get("""alpha""" ) is not None: UpperCAmelCase : Tuple = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: UpperCAmelCase : Union[str, Any] = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: UpperCAmelCase : Optional[Any] = self.sp_model.EncodeAsPieces(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : List[str] = self.sp_model.SampleEncodeAsPieces(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = [] for pi, piece in enumerate(_SCREAMING_SNAKE_CASE ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_SCREAMING_SNAKE_CASE ) and pi != 0: new_pieces.append(_SCREAMING_SNAKE_CASE ) continue else: continue UpperCAmelCase : List[Any] = 0 for i, chunk in enumerate(_SCREAMING_SNAKE_CASE ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_SCREAMING_SNAKE_CASE ) or self.is_punct(_SCREAMING_SNAKE_CASE ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase : Union[str, Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase : Any = i if len(_SCREAMING_SNAKE_CASE ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _lowercase( self , A ) -> int: UpperCAmelCase : Union[str, Any] = ''''''.join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , """ """ ).strip() return out_string def _lowercase( self , A ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = ''''''.join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , """ """ ).strip() return out_string def _lowercase( self , A ) -> int: return self.vocab.get(_SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def _lowercase( self , A ) -> Dict: return self.reverse_vocab.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def _lowercase( self , A , A=None ) -> str: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] UpperCAmelCase : Optional[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _lowercase( self , A , A=None ) -> List[Any]: if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _lowercase( self , A , A=None , A=False ) -> Optional[Any]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: # [CLS] X [SEP] return (len(_SCREAMING_SNAKE_CASE ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_SCREAMING_SNAKE_CASE ) + 1) + [1] * (len(_SCREAMING_SNAKE_CASE ) + 3) def _lowercase( self , A ) -> List[Any]: if "\u4e00" <= char <= "\u9fff": return True return False def _lowercase( self , A ) -> List[str]: if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _lowercase( self , A ) -> Tuple: if char in ",;:.?!~,;:。?!《》【】": return True return False def _lowercase( self , A ) -> Optional[Any]: if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_SCREAMING_SNAKE_CASE ) == 1: UpperCAmelCase : Dict = unicodedata.category(_SCREAMING_SNAKE_CASE ) if cat == "Zs": return True return False def _lowercase( self , A ) -> Optional[Any]: UpperCAmelCase : int = {} with io.open(_SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Dict = line.rstrip("""\n""" ) UpperCAmelCase : int = int(_SCREAMING_SNAKE_CASE ) return token_to_idx def _lowercase( self , A , A = None ) -> Tuple[str]: UpperCAmelCase : Dict = 0 if os.path.isdir(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Tuple = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: UpperCAmelCase : List[Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) UpperCAmelCase : Optional[Any] = token_index writer.write(token + """\n""" ) index += 1 UpperCAmelCase : str = os.path.join(_SCREAMING_SNAKE_CASE , """sentencepiece.bpe.model""" ) with open(_SCREAMING_SNAKE_CASE , """wb""" ) as fi: UpperCAmelCase : int = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (vocab_file,)
371
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
0
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
350
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a : str = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
351
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
0
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging a : int = logging.get_logger(__name__) a : Dict = '▁' a : Optional[Any] = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } a : Optional[int] = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } a : Tuple = { 'facebook/m2m100_418M': 1_0_2_4, } # fmt: off a : Optional[Any] = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = ['input_ids', 'attention_mask'] lowercase = [] lowercase = [] def __init__( self , A , A , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<pad>" , A="<unk>" , A="m2m100" , A = None , A=8 , **A , ) -> None: UpperCAmelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase : Dict = language_codes UpperCAmelCase : str = FAIRSEQ_LANGUAGE_CODES[language_codes] UpperCAmelCase : int = {lang_code: f'''__{lang_code}__''' for lang_code in fairseq_language_code} UpperCAmelCase : str = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A ) for lang_code in fairseq_language_code if self.get_lang_token(A ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A , tgt_lang=A , bos_token=A , eos_token=A , sep_token=A , unk_token=A , pad_token=A , language_codes=A , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A , **A , ) UpperCAmelCase : List[str] = vocab_file UpperCAmelCase : List[str] = load_json(A ) UpperCAmelCase : Dict = {v: k for k, v in self.encoder.items()} UpperCAmelCase : Union[str, Any] = spm_file UpperCAmelCase : int = load_spm(A , self.sp_model_kwargs ) UpperCAmelCase : Union[str, Any] = len(self.encoder ) UpperCAmelCase : List[str] = { self.get_lang_token(A ): self.encoder_size + i for i, lang_code in enumerate(A ) } UpperCAmelCase : Union[str, Any] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(A )} UpperCAmelCase : Any = {v: k for k, v in self.lang_token_to_id.items()} UpperCAmelCase : int = src_lang if src_lang is not None else '''en''' UpperCAmelCase : Any = tgt_lang UpperCAmelCase : List[Any] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) UpperCAmelCase : List[Any] = num_madeup_words @property def _lowercase( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def _lowercase( self ) -> str: return self._src_lang @src_lang.setter def _lowercase( self , A ) -> None: UpperCAmelCase : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def _lowercase( self , A ) -> List[str]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A , self.encoder[self.unk_token] ) def _lowercase( self , A ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A , self.unk_token ) def _lowercase( self , A ) -> List[Any]: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Union[str, Any] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token UpperCAmelCase : Optional[Any] = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def _lowercase( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) UpperCAmelCase : int = [1] * len(self.prefix_tokens ) UpperCAmelCase : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A )) + suffix_ones return prefix_ones + ([0] * len(A )) + ([0] * len(A )) + suffix_ones def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase( self ) -> Dict: UpperCAmelCase : List[Any] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: UpperCAmelCase : Union[str, Any] = self.__dict__.copy() UpperCAmelCase : List[Any] = None return state def __setstate__( self , A ) -> None: UpperCAmelCase : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase : int = {} UpperCAmelCase : Tuple = load_spm(self.spm_file , self.sp_model_kwargs ) def _lowercase( self , A , A = None ) -> Tuple[str]: UpperCAmelCase : Any = Path(A ) if not save_dir.is_dir(): raise OSError(f'''{save_directory} should be a directory''' ) UpperCAmelCase : Any = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) UpperCAmelCase : List[Any] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , A ) if os.path.abspath(self.spm_file ) != os.path.abspath(A ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A ) elif not os.path.isfile(self.spm_file ): with open(A , """wb""" ) as fi: UpperCAmelCase : Dict = self.sp_model.serialized_model_proto() fi.write(A ) return (str(A ), str(A )) def _lowercase( self , A , A = "en" , A = None , A = "ro" , **A , ) -> BatchEncoding: UpperCAmelCase : List[Any] = src_lang UpperCAmelCase : Dict = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A , A , **A ) def _lowercase( self , A , A , A , **A ) -> Any: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) UpperCAmelCase : str = src_lang UpperCAmelCase : Any = self(A , add_special_tokens=A , **A ) UpperCAmelCase : Union[str, Any] = self.get_lang_id(A ) UpperCAmelCase : List[Any] = tgt_lang_id return inputs def _lowercase( self ) -> List[str]: self.set_src_lang_special_tokens(self.src_lang ) def _lowercase( self ) -> List[str]: self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase( self , A ) -> None: UpperCAmelCase : List[str] = self.get_lang_token(A ) UpperCAmelCase : Union[str, Any] = self.lang_token_to_id[lang_token] UpperCAmelCase : Any = [self.cur_lang_id] UpperCAmelCase : Optional[int] = [self.eos_token_id] def _lowercase( self , A ) -> None: UpperCAmelCase : Optional[Any] = self.get_lang_token(A ) UpperCAmelCase : List[Any] = self.lang_token_to_id[lang_token] UpperCAmelCase : Optional[Any] = [self.cur_lang_id] UpperCAmelCase : Union[str, Any] = [self.eos_token_id] def _lowercase( self , A ) -> str: return self.lang_code_to_token[lang] def _lowercase( self , A ) -> int: UpperCAmelCase : List[Any] = self.get_lang_token(A ) return self.lang_token_to_id[lang_token] def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : Any = sentencepiece.SentencePieceProcessor(**UpperCamelCase__ ) spm.Load(str(UpperCamelCase__ ) ) return spm def __lowerCamelCase ( _lowercase ) -> int: with open(UpperCamelCase__ , """r""" ) as f: return json.load(UpperCamelCase__ ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: with open(UpperCamelCase__ , """w""" ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ , indent=2 )
352
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
0