code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
_UpperCamelCase = logging.getLogger(__name__)
class lowercase :
'''simple docstring'''
def __init__(self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = False
def UpperCamelCase__ (self , __a , __a , __a , __a ) -> int:
"""simple docstring"""
if not self.initialized:
UpperCAmelCase__ = RagRetriever(
__a , question_encoder_tokenizer=__a , generator_tokenizer=__a , index=__a , init_retrieval=__a , )
UpperCAmelCase__ = True
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
self.retriever.index.init_index()
def UpperCamelCase__ (self , __a , __a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.retriever._main_retrieve(__a , __a )
return doc_ids, retrieved_doc_embeds
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , __a , __a , __a , __a , __a=None ) -> str:
"""simple docstring"""
if index is not None and index.is_initialized() and len(__a ) > 0:
raise ValueError(
'When using Ray for distributed fine-tuning, '
'you\'ll need to provide the paths instead, '
'as the dataset and the index are loaded '
'separately. More info in examples/rag/use_own_knowledge_dataset.py ' )
super().__init__(
__a , question_encoder_tokenizer=__a , generator_tokenizer=__a , index=__a , init_retrieval=__a , )
UpperCAmelCase__ = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(__a , __a , __a , __a )
for worker in self.retrieval_workers
] )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
logger.info('initializing retrieval' )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def UpperCamelCase__ (self , __a , __a ) -> Dict:
"""simple docstring"""
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
UpperCAmelCase__ = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )]
UpperCAmelCase__ , UpperCAmelCase__ = ray.get(random_worker.retrieve.remote(__a , __a ) )
else:
UpperCAmelCase__ , UpperCAmelCase__ = self._main_retrieve(__a , __a )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__a )
@classmethod
def UpperCamelCase__ (cls , __a , __a=None , **__a ) -> Optional[int]:
"""simple docstring"""
return super(__a , cls ).get_tokenizers(__a , __a , **__a )
@classmethod
def UpperCamelCase__ (cls , __a , __a , __a=None , **__a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = kwargs.pop('config' , __a ) or RagConfig.from_pretrained(__a , **__a )
UpperCAmelCase__ = RagTokenizer.from_pretrained(__a , config=__a )
UpperCAmelCase__ = rag_tokenizer.question_encoder
UpperCAmelCase__ = rag_tokenizer.generator
if indexed_dataset is not None:
UpperCAmelCase__ = 'custom'
UpperCAmelCase__ = CustomHFIndex(config.retrieval_vector_size , __a )
else:
UpperCAmelCase__ = cls._build_index(__a )
return cls(
__a , question_encoder_tokenizer=__a , generator_tokenizer=__a , retrieval_workers=__a , index=__a , )
| 335 |
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
_UpperCamelCase = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
['''memory_attention''', '''encoder_attn'''],
['''attention''', '''attn'''],
['''/''', '''.'''],
['''.LayerNorm.gamma''', '''_layer_norm.weight'''],
['''.LayerNorm.beta''', '''_layer_norm.bias'''],
['''r.layer_''', '''r.layers.'''],
['''output_proj''', '''out_proj'''],
['''ffn.dense_1.''', '''fc2.'''],
['''ffn.dense.''', '''fc1.'''],
['''ffn_layer_norm''', '''final_layer_norm'''],
['''kernel''', '''weight'''],
['''encoder_layer_norm.''', '''encoder.layer_norm.'''],
['''decoder_layer_norm.''', '''decoder.layer_norm.'''],
['''embeddings.weights''', '''shared.weight'''],
]
def UpperCamelCase_( snake_case__: int ) -> str:
for pegasus_name, hf_name in PATTERNS:
UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ )
return k
def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration:
UpperCAmelCase__ = DEFAULTS.copy()
cfg_kwargs.update(snake_case__ )
UpperCAmelCase__ = PegasusConfig(**snake_case__ )
UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ )
UpperCAmelCase__ = torch_model.model.state_dict()
UpperCAmelCase__ = {}
for k, v in tf_weights.items():
UpperCAmelCase__ = rename_state_dict_key(snake_case__ )
if new_k not in sd:
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" )
if "dense" in k or "proj" in new_k:
UpperCAmelCase__ = v.T
UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}"
# make sure embedding.padding_idx is respected
UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] )
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping}
mapping.update(**snake_case__ )
UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ )
UpperCAmelCase__ = [
k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight']
]
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
assert extra == [], f"no matches found for the following tf keys {extra}"
return torch_model
def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
UpperCAmelCase__ = tf.train.list_variables(snake_case__ )
UpperCAmelCase__ = {}
UpperCAmelCase__ = ['Adafactor', 'global_step']
for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ):
UpperCAmelCase__ = any(pat in name for pat in ignore_name )
if skip_key:
continue
UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ )
UpperCAmelCase__ = array
return tf_weights
def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]:
# save tokenizer first
UpperCAmelCase__ = Path(snake_case__ ).parent.name
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings']
UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(snake_case__ )
# convert model
UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ )
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]
if dataset == "large":
UpperCAmelCase__ = task_specific_params
UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ )
torch_model.save_pretrained(snake_case__ )
UpperCAmelCase__ = torch_model.state_dict()
sd.pop('model.decoder.embed_positions.weight' )
sd.pop('model.encoder.embed_positions.weight' )
torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''')
parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
if args.save_dir is None:
_UpperCamelCase = Path(args.tf_ckpt_path).parent.name
_UpperCamelCase = os.path.join('''pegasus''', dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 335 | 1 |
def UpperCamelCase_( snake_case__: int = 4_00_00_00 ) -> int:
UpperCAmelCase__ = [0, 1]
UpperCAmelCase__ = 0
while fib[i] <= n:
fib.append(fib[i] + fib[i + 1] )
if fib[i + 2] > n:
break
i += 1
UpperCAmelCase__ = 0
for j in range(len(snake_case__ ) - 1 ):
if fib[j] % 2 == 0:
total += fib[j]
return total
if __name__ == "__main__":
print(F"""{solution() = }""")
| 335 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = 13
UpperCAmelCase__ = 7
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = 99
UpperCAmelCase__ = 384
UpperCAmelCase__ = 2
UpperCAmelCase__ = 4
UpperCAmelCase__ = 37
UpperCAmelCase__ = 'gelu'
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 512
UpperCAmelCase__ = 16
UpperCAmelCase__ = 2
UpperCAmelCase__ = 0.02
UpperCAmelCase__ = 3
UpperCAmelCase__ = 4
UpperCAmelCase__ = 128
UpperCAmelCase__ = 2
UpperCAmelCase__ = 9
UpperCAmelCase__ = 1
UpperCAmelCase__ = None
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_input_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel(config=__a )
UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
UpperCAmelCase__ = [input_ids, input_mask]
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.num_choices
UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
__SCREAMING_SNAKE_CASE = (
{
"""feature-extraction""": TFConvBertModel,
"""fill-mask""": TFConvBertForMaskedLM,
"""question-answering""": TFConvBertForQuestionAnswering,
"""text-classification""": TFConvBertForSequenceClassification,
"""token-classification""": TFConvBertForTokenClassification,
"""zero-shot""": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__a )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
UpperCAmelCase__ = True
if hasattr(__a , 'use_cache' ):
UpperCAmelCase__ = True
UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = self._prepare_for_class(__a , __a )
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = len(model(__a ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__a , saved_model=__a )
UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' )
UpperCAmelCase__ = tf.keras.models.load_model(__a )
UpperCAmelCase__ = model(__a )
if self.is_encoder_decoder:
UpperCAmelCase__ = outputs['encoder_hidden_states']
UpperCAmelCase__ = outputs['encoder_attentions']
else:
UpperCAmelCase__ = outputs['hidden_states']
UpperCAmelCase__ = outputs['attentions']
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
def check_decoder_attentions_output(__a ):
UpperCAmelCase__ = len(__a )
self.assertEqual(out_len % 2 , 0 )
UpperCAmelCase__ = outputs.decoder_attentions
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(__a ):
UpperCAmelCase__ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = len(__a )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
if self.is_encoder_decoder:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_decoder_attentions_output(__a )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) )
self.assertEqual(model.config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
@require_tf
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase__ = model(__a )[0]
UpperCAmelCase__ = [1, 6, 768]
self.assertEqual(output.shape , __a )
UpperCAmelCase__ = tf.constant(
[
[
[-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32],
[0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24],
[0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
| 335 | 1 |
def UpperCamelCase_( snake_case__: int | float | str ) -> tuple[int, int]:
try:
UpperCAmelCase__ = float(snake_case__ )
except ValueError:
raise ValueError('Please enter a valid number' )
UpperCAmelCase__ = decimal - int(snake_case__ )
if fractional_part == 0:
return int(snake_case__ ), 1
else:
UpperCAmelCase__ = len(str(snake_case__ ).split('.' )[1] )
UpperCAmelCase__ = int(decimal * (10**number_of_frac_digits) )
UpperCAmelCase__ = 10**number_of_frac_digits
UpperCAmelCase__ , UpperCAmelCase__ = denominator, numerator
while True:
UpperCAmelCase__ = dividend % divisor
if remainder == 0:
break
UpperCAmelCase__ , UpperCAmelCase__ = divisor, remainder
UpperCAmelCase__ , UpperCAmelCase__ = numerator / divisor, denominator / divisor
return int(snake_case__ ), int(snake_case__ )
if __name__ == "__main__":
print(F"""{decimal_to_fraction(2) = }""")
print(F"""{decimal_to_fraction(8_9.0) = }""")
print(F"""{decimal_to_fraction("67") = }""")
print(F"""{decimal_to_fraction("45.0") = }""")
print(F"""{decimal_to_fraction(1.5) = }""")
print(F"""{decimal_to_fraction("6.25") = }""")
print(F"""{decimal_to_fraction("78td") = }""")
| 335 |
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING
_UpperCamelCase = logging.get_logger(__name__)
@add_end_docstrings(_UpperCamelCase )
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , **__a ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**__a )
requires_backends(self , 'vision' )
requires_backends(self , 'torch' )
if self.framework != "pt":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
self.check_model_type(__a )
def UpperCamelCase__ (self , **__a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
# preprocess args
if "points_per_batch" in kwargs:
UpperCAmelCase__ = kwargs['points_per_batch']
if "points_per_crop" in kwargs:
UpperCAmelCase__ = kwargs['points_per_crop']
if "crops_n_layers" in kwargs:
UpperCAmelCase__ = kwargs['crops_n_layers']
if "crop_overlap_ratio" in kwargs:
UpperCAmelCase__ = kwargs['crop_overlap_ratio']
if "crop_n_points_downscale_factor" in kwargs:
UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor']
# postprocess args
if "pred_iou_thresh" in kwargs:
UpperCAmelCase__ = kwargs['pred_iou_thresh']
if "stability_score_offset" in kwargs:
UpperCAmelCase__ = kwargs['stability_score_offset']
if "mask_threshold" in kwargs:
UpperCAmelCase__ = kwargs['mask_threshold']
if "stability_score_thresh" in kwargs:
UpperCAmelCase__ = kwargs['stability_score_thresh']
if "crops_nms_thresh" in kwargs:
UpperCAmelCase__ = kwargs['crops_nms_thresh']
if "output_rle_mask" in kwargs:
UpperCAmelCase__ = kwargs['output_rle_mask']
if "output_bboxes_mask" in kwargs:
UpperCAmelCase__ = kwargs['output_bboxes_mask']
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]:
"""simple docstring"""
return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a )
def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = load_image(__a )
UpperCAmelCase__ = self.image_processor.size['longest_edge']
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes(
__a , __a , __a , __a , __a , __a )
UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' )
with self.device_placement():
if self.framework == "pt":
UpperCAmelCase__ = self.get_inference_context()
with inference_context():
UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device )
UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) )
UpperCAmelCase__ = image_embeddings
UpperCAmelCase__ = grid_points.shape[1]
UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. '
'To return all points at once, set points_per_batch to None' )
for i in range(0 , __a , __a ):
UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :]
UpperCAmelCase__ = input_labels[:, i : i + points_per_batch]
UpperCAmelCase__ = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = model_inputs.pop('input_boxes' )
UpperCAmelCase__ = model_inputs.pop('is_last' )
UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist()
UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist()
UpperCAmelCase__ = self.model(**__a )
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
UpperCAmelCase__ = model_outputs['pred_masks']
UpperCAmelCase__ = self.image_processor.post_process_masks(
__a , __a , __a , __a , binarize=__a )
UpperCAmelCase__ = model_outputs['iou_scores']
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks(
masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , )
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = []
UpperCAmelCase__ = []
for model_output in model_outputs:
all_scores.append(model_output.pop('iou_scores' ) )
all_masks.extend(model_output.pop('masks' ) )
all_boxes.append(model_output.pop('boxes' ) )
UpperCAmelCase__ = torch.cat(__a )
UpperCAmelCase__ = torch.cat(__a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation(
__a , __a , __a , __a )
UpperCAmelCase__ = defaultdict(__a )
for output in model_outputs:
for k, v in output.items():
extra[k].append(__a )
UpperCAmelCase__ = {}
if output_rle_mask:
UpperCAmelCase__ = rle_mask
if output_bboxes_mask:
UpperCAmelCase__ = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| 335 | 1 |
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ["""vqvae"""]
def __init__(self , __a , __a , __a , __a , ) -> Any:
"""simple docstring"""
super().__init__()
self.register_modules(unet=__a , scheduler=__a , mel=__a , vqvae=__a )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
return 50 if isinstance(self.scheduler , __a ) else 1000
@torch.no_grad()
def __call__(self , __a = 1 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = 0 , __a = None , __a = None , __a=True , ) -> Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
"""simple docstring"""
UpperCAmelCase__ = steps or self.get_default_steps()
self.scheduler.set_timesteps(__a )
UpperCAmelCase__ = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
UpperCAmelCase__ = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
UpperCAmelCase__ = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=__a , device=self.device , )
UpperCAmelCase__ = noise
UpperCAmelCase__ = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(__a , __a )
UpperCAmelCase__ = self.mel.audio_slice_to_image(__a )
UpperCAmelCase__ = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape(
(input_image.height, input_image.width) )
UpperCAmelCase__ = (input_image / 255) * 2 - 1
UpperCAmelCase__ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
UpperCAmelCase__ = self.vqvae.encode(torch.unsqueeze(__a , 0 ) ).latent_dist.sample(
generator=__a )[0]
UpperCAmelCase__ = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
UpperCAmelCase__ = self.scheduler.add_noise(__a , __a , self.scheduler.timesteps[start_step - 1] )
UpperCAmelCase__ = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
UpperCAmelCase__ = int(mask_start_secs * pixels_per_second )
UpperCAmelCase__ = int(mask_end_secs * pixels_per_second )
UpperCAmelCase__ = self.scheduler.add_noise(__a , __a , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , __a ):
UpperCAmelCase__ = self.unet(__a , __a , __a )['sample']
else:
UpperCAmelCase__ = self.unet(__a , __a )['sample']
if isinstance(self.scheduler , __a ):
UpperCAmelCase__ = self.scheduler.step(
model_output=__a , timestep=__a , sample=__a , eta=__a , generator=__a , )['prev_sample']
else:
UpperCAmelCase__ = self.scheduler.step(
model_output=__a , timestep=__a , sample=__a , generator=__a , )['prev_sample']
if mask is not None:
if mask_start > 0:
UpperCAmelCase__ = mask[:, step, :, :mask_start]
if mask_end > 0:
UpperCAmelCase__ = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
UpperCAmelCase__ = 1 / self.vqvae.config.scaling_factor * images
UpperCAmelCase__ = self.vqvae.decode(__a )['sample']
UpperCAmelCase__ = (images / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase__ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
UpperCAmelCase__ = (images * 255).round().astype('uint8' )
UpperCAmelCase__ = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(__a , mode='RGB' ).convert('L' ) for _ in images) )
UpperCAmelCase__ = [self.mel.image_to_audio(__a ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(__a )[:, np.newaxis, :] ) , **ImagePipelineOutput(__a ) )
@torch.no_grad()
def UpperCamelCase__ (self , __a , __a = 50 ) -> np.ndarray:
"""simple docstring"""
assert isinstance(self.scheduler , __a )
self.scheduler.set_timesteps(__a )
UpperCAmelCase__ = np.array(
[np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] )
UpperCAmelCase__ = (sample / 255) * 2 - 1
UpperCAmelCase__ = torch.Tensor(__a ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
UpperCAmelCase__ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
UpperCAmelCase__ = self.scheduler.alphas_cumprod[t]
UpperCAmelCase__ = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
UpperCAmelCase__ = 1 - alpha_prod_t
UpperCAmelCase__ = self.unet(__a , __a )['sample']
UpperCAmelCase__ = (1 - alpha_prod_t_prev) ** 0.5 * model_output
UpperCAmelCase__ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
UpperCAmelCase__ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def UpperCamelCase__ (__a , __a , __a ) -> torch.Tensor:
"""simple docstring"""
UpperCAmelCase__ = acos(torch.dot(torch.flatten(__a ) , torch.flatten(__a ) ) / torch.norm(__a ) / torch.norm(__a ) )
return sin((1 - alpha) * theta ) * xa / sin(__a ) + sin(alpha * theta ) * xa / sin(__a )
| 335 |
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} )
__SCREAMING_SNAKE_CASE = field(
default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} )
__SCREAMING_SNAKE_CASE = field(
default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} )
__SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} )
__SCREAMING_SNAKE_CASE = field(
default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} )
__SCREAMING_SNAKE_CASE = field(
default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} )
__SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} )
__SCREAMING_SNAKE_CASE = field(
default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} )
__SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} )
__SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} )
__SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} )
__SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} )
__SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} )
__SCREAMING_SNAKE_CASE = field(
default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={
"""help""": (
"""Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive"""
""" number corresponds to which GPU device id to run on."""
)
} , )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={
"""help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available."""
} , )
__SCREAMING_SNAKE_CASE = field(
default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} )
__SCREAMING_SNAKE_CASE = field(
default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} )
__SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} )
__SCREAMING_SNAKE_CASE = field(
default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} )
__SCREAMING_SNAKE_CASE = field(
default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} )
__SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(
default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} )
__SCREAMING_SNAKE_CASE = field(
default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} )
__SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
| 335 | 1 |
import unittest
from datasets import load_dataset
from transformers import BloomTokenizerFast
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = BloomTokenizerFast
__SCREAMING_SNAKE_CASE = BloomTokenizerFast
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = """tokenizer_file"""
__SCREAMING_SNAKE_CASE = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""}
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
super().setUp()
UpperCAmelCase__ = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase__ (self , **__a ) -> List[Any]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__a )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.get_rust_tokenizer()
UpperCAmelCase__ = ['The quick brown fox</s>', 'jumps over the lazy dog</s>']
UpperCAmelCase__ = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]]
UpperCAmelCase__ = tokenizer.batch_encode_plus(__a )['input_ids']
self.assertListEqual(__a , __a )
UpperCAmelCase__ = tokenizer.batch_decode(__a )
self.assertListEqual(__a , __a )
def UpperCamelCase__ (self , __a=6 ) -> Optional[Any]:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase__ = self.rust_tokenizer_class.from_pretrained(__a , **__a )
# tokenizer_r.pad_token = None # Hotfixing padding = None
# Simple input
UpperCAmelCase__ = 'This is a simple input'
UpperCAmelCase__ = ['This is a simple input 1', 'This is a simple input 2']
UpperCAmelCase__ = ('This is a simple input', 'This is a pair')
UpperCAmelCase__ = [
('This is a simple input 1', 'This is a simple input 2'),
('This is a simple pair 1', 'This is a simple pair 2'),
]
# Simple input tests
try:
tokenizer_r.encode(__a , max_length=__a )
tokenizer_r.encode_plus(__a , max_length=__a )
tokenizer_r.batch_encode_plus(__a , max_length=__a )
tokenizer_r.encode(__a , max_length=__a )
tokenizer_r.batch_encode_plus(__a , max_length=__a )
except ValueError:
self.fail('Bloom Tokenizer should be able to deal with padding' )
UpperCAmelCase__ = None # Hotfixing padding = None
self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' )
# Simple input
self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' )
# Simple input
self.assertRaises(
__a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , )
# Pair input
self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' )
# Pair input
self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' )
# Pair input
self.assertRaises(
__a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = self.get_rust_tokenizer()
UpperCAmelCase__ = load_dataset('xnli' , 'all_languages' , split='test' , streaming=__a )
UpperCAmelCase__ = next(iter(__a ) )['premise'] # pick up one data
UpperCAmelCase__ = list(sample_data.values() )
UpperCAmelCase__ = list(map(tokenizer.encode , __a ) )
UpperCAmelCase__ = [tokenizer.decode(__a , clean_up_tokenization_spaces=__a ) for x in output_tokens]
self.assertListEqual(__a , __a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 )
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
| 335 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_attention_mask
UpperCAmelCase__ = use_token_type_ids
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_choices
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_attention_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = True
UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = FlaxRobertaModelTester(self )
@slow
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
for model_class_name in self.all_model_classes:
UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a )
UpperCAmelCase__ = model(np.ones((1, 1) ) )
self.assertIsNotNone(__a )
| 335 | 1 |
import copy
import os
from typing import TYPE_CHECKING, List, Union
if TYPE_CHECKING:
pass
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''',
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """align_text_model"""
def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=2 , __a=0.02 , __a=1E-1_2 , __a=0 , __a="absolute" , __a=True , **__a , ) -> Tuple:
"""simple docstring"""
super().__init__(**__a )
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = position_embedding_type
UpperCAmelCase__ = use_cache
UpperCAmelCase__ = pad_token_id
@classmethod
def UpperCamelCase__ (cls , __a , **__a ) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(__a )
UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(__a , **__a )
# get the text config dict if we are loading from AlignConfig
if config_dict.get('model_type' ) == "align":
UpperCAmelCase__ = config_dict['text_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__a , **__a )
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """align_vision_model"""
def __init__(self , __a = 3 , __a = 600 , __a = 2.0 , __a = 3.1 , __a = 8 , __a = [3, 3, 5, 3, 5, 5, 3] , __a = [32, 16, 24, 40, 80, 112, 192] , __a = [16, 24, 40, 80, 112, 192, 320] , __a = [] , __a = [1, 2, 2, 2, 1, 2, 1] , __a = [1, 2, 2, 3, 3, 4, 1] , __a = [1, 6, 6, 6, 6, 6, 6] , __a = 0.25 , __a = "swish" , __a = 2560 , __a = "mean" , __a = 0.02 , __a = 0.0_01 , __a = 0.99 , __a = 0.2 , **__a , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**__a )
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = image_size
UpperCAmelCase__ = width_coefficient
UpperCAmelCase__ = depth_coefficient
UpperCAmelCase__ = depth_divisor
UpperCAmelCase__ = kernel_sizes
UpperCAmelCase__ = in_channels
UpperCAmelCase__ = out_channels
UpperCAmelCase__ = depthwise_padding
UpperCAmelCase__ = strides
UpperCAmelCase__ = num_block_repeats
UpperCAmelCase__ = expand_ratios
UpperCAmelCase__ = squeeze_expansion_ratio
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dim
UpperCAmelCase__ = pooling_type
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = batch_norm_eps
UpperCAmelCase__ = batch_norm_momentum
UpperCAmelCase__ = drop_connect_rate
UpperCAmelCase__ = sum(__a ) * 4
@classmethod
def UpperCamelCase__ (cls , __a , **__a ) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(__a )
UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(__a , **__a )
# get the vision config dict if we are loading from AlignConfig
if config_dict.get('model_type' ) == "align":
UpperCAmelCase__ = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__a , **__a )
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """align"""
__SCREAMING_SNAKE_CASE = True
def __init__(self , __a=None , __a=None , __a=640 , __a=1.0 , __a=0.02 , **__a , ) -> Optional[int]:
"""simple docstring"""
super().__init__(**__a )
if text_config is None:
UpperCAmelCase__ = {}
logger.info('text_config is None. Initializing the AlignTextConfig with default values.' )
if vision_config is None:
UpperCAmelCase__ = {}
logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' )
UpperCAmelCase__ = AlignTextConfig(**__a )
UpperCAmelCase__ = AlignVisionConfig(**__a )
UpperCAmelCase__ = projection_dim
UpperCAmelCase__ = temperature_init_value
UpperCAmelCase__ = initializer_range
@classmethod
def UpperCamelCase__ (cls , __a , __a , **__a ) -> int:
"""simple docstring"""
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__a )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = copy.deepcopy(self.__dict__ )
UpperCAmelCase__ = self.text_config.to_dict()
UpperCAmelCase__ = self.vision_config.to_dict()
UpperCAmelCase__ = self.__class__.model_type
return output
| 335 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , *__a , **__a ) -> None:
"""simple docstring"""
warnings.warn(
'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use MobileViTImageProcessor instead.' , __a , )
super().__init__(*__a , **__a )
| 335 | 1 |
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def UpperCamelCase_( snake_case__: Optional[int] ) -> Dict:
for param in module.parameters():
UpperCAmelCase__ = False
def UpperCamelCase_( ) -> List[str]:
UpperCAmelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu'
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
UpperCAmelCase__ = 'mps'
if device == "mps":
print(
'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch'
' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues'
' with generations.' )
return device
def UpperCamelCase_( snake_case__: Optional[int] ) -> Dict:
UpperCAmelCase__ = plt.imshow(snake_case__ )
fig.axes.get_xaxis().set_visible(snake_case__ )
fig.axes.get_yaxis().set_visible(snake_case__ )
plt.show()
def UpperCamelCase_( ) -> Any:
UpperCAmelCase__ = datetime.now()
UpperCAmelCase__ = current_time.strftime('%H:%M:%S' )
return timestamp
| 335 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {
'''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PegasusXForConditionalGeneration''',
'''PegasusXModel''',
'''PegasusXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 335 | 1 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , *__a , __a=None , __a=None , **__a ) -> List[str]:
"""simple docstring"""
super().__init__(*__a , **__a )
UpperCAmelCase__ = eval_examples
UpperCAmelCase__ = post_process_function
def UpperCamelCase__ (self , __a = None , __a=None , __a = None , __a = "eval" , **__a , ) -> Dict[str, float]:
"""simple docstring"""
UpperCAmelCase__ = gen_kwargs.copy()
UpperCAmelCase__ = (
gen_kwargs['max_length'] if gen_kwargs.get('max_length' ) is not None else self.args.generation_max_length
)
UpperCAmelCase__ = (
gen_kwargs['num_beams'] if gen_kwargs.get('num_beams' ) is not None else self.args.generation_num_beams
)
UpperCAmelCase__ = gen_kwargs
UpperCAmelCase__ = self.eval_dataset if eval_dataset is None else eval_dataset
UpperCAmelCase__ = self.get_eval_dataloader(__a )
UpperCAmelCase__ = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
UpperCAmelCase__ = self.compute_metrics
UpperCAmelCase__ = None
UpperCAmelCase__ = time.time()
UpperCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
UpperCAmelCase__ = eval_loop(
__a , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , )
finally:
UpperCAmelCase__ = compute_metrics
UpperCAmelCase__ = self.args.eval_batch_size * self.args.world_size
if F"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
__a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
UpperCAmelCase__ = self.post_process_function(__a , __a , __a )
UpperCAmelCase__ = self.compute_metrics(__a )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"{metric_key_prefix}_" ):
UpperCAmelCase__ = metrics.pop(__a )
metrics.update(output.metrics )
else:
UpperCAmelCase__ = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(__a )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
UpperCAmelCase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a )
return metrics
def UpperCamelCase__ (self , __a , __a , __a=None , __a = "test" , **__a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = gen_kwargs.copy()
UpperCAmelCase__ = self.get_test_dataloader(__a )
# Temporarily disable metric computation, we will do it in the loop here.
UpperCAmelCase__ = self.compute_metrics
UpperCAmelCase__ = None
UpperCAmelCase__ = time.time()
UpperCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
UpperCAmelCase__ = eval_loop(
__a , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , )
finally:
UpperCAmelCase__ = compute_metrics
UpperCAmelCase__ = self.args.eval_batch_size * self.args.world_size
if F"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
__a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
UpperCAmelCase__ = self.post_process_function(__a , __a , __a , 'predict' )
UpperCAmelCase__ = self.compute_metrics(__a )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"{metric_key_prefix}_" ):
UpperCAmelCase__ = metrics.pop(__a )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
| 335 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self , __a ) -> List[Any]:
"""simple docstring"""
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ):
UpperCAmelCase__ = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
benchmark.run()
self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(__a ):
self.assertTrue(hasattr(__a , 'sequential' ) )
self.assertTrue(hasattr(__a , 'cumulative' ) )
self.assertTrue(hasattr(__a , 'current' ) )
self.assertTrue(hasattr(__a , 'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
| 335 | 1 |
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mobilenet_va import MobileNetVaConfig
_UpperCamelCase = logging.get_logger(__name__)
# General docstring
_UpperCamelCase = '''MobileNetV1Config'''
# Base docstring
_UpperCamelCase = '''google/mobilenet_v1_1.0_224'''
_UpperCamelCase = [1, 1024, 7, 7]
# Image classification docstring
_UpperCamelCase = '''google/mobilenet_v1_1.0_224'''
_UpperCamelCase = '''tabby, tabby cat'''
_UpperCamelCase = [
'''google/mobilenet_v1_1.0_224''',
'''google/mobilenet_v1_0.75_192''',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
]
def UpperCamelCase_( snake_case__: List[str] , snake_case__: Optional[int] , snake_case__: Optional[Any]=None ) -> int:
UpperCAmelCase__ = {}
if isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase__ = model.mobilenet_va
else:
UpperCAmelCase__ = model
UpperCAmelCase__ = 'MobilenetV1/Conv2d_0/'
UpperCAmelCase__ = backbone.conv_stem.convolution.weight
UpperCAmelCase__ = backbone.conv_stem.normalization.bias
UpperCAmelCase__ = backbone.conv_stem.normalization.weight
UpperCAmelCase__ = backbone.conv_stem.normalization.running_mean
UpperCAmelCase__ = backbone.conv_stem.normalization.running_var
for i in range(13 ):
UpperCAmelCase__ = i + 1
UpperCAmelCase__ = i * 2
UpperCAmelCase__ = backbone.layer[pt_index]
UpperCAmelCase__ = f"MobilenetV1/Conv2d_{tf_index}_depthwise/"
UpperCAmelCase__ = pointer.convolution.weight
UpperCAmelCase__ = pointer.normalization.bias
UpperCAmelCase__ = pointer.normalization.weight
UpperCAmelCase__ = pointer.normalization.running_mean
UpperCAmelCase__ = pointer.normalization.running_var
UpperCAmelCase__ = backbone.layer[pt_index + 1]
UpperCAmelCase__ = f"MobilenetV1/Conv2d_{tf_index}_pointwise/"
UpperCAmelCase__ = pointer.convolution.weight
UpperCAmelCase__ = pointer.normalization.bias
UpperCAmelCase__ = pointer.normalization.weight
UpperCAmelCase__ = pointer.normalization.running_mean
UpperCAmelCase__ = pointer.normalization.running_var
if isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase__ = 'MobilenetV1/Logits/Conv2d_1c_1x1/'
UpperCAmelCase__ = model.classifier.weight
UpperCAmelCase__ = model.classifier.bias
return tf_to_pt_map
def UpperCamelCase_( snake_case__: Tuple , snake_case__: Tuple , snake_case__: Optional[Any] ) -> Optional[int]:
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see '
'https://www.tensorflow.org/install/ for installation instructions.' )
raise
# Load weights from TF model
UpperCAmelCase__ = tf.train.list_variables(snake_case__ )
UpperCAmelCase__ = {}
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}" )
UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ )
UpperCAmelCase__ = array
# Build TF to PyTorch weights loading map
UpperCAmelCase__ = _build_tf_to_pytorch_map(snake_case__ , snake_case__ , snake_case__ )
for name, pointer in tf_to_pt_map.items():
logger.info(f"Importing {name}" )
if name not in tf_weights:
logger.info(f"{name} not in tf pre-trained weights, skipping" )
continue
UpperCAmelCase__ = tf_weights[name]
if "depthwise_weights" in name:
logger.info('Transposing depthwise' )
UpperCAmelCase__ = np.transpose(snake_case__ , (2, 3, 0, 1) )
elif "weights" in name:
logger.info('Transposing' )
if len(pointer.shape ) == 2: # copying into linear layer
UpperCAmelCase__ = array.squeeze().transpose()
else:
UpperCAmelCase__ = np.transpose(snake_case__ , (3, 2, 0, 1) )
if pointer.shape != array.shape:
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" )
logger.info(f"Initialize PyTorch weight {name} {array.shape}" )
UpperCAmelCase__ = torch.from_numpy(snake_case__ )
tf_weights.pop(snake_case__ , snake_case__ )
tf_weights.pop(name + '/RMSProp' , snake_case__ )
tf_weights.pop(name + '/RMSProp_1' , snake_case__ )
tf_weights.pop(name + '/ExponentialMovingAverage' , snake_case__ )
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" )
return model
def UpperCamelCase_( snake_case__: torch.Tensor , snake_case__: nn.Convad ) -> torch.Tensor:
UpperCAmelCase__ , UpperCAmelCase__ = features.shape[-2:]
UpperCAmelCase__ , UpperCAmelCase__ = conv_layer.stride
UpperCAmelCase__ , UpperCAmelCase__ = conv_layer.kernel_size
if in_height % stride_height == 0:
UpperCAmelCase__ = max(kernel_height - stride_height , 0 )
else:
UpperCAmelCase__ = max(kernel_height - (in_height % stride_height) , 0 )
if in_width % stride_width == 0:
UpperCAmelCase__ = max(kernel_width - stride_width , 0 )
else:
UpperCAmelCase__ = max(kernel_width - (in_width % stride_width) , 0 )
UpperCAmelCase__ = pad_along_width // 2
UpperCAmelCase__ = pad_along_width - pad_left
UpperCAmelCase__ = pad_along_height // 2
UpperCAmelCase__ = pad_along_height - pad_top
UpperCAmelCase__ = (pad_left, pad_right, pad_top, pad_bottom)
return nn.functional.pad(snake_case__ , snake_case__ , 'constant' , 0.0 )
class lowercase ( nn.Module ):
'''simple docstring'''
def __init__(self , __a , __a , __a , __a , __a = 1 , __a = 1 , __a = False , __a = True , __a = True , ) -> None:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = config
if in_channels % groups != 0:
raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups." )
if out_channels % groups != 0:
raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups." )
UpperCAmelCase__ = 0 if config.tf_padding else int((kernel_size - 1) / 2 )
UpperCAmelCase__ = nn.Convad(
in_channels=__a , out_channels=__a , kernel_size=__a , stride=__a , padding=__a , groups=__a , bias=__a , padding_mode='zeros' , )
if use_normalization:
UpperCAmelCase__ = nn.BatchNormad(
num_features=__a , eps=config.layer_norm_eps , momentum=0.99_97 , affine=__a , track_running_stats=__a , )
else:
UpperCAmelCase__ = None
if use_activation:
if isinstance(__a , __a ):
UpperCAmelCase__ = ACTaFN[use_activation]
elif isinstance(config.hidden_act , __a ):
UpperCAmelCase__ = ACTaFN[config.hidden_act]
else:
UpperCAmelCase__ = config.hidden_act
else:
UpperCAmelCase__ = None
def UpperCamelCase__ (self , __a ) -> torch.Tensor:
"""simple docstring"""
if self.config.tf_padding:
UpperCAmelCase__ = apply_tf_padding(__a , self.convolution )
UpperCAmelCase__ = self.convolution(__a )
if self.normalization is not None:
UpperCAmelCase__ = self.normalization(__a )
if self.activation is not None:
UpperCAmelCase__ = self.activation(__a )
return features
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = MobileNetVaConfig
__SCREAMING_SNAKE_CASE = load_tf_weights_in_mobilenet_va
__SCREAMING_SNAKE_CASE = """mobilenet_v1"""
__SCREAMING_SNAKE_CASE = """pixel_values"""
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self , __a ) -> None:
"""simple docstring"""
if isinstance(__a , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(__a , nn.BatchNormad ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
_UpperCamelCase = R'''
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
'''
_UpperCamelCase = R'''
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`MobileNetV1ImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
'''
@add_start_docstrings(
"""The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , )
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , __a , __a = True ) -> int:
"""simple docstring"""
super().__init__(__a )
UpperCAmelCase__ = config
UpperCAmelCase__ = 32
UpperCAmelCase__ = max(int(depth * config.depth_multiplier ) , config.min_depth )
UpperCAmelCase__ = MobileNetVaConvLayer(
__a , in_channels=config.num_channels , out_channels=__a , kernel_size=3 , stride=2 , )
UpperCAmelCase__ = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
UpperCAmelCase__ = nn.ModuleList()
for i in range(13 ):
UpperCAmelCase__ = out_channels
if strides[i] == 2 or i == 0:
depth *= 2
UpperCAmelCase__ = max(int(depth * config.depth_multiplier ) , config.min_depth )
self.layer.append(
MobileNetVaConvLayer(
__a , in_channels=__a , out_channels=__a , kernel_size=3 , stride=strides[i] , groups=__a , ) )
self.layer.append(
MobileNetVaConvLayer(
__a , in_channels=__a , out_channels=__a , kernel_size=1 , ) )
UpperCAmelCase__ = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def UpperCamelCase__ (self , __a ) -> str:
"""simple docstring"""
raise NotImplementedError
@add_start_docstrings_to_model_forward(__a )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__a , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def UpperCamelCase__ (self , __a = None , __a = None , __a = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
"""simple docstring"""
UpperCAmelCase__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError('You have to specify pixel_values' )
UpperCAmelCase__ = self.conv_stem(__a )
UpperCAmelCase__ = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer ):
UpperCAmelCase__ = layer_module(__a )
if output_hidden_states:
UpperCAmelCase__ = all_hidden_states + (hidden_states,)
UpperCAmelCase__ = hidden_states
if self.pooler is not None:
UpperCAmelCase__ = torch.flatten(self.pooler(__a ) , start_dim=1 )
else:
UpperCAmelCase__ = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None )
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__a , pooler_output=__a , hidden_states=__a , )
@add_start_docstrings(
"""
MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" , _UpperCamelCase , )
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , __a ) -> None:
"""simple docstring"""
super().__init__(__a )
UpperCAmelCase__ = config.num_labels
UpperCAmelCase__ = MobileNetVaModel(__a )
UpperCAmelCase__ = self.mobilenet_va.layer[-1].convolution.out_channels
# Classifier head
UpperCAmelCase__ = nn.Dropout(config.classifier_dropout_prob , inplace=__a )
UpperCAmelCase__ = nn.Linear(__a , config.num_labels ) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__a )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def UpperCamelCase__ (self , __a = None , __a = None , __a = None , __a = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
"""simple docstring"""
UpperCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict
UpperCAmelCase__ = self.mobilenet_va(__a , output_hidden_states=__a , return_dict=__a )
UpperCAmelCase__ = outputs.pooler_output if return_dict else outputs[1]
UpperCAmelCase__ = self.classifier(self.dropout(__a ) )
UpperCAmelCase__ = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
UpperCAmelCase__ = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
UpperCAmelCase__ = 'single_label_classification'
else:
UpperCAmelCase__ = 'multi_label_classification'
if self.config.problem_type == "regression":
UpperCAmelCase__ = MSELoss()
if self.num_labels == 1:
UpperCAmelCase__ = loss_fct(logits.squeeze() , labels.squeeze() )
else:
UpperCAmelCase__ = loss_fct(__a , __a )
elif self.config.problem_type == "single_label_classification":
UpperCAmelCase__ = CrossEntropyLoss()
UpperCAmelCase__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
UpperCAmelCase__ = BCEWithLogitsLoss()
UpperCAmelCase__ = loss_fct(__a , __a )
if not return_dict:
UpperCAmelCase__ = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=__a , logits=__a , hidden_states=outputs.hidden_states , )
| 335 |
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 335 | 1 |
from __future__ import annotations
def UpperCamelCase_( snake_case__: int = 4 ) -> list[list[int]]:
UpperCAmelCase__ = abs(snake_case__ ) or 4
return [[1 + x + y * row_size for x in range(snake_case__ )] for y in range(snake_case__ )]
def UpperCamelCase_( snake_case__: list[list[int]] ) -> list[list[int]]:
return reverse_row(transpose(snake_case__ ) )
# OR.. transpose(reverse_column(matrix))
def UpperCamelCase_( snake_case__: list[list[int]] ) -> list[list[int]]:
return reverse_row(reverse_column(snake_case__ ) )
# OR.. reverse_column(reverse_row(matrix))
def UpperCamelCase_( snake_case__: list[list[int]] ) -> list[list[int]]:
return reverse_column(transpose(snake_case__ ) )
# OR.. transpose(reverse_row(matrix))
def UpperCamelCase_( snake_case__: list[list[int]] ) -> list[list[int]]:
UpperCAmelCase__ = [list(snake_case__ ) for x in zip(*snake_case__ )]
return matrix
def UpperCamelCase_( snake_case__: list[list[int]] ) -> list[list[int]]:
UpperCAmelCase__ = matrix[::-1]
return matrix
def UpperCamelCase_( snake_case__: list[list[int]] ) -> list[list[int]]:
UpperCAmelCase__ = [x[::-1] for x in matrix]
return matrix
def UpperCamelCase_( snake_case__: list[list[int]] ) -> None:
for i in matrix:
print(*snake_case__ )
if __name__ == "__main__":
_UpperCamelCase = make_matrix()
print('''\norigin:\n''')
print_matrix(matrix)
print('''\nrotate 90 counterclockwise:\n''')
print_matrix(rotate_aa(matrix))
_UpperCamelCase = make_matrix()
print('''\norigin:\n''')
print_matrix(matrix)
print('''\nrotate 180:\n''')
print_matrix(rotate_aaa(matrix))
_UpperCamelCase = make_matrix()
print('''\norigin:\n''')
print_matrix(matrix)
print('''\nrotate 270 counterclockwise:\n''')
print_matrix(rotate_aaa(matrix))
| 335 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class lowercase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
@register_to_config
def __init__(self , *,
__a = 4 , __a = 768 , __a , __a , ) -> str:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) )
# parameters for additional clip time embeddings
UpperCAmelCase__ = nn.Linear(__a , __a )
UpperCAmelCase__ = nn.Linear(__a , __a )
# parameters for encoder hidden states
UpperCAmelCase__ = clip_extra_context_tokens
UpperCAmelCase__ = nn.Linear(
__a , self.clip_extra_context_tokens * cross_attention_dim )
UpperCAmelCase__ = nn.Linear(__a , __a )
UpperCAmelCase__ = nn.LayerNorm(__a )
def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
UpperCAmelCase__ = image_embeddings.shape[0]
UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
UpperCAmelCase__ = classifier_free_guidance_embeddings.expand(
__a , -1 )
UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
UpperCAmelCase__ = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
UpperCAmelCase__ = self.embedding_proj(__a )
UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a )
UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a )
UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens )
UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 )
UpperCAmelCase__ = self.encoder_hidden_states_proj(__a )
UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a )
UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 335 | 1 |
from collections import defaultdict
def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> bool:
UpperCAmelCase__ = first_str.lower().strip()
UpperCAmelCase__ = second_str.lower().strip()
# Remove whitespace
UpperCAmelCase__ = first_str.replace(' ' , '' )
UpperCAmelCase__ = second_str.replace(' ' , '' )
# Strings of different lengths are not anagrams
if len(snake_case__ ) != len(snake_case__ ):
return False
# Default values for count should be 0
UpperCAmelCase__ = defaultdict(snake_case__ )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(snake_case__ ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
_UpperCamelCase = input('''Enter the first string ''').strip()
_UpperCamelCase = input('''Enter the second string ''').strip()
_UpperCamelCase = check_anagrams(input_a, input_b)
print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
| 335 |
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = BioGptTokenizer
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase__ = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) )
UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' ) as fp:
fp.write(json.dumps(__a ) )
with open(self.merges_file , 'w' ) as fp:
fp.write('\n'.join(__a ) )
def UpperCamelCase__ (self , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = 'lower newer'
UpperCAmelCase__ = 'lower newer'
return input_text, output_text
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file )
UpperCAmelCase__ = 'lower'
UpperCAmelCase__ = ['low', 'er</w>']
UpperCAmelCase__ = tokenizer.tokenize(__a )
self.assertListEqual(__a , __a )
UpperCAmelCase__ = tokens + ['<unk>']
UpperCAmelCase__ = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' )
UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a )
UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a )
UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a )
UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 335 | 1 |
import csv
import tweepy
# Twitter API credentials
_UpperCamelCase = ''''''
_UpperCamelCase = ''''''
_UpperCamelCase = ''''''
_UpperCamelCase = ''''''
def UpperCamelCase_( snake_case__: str ) -> None:
# authorize twitter, initialize tweepy
UpperCAmelCase__ = tweepy.OAuthHandler(_UpperCAmelCase , _UpperCAmelCase )
auth.set_access_token(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = tweepy.API(_UpperCAmelCase )
# initialize a list to hold all the tweepy Tweets
UpperCAmelCase__ = []
# make initial request for most recent tweets (200 is the maximum allowed count)
UpperCAmelCase__ = api.user_timeline(screen_name=_UpperCAmelCase , count=2_00 )
# save most recent tweets
alltweets.extend(_UpperCAmelCase )
# save the id of the oldest tweet less one
UpperCAmelCase__ = alltweets[-1].id - 1
# keep grabbing tweets until there are no tweets left to grab
while len(_UpperCAmelCase ) > 0:
print(f"getting tweets before {oldest}" )
# all subsequent requests use the max_id param to prevent duplicates
UpperCAmelCase__ = api.user_timeline(
screen_name=_UpperCAmelCase , count=2_00 , max_id=_UpperCAmelCase )
# save most recent tweets
alltweets.extend(_UpperCAmelCase )
# update the id of the oldest tweet less one
UpperCAmelCase__ = alltweets[-1].id - 1
print(f"...{len(_UpperCAmelCase )} tweets downloaded so far" )
# transform the tweepy tweets into a 2D array that will populate the csv
UpperCAmelCase__ = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets]
# write the csv
with open(f"new_{screen_name}_tweets.csv" , 'w' ) as f:
UpperCAmelCase__ = csv.writer(_UpperCAmelCase )
writer.writerow(['id', 'created_at', 'text'] )
writer.writerows(_UpperCAmelCase )
if __name__ == "__main__":
# pass in the username of the account you want to download
get_all_tweets('''FirePing32''')
| 350 |
class lowercase : # Public class to implement a graph
'''simple docstring'''
def __init__(self , __a , __a , __a ) -> None:
"""simple docstring"""
UpperCAmelCase__ = row
UpperCAmelCase__ = col
UpperCAmelCase__ = graph
def UpperCamelCase__ (self , __a , __a , __a ) -> bool:
"""simple docstring"""
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def UpperCamelCase__ (self , __a , __a , __a ) -> None:
"""simple docstring"""
UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1]
UpperCAmelCase__ = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a )
def UpperCamelCase__ (self ) -> int: # And finally, count all islands.
"""simple docstring"""
UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )]
UpperCAmelCase__ = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(__a , __a , __a )
count += 1
return count
| 335 | 0 |
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import torch
class lowercase ( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ):
'''simple docstring'''
def __init__(self , __a=None , **__a ) -> List[Any]:
"""simple docstring"""
super().__init__(features=__A )
UpperCAmelCase__ = torch_tensor_kwargs
import torch # noqa import torch at initialization
def UpperCamelCase__ (self , __a ) -> str:
"""simple docstring"""
import torch
if isinstance(__A , __A ) and column:
if all(
isinstance(__A , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype
for x in column ):
return torch.stack(__A )
return column
def UpperCamelCase__ (self , __a ) -> List[str]:
"""simple docstring"""
import torch
if isinstance(__A , (str, bytes, type(__A )) ):
return value
elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
UpperCAmelCase__ = {}
if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
UpperCAmelCase__ = {"""dtype""": torch.intaa}
elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
UpperCAmelCase__ = {"""dtype""": torch.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(__A , PIL.Image.Image ):
UpperCAmelCase__ = np.asarray(__A )
return torch.tensor(__A , **{**default_dtype, **self.torch_tensor_kwargs} )
def UpperCamelCase__ (self , __a ) -> Union[str, Any]:
"""simple docstring"""
import torch
# support for torch, tf, jax etc.
if hasattr(__A , '__array__' ) and not isinstance(__A , torch.Tensor ):
UpperCAmelCase__ = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(__A , np.ndarray ):
if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] )
elif isinstance(__A , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] )
return self._tensorize(__A )
def UpperCamelCase__ (self , __a ) -> Optional[Any]:
"""simple docstring"""
return map_nested(self._recursive_tensorize , __A , map_list=__A )
def UpperCamelCase__ (self , __a ) -> Mapping:
"""simple docstring"""
UpperCAmelCase__ = self.numpy_arrow_extractor().extract_row(__A )
UpperCAmelCase__ = self.python_features_decoder.decode_row(__A )
return self.recursive_tensorize(__A )
def UpperCamelCase__ (self , __a ) -> "torch.Tensor":
"""simple docstring"""
UpperCAmelCase__ = self.numpy_arrow_extractor().extract_column(__A )
UpperCAmelCase__ = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] )
UpperCAmelCase__ = self.recursive_tensorize(__A )
UpperCAmelCase__ = self._consolidate(__A )
return column
def UpperCamelCase__ (self , __a ) -> Mapping:
"""simple docstring"""
UpperCAmelCase__ = self.numpy_arrow_extractor().extract_batch(__A )
UpperCAmelCase__ = self.python_features_decoder.decode_batch(__A )
UpperCAmelCase__ = self.recursive_tensorize(__A )
for column_name in batch:
UpperCAmelCase__ = self._consolidate(batch[column_name] )
return batch
| 351 |
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
_UpperCamelCase = Lock()
def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Dict , snake_case__: Any ) -> str:
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(snake_case__ )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
UpperCAmelCase__ = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
UpperCAmelCase__ = min(snake_case__ , snake_case__ )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(snake_case__ )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
UpperCAmelCase__ = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
UpperCAmelCase__ = max(snake_case__ , snake_case__ )
# after all swaps are performed, send the values back to main
result_pipe[1].send(snake_case__ )
def UpperCamelCase_( snake_case__: Any ) -> Tuple:
UpperCAmelCase__ = []
UpperCAmelCase__ = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
UpperCAmelCase__ = Pipe()
UpperCAmelCase__ = Pipe()
process_array_.append(
Process(
target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
UpperCAmelCase__ = temp_rs
UpperCAmelCase__ = temp_rr
for i in range(1 , len(snake_case__ ) - 1 ):
UpperCAmelCase__ = Pipe()
UpperCAmelCase__ = Pipe()
process_array_.append(
Process(
target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
UpperCAmelCase__ = temp_rs
UpperCAmelCase__ = temp_rr
process_array_.append(
Process(
target=snake_case__ , args=(
len(snake_case__ ) - 1,
arr[len(snake_case__ ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(snake_case__ ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(snake_case__ ) ):
UpperCAmelCase__ = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def UpperCamelCase_( ) -> Dict:
UpperCAmelCase__ = list(range(10 , 0 , -1 ) )
print('Initial List' )
print(*snake_case__ )
UpperCAmelCase__ = odd_even_transposition(snake_case__ )
print('Sorted List\n' )
print(*snake_case__ )
if __name__ == "__main__":
main()
| 335 | 0 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''speechbrain/m-ctc-t-large''': '''https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json''',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class lowercase ( _UpperCAmelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = "mctct"
def __init__(self , __a=8065 , __a=1536 , __a=36 , __a=6144 , __a=4 , __a=384 , __a=920 , __a=1E-5 , __a=0.3 , __a="relu" , __a=0.02 , __a=0.3 , __a=0.3 , __a=1 , __a=0 , __a=2 , __a=1 , __a=0.3 , __a=1 , __a=(7,) , __a=(3,) , __a=80 , __a=1 , __a=None , __a="sum" , __a=False , **__a , ) -> List[str]:
"""simple docstring"""
super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase )
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = attention_head_dim
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = layerdrop
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = pad_token_id
UpperCAmelCase__ = bos_token_id
UpperCAmelCase__ = eos_token_id
UpperCAmelCase__ = conv_glu_dim
UpperCAmelCase__ = conv_dropout
UpperCAmelCase__ = num_conv_layers
UpperCAmelCase__ = input_feat_per_channel
UpperCAmelCase__ = input_channels
UpperCAmelCase__ = conv_channels
UpperCAmelCase__ = ctc_loss_reduction
UpperCAmelCase__ = ctc_zero_infinity
# prevents config testing fail with exporting to json
UpperCAmelCase__ = list(_UpperCAmelCase )
UpperCAmelCase__ = list(_UpperCAmelCase )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` '
F"but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, "
F"`config.num_conv_layers = {self.num_conv_layers}`." )
| 352 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class lowercase :
'''simple docstring'''
def __init__(self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = ''
UpperCAmelCase__ = ''
UpperCAmelCase__ = []
UpperCAmelCase__ = 0
UpperCAmelCase__ = 256
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
def UpperCamelCase__ (self , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = cva.imread(__a , 0 )
UpperCAmelCase__ = copy.deepcopy(self.img )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' )
UpperCAmelCase__ = np.sum(__a )
for i in range(len(__a ) ):
UpperCAmelCase__ = x[i] / self.k
self.sk += prk
UpperCAmelCase__ = (self.L - 1) * self.sk
if self.rem != 0:
UpperCAmelCase__ = int(last % last )
UpperCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(__a )
UpperCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size )
UpperCAmelCase__ = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCAmelCase__ = self.img[j][i]
if num != self.last_list[num]:
UpperCAmelCase__ = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
plt.hist(self.img.ravel() , 256 , [0, 256] )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
_UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''')
_UpperCamelCase = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 335 | 0 |
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
)
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
A_ = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''')
A_ = get_tests_dir('''fixtures/vocab.json''')
A_ = get_tests_dir('''fixtures''')
class lowercase ( unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""]
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = 0
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' )
self.assertIsInstance(__snake_case , __snake_case )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase__ = WavaVecaConfig()
UpperCAmelCase__ = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' )
# save in new folder
model_config.save_pretrained(__snake_case )
processor.save_pretrained(__snake_case )
UpperCAmelCase__ = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(__snake_case , os.path.join(__snake_case , __snake_case ) )
copyfile(__snake_case , os.path.join(__snake_case , 'vocab.json' ) )
UpperCAmelCase__ = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase__ = WavaVecaFeatureExtractor()
UpperCAmelCase__ = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' )
UpperCAmelCase__ = WavaVecaProcessor(__snake_case , __snake_case )
# save in new folder
processor.save_pretrained(__snake_case )
# drop `processor_class` in tokenizer
with open(os.path.join(__snake_case , __snake_case ) , 'r' ) as f:
UpperCAmelCase__ = json.load(__snake_case )
config_dict.pop('processor_class' )
with open(os.path.join(__snake_case , __snake_case ) , 'w' ) as f:
f.write(json.dumps(__snake_case ) )
UpperCAmelCase__ = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase__ = WavaVecaFeatureExtractor()
UpperCAmelCase__ = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' )
UpperCAmelCase__ = WavaVecaProcessor(__snake_case , __snake_case )
# save in new folder
processor.save_pretrained(__snake_case )
# drop `processor_class` in feature extractor
with open(os.path.join(__snake_case , __snake_case ) , 'r' ) as f:
UpperCAmelCase__ = json.load(__snake_case )
config_dict.pop('processor_class' )
with open(os.path.join(__snake_case , __snake_case ) , 'w' ) as f:
f.write(json.dumps(__snake_case ) )
UpperCAmelCase__ = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase__ = WavaVecaConfig(processor_class='Wav2Vec2Processor' )
model_config.save_pretrained(__snake_case )
# copy relevant files
copyfile(__snake_case , os.path.join(__snake_case , 'vocab.json' ) )
# create emtpy sample processor
with open(os.path.join(__snake_case , __snake_case ) , 'w' ) as f:
f.write('{}' )
UpperCAmelCase__ = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
with self.assertRaises(__snake_case ):
UpperCAmelCase__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__snake_case ):
UpperCAmelCase__ = AutoProcessor.from_pretrained(
'hf-internal-testing/test_dynamic_processor' , trust_remote_code=__snake_case )
UpperCAmelCase__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' , trust_remote_code=__snake_case )
self.assertTrue(processor.special_attribute_present )
self.assertEqual(processor.__class__.__name__ , 'NewProcessor' )
UpperCAmelCase__ = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present )
self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' )
UpperCAmelCase__ = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' )
# Test we can also load the slow version
UpperCAmelCase__ = AutoProcessor.from_pretrained(
'hf-internal-testing/test_dynamic_processor' , trust_remote_code=__snake_case , use_fast=__snake_case )
UpperCAmelCase__ = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present )
self.assertEqual(new_tokenizer.__class__.__name__ , 'NewTokenizer' )
else:
self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
try:
AutoConfig.register('custom' , __snake_case )
AutoFeatureExtractor.register(__snake_case , __snake_case )
AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case )
AutoProcessor.register(__snake_case , __snake_case )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__snake_case ):
AutoProcessor.register(__snake_case , __snake_case )
# Now that the config is registered, it can be used as any other config with the auto-API
UpperCAmelCase__ = CustomFeatureExtractor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = os.path.join(__snake_case , 'vocab.txt' )
with open(__snake_case , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCAmelCase__ = CustomTokenizer(__snake_case )
UpperCAmelCase__ = CustomProcessor(__snake_case , __snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(__snake_case )
UpperCAmelCase__ = AutoProcessor.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
class lowercase ( A__ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = False
class lowercase ( A__ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = False
class lowercase ( A__ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """AutoFeatureExtractor"""
__SCREAMING_SNAKE_CASE = """AutoTokenizer"""
__SCREAMING_SNAKE_CASE = False
try:
AutoConfig.register('custom' , __snake_case )
AutoFeatureExtractor.register(__snake_case , __snake_case )
AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case )
AutoProcessor.register(__snake_case , __snake_case )
# If remote code is not set, the default is to use local classes.
UpperCAmelCase__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' )
self.assertEqual(processor.__class__.__name__ , 'NewProcessor' )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote code is disabled, we load the local ones.
UpperCAmelCase__ = AutoProcessor.from_pretrained(
'hf-internal-testing/test_dynamic_processor' , trust_remote_code=__snake_case )
self.assertEqual(processor.__class__.__name__ , 'NewProcessor' )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub.
UpperCAmelCase__ = AutoProcessor.from_pretrained(
'hf-internal-testing/test_dynamic_processor' , trust_remote_code=__snake_case )
self.assertEqual(processor.__class__.__name__ , 'NewProcessor' )
self.assertTrue(processor.special_attribute_present )
self.assertTrue(processor.feature_extractor.special_attribute_present )
self.assertTrue(processor.tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' )
self.assertEqual(processor.__class__.__name__ , 'BertTokenizerFast' )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' )
self.assertEqual(processor.__class__.__name__ , 'ConvNextImageProcessor' )
@is_staging_test
class lowercase ( unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""]
@classmethod
def UpperCamelCase__ (cls ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = TOKEN
HfFolder.save_token(__snake_case )
@classmethod
def UpperCamelCase__ (cls ) -> Optional[Any]:
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='test-processor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='valid_org/test-processor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='test-dynamic-processor' )
except HTTPError:
pass
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = WavaVecaProcessor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(__snake_case , 'test-processor' ) , push_to_hub=__snake_case , use_auth_token=self._token )
UpperCAmelCase__ = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = WavaVecaProcessor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(__snake_case , 'test-processor-org' ) , push_to_hub=__snake_case , use_auth_token=self._token , organization='valid_org' , )
UpperCAmelCase__ = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
UpperCAmelCase__ = CustomFeatureExtractor.from_pretrained(__snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = os.path.join(__snake_case , 'vocab.txt' )
with open(__snake_case , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCAmelCase__ = CustomTokenizer(__snake_case )
UpperCAmelCase__ = CustomProcessor(__snake_case , __snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
create_repo(F"{USER}/test-dynamic-processor" , token=self._token )
UpperCAmelCase__ = Repository(__snake_case , clone_from=F"{USER}/test-dynamic-processor" , token=self._token )
processor.save_pretrained(__snake_case )
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map , {
'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor',
'AutoProcessor': 'custom_processing.CustomProcessor',
} , )
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(__snake_case , 'tokenizer_config.json' ) ) as f:
UpperCAmelCase__ = json.load(__snake_case )
self.assertDictEqual(
tokenizer_config['auto_map'] , {
'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None],
'AutoProcessor': 'custom_processing.CustomProcessor',
} , )
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(__snake_case , 'custom_feature_extraction.py' ) ) )
self.assertTrue(os.path.isfile(os.path.join(__snake_case , 'custom_tokenization.py' ) ) )
self.assertTrue(os.path.isfile(os.path.join(__snake_case , 'custom_processing.py' ) ) )
repo.push_to_hub()
UpperCAmelCase__ = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=__snake_case )
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__ , 'CustomProcessor' )
| 353 |
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = image_size
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = embed_dim
UpperCAmelCase__ = depths
UpperCAmelCase__ = num_heads
UpperCAmelCase__ = window_size
UpperCAmelCase__ = mlp_ratio
UpperCAmelCase__ = qkv_bias
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = drop_path_rate
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = use_absolute_embeddings
UpperCAmelCase__ = patch_norm
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = is_training
UpperCAmelCase__ = scope
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = encoder_stride
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModel(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCAmelCase__ = 1
UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self.type_sequence_label_size
UpperCAmelCase__ = SwinvaForImageClassification(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
__SCREAMING_SNAKE_CASE = (
{"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification}
if is_torch_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
@unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason='Swinv2 does not use inputs_embeds' )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__a , nn.Linear ) )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ = [*signature.parameters.keys()]
UpperCAmelCase__ = ['pixel_values']
self.assertListEqual(arg_names[:1] , __a )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
UpperCAmelCase__ = len(self.model_tester.depths )
self.assertEqual(len(__a ) , __a )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = config.window_size**2
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
UpperCAmelCase__ = len(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
if hasattr(self.model_tester , 'num_hidden_states_types' ):
UpperCAmelCase__ = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
UpperCAmelCase__ = 2
self.assertEqual(out_len + added_hidden_states , len(__a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.hidden_states
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__a ) , __a )
# Swinv2 has a different seq_length
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
UpperCAmelCase__ = outputs.reshaped_hidden_states
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape
UpperCAmelCase__ = (
reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = 3
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__a )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = SwinvaModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = _config_zero_init(__a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(config=__a )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
@require_vision
@require_torch
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' )
if is_vision_available()
else None
)
@slow
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to(
__a )
UpperCAmelCase__ = self.default_image_processor
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a )
# forward pass
with torch.no_grad():
UpperCAmelCase__ = model(**__a )
# verify the logits
UpperCAmelCase__ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __a )
UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
| 335 | 0 |
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
_UpperCamelCase = sys.version_info >= (3, 10)
def UpperCamelCase_( snake_case__: Union[str, Any]=None , snake_case__: str=None ) -> List[Any]:
return field(default_factory=lambda: default , metadata=lowerCamelCase__ )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = field(default="""toto""" , metadata={"""help""": """help message"""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = None
class lowercase ( a__ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """titi"""
__SCREAMING_SNAKE_CASE = """toto"""
class lowercase ( a__ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """titi"""
__SCREAMING_SNAKE_CASE = """toto"""
__SCREAMING_SNAKE_CASE = 42
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """toto"""
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = BasicEnum(self.foo )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """toto"""
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = MixedTypeEnum(self.foo )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = field(default=a__ , metadata={"""help""": """help message"""} )
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = list_field(default=[] )
__SCREAMING_SNAKE_CASE = list_field(default=[] )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = list_field(default=[] )
__SCREAMING_SNAKE_CASE = list_field(default=[1, 2, 3] )
__SCREAMING_SNAKE_CASE = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] )
__SCREAMING_SNAKE_CASE = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field()
__SCREAMING_SNAKE_CASE = field()
__SCREAMING_SNAKE_CASE = field()
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = BasicEnum(self.required_enum )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = field()
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = field(default="""toto""" , metadata={"""help""": """help message"""} )
__SCREAMING_SNAKE_CASE = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] )
if is_python_no_less_than_3_10:
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = None
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = field(default=a__ , metadata={"""help""": """help message"""} )
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = list_field(default=[] )
__SCREAMING_SNAKE_CASE = list_field(default=[] )
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self , __a , __a ) -> Optional[Any]:
"""simple docstring"""
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
UpperCAmelCase__ = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''}
UpperCAmelCase__ = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get('choices' , _lowerCamelCase ) and yy.get('choices' , _lowerCamelCase ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx['type'](_lowerCamelCase ) , yy['type'](_lowerCamelCase ) )
del xx["type"], yy["type"]
self.assertEqual(_lowerCamelCase , _lowerCamelCase )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase )
UpperCAmelCase__ = argparse.ArgumentParser()
expected.add_argument('--foo' , type=_lowerCamelCase , required=_lowerCamelCase )
expected.add_argument('--bar' , type=_lowerCamelCase , required=_lowerCamelCase )
expected.add_argument('--baz' , type=_lowerCamelCase , required=_lowerCamelCase )
expected.add_argument('--flag' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='?' )
self.argparsersEqual(_lowerCamelCase , _lowerCamelCase )
UpperCAmelCase__ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5''']
(UpperCAmelCase__) = parser.parse_args_into_dataclasses(_lowerCamelCase , look_for_args_file=_lowerCamelCase )
self.assertFalse(example.flag )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase )
UpperCAmelCase__ = argparse.ArgumentParser()
expected.add_argument('--foo' , default=42 , type=_lowerCamelCase )
expected.add_argument('--baz' , default='toto' , type=_lowerCamelCase , help='help message' )
self.argparsersEqual(_lowerCamelCase , _lowerCamelCase )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = argparse.ArgumentParser()
expected.add_argument('--foo' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='?' )
expected.add_argument('--baz' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='?' )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument('--no_baz' , action='store_false' , default=_lowerCamelCase , dest='baz' )
expected.add_argument('--opt' , type=_lowerCamelCase , default=_lowerCamelCase )
UpperCAmelCase__ = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(_lowerCamelCase )
for dataclass_type in dataclass_types:
UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase )
self.argparsersEqual(_lowerCamelCase , _lowerCamelCase )
UpperCAmelCase__ = parser.parse_args([] )
self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) )
UpperCAmelCase__ = parser.parse_args(['--foo', '--no_baz'] )
self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) )
UpperCAmelCase__ = parser.parse_args(['--foo', '--baz'] )
self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) )
UpperCAmelCase__ = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] )
self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) )
UpperCAmelCase__ = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] )
self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase )
UpperCAmelCase__ = argparse.ArgumentParser()
expected.add_argument(
'--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , )
self.argparsersEqual(_lowerCamelCase , _lowerCamelCase )
UpperCAmelCase__ = parser.parse_args([] )
self.assertEqual(args.foo , 'toto' )
UpperCAmelCase__ = parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
UpperCAmelCase__ = parser.parse_args(['--foo', 'titi'] )
self.assertEqual(args.foo , 'titi' )
UpperCAmelCase__ = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
UpperCAmelCase__ = parser.parse_args(['--foo', '42'] )
self.assertEqual(args.foo , 42 )
UpperCAmelCase__ = parser.parse_args_into_dataclasses(['--foo', '42'] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """toto"""
UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase )
UpperCAmelCase__ = argparse.ArgumentParser()
expected.add_argument(
'--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , )
self.argparsersEqual(_lowerCamelCase , _lowerCamelCase )
UpperCAmelCase__ = parser.parse_args([] )
self.assertEqual(args.foo , 'toto' )
UpperCAmelCase__ = parser.parse_args(['--foo', 'titi'] )
self.assertEqual(args.foo , 'titi' )
UpperCAmelCase__ = parser.parse_args(['--foo', '42'] )
self.assertEqual(args.foo , 42 )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase )
UpperCAmelCase__ = argparse.ArgumentParser()
expected.add_argument('--foo_int' , nargs='+' , default=[] , type=_lowerCamelCase )
expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=_lowerCamelCase )
expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=_lowerCamelCase )
expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=_lowerCamelCase )
self.argparsersEqual(_lowerCamelCase , _lowerCamelCase )
UpperCAmelCase__ = parser.parse_args([] )
self.assertEqual(
_lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , )
UpperCAmelCase__ = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() )
self.assertEqual(_lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = argparse.ArgumentParser()
expected.add_argument('--foo' , default=_lowerCamelCase , type=_lowerCamelCase )
expected.add_argument('--bar' , default=_lowerCamelCase , type=_lowerCamelCase , help='help message' )
expected.add_argument('--baz' , default=_lowerCamelCase , type=_lowerCamelCase )
expected.add_argument('--ces' , nargs='+' , default=[] , type=_lowerCamelCase )
expected.add_argument('--des' , nargs='+' , default=[] , type=_lowerCamelCase )
UpperCAmelCase__ = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(_lowerCamelCase )
for dataclass_type in dataclass_types:
UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase )
self.argparsersEqual(_lowerCamelCase , _lowerCamelCase )
UpperCAmelCase__ = parser.parse_args([] )
self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , bar=_lowerCamelCase , baz=_lowerCamelCase , ces=[] , des=[] ) )
UpperCAmelCase__ = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() )
self.assertEqual(_lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase )
UpperCAmelCase__ = argparse.ArgumentParser()
expected.add_argument('--required_list' , nargs='+' , type=_lowerCamelCase , required=_lowerCamelCase )
expected.add_argument('--required_str' , type=_lowerCamelCase , required=_lowerCamelCase )
expected.add_argument(
'--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=_lowerCamelCase , )
self.argparsersEqual(_lowerCamelCase , _lowerCamelCase )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase )
UpperCAmelCase__ = argparse.ArgumentParser()
expected.add_argument('--foo' , type=_lowerCamelCase , required=_lowerCamelCase )
expected.add_argument(
'--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=_lowerCamelCase , )
expected.add_argument('--opt' , type=_lowerCamelCase , default=_lowerCamelCase )
expected.add_argument('--baz' , default='toto' , type=_lowerCamelCase , help='help message' )
expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=_lowerCamelCase )
self.argparsersEqual(_lowerCamelCase , _lowerCamelCase )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase )
UpperCAmelCase__ = {
'''foo''': 12,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
UpperCAmelCase__ = parser.parse_dict(_lowerCamelCase )[0]
UpperCAmelCase__ = BasicExample(**_lowerCamelCase )
self.assertEqual(_lowerCamelCase , _lowerCamelCase )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase )
UpperCAmelCase__ = {
'''foo''': 12,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
'''extra''': 42,
}
self.assertRaises(_lowerCamelCase , parser.parse_dict , _lowerCamelCase , allow_extra_keys=_lowerCamelCase )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase )
UpperCAmelCase__ = {
'''foo''': 12,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = os.path.join(_lowerCamelCase , 'temp_json' )
os.mkdir(_lowerCamelCase )
with open(temp_local_path + '.json' , 'w+' ) as f:
json.dump(_lowerCamelCase , _lowerCamelCase )
UpperCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0]
UpperCAmelCase__ = BasicExample(**_lowerCamelCase )
self.assertEqual(_lowerCamelCase , _lowerCamelCase )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase )
UpperCAmelCase__ = {
'''foo''': 12,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = os.path.join(_lowerCamelCase , 'temp_yaml' )
os.mkdir(_lowerCamelCase )
with open(temp_local_path + '.yaml' , 'w+' ) as f:
yaml.dump(_lowerCamelCase , _lowerCamelCase )
UpperCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0]
UpperCAmelCase__ = BasicExample(**_lowerCamelCase )
self.assertEqual(_lowerCamelCase , _lowerCamelCase )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
| 354 |
from collections import deque
def UpperCamelCase_( snake_case__: Tuple ) -> Tuple:
UpperCAmelCase__ = len(snake_case__ )
UpperCAmelCase__ = deque()
UpperCAmelCase__ = [False for _ in range(snake_case__ )]
UpperCAmelCase__ = [-1 for _ in range(snake_case__ )]
UpperCAmelCase__ = index_of[:]
def strong_connect(snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[str] ):
UpperCAmelCase__ = index # the number when this node is seen
UpperCAmelCase__ = index # lowest rank node reachable from here
index += 1
stack.append(snake_case__ )
UpperCAmelCase__ = True
for w in g[v]:
if index_of[w] == -1:
UpperCAmelCase__ = strong_connect(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase__ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
UpperCAmelCase__ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
UpperCAmelCase__ = []
UpperCAmelCase__ = stack.pop()
UpperCAmelCase__ = False
component.append(snake_case__ )
while w != v:
UpperCAmelCase__ = stack.pop()
UpperCAmelCase__ = False
component.append(snake_case__ )
components.append(snake_case__ )
return index
UpperCAmelCase__ = []
for v in range(snake_case__ ):
if index_of[v] == -1:
strong_connect(snake_case__ , 0 , snake_case__ )
return components
def UpperCamelCase_( snake_case__: Dict , snake_case__: List[Any] ) -> Optional[int]:
UpperCAmelCase__ = [[] for _ in range(snake_case__ )]
for u, v in edges:
g[u].append(snake_case__ )
return g
if __name__ == "__main__":
# Test
_UpperCamelCase = 7
_UpperCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6]
_UpperCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5]
_UpperCamelCase = [(u, v) for u, v in zip(source, target)]
_UpperCamelCase = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 335 | 0 |
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
_UpperCamelCase = '''src/transformers'''
_UpperCamelCase = '''docs/source/en'''
_UpperCamelCase = '''.'''
def UpperCamelCase_( snake_case__: List[str] , snake_case__: Dict , snake_case__: Optional[Any] ) -> List[Any]:
with open(__a , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCAmelCase__ = f.readlines()
# Find the start prompt.
UpperCAmelCase__ = 0
while not lines[start_index].startswith(__a ):
start_index += 1
start_index += 1
UpperCAmelCase__ = start_index
while not lines[end_index].startswith(__a ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
_UpperCamelCase = '''Model|Encoder|Decoder|ForConditionalGeneration'''
# Regexes that match TF/Flax/PT model names.
_UpperCamelCase = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
_UpperCamelCase = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
_UpperCamelCase = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
# This is to make sure the transformers module imported is the one in the repo.
_UpperCamelCase = direct_transformers_import(TRANSFORMERS_PATH)
def UpperCamelCase_( snake_case__: int ) -> List[str]:
UpperCAmelCase__ = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , __a )
return [m.group(0 ) for m in matches]
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: Optional[Any] ) -> str:
UpperCAmelCase__ = 2 if text == '✅' or text == '❌' else len(__a )
UpperCAmelCase__ = (width - text_length) // 2
UpperCAmelCase__ = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def UpperCamelCase_( ) -> List[str]:
UpperCAmelCase__ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
UpperCAmelCase__ = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
UpperCAmelCase__ = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
UpperCAmelCase__ = collections.defaultdict(__a )
UpperCAmelCase__ = collections.defaultdict(__a )
UpperCAmelCase__ = collections.defaultdict(__a )
UpperCAmelCase__ = collections.defaultdict(__a )
UpperCAmelCase__ = collections.defaultdict(__a )
# Let's lookup through all transformers object (once).
for attr_name in dir(__a ):
UpperCAmelCase__ = None
if attr_name.endswith('Tokenizer' ):
UpperCAmelCase__ = slow_tokenizers
UpperCAmelCase__ = attr_name[:-9]
elif attr_name.endswith('TokenizerFast' ):
UpperCAmelCase__ = fast_tokenizers
UpperCAmelCase__ = attr_name[:-13]
elif _re_tf_models.match(__a ) is not None:
UpperCAmelCase__ = tf_models
UpperCAmelCase__ = _re_tf_models.match(__a ).groups()[0]
elif _re_flax_models.match(__a ) is not None:
UpperCAmelCase__ = flax_models
UpperCAmelCase__ = _re_flax_models.match(__a ).groups()[0]
elif _re_pt_models.match(__a ) is not None:
UpperCAmelCase__ = pt_models
UpperCAmelCase__ = _re_pt_models.match(__a ).groups()[0]
if lookup_dict is not None:
while len(__a ) > 0:
if attr_name in model_name_to_prefix.values():
UpperCAmelCase__ = True
break
# Try again after removing the last word in the name
UpperCAmelCase__ = ''.join(camel_case_split(__a )[:-1] )
# Let's build that table!
UpperCAmelCase__ = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
UpperCAmelCase__ = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support']
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
UpperCAmelCase__ = [len(__a ) + 2 for c in columns]
UpperCAmelCase__ = max([len(__a ) for name in model_names] ) + 2
# Build the table per se
UpperCAmelCase__ = '|' + '|'.join([_center_text(__a , __a ) for c, w in zip(__a , __a )] ) + '|\n'
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n"
UpperCAmelCase__ = {True: '✅', False: '❌'}
for name in model_names:
UpperCAmelCase__ = model_name_to_prefix[name]
UpperCAmelCase__ = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(__a , __a ) for l, w in zip(__a , __a )] ) + "|\n"
return table
def UpperCamelCase_( snake_case__: List[Any]=False ) -> Any:
UpperCAmelCase__ = _find_text_in_file(
filename=os.path.join(__a , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , )
UpperCAmelCase__ = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(__a , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
_UpperCamelCase = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 355 |
from ...configuration_utils import PretrainedConfig
_UpperCamelCase = {
'''google/tapas-base-finetuned-sqa''': (
'''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wtq''': (
'''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wikisql-supervised''': (
'''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-tabfact''': (
'''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''
),
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """tapas"""
def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=1024 , __a=[3, 256, 256, 2, 256, 256, 10] , __a=0.02 , __a=1E-1_2 , __a=0 , __a=10.0 , __a=0 , __a=1.0 , __a=None , __a=1.0 , __a=False , __a=None , __a=1.0 , __a=1.0 , __a=False , __a=False , __a="ratio" , __a=None , __a=None , __a=64 , __a=32 , __a=False , __a=True , __a=False , __a=False , __a=True , __a=False , __a=None , __a=None , **__a , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=__a , **__a )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_sizes
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
# Fine-tuning task hyperparameters
UpperCAmelCase__ = positive_label_weight
UpperCAmelCase__ = num_aggregation_labels
UpperCAmelCase__ = aggregation_loss_weight
UpperCAmelCase__ = use_answer_as_supervision
UpperCAmelCase__ = answer_loss_importance
UpperCAmelCase__ = use_normalized_answer_loss
UpperCAmelCase__ = huber_loss_delta
UpperCAmelCase__ = temperature
UpperCAmelCase__ = aggregation_temperature
UpperCAmelCase__ = use_gumbel_for_cells
UpperCAmelCase__ = use_gumbel_for_aggregation
UpperCAmelCase__ = average_approximation_function
UpperCAmelCase__ = cell_selection_preference
UpperCAmelCase__ = answer_loss_cutoff
UpperCAmelCase__ = max_num_rows
UpperCAmelCase__ = max_num_columns
UpperCAmelCase__ = average_logits_per_cell
UpperCAmelCase__ = select_one_column
UpperCAmelCase__ = allow_empty_column_selection
UpperCAmelCase__ = init_cell_selection_weights_to_zero
UpperCAmelCase__ = reset_position_index_per_cell
UpperCAmelCase__ = disable_per_token_loss
# Aggregation hyperparameters
UpperCAmelCase__ = aggregation_labels
UpperCAmelCase__ = no_aggregation_label_index
if isinstance(self.aggregation_labels , __a ):
UpperCAmelCase__ = {int(__a ): v for k, v in aggregation_labels.items()}
| 335 | 0 |
import html
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...utils import is_bsa_available, logging, requires_backends
if is_bsa_available():
import bsa
from bsa import BeautifulSoup
_UpperCamelCase = logging.get_logger(__name__)
class lowercase ( lowerCamelCase__ ):
'''simple docstring'''
def __init__(self , **__a ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ['bs4'] )
super().__init__(**__a )
def UpperCamelCase__ (self , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = []
UpperCAmelCase__ = element if element.name else element.parent
for parent in child.parents: # type: bs4.element.Tag
UpperCAmelCase__ = parent.find_all(child.name , recursive=__a )
xpath_tags.append(child.name )
xpath_subscripts.append(
0 if 1 == len(__a ) else next(i for i, s in enumerate(__a , 1 ) if s is child ) )
UpperCAmelCase__ = parent
xpath_tags.reverse()
xpath_subscripts.reverse()
return xpath_tags, xpath_subscripts
def UpperCamelCase__ (self , __a ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = BeautifulSoup(__a , 'html.parser' )
UpperCAmelCase__ = []
UpperCAmelCase__ = []
UpperCAmelCase__ = []
for element in html_code.descendants:
if type(__a ) == bsa.element.NavigableString:
if type(element.parent ) != bsa.element.Tag:
continue
UpperCAmelCase__ = html.unescape(__a ).strip()
if not text_in_this_tag:
continue
all_doc_strings.append(__a )
UpperCAmelCase__ , UpperCAmelCase__ = self.xpath_soup(__a )
stringaxtag_seq.append(__a )
stringaxsubs_seq.append(__a )
if len(__a ) != len(__a ):
raise ValueError('Number of doc strings and xtags does not correspond' )
if len(__a ) != len(__a ):
raise ValueError('Number of doc strings and xsubs does not correspond' )
return all_doc_strings, stringaxtag_seq, stringaxsubs_seq
def UpperCamelCase__ (self , __a , __a ) -> int:
"""simple docstring"""
UpperCAmelCase__ = ''
for tagname, subs in zip(__a , __a ):
xpath += F"/{tagname}"
if subs != 0:
xpath += F"[{subs}]"
return xpath
def __call__(self , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = False
# Check that strings has a valid type
if isinstance(__a , __a ):
UpperCAmelCase__ = True
elif isinstance(__a , (list, tuple) ):
if len(__a ) == 0 or isinstance(html_strings[0] , __a ):
UpperCAmelCase__ = True
if not valid_strings:
raise ValueError(
'HTML strings must of type `str`, `List[str]` (batch of examples), '
F"but is of type {type(__a )}." )
UpperCAmelCase__ = bool(isinstance(__a , (list, tuple) ) and (isinstance(html_strings[0] , __a )) )
if not is_batched:
UpperCAmelCase__ = [html_strings]
# Get nodes + xpaths
UpperCAmelCase__ = []
UpperCAmelCase__ = []
for html_string in html_strings:
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.get_three_from_single(__a )
nodes.append(__a )
UpperCAmelCase__ = []
for node, tag_list, sub_list in zip(__a , __a , __a ):
UpperCAmelCase__ = self.construct_xpath(__a , __a )
xpath_strings.append(__a )
xpaths.append(__a )
# return as Dict
UpperCAmelCase__ = {'nodes': nodes, 'xpaths': xpaths}
UpperCAmelCase__ = BatchFeature(data=__a , tensor_type=__a )
return encoded_inputs
| 356 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCamelCase = {
'''configuration_squeezebert''': [
'''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''SqueezeBertConfig''',
'''SqueezeBertOnnxConfig''',
],
'''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''SqueezeBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SqueezeBertForMaskedLM''',
'''SqueezeBertForMultipleChoice''',
'''SqueezeBertForQuestionAnswering''',
'''SqueezeBertForSequenceClassification''',
'''SqueezeBertForTokenClassification''',
'''SqueezeBertModel''',
'''SqueezeBertModule''',
'''SqueezeBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 335 | 0 |
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , *__a , **__a ) -> Union[str, Any]:
"""simple docstring"""
warnings.warn(
'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use ChineseCLIPImageProcessor instead.' , _snake_case , )
super().__init__(*_snake_case , **_snake_case )
| 357 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase__ = XCLIPTextConfig()
# derive patch size from model name
UpperCAmelCase__ = model_name.find('patch' )
UpperCAmelCase__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] )
UpperCAmelCase__ = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ )
if "large" in model_name:
UpperCAmelCase__ = 7_68
UpperCAmelCase__ = 30_72
UpperCAmelCase__ = 12
UpperCAmelCase__ = 10_24
UpperCAmelCase__ = 40_96
UpperCAmelCase__ = 16
UpperCAmelCase__ = 24
UpperCAmelCase__ = 7_68
UpperCAmelCase__ = 30_72
if model_name == "xclip-large-patch14-16-frames":
UpperCAmelCase__ = 3_36
UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ )
if "large" in model_name:
UpperCAmelCase__ = 7_68
return config
def UpperCamelCase_( snake_case__: Any ) -> Tuple:
# text encoder
if name == "token_embedding.weight":
UpperCAmelCase__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' )
if name == "positional_embedding":
UpperCAmelCase__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' )
if "ln_1" in name:
UpperCAmelCase__ = name.replace('ln_1' , 'layer_norm1' )
if "ln_2" in name:
UpperCAmelCase__ = name.replace('ln_2' , 'layer_norm2' )
if "c_fc" in name:
UpperCAmelCase__ = name.replace('c_fc' , 'fc1' )
if "c_proj" in name:
UpperCAmelCase__ = name.replace('c_proj' , 'fc2' )
if name.startswith('transformer.resblocks' ):
UpperCAmelCase__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' )
if "attn.out_proj" in name and "message" not in name:
UpperCAmelCase__ = name.replace('attn.out_proj' , 'self_attn.out_proj' )
if "ln_final" in name:
UpperCAmelCase__ = name.replace('ln_final' , 'text_model.final_layer_norm' )
# visual encoder
if name == "visual.class_embedding":
UpperCAmelCase__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' )
if name == "visual.positional_embedding":
UpperCAmelCase__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' )
if name.startswith('visual.transformer.resblocks' ):
UpperCAmelCase__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' )
if "visual.conv1" in name:
UpperCAmelCase__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' )
if "visual.ln_pre" in name:
UpperCAmelCase__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' )
if "visual.ln_post" in name:
UpperCAmelCase__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' )
if "visual.proj" in name:
UpperCAmelCase__ = name.replace('visual.proj' , 'visual_projection.weight' )
if "text_projection" in name:
UpperCAmelCase__ = name.replace('text_projection' , 'text_projection.weight' )
# things on top
if "prompts_visual_proj" in name:
UpperCAmelCase__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' )
if "prompts_visual_ln" in name:
UpperCAmelCase__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' )
# mit
if name == "mit.positional_embedding":
UpperCAmelCase__ = name.replace('positional' , 'position' )
if name.startswith('mit.resblocks' ):
UpperCAmelCase__ = name.replace('mit.resblocks' , 'mit.encoder.layers' )
# prompts generator
if name.startswith('prompts_generator.norm' ):
UpperCAmelCase__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' )
return name
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Optional[Any]:
for key in orig_state_dict.copy().keys():
UpperCAmelCase__ = orig_state_dict.pop(snake_case__ )
if "attn.in_proj" in key:
UpperCAmelCase__ = key.split('.' )
if key.startswith('visual' ):
UpperCAmelCase__ = key_split[3]
UpperCAmelCase__ = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
UpperCAmelCase__ = val[
:dim, :
]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[
-dim:, :
]
else:
UpperCAmelCase__ = val[
:dim
]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[
-dim:
]
else:
if "weight" in key:
UpperCAmelCase__ = val[
:dim, :
]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[
-dim:, :
]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[-dim:]
elif key.startswith('mit' ):
UpperCAmelCase__ = key_split[2]
UpperCAmelCase__ = config.vision_config.mit_hidden_size
if "weight" in key:
UpperCAmelCase__ = val[:dim, :]
UpperCAmelCase__ = val[dim : dim * 2, :]
UpperCAmelCase__ = val[-dim:, :]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[dim : dim * 2]
UpperCAmelCase__ = val[-dim:]
else:
UpperCAmelCase__ = key_split[2]
UpperCAmelCase__ = config.text_config.hidden_size
if "weight" in key:
UpperCAmelCase__ = val[:dim, :]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[-dim:, :]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[-dim:]
else:
UpperCAmelCase__ = rename_key(snake_case__ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
UpperCAmelCase__ = val.T
UpperCAmelCase__ = val
return orig_state_dict
def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]:
if num_frames == 8:
UpperCAmelCase__ = 'eating_spaghetti_8_frames.npy'
elif num_frames == 16:
UpperCAmelCase__ = 'eating_spaghetti.npy'
elif num_frames == 32:
UpperCAmelCase__ = 'eating_spaghetti_32_frames.npy'
UpperCAmelCase__ = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , )
UpperCAmelCase__ = np.load(snake_case__ )
return list(snake_case__ )
def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None , snake_case__: Union[str, Any]=False ) -> List[Any]:
UpperCAmelCase__ = {
# fully supervised kinetics-400 checkpoints
'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth',
'xclip-base-patch32-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'
),
'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth',
'xclip-base-patch16-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'
),
'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb',
'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f',
# fully supervised kinetics-600 checkpoints
'xclip-base-patch16-kinetics-600': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'
),
'xclip-base-patch16-kinetics-600-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'
),
'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be',
# few shot
'xclip-base-patch16-hmdb-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'
),
'xclip-base-patch16-hmdb-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'
),
'xclip-base-patch16-hmdb-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'
),
'xclip-base-patch16-hmdb-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'
),
'xclip-base-patch16-ucf-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'
),
'xclip-base-patch16-ucf-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'
),
'xclip-base-patch16-ucf-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'
),
'xclip-base-patch16-ucf-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'
),
# zero shot
'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth',
}
UpperCAmelCase__ = model_to_url[model_name]
UpperCAmelCase__ = 8
if "16-frames" in model_name:
UpperCAmelCase__ = 16
elif "shot" in model_name:
UpperCAmelCase__ = 32
UpperCAmelCase__ = get_xclip_config(snake_case__ , snake_case__ )
UpperCAmelCase__ = XCLIPModel(snake_case__ )
model.eval()
if "drive" in checkpoint_url:
UpperCAmelCase__ = 'pytorch_model.bin'
gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ )
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model']
else:
UpperCAmelCase__ = torch.hub.load_state_dict_from_url(snake_case__ )['model']
UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ )
UpperCAmelCase__ = XCLIPModel(snake_case__ )
UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(snake_case__ , strict=snake_case__ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
UpperCAmelCase__ = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24
UpperCAmelCase__ = VideoMAEImageProcessor(size=snake_case__ )
UpperCAmelCase__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' )
UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' )
UpperCAmelCase__ = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ )
UpperCAmelCase__ = prepare_video(snake_case__ )
UpperCAmelCase__ = processor(
text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ )
print('Shape of pixel values:' , inputs.pixel_values.shape )
with torch.no_grad():
UpperCAmelCase__ = model(**snake_case__ )
# Verify outputs
UpperCAmelCase__ = outputs.logits_per_video
UpperCAmelCase__ = logits_per_video.softmax(dim=1 )
print('Probs:' , snake_case__ )
# kinetics-400
if model_name == "xclip-base-patch32":
UpperCAmelCase__ = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] )
elif model_name == "xclip-base-patch32-16-frames":
UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] )
elif model_name == "xclip-base-patch16":
UpperCAmelCase__ = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] )
elif model_name == "xclip-base-patch16-16-frames":
UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] )
elif model_name == "xclip-large-patch14":
UpperCAmelCase__ = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] )
elif model_name == "xclip-large-patch14-16-frames":
UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
UpperCAmelCase__ = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
UpperCAmelCase__ = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
UpperCAmelCase__ = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] )
else:
raise ValueError(f"Model name {model_name} not supported" )
assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
if push_to_hub:
print('Pushing model, processor and slow tokenizer files to the hub...' )
model.push_to_hub(snake_case__ , organization='nielsr' )
processor.push_to_hub(snake_case__ , organization='nielsr' )
slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''xclip-base-patch32''',
type=str,
help='''Name of the model.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_UpperCamelCase = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 335 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
_UpperCamelCase = {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json',
}
class lowercase ( lowercase__ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 'albert'
def __init__(self , __a=30000 , __a=128 , __a=4096 , __a=12 , __a=1 , __a=64 , __a=16384 , __a=1 , __a="gelu_new" , __a=0 , __a=0 , __a=512 , __a=2 , __a=0.02 , __a=1E-1_2 , __a=0.1 , __a="absolute" , __a=0 , __a=2 , __a=3 , **__a , ) -> Dict:
"""simple docstring"""
super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = embedding_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_hidden_groups
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = inner_group_num
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = classifier_dropout_prob
UpperCAmelCase__ = position_embedding_type
class lowercase ( lowercase__ ):
'''simple docstring'''
@property
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
if self.task == "multiple-choice":
UpperCAmelCase__ = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
UpperCAmelCase__ = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 358 |
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: Union[str, Any] ) -> Tuple:
UpperCAmelCase__ = OmegaConf.load(snake_case__ )
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model']
UpperCAmelCase__ = list(state_dict.keys() )
# extract state_dict for VQVAE
UpperCAmelCase__ = {}
UpperCAmelCase__ = 'first_stage_model.'
for key in keys:
if key.startswith(snake_case__ ):
UpperCAmelCase__ = state_dict[key]
# extract state_dict for UNetLDM
UpperCAmelCase__ = {}
UpperCAmelCase__ = 'model.diffusion_model.'
for key in keys:
if key.startswith(snake_case__ ):
UpperCAmelCase__ = state_dict[key]
UpperCAmelCase__ = config.model.params.first_stage_config.params
UpperCAmelCase__ = config.model.params.unet_config.params
UpperCAmelCase__ = VQModel(**snake_case__ ).eval()
vqvae.load_state_dict(snake_case__ )
UpperCAmelCase__ = UNetLDMModel(**snake_case__ ).eval()
unet.load_state_dict(snake_case__ )
UpperCAmelCase__ = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , )
UpperCAmelCase__ = LDMPipeline(snake_case__ , snake_case__ , snake_case__ )
pipeline.save_pretrained(snake_case__ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--checkpoint_path''', type=str, required=True)
parser.add_argument('''--config_path''', type=str, required=True)
parser.add_argument('''--output_path''', type=str, required=True)
_UpperCamelCase = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 335 | 0 |
import json
import os
import unittest
from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase ( __A , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = CTRLTokenizer
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase__ = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>']
UpperCAmelCase__ = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
UpperCAmelCase__ = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', '']
UpperCAmelCase__ = {'unk_token': '<unk>'}
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(__lowercase ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(__lowercase ) )
def UpperCamelCase__ (self , **__a ) -> List[Any]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return CTRLTokenizer.from_pretrained(self.tmpdirname , **__lowercase )
def UpperCamelCase__ (self , __a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'adapt react readapt apt'
UpperCAmelCase__ = 'adapt react readapt apt'
return input_text, output_text
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCAmelCase__ = 'adapt react readapt apt'
UpperCAmelCase__ = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split()
UpperCAmelCase__ = tokenizer.tokenize(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
UpperCAmelCase__ = tokens + [tokenizer.unk_token]
UpperCAmelCase__ = [0, 1, 2, 4, 5, 1, 0, 3, 6]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase )
| 359 |
# flake8: noqa
# Lint as: python3
_UpperCamelCase = [
'''VerificationMode''',
'''Version''',
'''disable_progress_bar''',
'''enable_progress_bar''',
'''is_progress_bar_enabled''',
'''experimental''',
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 335 | 0 |
def UpperCamelCase_( snake_case__: int , snake_case__: int ) -> int:
while second != 0:
UpperCAmelCase__ = first & second
first ^= second
UpperCAmelCase__ = c << 1
return first
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = int(input('''Enter the first number: ''').strip())
_UpperCamelCase = int(input('''Enter the second number: ''').strip())
print(F"""{add(first, second) = }""")
| 360 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """sew-d"""
def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str:
"""simple docstring"""
super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a )
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = feat_extract_norm
UpperCAmelCase__ = feat_extract_activation
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = conv_bias
UpperCAmelCase__ = num_conv_pos_embeddings
UpperCAmelCase__ = num_conv_pos_embedding_groups
UpperCAmelCase__ = len(self.conv_dim )
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = squeeze_factor
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = position_buckets
UpperCAmelCase__ = share_att_key
UpperCAmelCase__ = relative_attention
UpperCAmelCase__ = norm_rel_ebd
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_dropout
UpperCAmelCase__ = attention_dropout
UpperCAmelCase__ = activation_dropout
UpperCAmelCase__ = feat_proj_dropout
UpperCAmelCase__ = final_dropout
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = feature_layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"
F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase__ = apply_spec_augment
UpperCAmelCase__ = mask_time_prob
UpperCAmelCase__ = mask_time_length
UpperCAmelCase__ = mask_time_min_masks
UpperCAmelCase__ = mask_feature_prob
UpperCAmelCase__ = mask_feature_length
UpperCAmelCase__ = mask_feature_min_masks
# ctc loss
UpperCAmelCase__ = ctc_loss_reduction
UpperCAmelCase__ = ctc_zero_infinity
# sequence classification
UpperCAmelCase__ = use_weighted_layer_sum
UpperCAmelCase__ = classifier_proj_size
@property
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 335 | 0 |
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def UpperCamelCase_( snake_case__: int ) -> int:
UpperCAmelCase__ = prime_factors(lowerCAmelCase__ )
if is_square_free(lowerCAmelCase__ ):
return -1 if len(lowerCAmelCase__ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 361 |
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
_UpperCamelCase = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
['''memory_attention''', '''encoder_attn'''],
['''attention''', '''attn'''],
['''/''', '''.'''],
['''.LayerNorm.gamma''', '''_layer_norm.weight'''],
['''.LayerNorm.beta''', '''_layer_norm.bias'''],
['''r.layer_''', '''r.layers.'''],
['''output_proj''', '''out_proj'''],
['''ffn.dense_1.''', '''fc2.'''],
['''ffn.dense.''', '''fc1.'''],
['''ffn_layer_norm''', '''final_layer_norm'''],
['''kernel''', '''weight'''],
['''encoder_layer_norm.''', '''encoder.layer_norm.'''],
['''decoder_layer_norm.''', '''decoder.layer_norm.'''],
['''embeddings.weights''', '''shared.weight'''],
]
def UpperCamelCase_( snake_case__: int ) -> str:
for pegasus_name, hf_name in PATTERNS:
UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ )
return k
def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration:
UpperCAmelCase__ = DEFAULTS.copy()
cfg_kwargs.update(snake_case__ )
UpperCAmelCase__ = PegasusConfig(**snake_case__ )
UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ )
UpperCAmelCase__ = torch_model.model.state_dict()
UpperCAmelCase__ = {}
for k, v in tf_weights.items():
UpperCAmelCase__ = rename_state_dict_key(snake_case__ )
if new_k not in sd:
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" )
if "dense" in k or "proj" in new_k:
UpperCAmelCase__ = v.T
UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}"
# make sure embedding.padding_idx is respected
UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] )
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping}
mapping.update(**snake_case__ )
UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ )
UpperCAmelCase__ = [
k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight']
]
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
assert extra == [], f"no matches found for the following tf keys {extra}"
return torch_model
def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
UpperCAmelCase__ = tf.train.list_variables(snake_case__ )
UpperCAmelCase__ = {}
UpperCAmelCase__ = ['Adafactor', 'global_step']
for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ):
UpperCAmelCase__ = any(pat in name for pat in ignore_name )
if skip_key:
continue
UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ )
UpperCAmelCase__ = array
return tf_weights
def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]:
# save tokenizer first
UpperCAmelCase__ = Path(snake_case__ ).parent.name
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings']
UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(snake_case__ )
# convert model
UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ )
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]
if dataset == "large":
UpperCAmelCase__ = task_specific_params
UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ )
torch_model.save_pretrained(snake_case__ )
UpperCAmelCase__ = torch_model.state_dict()
sd.pop('model.decoder.embed_positions.weight' )
sd.pop('model.encoder.embed_positions.weight' )
torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''')
parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
if args.save_dir is None:
_UpperCamelCase = Path(args.tf_ckpt_path).parent.name
_UpperCamelCase = os.path.join('''pegasus''', dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 335 | 0 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , *__a , **__a ) -> Optional[Any]:
"""simple docstring"""
warnings.warn(
'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use SegformerImageProcessor instead.' , __a , )
super().__init__(*__a , **__a )
| 362 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = 13
UpperCAmelCase__ = 7
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = 99
UpperCAmelCase__ = 384
UpperCAmelCase__ = 2
UpperCAmelCase__ = 4
UpperCAmelCase__ = 37
UpperCAmelCase__ = 'gelu'
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 512
UpperCAmelCase__ = 16
UpperCAmelCase__ = 2
UpperCAmelCase__ = 0.02
UpperCAmelCase__ = 3
UpperCAmelCase__ = 4
UpperCAmelCase__ = 128
UpperCAmelCase__ = 2
UpperCAmelCase__ = 9
UpperCAmelCase__ = 1
UpperCAmelCase__ = None
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_input_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel(config=__a )
UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
UpperCAmelCase__ = [input_ids, input_mask]
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.num_choices
UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
__SCREAMING_SNAKE_CASE = (
{
"""feature-extraction""": TFConvBertModel,
"""fill-mask""": TFConvBertForMaskedLM,
"""question-answering""": TFConvBertForQuestionAnswering,
"""text-classification""": TFConvBertForSequenceClassification,
"""token-classification""": TFConvBertForTokenClassification,
"""zero-shot""": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__a )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
UpperCAmelCase__ = True
if hasattr(__a , 'use_cache' ):
UpperCAmelCase__ = True
UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = self._prepare_for_class(__a , __a )
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = len(model(__a ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__a , saved_model=__a )
UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' )
UpperCAmelCase__ = tf.keras.models.load_model(__a )
UpperCAmelCase__ = model(__a )
if self.is_encoder_decoder:
UpperCAmelCase__ = outputs['encoder_hidden_states']
UpperCAmelCase__ = outputs['encoder_attentions']
else:
UpperCAmelCase__ = outputs['hidden_states']
UpperCAmelCase__ = outputs['attentions']
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
def check_decoder_attentions_output(__a ):
UpperCAmelCase__ = len(__a )
self.assertEqual(out_len % 2 , 0 )
UpperCAmelCase__ = outputs.decoder_attentions
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(__a ):
UpperCAmelCase__ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = len(__a )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
if self.is_encoder_decoder:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_decoder_attentions_output(__a )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) )
self.assertEqual(model.config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
@require_tf
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase__ = model(__a )[0]
UpperCAmelCase__ = [1, 6, 768]
self.assertEqual(output.shape , __a )
UpperCAmelCase__ = tf.constant(
[
[
[-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32],
[0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24],
[0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
| 335 | 0 |
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Any , snake_case__: Union[str, Any] , snake_case__: Dict ) -> List[Any]:
UpperCAmelCase__ = FunnelConfig.from_json_file(_lowerCamelCase )
print(f"Building PyTorch model from configuration: {config}" )
UpperCAmelCase__ = FunnelBaseModel(_lowerCamelCase ) if base_model else FunnelModel(_lowerCamelCase )
# Load weights from tf checkpoint
load_tf_weights_in_funnel(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# Save pytorch-model
print(f"Save PyTorch model to {pytorch_dump_path}" )
torch.save(model.state_dict() , _lowerCamelCase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.'''
)
_UpperCamelCase = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
)
| 363 |
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING
_UpperCamelCase = logging.get_logger(__name__)
@add_end_docstrings(_UpperCamelCase )
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , **__a ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**__a )
requires_backends(self , 'vision' )
requires_backends(self , 'torch' )
if self.framework != "pt":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
self.check_model_type(__a )
def UpperCamelCase__ (self , **__a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
# preprocess args
if "points_per_batch" in kwargs:
UpperCAmelCase__ = kwargs['points_per_batch']
if "points_per_crop" in kwargs:
UpperCAmelCase__ = kwargs['points_per_crop']
if "crops_n_layers" in kwargs:
UpperCAmelCase__ = kwargs['crops_n_layers']
if "crop_overlap_ratio" in kwargs:
UpperCAmelCase__ = kwargs['crop_overlap_ratio']
if "crop_n_points_downscale_factor" in kwargs:
UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor']
# postprocess args
if "pred_iou_thresh" in kwargs:
UpperCAmelCase__ = kwargs['pred_iou_thresh']
if "stability_score_offset" in kwargs:
UpperCAmelCase__ = kwargs['stability_score_offset']
if "mask_threshold" in kwargs:
UpperCAmelCase__ = kwargs['mask_threshold']
if "stability_score_thresh" in kwargs:
UpperCAmelCase__ = kwargs['stability_score_thresh']
if "crops_nms_thresh" in kwargs:
UpperCAmelCase__ = kwargs['crops_nms_thresh']
if "output_rle_mask" in kwargs:
UpperCAmelCase__ = kwargs['output_rle_mask']
if "output_bboxes_mask" in kwargs:
UpperCAmelCase__ = kwargs['output_bboxes_mask']
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]:
"""simple docstring"""
return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a )
def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = load_image(__a )
UpperCAmelCase__ = self.image_processor.size['longest_edge']
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes(
__a , __a , __a , __a , __a , __a )
UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' )
with self.device_placement():
if self.framework == "pt":
UpperCAmelCase__ = self.get_inference_context()
with inference_context():
UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device )
UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) )
UpperCAmelCase__ = image_embeddings
UpperCAmelCase__ = grid_points.shape[1]
UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. '
'To return all points at once, set points_per_batch to None' )
for i in range(0 , __a , __a ):
UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :]
UpperCAmelCase__ = input_labels[:, i : i + points_per_batch]
UpperCAmelCase__ = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = model_inputs.pop('input_boxes' )
UpperCAmelCase__ = model_inputs.pop('is_last' )
UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist()
UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist()
UpperCAmelCase__ = self.model(**__a )
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
UpperCAmelCase__ = model_outputs['pred_masks']
UpperCAmelCase__ = self.image_processor.post_process_masks(
__a , __a , __a , __a , binarize=__a )
UpperCAmelCase__ = model_outputs['iou_scores']
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks(
masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , )
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = []
UpperCAmelCase__ = []
for model_output in model_outputs:
all_scores.append(model_output.pop('iou_scores' ) )
all_masks.extend(model_output.pop('masks' ) )
all_boxes.append(model_output.pop('boxes' ) )
UpperCAmelCase__ = torch.cat(__a )
UpperCAmelCase__ = torch.cat(__a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation(
__a , __a , __a , __a )
UpperCAmelCase__ = defaultdict(__a )
for output in model_outputs:
for k, v in output.items():
extra[k].append(__a )
UpperCAmelCase__ = {}
if output_rle_mask:
UpperCAmelCase__ = rle_mask
if output_bboxes_mask:
UpperCAmelCase__ = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| 335 | 0 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
_UpperCamelCase = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def UpperCamelCase_( snake_case__: str ) -> str:
UpperCAmelCase__ = torch.load(a_ , map_location='cpu' )
return sd
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[str] , snake_case__: Tuple=rename_keys_prefix ) -> List[str]:
UpperCAmelCase__ = OrderedDict()
UpperCAmelCase__ = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
UpperCAmelCase__ = key
for name_pair in rename_keys_prefix:
UpperCAmelCase__ = new_key.replace(name_pair[0] , name_pair[1] )
UpperCAmelCase__ = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
UpperCAmelCase__ = new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def UpperCamelCase_( snake_case__: int , snake_case__: Union[str, Any] ) -> Optional[Any]:
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), f"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."
# Get Config
if "pre" in checkpoint_path:
UpperCAmelCase__ = 'pretraining'
if "vcr" in checkpoint_path:
UpperCAmelCase__ = {'visual_embedding_dim': 5_12}
elif "vqa_advanced" in checkpoint_path:
UpperCAmelCase__ = {'visual_embedding_dim': 20_48}
elif "vqa" in checkpoint_path:
UpperCAmelCase__ = {'visual_embedding_dim': 20_48}
elif "nlvr" in checkpoint_path:
UpperCAmelCase__ = {'visual_embedding_dim': 10_24}
else:
raise NotImplementedError(f"No implementation found for `{checkpoint_path}`." )
else:
if "vcr" in checkpoint_path:
UpperCAmelCase__ = {'visual_embedding_dim': 5_12}
UpperCAmelCase__ = 'multichoice'
elif "vqa_advanced" in checkpoint_path:
UpperCAmelCase__ = {'visual_embedding_dim': 20_48}
UpperCAmelCase__ = 'vqa_advanced'
elif "vqa" in checkpoint_path:
UpperCAmelCase__ = {'visual_embedding_dim': 20_48, 'num_labels': 31_29}
UpperCAmelCase__ = 'vqa'
elif "nlvr" in checkpoint_path:
UpperCAmelCase__ = {
'visual_embedding_dim': 10_24,
'num_labels': 2,
}
UpperCAmelCase__ = 'nlvr'
UpperCAmelCase__ = VisualBertConfig(**a_ )
# Load State Dict
UpperCAmelCase__ = load_state_dict(a_ )
UpperCAmelCase__ = get_new_dict(a_ , a_ )
if model_type == "pretraining":
UpperCAmelCase__ = VisualBertForPreTraining(a_ )
elif model_type == "vqa":
UpperCAmelCase__ = VisualBertForQuestionAnswering(a_ )
elif model_type == "nlvr":
UpperCAmelCase__ = VisualBertForVisualReasoning(a_ )
elif model_type == "multichoice":
UpperCAmelCase__ = VisualBertForMultipleChoice(a_ )
model.load_state_dict(a_ )
# Save Checkpoints
Path(a_ ).mkdir(exist_ok=a_ )
model.save_pretrained(a_ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 364 |
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} )
__SCREAMING_SNAKE_CASE = field(
default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} )
__SCREAMING_SNAKE_CASE = field(
default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} )
__SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} )
__SCREAMING_SNAKE_CASE = field(
default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} )
__SCREAMING_SNAKE_CASE = field(
default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} )
__SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} )
__SCREAMING_SNAKE_CASE = field(
default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} )
__SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} )
__SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} )
__SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} )
__SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} )
__SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} )
__SCREAMING_SNAKE_CASE = field(
default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={
"""help""": (
"""Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive"""
""" number corresponds to which GPU device id to run on."""
)
} , )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={
"""help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available."""
} , )
__SCREAMING_SNAKE_CASE = field(
default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} )
__SCREAMING_SNAKE_CASE = field(
default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} )
__SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} )
__SCREAMING_SNAKE_CASE = field(
default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} )
__SCREAMING_SNAKE_CASE = field(
default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} )
__SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(
default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} )
__SCREAMING_SNAKE_CASE = field(
default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} )
__SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
| 335 | 0 |
def UpperCamelCase_( snake_case__: int ) -> int:
if n == 1 or not isinstance(__a , __a ):
return 0
elif n == 2:
return 1
else:
UpperCAmelCase__ = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def UpperCamelCase_( snake_case__: int ) -> int:
UpperCAmelCase__ = 0
UpperCAmelCase__ = 2
while digits < n:
index += 1
UpperCAmelCase__ = len(str(fibonacci(__a ) ) )
return index
def UpperCamelCase_( snake_case__: int = 10_00 ) -> int:
return fibonacci_digits_index(__a )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 365 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_attention_mask
UpperCAmelCase__ = use_token_type_ids
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_choices
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_attention_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = True
UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = FlaxRobertaModelTester(self )
@slow
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
for model_class_name in self.all_model_classes:
UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a )
UpperCAmelCase__ = model(np.ones((1, 1) ) )
self.assertIsNotNone(__a )
| 335 | 0 |
from functools import lru_cache
def UpperCamelCase_( snake_case__: int ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = 2
UpperCAmelCase__ = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(lowerCAmelCase__ )
if n > 1:
factors.add(lowerCAmelCase__ )
return factors
@lru_cache
def UpperCamelCase_( snake_case__: int ) -> List[Any]:
"""simple docstring"""
return len(unique_prime_factors(lowerCAmelCase__ ) )
def UpperCamelCase_( snake_case__: list ) -> Tuple:
"""simple docstring"""
return len(set(lowerCAmelCase__ ) ) in (0, 1)
def UpperCamelCase_( snake_case__: int ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 2
while True:
# Increment each value of a generated range
UpperCAmelCase__ = [base + i for i in range(lowerCAmelCase__ )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
UpperCAmelCase__ = [upf_len(lowerCAmelCase__ ) for x in group]
checker.append(lowerCAmelCase__ )
# If all numbers in the list are equal, return the group variable.
if equality(lowerCAmelCase__ ):
return group
# Increment our base variable by 1
base += 1
def UpperCamelCase_( snake_case__: int = 4 ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = run(lowerCAmelCase__ )
return results[0] if len(lowerCAmelCase__ ) else None
if __name__ == "__main__":
print(solution())
| 366 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , *__a , **__a ) -> None:
"""simple docstring"""
warnings.warn(
'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use MobileViTImageProcessor instead.' , __a , )
super().__init__(*__a , **__a )
| 335 | 0 |
import unittest
from transformers.testing_utils import require_bsa
from transformers.utils import is_bsa_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
if is_bsa_available():
from transformers import MarkupLMFeatureExtractor
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , __a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = parent
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
return {}
def UpperCamelCase_( ) -> Dict:
UpperCAmelCase__ = "<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>"
UpperCAmelCase__ = "\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n "
return [html_string_a, html_string_a]
@require_bsa
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = MarkupLMFeatureExtractor if is_bsa_available() else None
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = MarkupLMFeatureExtractionTester(self )
@property
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
return self.feature_extract_tester.prepare_feat_extract_dict()
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.feature_extraction_class()
# Test not batched input
UpperCAmelCase__ = get_html_strings()[0]
UpperCAmelCase__ = feature_extractor(lowerCAmelCase__ )
# fmt: off
UpperCAmelCase__ = [["sample document", "Goog", "This is one header", "This is a another Header", "Travel from", "SFO to JFK", "on May 2, 2015 at 2:00 pm. For details go to confirm.com", "Traveler", "name", "is", "John Doe"]]
UpperCAmelCase__ = [["/html/head/title", "/html/body/a", "/html/body/h1", "/html/body/h2", "/html/body/p", "/html/body/p/p/b[1]", "/html/body/p/p/b[2]/i", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/b", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/p"]]
# fmt: on
self.assertEqual(encoding.nodes , lowerCAmelCase__ )
self.assertEqual(encoding.xpaths , lowerCAmelCase__ )
# Test batched
UpperCAmelCase__ = get_html_strings()
UpperCAmelCase__ = feature_extractor(lowerCAmelCase__ )
# fmt: off
UpperCAmelCase__ = expected_nodes + [["My First Heading", "My first paragraph."]]
UpperCAmelCase__ = expected_xpaths + [["/html/body/h1", "/html/body/p"]]
self.assertEqual(len(encoding.nodes ) , 2 )
self.assertEqual(len(encoding.xpaths ) , 2 )
self.assertEqual(encoding.nodes , lowerCAmelCase__ )
self.assertEqual(encoding.xpaths , lowerCAmelCase__ ) | 367 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {
'''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PegasusXForConditionalGeneration''',
'''PegasusXModel''',
'''PegasusXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 335 | 0 |
import argparse
import glob
import logging
import os
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple
import numpy as np
import pytorch_lightning as pl
import torch
from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
from torch import nn
from torch.utils.data import DataLoader
from transformers import MBartTokenizer, TaForConditionalGeneration
from transformers.models.bart.modeling_bart import shift_tokens_right
from utils import (
ROUGE_KEYS,
LegacySeqaSeqDataset,
SeqaSeqDataset,
assert_all_frozen,
calculate_bleu,
calculate_rouge,
check_output_dir,
flatten_list,
freeze_embeds,
freeze_params,
get_git_info,
label_smoothed_nll_loss,
lmap,
pickle_save,
save_git_info,
save_json,
use_task_specific_params,
)
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa
_UpperCamelCase = logging.getLogger(__name__)
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 'summarization'
__SCREAMING_SNAKE_CASE = ['loss']
__SCREAMING_SNAKE_CASE = ROUGE_KEYS
__SCREAMING_SNAKE_CASE = 'rouge2'
def __init__(self , __a , **__a ) -> Union[str, Any]:
"""simple docstring"""
if hparams.sortish_sampler and hparams.gpus > 1:
UpperCAmelCase__ = False
elif hparams.max_tokens_per_batch is not None:
if hparams.gpus > 1:
raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' )
if hparams.sortish_sampler:
raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' )
super().__init__(_SCREAMING_SNAKE_CASE , num_labels=_SCREAMING_SNAKE_CASE , mode=self.mode , **_SCREAMING_SNAKE_CASE )
use_task_specific_params(self.model , 'summarization' )
save_git_info(self.hparams.output_dir )
UpperCAmelCase__ = Path(self.output_dir ) / 'metrics.json'
UpperCAmelCase__ = Path(self.output_dir ) / 'hparams.pkl'
pickle_save(self.hparams , self.hparams_save_path )
UpperCAmelCase__ = 0
UpperCAmelCase__ = defaultdict(_SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = self.config.model_type
UpperCAmelCase__ = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size
UpperCAmelCase__ = {
'data_dir': self.hparams.data_dir,
'max_source_length': self.hparams.max_source_length,
'prefix': self.model.config.prefix or '',
}
UpperCAmelCase__ = {
'train': self.hparams.n_train,
'val': self.hparams.n_val,
'test': self.hparams.n_test,
}
UpperCAmelCase__ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}
UpperCAmelCase__ = {
'train': self.hparams.max_target_length,
'val': self.hparams.val_max_target_length,
'test': self.hparams.test_max_target_length,
}
assert self.target_lens["train"] <= self.target_lens["val"], F"target_lens: {self.target_lens}"
assert self.target_lens["train"] <= self.target_lens["test"], F"target_lens: {self.target_lens}"
if self.hparams.freeze_embeds:
freeze_embeds(self.model )
if self.hparams.freeze_encoder:
freeze_params(self.model.get_encoder() )
assert_all_frozen(self.model.get_encoder() )
UpperCAmelCase__ = get_git_info()['repo_sha']
UpperCAmelCase__ = hparams.num_workers
UpperCAmelCase__ = None # default to config
if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ):
UpperCAmelCase__ = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
UpperCAmelCase__ = self.decoder_start_token_id
UpperCAmelCase__ = (
SeqaSeqDataset if hasattr(self.tokenizer , 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset
)
UpperCAmelCase__ = False
UpperCAmelCase__ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams
if self.hparams.eval_max_gen_length is not None:
UpperCAmelCase__ = self.hparams.eval_max_gen_length
else:
UpperCAmelCase__ = self.model.config.max_length
UpperCAmelCase__ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric
def UpperCamelCase__ (self , __a ) -> Dict[str, List[str]]:
"""simple docstring"""
UpperCAmelCase__ = {
k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items()
}
save_json(_SCREAMING_SNAKE_CASE , Path(self.output_dir ) / 'text_batch.json' )
save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / 'tok_batch.json' )
UpperCAmelCase__ = True
return readable_batch
def UpperCamelCase__ (self , __a , **__a ) -> Dict:
"""simple docstring"""
return self.model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def UpperCamelCase__ (self , __a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.tokenizer.batch_decode(
_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE )
return lmap(str.strip , _SCREAMING_SNAKE_CASE )
def UpperCamelCase__ (self , __a ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.tokenizer.pad_token_id
UpperCAmelCase__ , UpperCAmelCase__ = batch['input_ids'], batch['attention_mask']
UpperCAmelCase__ = batch['labels']
if isinstance(self.model , _SCREAMING_SNAKE_CASE ):
UpperCAmelCase__ = self.model._shift_right(_SCREAMING_SNAKE_CASE )
else:
UpperCAmelCase__ = shift_tokens_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero
UpperCAmelCase__ = decoder_input_ids
self.save_readable_batch(_SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = self(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = outputs['logits']
if self.hparams.label_smoothing == 0:
# Same behavior as modeling_bart.py, besides ignoring pad_token_id
UpperCAmelCase__ = nn.CrossEntropyLoss(ignore_index=_SCREAMING_SNAKE_CASE )
assert lm_logits.shape[-1] == self.vocab_size
UpperCAmelCase__ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) )
else:
UpperCAmelCase__ = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1 )
UpperCAmelCase__ , UpperCAmelCase__ = label_smoothed_nll_loss(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.hparams.label_smoothing , ignore_index=_SCREAMING_SNAKE_CASE )
return (loss,)
@property
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
return self.tokenizer.pad_token_id
def UpperCamelCase__ (self , __a , __a ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self._step(_SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = dict(zip(self.loss_names , _SCREAMING_SNAKE_CASE ) )
# tokens per batch
UpperCAmelCase__ = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum()
UpperCAmelCase__ = batch['input_ids'].shape[0]
UpperCAmelCase__ = batch['input_ids'].eq(self.pad ).sum()
UpperCAmelCase__ = batch['input_ids'].eq(self.pad ).float().mean()
# TODO(SS): make a wandb summary metric for this
return {"loss": loss_tensors[0], "log": logs}
def UpperCamelCase__ (self , __a , __a ) -> Dict:
"""simple docstring"""
return self._generative_step(_SCREAMING_SNAKE_CASE )
def UpperCamelCase__ (self , __a , __a="val" ) -> Dict:
"""simple docstring"""
self.step_count += 1
UpperCAmelCase__ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names}
UpperCAmelCase__ = losses['loss']
UpperCAmelCase__ = {
k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len']
}
UpperCAmelCase__ = (
generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric]
)
UpperCAmelCase__ = torch.tensor(_SCREAMING_SNAKE_CASE ).type_as(_SCREAMING_SNAKE_CASE )
generative_metrics.update({k: v.item() for k, v in losses.items()} )
losses.update(_SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = {F"{prefix}_avg_{k}": x for k, x in losses.items()}
UpperCAmelCase__ = self.step_count
self.metrics[prefix].append(_SCREAMING_SNAKE_CASE ) # callback writes this to self.metrics_save_path
UpperCAmelCase__ = flatten_list([x['preds'] for x in outputs] )
return {
"log": all_metrics,
"preds": preds,
F"{prefix}_loss": loss,
F"{prefix}_{self.val_metric}": metric_tensor,
}
def UpperCamelCase__ (self , __a , __a ) -> Dict:
"""simple docstring"""
return calculate_rouge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCamelCase__ (self , __a ) -> dict:
"""simple docstring"""
UpperCAmelCase__ = time.time()
# parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens')
UpperCAmelCase__ = self.model.generate(
batch['input_ids'] , attention_mask=batch['attention_mask'] , use_cache=_SCREAMING_SNAKE_CASE , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , )
UpperCAmelCase__ = (time.time() - ta) / batch['input_ids'].shape[0]
UpperCAmelCase__ = self.ids_to_clean_text(_SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = self.ids_to_clean_text(batch['labels'] )
UpperCAmelCase__ = self._step(_SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = dict(zip(self.loss_names , _SCREAMING_SNAKE_CASE ) )
UpperCAmelCase__ = self.calc_generative_metrics(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = np.mean(lmap(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
base_metrics.update(gen_time=_SCREAMING_SNAKE_CASE , gen_len=_SCREAMING_SNAKE_CASE , preds=_SCREAMING_SNAKE_CASE , target=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
return base_metrics
def UpperCamelCase__ (self , __a , __a ) -> List[Any]:
"""simple docstring"""
return self._generative_step(_SCREAMING_SNAKE_CASE )
def UpperCamelCase__ (self , __a ) -> Optional[int]:
"""simple docstring"""
return self.validation_epoch_end(_SCREAMING_SNAKE_CASE , prefix='test' )
def UpperCamelCase__ (self , __a ) -> SeqaSeqDataset:
"""simple docstring"""
UpperCAmelCase__ = self.n_obs[type_path]
UpperCAmelCase__ = self.target_lens[type_path]
UpperCAmelCase__ = self.dataset_class(
self.tokenizer , type_path=_SCREAMING_SNAKE_CASE , n_obs=_SCREAMING_SNAKE_CASE , max_target_length=_SCREAMING_SNAKE_CASE , **self.dataset_kwargs , )
return dataset
def UpperCamelCase__ (self , __a , __a , __a = False ) -> DataLoader:
"""simple docstring"""
UpperCAmelCase__ = self.get_dataset(_SCREAMING_SNAKE_CASE )
if self.hparams.sortish_sampler and type_path != "test" and type_path != "val":
UpperCAmelCase__ = dataset.make_sortish_sampler(_SCREAMING_SNAKE_CASE , distributed=self.hparams.gpus > 1 )
return DataLoader(
_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=_SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=_SCREAMING_SNAKE_CASE , )
elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val":
UpperCAmelCase__ = dataset.make_dynamic_sampler(
self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 )
return DataLoader(
_SCREAMING_SNAKE_CASE , batch_sampler=_SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , num_workers=self.num_workers , )
else:
return DataLoader(
_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=_SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=_SCREAMING_SNAKE_CASE , )
def UpperCamelCase__ (self ) -> DataLoader:
"""simple docstring"""
UpperCAmelCase__ = self.get_dataloader('train' , batch_size=self.hparams.train_batch_size , shuffle=_SCREAMING_SNAKE_CASE )
return dataloader
def UpperCamelCase__ (self ) -> DataLoader:
"""simple docstring"""
return self.get_dataloader('val' , batch_size=self.hparams.eval_batch_size )
def UpperCamelCase__ (self ) -> DataLoader:
"""simple docstring"""
return self.get_dataloader('test' , batch_size=self.hparams.eval_batch_size )
@staticmethod
def UpperCamelCase__ (__a , __a ) -> Union[str, Any]:
"""simple docstring"""
BaseTransformer.add_model_specific_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
add_generic_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
parser.add_argument(
'--max_source_length' , default=1024 , type=_SCREAMING_SNAKE_CASE , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument(
'--max_target_length' , default=56 , type=_SCREAMING_SNAKE_CASE , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument(
'--val_max_target_length' , default=142 , type=_SCREAMING_SNAKE_CASE , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument(
'--test_max_target_length' , default=142 , type=_SCREAMING_SNAKE_CASE , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument('--freeze_encoder' , action='store_true' )
parser.add_argument('--freeze_embeds' , action='store_true' )
parser.add_argument('--sortish_sampler' , action='store_true' , default=_SCREAMING_SNAKE_CASE )
parser.add_argument('--overwrite_output_dir' , action='store_true' , default=_SCREAMING_SNAKE_CASE )
parser.add_argument('--max_tokens_per_batch' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE )
parser.add_argument('--logger_name' , type=_SCREAMING_SNAKE_CASE , choices=['default', 'wandb', 'wandb_shared'] , default='default' )
parser.add_argument('--n_train' , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' )
parser.add_argument('--n_val' , type=_SCREAMING_SNAKE_CASE , default=500 , required=_SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' )
parser.add_argument('--n_test' , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' )
parser.add_argument(
'--task' , type=_SCREAMING_SNAKE_CASE , default='summarization' , required=_SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' )
parser.add_argument('--label_smoothing' , type=_SCREAMING_SNAKE_CASE , default=0.0 , required=_SCREAMING_SNAKE_CASE )
parser.add_argument('--src_lang' , type=_SCREAMING_SNAKE_CASE , default='' , required=_SCREAMING_SNAKE_CASE )
parser.add_argument('--tgt_lang' , type=_SCREAMING_SNAKE_CASE , default='' , required=_SCREAMING_SNAKE_CASE )
parser.add_argument('--eval_beams' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE )
parser.add_argument(
'--val_metric' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , choices=['bleu', 'rouge2', 'loss', None] )
parser.add_argument('--eval_max_gen_length' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='never generate more than n tokens' )
parser.add_argument('--save_top_k' , type=_SCREAMING_SNAKE_CASE , default=1 , required=_SCREAMING_SNAKE_CASE , help='How many checkpoints to save' )
parser.add_argument(
'--early_stopping_patience' , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help=(
'-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So'
' val_check_interval will effect it.'
) , )
return parser
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 'translation'
__SCREAMING_SNAKE_CASE = ['loss']
__SCREAMING_SNAKE_CASE = ['bleu']
__SCREAMING_SNAKE_CASE = 'bleu'
def __init__(self , __a , **__a ) -> Tuple:
"""simple docstring"""
super().__init__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = hparams.src_lang
UpperCAmelCase__ = hparams.tgt_lang
def UpperCamelCase__ (self , __a , __a ) -> dict:
"""simple docstring"""
return calculate_bleu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None ) -> SummarizationModule:
Path(args.output_dir ).mkdir(exist_ok=_UpperCamelCase )
check_output_dir(_UpperCamelCase , expected_items=3 )
if model is None:
if "summarization" in args.task:
UpperCAmelCase__ = SummarizationModule(_UpperCamelCase )
else:
UpperCAmelCase__ = TranslationModule(_UpperCamelCase )
UpperCAmelCase__ = Path(args.data_dir ).name
if (
args.logger_name == "default"
or args.fast_dev_run
or str(args.output_dir ).startswith('/tmp' )
or str(args.output_dir ).startswith('/var' )
):
UpperCAmelCase__ = True # don't pollute wandb logs unnecessarily
elif args.logger_name == "wandb":
from pytorch_lightning.loggers import WandbLogger
UpperCAmelCase__ = os.environ.get('WANDB_PROJECT' , _UpperCamelCase )
UpperCAmelCase__ = WandbLogger(name=model.output_dir.name , project=_UpperCamelCase )
elif args.logger_name == "wandb_shared":
from pytorch_lightning.loggers import WandbLogger
UpperCAmelCase__ = WandbLogger(name=model.output_dir.name , project=f"hf_{dataset}" )
if args.early_stopping_patience >= 0:
UpperCAmelCase__ = get_early_stopping_callback(model.val_metric , args.early_stopping_patience )
else:
UpperCAmelCase__ = False
UpperCAmelCase__ = args.val_metric == 'loss'
UpperCAmelCase__ = generic_train(
_UpperCamelCase , _UpperCamelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback(
args.output_dir , model.val_metric , args.save_top_k , _UpperCamelCase ) , early_stopping_callback=_UpperCamelCase , logger=_UpperCamelCase , )
pickle_save(model.hparams , model.output_dir / 'hparams.pkl' )
if not args.do_predict:
return model
UpperCAmelCase__ = ''
UpperCAmelCase__ = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt' ) , recursive=_UpperCamelCase ) )
if checkpoints:
UpperCAmelCase__ = checkpoints[-1]
UpperCAmelCase__ = checkpoints[-1]
trainer.logger.log_hyperparams(model.hparams )
# test() without a model tests using the best checkpoint automatically
trainer.test()
return model
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
_UpperCamelCase = pl.Trainer.add_argparse_args(parser)
_UpperCamelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd())
_UpperCamelCase = parser.parse_args()
main(args) | 368 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self , __a ) -> List[Any]:
"""simple docstring"""
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ):
UpperCAmelCase__ = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
benchmark.run()
self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(__a ):
self.assertTrue(hasattr(__a , 'sequential' ) )
self.assertTrue(hasattr(__a , 'cumulative' ) )
self.assertTrue(hasattr(__a , 'current' ) )
self.assertTrue(hasattr(__a , 'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
| 335 | 0 |
from torch import nn
class lowercase ( nn.Module ):
'''simple docstring'''
def __init__(self , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = class_size
UpperCAmelCase__ = embed_size
# self.mlp1 = nn.Linear(embed_size, embed_size)
# self.mlp2 = (nn.Linear(embed_size, class_size))
UpperCAmelCase__ = nn.Linear(_lowerCamelCase , _lowerCamelCase )
def UpperCamelCase__ (self , __a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.mlp(_lowerCamelCase )
return logits
| 369 |
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 335 | 0 |
from math import sqrt
def UpperCamelCase_( snake_case__: int ) -> List[Any]:
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' must been an int and positive"
UpperCAmelCase__ = True
# 0 and 1 are none primes.
if number <= 1:
UpperCAmelCase__ = False
for divisor in range(2 , int(round(sqrt(__SCREAMING_SNAKE_CASE ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
UpperCAmelCase__ = False
break
# precondition
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'status' must been from type bool"
return status
def UpperCamelCase_( snake_case__: List[Any] ) -> Optional[Any]:
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
UpperCAmelCase__ = list(range(2 , n + 1 ) )
UpperCAmelCase__ = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
for j in range(i + 1 , len(__SCREAMING_SNAKE_CASE ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
UpperCAmelCase__ = 0
# filters actual prime numbers.
UpperCAmelCase__ = [x for x in begin_list if x != 0]
# precondition
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'ans' must been from type list"
return ans
def UpperCamelCase_( snake_case__: Optional[Any] ) -> Optional[int]:
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2"
UpperCAmelCase__ = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(__SCREAMING_SNAKE_CASE ):
ans.append(__SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'ans' must been from type list"
return ans
def UpperCamelCase_( snake_case__: Tuple ) -> List[Any]:
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and number >= 0, "'number' must been an int and >= 0"
UpperCAmelCase__ = [] # this list will be returns of the function.
# potential prime number factors.
UpperCAmelCase__ = 2
UpperCAmelCase__ = number
if number == 0 or number == 1:
ans.append(__SCREAMING_SNAKE_CASE )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(__SCREAMING_SNAKE_CASE ):
while quotient != 1:
if is_prime(__SCREAMING_SNAKE_CASE ) and (quotient % factor == 0):
ans.append(__SCREAMING_SNAKE_CASE )
quotient /= factor
else:
factor += 1
else:
ans.append(__SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'ans' must been from type list"
return ans
def UpperCamelCase_( snake_case__: int ) -> List[str]:
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' bust been an int and >= 0"
UpperCAmelCase__ = 0
# prime factorization of 'number'
UpperCAmelCase__ = prime_factorization(__SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = max(__SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'ans' must been from type int"
return ans
def UpperCamelCase_( snake_case__: List[Any] ) -> Dict:
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' bust been an int and >= 0"
UpperCAmelCase__ = 0
# prime factorization of 'number'
UpperCAmelCase__ = prime_factorization(__SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = min(__SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'ans' must been from type int"
return ans
def UpperCamelCase_( snake_case__: Dict ) -> Any:
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'number' must been an int"
assert isinstance(number % 2 == 0 , __SCREAMING_SNAKE_CASE ), "compare bust been from type bool"
return number % 2 == 0
def UpperCamelCase_( snake_case__: Any ) -> str:
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'number' must been an int"
assert isinstance(number % 2 != 0 , __SCREAMING_SNAKE_CASE ), "compare bust been from type bool"
return number % 2 != 0
def UpperCamelCase_( snake_case__: Optional[int] ) -> List[Any]:
assert (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (number > 2) and is_even(__SCREAMING_SNAKE_CASE )
), "'number' must been an int, even and > 2"
UpperCAmelCase__ = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
UpperCAmelCase__ = get_prime_numbers(__SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = len(__SCREAMING_SNAKE_CASE )
# run variable for while-loops.
UpperCAmelCase__ = 0
UpperCAmelCase__ = None
# exit variable. for break up the loops
UpperCAmelCase__ = True
while i < len_pn and loop:
UpperCAmelCase__ = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
UpperCAmelCase__ = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and (len(__SCREAMING_SNAKE_CASE ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def UpperCamelCase_( snake_case__: List[Any] , snake_case__: Optional[int] ) -> Tuple:
assert (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
UpperCAmelCase__ = 0
while numbera != 0:
UpperCAmelCase__ = numbera % numbera
UpperCAmelCase__ = numbera
UpperCAmelCase__ = rest
# precondition
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def UpperCamelCase_( snake_case__: List[str] , snake_case__: Union[str, Any] ) -> str:
assert (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
UpperCAmelCase__ = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
UpperCAmelCase__ = prime_factorization(__SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = prime_factorization(__SCREAMING_SNAKE_CASE )
elif numbera == 1 or numbera == 1:
UpperCAmelCase__ = []
UpperCAmelCase__ = []
UpperCAmelCase__ = max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
UpperCAmelCase__ = prime_fac_a.count(__SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = prime_fac_a.count(__SCREAMING_SNAKE_CASE )
for _ in range(max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ):
ans *= n
else:
UpperCAmelCase__ = prime_fac_a.count(__SCREAMING_SNAKE_CASE )
for _ in range(__SCREAMING_SNAKE_CASE ):
ans *= n
done.append(__SCREAMING_SNAKE_CASE )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
UpperCAmelCase__ = prime_fac_a.count(__SCREAMING_SNAKE_CASE )
for _ in range(__SCREAMING_SNAKE_CASE ):
ans *= n
done.append(__SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def UpperCamelCase_( snake_case__: Tuple ) -> Dict:
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n >= 0), "'number' must been a positive int"
UpperCAmelCase__ = 0
UpperCAmelCase__ = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(__SCREAMING_SNAKE_CASE ):
ans += 1
# precondition
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and is_prime(
__SCREAMING_SNAKE_CASE ), "'ans' must been a prime number and from type int"
return ans
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Optional[int] ) -> Dict:
assert (
is_prime(__SCREAMING_SNAKE_CASE ) and is_prime(__SCREAMING_SNAKE_CASE ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
UpperCAmelCase__ = p_number_a + 1 # jump to the next number
UpperCAmelCase__ = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(__SCREAMING_SNAKE_CASE ):
number += 1
while number < p_number_a:
ans.append(__SCREAMING_SNAKE_CASE )
number += 1
# fetch the next prime number.
while not is_prime(__SCREAMING_SNAKE_CASE ):
number += 1
# precondition
assert (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and ans[0] != p_number_a
and ans[len(__SCREAMING_SNAKE_CASE ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def UpperCamelCase_( snake_case__: Optional[int] ) -> Tuple:
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n >= 1), "'n' must been int and >= 1"
UpperCAmelCase__ = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(__SCREAMING_SNAKE_CASE )
# precondition
assert ans[0] == 1 and ans[len(__SCREAMING_SNAKE_CASE ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]:
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (
number > 1
), "'number' must been an int and >= 1"
UpperCAmelCase__ = get_divisors(__SCREAMING_SNAKE_CASE )
# precondition
assert (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and (divisors[0] == 1)
and (divisors[len(__SCREAMING_SNAKE_CASE ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: int ) -> Optional[int]:
assert (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
UpperCAmelCase__ = gcd(abs(__SCREAMING_SNAKE_CASE ) , abs(__SCREAMING_SNAKE_CASE ) )
# precondition
assert (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def UpperCamelCase_( snake_case__: str ) -> Dict:
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been a int and >= 0"
UpperCAmelCase__ = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def UpperCamelCase_( snake_case__: Tuple ) -> Union[str, Any]:
assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been an int and >= 0"
UpperCAmelCase__ = 0
UpperCAmelCase__ = 1
UpperCAmelCase__ = 1 # this will be return
for _ in range(n - 1 ):
UpperCAmelCase__ = ans
ans += fiba
UpperCAmelCase__ = tmp
return ans
| 370 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class lowercase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
@register_to_config
def __init__(self , *,
__a = 4 , __a = 768 , __a , __a , ) -> str:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) )
# parameters for additional clip time embeddings
UpperCAmelCase__ = nn.Linear(__a , __a )
UpperCAmelCase__ = nn.Linear(__a , __a )
# parameters for encoder hidden states
UpperCAmelCase__ = clip_extra_context_tokens
UpperCAmelCase__ = nn.Linear(
__a , self.clip_extra_context_tokens * cross_attention_dim )
UpperCAmelCase__ = nn.Linear(__a , __a )
UpperCAmelCase__ = nn.LayerNorm(__a )
def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
UpperCAmelCase__ = image_embeddings.shape[0]
UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
UpperCAmelCase__ = classifier_free_guidance_embeddings.expand(
__a , -1 )
UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
UpperCAmelCase__ = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
UpperCAmelCase__ = self.embedding_proj(__a )
UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a )
UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a )
UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens )
UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 )
UpperCAmelCase__ = self.encoder_hidden_states_proj(__a )
UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a )
UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 335 | 0 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
_UpperCamelCase = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase )
class lowercase ( _UpperCAmelCase ):
'''simple docstring'''
def __init__(self , *__a , **__a ) -> str:
"""simple docstring"""
super().__init__(*lowercase_ , **lowercase_ )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING )
def UpperCamelCase__ (self , __a=None , __a=None , __a=None ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
if prompt is not None:
UpperCAmelCase__ = prompt
if generate_kwargs is not None:
UpperCAmelCase__ = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
UpperCAmelCase__ = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
'\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,'
' please use only one' )
UpperCAmelCase__ = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__(self , __a , **__a ) -> int:
"""simple docstring"""
return super().__call__(lowercase_ , **lowercase_ )
def UpperCamelCase__ (self , __a , __a=None ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = load_image(lowercase_ )
if prompt is not None:
if not isinstance(lowercase_ , lowercase_ ):
raise ValueError(
F"Received an invalid text input, got - {type(lowercase_ )} - but expected a single string. "
'Note also that one single text can be provided for conditional image to text generation.' )
UpperCAmelCase__ = self.model.config.model_type
if model_type == "git":
UpperCAmelCase__ = self.image_processor(images=lowercase_ , return_tensors=self.framework )
UpperCAmelCase__ = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_ ).input_ids
UpperCAmelCase__ = [self.tokenizer.cls_token_id] + input_ids
UpperCAmelCase__ = torch.tensor(lowercase_ ).unsqueeze(0 )
model_inputs.update({'input_ids': input_ids} )
elif model_type == "pix2struct":
UpperCAmelCase__ = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
UpperCAmelCase__ = self.image_processor(images=lowercase_ , return_tensors=self.framework )
UpperCAmelCase__ = self.tokenizer(lowercase_ , return_tensors=self.framework )
model_inputs.update(lowercase_ )
else:
raise ValueError(F"Model type {model_type} does not support conditional text generation" )
else:
UpperCAmelCase__ = self.image_processor(images=lowercase_ , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
UpperCAmelCase__ = None
return model_inputs
def UpperCamelCase__ (self , __a , __a=None ) -> int:
"""simple docstring"""
if (
"input_ids" in model_inputs
and isinstance(model_inputs['input_ids'] , lowercase_ )
and all(x is None for x in model_inputs['input_ids'] )
):
UpperCAmelCase__ = None
if generate_kwargs is None:
UpperCAmelCase__ = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
UpperCAmelCase__ = model_inputs.pop(self.model.main_input_name )
UpperCAmelCase__ = self.model.generate(lowercase_ , **lowercase_ , **lowercase_ )
return model_outputs
def UpperCamelCase__ (self , __a ) -> int:
"""simple docstring"""
UpperCAmelCase__ = []
for output_ids in model_outputs:
UpperCAmelCase__ = {
"""generated_text""": self.tokenizer.decode(
lowercase_ , skip_special_tokens=lowercase_ , )
}
records.append(lowercase_ )
return records
| 371 |
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = BioGptTokenizer
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase__ = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) )
UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' ) as fp:
fp.write(json.dumps(__a ) )
with open(self.merges_file , 'w' ) as fp:
fp.write('\n'.join(__a ) )
def UpperCamelCase__ (self , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = 'lower newer'
UpperCAmelCase__ = 'lower newer'
return input_text, output_text
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file )
UpperCAmelCase__ = 'lower'
UpperCAmelCase__ = ['low', 'er</w>']
UpperCAmelCase__ = tokenizer.tokenize(__a )
self.assertListEqual(__a , __a )
UpperCAmelCase__ = tokens + ['<unk>']
UpperCAmelCase__ = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' )
UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a )
UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a )
UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a )
UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 335 | 0 |
import math
from typing import Any, Callable, List, Optional, Tuple, Union
import numpy as np
import torch
from ...models import TaFilmDecoder
from ...schedulers import DDPMScheduler
from ...utils import is_onnx_available, logging, randn_tensor
if is_onnx_available():
from ..onnx_utils import OnnxRuntimeModel
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
from .continous_encoder import SpectrogramContEncoder
from .notes_encoder import SpectrogramNotesEncoder
_UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
_UpperCamelCase = 256
class lowercase ( __lowercase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ["""melgan"""]
def __init__(self , __a , __a , __a , __a , __a , ) -> None:
"""simple docstring"""
super().__init__()
# From MELGAN
UpperCAmelCase__ = math.log(1E-5 ) # Matches MelGAN training.
UpperCAmelCase__ = 4.0 # Largest value for most examples
UpperCAmelCase__ = 128
self.register_modules(
notes_encoder=_a , continuous_encoder=_a , decoder=_a , scheduler=_a , melgan=_a , )
def UpperCamelCase__ (self , __a , __a=(-1.0, 1.0) , __a=False ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = output_range
if clip:
UpperCAmelCase__ = torch.clip(_a , self.min_value , self.max_value )
# Scale to [0, 1].
UpperCAmelCase__ = (features - self.min_value) / (self.max_value - self.min_value)
# Scale to [min_out, max_out].
return zero_one * (max_out - min_out) + min_out
def UpperCamelCase__ (self , __a , __a=(-1.0, 1.0) , __a=False ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = input_range
UpperCAmelCase__ = torch.clip(_a , _a , _a ) if clip else outputs
# Scale to [0, 1].
UpperCAmelCase__ = (outputs - min_out) / (max_out - min_out)
# Scale to [self.min_value, self.max_value].
return zero_one * (self.max_value - self.min_value) + self.min_value
def UpperCamelCase__ (self , __a , __a , __a ) -> int:
"""simple docstring"""
UpperCAmelCase__ = input_tokens > 0
UpperCAmelCase__ , UpperCAmelCase__ = self.notes_encoder(
encoder_input_tokens=_a , encoder_inputs_mask=_a )
UpperCAmelCase__ , UpperCAmelCase__ = self.continuous_encoder(
encoder_inputs=_a , encoder_inputs_mask=_a )
return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)]
def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = noise_time
if not torch.is_tensor(_a ):
UpperCAmelCase__ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device )
elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0:
UpperCAmelCase__ = timesteps[None].to(input_tokens.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
UpperCAmelCase__ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device )
UpperCAmelCase__ = self.decoder(
encodings_and_masks=_a , decoder_input_tokens=_a , decoder_noise_time=_a )
return logits
@torch.no_grad()
def __call__(self , __a , __a = None , __a = 100 , __a = True , __a = "numpy" , __a = None , __a = 1 , ) -> Union[AudioPipelineOutput, Tuple]:
"""simple docstring"""
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(_a , _a ) or callback_steps <= 0)
):
raise ValueError(
F"`callback_steps` has to be a positive integer but is {callback_steps} of type"
F" {type(_a )}." )
UpperCAmelCase__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa )
UpperCAmelCase__ = np.zeros([1, 0, self.n_dims] , np.floataa )
UpperCAmelCase__ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_a , device=self.device )
for i, encoder_input_tokens in enumerate(_a ):
if i == 0:
UpperCAmelCase__ = torch.from_numpy(pred_mel[:1].copy() ).to(
device=self.device , dtype=self.decoder.dtype )
# The first chunk has no previous context.
UpperCAmelCase__ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_a , device=self.device )
else:
# The full song pipeline does not feed in a context feature, so the mask
# will be all 0s after the feature converter. Because we know we're
# feeding in a full context chunk from the previous prediction, set it
# to all 1s.
UpperCAmelCase__ = ones
UpperCAmelCase__ = self.scale_features(
_a , output_range=[-1.0, 1.0] , clip=_a )
UpperCAmelCase__ = self.encode(
input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_a , continuous_mask=_a , )
# Sample encoder_continuous_inputs shaped gaussian noise to begin loop
UpperCAmelCase__ = randn_tensor(
shape=encoder_continuous_inputs.shape , generator=_a , device=self.device , dtype=self.decoder.dtype , )
# set step values
self.scheduler.set_timesteps(_a )
# Denoising diffusion loop
for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
UpperCAmelCase__ = self.decode(
encodings_and_masks=_a , input_tokens=_a , noise_time=t / self.scheduler.config.num_train_timesteps , )
# Compute previous output: x_t -> x_t-1
UpperCAmelCase__ = self.scheduler.step(_a , _a , _a , generator=_a ).prev_sample
UpperCAmelCase__ = self.scale_to_features(_a , input_range=[-1.0, 1.0] )
UpperCAmelCase__ = mel[:1]
UpperCAmelCase__ = mel.cpu().float().numpy()
UpperCAmelCase__ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 )
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(_a , _a )
logger.info('Generated segment' , _a )
if output_type == "numpy" and not is_onnx_available():
raise ValueError(
'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' )
elif output_type == "numpy" and self.melgan is None:
raise ValueError(
'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' )
if output_type == "numpy":
UpperCAmelCase__ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) )
else:
UpperCAmelCase__ = full_pred_mel
if not return_dict:
return (output,)
return AudioPipelineOutput(audios=_a )
| 350 |
class lowercase : # Public class to implement a graph
'''simple docstring'''
def __init__(self , __a , __a , __a ) -> None:
"""simple docstring"""
UpperCAmelCase__ = row
UpperCAmelCase__ = col
UpperCAmelCase__ = graph
def UpperCamelCase__ (self , __a , __a , __a ) -> bool:
"""simple docstring"""
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def UpperCamelCase__ (self , __a , __a , __a ) -> None:
"""simple docstring"""
UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1]
UpperCAmelCase__ = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a )
def UpperCamelCase__ (self ) -> int: # And finally, count all islands.
"""simple docstring"""
UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )]
UpperCAmelCase__ = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(__a , __a , __a )
count += 1
return count
| 335 | 0 |
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
_UpperCamelCase = logging.getLogger(__name__)
_UpperCamelCase = 50 # max width of layer names
_UpperCamelCase = 70 # max width of quantizer names
def UpperCamelCase_( snake_case__: List[Any] ) -> Any:
UpperCAmelCase__ = parser.add_argument_group('quant_trainer arguments' )
group.add_argument('--wprec' , type=__lowerCamelCase , default=8 , help='weight precision' )
group.add_argument('--aprec' , type=__lowerCamelCase , default=8 , help='activation precision' )
group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' )
group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' )
group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' )
group.add_argument('--quant-disable-keyword' , type=__lowerCamelCase , nargs='+' , help='disable quantizers by keyword' )
group.add_argument('--quant-disable-layer-module' , type=__lowerCamelCase , help='disable quantizers by keyword under layer.' )
group.add_argument('--quant-enable-layer-module' , type=__lowerCamelCase , help='enable quantizers by keyword under layer' )
group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' )
group.add_argument('--percentile' , default=__lowerCamelCase , type=__lowerCamelCase , help='percentile for PercentileCalibrator' )
group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' )
group.add_argument('--clip-gelu' , metavar='N' , type=__lowerCamelCase , help='clip gelu output maximum value to N' )
group.add_argument(
'--recalibrate-weights' , action='store_true' , help=(
'recalibrate weight amaxes by taking the max of the weights.'
' amaxes will be computed with the current quantization granularity (axis).'
) , )
def UpperCamelCase_( snake_case__: int ) -> Optional[int]:
if args.calibrator == "max":
UpperCAmelCase__ = "max"
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError('Specify --percentile when using percentile calibrator' )
UpperCAmelCase__ = "histogram"
elif args.calibrator == "mse":
UpperCAmelCase__ = "histogram"
else:
raise ValueError(f"Invalid calibrator {args.calibrator}" )
UpperCAmelCase__ = QuantDescriptor(num_bits=args.aprec , calib_method=__lowerCamelCase )
UpperCAmelCase__ = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(__lowerCamelCase )
quant_nn.QuantLinear.set_default_quant_desc_weight(__lowerCamelCase )
def UpperCamelCase_( snake_case__: Tuple , snake_case__: int , snake_case__: Dict=False , snake_case__: Union[str, Any]=False ) -> List[Any]:
logger.info('Configuring Model for Quantization' )
logger.info(f"using quantization package {pytorch_quantization.__file__}" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(__lowerCamelCase , ['embeddings'] , which='weight' , _disabled=__lowerCamelCase )
if args.quant_disable:
set_quantizer_by_name(__lowerCamelCase , [''] , _disabled=__lowerCamelCase )
if args.quant_disable_keyword:
set_quantizer_by_name(__lowerCamelCase , args.quant_disable_keyword , _disabled=__lowerCamelCase )
if args.quant_disable_layer_module:
set_quantizer_by_name(__lowerCamelCase , [r'layer.\d+.' + args.quant_disable_layer_module] , _disabled=__lowerCamelCase )
if args.quant_enable_layer_module:
set_quantizer_by_name(__lowerCamelCase , [r'layer.\d+.' + args.quant_enable_layer_module] , _disabled=__lowerCamelCase )
if args.recalibrate_weights:
recalibrate_weights(__lowerCamelCase )
if args.fuse_qkv:
fuse_qkv(__lowerCamelCase , __lowerCamelCase )
if args.clip_gelu:
clip_gelu(__lowerCamelCase , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(__lowerCamelCase )
def UpperCamelCase_( snake_case__: Union[str, Any] ) -> str:
logger.info('Enabling Calibration' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(f"{name:80}: {module}" )
def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: str ) -> Any:
logger.info('Loading calibrated amax' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax('percentile' , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(__lowerCamelCase )
def UpperCamelCase_( snake_case__: List[str] , snake_case__: Optional[int] ) -> Optional[Any]:
def fusea(snake_case__: Tuple , snake_case__: Optional[int] , snake_case__: int ):
for mod in [qq, qk, qv]:
if not hasattr(__lowerCamelCase , '_amax' ):
print(' WARNING: NO AMAX BUFFER' )
return
UpperCAmelCase__ = qq._amax.detach().item()
UpperCAmelCase__ = qk._amax.detach().item()
UpperCAmelCase__ = qv._amax.detach().item()
UpperCAmelCase__ = max(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
qq._amax.fill_(__lowerCamelCase )
qk._amax.fill_(__lowerCamelCase )
qv._amax.fill_(__lowerCamelCase )
logger.info(f" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" )
for name, mod in model.named_modules():
if name.endswith('.attention.self' ):
logger.info(f"FUSE_QKV: {name:{name_width}}" )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def UpperCamelCase_( snake_case__: List[str] , snake_case__: List[Any] ) -> List[str]:
for name, mod in model.named_modules():
if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ):
UpperCAmelCase__ = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=__lowerCamelCase )
UpperCAmelCase__ = mod._input_quantizer._amax.data.detach().item()
logger.info(f"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" )
def UpperCamelCase_( snake_case__: Dict ) -> Optional[int]:
for name, mod in model.named_modules():
if hasattr(__lowerCamelCase , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None:
UpperCAmelCase__ = mod.weight.shape[0]
UpperCAmelCase__ = mod._weight_quantizer._amax.detach()
UpperCAmelCase__ = torch.ones(__lowerCamelCase , dtype=amax.dtype , device=amax.device ) * amax
print(f"expanding {name} {amax} -> {mod._weight_quantizer._amax}" )
def UpperCamelCase_( snake_case__: Optional[Any] ) -> int:
for name, mod in model.named_modules():
if hasattr(__lowerCamelCase , '_weight_quantizer' ):
if not hasattr(mod.weight_quantizer , '_amax' ):
print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
UpperCAmelCase__ = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
UpperCAmelCase__ = set(range(len(mod.weight.size() ) ) ) - axis_set
UpperCAmelCase__ = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__lowerCamelCase , keepdims=__lowerCamelCase ).detach()
logger.info(f"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" )
UpperCAmelCase__ = amax
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[str]=25 , snake_case__: List[str]=1_80 , snake_case__: Tuple=None ) -> Optional[Any]:
if ignore is None:
UpperCAmelCase__ = []
elif not isinstance(__lowerCamelCase , __lowerCamelCase ):
UpperCAmelCase__ = [ignore]
UpperCAmelCase__ = 0
for name, mod in model.named_modules():
if not hasattr(__lowerCamelCase , 'weight' ):
continue
UpperCAmelCase__ = max(__lowerCamelCase , len(__lowerCamelCase ) )
for name, mod in model.named_modules():
UpperCAmelCase__ = getattr(__lowerCamelCase , '_input_quantizer' , __lowerCamelCase )
UpperCAmelCase__ = getattr(__lowerCamelCase , '_weight_quantizer' , __lowerCamelCase )
if not hasattr(__lowerCamelCase , 'weight' ):
continue
if type(__lowerCamelCase ) in ignore:
continue
if [True for s in ignore if type(__lowerCamelCase ) is str and s in name]:
continue
UpperCAmelCase__ = f"Act:{input_q.extra_repr()}"
UpperCAmelCase__ = f"Wgt:{weight_q.extra_repr()}"
UpperCAmelCase__ = f"{name:{name_width}} {act_str} {wgt_str}"
if len(__lowerCamelCase ) <= line_width:
logger.info(__lowerCamelCase )
else:
logger.info(f"{name:{name_width}} {act_str}" )
logger.info(f"{' ':{name_width}} {wgt_str}" )
def UpperCamelCase_( snake_case__: Union[str, Any] ) -> Optional[int]:
UpperCAmelCase__ = 0
for name, mod in model.named_modules():
if isinstance(__lowerCamelCase , pytorch_quantization.nn.TensorQuantizer ):
print(f"{name:80} {mod}" )
count += 1
print(f"{count} TensorQuantizers found in model" )
def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Union[str, Any] , snake_case__: List[str] , snake_case__: Dict , snake_case__: Optional[int] ) -> Optional[Any]:
UpperCAmelCase__ = getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if quantizer_mod is not None:
assert hasattr(__lowerCamelCase , __lowerCamelCase )
setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
else:
logger.warning(f"{name} has no {quantizer}" )
def UpperCamelCase_( snake_case__: List[Any] , snake_case__: List[Any] , snake_case__: Union[str, Any]="both" , **snake_case__: List[Any] ) -> Dict:
UpperCAmelCase__ = f"Warning: changing {which} quantizers of {name:{qname_width}}"
for k, v in kwargs.items():
s += f" {k}={v}"
if which in ["input", "both"]:
set_quantizer(__lowerCamelCase , __lowerCamelCase , '_input_quantizer' , __lowerCamelCase , __lowerCamelCase )
if which in ["weight", "both"]:
set_quantizer(__lowerCamelCase , __lowerCamelCase , '_weight_quantizer' , __lowerCamelCase , __lowerCamelCase )
logger.info(__lowerCamelCase )
def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: List[Any] , **snake_case__: Tuple ) -> Union[str, Any]:
for name, mod in model.named_modules():
if hasattr(__lowerCamelCase , '_input_quantizer' ) or hasattr(__lowerCamelCase , '_weight_quantizer' ):
for n in names:
if re.search(__lowerCamelCase , __lowerCamelCase ):
set_quantizers(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
elif name.endswith('_quantizer' ):
for n in names:
if re.search(__lowerCamelCase , __lowerCamelCase ):
UpperCAmelCase__ = f"Warning: changing {name:{name_width}}"
for k, v in kwargs.items():
s += f" {k}={v}"
setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
logger.info(__lowerCamelCase )
| 351 |
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
_UpperCamelCase = Lock()
def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Dict , snake_case__: Any ) -> str:
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(snake_case__ )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
UpperCAmelCase__ = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
UpperCAmelCase__ = min(snake_case__ , snake_case__ )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(snake_case__ )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
UpperCAmelCase__ = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
UpperCAmelCase__ = max(snake_case__ , snake_case__ )
# after all swaps are performed, send the values back to main
result_pipe[1].send(snake_case__ )
def UpperCamelCase_( snake_case__: Any ) -> Tuple:
UpperCAmelCase__ = []
UpperCAmelCase__ = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
UpperCAmelCase__ = Pipe()
UpperCAmelCase__ = Pipe()
process_array_.append(
Process(
target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
UpperCAmelCase__ = temp_rs
UpperCAmelCase__ = temp_rr
for i in range(1 , len(snake_case__ ) - 1 ):
UpperCAmelCase__ = Pipe()
UpperCAmelCase__ = Pipe()
process_array_.append(
Process(
target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
UpperCAmelCase__ = temp_rs
UpperCAmelCase__ = temp_rr
process_array_.append(
Process(
target=snake_case__ , args=(
len(snake_case__ ) - 1,
arr[len(snake_case__ ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(snake_case__ ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(snake_case__ ) ):
UpperCAmelCase__ = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def UpperCamelCase_( ) -> Dict:
UpperCAmelCase__ = list(range(10 , 0 , -1 ) )
print('Initial List' )
print(*snake_case__ )
UpperCAmelCase__ = odd_even_transposition(snake_case__ )
print('Sorted List\n' )
print(*snake_case__ )
if __name__ == "__main__":
main()
| 335 | 0 |
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
_UpperCamelCase = """0.12""" # assumed parallelism: 8
if is_torch_available():
import torch
def UpperCamelCase_( snake_case__: List[str] , snake_case__: Any , snake_case__: int=None ) -> Tuple:
if rng is None:
UpperCAmelCase__ = random.Random()
UpperCAmelCase__ = 1
for dim in shape:
total_dims *= dim
UpperCAmelCase__ = []
for _ in range(_snake_case ):
values.append(rng.randint(0 , vocab_size - 1 ) )
UpperCAmelCase__ = np.array(_snake_case , dtype=jnp.intaa ).reshape(_snake_case )
return output
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any]=None ) -> Any:
UpperCAmelCase__ = ids_tensor(_snake_case , vocab_size=2 , rng=_snake_case )
# make sure that at least one token is attended to for each batch
UpperCAmelCase__ = 1
return attn_mask
@require_flax
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = ()
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
UpperCAmelCase__ = 2
UpperCAmelCase__ = inputs['''input_ids'''].shape[-1] // 2
UpperCAmelCase__ = inputs['''input_ids'''][:max_batch_size, :sequence_length]
UpperCAmelCase__ = jnp.ones_like(a_ )
UpperCAmelCase__ = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
UpperCAmelCase__ = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
UpperCAmelCase__ = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self._get_input_ids_and_config()
UpperCAmelCase__ = False
UpperCAmelCase__ = max_length
UpperCAmelCase__ = 0
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(a_ )
UpperCAmelCase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning
UpperCAmelCase__ = getattr(a_ , a_ )
UpperCAmelCase__ = pt_model_class(a_ ).eval()
UpperCAmelCase__ = load_flax_weights_in_pytorch_model(a_ , flax_model.params )
UpperCAmelCase__ = flax_model.generate(a_ ).sequences
UpperCAmelCase__ = pt_model.generate(torch.tensor(a_ , dtype=torch.long ) )
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
UpperCAmelCase__ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = self._get_input_ids_and_config()
UpperCAmelCase__ = False
UpperCAmelCase__ = max_length
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(a_ )
UpperCAmelCase__ = model.generate(a_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , a_ )
UpperCAmelCase__ = jit(model.generate )
UpperCAmelCase__ = jit_generate(a_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = self._get_input_ids_and_config()
UpperCAmelCase__ = True
UpperCAmelCase__ = max_length
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(a_ )
UpperCAmelCase__ = model.generate(a_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , a_ )
UpperCAmelCase__ = jit(model.generate )
UpperCAmelCase__ = jit_generate(a_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self._get_input_ids_and_config()
UpperCAmelCase__ = False
UpperCAmelCase__ = max_length
UpperCAmelCase__ = 2
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(a_ )
UpperCAmelCase__ = model.generate(a_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , a_ )
UpperCAmelCase__ = jit(model.generate )
UpperCAmelCase__ = jit_generate(a_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self._get_input_ids_and_config()
UpperCAmelCase__ = False
UpperCAmelCase__ = max_length
UpperCAmelCase__ = 2
UpperCAmelCase__ = 2
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(a_ )
UpperCAmelCase__ = model.generate(a_ ).sequences
self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = self._get_input_ids_and_config()
UpperCAmelCase__ = True
UpperCAmelCase__ = max_length
UpperCAmelCase__ = 0.8
UpperCAmelCase__ = 10
UpperCAmelCase__ = 0.3
UpperCAmelCase__ = 1
UpperCAmelCase__ = 8
UpperCAmelCase__ = 9
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(a_ )
UpperCAmelCase__ = model.generate(a_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , a_ )
UpperCAmelCase__ = jit(model.generate )
UpperCAmelCase__ = jit_generate(a_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self._get_input_ids_and_config()
UpperCAmelCase__ = max_length
UpperCAmelCase__ = 1
UpperCAmelCase__ = 8
UpperCAmelCase__ = 9
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(a_ )
UpperCAmelCase__ = model.generate(a_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , a_ )
UpperCAmelCase__ = jit(model.generate )
UpperCAmelCase__ = jit_generate(a_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self._get_input_ids_and_config()
UpperCAmelCase__ = max_length
UpperCAmelCase__ = 2
UpperCAmelCase__ = 1
UpperCAmelCase__ = 8
UpperCAmelCase__ = 9
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(a_ )
UpperCAmelCase__ = model.generate(a_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , a_ )
UpperCAmelCase__ = jit(model.generate )
UpperCAmelCase__ = jit_generate(a_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self._get_input_ids_and_config()
# pad attention mask on the left
UpperCAmelCase__ = attention_mask.at[(0, 0)].set(0 )
UpperCAmelCase__ = False
UpperCAmelCase__ = max_length
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(a_ )
UpperCAmelCase__ = model.generate(a_ , attention_mask=a_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , a_ )
UpperCAmelCase__ = jit(model.generate )
UpperCAmelCase__ = jit_generate(a_ , attention_mask=a_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = self._get_input_ids_and_config()
# pad attention mask on the left
UpperCAmelCase__ = attention_mask.at[(0, 0)].set(0 )
UpperCAmelCase__ = True
UpperCAmelCase__ = max_length
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(a_ )
UpperCAmelCase__ = model.generate(a_ , attention_mask=a_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , a_ )
UpperCAmelCase__ = jit(model.generate )
UpperCAmelCase__ = jit_generate(a_ , attention_mask=a_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self._get_input_ids_and_config()
# pad attention mask on the left
UpperCAmelCase__ = attention_mask.at[(0, 0)].set(0 )
UpperCAmelCase__ = 2
UpperCAmelCase__ = max_length
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(a_ )
UpperCAmelCase__ = model.generate(a_ , attention_mask=a_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , a_ )
UpperCAmelCase__ = jit(model.generate )
UpperCAmelCase__ = jit_generate(a_ , attention_mask=a_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
@require_flax
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' )
UpperCAmelCase__ = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' )
UpperCAmelCase__ = '''Hello world'''
UpperCAmelCase__ = tokenizer(a_ , return_tensors='np' ).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(a_ , 'do_samples' ):
model.generate(a_ , do_samples=a_ )
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(a_ , 'foo' ):
UpperCAmelCase__ = {'''foo''': '''bar'''}
model.generate(a_ , **a_ )
| 352 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class lowercase :
'''simple docstring'''
def __init__(self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = ''
UpperCAmelCase__ = ''
UpperCAmelCase__ = []
UpperCAmelCase__ = 0
UpperCAmelCase__ = 256
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
def UpperCamelCase__ (self , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = cva.imread(__a , 0 )
UpperCAmelCase__ = copy.deepcopy(self.img )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' )
UpperCAmelCase__ = np.sum(__a )
for i in range(len(__a ) ):
UpperCAmelCase__ = x[i] / self.k
self.sk += prk
UpperCAmelCase__ = (self.L - 1) * self.sk
if self.rem != 0:
UpperCAmelCase__ = int(last % last )
UpperCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(__a )
UpperCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size )
UpperCAmelCase__ = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCAmelCase__ = self.img[j][i]
if num != self.last_list[num]:
UpperCAmelCase__ = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
plt.hist(self.img.ravel() , 256 , [0, 256] )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
_UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''')
_UpperCamelCase = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 335 | 0 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class lowercase ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = SMALL_MODEL_IDENTIFIER
UpperCAmelCase__ = 'pt'
UpperCAmelCase__ = 'tf'
def UpperCamelCase__ (self , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(snake_case__ )
def UpperCamelCase__ (self , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFAutoModel.from_pretrained(self.test_model , from_pt=snake_case__ )
model_tf.save_pretrained(snake_case__ )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'mock_framework'
# Framework provided - return whatever the user provides
UpperCAmelCase__ = FeaturesManager.determine_framework(self.test_model , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(snake_case__ )
UpperCAmelCase__ = FeaturesManager.determine_framework(snake_case__ , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(snake_case__ )
UpperCAmelCase__ = FeaturesManager.determine_framework(snake_case__ , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(snake_case__ )
UpperCAmelCase__ = FeaturesManager.determine_framework(snake_case__ )
self.assertEqual(snake_case__ , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(snake_case__ )
UpperCAmelCase__ = FeaturesManager.determine_framework(snake_case__ )
self.assertEqual(snake_case__ , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(snake_case__ ):
UpperCAmelCase__ = FeaturesManager.determine_framework(snake_case__ )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ):
UpperCAmelCase__ = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
UpperCAmelCase__ = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_torch_available' , snake_case__ ):
UpperCAmelCase__ = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_tf )
# Both in environment -> use PyTorch
UpperCAmelCase__ = MagicMock(return_value=snake_case__ )
UpperCAmelCase__ = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch(
'transformers.onnx.features.is_torch_available' , snake_case__ ):
UpperCAmelCase__ = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_pt )
# Both not in environment -> raise error
UpperCAmelCase__ = MagicMock(return_value=snake_case__ )
UpperCAmelCase__ = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch(
'transformers.onnx.features.is_torch_available' , snake_case__ ):
with self.assertRaises(snake_case__ ):
UpperCAmelCase__ = FeaturesManager.determine_framework(self.test_model )
| 353 |
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = image_size
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = embed_dim
UpperCAmelCase__ = depths
UpperCAmelCase__ = num_heads
UpperCAmelCase__ = window_size
UpperCAmelCase__ = mlp_ratio
UpperCAmelCase__ = qkv_bias
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = drop_path_rate
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = use_absolute_embeddings
UpperCAmelCase__ = patch_norm
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = is_training
UpperCAmelCase__ = scope
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = encoder_stride
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModel(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCAmelCase__ = 1
UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self.type_sequence_label_size
UpperCAmelCase__ = SwinvaForImageClassification(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
__SCREAMING_SNAKE_CASE = (
{"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification}
if is_torch_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
@unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason='Swinv2 does not use inputs_embeds' )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__a , nn.Linear ) )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ = [*signature.parameters.keys()]
UpperCAmelCase__ = ['pixel_values']
self.assertListEqual(arg_names[:1] , __a )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
UpperCAmelCase__ = len(self.model_tester.depths )
self.assertEqual(len(__a ) , __a )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = config.window_size**2
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
UpperCAmelCase__ = len(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
if hasattr(self.model_tester , 'num_hidden_states_types' ):
UpperCAmelCase__ = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
UpperCAmelCase__ = 2
self.assertEqual(out_len + added_hidden_states , len(__a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.hidden_states
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__a ) , __a )
# Swinv2 has a different seq_length
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
UpperCAmelCase__ = outputs.reshaped_hidden_states
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape
UpperCAmelCase__ = (
reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = 3
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__a )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = SwinvaModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = _config_zero_init(__a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(config=__a )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
@require_vision
@require_torch
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' )
if is_vision_available()
else None
)
@slow
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to(
__a )
UpperCAmelCase__ = self.default_image_processor
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a )
# forward pass
with torch.no_grad():
UpperCAmelCase__ = model(**__a )
# verify the logits
UpperCAmelCase__ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __a )
UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
| 335 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_UpperCamelCase = {
'''configuration_rag''': ['''RagConfig'''],
'''retrieval_rag''': ['''RagRetriever'''],
'''tokenization_rag''': ['''RagTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''RagModel''',
'''RagPreTrainedModel''',
'''RagSequenceForGeneration''',
'''RagTokenForGeneration''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TFRagModel''',
'''TFRagPreTrainedModel''',
'''TFRagSequenceForGeneration''',
'''TFRagTokenForGeneration''',
]
if TYPE_CHECKING:
from .configuration_rag import RagConfig
from .retrieval_rag import RagRetriever
from .tokenization_rag import RagTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rag import (
TFRagModel,
TFRagPreTrainedModel,
TFRagSequenceForGeneration,
TFRagTokenForGeneration,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 354 |
from collections import deque
def UpperCamelCase_( snake_case__: Tuple ) -> Tuple:
UpperCAmelCase__ = len(snake_case__ )
UpperCAmelCase__ = deque()
UpperCAmelCase__ = [False for _ in range(snake_case__ )]
UpperCAmelCase__ = [-1 for _ in range(snake_case__ )]
UpperCAmelCase__ = index_of[:]
def strong_connect(snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[str] ):
UpperCAmelCase__ = index # the number when this node is seen
UpperCAmelCase__ = index # lowest rank node reachable from here
index += 1
stack.append(snake_case__ )
UpperCAmelCase__ = True
for w in g[v]:
if index_of[w] == -1:
UpperCAmelCase__ = strong_connect(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase__ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
UpperCAmelCase__ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
UpperCAmelCase__ = []
UpperCAmelCase__ = stack.pop()
UpperCAmelCase__ = False
component.append(snake_case__ )
while w != v:
UpperCAmelCase__ = stack.pop()
UpperCAmelCase__ = False
component.append(snake_case__ )
components.append(snake_case__ )
return index
UpperCAmelCase__ = []
for v in range(snake_case__ ):
if index_of[v] == -1:
strong_connect(snake_case__ , 0 , snake_case__ )
return components
def UpperCamelCase_( snake_case__: Dict , snake_case__: List[Any] ) -> Optional[int]:
UpperCAmelCase__ = [[] for _ in range(snake_case__ )]
for u, v in edges:
g[u].append(snake_case__ )
return g
if __name__ == "__main__":
# Test
_UpperCamelCase = 7
_UpperCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6]
_UpperCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5]
_UpperCamelCase = [(u, v) for u, v in zip(source, target)]
_UpperCamelCase = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 335 | 0 |
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class lowercase ( _UpperCAmelCase ):
'''simple docstring'''
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = pa.array(TypedSequence([1, 2, 3] ) )
self.assertEqual(arr.type , pa.intaa() )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
with self.assertRaises(SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase__ = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
with self.assertRaises(SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase__ = pa.array(TypedSequence([1, 2, 3] , try_type=Value('bool' ) , type=Value('int64' ) ) )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = pa.array(TypedSequence([1, 2, 3] , type=Value('int32' ) ) )
self.assertEqual(arr.type , pa.intaa() )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
UpperCAmelCase__ = pa.array(TypedSequence(['foo', 'bar'] , type=Value('int64' ) ) )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = pa.array(TypedSequence([1, 2, 3] , try_type=Value('int32' ) ) )
self.assertEqual(arr.type , pa.intaa() )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = pa.array(TypedSequence(['foo', 'bar'] , try_type=Value('int64' ) ) )
self.assertEqual(arr.type , pa.string() )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , 'int64' ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
UpperCAmelCase__ = pa.array(TypedSequence(['foo', 'bar'] , type=ArrayaD((1, 3) , 'int64' ) ) )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , 'int64' ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = pa.array(TypedSequence(['foo', 'bar'] , try_type=ArrayaD((1, 3) , 'int64' ) ) )
self.assertEqual(arr.type , pa.string() )
@require_pil
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
import PIL.Image
UpperCAmelCase__ = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) )
with patch(
'datasets.arrow_writer.cast_to_python_objects' , side_effect=SCREAMING_SNAKE_CASE_ ) as mock_cast_to_python_objects:
UpperCAmelCase__ = pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] , type=Image() ) )
UpperCAmelCase__ = mock_cast_to_python_objects.call_args_list[-1]
self.assertIn('optimize_list_casting' , SCREAMING_SNAKE_CASE_ )
self.assertFalse(kwargs['optimize_list_casting'] )
def UpperCamelCase_( snake_case__: Any , snake_case__: int ) -> Union[str, Any]:
UpperCAmelCase__ = pa.BufferReader(snake_case_ ) if isinstance(snake_case_ , pa.Buffer ) else pa.memory_map(snake_case_ )
UpperCAmelCase__ = pa.ipc.open_stream(snake_case_ )
UpperCAmelCase__ = f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] )
@pytest.mark.parametrize(
'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def UpperCamelCase_( snake_case__: int , snake_case__: Any ) -> List[Any]:
UpperCAmelCase__ = pa.BufferOutputStream()
UpperCAmelCase__ = pa.schema(snake_case_ ) if fields else None
with ArrowWriter(stream=snake_case_ , schema=snake_case_ , writer_batch_size=snake_case_ ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
UpperCAmelCase__ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
UpperCAmelCase__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(snake_case_ , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def UpperCamelCase_( ) -> str:
UpperCAmelCase__ = pa.BufferOutputStream()
UpperCAmelCase__ = Features({'labels': ClassLabel(names=['neg', 'pos'] )} )
with ArrowWriter(stream=snake_case_ , features=snake_case_ ) as writer:
writer.write({'labels': 0} )
writer.write({'labels': 1} )
UpperCAmelCase__ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
UpperCAmelCase__ = pa.BufferReader(output.getvalue() )
UpperCAmelCase__ = pa.ipc.open_stream(snake_case_ )
UpperCAmelCase__ = f.read_all()
UpperCAmelCase__ = pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(snake_case_ )
@pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] )
def UpperCamelCase_( snake_case__: Optional[int] ) -> int:
UpperCAmelCase__ = pa.BufferOutputStream()
with ArrowWriter(
stream=snake_case_ , writer_batch_size=snake_case_ , hash_salt='split_name' , check_duplicates=snake_case_ , ) as writer:
with pytest.raises(snake_case_ ):
writer.write({'col_1': 'foo', 'col_2': 1} , key=[1, 2] )
UpperCAmelCase__ = writer.finalize()
@pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] )
def UpperCamelCase_( snake_case__: Optional[int] ) -> List[Any]:
UpperCAmelCase__ = pa.BufferOutputStream()
with ArrowWriter(
stream=snake_case_ , writer_batch_size=snake_case_ , hash_salt='split_name' , check_duplicates=snake_case_ , ) as writer:
with pytest.raises(snake_case_ ):
writer.write({'col_1': 'foo', 'col_2': 1} , key=10 )
writer.write({'col_1': 'bar', 'col_2': 2} , key=10 )
UpperCAmelCase__ = writer.finalize()
@pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] )
def UpperCamelCase_( snake_case__: Any ) -> str:
UpperCAmelCase__ = pa.BufferOutputStream()
with ArrowWriter(
stream=snake_case_ , writer_batch_size=snake_case_ , hash_salt='split_name' , check_duplicates=snake_case_ , ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} , key=1 )
writer.write({'col_1': 'bar', 'col_2': 2} , key=2 )
UpperCAmelCase__ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] )
@pytest.mark.parametrize(
'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: int ) -> Union[str, Any]:
UpperCAmelCase__ = pa.BufferOutputStream()
UpperCAmelCase__ = pa.schema(snake_case_ ) if fields else None
with ArrowWriter(stream=snake_case_ , schema=snake_case_ , writer_batch_size=snake_case_ ) as writer:
writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} )
writer.write_batch({'col_1': [], 'col_2': []} )
UpperCAmelCase__ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
UpperCAmelCase__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(snake_case_ , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] )
@pytest.mark.parametrize(
'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def UpperCamelCase_( snake_case__: Any , snake_case__: Optional[Any] ) -> Optional[int]:
UpperCAmelCase__ = pa.BufferOutputStream()
UpperCAmelCase__ = pa.schema(snake_case_ ) if fields else None
with ArrowWriter(stream=snake_case_ , schema=snake_case_ , writer_batch_size=snake_case_ ) as writer:
writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) )
UpperCAmelCase__ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
UpperCAmelCase__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(snake_case_ , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] )
@pytest.mark.parametrize(
'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[Any] ) -> List[Any]:
UpperCAmelCase__ = pa.BufferOutputStream()
UpperCAmelCase__ = pa.schema(snake_case_ ) if fields else None
with ArrowWriter(stream=snake_case_ , schema=snake_case_ , writer_batch_size=snake_case_ ) as writer:
writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) )
writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) )
UpperCAmelCase__ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
UpperCAmelCase__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(snake_case_ , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def UpperCamelCase_( ) -> str:
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
UpperCAmelCase__ = os.path.join(snake_case_ , 'test.arrow' )
with ArrowWriter(path=snake_case_ , schema=pa.schema(snake_case_ ) ) as writer:
writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} )
UpperCAmelCase__ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(snake_case_ , metadata=writer._schema.metadata )
_check_output(snake_case_ , 1 )
def UpperCamelCase_( snake_case__: Dict ) -> Optional[int]:
if pa.types.is_list(snake_case_ ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: Dict ) -> int:
if isinstance(lst[0] , snake_case_ ):
change_first_primitive_element_in_list(lst[0] , snake_case_ )
else:
UpperCAmelCase__ = value
@pytest.mark.parametrize('optimized_int_type, expected_dtype' , [(None, pa.intaa()), (Value('int32' ), pa.intaa())] )
@pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def UpperCamelCase_( snake_case__: Tuple , snake_case__: List[Any] , snake_case__: Dict ) -> List[Any]:
UpperCAmelCase__ = pa.array(TypedSequence(snake_case_ , optimized_int_type=snake_case_ ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
'col, expected_dtype' , [
('attention_mask', pa.inta()),
('special_tokens_mask', pa.inta()),
('token_type_ids', pa.inta()),
('input_ids', pa.intaa()),
('other', pa.intaa()),
] , )
@pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] , snake_case__: str ) -> List[Any]:
UpperCAmelCase__ = pa.array(OptimizedTypedSequence(snake_case_ , col=snake_case_ ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
UpperCAmelCase__ = copy.deepcopy(snake_case_ )
UpperCAmelCase__ = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(snake_case_ , snake_case_ )
UpperCAmelCase__ = pa.array(OptimizedTypedSequence(snake_case_ , col=snake_case_ ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize('raise_exception' , [False, True] )
def UpperCamelCase_( snake_case__: Dict , snake_case__: Tuple ) -> Tuple:
UpperCAmelCase__ = str(tmp_path / 'dataset-train.arrow' )
try:
with ArrowWriter(path=snake_case_ ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def UpperCamelCase_( snake_case__: List[str] ) -> Optional[int]:
UpperCAmelCase__ = """mock://dataset-train.arrow"""
with ArrowWriter(path=snake_case_ , storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs , type(snake_case_ ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
UpperCAmelCase__ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(snake_case_ )
def UpperCamelCase_( ) -> Tuple:
UpperCAmelCase__ = pa.BufferOutputStream()
with ParquetWriter(stream=snake_case_ ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
UpperCAmelCase__ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
UpperCAmelCase__ = pa.BufferReader(output.getvalue() )
UpperCAmelCase__ = pq.read_table(snake_case_ )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize('embed_local_files' , [False, True] )
def UpperCamelCase_( snake_case__: str , snake_case__: List[Any] ) -> List[Any]:
import PIL.Image
UpperCAmelCase__ = str(tmp_path / 'test_image_rgb.jpg' )
PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(snake_case_ , format='png' )
UpperCAmelCase__ = pa.BufferOutputStream()
with ParquetWriter(
stream=snake_case_ , features=Features({'image': Image()} ) , embed_local_files=snake_case_ ) as writer:
writer.write({'image': image_path} )
writer.finalize()
UpperCAmelCase__ = pa.BufferReader(output.getvalue() )
UpperCAmelCase__ = pq.read_table(snake_case_ )
UpperCAmelCase__ = pa_table.to_pydict()
if embed_local_files:
assert isinstance(out['image'][0]['path'] , snake_case_ )
with open(snake_case_ , 'rb' ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def UpperCamelCase_( ) -> List[Any]:
UpperCAmelCase__ = pa.schema([pa.field('col_1' , pa.string() , nullable=snake_case_ )] )
UpperCAmelCase__ = pa.BufferOutputStream()
with ArrowWriter(stream=snake_case_ ) as writer:
writer._build_writer(inferred_schema=snake_case_ )
assert writer._schema == pa.schema([pa.field('col_1' , pa.string() )] )
| 355 |
from ...configuration_utils import PretrainedConfig
_UpperCamelCase = {
'''google/tapas-base-finetuned-sqa''': (
'''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wtq''': (
'''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wikisql-supervised''': (
'''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-tabfact''': (
'''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''
),
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """tapas"""
def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=1024 , __a=[3, 256, 256, 2, 256, 256, 10] , __a=0.02 , __a=1E-1_2 , __a=0 , __a=10.0 , __a=0 , __a=1.0 , __a=None , __a=1.0 , __a=False , __a=None , __a=1.0 , __a=1.0 , __a=False , __a=False , __a="ratio" , __a=None , __a=None , __a=64 , __a=32 , __a=False , __a=True , __a=False , __a=False , __a=True , __a=False , __a=None , __a=None , **__a , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=__a , **__a )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_sizes
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
# Fine-tuning task hyperparameters
UpperCAmelCase__ = positive_label_weight
UpperCAmelCase__ = num_aggregation_labels
UpperCAmelCase__ = aggregation_loss_weight
UpperCAmelCase__ = use_answer_as_supervision
UpperCAmelCase__ = answer_loss_importance
UpperCAmelCase__ = use_normalized_answer_loss
UpperCAmelCase__ = huber_loss_delta
UpperCAmelCase__ = temperature
UpperCAmelCase__ = aggregation_temperature
UpperCAmelCase__ = use_gumbel_for_cells
UpperCAmelCase__ = use_gumbel_for_aggregation
UpperCAmelCase__ = average_approximation_function
UpperCAmelCase__ = cell_selection_preference
UpperCAmelCase__ = answer_loss_cutoff
UpperCAmelCase__ = max_num_rows
UpperCAmelCase__ = max_num_columns
UpperCAmelCase__ = average_logits_per_cell
UpperCAmelCase__ = select_one_column
UpperCAmelCase__ = allow_empty_column_selection
UpperCAmelCase__ = init_cell_selection_weights_to_zero
UpperCAmelCase__ = reset_position_index_per_cell
UpperCAmelCase__ = disable_per_token_loss
# Aggregation hyperparameters
UpperCAmelCase__ = aggregation_labels
UpperCAmelCase__ = no_aggregation_label_index
if isinstance(self.aggregation_labels , __a ):
UpperCAmelCase__ = {int(__a ): v for k, v in aggregation_labels.items()}
| 335 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_UpperCamelCase = {
'''configuration_blip''': [
'''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''BlipConfig''',
'''BlipTextConfig''',
'''BlipVisionConfig''',
],
'''processing_blip''': ['''BlipProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''BlipImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BlipModel''',
'''BlipPreTrainedModel''',
'''BlipForConditionalGeneration''',
'''BlipForQuestionAnswering''',
'''BlipVisionModel''',
'''BlipTextModel''',
'''BlipForImageTextRetrieval''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFBlipModel''',
'''TFBlipPreTrainedModel''',
'''TFBlipForConditionalGeneration''',
'''TFBlipForQuestionAnswering''',
'''TFBlipVisionModel''',
'''TFBlipTextModel''',
'''TFBlipForImageTextRetrieval''',
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 356 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCamelCase = {
'''configuration_squeezebert''': [
'''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''SqueezeBertConfig''',
'''SqueezeBertOnnxConfig''',
],
'''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''SqueezeBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SqueezeBertForMaskedLM''',
'''SqueezeBertForMultipleChoice''',
'''SqueezeBertForQuestionAnswering''',
'''SqueezeBertForSequenceClassification''',
'''SqueezeBertForTokenClassification''',
'''SqueezeBertModel''',
'''SqueezeBertModule''',
'''SqueezeBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 335 | 0 |
from __future__ import annotations
def UpperCamelCase_( snake_case__: float , snake_case__: float , snake_case__: float , ) -> Union[str, Any]:
if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1:
raise ValueError('You cannot supply more or less than 2 values' )
elif electron_conc < 0:
raise ValueError('Electron concentration cannot be negative in a semiconductor' )
elif hole_conc < 0:
raise ValueError('Hole concentration cannot be negative in a semiconductor' )
elif intrinsic_conc < 0:
raise ValueError(
'Intrinsic concentration cannot be negative in a semiconductor' )
elif electron_conc == 0:
return (
"electron_conc",
intrinsic_conc**2 / hole_conc,
)
elif hole_conc == 0:
return (
"hole_conc",
intrinsic_conc**2 / electron_conc,
)
elif intrinsic_conc == 0:
return (
"intrinsic_conc",
(electron_conc * hole_conc) ** 0.5,
)
else:
return (-1, -1)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 357 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase__ = XCLIPTextConfig()
# derive patch size from model name
UpperCAmelCase__ = model_name.find('patch' )
UpperCAmelCase__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] )
UpperCAmelCase__ = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ )
if "large" in model_name:
UpperCAmelCase__ = 7_68
UpperCAmelCase__ = 30_72
UpperCAmelCase__ = 12
UpperCAmelCase__ = 10_24
UpperCAmelCase__ = 40_96
UpperCAmelCase__ = 16
UpperCAmelCase__ = 24
UpperCAmelCase__ = 7_68
UpperCAmelCase__ = 30_72
if model_name == "xclip-large-patch14-16-frames":
UpperCAmelCase__ = 3_36
UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ )
if "large" in model_name:
UpperCAmelCase__ = 7_68
return config
def UpperCamelCase_( snake_case__: Any ) -> Tuple:
# text encoder
if name == "token_embedding.weight":
UpperCAmelCase__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' )
if name == "positional_embedding":
UpperCAmelCase__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' )
if "ln_1" in name:
UpperCAmelCase__ = name.replace('ln_1' , 'layer_norm1' )
if "ln_2" in name:
UpperCAmelCase__ = name.replace('ln_2' , 'layer_norm2' )
if "c_fc" in name:
UpperCAmelCase__ = name.replace('c_fc' , 'fc1' )
if "c_proj" in name:
UpperCAmelCase__ = name.replace('c_proj' , 'fc2' )
if name.startswith('transformer.resblocks' ):
UpperCAmelCase__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' )
if "attn.out_proj" in name and "message" not in name:
UpperCAmelCase__ = name.replace('attn.out_proj' , 'self_attn.out_proj' )
if "ln_final" in name:
UpperCAmelCase__ = name.replace('ln_final' , 'text_model.final_layer_norm' )
# visual encoder
if name == "visual.class_embedding":
UpperCAmelCase__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' )
if name == "visual.positional_embedding":
UpperCAmelCase__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' )
if name.startswith('visual.transformer.resblocks' ):
UpperCAmelCase__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' )
if "visual.conv1" in name:
UpperCAmelCase__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' )
if "visual.ln_pre" in name:
UpperCAmelCase__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' )
if "visual.ln_post" in name:
UpperCAmelCase__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' )
if "visual.proj" in name:
UpperCAmelCase__ = name.replace('visual.proj' , 'visual_projection.weight' )
if "text_projection" in name:
UpperCAmelCase__ = name.replace('text_projection' , 'text_projection.weight' )
# things on top
if "prompts_visual_proj" in name:
UpperCAmelCase__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' )
if "prompts_visual_ln" in name:
UpperCAmelCase__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' )
# mit
if name == "mit.positional_embedding":
UpperCAmelCase__ = name.replace('positional' , 'position' )
if name.startswith('mit.resblocks' ):
UpperCAmelCase__ = name.replace('mit.resblocks' , 'mit.encoder.layers' )
# prompts generator
if name.startswith('prompts_generator.norm' ):
UpperCAmelCase__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' )
return name
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Optional[Any]:
for key in orig_state_dict.copy().keys():
UpperCAmelCase__ = orig_state_dict.pop(snake_case__ )
if "attn.in_proj" in key:
UpperCAmelCase__ = key.split('.' )
if key.startswith('visual' ):
UpperCAmelCase__ = key_split[3]
UpperCAmelCase__ = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
UpperCAmelCase__ = val[
:dim, :
]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[
-dim:, :
]
else:
UpperCAmelCase__ = val[
:dim
]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[
-dim:
]
else:
if "weight" in key:
UpperCAmelCase__ = val[
:dim, :
]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[
-dim:, :
]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[-dim:]
elif key.startswith('mit' ):
UpperCAmelCase__ = key_split[2]
UpperCAmelCase__ = config.vision_config.mit_hidden_size
if "weight" in key:
UpperCAmelCase__ = val[:dim, :]
UpperCAmelCase__ = val[dim : dim * 2, :]
UpperCAmelCase__ = val[-dim:, :]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[dim : dim * 2]
UpperCAmelCase__ = val[-dim:]
else:
UpperCAmelCase__ = key_split[2]
UpperCAmelCase__ = config.text_config.hidden_size
if "weight" in key:
UpperCAmelCase__ = val[:dim, :]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[-dim:, :]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[-dim:]
else:
UpperCAmelCase__ = rename_key(snake_case__ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
UpperCAmelCase__ = val.T
UpperCAmelCase__ = val
return orig_state_dict
def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]:
if num_frames == 8:
UpperCAmelCase__ = 'eating_spaghetti_8_frames.npy'
elif num_frames == 16:
UpperCAmelCase__ = 'eating_spaghetti.npy'
elif num_frames == 32:
UpperCAmelCase__ = 'eating_spaghetti_32_frames.npy'
UpperCAmelCase__ = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , )
UpperCAmelCase__ = np.load(snake_case__ )
return list(snake_case__ )
def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None , snake_case__: Union[str, Any]=False ) -> List[Any]:
UpperCAmelCase__ = {
# fully supervised kinetics-400 checkpoints
'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth',
'xclip-base-patch32-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'
),
'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth',
'xclip-base-patch16-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'
),
'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb',
'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f',
# fully supervised kinetics-600 checkpoints
'xclip-base-patch16-kinetics-600': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'
),
'xclip-base-patch16-kinetics-600-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'
),
'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be',
# few shot
'xclip-base-patch16-hmdb-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'
),
'xclip-base-patch16-hmdb-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'
),
'xclip-base-patch16-hmdb-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'
),
'xclip-base-patch16-hmdb-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'
),
'xclip-base-patch16-ucf-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'
),
'xclip-base-patch16-ucf-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'
),
'xclip-base-patch16-ucf-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'
),
'xclip-base-patch16-ucf-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'
),
# zero shot
'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth',
}
UpperCAmelCase__ = model_to_url[model_name]
UpperCAmelCase__ = 8
if "16-frames" in model_name:
UpperCAmelCase__ = 16
elif "shot" in model_name:
UpperCAmelCase__ = 32
UpperCAmelCase__ = get_xclip_config(snake_case__ , snake_case__ )
UpperCAmelCase__ = XCLIPModel(snake_case__ )
model.eval()
if "drive" in checkpoint_url:
UpperCAmelCase__ = 'pytorch_model.bin'
gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ )
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model']
else:
UpperCAmelCase__ = torch.hub.load_state_dict_from_url(snake_case__ )['model']
UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ )
UpperCAmelCase__ = XCLIPModel(snake_case__ )
UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(snake_case__ , strict=snake_case__ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
UpperCAmelCase__ = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24
UpperCAmelCase__ = VideoMAEImageProcessor(size=snake_case__ )
UpperCAmelCase__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' )
UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' )
UpperCAmelCase__ = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ )
UpperCAmelCase__ = prepare_video(snake_case__ )
UpperCAmelCase__ = processor(
text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ )
print('Shape of pixel values:' , inputs.pixel_values.shape )
with torch.no_grad():
UpperCAmelCase__ = model(**snake_case__ )
# Verify outputs
UpperCAmelCase__ = outputs.logits_per_video
UpperCAmelCase__ = logits_per_video.softmax(dim=1 )
print('Probs:' , snake_case__ )
# kinetics-400
if model_name == "xclip-base-patch32":
UpperCAmelCase__ = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] )
elif model_name == "xclip-base-patch32-16-frames":
UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] )
elif model_name == "xclip-base-patch16":
UpperCAmelCase__ = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] )
elif model_name == "xclip-base-patch16-16-frames":
UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] )
elif model_name == "xclip-large-patch14":
UpperCAmelCase__ = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] )
elif model_name == "xclip-large-patch14-16-frames":
UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
UpperCAmelCase__ = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
UpperCAmelCase__ = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
UpperCAmelCase__ = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] )
else:
raise ValueError(f"Model name {model_name} not supported" )
assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
if push_to_hub:
print('Pushing model, processor and slow tokenizer files to the hub...' )
model.push_to_hub(snake_case__ , organization='nielsr' )
processor.push_to_hub(snake_case__ , organization='nielsr' )
slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''xclip-base-patch32''',
type=str,
help='''Name of the model.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_UpperCamelCase = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 335 | 0 |
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class lowercase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = IFInpaintingSuperResolutionPipeline
__SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'}
__SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} )
__SCREAMING_SNAKE_CASE = PipelineTesterMixin.required_optional_params - {'latents'}
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
return self._get_superresolution_dummy_components()
def UpperCamelCase__ (self , __a , __a=0 ) -> Dict:
"""simple docstring"""
if str(__lowerCAmelCase ).startswith('mps' ):
UpperCAmelCase__ = torch.manual_seed(__lowerCAmelCase )
else:
UpperCAmelCase__ = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase )
UpperCAmelCase__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
UpperCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
UpperCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
UpperCAmelCase__ = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'original_image': original_image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
self._test_save_load_local()
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 358 |
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: Union[str, Any] ) -> Tuple:
UpperCAmelCase__ = OmegaConf.load(snake_case__ )
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model']
UpperCAmelCase__ = list(state_dict.keys() )
# extract state_dict for VQVAE
UpperCAmelCase__ = {}
UpperCAmelCase__ = 'first_stage_model.'
for key in keys:
if key.startswith(snake_case__ ):
UpperCAmelCase__ = state_dict[key]
# extract state_dict for UNetLDM
UpperCAmelCase__ = {}
UpperCAmelCase__ = 'model.diffusion_model.'
for key in keys:
if key.startswith(snake_case__ ):
UpperCAmelCase__ = state_dict[key]
UpperCAmelCase__ = config.model.params.first_stage_config.params
UpperCAmelCase__ = config.model.params.unet_config.params
UpperCAmelCase__ = VQModel(**snake_case__ ).eval()
vqvae.load_state_dict(snake_case__ )
UpperCAmelCase__ = UNetLDMModel(**snake_case__ ).eval()
unet.load_state_dict(snake_case__ )
UpperCAmelCase__ = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , )
UpperCAmelCase__ = LDMPipeline(snake_case__ , snake_case__ , snake_case__ )
pipeline.save_pretrained(snake_case__ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--checkpoint_path''', type=str, required=True)
parser.add_argument('''--config_path''', type=str, required=True)
parser.add_argument('''--output_path''', type=str, required=True)
_UpperCamelCase = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 335 | 0 |
from __future__ import annotations
_UpperCamelCase = "#"
class lowercase :
'''simple docstring'''
def __init__(self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = {}
def UpperCamelCase__ (self , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self._trie
for char in text:
if char not in trie:
UpperCAmelCase__ = {}
UpperCAmelCase__ = trie[char]
UpperCAmelCase__ = True
def UpperCamelCase__ (self , __a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self._trie
for char in prefix:
if char in trie:
UpperCAmelCase__ = trie[char]
else:
return []
return self._elements(a_ )
def UpperCamelCase__ (self , __a ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = []
for c, v in d.items():
UpperCAmelCase__ = [' '] if c == END else [(c + s) for s in self._elements(a_ )]
result.extend(a_ )
return tuple(a_ )
_UpperCamelCase = Trie()
_UpperCamelCase = ("depart", "detergent", "daring", "dog", "deer", "deal")
for word in words:
trie.insert_word(word)
def UpperCamelCase_( snake_case__: str ) -> tuple:
UpperCAmelCase__ = trie.find_word(_UpperCamelCase )
return tuple(string + word for word in suffixes )
def UpperCamelCase_( ) -> None:
print(autocomplete_using_trie('de' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 359 |
# flake8: noqa
# Lint as: python3
_UpperCamelCase = [
'''VerificationMode''',
'''Version''',
'''disable_progress_bar''',
'''enable_progress_bar''',
'''is_progress_bar_enabled''',
'''experimental''',
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 335 | 0 |
import argparse
import os
import re
import tensorflow as tf
import torch
from transformers import BertConfig, BertModel
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: List[str] , snake_case__: List[Any] ) -> List[str]:
UpperCAmelCase__ = os.path.abspath(lowerCAmelCase__ )
logger.info(f"Converting TensorFlow checkpoint from {tf_path}" )
# Load weights from TF model
UpperCAmelCase__ = tf.train.list_variables(lowerCAmelCase__ )
UpperCAmelCase__ = []
UpperCAmelCase__ = []
UpperCAmelCase__ = []
for full_name, shape in init_vars:
# logger.info(f"Loading TF weight {name} with shape {shape}")
UpperCAmelCase__ = full_name.split('/' )
if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]:
logger.info(f"Skipping non-model layer {full_name}" )
continue
if "optimizer" in full_name:
logger.info(f"Skipping optimization layer {full_name}" )
continue
if name[0] == "model":
# ignore initial 'model'
UpperCAmelCase__ = name[1:]
# figure out how many levels deep the name is
UpperCAmelCase__ = 0
for _name in name:
if _name.startswith('layer_with_weights' ):
depth += 1
else:
break
layer_depth.append(lowerCAmelCase__ )
# read data
UpperCAmelCase__ = tf.train.load_variable(lowerCAmelCase__ , lowerCAmelCase__ )
names.append('/'.join(lowerCAmelCase__ ) )
arrays.append(lowerCAmelCase__ )
logger.info(f"Read a total of {len(lowerCAmelCase__ ):,} layers" )
# Sanity check
if len(set(lowerCAmelCase__ ) ) != 1:
raise ValueError(f"Found layer names with different depths (layer depth {list(set(lowerCAmelCase__ ) )})" )
UpperCAmelCase__ = list(set(lowerCAmelCase__ ) )[0]
if layer_depth != 1:
raise ValueError(
'The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP'
' heads.' )
# convert layers
logger.info('Converting weights...' )
for full_name, array in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase__ = full_name.split('/' )
UpperCAmelCase__ = model
UpperCAmelCase__ = []
for i, m_name in enumerate(lowerCAmelCase__ ):
if m_name == ".ATTRIBUTES":
# variable names end with .ATTRIBUTES/VARIABLE_VALUE
break
if m_name.startswith('layer_with_weights' ):
UpperCAmelCase__ = int(m_name.split('-' )[-1] )
if layer_num <= 2:
# embedding layers
# layer_num 0: word_embeddings
# layer_num 1: position_embeddings
# layer_num 2: token_type_embeddings
continue
elif layer_num == 3:
# embedding LayerNorm
trace.extend(['embeddings', 'LayerNorm'] )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'embeddings' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'LayerNorm' )
elif layer_num > 3 and layer_num < config.num_hidden_layers + 4:
# encoder layers
trace.extend(['encoder', 'layer', str(layer_num - 4 )] )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'encoder' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'layer' )
UpperCAmelCase__ = pointer[layer_num - 4]
elif layer_num == config.num_hidden_layers + 4:
# pooler layer
trace.extend(['pooler', 'dense'] )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'pooler' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'dense' )
elif m_name == "embeddings":
trace.append('embeddings' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'embeddings' )
if layer_num == 0:
trace.append('word_embeddings' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'word_embeddings' )
elif layer_num == 1:
trace.append('position_embeddings' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'position_embeddings' )
elif layer_num == 2:
trace.append('token_type_embeddings' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'token_type_embeddings' )
else:
raise ValueError(f"Unknown embedding layer with name {full_name}" )
trace.append('weight' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'weight' )
elif m_name == "_attention_layer":
# self-attention layer
trace.extend(['attention', 'self'] )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'attention' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'self' )
elif m_name == "_attention_layer_norm":
# output attention norm
trace.extend(['attention', 'output', 'LayerNorm'] )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'attention' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'output' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'LayerNorm' )
elif m_name == "_attention_output_dense":
# output attention dense
trace.extend(['attention', 'output', 'dense'] )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'attention' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'output' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'dense' )
elif m_name == "_output_dense":
# output dense
trace.extend(['output', 'dense'] )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'output' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'dense' )
elif m_name == "_output_layer_norm":
# output dense
trace.extend(['output', 'LayerNorm'] )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'output' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'LayerNorm' )
elif m_name == "_key_dense":
# attention key
trace.append('key' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'key' )
elif m_name == "_query_dense":
# attention query
trace.append('query' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'query' )
elif m_name == "_value_dense":
# attention value
trace.append('value' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'value' )
elif m_name == "_intermediate_dense":
# attention intermediate dense
trace.extend(['intermediate', 'dense'] )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'intermediate' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'dense' )
elif m_name == "_output_layer_norm":
# output layer norm
trace.append('output' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'output' )
# weights & biases
elif m_name in ["bias", "beta"]:
trace.append('bias' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'bias' )
elif m_name in ["kernel", "gamma"]:
trace.append('weight' )
UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'weight' )
else:
logger.warning(f"Ignored {m_name}" )
# for certain layers reshape is necessary
UpperCAmelCase__ = '.'.join(lowerCAmelCase__ )
if re.match(r'(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)' , lowerCAmelCase__ ) or re.match(
r'(\S+)\.attention\.output\.dense\.weight' , lowerCAmelCase__ ):
UpperCAmelCase__ = array.reshape(pointer.data.shape )
if "kernel" in full_name:
UpperCAmelCase__ = array.transpose()
if pointer.shape == array.shape:
UpperCAmelCase__ = torch.from_numpy(lowerCAmelCase__ )
else:
raise ValueError(
f"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:"
f" {array.shape}" )
logger.info(f"Successfully set variable {full_name} to PyTorch layer {trace}" )
return model
def UpperCamelCase_( snake_case__: List[Any] , snake_case__: Optional[Any] , snake_case__: Optional[Any] ) -> Optional[Any]:
logger.info(f"Loading model based on config from {config_path}..." )
UpperCAmelCase__ = BertConfig.from_json_file(lowerCAmelCase__ )
UpperCAmelCase__ = BertModel(lowerCAmelCase__ )
# Load weights from checkpoint
logger.info(f"Loading weights from checkpoint {tf_checkpoint_path}..." )
load_tfa_weights_in_bert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model
logger.info(f"Saving PyTorch model to {pytorch_dump_path}..." )
torch.save(model.state_dict() , lowerCAmelCase__ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument(
'''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.'''
)
parser.add_argument(
'''--bert_config_file''',
type=str,
required=True,
help='''The config json file corresponding to the BERT model. This specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''',
type=str,
required=True,
help='''Path to the output PyTorch model (must include filename).''',
)
_UpperCamelCase = parser.parse_args()
convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 360 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """sew-d"""
def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str:
"""simple docstring"""
super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a )
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = feat_extract_norm
UpperCAmelCase__ = feat_extract_activation
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = conv_bias
UpperCAmelCase__ = num_conv_pos_embeddings
UpperCAmelCase__ = num_conv_pos_embedding_groups
UpperCAmelCase__ = len(self.conv_dim )
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = squeeze_factor
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = position_buckets
UpperCAmelCase__ = share_att_key
UpperCAmelCase__ = relative_attention
UpperCAmelCase__ = norm_rel_ebd
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_dropout
UpperCAmelCase__ = attention_dropout
UpperCAmelCase__ = activation_dropout
UpperCAmelCase__ = feat_proj_dropout
UpperCAmelCase__ = final_dropout
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = feature_layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"
F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase__ = apply_spec_augment
UpperCAmelCase__ = mask_time_prob
UpperCAmelCase__ = mask_time_length
UpperCAmelCase__ = mask_time_min_masks
UpperCAmelCase__ = mask_feature_prob
UpperCAmelCase__ = mask_feature_length
UpperCAmelCase__ = mask_feature_min_masks
# ctc loss
UpperCAmelCase__ = ctc_loss_reduction
UpperCAmelCase__ = ctc_zero_infinity
# sequence classification
UpperCAmelCase__ = use_weighted_layer_sum
UpperCAmelCase__ = classifier_proj_size
@property
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 335 | 0 |
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import torch
class lowercase ( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ):
'''simple docstring'''
def __init__(self , __a=None , **__a ) -> Tuple:
"""simple docstring"""
super().__init__(features=_snake_case )
UpperCAmelCase__ = torch_tensor_kwargs
import torch # noqa import torch at initialization
def UpperCamelCase__ (self , __a ) -> Dict:
"""simple docstring"""
import torch
if isinstance(_snake_case , _snake_case ) and column:
if all(
isinstance(_snake_case , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype
for x in column ):
return torch.stack(_snake_case )
return column
def UpperCamelCase__ (self , __a ) -> List[Any]:
"""simple docstring"""
import torch
if isinstance(_snake_case , (str, bytes, type(_snake_case )) ):
return value
elif isinstance(_snake_case , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
UpperCAmelCase__ = {}
if isinstance(_snake_case , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
UpperCAmelCase__ = {'dtype': torch.intaa}
elif isinstance(_snake_case , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
UpperCAmelCase__ = {'dtype': torch.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(_snake_case , PIL.Image.Image ):
UpperCAmelCase__ = np.asarray(_snake_case )
return torch.tensor(_snake_case , **{**default_dtype, **self.torch_tensor_kwargs} )
def UpperCamelCase__ (self , __a ) -> int:
"""simple docstring"""
import torch
# support for torch, tf, jax etc.
if hasattr(_snake_case , '__array__' ) and not isinstance(_snake_case , torch.Tensor ):
UpperCAmelCase__ = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(_snake_case , np.ndarray ):
if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(_snake_case ) for substruct in data_struct] )
elif isinstance(_snake_case , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(_snake_case ) for substruct in data_struct] )
return self._tensorize(_snake_case )
def UpperCamelCase__ (self , __a ) -> List[str]:
"""simple docstring"""
return map_nested(self._recursive_tensorize , _snake_case , map_list=_snake_case )
def UpperCamelCase__ (self , __a ) -> Mapping:
"""simple docstring"""
UpperCAmelCase__ = self.numpy_arrow_extractor().extract_row(_snake_case )
UpperCAmelCase__ = self.python_features_decoder.decode_row(_snake_case )
return self.recursive_tensorize(_snake_case )
def UpperCamelCase__ (self , __a ) -> "torch.Tensor":
"""simple docstring"""
UpperCAmelCase__ = self.numpy_arrow_extractor().extract_column(_snake_case )
UpperCAmelCase__ = self.python_features_decoder.decode_column(_snake_case , pa_table.column_names[0] )
UpperCAmelCase__ = self.recursive_tensorize(_snake_case )
UpperCAmelCase__ = self._consolidate(_snake_case )
return column
def UpperCamelCase__ (self , __a ) -> Mapping:
"""simple docstring"""
UpperCAmelCase__ = self.numpy_arrow_extractor().extract_batch(_snake_case )
UpperCAmelCase__ = self.python_features_decoder.decode_batch(_snake_case )
UpperCAmelCase__ = self.recursive_tensorize(_snake_case )
for column_name in batch:
UpperCAmelCase__ = self._consolidate(batch[column_name] )
return batch
| 361 |
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
_UpperCamelCase = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
['''memory_attention''', '''encoder_attn'''],
['''attention''', '''attn'''],
['''/''', '''.'''],
['''.LayerNorm.gamma''', '''_layer_norm.weight'''],
['''.LayerNorm.beta''', '''_layer_norm.bias'''],
['''r.layer_''', '''r.layers.'''],
['''output_proj''', '''out_proj'''],
['''ffn.dense_1.''', '''fc2.'''],
['''ffn.dense.''', '''fc1.'''],
['''ffn_layer_norm''', '''final_layer_norm'''],
['''kernel''', '''weight'''],
['''encoder_layer_norm.''', '''encoder.layer_norm.'''],
['''decoder_layer_norm.''', '''decoder.layer_norm.'''],
['''embeddings.weights''', '''shared.weight'''],
]
def UpperCamelCase_( snake_case__: int ) -> str:
for pegasus_name, hf_name in PATTERNS:
UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ )
return k
def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration:
UpperCAmelCase__ = DEFAULTS.copy()
cfg_kwargs.update(snake_case__ )
UpperCAmelCase__ = PegasusConfig(**snake_case__ )
UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ )
UpperCAmelCase__ = torch_model.model.state_dict()
UpperCAmelCase__ = {}
for k, v in tf_weights.items():
UpperCAmelCase__ = rename_state_dict_key(snake_case__ )
if new_k not in sd:
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" )
if "dense" in k or "proj" in new_k:
UpperCAmelCase__ = v.T
UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}"
# make sure embedding.padding_idx is respected
UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] )
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping}
mapping.update(**snake_case__ )
UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ )
UpperCAmelCase__ = [
k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight']
]
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
assert extra == [], f"no matches found for the following tf keys {extra}"
return torch_model
def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
UpperCAmelCase__ = tf.train.list_variables(snake_case__ )
UpperCAmelCase__ = {}
UpperCAmelCase__ = ['Adafactor', 'global_step']
for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ):
UpperCAmelCase__ = any(pat in name for pat in ignore_name )
if skip_key:
continue
UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ )
UpperCAmelCase__ = array
return tf_weights
def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]:
# save tokenizer first
UpperCAmelCase__ = Path(snake_case__ ).parent.name
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings']
UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(snake_case__ )
# convert model
UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ )
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]
if dataset == "large":
UpperCAmelCase__ = task_specific_params
UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ )
torch_model.save_pretrained(snake_case__ )
UpperCAmelCase__ = torch_model.state_dict()
sd.pop('model.decoder.embed_positions.weight' )
sd.pop('model.encoder.embed_positions.weight' )
torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''')
parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
if args.save_dir is None:
_UpperCamelCase = Path(args.tf_ckpt_path).parent.name
_UpperCamelCase = os.path.join('''pegasus''', dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 335 | 0 |
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def UpperCamelCase_( snake_case__: List[Any]=None ) -> Optional[int]:
if subparsers is not None:
UpperCAmelCase__ = subparsers.add_parser('test' )
else:
UpperCAmelCase__ = argparse.ArgumentParser('Accelerate test command' )
parser.add_argument(
'--config_file' , default=lowercase_ , help=(
'The path to use to store the config file. Will default to a file named default_config.yaml in the cache '
'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '
'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '
'with \'huggingface\'.'
) , )
if subparsers is not None:
parser.set_defaults(func=lowercase_ )
return parser
def UpperCamelCase_( snake_case__: List[Any] ) -> int:
UpperCAmelCase__ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] )
if args.config_file is None:
UpperCAmelCase__ = script_name
else:
UpperCAmelCase__ = f"--config_file={args.config_file} {script_name}"
UpperCAmelCase__ = ['accelerate-launch'] + test_args.split()
UpperCAmelCase__ = execute_subprocess_async(lowercase_ , env=os.environ.copy() )
if result.returncode == 0:
print('Test is a success! You are ready for your distributed training!' )
def UpperCamelCase_( ) -> List[str]:
UpperCAmelCase__ = test_command_parser()
UpperCAmelCase__ = parser.parse_args()
test_command(lowercase_ )
if __name__ == "__main__":
main()
| 362 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = 13
UpperCAmelCase__ = 7
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = 99
UpperCAmelCase__ = 384
UpperCAmelCase__ = 2
UpperCAmelCase__ = 4
UpperCAmelCase__ = 37
UpperCAmelCase__ = 'gelu'
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 512
UpperCAmelCase__ = 16
UpperCAmelCase__ = 2
UpperCAmelCase__ = 0.02
UpperCAmelCase__ = 3
UpperCAmelCase__ = 4
UpperCAmelCase__ = 128
UpperCAmelCase__ = 2
UpperCAmelCase__ = 9
UpperCAmelCase__ = 1
UpperCAmelCase__ = None
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_input_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel(config=__a )
UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
UpperCAmelCase__ = [input_ids, input_mask]
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.num_choices
UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
__SCREAMING_SNAKE_CASE = (
{
"""feature-extraction""": TFConvBertModel,
"""fill-mask""": TFConvBertForMaskedLM,
"""question-answering""": TFConvBertForQuestionAnswering,
"""text-classification""": TFConvBertForSequenceClassification,
"""token-classification""": TFConvBertForTokenClassification,
"""zero-shot""": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__a )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
UpperCAmelCase__ = True
if hasattr(__a , 'use_cache' ):
UpperCAmelCase__ = True
UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = self._prepare_for_class(__a , __a )
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = len(model(__a ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__a , saved_model=__a )
UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' )
UpperCAmelCase__ = tf.keras.models.load_model(__a )
UpperCAmelCase__ = model(__a )
if self.is_encoder_decoder:
UpperCAmelCase__ = outputs['encoder_hidden_states']
UpperCAmelCase__ = outputs['encoder_attentions']
else:
UpperCAmelCase__ = outputs['hidden_states']
UpperCAmelCase__ = outputs['attentions']
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
def check_decoder_attentions_output(__a ):
UpperCAmelCase__ = len(__a )
self.assertEqual(out_len % 2 , 0 )
UpperCAmelCase__ = outputs.decoder_attentions
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(__a ):
UpperCAmelCase__ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = len(__a )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
if self.is_encoder_decoder:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_decoder_attentions_output(__a )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) )
self.assertEqual(model.config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
@require_tf
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase__ = model(__a )[0]
UpperCAmelCase__ = [1, 6, 768]
self.assertEqual(output.shape , __a )
UpperCAmelCase__ = tf.constant(
[
[
[-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32],
[0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24],
[0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
| 335 | 0 |
import time
from dataclasses import dataclass
from multiprocessing import Pool
from unittest import TestCase
from unittest.mock import patch
import multiprocess
import numpy as np
import pytest
from datasets.utils.py_utils import (
NestedDataStructure,
asdict,
iflatmap_unordered,
map_nested,
temp_seed,
temporary_assignment,
zip_dict,
)
from .utils import require_tf, require_torch
def UpperCamelCase_( snake_case__: List[Any] ) -> Optional[Any]: # picklable for multiprocessing
return x.sum()
def UpperCamelCase_( snake_case__: str ) -> Optional[Any]: # picklable for multiprocessing
return i + 1
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = {}
UpperCAmelCase__ = []
UpperCAmelCase__ = 1
UpperCAmelCase__ = [1, 2]
UpperCAmelCase__ = {'a': 1, 'b': 2}
UpperCAmelCase__ = {'a': [1, 2], 'b': [3, 4]}
UpperCAmelCase__ = {'a': {'1': 1}, 'b': 2}
UpperCAmelCase__ = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
UpperCAmelCase__ = {}
UpperCAmelCase__ = []
UpperCAmelCase__ = 2
UpperCAmelCase__ = [2, 3]
UpperCAmelCase__ = {'a': 2, 'b': 3}
UpperCAmelCase__ = {'a': [2, 3], 'b': [4, 5]}
UpperCAmelCase__ = {'a': {'1': 2}, 'b': 3}
UpperCAmelCase__ = {'a': 2, 'b': 3, 'c': 4, 'd': 5}
self.assertEqual(map_nested(_a , _a ) , _a )
self.assertEqual(map_nested(_a , _a ) , _a )
self.assertEqual(map_nested(_a , _a ) , _a )
self.assertEqual(map_nested(_a , _a ) , _a )
self.assertEqual(map_nested(_a , _a ) , _a )
self.assertEqual(map_nested(_a , _a ) , _a )
self.assertEqual(map_nested(_a , _a ) , _a )
self.assertEqual(map_nested(_a , _a ) , _a )
UpperCAmelCase__ = 2
self.assertEqual(map_nested(_a , _a , num_proc=_a ) , _a )
self.assertEqual(map_nested(_a , _a , num_proc=_a ) , _a )
self.assertEqual(map_nested(_a , _a , num_proc=_a ) , _a )
self.assertEqual(map_nested(_a , _a , num_proc=_a ) , _a )
self.assertEqual(map_nested(_a , _a , num_proc=_a ) , _a )
self.assertEqual(map_nested(_a , _a , num_proc=_a ) , _a )
self.assertEqual(map_nested(_a , _a , num_proc=_a ) , _a )
self.assertEqual(map_nested(_a , _a , num_proc=_a ) , _a )
UpperCAmelCase__ = {'a': np.eye(2 ), 'b': np.zeros(3 ), 'c': np.ones(2 )}
UpperCAmelCase__ = {'a': 2, 'b': 0, 'c': 2}
UpperCAmelCase__ = {
'a': np.eye(2 ).astype(_a ),
'b': np.zeros(3 ).astype(_a ),
'c': np.ones(2 ).astype(_a ),
}
self.assertEqual(map_nested(_a , _a , map_numpy=_a ) , _a )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(_a , _a , map_numpy=_a ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
self.assertEqual(map_nested(_a , _a , map_numpy=_a , num_proc=_a ) , _a )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(_a , _a , map_numpy=_a , num_proc=_a ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
with self.assertRaises(_a ): # can't pickle a local lambda
map_nested(lambda __a : x + 1 , _a , num_proc=_a )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = {'a': 1, 'b': 2}
UpperCAmelCase__ = {'a': 3, 'b': 4}
UpperCAmelCase__ = {'a': 5, 'b': 6}
UpperCAmelCase__ = sorted([('a', (1, 3, 5)), ('b', (2, 4, 6))] )
self.assertEqual(sorted(zip_dict(_a , _a , _a ) ) , _a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = '''bar'''
UpperCAmelCase__ = Foo()
self.assertEqual(foo.my_attr , 'bar' )
with temporary_assignment(_a , 'my_attr' , 'BAR' ):
self.assertEqual(foo.my_attr , 'BAR' )
self.assertEqual(foo.my_attr , 'bar' )
@pytest.mark.parametrize(
'iterable_length, num_proc, expected_num_proc' , [
(1, None, 1),
(1, 1, 1),
(2, None, 1),
(2, 1, 1),
(2, 2, 1),
(2, 3, 1),
(3, 2, 1),
(16, 16, 16),
(16, 17, 16),
(17, 16, 16),
] , )
def UpperCamelCase_( snake_case__: List[str] , snake_case__: str , snake_case__: Dict ) -> Optional[Any]:
with patch('datasets.utils.py_utils._single_map_nested' ) as mock_single_map_nested, patch(
'datasets.parallel.parallel.Pool' ) as mock_multiprocessing_pool:
UpperCAmelCase__ = {f"{i}": i for i in range(UpperCamelCase__ )}
UpperCAmelCase__ = map_nested(lambda snake_case__ : x + 10 , UpperCamelCase__ , num_proc=UpperCamelCase__ , parallel_min_length=16 )
if expected_num_proc == 1:
assert mock_single_map_nested.called
assert not mock_multiprocessing_pool.called
else:
assert not mock_single_map_nested.called
assert mock_multiprocessing_pool.called
assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
@require_tf
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
import tensorflow as tf
from tensorflow.keras import layers
UpperCAmelCase__ = layers.Dense(2 )
def gen_random_output():
UpperCAmelCase__ = tf.random.uniform((1, 3) )
return model(_a ).numpy()
with temp_seed(42 , set_tensorflow=_a ):
UpperCAmelCase__ = gen_random_output()
with temp_seed(42 , set_tensorflow=_a ):
UpperCAmelCase__ = gen_random_output()
UpperCAmelCase__ = gen_random_output()
np.testing.assert_equal(_a , _a )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@require_torch
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
import torch
def gen_random_output():
UpperCAmelCase__ = torch.nn.Linear(3 , 2 )
UpperCAmelCase__ = torch.rand(1 , 3 )
return model(_a ).detach().numpy()
with temp_seed(42 , set_pytorch=_a ):
UpperCAmelCase__ = gen_random_output()
with temp_seed(42 , set_pytorch=_a ):
UpperCAmelCase__ = gen_random_output()
UpperCAmelCase__ = gen_random_output()
np.testing.assert_equal(_a , _a )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
def gen_random_output():
return np.random.rand(1 , 3 )
with temp_seed(42 ):
UpperCAmelCase__ = gen_random_output()
with temp_seed(42 ):
UpperCAmelCase__ = gen_random_output()
UpperCAmelCase__ = gen_random_output()
np.testing.assert_equal(_a , _a )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@pytest.mark.parametrize('input_data' , [{}] )
def UpperCamelCase_( snake_case__: Any ) -> List[str]:
UpperCAmelCase__ = NestedDataStructure(UpperCamelCase__ ).data
assert output_data == input_data
@pytest.mark.parametrize(
'data, expected_output' , [
({}, []),
([], []),
('foo', ['foo']),
(['foo', 'bar'], ['foo', 'bar']),
([['foo', 'bar']], ['foo', 'bar']),
([[['foo'], ['bar']]], ['foo', 'bar']),
([[['foo'], 'bar']], ['foo', 'bar']),
({'a': 1, 'b': 2}, [1, 2]),
({'a': [1, 2], 'b': [3, 4]}, [1, 2, 3, 4]),
({'a': [[1, 2]], 'b': [[3, 4]]}, [1, 2, 3, 4]),
({'a': [[1, 2]], 'b': [3, 4]}, [1, 2, 3, 4]),
({'a': [[[1], [2]]], 'b': [[[3], [4]]]}, [1, 2, 3, 4]),
({'a': [[[1], [2]]], 'b': [[3, 4]]}, [1, 2, 3, 4]),
({'a': [[[1], [2]]], 'b': [3, 4]}, [1, 2, 3, 4]),
({'a': [[[1], [2]]], 'b': [3, [4]]}, [1, 2, 3, 4]),
({'a': {'1': 1}, 'b': 2}, [1, 2]),
({'a': {'1': [1]}, 'b': 2}, [1, 2]),
({'a': {'1': [1]}, 'b': [2]}, [1, 2]),
] , )
def UpperCamelCase_( snake_case__: int , snake_case__: Dict ) -> str:
UpperCAmelCase__ = NestedDataStructure(UpperCamelCase__ ).flatten()
assert output == expected_output
def UpperCamelCase_( ) -> Optional[int]:
UpperCAmelCase__ = A(x=1 , y='foobar' )
UpperCAmelCase__ = {'x': 1, 'y': 'foobar'}
assert asdict(UpperCamelCase__ ) == expected_output
UpperCAmelCase__ = {'a': {'b': A(x=10 , y='foo' )}, 'c': [A(x=20 , y='bar' )]}
UpperCAmelCase__ = {'a': {'b': {'x': 10, 'y': 'foo'}}, 'c': [{'x': 20, 'y': 'bar'}]}
assert asdict(UpperCamelCase__ ) == expected_output
with pytest.raises(UpperCamelCase__ ):
asdict([1, A(x=10 , y='foo' )] )
def UpperCamelCase_( snake_case__: str ) -> Union[str, Any]:
return text.split()
def UpperCamelCase_( snake_case__: List[Any] ) -> List[Any]:
yield (time.time(), content)
time.sleep(2 )
yield (time.time(), content)
def UpperCamelCase_( ) -> Optional[int]:
with Pool(2 ) as pool:
UpperCAmelCase__ = list(iflatmap_unordered(UpperCamelCase__ , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) )
assert out.count('hello' ) == 10
assert out.count('there' ) == 10
assert len(UpperCamelCase__ ) == 20
# check multiprocess from pathos (uses dill for pickling)
with multiprocess.Pool(2 ) as pool:
UpperCAmelCase__ = list(iflatmap_unordered(UpperCamelCase__ , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) )
assert out.count('hello' ) == 10
assert out.count('there' ) == 10
assert len(UpperCamelCase__ ) == 20
# check that we get items as fast as possible
with Pool(2 ) as pool:
UpperCAmelCase__ = []
for yield_time, content in iflatmap_unordered(
UpperCamelCase__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'content': 'a'}, {'content': 'b'}] ):
assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded"
out.append(UpperCamelCase__ )
assert out.count('a' ) == 2
assert out.count('b' ) == 2
assert len(UpperCamelCase__ ) == 4
| 363 |
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING
_UpperCamelCase = logging.get_logger(__name__)
@add_end_docstrings(_UpperCamelCase )
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , **__a ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**__a )
requires_backends(self , 'vision' )
requires_backends(self , 'torch' )
if self.framework != "pt":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
self.check_model_type(__a )
def UpperCamelCase__ (self , **__a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
# preprocess args
if "points_per_batch" in kwargs:
UpperCAmelCase__ = kwargs['points_per_batch']
if "points_per_crop" in kwargs:
UpperCAmelCase__ = kwargs['points_per_crop']
if "crops_n_layers" in kwargs:
UpperCAmelCase__ = kwargs['crops_n_layers']
if "crop_overlap_ratio" in kwargs:
UpperCAmelCase__ = kwargs['crop_overlap_ratio']
if "crop_n_points_downscale_factor" in kwargs:
UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor']
# postprocess args
if "pred_iou_thresh" in kwargs:
UpperCAmelCase__ = kwargs['pred_iou_thresh']
if "stability_score_offset" in kwargs:
UpperCAmelCase__ = kwargs['stability_score_offset']
if "mask_threshold" in kwargs:
UpperCAmelCase__ = kwargs['mask_threshold']
if "stability_score_thresh" in kwargs:
UpperCAmelCase__ = kwargs['stability_score_thresh']
if "crops_nms_thresh" in kwargs:
UpperCAmelCase__ = kwargs['crops_nms_thresh']
if "output_rle_mask" in kwargs:
UpperCAmelCase__ = kwargs['output_rle_mask']
if "output_bboxes_mask" in kwargs:
UpperCAmelCase__ = kwargs['output_bboxes_mask']
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]:
"""simple docstring"""
return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a )
def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = load_image(__a )
UpperCAmelCase__ = self.image_processor.size['longest_edge']
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes(
__a , __a , __a , __a , __a , __a )
UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' )
with self.device_placement():
if self.framework == "pt":
UpperCAmelCase__ = self.get_inference_context()
with inference_context():
UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device )
UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) )
UpperCAmelCase__ = image_embeddings
UpperCAmelCase__ = grid_points.shape[1]
UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. '
'To return all points at once, set points_per_batch to None' )
for i in range(0 , __a , __a ):
UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :]
UpperCAmelCase__ = input_labels[:, i : i + points_per_batch]
UpperCAmelCase__ = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = model_inputs.pop('input_boxes' )
UpperCAmelCase__ = model_inputs.pop('is_last' )
UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist()
UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist()
UpperCAmelCase__ = self.model(**__a )
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
UpperCAmelCase__ = model_outputs['pred_masks']
UpperCAmelCase__ = self.image_processor.post_process_masks(
__a , __a , __a , __a , binarize=__a )
UpperCAmelCase__ = model_outputs['iou_scores']
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks(
masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , )
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = []
UpperCAmelCase__ = []
for model_output in model_outputs:
all_scores.append(model_output.pop('iou_scores' ) )
all_masks.extend(model_output.pop('masks' ) )
all_boxes.append(model_output.pop('boxes' ) )
UpperCAmelCase__ = torch.cat(__a )
UpperCAmelCase__ = torch.cat(__a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation(
__a , __a , __a , __a )
UpperCAmelCase__ = defaultdict(__a )
for output in model_outputs:
for k, v in output.items():
extra[k].append(__a )
UpperCAmelCase__ = {}
if output_rle_mask:
UpperCAmelCase__ = rle_mask
if output_bboxes_mask:
UpperCAmelCase__ = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| 335 | 0 |
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def UpperCamelCase_( snake_case__: Optional[int] ) -> Union[str, Any]:
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0X4E00 and cp <= 0X9FFF)
or (cp >= 0X3400 and cp <= 0X4DBF) #
or (cp >= 0X20000 and cp <= 0X2A6DF) #
or (cp >= 0X2A700 and cp <= 0X2B73F) #
or (cp >= 0X2B740 and cp <= 0X2B81F) #
or (cp >= 0X2B820 and cp <= 0X2CEAF) #
or (cp >= 0XF900 and cp <= 0XFAFF)
or (cp >= 0X2F800 and cp <= 0X2FA1F) #
): #
return True
return False
def UpperCamelCase_( snake_case__: str ) -> str:
# word like '180' or '身高' or '神'
for char in word:
UpperCAmelCase__ = ord(_a )
if not _is_chinese_char(_a ):
return 0
return 1
def UpperCamelCase_( snake_case__: List[str] ) -> int:
UpperCAmelCase__ = set()
for token in tokens:
UpperCAmelCase__ = len(_a ) > 1 and is_chinese(_a )
if chinese_word:
word_set.add(_a )
UpperCAmelCase__ = list(_a )
return word_list
def UpperCamelCase_( snake_case__: List[str] , snake_case__: set() ) -> List[str]:
if not chinese_word_set:
return bert_tokens
UpperCAmelCase__ = max([len(_a ) for w in chinese_word_set] )
UpperCAmelCase__ = bert_tokens
UpperCAmelCase__ = 0, len(_a )
while start < end:
UpperCAmelCase__ = True
if is_chinese(bert_word[start] ):
UpperCAmelCase__ = min(end - start , _a )
for i in range(_a , 1 , -1 ):
UpperCAmelCase__ = "".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
UpperCAmelCase__ = "##" + bert_word[j]
UpperCAmelCase__ = start + i
UpperCAmelCase__ = False
break
if single_word:
start += 1
return bert_word
def UpperCamelCase_( snake_case__: List[str] , snake_case__: LTP , snake_case__: BertTokenizer ) -> Optional[Any]:
UpperCAmelCase__ = []
for i in range(0 , len(_a ) , 1_00 ):
UpperCAmelCase__ = ltp_tokenizer.seg(lines[i : i + 1_00] )[0]
UpperCAmelCase__ = [get_chinese_word(_a ) for r in res]
ltp_res.extend(_a )
assert len(_a ) == len(_a )
UpperCAmelCase__ = []
for i in range(0 , len(_a ) , 1_00 ):
UpperCAmelCase__ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=_a , truncation=_a , max_length=5_12 )
bert_res.extend(res['input_ids'] )
assert len(_a ) == len(_a )
UpperCAmelCase__ = []
for input_ids, chinese_word in zip(_a , _a ):
UpperCAmelCase__ = []
for id in input_ids:
UpperCAmelCase__ = bert_tokenizer._convert_id_to_token(_a )
input_tokens.append(_a )
UpperCAmelCase__ = add_sub_symbol(_a , _a )
UpperCAmelCase__ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_a ):
if token[:2] == "##":
UpperCAmelCase__ = token[2:]
# save chinese tokens' pos
if len(_a ) == 1 and _is_chinese_char(ord(_a ) ):
ref_id.append(_a )
ref_ids.append(_a )
assert len(_a ) == len(_a )
return ref_ids
def UpperCamelCase_( snake_case__: int ) -> str:
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , 'r' , encoding='utf-8' ) as f:
UpperCAmelCase__ = f.readlines()
UpperCAmelCase__ = [line.strip() for line in data if len(_a ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
UpperCAmelCase__ = LTP(args.ltp ) # faster in GPU device
UpperCAmelCase__ = BertTokenizer.from_pretrained(args.bert )
UpperCAmelCase__ = prepare_ref(_a , _a , _a )
with open(args.save_path , 'w' , encoding='utf-8' ) as f:
UpperCAmelCase__ = [json.dumps(_a ) + "\n" for ref in ref_ids]
f.writelines(_a )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path'''
)
parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''')
parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''')
_UpperCamelCase = parser.parse_args()
main(args)
| 364 |
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} )
__SCREAMING_SNAKE_CASE = field(
default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} )
__SCREAMING_SNAKE_CASE = field(
default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} )
__SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} )
__SCREAMING_SNAKE_CASE = field(
default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} )
__SCREAMING_SNAKE_CASE = field(
default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} )
__SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} )
__SCREAMING_SNAKE_CASE = field(
default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} )
__SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} )
__SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} )
__SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} )
__SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} )
__SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} )
__SCREAMING_SNAKE_CASE = field(
default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={
"""help""": (
"""Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive"""
""" number corresponds to which GPU device id to run on."""
)
} , )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={
"""help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available."""
} , )
__SCREAMING_SNAKE_CASE = field(
default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} )
__SCREAMING_SNAKE_CASE = field(
default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} )
__SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} )
__SCREAMING_SNAKE_CASE = field(
default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} )
__SCREAMING_SNAKE_CASE = field(
default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} )
__SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(
default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} )
__SCREAMING_SNAKE_CASE = field(
default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} )
__SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
| 335 | 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = "▁"
_UpperCamelCase = {"vocab_file": "sentencepiece.bpe.model"}
_UpperCamelCase = {
"vocab_file": {
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model",
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model",
"xlm-roberta-large-finetuned-conll02-dutch": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll02-spanish": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll03-english": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll03-german": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model"
),
}
}
_UpperCamelCase = {
"xlm-roberta-base": 512,
"xlm-roberta-large": 512,
"xlm-roberta-large-finetuned-conll02-dutch": 512,
"xlm-roberta-large-finetuned-conll02-spanish": 512,
"xlm-roberta-large-finetuned-conll03-english": 512,
"xlm-roberta-large-finetuned-conll03-german": 512,
}
class lowercase ( snake_case__ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""]
def __init__(self , __a , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a = None , **__a , ) -> int:
"""simple docstring"""
UpperCAmelCase__ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token
UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(UpperCAmelCase_ ) )
UpperCAmelCase__ = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
UpperCAmelCase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
UpperCAmelCase__ = 1
UpperCAmelCase__ = len(self.sp_model ) + self.fairseq_offset
UpperCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__(self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self.__dict__.copy()
UpperCAmelCase__ = None
UpperCAmelCase__ = self.sp_model.serialized_model_proto()
return state
def __setstate__(self , __a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
UpperCAmelCase__ = {}
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def UpperCamelCase__ (self , __a , __a = None ) -> Optional[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
UpperCAmelCase__ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCamelCase__ (self , __a , __a = None , __a = False ) -> Any:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] + ([0] * len(UpperCAmelCase_ )) + [1]
def UpperCamelCase__ (self , __a , __a = None ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase__ (self , __a ) -> Optional[Any]:
"""simple docstring"""
return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
def UpperCamelCase__ (self , __a ) -> Dict:
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
UpperCAmelCase__ = self.sp_model.PieceToId(UpperCAmelCase_ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def UpperCamelCase__ (self , __a ) -> Any:
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCamelCase__ (self , __a ) -> int:
"""simple docstring"""
UpperCAmelCase__ = "".join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , ' ' ).strip()
return out_string
def UpperCamelCase__ (self , __a , __a = None ) -> Optional[Any]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
UpperCAmelCase__ = os.path.join(
UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , 'wb' ) as fi:
UpperCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
return (out_vocab_file,)
| 365 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_attention_mask
UpperCAmelCase__ = use_token_type_ids
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_choices
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_attention_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = True
UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = FlaxRobertaModelTester(self )
@slow
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
for model_class_name in self.all_model_classes:
UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a )
UpperCAmelCase__ = model(np.ones((1, 1) ) )
self.assertIsNotNone(__a )
| 335 | 0 |
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class lowercase ( lowerCamelCase_ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """naver-clova-ix/donut-base-finetuned-docvqa"""
__SCREAMING_SNAKE_CASE = (
"""This is a tool that answers a question about an document (pdf). It takes an input named `document` which """
"""should be the document containing the information, as well as a `question` that is the question about the """
"""document. It returns a text that contains the answer to the question."""
)
__SCREAMING_SNAKE_CASE = """document_qa"""
__SCREAMING_SNAKE_CASE = AutoProcessor
__SCREAMING_SNAKE_CASE = VisionEncoderDecoderModel
__SCREAMING_SNAKE_CASE = ["""image""", """text"""]
__SCREAMING_SNAKE_CASE = ["""text"""]
def __init__(self , *__a , **__a ) -> Any:
"""simple docstring"""
if not is_vision_available():
raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' )
super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
def UpperCamelCase__ (self , __a , __a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = '<s_docvqa><s_question>{user_input}</s_question><s_answer>'
UpperCAmelCase__ = task_prompt.replace('{user_input}' , lowerCAmelCase__ )
UpperCAmelCase__ = self.pre_processor.tokenizer(
lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors='pt' ).input_ids
UpperCAmelCase__ = self.pre_processor(lowerCAmelCase__ , return_tensors='pt' ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def UpperCamelCase__ (self , __a ) -> List[str]:
"""simple docstring"""
return self.model.generate(
inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=lowerCAmelCase__ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=lowerCAmelCase__ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=lowerCAmelCase__ , ).sequences
def UpperCamelCase__ (self , __a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.pre_processor.batch_decode(lowerCAmelCase__ )[0]
UpperCAmelCase__ = sequence.replace(self.pre_processor.tokenizer.eos_token , '' )
UpperCAmelCase__ = sequence.replace(self.pre_processor.tokenizer.pad_token , '' )
UpperCAmelCase__ = re.sub(r'<.*?>' , '' , lowerCAmelCase__ , count=1 ).strip() # remove first task start token
UpperCAmelCase__ = self.pre_processor.tokenajson(lowerCAmelCase__ )
return sequence["answer"]
| 366 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , *__a , **__a ) -> None:
"""simple docstring"""
warnings.warn(
'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use MobileViTImageProcessor instead.' , __a , )
super().__init__(*__a , **__a )
| 335 | 0 |
from heapq import heappop, heappush
import numpy as np
def UpperCamelCase_( snake_case__: np.ndarray , snake_case__: tuple[int, int] , snake_case__: tuple[int, int] , snake_case__: bool , ) -> tuple[float | int, list[tuple[int, int]]]:
UpperCAmelCase__ , UpperCAmelCase__ = grid.shape
UpperCAmelCase__ = [-1, 1, 0, 0]
UpperCAmelCase__ = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
UpperCAmelCase__ , UpperCAmelCase__ = [(0, source)], set()
UpperCAmelCase__ = np.full((rows, cols) , np.inf )
UpperCAmelCase__ = 0
UpperCAmelCase__ = np.empty((rows, cols) , dtype=UpperCamelCase__ )
UpperCAmelCase__ = None
while queue:
((UpperCAmelCase__) , (UpperCAmelCase__)) = heappop(UpperCamelCase__ )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
UpperCAmelCase__ = []
while (x, y) != source:
path.append((x, y) )
UpperCAmelCase__ , UpperCAmelCase__ = predecessors[x, y]
path.append(UpperCamelCase__ ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(UpperCamelCase__ ) ):
UpperCAmelCase__ , UpperCAmelCase__ = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
UpperCAmelCase__ = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(UpperCamelCase__ , (dist + 1, (nx, ny)) )
UpperCAmelCase__ = dist + 1
UpperCAmelCase__ = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod() | 367 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {
'''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PegasusXForConditionalGeneration''',
'''PegasusXModel''',
'''PegasusXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 335 | 0 |
import argparse
import json
import os
import torch
from transformers.file_utils import has_file
from diffusers import UNetaDConditionModel, UNetaDModel
_UpperCamelCase = False
_UpperCamelCase = True
_UpperCamelCase = False
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument(
'''--repo_path''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the architecture.''',
)
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
_UpperCamelCase = parser.parse_args()
_UpperCamelCase = {
'''image_size''': '''sample_size''',
'''num_res_blocks''': '''layers_per_block''',
'''block_channels''': '''block_out_channels''',
'''down_blocks''': '''down_block_types''',
'''up_blocks''': '''up_block_types''',
'''downscale_freq_shift''': '''freq_shift''',
'''resnet_num_groups''': '''norm_num_groups''',
'''resnet_act_fn''': '''act_fn''',
'''resnet_eps''': '''norm_eps''',
'''num_head_channels''': '''attention_head_dim''',
}
_UpperCamelCase = {
'''time_steps''': '''time_proj''',
'''mid''': '''mid_block''',
'''downsample_blocks''': '''down_blocks''',
'''upsample_blocks''': '''up_blocks''',
}
_UpperCamelCase = '''''' if has_file(args.repo_path, '''config.json''') else '''unet'''
with open(os.path.join(args.repo_path, subfolder, '''config.json'''), '''r''', encoding='''utf-8''') as reader:
_UpperCamelCase = reader.read()
_UpperCamelCase = json.loads(text)
if do_only_config:
for key in config_parameters_to_change.keys():
config.pop(key, None)
if has_file(args.repo_path, '''config.json'''):
_UpperCamelCase = UNetaDModel(**config)
else:
_UpperCamelCase = UNetaDConditionModel if '''ldm-text2im-large-256''' in args.repo_path else UNetaDModel
_UpperCamelCase = class_name(**config)
if do_only_config:
model.save_config(os.path.join(args.repo_path, subfolder))
_UpperCamelCase = dict(model.config)
if do_only_renaming:
for key, value in config_parameters_to_change.items():
if key in config:
_UpperCamelCase = config[key]
del config[key]
_UpperCamelCase = [k.replace('''UNetRes''', '''''') for k in config['''down_block_types''']]
_UpperCamelCase = [k.replace('''UNetRes''', '''''') for k in config['''up_block_types''']]
if do_only_weights:
_UpperCamelCase = torch.load(os.path.join(args.repo_path, subfolder, '''diffusion_pytorch_model.bin'''))
_UpperCamelCase = {}
for param_key, param_value in state_dict.items():
if param_key.endswith('''.op.bias''') or param_key.endswith('''.op.weight'''):
continue
_UpperCamelCase = False
for key, new_key in key_parameters_to_change.items():
if not has_changed and param_key.split('''.''')[0] == key:
_UpperCamelCase = param_value
_UpperCamelCase = True
if not has_changed:
_UpperCamelCase = param_value
model.load_state_dict(new_state_dict)
model.save_pretrained(os.path.join(args.repo_path, subfolder)) | 368 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self , __a ) -> List[Any]:
"""simple docstring"""
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ):
UpperCAmelCase__ = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
benchmark.run()
self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(__a ):
self.assertTrue(hasattr(__a , 'sequential' ) )
self.assertTrue(hasattr(__a , 'cumulative' ) )
self.assertTrue(hasattr(__a , 'current' ) )
self.assertTrue(hasattr(__a , 'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
| 335 | 0 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , *__a , **__a ) -> Union[str, Any]:
"""simple docstring"""
warnings.warn(
'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use GLPNImageProcessor instead.' , _a , )
super().__init__(*_a , **_a )
| 369 |
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 335 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''',
'''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''',
'''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''',
'''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''',
'''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''',
'''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''',
'''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''',
}
class lowercase ( _a ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """xmod"""
def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=2 , __a=0.02 , __a=1E-1_2 , __a=1 , __a=0 , __a=2 , __a="absolute" , __a=True , __a=None , __a=False , __a=2 , __a=False , __a=True , __a=True , __a=("en_XX",) , __a=None , **__a , ) -> Optional[int]:
"""simple docstring"""
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = position_embedding_type
UpperCAmelCase__ = use_cache
UpperCAmelCase__ = classifier_dropout
UpperCAmelCase__ = pre_norm
UpperCAmelCase__ = adapter_reduction_factor
UpperCAmelCase__ = adapter_layer_norm
UpperCAmelCase__ = adapter_reuse_layer_norm
UpperCAmelCase__ = ln_before_adapter
UpperCAmelCase__ = list(_a )
UpperCAmelCase__ = default_language
class lowercase ( _a ):
'''simple docstring'''
@property
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
if self.task == "multiple-choice":
UpperCAmelCase__ = {0: "batch", 1: "choice", 2: "sequence"}
else:
UpperCAmelCase__ = {0: "batch", 1: "sequence"}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 370 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class lowercase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
@register_to_config
def __init__(self , *,
__a = 4 , __a = 768 , __a , __a , ) -> str:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) )
# parameters for additional clip time embeddings
UpperCAmelCase__ = nn.Linear(__a , __a )
UpperCAmelCase__ = nn.Linear(__a , __a )
# parameters for encoder hidden states
UpperCAmelCase__ = clip_extra_context_tokens
UpperCAmelCase__ = nn.Linear(
__a , self.clip_extra_context_tokens * cross_attention_dim )
UpperCAmelCase__ = nn.Linear(__a , __a )
UpperCAmelCase__ = nn.LayerNorm(__a )
def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
UpperCAmelCase__ = image_embeddings.shape[0]
UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
UpperCAmelCase__ = classifier_free_guidance_embeddings.expand(
__a , -1 )
UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
UpperCAmelCase__ = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
UpperCAmelCase__ = self.embedding_proj(__a )
UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a )
UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a )
UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens )
UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 )
UpperCAmelCase__ = self.encoder_hidden_states_proj(__a )
UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a )
UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 335 | 0 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , __a , __a=7 , __a=3 , __a=30 , __a=400 , __a=True , __a=None , __a=True , __a=[0.5, 0.5, 0.5] , __a=[0.5, 0.5, 0.5] , __a=True , __a=1 / 255 , __a=True , ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333}
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = min_resolution
UpperCAmelCase__ = max_resolution
UpperCAmelCase__ = do_resize
UpperCAmelCase__ = size
UpperCAmelCase__ = do_normalize
UpperCAmelCase__ = image_mean
UpperCAmelCase__ = image_std
UpperCAmelCase__ = do_rescale
UpperCAmelCase__ = rescale_factor
UpperCAmelCase__ = do_pad
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCamelCase__ (self , __a , __a=False ) -> Tuple:
"""simple docstring"""
if not batched:
UpperCAmelCase__ = image_inputs[0]
if isinstance(snake_case_ , Image.Image ):
UpperCAmelCase__ = image.size
else:
UpperCAmelCase__ = image.shape[1], image.shape[2]
if w < h:
UpperCAmelCase__ = int(self.size['shortest_edge'] * h / w )
UpperCAmelCase__ = self.size["""shortest_edge"""]
elif w > h:
UpperCAmelCase__ = self.size["""shortest_edge"""]
UpperCAmelCase__ = int(self.size['shortest_edge'] * w / h )
else:
UpperCAmelCase__ = self.size["""shortest_edge"""]
UpperCAmelCase__ = self.size["""shortest_edge"""]
else:
UpperCAmelCase__ = []
for image in image_inputs:
UpperCAmelCase__ = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
UpperCAmelCase__ = max(snake_case_ , key=lambda __a : item[0] )[0]
UpperCAmelCase__ = max(snake_case_ , key=lambda __a : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class lowercase ( _a , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ConditionalDetrImageProcessor if is_vision_available() else None
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = ConditionalDetrImageProcessingTester(self )
@property
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(snake_case_ , 'image_mean' ) )
self.assertTrue(hasattr(snake_case_ , 'image_std' ) )
self.assertTrue(hasattr(snake_case_ , 'do_normalize' ) )
self.assertTrue(hasattr(snake_case_ , 'do_resize' ) )
self.assertTrue(hasattr(snake_case_ , 'size' ) )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} )
self.assertEqual(image_processor.do_pad , snake_case_ )
UpperCAmelCase__ = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=snake_case_ )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , snake_case_ )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
pass
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ )
for image in image_inputs:
self.assertIsInstance(snake_case_ , Image.Image )
# Test not batched input
UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
UpperCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_ )
UpperCAmelCase__ = image_processing(snake_case_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ )
for image in image_inputs:
self.assertIsInstance(snake_case_ , np.ndarray )
# Test not batched input
UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
UpperCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase__ = image_processing(snake_case_ , return_tensors='pt' ).pixel_values
UpperCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ )
for image in image_inputs:
self.assertIsInstance(snake_case_ , torch.Tensor )
# Test not batched input
UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
UpperCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase__ = image_processing(snake_case_ , return_tensors='pt' ).pixel_values
UpperCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
UpperCAmelCase__ = json.loads(f.read() )
UpperCAmelCase__ = {"""image_id""": 39769, """annotations""": target}
# encode them
UpperCAmelCase__ = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' )
UpperCAmelCase__ = image_processing(images=snake_case_ , annotations=snake_case_ , return_tensors='pt' )
# verify pixel values
UpperCAmelCase__ = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['pixel_values'].shape , snake_case_ )
UpperCAmelCase__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case_ , atol=1E-4 ) )
# verify area
UpperCAmelCase__ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case_ ) )
# verify boxes
UpperCAmelCase__ = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case_ )
UpperCAmelCase__ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case_ , atol=1E-3 ) )
# verify image_id
UpperCAmelCase__ = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case_ ) )
# verify is_crowd
UpperCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case_ ) )
# verify class_labels
UpperCAmelCase__ = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case_ ) )
# verify orig_size
UpperCAmelCase__ = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case_ ) )
# verify size
UpperCAmelCase__ = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case_ ) )
@slow
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
UpperCAmelCase__ = json.loads(f.read() )
UpperCAmelCase__ = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target}
UpperCAmelCase__ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
UpperCAmelCase__ = ConditionalDetrImageProcessor(format='coco_panoptic' )
UpperCAmelCase__ = image_processing(images=snake_case_ , annotations=snake_case_ , masks_path=snake_case_ , return_tensors='pt' )
# verify pixel values
UpperCAmelCase__ = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['pixel_values'].shape , snake_case_ )
UpperCAmelCase__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case_ , atol=1E-4 ) )
# verify area
UpperCAmelCase__ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case_ ) )
# verify boxes
UpperCAmelCase__ = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case_ )
UpperCAmelCase__ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case_ , atol=1E-3 ) )
# verify image_id
UpperCAmelCase__ = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case_ ) )
# verify is_crowd
UpperCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case_ ) )
# verify class_labels
UpperCAmelCase__ = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case_ ) )
# verify masks
UpperCAmelCase__ = 822873
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , snake_case_ )
# verify orig_size
UpperCAmelCase__ = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case_ ) )
# verify size
UpperCAmelCase__ = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case_ ) )
| 371 |
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = BioGptTokenizer
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase__ = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) )
UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' ) as fp:
fp.write(json.dumps(__a ) )
with open(self.merges_file , 'w' ) as fp:
fp.write('\n'.join(__a ) )
def UpperCamelCase__ (self , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = 'lower newer'
UpperCAmelCase__ = 'lower newer'
return input_text, output_text
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file )
UpperCAmelCase__ = 'lower'
UpperCAmelCase__ = ['low', 'er</w>']
UpperCAmelCase__ = tokenizer.tokenize(__a )
self.assertListEqual(__a , __a )
UpperCAmelCase__ = tokens + ['<unk>']
UpperCAmelCase__ = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' )
UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a )
UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a )
UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a )
UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 335 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_UpperCamelCase = {
'''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''],
'''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''],
'''processing_wav2vec2''': ['''Wav2Vec2Processor'''],
'''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Wav2Vec2ForAudioFrameClassification''',
'''Wav2Vec2ForCTC''',
'''Wav2Vec2ForMaskedLM''',
'''Wav2Vec2ForPreTraining''',
'''Wav2Vec2ForSequenceClassification''',
'''Wav2Vec2ForXVector''',
'''Wav2Vec2Model''',
'''Wav2Vec2PreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWav2Vec2ForCTC''',
'''TFWav2Vec2Model''',
'''TFWav2Vec2PreTrainedModel''',
'''TFWav2Vec2ForSequenceClassification''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''FlaxWav2Vec2ForCTC''',
'''FlaxWav2Vec2ForPreTraining''',
'''FlaxWav2Vec2Model''',
'''FlaxWav2Vec2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 350 |
class lowercase : # Public class to implement a graph
'''simple docstring'''
def __init__(self , __a , __a , __a ) -> None:
"""simple docstring"""
UpperCAmelCase__ = row
UpperCAmelCase__ = col
UpperCAmelCase__ = graph
def UpperCamelCase__ (self , __a , __a , __a ) -> bool:
"""simple docstring"""
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def UpperCamelCase__ (self , __a , __a , __a ) -> None:
"""simple docstring"""
UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1]
UpperCAmelCase__ = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a )
def UpperCamelCase__ (self ) -> int: # And finally, count all islands.
"""simple docstring"""
UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )]
UpperCAmelCase__ = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(__a , __a , __a )
count += 1
return count
| 335 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_albert import AlbertTokenizer
else:
_UpperCamelCase = None
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
_UpperCamelCase = {
"""vocab_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""",
},
"""tokenizer_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""",
},
}
_UpperCamelCase = {
"""albert-base-v1""": 512,
"""albert-large-v1""": 512,
"""albert-xlarge-v1""": 512,
"""albert-xxlarge-v1""": 512,
"""albert-base-v2""": 512,
"""albert-large-v2""": 512,
"""albert-xlarge-v2""": 512,
"""albert-xxlarge-v2""": 512,
}
_UpperCamelCase = """▁"""
class lowercase ( __UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE = AlbertTokenizer
def __init__(self , __a=None , __a=None , __a=True , __a=True , __a=False , __a="[CLS]" , __a="[SEP]" , __a="<unk>" , __a="[SEP]" , __a="<pad>" , __a="[CLS]" , __a="[MASK]" , **__a , ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = (
AddedToken(__a , lstrip=__a , rstrip=__a , normalized=__a )
if isinstance(__a , __a )
else mask_token
)
super().__init__(
__a , tokenizer_file=__a , do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , **__a , )
UpperCAmelCase__ = do_lower_case
UpperCAmelCase__ = remove_space
UpperCAmelCase__ = keep_accents
UpperCAmelCase__ = vocab_file
UpperCAmelCase__ = False if not self.vocab_file else True
def UpperCamelCase__ (self , __a , __a = None ) -> List[int]:
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCamelCase__ (self , __a , __a = None ) -> List[int]:
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase__ (self , __a , __a = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(__a ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
UpperCAmelCase__ = os.path.join(
__a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ):
copyfile(self.vocab_file , __a )
return (out_vocab_file,)
| 351 |
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
_UpperCamelCase = Lock()
def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Dict , snake_case__: Any ) -> str:
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(snake_case__ )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
UpperCAmelCase__ = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
UpperCAmelCase__ = min(snake_case__ , snake_case__ )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(snake_case__ )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
UpperCAmelCase__ = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
UpperCAmelCase__ = max(snake_case__ , snake_case__ )
# after all swaps are performed, send the values back to main
result_pipe[1].send(snake_case__ )
def UpperCamelCase_( snake_case__: Any ) -> Tuple:
UpperCAmelCase__ = []
UpperCAmelCase__ = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
UpperCAmelCase__ = Pipe()
UpperCAmelCase__ = Pipe()
process_array_.append(
Process(
target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
UpperCAmelCase__ = temp_rs
UpperCAmelCase__ = temp_rr
for i in range(1 , len(snake_case__ ) - 1 ):
UpperCAmelCase__ = Pipe()
UpperCAmelCase__ = Pipe()
process_array_.append(
Process(
target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
UpperCAmelCase__ = temp_rs
UpperCAmelCase__ = temp_rr
process_array_.append(
Process(
target=snake_case__ , args=(
len(snake_case__ ) - 1,
arr[len(snake_case__ ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(snake_case__ ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(snake_case__ ) ):
UpperCAmelCase__ = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def UpperCamelCase_( ) -> Dict:
UpperCAmelCase__ = list(range(10 , 0 , -1 ) )
print('Initial List' )
print(*snake_case__ )
UpperCAmelCase__ = odd_even_transposition(snake_case__ )
print('Sorted List\n' )
print(*snake_case__ )
if __name__ == "__main__":
main()
| 335 | 0 |
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all image processors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...image_processing_utils import ImageProcessingMixin
from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = OrderedDict(
[
('''align''', '''EfficientNetImageProcessor'''),
('''beit''', '''BeitImageProcessor'''),
('''bit''', '''BitImageProcessor'''),
('''blip''', '''BlipImageProcessor'''),
('''blip-2''', '''BlipImageProcessor'''),
('''bridgetower''', '''BridgeTowerImageProcessor'''),
('''chinese_clip''', '''ChineseCLIPImageProcessor'''),
('''clip''', '''CLIPImageProcessor'''),
('''clipseg''', '''ViTImageProcessor'''),
('''conditional_detr''', '''ConditionalDetrImageProcessor'''),
('''convnext''', '''ConvNextImageProcessor'''),
('''convnextv2''', '''ConvNextImageProcessor'''),
('''cvt''', '''ConvNextImageProcessor'''),
('''data2vec-vision''', '''BeitImageProcessor'''),
('''deformable_detr''', '''DeformableDetrImageProcessor'''),
('''deit''', '''DeiTImageProcessor'''),
('''deta''', '''DetaImageProcessor'''),
('''detr''', '''DetrImageProcessor'''),
('''dinat''', '''ViTImageProcessor'''),
('''donut-swin''', '''DonutImageProcessor'''),
('''dpt''', '''DPTImageProcessor'''),
('''efficientformer''', '''EfficientFormerImageProcessor'''),
('''efficientnet''', '''EfficientNetImageProcessor'''),
('''flava''', '''FlavaImageProcessor'''),
('''focalnet''', '''BitImageProcessor'''),
('''git''', '''CLIPImageProcessor'''),
('''glpn''', '''GLPNImageProcessor'''),
('''groupvit''', '''CLIPImageProcessor'''),
('''imagegpt''', '''ImageGPTImageProcessor'''),
('''instructblip''', '''BlipImageProcessor'''),
('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''),
('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''),
('''levit''', '''LevitImageProcessor'''),
('''mask2former''', '''Mask2FormerImageProcessor'''),
('''maskformer''', '''MaskFormerImageProcessor'''),
('''mgp-str''', '''ViTImageProcessor'''),
('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''),
('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''),
('''mobilevit''', '''MobileViTImageProcessor'''),
('''mobilevit''', '''MobileViTImageProcessor'''),
('''mobilevitv2''', '''MobileViTImageProcessor'''),
('''nat''', '''ViTImageProcessor'''),
('''oneformer''', '''OneFormerImageProcessor'''),
('''owlvit''', '''OwlViTImageProcessor'''),
('''perceiver''', '''PerceiverImageProcessor'''),
('''pix2struct''', '''Pix2StructImageProcessor'''),
('''poolformer''', '''PoolFormerImageProcessor'''),
('''regnet''', '''ConvNextImageProcessor'''),
('''resnet''', '''ConvNextImageProcessor'''),
('''sam''', '''SamImageProcessor'''),
('''segformer''', '''SegformerImageProcessor'''),
('''swiftformer''', '''ViTImageProcessor'''),
('''swin''', '''ViTImageProcessor'''),
('''swin2sr''', '''Swin2SRImageProcessor'''),
('''swinv2''', '''ViTImageProcessor'''),
('''table-transformer''', '''DetrImageProcessor'''),
('''timesformer''', '''VideoMAEImageProcessor'''),
('''tvlt''', '''TvltImageProcessor'''),
('''upernet''', '''SegformerImageProcessor'''),
('''van''', '''ConvNextImageProcessor'''),
('''videomae''', '''VideoMAEImageProcessor'''),
('''vilt''', '''ViltImageProcessor'''),
('''vit''', '''ViTImageProcessor'''),
('''vit_hybrid''', '''ViTHybridImageProcessor'''),
('''vit_mae''', '''ViTImageProcessor'''),
('''vit_msn''', '''ViTImageProcessor'''),
('''xclip''', '''CLIPImageProcessor'''),
('''yolos''', '''YolosImageProcessor'''),
]
)
_UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES)
def UpperCamelCase_( snake_case__: str ) -> Any:
for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
if class_name in extractors:
UpperCAmelCase__ = model_type_to_module_name(snake_case__ )
UpperCAmelCase__ = importlib.import_module(f".{module_name}" , 'transformers.models' )
try:
return getattr(snake_case__ , snake_case__ )
except AttributeError:
continue
for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items():
if getattr(snake_case__ , '__name__' , snake_case__ ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
UpperCAmelCase__ = importlib.import_module('transformers' )
if hasattr(snake_case__ , snake_case__ ):
return getattr(snake_case__ , snake_case__ )
return None
def UpperCamelCase_( snake_case__: Dict , snake_case__: Dict = None , snake_case__: int = False , snake_case__: Optional[Any] = False , snake_case__: Optional[int] = None , snake_case__: Union[str, Any] = None , snake_case__: List[str] = None , snake_case__: int = False , **snake_case__: List[str] , ) -> List[Any]:
UpperCAmelCase__ = get_file_from_repo(
snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , )
if resolved_config_file is None:
logger.info(
'Could not locate the image processor configuration file, will try to use the model config instead.' )
return {}
with open(snake_case__ , encoding='utf-8' ) as reader:
return json.load(snake_case__ )
class lowercase :
'''simple docstring'''
def __init__(self ) -> List[Any]:
"""simple docstring"""
raise EnvironmentError(
'AutoImageProcessor is designed to be instantiated '
'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' )
@classmethod
@replace_list_option_in_docstrings(__SCREAMING_SNAKE_CASE )
def UpperCamelCase__ (cls , __a , **__a ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = kwargs.pop('config' , __SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = kwargs.pop('trust_remote_code' , __SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = True
UpperCAmelCase__ , UpperCAmelCase__ = ImageProcessingMixin.get_image_processor_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = config_dict.get('image_processor_type' , __SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = None
if "AutoImageProcessor" in config_dict.get('auto_map' , {} ):
UpperCAmelCase__ = config_dict['auto_map']['AutoImageProcessor']
# If we still don't have the image processor class, check if we're loading from a previous feature extractor config
# and if so, infer the image processor class from there.
if image_processor_class is None and image_processor_auto_map is None:
UpperCAmelCase__ = config_dict.pop('feature_extractor_type' , __SCREAMING_SNAKE_CASE )
if feature_extractor_class is not None:
logger.warning(
'Could not find image processor class in the image processor config or the model config. Loading'
' based on pattern matching with the model\'s feature extractor configuration.' )
UpperCAmelCase__ = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' )
if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ):
UpperCAmelCase__ = config_dict['auto_map']['AutoFeatureExtractor']
UpperCAmelCase__ = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' )
logger.warning(
'Could not find image processor auto map in the image processor config or the model config.'
' Loading based on pattern matching with the model\'s feature extractor configuration.' )
# If we don't find the image processor class in the image processor config, let's try the model config.
if image_processor_class is None and image_processor_auto_map is None:
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
UpperCAmelCase__ = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
# It could be in `config.image_processor_type``
UpperCAmelCase__ = getattr(__SCREAMING_SNAKE_CASE , 'image_processor_type' , __SCREAMING_SNAKE_CASE )
if hasattr(__SCREAMING_SNAKE_CASE , 'auto_map' ) and "AutoImageProcessor" in config.auto_map:
UpperCAmelCase__ = config.auto_map['AutoImageProcessor']
if image_processor_class is not None:
UpperCAmelCase__ = image_processor_class_from_name(__SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = image_processor_auto_map is not None
UpperCAmelCase__ = image_processor_class is not None or type(__SCREAMING_SNAKE_CASE ) in IMAGE_PROCESSOR_MAPPING
UpperCAmelCase__ = resolve_trust_remote_code(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if has_remote_code and trust_remote_code:
UpperCAmelCase__ = get_class_from_dynamic_module(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = kwargs.pop('code_revision' , __SCREAMING_SNAKE_CASE )
if os.path.isdir(__SCREAMING_SNAKE_CASE ):
image_processor_class.register_for_auto_class()
return image_processor_class.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
elif image_processor_class is not None:
return image_processor_class.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
# Last try: we use the IMAGE_PROCESSOR_MAPPING.
elif type(__SCREAMING_SNAKE_CASE ) in IMAGE_PROCESSOR_MAPPING:
UpperCAmelCase__ = IMAGE_PROCESSOR_MAPPING[type(__SCREAMING_SNAKE_CASE )]
return image_processor_class.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
raise ValueError(
F"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a "
F"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following "
F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" )
@staticmethod
def UpperCamelCase__ (__a , __a ) -> Dict:
"""simple docstring"""
IMAGE_PROCESSOR_MAPPING.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
| 352 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class lowercase :
'''simple docstring'''
def __init__(self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = ''
UpperCAmelCase__ = ''
UpperCAmelCase__ = []
UpperCAmelCase__ = 0
UpperCAmelCase__ = 256
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
def UpperCamelCase__ (self , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = cva.imread(__a , 0 )
UpperCAmelCase__ = copy.deepcopy(self.img )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' )
UpperCAmelCase__ = np.sum(__a )
for i in range(len(__a ) ):
UpperCAmelCase__ = x[i] / self.k
self.sk += prk
UpperCAmelCase__ = (self.L - 1) * self.sk
if self.rem != 0:
UpperCAmelCase__ = int(last % last )
UpperCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(__a )
UpperCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size )
UpperCAmelCase__ = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCAmelCase__ = self.img[j][i]
if num != self.last_list[num]:
UpperCAmelCase__ = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
plt.hist(self.img.ravel() , 256 , [0, 256] )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
_UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''')
_UpperCamelCase = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 335 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
'''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json''',
'''google/bigbird-roberta-large''': '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json''',
'''google/bigbird-base-trivia-itc''': '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json''',
# See all BigBird models at https://huggingface.co/models?filter=big_bird
}
class lowercase ( snake_case_ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """big_bird"""
def __init__(self , __a=50358 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu_new" , __a=0.1 , __a=0.1 , __a=4096 , __a=2 , __a=0.02 , __a=1E-1_2 , __a=True , __a=0 , __a=1 , __a=2 , __a=66 , __a="block_sparse" , __a=True , __a=False , __a=64 , __a=3 , __a=None , **__a , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(
pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , sep_token_id=__a , **__a , )
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = use_cache
UpperCAmelCase__ = rescale_embeddings
UpperCAmelCase__ = attention_type
UpperCAmelCase__ = use_bias
UpperCAmelCase__ = block_size
UpperCAmelCase__ = num_random_blocks
UpperCAmelCase__ = classifier_dropout
class lowercase ( snake_case_ ):
'''simple docstring'''
@property
def UpperCamelCase__ (self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
UpperCAmelCase__ = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCAmelCase__ = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 353 |
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = image_size
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = embed_dim
UpperCAmelCase__ = depths
UpperCAmelCase__ = num_heads
UpperCAmelCase__ = window_size
UpperCAmelCase__ = mlp_ratio
UpperCAmelCase__ = qkv_bias
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = drop_path_rate
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = use_absolute_embeddings
UpperCAmelCase__ = patch_norm
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = is_training
UpperCAmelCase__ = scope
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = encoder_stride
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModel(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCAmelCase__ = 1
UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self.type_sequence_label_size
UpperCAmelCase__ = SwinvaForImageClassification(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
__SCREAMING_SNAKE_CASE = (
{"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification}
if is_torch_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
@unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason='Swinv2 does not use inputs_embeds' )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__a , nn.Linear ) )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ = [*signature.parameters.keys()]
UpperCAmelCase__ = ['pixel_values']
self.assertListEqual(arg_names[:1] , __a )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
UpperCAmelCase__ = len(self.model_tester.depths )
self.assertEqual(len(__a ) , __a )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = config.window_size**2
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
UpperCAmelCase__ = len(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
if hasattr(self.model_tester , 'num_hidden_states_types' ):
UpperCAmelCase__ = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
UpperCAmelCase__ = 2
self.assertEqual(out_len + added_hidden_states , len(__a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.hidden_states
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__a ) , __a )
# Swinv2 has a different seq_length
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
UpperCAmelCase__ = outputs.reshaped_hidden_states
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape
UpperCAmelCase__ = (
reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = 3
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__a )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = SwinvaModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = _config_zero_init(__a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(config=__a )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
@require_vision
@require_torch
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' )
if is_vision_available()
else None
)
@slow
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to(
__a )
UpperCAmelCase__ = self.default_image_processor
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a )
# forward pass
with torch.no_grad():
UpperCAmelCase__ = model(**__a )
# verify the logits
UpperCAmelCase__ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __a )
UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
| 335 | 0 |
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''}
# See all BART models at https://huggingface.co/models?filter=bart
_UpperCamelCase = {
'''vocab_file''': {
'''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''',
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''',
'''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''',
'''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''',
'''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''',
'''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''',
},
'''merges_file''': {
'''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''',
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''',
'''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''',
'''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''',
'''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''',
'''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''',
},
}
_UpperCamelCase = {
'''facebook/bart-base''': 1024,
'''facebook/bart-large''': 1024,
'''facebook/bart-large-mnli''': 1024,
'''facebook/bart-large-cnn''': 1024,
'''facebook/bart-large-xsum''': 1024,
'''yjernite/bart_eli5''': 1024,
}
@lru_cache()
def UpperCamelCase_( ) -> Any:
UpperCAmelCase__ = (
list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) )
)
UpperCAmelCase__ = bs[:]
UpperCAmelCase__ = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_lowerCAmelCase )
cs.append(2**8 + n )
n += 1
UpperCAmelCase__ = [chr(_lowerCAmelCase ) for n in cs]
return dict(zip(_lowerCAmelCase , _lowerCAmelCase ) )
def UpperCamelCase_( snake_case__: Any ) -> Union[str, Any]:
UpperCAmelCase__ = set()
UpperCAmelCase__ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCAmelCase__ = char
return pairs
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""]
def __init__(self , __a , __a , __a="replace" , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a=False , **__a , ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else bos_token
UpperCAmelCase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else eos_token
UpperCAmelCase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else sep_token
UpperCAmelCase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else cls_token
UpperCAmelCase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else unk_token
UpperCAmelCase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token
super().__init__(
errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , )
with open(_lowerCAmelCase , encoding='utf-8' ) as vocab_handle:
UpperCAmelCase__ = json.load(_lowerCAmelCase )
UpperCAmelCase__ = {v: k for k, v in self.encoder.items()}
UpperCAmelCase__ = errors # how to handle errors in decoding
UpperCAmelCase__ = bytes_to_unicode()
UpperCAmelCase__ = {v: k for k, v in self.byte_encoder.items()}
with open(_lowerCAmelCase , encoding='utf-8' ) as merges_handle:
UpperCAmelCase__ = merges_handle.read().split('\n' )[1:-1]
UpperCAmelCase__ = [tuple(merge.split() ) for merge in bpe_merges]
UpperCAmelCase__ = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
UpperCAmelCase__ = {}
UpperCAmelCase__ = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCAmelCase__ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' )
@property
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
return len(self.encoder )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def UpperCamelCase__ (self , __a ) -> Optional[int]:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
UpperCAmelCase__ = tuple(_lowerCAmelCase )
UpperCAmelCase__ = get_pairs(_lowerCAmelCase )
if not pairs:
return token
while True:
UpperCAmelCase__ = min(_lowerCAmelCase , key=lambda __a : self.bpe_ranks.get(_lowerCAmelCase , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
UpperCAmelCase__ , UpperCAmelCase__ = bigram
UpperCAmelCase__ = []
UpperCAmelCase__ = 0
while i < len(_lowerCAmelCase ):
try:
UpperCAmelCase__ = word.index(_lowerCAmelCase , _lowerCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCAmelCase__ = j
if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCAmelCase__ = tuple(_lowerCAmelCase )
UpperCAmelCase__ = new_word
if len(_lowerCAmelCase ) == 1:
break
else:
UpperCAmelCase__ = get_pairs(_lowerCAmelCase )
UpperCAmelCase__ = ' '.join(_lowerCAmelCase )
UpperCAmelCase__ = word
return word
def UpperCamelCase__ (self , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = []
for token in re.findall(self.pat , _lowerCAmelCase ):
UpperCAmelCase__ = ''.join(
self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCAmelCase ).split(' ' ) )
return bpe_tokens
def UpperCamelCase__ (self , __a ) -> str:
"""simple docstring"""
return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) )
def UpperCamelCase__ (self , __a ) -> Any:
"""simple docstring"""
return self.decoder.get(_lowerCAmelCase )
def UpperCamelCase__ (self , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = ''.join(_lowerCAmelCase )
UpperCAmelCase__ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors )
return text
def UpperCamelCase__ (self , __a , __a = None ) -> Union[str, Any]:
"""simple docstring"""
if not os.path.isdir(_lowerCAmelCase ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
UpperCAmelCase__ = os.path.join(
_lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
UpperCAmelCase__ = os.path.join(
_lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + '\n' )
UpperCAmelCase__ = 0
with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __a : kv[1] ):
if index != token_index:
logger.warning(
F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
' Please check that the tokenizer is not corrupted!' )
UpperCAmelCase__ = token_index
writer.write(' '.join(_lowerCAmelCase ) + '\n' )
index += 1
return vocab_file, merge_file
def UpperCamelCase__ (self , __a , __a = None ) -> int:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
UpperCAmelCase__ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCamelCase__ (self , __a , __a = None , __a = False ) -> List[str]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(_lowerCAmelCase )) + [1]
return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1]
def UpperCamelCase__ (self , __a , __a = None ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCamelCase__ (self , __a , __a=False , **__a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = kwargs.pop('add_prefix_space' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(_lowerCAmelCase ) > 0 and not text[0].isspace()):
UpperCAmelCase__ = ' ' + text
return (text, kwargs)
| 354 |
from collections import deque
def UpperCamelCase_( snake_case__: Tuple ) -> Tuple:
UpperCAmelCase__ = len(snake_case__ )
UpperCAmelCase__ = deque()
UpperCAmelCase__ = [False for _ in range(snake_case__ )]
UpperCAmelCase__ = [-1 for _ in range(snake_case__ )]
UpperCAmelCase__ = index_of[:]
def strong_connect(snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[str] ):
UpperCAmelCase__ = index # the number when this node is seen
UpperCAmelCase__ = index # lowest rank node reachable from here
index += 1
stack.append(snake_case__ )
UpperCAmelCase__ = True
for w in g[v]:
if index_of[w] == -1:
UpperCAmelCase__ = strong_connect(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase__ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
UpperCAmelCase__ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
UpperCAmelCase__ = []
UpperCAmelCase__ = stack.pop()
UpperCAmelCase__ = False
component.append(snake_case__ )
while w != v:
UpperCAmelCase__ = stack.pop()
UpperCAmelCase__ = False
component.append(snake_case__ )
components.append(snake_case__ )
return index
UpperCAmelCase__ = []
for v in range(snake_case__ ):
if index_of[v] == -1:
strong_connect(snake_case__ , 0 , snake_case__ )
return components
def UpperCamelCase_( snake_case__: Dict , snake_case__: List[Any] ) -> Optional[int]:
UpperCAmelCase__ = [[] for _ in range(snake_case__ )]
for u, v in edges:
g[u].append(snake_case__ )
return g
if __name__ == "__main__":
# Test
_UpperCamelCase = 7
_UpperCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6]
_UpperCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5]
_UpperCamelCase = [(u, v) for u, v in zip(source, target)]
_UpperCamelCase = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 335 | 0 |
import copy
import random
from transformers import CLIPTokenizer
class lowercase ( lowerCAmelCase__ ):
'''simple docstring'''
def __init__(self , *__a , **__a ) -> List[Any]:
"""simple docstring"""
super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = {}
def UpperCamelCase__ (self , __a , *__a , **__a ) -> str:
"""simple docstring"""
UpperCAmelCase__ = super().add_tokens(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
if num_added_tokens == 0:
raise ValueError(
F"The tokenizer already contains the token {placeholder_token}. Please pass a different"
' `placeholder_token` that is not already in the tokenizer.' )
def UpperCamelCase__ (self , __a , *__a , __a=1 , **__a ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = []
if num_vec_per_token == 1:
self.try_adding_tokens(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
output.append(_SCREAMING_SNAKE_CASE )
else:
UpperCAmelCase__ = []
for i in range(_SCREAMING_SNAKE_CASE ):
UpperCAmelCase__ = placeholder_token + F"_{i}"
self.try_adding_tokens(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
output.append(_SCREAMING_SNAKE_CASE )
# handle cases where there is a new placeholder token that contains the current placeholder token but is larger
for token in self.token_map:
if token in placeholder_token:
raise ValueError(
F"The tokenizer already has placeholder token {token} that can get confused with"
F" {placeholder_token}keep placeholder tokens independent" )
UpperCAmelCase__ = output
def UpperCamelCase__ (self , __a , __a=False , __a=1.0 ) -> int:
"""simple docstring"""
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
UpperCAmelCase__ = []
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=_SCREAMING_SNAKE_CASE ) )
return output
for placeholder_token in self.token_map:
if placeholder_token in text:
UpperCAmelCase__ = self.token_map[placeholder_token]
UpperCAmelCase__ = tokens[: 1 + int(len(_SCREAMING_SNAKE_CASE ) * prop_tokens_to_load )]
if vector_shuffle:
UpperCAmelCase__ = copy.copy(_SCREAMING_SNAKE_CASE )
random.shuffle(_SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = text.replace(_SCREAMING_SNAKE_CASE , ' '.join(_SCREAMING_SNAKE_CASE ) )
return text
def __call__(self , __a , *__a , __a=False , __a=1.0 , **__a ) -> Tuple:
"""simple docstring"""
return super().__call__(
self.replace_placeholder_tokens_in_text(
_SCREAMING_SNAKE_CASE , vector_shuffle=_SCREAMING_SNAKE_CASE , prop_tokens_to_load=_SCREAMING_SNAKE_CASE ) , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
def UpperCamelCase__ (self , __a , *__a , __a=False , __a=1.0 , **__a ) -> Any:
"""simple docstring"""
return super().encode(
self.replace_placeholder_tokens_in_text(
_SCREAMING_SNAKE_CASE , vector_shuffle=_SCREAMING_SNAKE_CASE , prop_tokens_to_load=_SCREAMING_SNAKE_CASE ) , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
| 355 |
from ...configuration_utils import PretrainedConfig
_UpperCamelCase = {
'''google/tapas-base-finetuned-sqa''': (
'''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wtq''': (
'''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wikisql-supervised''': (
'''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-tabfact''': (
'''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''
),
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """tapas"""
def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=1024 , __a=[3, 256, 256, 2, 256, 256, 10] , __a=0.02 , __a=1E-1_2 , __a=0 , __a=10.0 , __a=0 , __a=1.0 , __a=None , __a=1.0 , __a=False , __a=None , __a=1.0 , __a=1.0 , __a=False , __a=False , __a="ratio" , __a=None , __a=None , __a=64 , __a=32 , __a=False , __a=True , __a=False , __a=False , __a=True , __a=False , __a=None , __a=None , **__a , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=__a , **__a )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_sizes
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
# Fine-tuning task hyperparameters
UpperCAmelCase__ = positive_label_weight
UpperCAmelCase__ = num_aggregation_labels
UpperCAmelCase__ = aggregation_loss_weight
UpperCAmelCase__ = use_answer_as_supervision
UpperCAmelCase__ = answer_loss_importance
UpperCAmelCase__ = use_normalized_answer_loss
UpperCAmelCase__ = huber_loss_delta
UpperCAmelCase__ = temperature
UpperCAmelCase__ = aggregation_temperature
UpperCAmelCase__ = use_gumbel_for_cells
UpperCAmelCase__ = use_gumbel_for_aggregation
UpperCAmelCase__ = average_approximation_function
UpperCAmelCase__ = cell_selection_preference
UpperCAmelCase__ = answer_loss_cutoff
UpperCAmelCase__ = max_num_rows
UpperCAmelCase__ = max_num_columns
UpperCAmelCase__ = average_logits_per_cell
UpperCAmelCase__ = select_one_column
UpperCAmelCase__ = allow_empty_column_selection
UpperCAmelCase__ = init_cell_selection_weights_to_zero
UpperCAmelCase__ = reset_position_index_per_cell
UpperCAmelCase__ = disable_per_token_loss
# Aggregation hyperparameters
UpperCAmelCase__ = aggregation_labels
UpperCAmelCase__ = no_aggregation_label_index
if isinstance(self.aggregation_labels , __a ):
UpperCAmelCase__ = {int(__a ): v for k, v in aggregation_labels.items()}
| 335 | 0 |
def UpperCamelCase_( snake_case__: int = 50 ) -> List[Any]:
UpperCAmelCase__ = [1] * (length + 1)
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
ways_number[row_length] += ways_number[
row_length - tile_start - tile_length
]
return ways_number[length]
if __name__ == "__main__":
print(F"""{solution() = }""")
| 356 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCamelCase = {
'''configuration_squeezebert''': [
'''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''SqueezeBertConfig''',
'''SqueezeBertOnnxConfig''',
],
'''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''SqueezeBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SqueezeBertForMaskedLM''',
'''SqueezeBertForMultipleChoice''',
'''SqueezeBertForQuestionAnswering''',
'''SqueezeBertForSequenceClassification''',
'''SqueezeBertForTokenClassification''',
'''SqueezeBertModel''',
'''SqueezeBertModule''',
'''SqueezeBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 335 | 0 |
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
_UpperCamelCase = datasets.load_iris()
_UpperCamelCase = np.array(data['''data'''])
_UpperCamelCase = np.array(data['''target'''])
_UpperCamelCase = data["target_names"]
_UpperCamelCase = train_test_split(X, y)
def UpperCamelCase_( snake_case__: Tuple , snake_case__: Optional[Any] ) -> str:
return np.linalg.norm(np.array(snake_case__ ) - np.array(snake_case__ ) )
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: int , snake_case__: Union[str, Any] , snake_case__: Any , snake_case__: str=5 ) -> List[Any]:
UpperCAmelCase__ = zip(snake_case__ , snake_case__ )
# List of distances of all points from the point to be classified
UpperCAmelCase__ = []
for data_point in data:
UpperCAmelCase__ = euclidean_distance(data_point[0] , snake_case__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
UpperCAmelCase__ = [i[1] for i in sorted(snake_case__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
UpperCAmelCase__ = Counter(snake_case__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 357 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase__ = XCLIPTextConfig()
# derive patch size from model name
UpperCAmelCase__ = model_name.find('patch' )
UpperCAmelCase__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] )
UpperCAmelCase__ = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ )
if "large" in model_name:
UpperCAmelCase__ = 7_68
UpperCAmelCase__ = 30_72
UpperCAmelCase__ = 12
UpperCAmelCase__ = 10_24
UpperCAmelCase__ = 40_96
UpperCAmelCase__ = 16
UpperCAmelCase__ = 24
UpperCAmelCase__ = 7_68
UpperCAmelCase__ = 30_72
if model_name == "xclip-large-patch14-16-frames":
UpperCAmelCase__ = 3_36
UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ )
if "large" in model_name:
UpperCAmelCase__ = 7_68
return config
def UpperCamelCase_( snake_case__: Any ) -> Tuple:
# text encoder
if name == "token_embedding.weight":
UpperCAmelCase__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' )
if name == "positional_embedding":
UpperCAmelCase__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' )
if "ln_1" in name:
UpperCAmelCase__ = name.replace('ln_1' , 'layer_norm1' )
if "ln_2" in name:
UpperCAmelCase__ = name.replace('ln_2' , 'layer_norm2' )
if "c_fc" in name:
UpperCAmelCase__ = name.replace('c_fc' , 'fc1' )
if "c_proj" in name:
UpperCAmelCase__ = name.replace('c_proj' , 'fc2' )
if name.startswith('transformer.resblocks' ):
UpperCAmelCase__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' )
if "attn.out_proj" in name and "message" not in name:
UpperCAmelCase__ = name.replace('attn.out_proj' , 'self_attn.out_proj' )
if "ln_final" in name:
UpperCAmelCase__ = name.replace('ln_final' , 'text_model.final_layer_norm' )
# visual encoder
if name == "visual.class_embedding":
UpperCAmelCase__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' )
if name == "visual.positional_embedding":
UpperCAmelCase__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' )
if name.startswith('visual.transformer.resblocks' ):
UpperCAmelCase__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' )
if "visual.conv1" in name:
UpperCAmelCase__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' )
if "visual.ln_pre" in name:
UpperCAmelCase__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' )
if "visual.ln_post" in name:
UpperCAmelCase__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' )
if "visual.proj" in name:
UpperCAmelCase__ = name.replace('visual.proj' , 'visual_projection.weight' )
if "text_projection" in name:
UpperCAmelCase__ = name.replace('text_projection' , 'text_projection.weight' )
# things on top
if "prompts_visual_proj" in name:
UpperCAmelCase__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' )
if "prompts_visual_ln" in name:
UpperCAmelCase__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' )
# mit
if name == "mit.positional_embedding":
UpperCAmelCase__ = name.replace('positional' , 'position' )
if name.startswith('mit.resblocks' ):
UpperCAmelCase__ = name.replace('mit.resblocks' , 'mit.encoder.layers' )
# prompts generator
if name.startswith('prompts_generator.norm' ):
UpperCAmelCase__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' )
return name
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Optional[Any]:
for key in orig_state_dict.copy().keys():
UpperCAmelCase__ = orig_state_dict.pop(snake_case__ )
if "attn.in_proj" in key:
UpperCAmelCase__ = key.split('.' )
if key.startswith('visual' ):
UpperCAmelCase__ = key_split[3]
UpperCAmelCase__ = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
UpperCAmelCase__ = val[
:dim, :
]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[
-dim:, :
]
else:
UpperCAmelCase__ = val[
:dim
]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[
-dim:
]
else:
if "weight" in key:
UpperCAmelCase__ = val[
:dim, :
]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[
-dim:, :
]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[-dim:]
elif key.startswith('mit' ):
UpperCAmelCase__ = key_split[2]
UpperCAmelCase__ = config.vision_config.mit_hidden_size
if "weight" in key:
UpperCAmelCase__ = val[:dim, :]
UpperCAmelCase__ = val[dim : dim * 2, :]
UpperCAmelCase__ = val[-dim:, :]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[dim : dim * 2]
UpperCAmelCase__ = val[-dim:]
else:
UpperCAmelCase__ = key_split[2]
UpperCAmelCase__ = config.text_config.hidden_size
if "weight" in key:
UpperCAmelCase__ = val[:dim, :]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[-dim:, :]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[-dim:]
else:
UpperCAmelCase__ = rename_key(snake_case__ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
UpperCAmelCase__ = val.T
UpperCAmelCase__ = val
return orig_state_dict
def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]:
if num_frames == 8:
UpperCAmelCase__ = 'eating_spaghetti_8_frames.npy'
elif num_frames == 16:
UpperCAmelCase__ = 'eating_spaghetti.npy'
elif num_frames == 32:
UpperCAmelCase__ = 'eating_spaghetti_32_frames.npy'
UpperCAmelCase__ = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , )
UpperCAmelCase__ = np.load(snake_case__ )
return list(snake_case__ )
def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None , snake_case__: Union[str, Any]=False ) -> List[Any]:
UpperCAmelCase__ = {
# fully supervised kinetics-400 checkpoints
'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth',
'xclip-base-patch32-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'
),
'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth',
'xclip-base-patch16-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'
),
'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb',
'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f',
# fully supervised kinetics-600 checkpoints
'xclip-base-patch16-kinetics-600': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'
),
'xclip-base-patch16-kinetics-600-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'
),
'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be',
# few shot
'xclip-base-patch16-hmdb-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'
),
'xclip-base-patch16-hmdb-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'
),
'xclip-base-patch16-hmdb-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'
),
'xclip-base-patch16-hmdb-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'
),
'xclip-base-patch16-ucf-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'
),
'xclip-base-patch16-ucf-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'
),
'xclip-base-patch16-ucf-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'
),
'xclip-base-patch16-ucf-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'
),
# zero shot
'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth',
}
UpperCAmelCase__ = model_to_url[model_name]
UpperCAmelCase__ = 8
if "16-frames" in model_name:
UpperCAmelCase__ = 16
elif "shot" in model_name:
UpperCAmelCase__ = 32
UpperCAmelCase__ = get_xclip_config(snake_case__ , snake_case__ )
UpperCAmelCase__ = XCLIPModel(snake_case__ )
model.eval()
if "drive" in checkpoint_url:
UpperCAmelCase__ = 'pytorch_model.bin'
gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ )
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model']
else:
UpperCAmelCase__ = torch.hub.load_state_dict_from_url(snake_case__ )['model']
UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ )
UpperCAmelCase__ = XCLIPModel(snake_case__ )
UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(snake_case__ , strict=snake_case__ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
UpperCAmelCase__ = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24
UpperCAmelCase__ = VideoMAEImageProcessor(size=snake_case__ )
UpperCAmelCase__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' )
UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' )
UpperCAmelCase__ = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ )
UpperCAmelCase__ = prepare_video(snake_case__ )
UpperCAmelCase__ = processor(
text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ )
print('Shape of pixel values:' , inputs.pixel_values.shape )
with torch.no_grad():
UpperCAmelCase__ = model(**snake_case__ )
# Verify outputs
UpperCAmelCase__ = outputs.logits_per_video
UpperCAmelCase__ = logits_per_video.softmax(dim=1 )
print('Probs:' , snake_case__ )
# kinetics-400
if model_name == "xclip-base-patch32":
UpperCAmelCase__ = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] )
elif model_name == "xclip-base-patch32-16-frames":
UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] )
elif model_name == "xclip-base-patch16":
UpperCAmelCase__ = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] )
elif model_name == "xclip-base-patch16-16-frames":
UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] )
elif model_name == "xclip-large-patch14":
UpperCAmelCase__ = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] )
elif model_name == "xclip-large-patch14-16-frames":
UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
UpperCAmelCase__ = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
UpperCAmelCase__ = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
UpperCAmelCase__ = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] )
else:
raise ValueError(f"Model name {model_name} not supported" )
assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
if push_to_hub:
print('Pushing model, processor and slow tokenizer files to the hub...' )
model.push_to_hub(snake_case__ , organization='nielsr' )
processor.push_to_hub(snake_case__ , organization='nielsr' )
slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''xclip-base-patch32''',
type=str,
help='''Name of the model.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_UpperCamelCase = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 335 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''',
'''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''',
}
class lowercase ( lowerCamelCase__ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 'luke'
def __init__(self , __a=50267 , __a=500000 , __a=768 , __a=256 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=2 , __a=0.02 , __a=1E-1_2 , __a=True , __a=None , __a=1 , __a=0 , __a=2 , **__a , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ )
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = entity_vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = entity_emb_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = use_entity_aware_attention
UpperCAmelCase__ = classifier_dropout
| 358 |
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: Union[str, Any] ) -> Tuple:
UpperCAmelCase__ = OmegaConf.load(snake_case__ )
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model']
UpperCAmelCase__ = list(state_dict.keys() )
# extract state_dict for VQVAE
UpperCAmelCase__ = {}
UpperCAmelCase__ = 'first_stage_model.'
for key in keys:
if key.startswith(snake_case__ ):
UpperCAmelCase__ = state_dict[key]
# extract state_dict for UNetLDM
UpperCAmelCase__ = {}
UpperCAmelCase__ = 'model.diffusion_model.'
for key in keys:
if key.startswith(snake_case__ ):
UpperCAmelCase__ = state_dict[key]
UpperCAmelCase__ = config.model.params.first_stage_config.params
UpperCAmelCase__ = config.model.params.unet_config.params
UpperCAmelCase__ = VQModel(**snake_case__ ).eval()
vqvae.load_state_dict(snake_case__ )
UpperCAmelCase__ = UNetLDMModel(**snake_case__ ).eval()
unet.load_state_dict(snake_case__ )
UpperCAmelCase__ = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , )
UpperCAmelCase__ = LDMPipeline(snake_case__ , snake_case__ , snake_case__ )
pipeline.save_pretrained(snake_case__ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--checkpoint_path''', type=str, required=True)
parser.add_argument('''--config_path''', type=str, required=True)
parser.add_argument('''--output_path''', type=str, required=True)
_UpperCamelCase = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 335 | 0 |
from urllib.parse import quote
import pytest
from datasets.utils.hub import hf_hub_url
@pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] )
@pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] )
@pytest.mark.parametrize('revision' , [None, 'v2'] )
def UpperCamelCase_( snake_case__: List[str] , snake_case__: List[Any] , snake_case__: List[str] ) -> int:
UpperCAmelCase__ = hf_hub_url(repo_id=_UpperCAmelCase , path=_UpperCAmelCase , revision=_UpperCAmelCase )
assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(_UpperCAmelCase )}"
| 359 |
# flake8: noqa
# Lint as: python3
_UpperCamelCase = [
'''VerificationMode''',
'''Version''',
'''disable_progress_bar''',
'''enable_progress_bar''',
'''is_progress_bar_enabled''',
'''experimental''',
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 335 | 0 |
import pytest
from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs
@pytest.mark.parametrize(
'kwargs, expected' , [
({'num_shards': 0, 'max_num_jobs': 1}, []),
({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]),
({'num_shards': 10, 'max_num_jobs': 10}, [range(a__ , i + 1 ) for i in range(10 )]),
({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]),
({'num_shards': 10, 'max_num_jobs': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]),
({'num_shards': 3, 'max_num_jobs': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]),
] , )
def UpperCamelCase_( snake_case__: Tuple , snake_case__: Optional[Any] ) -> Any:
UpperCAmelCase__ = _distribute_shards(**a__ )
assert out == expected
@pytest.mark.parametrize(
'gen_kwargs, max_num_jobs, expected' , [
({'foo': 0}, 10, [{'foo': 0}]),
({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]),
({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]),
({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]),
({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]),
] , )
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] , snake_case__: Optional[Any] ) -> int:
UpperCAmelCase__ = _split_gen_kwargs(a__ , a__ )
assert out == expected
@pytest.mark.parametrize(
'gen_kwargs, expected' , [
({'foo': 0}, 1),
({'shards': [0]}, 1),
({'shards': [0, 1, 2, 3]}, 4),
({'shards': [0, 1, 2, 3], 'foo': 0}, 4),
({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4),
({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError),
] , )
def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Tuple ) -> List[Any]:
if expected is RuntimeError:
with pytest.raises(a__ ):
_number_of_shards_in_gen_kwargs(a__ )
else:
UpperCAmelCase__ = _number_of_shards_in_gen_kwargs(a__ )
assert out == expected
| 360 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """sew-d"""
def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str:
"""simple docstring"""
super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a )
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = feat_extract_norm
UpperCAmelCase__ = feat_extract_activation
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = conv_bias
UpperCAmelCase__ = num_conv_pos_embeddings
UpperCAmelCase__ = num_conv_pos_embedding_groups
UpperCAmelCase__ = len(self.conv_dim )
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = squeeze_factor
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = position_buckets
UpperCAmelCase__ = share_att_key
UpperCAmelCase__ = relative_attention
UpperCAmelCase__ = norm_rel_ebd
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_dropout
UpperCAmelCase__ = attention_dropout
UpperCAmelCase__ = activation_dropout
UpperCAmelCase__ = feat_proj_dropout
UpperCAmelCase__ = final_dropout
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = feature_layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"
F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase__ = apply_spec_augment
UpperCAmelCase__ = mask_time_prob
UpperCAmelCase__ = mask_time_length
UpperCAmelCase__ = mask_time_min_masks
UpperCAmelCase__ = mask_feature_prob
UpperCAmelCase__ = mask_feature_length
UpperCAmelCase__ = mask_feature_min_masks
# ctc loss
UpperCAmelCase__ = ctc_loss_reduction
UpperCAmelCase__ = ctc_zero_infinity
# sequence classification
UpperCAmelCase__ = use_weighted_layer_sum
UpperCAmelCase__ = classifier_proj_size
@property
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 335 | 0 |
import copy
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
from ..detr import DetrConfig
from ..swin import SwinConfig
_UpperCamelCase = {
'''facebook/maskformer-swin-base-ade''': (
'''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json'''
)
# See all MaskFormer models at https://huggingface.co/models?filter=maskformer
}
_UpperCamelCase = logging.get_logger(__name__)
class lowercase ( __lowercase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Any = '''maskformer'''
__SCREAMING_SNAKE_CASE : List[Any] = {'''hidden_size''': '''mask_feature_size'''}
__SCREAMING_SNAKE_CASE : List[Any] = ['''resnet''', '''swin''']
__SCREAMING_SNAKE_CASE : List[str] = ['''detr''']
def __init__(self , __a = 256 , __a = 256 , __a = 0.1 , __a = False , __a = None , __a = None , __a = 0.02 , __a = 1.0 , __a = 1.0 , __a = 1.0 , __a = 20.0 , __a = None , **__a , ) -> int:
"""simple docstring"""
if backbone_config is None:
# fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k
UpperCAmelCase__ = SwinConfig(
image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
UpperCAmelCase__ = backbone_config.pop('model_type' )
UpperCAmelCase__ = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase__ = config_class.from_dict(UpperCAmelCase__ )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. "
F"Supported model types: {','.join(self.backbones_supported )}" )
if decoder_config is None:
# fall back to https://huggingface.co/facebook/detr-resnet-50
UpperCAmelCase__ = DetrConfig()
else:
# verify that the decoder is supported
UpperCAmelCase__ = (
decoder_config.pop('model_type' ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else decoder_config.model_type
)
if decoder_type not in self.decoders_supported:
raise ValueError(
F"Transformer Decoder {decoder_type} not supported, please use one of"
F" {','.join(self.decoders_supported )}" )
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
UpperCAmelCase__ = CONFIG_MAPPING[decoder_type]
UpperCAmelCase__ = config_class.from_dict(UpperCAmelCase__ )
UpperCAmelCase__ = backbone_config
UpperCAmelCase__ = decoder_config
# main feature dimension for the model
UpperCAmelCase__ = fpn_feature_size
UpperCAmelCase__ = mask_feature_size
# initializer
UpperCAmelCase__ = init_std
UpperCAmelCase__ = init_xavier_std
# Hungarian matcher && loss
UpperCAmelCase__ = cross_entropy_weight
UpperCAmelCase__ = dice_weight
UpperCAmelCase__ = mask_weight
UpperCAmelCase__ = use_auxiliary_loss
UpperCAmelCase__ = no_object_weight
UpperCAmelCase__ = output_auxiliary_logits
UpperCAmelCase__ = self.decoder_config.encoder_attention_heads
UpperCAmelCase__ = self.decoder_config.num_hidden_layers
super().__init__(**UpperCAmelCase__ )
@classmethod
def UpperCamelCase__ (cls , __a , __a , **__a ) -> Union[str, Any]:
"""simple docstring"""
return cls(
backbone_config=UpperCAmelCase__ , decoder_config=UpperCAmelCase__ , **UpperCAmelCase__ , )
def UpperCamelCase__ (self ) -> Dict[str, any]:
"""simple docstring"""
UpperCAmelCase__ = copy.deepcopy(self.__dict__ )
UpperCAmelCase__ = self.backbone_config.to_dict()
UpperCAmelCase__ = self.decoder_config.to_dict()
UpperCAmelCase__ = self.__class__.model_type
return output
| 361 |
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
_UpperCamelCase = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
['''memory_attention''', '''encoder_attn'''],
['''attention''', '''attn'''],
['''/''', '''.'''],
['''.LayerNorm.gamma''', '''_layer_norm.weight'''],
['''.LayerNorm.beta''', '''_layer_norm.bias'''],
['''r.layer_''', '''r.layers.'''],
['''output_proj''', '''out_proj'''],
['''ffn.dense_1.''', '''fc2.'''],
['''ffn.dense.''', '''fc1.'''],
['''ffn_layer_norm''', '''final_layer_norm'''],
['''kernel''', '''weight'''],
['''encoder_layer_norm.''', '''encoder.layer_norm.'''],
['''decoder_layer_norm.''', '''decoder.layer_norm.'''],
['''embeddings.weights''', '''shared.weight'''],
]
def UpperCamelCase_( snake_case__: int ) -> str:
for pegasus_name, hf_name in PATTERNS:
UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ )
return k
def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration:
UpperCAmelCase__ = DEFAULTS.copy()
cfg_kwargs.update(snake_case__ )
UpperCAmelCase__ = PegasusConfig(**snake_case__ )
UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ )
UpperCAmelCase__ = torch_model.model.state_dict()
UpperCAmelCase__ = {}
for k, v in tf_weights.items():
UpperCAmelCase__ = rename_state_dict_key(snake_case__ )
if new_k not in sd:
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" )
if "dense" in k or "proj" in new_k:
UpperCAmelCase__ = v.T
UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}"
# make sure embedding.padding_idx is respected
UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] )
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping}
mapping.update(**snake_case__ )
UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ )
UpperCAmelCase__ = [
k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight']
]
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
assert extra == [], f"no matches found for the following tf keys {extra}"
return torch_model
def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
UpperCAmelCase__ = tf.train.list_variables(snake_case__ )
UpperCAmelCase__ = {}
UpperCAmelCase__ = ['Adafactor', 'global_step']
for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ):
UpperCAmelCase__ = any(pat in name for pat in ignore_name )
if skip_key:
continue
UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ )
UpperCAmelCase__ = array
return tf_weights
def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]:
# save tokenizer first
UpperCAmelCase__ = Path(snake_case__ ).parent.name
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings']
UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(snake_case__ )
# convert model
UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ )
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]
if dataset == "large":
UpperCAmelCase__ = task_specific_params
UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ )
torch_model.save_pretrained(snake_case__ )
UpperCAmelCase__ = torch_model.state_dict()
sd.pop('model.decoder.embed_positions.weight' )
sd.pop('model.encoder.embed_positions.weight' )
torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''')
parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
if args.save_dir is None:
_UpperCamelCase = Path(args.tf_ckpt_path).parent.name
_UpperCamelCase = os.path.join('''pegasus''', dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 335 | 0 |
"""simple docstring"""
def UpperCamelCase_( snake_case__: Any ) -> set:
UpperCAmelCase__ = set()
# edges = list of graph's edges
UpperCAmelCase__ = get_edges(__lowerCAmelCase )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
UpperCAmelCase__ = edges.pop()
chosen_vertices.add(__lowerCAmelCase )
chosen_vertices.add(__lowerCAmelCase )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(__lowerCAmelCase )
return chosen_vertices
def UpperCamelCase_( snake_case__: List[Any] ) -> set:
UpperCAmelCase__ = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 362 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = 13
UpperCAmelCase__ = 7
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = 99
UpperCAmelCase__ = 384
UpperCAmelCase__ = 2
UpperCAmelCase__ = 4
UpperCAmelCase__ = 37
UpperCAmelCase__ = 'gelu'
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 512
UpperCAmelCase__ = 16
UpperCAmelCase__ = 2
UpperCAmelCase__ = 0.02
UpperCAmelCase__ = 3
UpperCAmelCase__ = 4
UpperCAmelCase__ = 128
UpperCAmelCase__ = 2
UpperCAmelCase__ = 9
UpperCAmelCase__ = 1
UpperCAmelCase__ = None
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_input_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel(config=__a )
UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
UpperCAmelCase__ = [input_ids, input_mask]
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.num_choices
UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
__SCREAMING_SNAKE_CASE = (
{
"""feature-extraction""": TFConvBertModel,
"""fill-mask""": TFConvBertForMaskedLM,
"""question-answering""": TFConvBertForQuestionAnswering,
"""text-classification""": TFConvBertForSequenceClassification,
"""token-classification""": TFConvBertForTokenClassification,
"""zero-shot""": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__a )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
UpperCAmelCase__ = True
if hasattr(__a , 'use_cache' ):
UpperCAmelCase__ = True
UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = self._prepare_for_class(__a , __a )
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = len(model(__a ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__a , saved_model=__a )
UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' )
UpperCAmelCase__ = tf.keras.models.load_model(__a )
UpperCAmelCase__ = model(__a )
if self.is_encoder_decoder:
UpperCAmelCase__ = outputs['encoder_hidden_states']
UpperCAmelCase__ = outputs['encoder_attentions']
else:
UpperCAmelCase__ = outputs['hidden_states']
UpperCAmelCase__ = outputs['attentions']
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
def check_decoder_attentions_output(__a ):
UpperCAmelCase__ = len(__a )
self.assertEqual(out_len % 2 , 0 )
UpperCAmelCase__ = outputs.decoder_attentions
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(__a ):
UpperCAmelCase__ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = len(__a )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
if self.is_encoder_decoder:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_decoder_attentions_output(__a )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) )
self.assertEqual(model.config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
@require_tf
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase__ = model(__a )[0]
UpperCAmelCase__ = [1, 6, 768]
self.assertEqual(output.shape , __a )
UpperCAmelCase__ = tf.constant(
[
[
[-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32],
[0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24],
[0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
| 335 | 0 |
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def UpperCamelCase_( snake_case__: Tuple ) -> Union[str, Any]:
UpperCAmelCase__ = filter(lambda snake_case__ : p.requires_grad , model.parameters() )
UpperCAmelCase__ = sum([np.prod(p.size() ) for p in model_parameters] )
return params
_UpperCamelCase = logging.getLogger(__name__)
def UpperCamelCase_( snake_case__: int , snake_case__: List[str] ) -> int:
if metric == "rouge2":
UpperCAmelCase__ = '{val_avg_rouge2:.4f}-{step_count}'
elif metric == "bleu":
UpperCAmelCase__ = '{val_avg_bleu:.4f}-{step_count}'
elif metric == "em":
UpperCAmelCase__ = '{val_avg_em:.4f}-{step_count}'
else:
raise NotImplementedError(
f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this"
' function.' )
UpperCAmelCase__ = ModelCheckpoint(
dirpath=lowercase__ , filename=lowercase__ , monitor=f"val_{metric}" , mode='max' , save_top_k=3 , every_n_epochs=1 , )
return checkpoint_callback
def UpperCamelCase_( snake_case__: str , snake_case__: Dict ) -> Union[str, Any]:
return EarlyStopping(
monitor=f"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=lowercase__ , verbose=lowercase__ , )
class lowercase ( pl.Callback ):
'''simple docstring'''
def UpperCamelCase__ (self , __a , __a ) -> str:
"""simple docstring"""
UpperCAmelCase__ = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(__SCREAMING_SNAKE_CASE )
@rank_zero_only
def UpperCamelCase__ (self , __a , __a , __a , __a=True ) -> Dict:
"""simple docstring"""
logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" )
UpperCAmelCase__ = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} )
# Log results
UpperCAmelCase__ = Path(pl_module.hparams.output_dir )
if type_path == "test":
UpperCAmelCase__ = od / 'test_results.txt'
UpperCAmelCase__ = od / 'test_generations.txt'
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
UpperCAmelCase__ = od / F"{type_path}_results/{trainer.global_step:05d}.txt"
UpperCAmelCase__ = od / F"{type_path}_generations/{trainer.global_step:05d}.txt"
results_file.parent.mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
generations_file.parent.mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
with open(__SCREAMING_SNAKE_CASE , 'a+' ) as writer:
for key in sorted(__SCREAMING_SNAKE_CASE ):
if key in ["log", "progress_bar", "preds"]:
continue
UpperCAmelCase__ = metrics[key]
if isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ):
UpperCAmelCase__ = val.item()
UpperCAmelCase__ = F"{key}: {val:.6f}\n"
writer.write(__SCREAMING_SNAKE_CASE )
if not save_generations:
return
if "preds" in metrics:
UpperCAmelCase__ = '\n'.join(metrics['preds'] )
generations_file.open('w+' ).write(__SCREAMING_SNAKE_CASE )
@rank_zero_only
def UpperCamelCase__ (self , __a , __a ) -> int:
"""simple docstring"""
try:
UpperCAmelCase__ = pl_module.model.model.num_parameters()
except AttributeError:
UpperCAmelCase__ = pl_module.model.num_parameters()
UpperCAmelCase__ = count_trainable_parameters(__SCREAMING_SNAKE_CASE )
# mp stands for million parameters
trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} )
@rank_zero_only
def UpperCamelCase__ (self , __a , __a ) -> str:
"""simple docstring"""
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 'test' )
@rank_zero_only
def UpperCamelCase__ (self , __a , __a ) -> List[str]:
"""simple docstring"""
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 363 |
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING
_UpperCamelCase = logging.get_logger(__name__)
@add_end_docstrings(_UpperCamelCase )
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , **__a ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**__a )
requires_backends(self , 'vision' )
requires_backends(self , 'torch' )
if self.framework != "pt":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
self.check_model_type(__a )
def UpperCamelCase__ (self , **__a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
# preprocess args
if "points_per_batch" in kwargs:
UpperCAmelCase__ = kwargs['points_per_batch']
if "points_per_crop" in kwargs:
UpperCAmelCase__ = kwargs['points_per_crop']
if "crops_n_layers" in kwargs:
UpperCAmelCase__ = kwargs['crops_n_layers']
if "crop_overlap_ratio" in kwargs:
UpperCAmelCase__ = kwargs['crop_overlap_ratio']
if "crop_n_points_downscale_factor" in kwargs:
UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor']
# postprocess args
if "pred_iou_thresh" in kwargs:
UpperCAmelCase__ = kwargs['pred_iou_thresh']
if "stability_score_offset" in kwargs:
UpperCAmelCase__ = kwargs['stability_score_offset']
if "mask_threshold" in kwargs:
UpperCAmelCase__ = kwargs['mask_threshold']
if "stability_score_thresh" in kwargs:
UpperCAmelCase__ = kwargs['stability_score_thresh']
if "crops_nms_thresh" in kwargs:
UpperCAmelCase__ = kwargs['crops_nms_thresh']
if "output_rle_mask" in kwargs:
UpperCAmelCase__ = kwargs['output_rle_mask']
if "output_bboxes_mask" in kwargs:
UpperCAmelCase__ = kwargs['output_bboxes_mask']
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]:
"""simple docstring"""
return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a )
def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = load_image(__a )
UpperCAmelCase__ = self.image_processor.size['longest_edge']
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes(
__a , __a , __a , __a , __a , __a )
UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' )
with self.device_placement():
if self.framework == "pt":
UpperCAmelCase__ = self.get_inference_context()
with inference_context():
UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device )
UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) )
UpperCAmelCase__ = image_embeddings
UpperCAmelCase__ = grid_points.shape[1]
UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. '
'To return all points at once, set points_per_batch to None' )
for i in range(0 , __a , __a ):
UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :]
UpperCAmelCase__ = input_labels[:, i : i + points_per_batch]
UpperCAmelCase__ = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = model_inputs.pop('input_boxes' )
UpperCAmelCase__ = model_inputs.pop('is_last' )
UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist()
UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist()
UpperCAmelCase__ = self.model(**__a )
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
UpperCAmelCase__ = model_outputs['pred_masks']
UpperCAmelCase__ = self.image_processor.post_process_masks(
__a , __a , __a , __a , binarize=__a )
UpperCAmelCase__ = model_outputs['iou_scores']
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks(
masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , )
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = []
UpperCAmelCase__ = []
for model_output in model_outputs:
all_scores.append(model_output.pop('iou_scores' ) )
all_masks.extend(model_output.pop('masks' ) )
all_boxes.append(model_output.pop('boxes' ) )
UpperCAmelCase__ = torch.cat(__a )
UpperCAmelCase__ = torch.cat(__a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation(
__a , __a , __a , __a )
UpperCAmelCase__ = defaultdict(__a )
for output in model_outputs:
for k, v in output.items():
extra[k].append(__a )
UpperCAmelCase__ = {}
if output_rle_mask:
UpperCAmelCase__ = rle_mask
if output_bboxes_mask:
UpperCAmelCase__ = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| 335 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_UpperCamelCase = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST',
'UniSpeechForCTC',
'UniSpeechForPreTraining',
'UniSpeechForSequenceClassification',
'UniSpeechModel',
'UniSpeechPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 364 |
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} )
__SCREAMING_SNAKE_CASE = field(
default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} )
__SCREAMING_SNAKE_CASE = field(
default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} )
__SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} )
__SCREAMING_SNAKE_CASE = field(
default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} )
__SCREAMING_SNAKE_CASE = field(
default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} )
__SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} )
__SCREAMING_SNAKE_CASE = field(
default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} )
__SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} )
__SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} )
__SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} )
__SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} )
__SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} )
__SCREAMING_SNAKE_CASE = field(
default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={
"""help""": (
"""Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive"""
""" number corresponds to which GPU device id to run on."""
)
} , )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={
"""help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available."""
} , )
__SCREAMING_SNAKE_CASE = field(
default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} )
__SCREAMING_SNAKE_CASE = field(
default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} )
__SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} )
__SCREAMING_SNAKE_CASE = field(
default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} )
__SCREAMING_SNAKE_CASE = field(
default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} )
__SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(
default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} )
__SCREAMING_SNAKE_CASE = field(
default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} )
__SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
| 335 | 0 |
from __future__ import annotations
def UpperCamelCase_( snake_case__: list[int] ) -> Dict:
return len(set(_a ) ) == len(_a )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 365 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_attention_mask
UpperCAmelCase__ = use_token_type_ids
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_choices
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_attention_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = True
UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = FlaxRobertaModelTester(self )
@slow
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
for model_class_name in self.all_model_classes:
UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a )
UpperCAmelCase__ = model(np.ones((1, 1) ) )
self.assertIsNotNone(__a )
| 335 | 0 |
import doctest
from collections import deque
import numpy as np
class lowercase :
'''simple docstring'''
def __init__(self ) -> None:
"""simple docstring"""
UpperCAmelCase__ = [2, 1, 2, -1]
UpperCAmelCase__ = [1, 2, 3, 4]
def UpperCamelCase__ (self ) -> list[float]:
"""simple docstring"""
UpperCAmelCase__ = len(self.first_signal )
UpperCAmelCase__ = len(self.second_signal )
UpperCAmelCase__ = max(_lowercase , _lowercase )
# create a zero matrix of max_length x max_length
UpperCAmelCase__ = [[0] * max_length for i in range(_lowercase )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(_lowercase ):
UpperCAmelCase__ = deque(self.second_signal )
rotated_signal.rotate(_lowercase )
for j, item in enumerate(_lowercase ):
matrix[i][j] += item
# multiply the matrix with the first signal
UpperCAmelCase__ = np.matmul(np.transpose(_lowercase ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(_lowercase , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 366 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , *__a , **__a ) -> None:
"""simple docstring"""
warnings.warn(
'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use MobileViTImageProcessor instead.' , __a , )
super().__init__(*__a , **__a )
| 335 | 0 |
_UpperCamelCase = 9.8_0_6_6_5
def UpperCamelCase_( snake_case__: float , snake_case__: float , snake_case__: float = g ) -> Optional[Any]:
if fluid_density <= 0:
raise ValueError('Impossible fluid density' )
if volume < 0:
raise ValueError('Impossible Object volume' )
if gravity <= 0:
raise ValueError('Impossible Gravity' )
return fluid_density * gravity * volume
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod() | 367 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {
'''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PegasusXForConditionalGeneration''',
'''PegasusXModel''',
'''PegasusXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 335 | 0 |
import copy
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''microsoft/conditional-detr-resnet-50''': (
'''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json'''
),
}
class lowercase ( _a ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """conditional_detr"""
__SCREAMING_SNAKE_CASE = ["""past_key_values"""]
__SCREAMING_SNAKE_CASE = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__(self , __a=True , __a=None , __a=3 , __a=300 , __a=6 , __a=2048 , __a=8 , __a=6 , __a=2048 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=256 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=2 , __a=5 , __a=2 , __a=1 , __a=1 , __a=2 , __a=5 , __a=2 , __a=0.25 , **__a , ) -> Union[str, Any]:
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' )
UpperCAmelCase__ = CONFIG_MAPPING["""resnet"""](out_features=['stage4'] )
elif isinstance(__lowerCamelCase , __lowerCamelCase ):
UpperCAmelCase__ = backbone_config.get('model_type' )
UpperCAmelCase__ = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase__ = config_class.from_dict(__lowerCamelCase )
UpperCAmelCase__ = use_timm_backbone
UpperCAmelCase__ = backbone_config
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = num_queries
UpperCAmelCase__ = d_model
UpperCAmelCase__ = encoder_ffn_dim
UpperCAmelCase__ = encoder_layers
UpperCAmelCase__ = encoder_attention_heads
UpperCAmelCase__ = decoder_ffn_dim
UpperCAmelCase__ = decoder_layers
UpperCAmelCase__ = decoder_attention_heads
UpperCAmelCase__ = dropout
UpperCAmelCase__ = attention_dropout
UpperCAmelCase__ = activation_dropout
UpperCAmelCase__ = activation_function
UpperCAmelCase__ = init_std
UpperCAmelCase__ = init_xavier_std
UpperCAmelCase__ = encoder_layerdrop
UpperCAmelCase__ = decoder_layerdrop
UpperCAmelCase__ = encoder_layers
UpperCAmelCase__ = auxiliary_loss
UpperCAmelCase__ = position_embedding_type
UpperCAmelCase__ = backbone
UpperCAmelCase__ = use_pretrained_backbone
UpperCAmelCase__ = dilation
# Hungarian matcher
UpperCAmelCase__ = class_cost
UpperCAmelCase__ = bbox_cost
UpperCAmelCase__ = giou_cost
# Loss coefficients
UpperCAmelCase__ = mask_loss_coefficient
UpperCAmelCase__ = dice_loss_coefficient
UpperCAmelCase__ = cls_loss_coefficient
UpperCAmelCase__ = bbox_loss_coefficient
UpperCAmelCase__ = giou_loss_coefficient
UpperCAmelCase__ = focal_alpha
super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase )
@property
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
return self.encoder_attention_heads
@property
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
return self.d_model
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
UpperCAmelCase__ = self.backbone_config.to_dict()
UpperCAmelCase__ = self.__class__.model_type
return output
class lowercase ( _a ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = version.parse("""1.11""" )
@property
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
('pixel_mask', {0: 'batch'}),
] )
@property
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
return 1E-5
@property
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
return 12 | 368 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self , __a ) -> List[Any]:
"""simple docstring"""
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ):
UpperCAmelCase__ = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
benchmark.run()
self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(__a ):
self.assertTrue(hasattr(__a , 'sequential' ) )
self.assertTrue(hasattr(__a , 'cumulative' ) )
self.assertTrue(hasattr(__a , 'current' ) )
self.assertTrue(hasattr(__a , 'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
| 335 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlnet import XLNetTokenizer
else:
_UpperCamelCase = None
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
_UpperCamelCase = {
'''vocab_file''': {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''',
},
'''tokenizer_file''': {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''',
},
}
_UpperCamelCase = {
'''xlnet-base-cased''': None,
'''xlnet-large-cased''': None,
}
_UpperCamelCase = '''▁'''
# Segments (not really needed)
_UpperCamelCase = 0
_UpperCamelCase = 1
_UpperCamelCase = 2
_UpperCamelCase = 3
_UpperCamelCase = 4
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE = """left"""
__SCREAMING_SNAKE_CASE = XLNetTokenizer
def __init__(self , __a=None , __a=None , __a=False , __a=True , __a=False , __a="<s>" , __a="</s>" , __a="<unk>" , __a="<sep>" , __a="<pad>" , __a="<cls>" , __a="<mask>" , __a=["<eop>", "<eod>"] , **__a , ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token
super().__init__(
vocab_file=lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , )
UpperCAmelCase__ = 3
UpperCAmelCase__ = do_lower_case
UpperCAmelCase__ = remove_space
UpperCAmelCase__ = keep_accents
UpperCAmelCase__ = vocab_file
UpperCAmelCase__ = False if not self.vocab_file else True
def UpperCamelCase__ (self , __a , __a = None ) -> List[int]:
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def UpperCamelCase__ (self , __a , __a = None ) -> List[int]:
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def UpperCamelCase__ (self , __a , __a = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(lowercase_ ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
UpperCAmelCase__ = os.path.join(
lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ):
copyfile(self.vocab_file , lowercase_ )
return (out_vocab_file,)
| 369 |
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 335 | 0 |
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
_UpperCamelCase = logging.get_logger(__name__)
def UpperCamelCase_( snake_case__: Union[str, Any] ) -> str:
UpperCAmelCase__ = r"\w+[.]\d+"
UpperCAmelCase__ = re.findall(_lowerCamelCase , _lowerCamelCase )
for pat in pats:
UpperCAmelCase__ = key.replace(_lowerCamelCase , '_'.join(pat.split('.' ) ) )
return key
def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Any , snake_case__: Optional[int] ) -> Dict:
UpperCAmelCase__ = pt_tuple_key[:-1] + ("scale",)
if (
any('norm' in str_ for str_ in pt_tuple_key )
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
UpperCAmelCase__ = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
UpperCAmelCase__ = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
UpperCAmelCase__ = pt_tuple_key[:-1] + ("embedding",)
return renamed_pt_tuple_key, pt_tensor
# conv layer
UpperCAmelCase__ = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
UpperCAmelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
UpperCAmelCase__ = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight":
UpperCAmelCase__ = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
UpperCAmelCase__ = pt_tuple_key[:-1] + ("weight",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
UpperCAmelCase__ = pt_tuple_key[:-1] + ("bias",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def UpperCamelCase_( snake_case__: int , snake_case__: Any , snake_case__: Tuple=42 ) -> Tuple:
UpperCAmelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
UpperCAmelCase__ = flax_model.init_weights(PRNGKey(_lowerCamelCase ) )
UpperCAmelCase__ = flatten_dict(_lowerCamelCase )
UpperCAmelCase__ = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
UpperCAmelCase__ = rename_key(_lowerCamelCase )
UpperCAmelCase__ = tuple(renamed_pt_key.split('.' ) )
# Correctly rename weight parameters
UpperCAmelCase__ = rename_key_and_reshape_tensor(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape "
f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." )
# also add unexpected weight so that warning is thrown
UpperCAmelCase__ = jnp.asarray(_lowerCamelCase )
return unflatten_dict(_lowerCamelCase )
| 370 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class lowercase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
@register_to_config
def __init__(self , *,
__a = 4 , __a = 768 , __a , __a , ) -> str:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) )
# parameters for additional clip time embeddings
UpperCAmelCase__ = nn.Linear(__a , __a )
UpperCAmelCase__ = nn.Linear(__a , __a )
# parameters for encoder hidden states
UpperCAmelCase__ = clip_extra_context_tokens
UpperCAmelCase__ = nn.Linear(
__a , self.clip_extra_context_tokens * cross_attention_dim )
UpperCAmelCase__ = nn.Linear(__a , __a )
UpperCAmelCase__ = nn.LayerNorm(__a )
def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
UpperCAmelCase__ = image_embeddings.shape[0]
UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
UpperCAmelCase__ = classifier_free_guidance_embeddings.expand(
__a , -1 )
UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
UpperCAmelCase__ = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
UpperCAmelCase__ = self.embedding_proj(__a )
UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a )
UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a )
UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens )
UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 )
UpperCAmelCase__ = self.encoder_hidden_states_proj(__a )
UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a )
UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 335 | 0 |
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , )
@pytest.mark.usefixtures("""sm_env""" )
@parameterized_class(
[
{
"""framework""": """pytorch""",
"""script""": """run_glue.py""",
"""model_name_or_path""": """distilbert-base-cased""",
"""instance_type""": """ml.g4dn.xlarge""",
"""results""": {"""train_runtime""": 650, """eval_accuracy""": 0.6, """eval_loss""": 0.9},
},
{
"""framework""": """tensorflow""",
"""script""": """run_tf.py""",
"""model_name_or_path""": """distilbert-base-cased""",
"""instance_type""": """ml.g4dn.xlarge""",
"""results""": {"""train_runtime""": 600, """eval_accuracy""": 0.3, """eval_loss""": 0.9},
},
] )
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
if self.framework == "pytorch":
subprocess.run(
F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='utf-8' , check=_SCREAMING_SNAKE_CASE , )
assert hasattr(self , 'env' )
def UpperCamelCase__ (self , __a=1 ) -> Union[str, Any]:
"""simple docstring"""
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-single" , instance_count=_SCREAMING_SNAKE_CASE , instance_type=self.instance_type , debugger_hook_config=_SCREAMING_SNAKE_CASE , hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='py36' , )
def UpperCamelCase__ (self , __a ) -> Dict:
"""simple docstring"""
TrainingJobAnalytics(_SCREAMING_SNAKE_CASE ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.create_estimator()
# run training
estimator.fit()
# result dataframe
UpperCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
UpperCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] )
UpperCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
UpperCAmelCase__ = (
Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy )
assert all(t <= self.results['eval_loss'] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"{estimator.latest_training_job.name}.json" , 'w' ) as outfile:
json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , _SCREAMING_SNAKE_CASE )
| 371 |
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = BioGptTokenizer
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase__ = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) )
UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' ) as fp:
fp.write(json.dumps(__a ) )
with open(self.merges_file , 'w' ) as fp:
fp.write('\n'.join(__a ) )
def UpperCamelCase__ (self , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = 'lower newer'
UpperCAmelCase__ = 'lower newer'
return input_text, output_text
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file )
UpperCAmelCase__ = 'lower'
UpperCAmelCase__ = ['low', 'er</w>']
UpperCAmelCase__ = tokenizer.tokenize(__a )
self.assertListEqual(__a , __a )
UpperCAmelCase__ = tokens + ['<unk>']
UpperCAmelCase__ = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' )
UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a )
UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a )
UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a )
UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 335 | 0 |
import gc
import math
import unittest
import torch
from diffusers import UNetaDModel
from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
_UpperCamelCase = logging.get_logger(__name__)
enable_full_determinism()
class lowercase ( a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = UNetaDModel
__SCREAMING_SNAKE_CASE = "sample"
@property
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = 4
UpperCAmelCase__ = 3
UpperCAmelCase__ = (32, 32)
UpperCAmelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(__a )
UpperCAmelCase__ = torch.tensor([10] ).to(__a )
return {"sample": noise, "timestep": time_step}
@property
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
return (3, 32, 32)
@property
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
return (3, 32, 32)
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = {
'block_out_channels': (32, 64),
'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'),
'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'),
'attention_head_dim': 3,
'out_channels': 3,
'in_channels': 3,
'layers_per_block': 2,
'sample_size': 32,
}
UpperCAmelCase__ = self.dummy_input
return init_dict, inputs_dict
class lowercase ( a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = UNetaDModel
__SCREAMING_SNAKE_CASE = "sample"
@property
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = 4
UpperCAmelCase__ = 4
UpperCAmelCase__ = (32, 32)
UpperCAmelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(__a )
UpperCAmelCase__ = torch.tensor([10] ).to(__a )
return {"sample": noise, "timestep": time_step}
@property
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
return (4, 32, 32)
@property
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
return (4, 32, 32)
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = {
'sample_size': 32,
'in_channels': 4,
'out_channels': 4,
'layers_per_block': 2,
'block_out_channels': (32, 64),
'attention_head_dim': 32,
'down_block_types': ('DownBlock2D', 'DownBlock2D'),
'up_block_types': ('UpBlock2D', 'UpBlock2D'),
}
UpperCAmelCase__ = self.dummy_input
return init_dict, inputs_dict
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__a )
self.assertIsNotNone(__a )
self.assertEqual(len(loading_info['missing_keys'] ) , 0 )
model.to(__a )
UpperCAmelCase__ = model(**self.dummy_input ).sample
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__a )
model.to(__a )
UpperCAmelCase__ = model(**self.dummy_input ).sample
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__a )
model_accelerate.to(__a )
model_accelerate.eval()
UpperCAmelCase__ = torch.randn(
1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , )
UpperCAmelCase__ = noise.to(__a )
UpperCAmelCase__ = torch.tensor([10] * noise.shape[0] ).to(__a )
UpperCAmelCase__ = model_accelerate(__a , __a )['sample']
# two models don't need to stay in the device at the same time
del model_accelerate
torch.cuda.empty_cache()
gc.collect()
UpperCAmelCase__ , UpperCAmelCase__ = UNetaDModel.from_pretrained(
'fusing/unet-ldm-dummy-update' , output_loading_info=__a , low_cpu_mem_usage=__a )
model_normal_load.to(__a )
model_normal_load.eval()
UpperCAmelCase__ = model_normal_load(__a , __a )['sample']
assert torch_all_close(__a , __a , rtol=1E-3 )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' )
model.eval()
model.to(__a )
UpperCAmelCase__ = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
UpperCAmelCase__ = noise.to(__a )
UpperCAmelCase__ = torch.tensor([10] * noise.shape[0] ).to(__a )
with torch.no_grad():
UpperCAmelCase__ = model(__a , __a ).sample
UpperCAmelCase__ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
UpperCAmelCase__ = torch.tensor([-13.32_58, -20.11_00, -15.98_73, -17.66_17, -23.05_96, -17.94_19, -13.36_75, -16.18_89, -12.38_00] )
# fmt: on
self.assertTrue(torch_all_close(__a , __a , rtol=1E-3 ) )
class lowercase ( a_ , a_ , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = UNetaDModel
__SCREAMING_SNAKE_CASE = "sample"
@property
def UpperCamelCase__ (self , __a=(32, 32) ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = 4
UpperCAmelCase__ = 3
UpperCAmelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(__a )
UpperCAmelCase__ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=__a )
return {"sample": noise, "timestep": time_step}
@property
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
return (3, 32, 32)
@property
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
return (3, 32, 32)
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = {
'block_out_channels': [32, 64, 64, 64],
'in_channels': 3,
'layers_per_block': 1,
'out_channels': 3,
'time_embedding_type': 'fourier',
'norm_eps': 1E-6,
'mid_block_scale_factor': math.sqrt(2.0 ),
'norm_num_groups': None,
'down_block_types': [
'SkipDownBlock2D',
'AttnSkipDownBlock2D',
'SkipDownBlock2D',
'SkipDownBlock2D',
],
'up_block_types': [
'SkipUpBlock2D',
'SkipUpBlock2D',
'AttnSkipUpBlock2D',
'SkipUpBlock2D',
],
}
UpperCAmelCase__ = self.dummy_input
return init_dict, inputs_dict
@slow
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=__a )
self.assertIsNotNone(__a )
self.assertEqual(len(loading_info['missing_keys'] ) , 0 )
model.to(__a )
UpperCAmelCase__ = self.dummy_input
UpperCAmelCase__ = floats_tensor((4, 3) + (256, 256) ).to(__a )
UpperCAmelCase__ = noise
UpperCAmelCase__ = model(**__a )
assert image is not None, "Make sure output is not None"
@slow
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' )
model.to(__a )
UpperCAmelCase__ = 4
UpperCAmelCase__ = 3
UpperCAmelCase__ = (256, 256)
UpperCAmelCase__ = torch.ones((batch_size, num_channels) + sizes ).to(__a )
UpperCAmelCase__ = torch.tensor(batch_size * [1E-4] ).to(__a )
with torch.no_grad():
UpperCAmelCase__ = model(__a , __a ).sample
UpperCAmelCase__ = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
UpperCAmelCase__ = torch.tensor([-48_42.86_91, -64_99.66_31, -38_00.19_53, -79_78.26_86, -1_09_80.71_29, -2_00_28.85_35, 81_48.28_22, 23_42.29_05, 5_67.76_08] )
# fmt: on
self.assertTrue(torch_all_close(__a , __a , rtol=1E-2 ) )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' )
model.to(__a )
UpperCAmelCase__ = 4
UpperCAmelCase__ = 3
UpperCAmelCase__ = (32, 32)
UpperCAmelCase__ = torch.ones((batch_size, num_channels) + sizes ).to(__a )
UpperCAmelCase__ = torch.tensor(batch_size * [1E-4] ).to(__a )
with torch.no_grad():
UpperCAmelCase__ = model(__a , __a ).sample
UpperCAmelCase__ = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
UpperCAmelCase__ = torch.tensor([-0.03_25, -0.09_00, -0.08_69, -0.03_32, -0.07_25, -0.02_70, -0.01_01, 0.02_27, 0.02_56] )
# fmt: on
self.assertTrue(torch_all_close(__a , __a , rtol=1E-2 ) )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
pass
| 350 |
class lowercase : # Public class to implement a graph
'''simple docstring'''
def __init__(self , __a , __a , __a ) -> None:
"""simple docstring"""
UpperCAmelCase__ = row
UpperCAmelCase__ = col
UpperCAmelCase__ = graph
def UpperCamelCase__ (self , __a , __a , __a ) -> bool:
"""simple docstring"""
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def UpperCamelCase__ (self , __a , __a , __a ) -> None:
"""simple docstring"""
UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1]
UpperCAmelCase__ = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a )
def UpperCamelCase__ (self ) -> int: # And finally, count all islands.
"""simple docstring"""
UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )]
UpperCAmelCase__ = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(__a , __a , __a )
count += 1
return count
| 335 | 0 |
import argparse
import os
import platform
import numpy as np
import psutil
import torch
from accelerate import __version__ as version
from accelerate.commands.config import default_config_file, load_config_from_file
from ..utils import is_npu_available, is_xpu_available
def UpperCamelCase_( snake_case__: List[Any]=None ) -> List[str]:
if subparsers is not None:
UpperCAmelCase__ = subparsers.add_parser('env' )
else:
UpperCAmelCase__ = argparse.ArgumentParser('Accelerate env command' )
parser.add_argument(
'--config_file' , default=_SCREAMING_SNAKE_CASE , help='The config file to use for the default values in the launching script.' )
if subparsers is not None:
parser.set_defaults(func=_SCREAMING_SNAKE_CASE )
return parser
def UpperCamelCase_( snake_case__: str ) -> Optional[Any]:
UpperCAmelCase__ = torch.__version__
UpperCAmelCase__ = torch.cuda.is_available()
UpperCAmelCase__ = is_xpu_available()
UpperCAmelCase__ = is_npu_available()
UpperCAmelCase__ = "Not found"
# Get the default from the config file.
if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ):
UpperCAmelCase__ = load_config_from_file(args.config_file ).to_dict()
UpperCAmelCase__ = {
"`Accelerate` version": version,
"Platform": platform.platform(),
"Python version": platform.python_version(),
"Numpy version": np.__version__,
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
"PyTorch XPU available": str(_SCREAMING_SNAKE_CASE ),
"PyTorch NPU available": str(_SCREAMING_SNAKE_CASE ),
"System RAM": f"{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB",
}
if pt_cuda_available:
UpperCAmelCase__ = torch.cuda.get_device_name()
print('\nCopy-and-paste the text below in your GitHub issue\n' )
print('\n'.join([f"- {prop}: {val}" for prop, val in info.items()] ) )
print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' )
UpperCAmelCase__ = (
"\n".join([f"\t- {prop}: {val}" for prop, val in accelerate_config.items()] )
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else f"\t{accelerate_config}"
)
print(_SCREAMING_SNAKE_CASE )
UpperCAmelCase__ = accelerate_config
return info
def UpperCamelCase_( ) -> int:
UpperCAmelCase__ = env_command_parser()
UpperCAmelCase__ = parser.parse_args()
env_command(_SCREAMING_SNAKE_CASE )
return 0
if __name__ == "__main__":
raise SystemExit(main())
| 351 |
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
_UpperCamelCase = Lock()
def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Dict , snake_case__: Any ) -> str:
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(snake_case__ )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
UpperCAmelCase__ = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
UpperCAmelCase__ = min(snake_case__ , snake_case__ )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(snake_case__ )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
UpperCAmelCase__ = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
UpperCAmelCase__ = max(snake_case__ , snake_case__ )
# after all swaps are performed, send the values back to main
result_pipe[1].send(snake_case__ )
def UpperCamelCase_( snake_case__: Any ) -> Tuple:
UpperCAmelCase__ = []
UpperCAmelCase__ = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
UpperCAmelCase__ = Pipe()
UpperCAmelCase__ = Pipe()
process_array_.append(
Process(
target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
UpperCAmelCase__ = temp_rs
UpperCAmelCase__ = temp_rr
for i in range(1 , len(snake_case__ ) - 1 ):
UpperCAmelCase__ = Pipe()
UpperCAmelCase__ = Pipe()
process_array_.append(
Process(
target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
UpperCAmelCase__ = temp_rs
UpperCAmelCase__ = temp_rr
process_array_.append(
Process(
target=snake_case__ , args=(
len(snake_case__ ) - 1,
arr[len(snake_case__ ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(snake_case__ ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(snake_case__ ) ):
UpperCAmelCase__ = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def UpperCamelCase_( ) -> Dict:
UpperCAmelCase__ = list(range(10 , 0 , -1 ) )
print('Initial List' )
print(*snake_case__ )
UpperCAmelCase__ = odd_even_transposition(snake_case__ )
print('Sorted List\n' )
print(*snake_case__ )
if __name__ == "__main__":
main()
| 335 | 0 |
from functools import reduce
_UpperCamelCase = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def UpperCamelCase_( snake_case__: str = N ) -> List[str]:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda snake_case__ , snake_case__ : str(int(UpperCamelCase__ ) * int(UpperCamelCase__ ) ) , n[i : i + 13] ) )
for i in range(len(UpperCamelCase__ ) - 12 ) )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 352 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class lowercase :
'''simple docstring'''
def __init__(self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = ''
UpperCAmelCase__ = ''
UpperCAmelCase__ = []
UpperCAmelCase__ = 0
UpperCAmelCase__ = 256
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
def UpperCamelCase__ (self , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = cva.imread(__a , 0 )
UpperCAmelCase__ = copy.deepcopy(self.img )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' )
UpperCAmelCase__ = np.sum(__a )
for i in range(len(__a ) ):
UpperCAmelCase__ = x[i] / self.k
self.sk += prk
UpperCAmelCase__ = (self.L - 1) * self.sk
if self.rem != 0:
UpperCAmelCase__ = int(last % last )
UpperCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(__a )
UpperCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size )
UpperCAmelCase__ = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCAmelCase__ = self.img[j][i]
if num != self.last_list[num]:
UpperCAmelCase__ = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
plt.hist(self.img.ravel() , 256 , [0, 256] )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
_UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''')
_UpperCamelCase = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 335 | 0 |
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
A_ = logging.get_logger(__name__)
@add_end_docstrings(_lowerCamelCase )
class lowercase ( _lowerCamelCase ):
'''simple docstring'''
def __init__(self , **__a ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**__a )
if self.framework != "pt":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
# No specific FOR_XXX available yet
def __call__(self , __a , **__a ) -> Any:
"""simple docstring"""
return super().__call__(__a , **__a )
def UpperCamelCase__ (self , **__a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = {}
if "candidate_labels" in kwargs:
UpperCAmelCase__ = kwargs['candidate_labels']
if "hypothesis_template" in kwargs:
UpperCAmelCase__ = kwargs['hypothesis_template']
return preprocess_params, {}, {}
def UpperCamelCase__ (self , __a , __a=None , __a="This is a sound of {}." ) -> Dict:
"""simple docstring"""
if isinstance(__a , __a ):
if audio.startswith('http://' ) or audio.startswith('https://' ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
UpperCAmelCase__ = requests.get(__a ).content
else:
with open(__a , 'rb' ) as f:
UpperCAmelCase__ = f.read()
if isinstance(__a , __a ):
UpperCAmelCase__ = ffmpeg_read(__a , self.feature_extractor.sampling_rate )
if not isinstance(__a , np.ndarray ):
raise ValueError('We expect a numpy ndarray as input' )
if len(audio.shape ) != 1:
raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' )
UpperCAmelCase__ = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='pt' )
UpperCAmelCase__ = candidate_labels
UpperCAmelCase__ = [hypothesis_template.format(__a ) for x in candidate_labels]
UpperCAmelCase__ = self.tokenizer(__a , return_tensors=self.framework , padding=__a )
UpperCAmelCase__ = [text_inputs]
return inputs
def UpperCamelCase__ (self , __a ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = model_inputs.pop('candidate_labels' )
UpperCAmelCase__ = model_inputs.pop('text_inputs' )
if isinstance(text_inputs[0] , __a ):
UpperCAmelCase__ = text_inputs[0]
else:
# Batching case.
UpperCAmelCase__ = text_inputs[0][0]
UpperCAmelCase__ = self.model(**__a , **__a )
UpperCAmelCase__ = {
'candidate_labels': candidate_labels,
'logits': outputs.logits_per_audio,
}
return model_outputs
def UpperCamelCase__ (self , __a ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = model_outputs.pop('candidate_labels' )
UpperCAmelCase__ = model_outputs['logits'][0]
if self.framework == "pt":
UpperCAmelCase__ = logits.softmax(dim=0 )
UpperCAmelCase__ = probs.tolist()
else:
raise ValueError('`tf` framework not supported.' )
UpperCAmelCase__ = [
{'score': score, 'label': candidate_label}
for score, candidate_label in sorted(zip(__a , __a ) , key=lambda __a : -x[0] )
]
return result
| 353 |
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = image_size
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = embed_dim
UpperCAmelCase__ = depths
UpperCAmelCase__ = num_heads
UpperCAmelCase__ = window_size
UpperCAmelCase__ = mlp_ratio
UpperCAmelCase__ = qkv_bias
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = drop_path_rate
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = use_absolute_embeddings
UpperCAmelCase__ = patch_norm
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = is_training
UpperCAmelCase__ = scope
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = encoder_stride
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModel(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCAmelCase__ = 1
UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self.type_sequence_label_size
UpperCAmelCase__ = SwinvaForImageClassification(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
__SCREAMING_SNAKE_CASE = (
{"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification}
if is_torch_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
@unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason='Swinv2 does not use inputs_embeds' )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__a , nn.Linear ) )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ = [*signature.parameters.keys()]
UpperCAmelCase__ = ['pixel_values']
self.assertListEqual(arg_names[:1] , __a )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
UpperCAmelCase__ = len(self.model_tester.depths )
self.assertEqual(len(__a ) , __a )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = config.window_size**2
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
UpperCAmelCase__ = len(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
if hasattr(self.model_tester , 'num_hidden_states_types' ):
UpperCAmelCase__ = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
UpperCAmelCase__ = 2
self.assertEqual(out_len + added_hidden_states , len(__a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.hidden_states
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__a ) , __a )
# Swinv2 has a different seq_length
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
UpperCAmelCase__ = outputs.reshaped_hidden_states
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape
UpperCAmelCase__ = (
reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = 3
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__a )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = SwinvaModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = _config_zero_init(__a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(config=__a )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
@require_vision
@require_torch
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' )
if is_vision_available()
else None
)
@slow
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to(
__a )
UpperCAmelCase__ = self.default_image_processor
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a )
# forward pass
with torch.no_grad():
UpperCAmelCase__ = model(**__a )
# verify the logits
UpperCAmelCase__ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __a )
UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
| 335 | 0 |
from __future__ import annotations
import random
import unittest
from transformers import TransfoXLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLModel,
)
class lowercase :
'''simple docstring'''
def __init__(self , __a , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = 13
UpperCAmelCase__ = 7
UpperCAmelCase__ = 30
UpperCAmelCase__ = self.seq_length + self.mem_len
UpperCAmelCase__ = 15
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = 99
UpperCAmelCase__ = [10, 50, 80]
UpperCAmelCase__ = 32
UpperCAmelCase__ = 32
UpperCAmelCase__ = 4
UpperCAmelCase__ = 8
UpperCAmelCase__ = 128
UpperCAmelCase__ = 2
UpperCAmelCase__ = 2
UpperCAmelCase__ = None
UpperCAmelCase__ = 1
UpperCAmelCase__ = 0
UpperCAmelCase__ = 3
UpperCAmelCase__ = self.vocab_size - 1
UpperCAmelCase__ = 0.01
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = TransfoXLConfig(
vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , )
return (config, input_ids_a, input_ids_a, lm_labels)
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
random.seed(self.seed )
tf.random.set_seed(self.seed )
def UpperCamelCase__ (self , __a , __a , __a , __a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFTransfoXLModel(__a )
UpperCAmelCase__ = model(__a ).to_tuple()
UpperCAmelCase__ = {"input_ids": input_ids_a, "mems": mems_a}
UpperCAmelCase__ = model(__a ).to_tuple()
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = TFTransfoXLLMHeadModel(__a )
UpperCAmelCase__ = model(__a ).to_tuple()
UpperCAmelCase__ = {"input_ids": input_ids_a, "labels": lm_labels}
UpperCAmelCase__ = model(__a ).to_tuple()
UpperCAmelCase__ = model([input_ids_a, mems_a] ).to_tuple()
UpperCAmelCase__ = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels}
UpperCAmelCase__ = model(__a ).to_tuple()
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = TFTransfoXLForSequenceClassification(__a )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
(UpperCAmelCase__) = config_and_inputs
UpperCAmelCase__ = {"input_ids": input_ids_a}
return config, inputs_dict
@require_tf
class lowercase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
)
__SCREAMING_SNAKE_CASE = () if is_tf_available() else ()
__SCREAMING_SNAKE_CASE = (
{
"""feature-extraction""": TFTransfoXLModel,
"""text-classification""": TFTransfoXLForSequenceClassification,
"""text-generation""": TFTransfoXLLMHeadModel,
"""zero-shot""": TFTransfoXLForSequenceClassification,
}
if is_tf_available()
else {}
)
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self , __a , __a , __a , __a , __a ) -> str:
"""simple docstring"""
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = TFTransfoXLModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , d_embed=37 )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
self.model_tester.set_seed()
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_model(*__a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
self.model_tester.set_seed()
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*__a )
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*__a )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = [TFTransfoXLForSequenceClassification]
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class in list_other_models_with_output_ebd:
UpperCAmelCase__ = model.get_output_embeddings()
assert isinstance(__a , tf.keras.layers.Layer )
UpperCAmelCase__ = model.get_bias()
assert name is None
else:
UpperCAmelCase__ = model.get_output_embeddings()
assert x is None
UpperCAmelCase__ = model.get_bias()
assert name is None
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
pass
@slow
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = TFTransfoXLModel.from_pretrained(__a )
self.assertIsNotNone(__a )
@unittest.skip(reason='This model doesn\'t play well with fit() due to not returning a single loss.' )
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
pass
@require_tf
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@unittest.skip('Skip test until #12651 is resolved.' )
@slow
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = TFTransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103' )
# fmt: off
UpperCAmelCase__ = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
UpperCAmelCase__ = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
UpperCAmelCase__ = model.generate(__a , max_length=200 , do_sample=__a )
self.assertListEqual(output_ids[0].numpy().tolist() , __a )
| 354 |
from collections import deque
def UpperCamelCase_( snake_case__: Tuple ) -> Tuple:
UpperCAmelCase__ = len(snake_case__ )
UpperCAmelCase__ = deque()
UpperCAmelCase__ = [False for _ in range(snake_case__ )]
UpperCAmelCase__ = [-1 for _ in range(snake_case__ )]
UpperCAmelCase__ = index_of[:]
def strong_connect(snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[str] ):
UpperCAmelCase__ = index # the number when this node is seen
UpperCAmelCase__ = index # lowest rank node reachable from here
index += 1
stack.append(snake_case__ )
UpperCAmelCase__ = True
for w in g[v]:
if index_of[w] == -1:
UpperCAmelCase__ = strong_connect(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase__ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
UpperCAmelCase__ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
UpperCAmelCase__ = []
UpperCAmelCase__ = stack.pop()
UpperCAmelCase__ = False
component.append(snake_case__ )
while w != v:
UpperCAmelCase__ = stack.pop()
UpperCAmelCase__ = False
component.append(snake_case__ )
components.append(snake_case__ )
return index
UpperCAmelCase__ = []
for v in range(snake_case__ ):
if index_of[v] == -1:
strong_connect(snake_case__ , 0 , snake_case__ )
return components
def UpperCamelCase_( snake_case__: Dict , snake_case__: List[Any] ) -> Optional[int]:
UpperCAmelCase__ = [[] for _ in range(snake_case__ )]
for u, v in edges:
g[u].append(snake_case__ )
return g
if __name__ == "__main__":
# Test
_UpperCamelCase = 7
_UpperCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6]
_UpperCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5]
_UpperCamelCase = [(u, v) for u, v in zip(source, target)]
_UpperCamelCase = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 335 | 0 |
def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> list:
UpperCAmelCase__ = len(snake_case__ )
UpperCAmelCase__ = []
for i in range(len(snake_case__ ) - pat_len + 1 ):
UpperCAmelCase__ = True
for j in range(snake_case__ ):
if s[i + j] != pattern[j]:
UpperCAmelCase__ = False
break
if match_found:
position.append(snake_case__ )
return position
if __name__ == "__main__":
assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3]
print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
| 355 |
from ...configuration_utils import PretrainedConfig
_UpperCamelCase = {
'''google/tapas-base-finetuned-sqa''': (
'''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wtq''': (
'''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wikisql-supervised''': (
'''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-tabfact''': (
'''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''
),
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """tapas"""
def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=1024 , __a=[3, 256, 256, 2, 256, 256, 10] , __a=0.02 , __a=1E-1_2 , __a=0 , __a=10.0 , __a=0 , __a=1.0 , __a=None , __a=1.0 , __a=False , __a=None , __a=1.0 , __a=1.0 , __a=False , __a=False , __a="ratio" , __a=None , __a=None , __a=64 , __a=32 , __a=False , __a=True , __a=False , __a=False , __a=True , __a=False , __a=None , __a=None , **__a , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=__a , **__a )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_sizes
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
# Fine-tuning task hyperparameters
UpperCAmelCase__ = positive_label_weight
UpperCAmelCase__ = num_aggregation_labels
UpperCAmelCase__ = aggregation_loss_weight
UpperCAmelCase__ = use_answer_as_supervision
UpperCAmelCase__ = answer_loss_importance
UpperCAmelCase__ = use_normalized_answer_loss
UpperCAmelCase__ = huber_loss_delta
UpperCAmelCase__ = temperature
UpperCAmelCase__ = aggregation_temperature
UpperCAmelCase__ = use_gumbel_for_cells
UpperCAmelCase__ = use_gumbel_for_aggregation
UpperCAmelCase__ = average_approximation_function
UpperCAmelCase__ = cell_selection_preference
UpperCAmelCase__ = answer_loss_cutoff
UpperCAmelCase__ = max_num_rows
UpperCAmelCase__ = max_num_columns
UpperCAmelCase__ = average_logits_per_cell
UpperCAmelCase__ = select_one_column
UpperCAmelCase__ = allow_empty_column_selection
UpperCAmelCase__ = init_cell_selection_weights_to_zero
UpperCAmelCase__ = reset_position_index_per_cell
UpperCAmelCase__ = disable_per_token_loss
# Aggregation hyperparameters
UpperCAmelCase__ = aggregation_labels
UpperCAmelCase__ = no_aggregation_label_index
if isinstance(self.aggregation_labels , __a ):
UpperCAmelCase__ = {int(__a ): v for k, v in aggregation_labels.items()}
| 335 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_UpperCamelCase = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['XLNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['XLNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'XLNetForMultipleChoice',
'XLNetForQuestionAnswering',
'XLNetForQuestionAnsweringSimple',
'XLNetForSequenceClassification',
'XLNetForTokenClassification',
'XLNetLMHeadModel',
'XLNetModel',
'XLNetPreTrainedModel',
'load_tf_weights_in_xlnet',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXLNetForMultipleChoice',
'TFXLNetForQuestionAnsweringSimple',
'TFXLNetForSequenceClassification',
'TFXLNetForTokenClassification',
'TFXLNetLMHeadModel',
'TFXLNetMainLayer',
'TFXLNetModel',
'TFXLNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 356 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCamelCase = {
'''configuration_squeezebert''': [
'''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''SqueezeBertConfig''',
'''SqueezeBertOnnxConfig''',
],
'''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''SqueezeBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SqueezeBertForMaskedLM''',
'''SqueezeBertForMultipleChoice''',
'''SqueezeBertForQuestionAnswering''',
'''SqueezeBertForSequenceClassification''',
'''SqueezeBertForTokenClassification''',
'''SqueezeBertModel''',
'''SqueezeBertModule''',
'''SqueezeBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 335 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_UpperCamelCase = {
'''configuration_lxmert''': ['''LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LxmertConfig'''],
'''tokenization_lxmert''': ['''LxmertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''LxmertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''LxmertEncoder''',
'''LxmertForPreTraining''',
'''LxmertForQuestionAnswering''',
'''LxmertModel''',
'''LxmertPreTrainedModel''',
'''LxmertVisualFeatureEncoder''',
'''LxmertXLayer''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFLxmertForPreTraining''',
'''TFLxmertMainLayer''',
'''TFLxmertModel''',
'''TFLxmertPreTrainedModel''',
'''TFLxmertVisualFeatureEncoder''',
]
if TYPE_CHECKING:
from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
from .tokenization_lxmert import LxmertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_lxmert_fast import LxmertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lxmert import (
LxmertEncoder,
LxmertForPreTraining,
LxmertForQuestionAnswering,
LxmertModel,
LxmertPreTrainedModel,
LxmertVisualFeatureEncoder,
LxmertXLayer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_lxmert import (
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLxmertForPreTraining,
TFLxmertMainLayer,
TFLxmertModel,
TFLxmertPreTrainedModel,
TFLxmertVisualFeatureEncoder,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 357 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase__ = XCLIPTextConfig()
# derive patch size from model name
UpperCAmelCase__ = model_name.find('patch' )
UpperCAmelCase__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] )
UpperCAmelCase__ = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ )
if "large" in model_name:
UpperCAmelCase__ = 7_68
UpperCAmelCase__ = 30_72
UpperCAmelCase__ = 12
UpperCAmelCase__ = 10_24
UpperCAmelCase__ = 40_96
UpperCAmelCase__ = 16
UpperCAmelCase__ = 24
UpperCAmelCase__ = 7_68
UpperCAmelCase__ = 30_72
if model_name == "xclip-large-patch14-16-frames":
UpperCAmelCase__ = 3_36
UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ )
if "large" in model_name:
UpperCAmelCase__ = 7_68
return config
def UpperCamelCase_( snake_case__: Any ) -> Tuple:
# text encoder
if name == "token_embedding.weight":
UpperCAmelCase__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' )
if name == "positional_embedding":
UpperCAmelCase__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' )
if "ln_1" in name:
UpperCAmelCase__ = name.replace('ln_1' , 'layer_norm1' )
if "ln_2" in name:
UpperCAmelCase__ = name.replace('ln_2' , 'layer_norm2' )
if "c_fc" in name:
UpperCAmelCase__ = name.replace('c_fc' , 'fc1' )
if "c_proj" in name:
UpperCAmelCase__ = name.replace('c_proj' , 'fc2' )
if name.startswith('transformer.resblocks' ):
UpperCAmelCase__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' )
if "attn.out_proj" in name and "message" not in name:
UpperCAmelCase__ = name.replace('attn.out_proj' , 'self_attn.out_proj' )
if "ln_final" in name:
UpperCAmelCase__ = name.replace('ln_final' , 'text_model.final_layer_norm' )
# visual encoder
if name == "visual.class_embedding":
UpperCAmelCase__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' )
if name == "visual.positional_embedding":
UpperCAmelCase__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' )
if name.startswith('visual.transformer.resblocks' ):
UpperCAmelCase__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' )
if "visual.conv1" in name:
UpperCAmelCase__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' )
if "visual.ln_pre" in name:
UpperCAmelCase__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' )
if "visual.ln_post" in name:
UpperCAmelCase__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' )
if "visual.proj" in name:
UpperCAmelCase__ = name.replace('visual.proj' , 'visual_projection.weight' )
if "text_projection" in name:
UpperCAmelCase__ = name.replace('text_projection' , 'text_projection.weight' )
# things on top
if "prompts_visual_proj" in name:
UpperCAmelCase__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' )
if "prompts_visual_ln" in name:
UpperCAmelCase__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' )
# mit
if name == "mit.positional_embedding":
UpperCAmelCase__ = name.replace('positional' , 'position' )
if name.startswith('mit.resblocks' ):
UpperCAmelCase__ = name.replace('mit.resblocks' , 'mit.encoder.layers' )
# prompts generator
if name.startswith('prompts_generator.norm' ):
UpperCAmelCase__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' )
return name
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Optional[Any]:
for key in orig_state_dict.copy().keys():
UpperCAmelCase__ = orig_state_dict.pop(snake_case__ )
if "attn.in_proj" in key:
UpperCAmelCase__ = key.split('.' )
if key.startswith('visual' ):
UpperCAmelCase__ = key_split[3]
UpperCAmelCase__ = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
UpperCAmelCase__ = val[
:dim, :
]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[
-dim:, :
]
else:
UpperCAmelCase__ = val[
:dim
]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[
-dim:
]
else:
if "weight" in key:
UpperCAmelCase__ = val[
:dim, :
]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[
-dim:, :
]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[-dim:]
elif key.startswith('mit' ):
UpperCAmelCase__ = key_split[2]
UpperCAmelCase__ = config.vision_config.mit_hidden_size
if "weight" in key:
UpperCAmelCase__ = val[:dim, :]
UpperCAmelCase__ = val[dim : dim * 2, :]
UpperCAmelCase__ = val[-dim:, :]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[dim : dim * 2]
UpperCAmelCase__ = val[-dim:]
else:
UpperCAmelCase__ = key_split[2]
UpperCAmelCase__ = config.text_config.hidden_size
if "weight" in key:
UpperCAmelCase__ = val[:dim, :]
UpperCAmelCase__ = val[
dim : dim * 2, :
]
UpperCAmelCase__ = val[-dim:, :]
else:
UpperCAmelCase__ = val[:dim]
UpperCAmelCase__ = val[
dim : dim * 2
]
UpperCAmelCase__ = val[-dim:]
else:
UpperCAmelCase__ = rename_key(snake_case__ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
UpperCAmelCase__ = val.T
UpperCAmelCase__ = val
return orig_state_dict
def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]:
if num_frames == 8:
UpperCAmelCase__ = 'eating_spaghetti_8_frames.npy'
elif num_frames == 16:
UpperCAmelCase__ = 'eating_spaghetti.npy'
elif num_frames == 32:
UpperCAmelCase__ = 'eating_spaghetti_32_frames.npy'
UpperCAmelCase__ = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , )
UpperCAmelCase__ = np.load(snake_case__ )
return list(snake_case__ )
def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None , snake_case__: Union[str, Any]=False ) -> List[Any]:
UpperCAmelCase__ = {
# fully supervised kinetics-400 checkpoints
'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth',
'xclip-base-patch32-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'
),
'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth',
'xclip-base-patch16-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'
),
'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb',
'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f',
# fully supervised kinetics-600 checkpoints
'xclip-base-patch16-kinetics-600': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'
),
'xclip-base-patch16-kinetics-600-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'
),
'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be',
# few shot
'xclip-base-patch16-hmdb-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'
),
'xclip-base-patch16-hmdb-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'
),
'xclip-base-patch16-hmdb-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'
),
'xclip-base-patch16-hmdb-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'
),
'xclip-base-patch16-ucf-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'
),
'xclip-base-patch16-ucf-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'
),
'xclip-base-patch16-ucf-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'
),
'xclip-base-patch16-ucf-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'
),
# zero shot
'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth',
}
UpperCAmelCase__ = model_to_url[model_name]
UpperCAmelCase__ = 8
if "16-frames" in model_name:
UpperCAmelCase__ = 16
elif "shot" in model_name:
UpperCAmelCase__ = 32
UpperCAmelCase__ = get_xclip_config(snake_case__ , snake_case__ )
UpperCAmelCase__ = XCLIPModel(snake_case__ )
model.eval()
if "drive" in checkpoint_url:
UpperCAmelCase__ = 'pytorch_model.bin'
gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ )
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model']
else:
UpperCAmelCase__ = torch.hub.load_state_dict_from_url(snake_case__ )['model']
UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ )
UpperCAmelCase__ = XCLIPModel(snake_case__ )
UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(snake_case__ , strict=snake_case__ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
UpperCAmelCase__ = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24
UpperCAmelCase__ = VideoMAEImageProcessor(size=snake_case__ )
UpperCAmelCase__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' )
UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' )
UpperCAmelCase__ = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ )
UpperCAmelCase__ = prepare_video(snake_case__ )
UpperCAmelCase__ = processor(
text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ )
print('Shape of pixel values:' , inputs.pixel_values.shape )
with torch.no_grad():
UpperCAmelCase__ = model(**snake_case__ )
# Verify outputs
UpperCAmelCase__ = outputs.logits_per_video
UpperCAmelCase__ = logits_per_video.softmax(dim=1 )
print('Probs:' , snake_case__ )
# kinetics-400
if model_name == "xclip-base-patch32":
UpperCAmelCase__ = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] )
elif model_name == "xclip-base-patch32-16-frames":
UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] )
elif model_name == "xclip-base-patch16":
UpperCAmelCase__ = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] )
elif model_name == "xclip-base-patch16-16-frames":
UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] )
elif model_name == "xclip-large-patch14":
UpperCAmelCase__ = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] )
elif model_name == "xclip-large-patch14-16-frames":
UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
UpperCAmelCase__ = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
UpperCAmelCase__ = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
UpperCAmelCase__ = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] )
else:
raise ValueError(f"Model name {model_name} not supported" )
assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
if push_to_hub:
print('Pushing model, processor and slow tokenizer files to the hub...' )
model.push_to_hub(snake_case__ , organization='nielsr' )
processor.push_to_hub(snake_case__ , organization='nielsr' )
slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''xclip-base-patch32''',
type=str,
help='''Name of the model.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_UpperCamelCase = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 335 | 0 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''microsoft/unispeech-sat-base-100h-libri-ft''': (
'''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'''
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class lowercase ( a_ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """unispeech-sat"""
def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.02 , __a=1E-5 , __a="group" , __a="gelu" , __a=(512, 512, 512, 512, 512, 512, 512) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=128 , __a=16 , __a=False , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a=320 , __a=2 , __a=0.1 , __a=100 , __a=256 , __a=256 , __a=0.1 , __a="mean" , __a=False , __a=False , __a=256 , __a=(512, 512, 512, 512, 1500) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=512 , __a=0 , __a=1 , __a=2 , __a=504 , **__a , ) -> List[Any]:
"""simple docstring"""
super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ )
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = feat_extract_norm
UpperCAmelCase__ = feat_extract_activation
UpperCAmelCase__ = list(lowercase_ )
UpperCAmelCase__ = list(lowercase_ )
UpperCAmelCase__ = list(lowercase_ )
UpperCAmelCase__ = conv_bias
UpperCAmelCase__ = num_conv_pos_embeddings
UpperCAmelCase__ = num_conv_pos_embedding_groups
UpperCAmelCase__ = len(self.conv_dim )
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_dropout
UpperCAmelCase__ = attention_dropout
UpperCAmelCase__ = activation_dropout
UpperCAmelCase__ = feat_proj_dropout
UpperCAmelCase__ = final_dropout
UpperCAmelCase__ = layerdrop
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = num_clusters
UpperCAmelCase__ = do_stable_layer_norm
UpperCAmelCase__ = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"
F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase__ = apply_spec_augment
UpperCAmelCase__ = mask_time_prob
UpperCAmelCase__ = mask_time_length
UpperCAmelCase__ = mask_time_min_masks
UpperCAmelCase__ = mask_feature_prob
UpperCAmelCase__ = mask_feature_length
UpperCAmelCase__ = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
UpperCAmelCase__ = num_codevectors_per_group
UpperCAmelCase__ = num_codevector_groups
UpperCAmelCase__ = contrastive_logits_temperature
UpperCAmelCase__ = feat_quantizer_dropout
UpperCAmelCase__ = num_negatives
UpperCAmelCase__ = codevector_dim
UpperCAmelCase__ = proj_codevector_dim
UpperCAmelCase__ = diversity_loss_weight
# ctc loss
UpperCAmelCase__ = ctc_loss_reduction
UpperCAmelCase__ = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
UpperCAmelCase__ = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase__ = list(lowercase_ )
UpperCAmelCase__ = list(lowercase_ )
UpperCAmelCase__ = list(lowercase_ )
UpperCAmelCase__ = xvector_output_dim
@property
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 358 |
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: Union[str, Any] ) -> Tuple:
UpperCAmelCase__ = OmegaConf.load(snake_case__ )
UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model']
UpperCAmelCase__ = list(state_dict.keys() )
# extract state_dict for VQVAE
UpperCAmelCase__ = {}
UpperCAmelCase__ = 'first_stage_model.'
for key in keys:
if key.startswith(snake_case__ ):
UpperCAmelCase__ = state_dict[key]
# extract state_dict for UNetLDM
UpperCAmelCase__ = {}
UpperCAmelCase__ = 'model.diffusion_model.'
for key in keys:
if key.startswith(snake_case__ ):
UpperCAmelCase__ = state_dict[key]
UpperCAmelCase__ = config.model.params.first_stage_config.params
UpperCAmelCase__ = config.model.params.unet_config.params
UpperCAmelCase__ = VQModel(**snake_case__ ).eval()
vqvae.load_state_dict(snake_case__ )
UpperCAmelCase__ = UNetLDMModel(**snake_case__ ).eval()
unet.load_state_dict(snake_case__ )
UpperCAmelCase__ = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , )
UpperCAmelCase__ = LDMPipeline(snake_case__ , snake_case__ , snake_case__ )
pipeline.save_pretrained(snake_case__ )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--checkpoint_path''', type=str, required=True)
parser.add_argument('''--config_path''', type=str, required=True)
parser.add_argument('''--output_path''', type=str, required=True)
_UpperCamelCase = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 335 | 0 |
import importlib.util
import json
import os
import warnings
from dataclasses import dataclass, field
import torch
from ..training_args import TrainingArguments
from ..utils import cached_property, is_sagemaker_dp_enabled, logging
_UpperCamelCase = logging.get_logger(__name__)
def UpperCamelCase_( ) -> int:
UpperCAmelCase__ = os.getenv('SM_HP_MP_PARAMETERS' , '{}' )
try:
# Parse it and check the field "partitions" is included, it is required for model parallel.
UpperCAmelCase__ = json.loads(_lowercase )
if "partitions" not in smp_options:
return False
except json.JSONDecodeError:
return False
# Get the sagemaker specific framework parameters from mpi_options variable.
UpperCAmelCase__ = os.getenv('SM_FRAMEWORK_PARAMS' , '{}' )
try:
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
UpperCAmelCase__ = json.loads(_lowercase )
if not mpi_options.get('sagemaker_mpi_enabled' , _lowercase ):
return False
except json.JSONDecodeError:
return False
# Lastly, check if the `smdistributed` module is present.
return importlib.util.find_spec('smdistributed' ) is not None
if is_sagemaker_model_parallel_available():
import smdistributed.modelparallel.torch as smp
smp.init()
@dataclass
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
super().__post_init__()
warnings.warn(
'`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use '
'`TrainingArguments` instead.' , __A , )
@cached_property
def UpperCamelCase__ (self ) -> "torch.device":
"""simple docstring"""
logger.info('PyTorch: setting up devices' )
if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1:
logger.warning(
'torch.distributed process group is initialized, but local_rank == -1. '
'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' )
if self.no_cuda:
UpperCAmelCase__ = torch.device('cpu' )
UpperCAmelCase__ = 0
elif is_sagemaker_model_parallel_available():
UpperCAmelCase__ = smp.local_rank()
UpperCAmelCase__ = torch.device('cuda' , __A )
UpperCAmelCase__ = 1
elif is_sagemaker_dp_enabled():
import smdistributed.dataparallel.torch.torch_smddp # noqa: F401
torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta )
UpperCAmelCase__ = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) )
UpperCAmelCase__ = torch.device('cuda' , self.local_rank )
UpperCAmelCase__ = 1
elif self.local_rank == -1:
# if n_gpu is > 1 we'll use nn.DataParallel.
# If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
# Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
# trigger an error that a device index is missing. Index 0 takes into account the
# GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
# will use the first GPU in that env, i.e. GPU#1
UpperCAmelCase__ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' )
# Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
# the default value.
UpperCAmelCase__ = torch.cuda.device_count()
else:
# Here, we'll use torch.distributed.
# Initializes the distributed backend which will take care of synchronizing nodes/GPUs
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta )
UpperCAmelCase__ = torch.device('cuda' , self.local_rank )
UpperCAmelCase__ = 1
if device.type == "cuda":
torch.cuda.set_device(__A )
return device
@property
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
if is_sagemaker_model_parallel_available():
return smp.dp_size()
return super().world_size
@property
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
return not is_sagemaker_model_parallel_available()
@property
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
return False
| 359 |
# flake8: noqa
# Lint as: python3
_UpperCamelCase = [
'''VerificationMode''',
'''Version''',
'''disable_progress_bar''',
'''enable_progress_bar''',
'''is_progress_bar_enabled''',
'''experimental''',
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 335 | 0 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
def UpperCamelCase_( snake_case__: Dict ) -> List[Any]:
# initialize config
if "resnet-50" in model_name:
UpperCAmelCase__ = ResNetConfig.from_pretrained('microsoft/resnet-50' )
elif "resnet-101" in model_name:
UpperCAmelCase__ = ResNetConfig.from_pretrained('microsoft/resnet-101' )
else:
raise ValueError('Model name should include either resnet50 or resnet101' )
UpperCAmelCase__ = DetrConfig(use_timm_backbone=snake_case__ , backbone_config=snake_case__ )
# set label attributes
UpperCAmelCase__ = """panoptic""" in model_name
if is_panoptic:
UpperCAmelCase__ = 2_50
else:
UpperCAmelCase__ = 91
UpperCAmelCase__ = """huggingface/label-files"""
UpperCAmelCase__ = """coco-detection-id2label.json"""
UpperCAmelCase__ = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) )
UpperCAmelCase__ = {int(snake_case__ ): v for k, v in idalabel.items()}
UpperCAmelCase__ = idalabel
UpperCAmelCase__ = {v: k for k, v in idalabel.items()}
return config, is_panoptic
def UpperCamelCase_( snake_case__: Union[str, Any] ) -> Any:
# here we list all keys to be renamed (original name on the left, our name on the right)
UpperCAmelCase__ = []
# stem
# fmt: off
rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight') )
rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight') )
rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias') )
rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean') )
rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var') )
# stages
for stage_idx in range(len(config.backbone_config.depths ) ):
for layer_idx in range(config.backbone_config.depths[stage_idx] ):
# shortcut
if layer_idx == 0:
rename_keys.append(
(
f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight",
f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight",
) )
rename_keys.append(
(
f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight",
f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight",
) )
rename_keys.append(
(
f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias",
f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias",
) )
rename_keys.append(
(
f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean",
f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean",
) )
rename_keys.append(
(
f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var",
f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var",
) )
# 3 convs
for i in range(3 ):
rename_keys.append(
(
f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight",
f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight",
) )
rename_keys.append(
(
f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight",
f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight",
) )
rename_keys.append(
(
f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias",
f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias",
) )
rename_keys.append(
(
f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean",
f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean",
) )
rename_keys.append(
(
f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var",
f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var",
) )
# fmt: on
for i in range(config.encoder_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(
f"transformer.encoder.layers.{i}.self_attn.out_proj.weight",
f"encoder.layers.{i}.self_attn.out_proj.weight",
) )
rename_keys.append(
(f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") )
rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight") )
rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias") )
rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight") )
rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias") )
rename_keys.append(
(f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") )
rename_keys.append(
(f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias") )
rename_keys.append(
(f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight") )
rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias") )
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(
f"transformer.decoder.layers.{i}.self_attn.out_proj.weight",
f"decoder.layers.{i}.self_attn.out_proj.weight",
) )
rename_keys.append(
(f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") )
rename_keys.append(
(
f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight",
f"decoder.layers.{i}.encoder_attn.out_proj.weight",
) )
rename_keys.append(
(
f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias",
f"decoder.layers.{i}.encoder_attn.out_proj.bias",
) )
rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight") )
rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias") )
rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight") )
rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias") )
rename_keys.append(
(f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") )
rename_keys.append(
(f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias") )
rename_keys.append(
(f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") )
rename_keys.append(
(f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") )
rename_keys.append(
(f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight") )
rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias") )
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
('input_proj.weight', 'input_projection.weight'),
('input_proj.bias', 'input_projection.bias'),
('query_embed.weight', 'query_position_embeddings.weight'),
('transformer.decoder.norm.weight', 'decoder.layernorm.weight'),
('transformer.decoder.norm.bias', 'decoder.layernorm.bias'),
('class_embed.weight', 'class_labels_classifier.weight'),
('class_embed.bias', 'class_labels_classifier.bias'),
('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'),
('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'),
('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'),
('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'),
('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'),
('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'),
] )
return rename_keys
def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Any , snake_case__: List[str] ) -> int:
UpperCAmelCase__ = state_dict.pop(snake_case__ )
UpperCAmelCase__ = val
def UpperCamelCase_( snake_case__: str , snake_case__: Optional[int]=False ) -> List[Any]:
UpperCAmelCase__ = """"""
if is_panoptic:
UpperCAmelCase__ = """detr."""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
UpperCAmelCase__ = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" )
UpperCAmelCase__ = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase__ = in_proj_weight[:2_56, :]
UpperCAmelCase__ = in_proj_bias[:2_56]
UpperCAmelCase__ = in_proj_weight[2_56:5_12, :]
UpperCAmelCase__ = in_proj_bias[2_56:5_12]
UpperCAmelCase__ = in_proj_weight[-2_56:, :]
UpperCAmelCase__ = in_proj_bias[-2_56:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6 ):
# read in weights + bias of input projection layer of self-attention
UpperCAmelCase__ = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" )
UpperCAmelCase__ = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase__ = in_proj_weight[:2_56, :]
UpperCAmelCase__ = in_proj_bias[:2_56]
UpperCAmelCase__ = in_proj_weight[2_56:5_12, :]
UpperCAmelCase__ = in_proj_bias[2_56:5_12]
UpperCAmelCase__ = in_proj_weight[-2_56:, :]
UpperCAmelCase__ = in_proj_bias[-2_56:]
# read in weights + bias of input projection layer of cross-attention
UpperCAmelCase__ = state_dict.pop(
f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" )
UpperCAmelCase__ = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" )
# next, add query, keys and values (in that order) of cross-attention to the state dict
UpperCAmelCase__ = in_proj_weight_cross_attn[:2_56, :]
UpperCAmelCase__ = in_proj_bias_cross_attn[:2_56]
UpperCAmelCase__ = in_proj_weight_cross_attn[2_56:5_12, :]
UpperCAmelCase__ = in_proj_bias_cross_attn[2_56:5_12]
UpperCAmelCase__ = in_proj_weight_cross_attn[-2_56:, :]
UpperCAmelCase__ = in_proj_bias_cross_attn[-2_56:]
def UpperCamelCase_( ) -> Optional[int]:
UpperCAmelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
UpperCAmelCase__ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw )
return im
@torch.no_grad()
def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: str=None , snake_case__: int=False ) -> List[str]:
UpperCAmelCase__ = get_detr_config(snake_case__ )
# load original model from torch hub
UpperCAmelCase__ = {
"""detr-resnet-50""": """detr_resnet50""",
"""detr-resnet-101""": """detr_resnet101""",
}
logger.info(f"Converting model {model_name}..." )
UpperCAmelCase__ = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=snake_case__ ).eval()
UpperCAmelCase__ = detr.state_dict()
# rename keys
for src, dest in create_rename_keys(snake_case__ ):
if is_panoptic:
UpperCAmelCase__ = """detr.""" + src
rename_key(snake_case__ , snake_case__ , snake_case__ )
# query, key and value matrices need special treatment
read_in_q_k_v(snake_case__ , is_panoptic=snake_case__ )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
UpperCAmelCase__ = """detr.model.""" if is_panoptic else """model."""
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith('detr' )
and not key.startswith('class_labels_classifier' )
and not key.startswith('bbox_predictor' )
):
UpperCAmelCase__ = state_dict.pop(snake_case__ )
UpperCAmelCase__ = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
UpperCAmelCase__ = state_dict.pop(snake_case__ )
UpperCAmelCase__ = val
elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ):
continue
else:
UpperCAmelCase__ = state_dict.pop(snake_case__ )
UpperCAmelCase__ = val
else:
if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ):
UpperCAmelCase__ = state_dict.pop(snake_case__ )
UpperCAmelCase__ = val
# finally, create HuggingFace model and load state dict
UpperCAmelCase__ = DetrForSegmentation(snake_case__ ) if is_panoptic else DetrForObjectDetection(snake_case__ )
model.load_state_dict(snake_case__ )
model.eval()
# verify our conversion on an image
UpperCAmelCase__ = """coco_panoptic""" if is_panoptic else """coco_detection"""
UpperCAmelCase__ = DetrImageProcessor(format=snake_case__ )
UpperCAmelCase__ = processor(images=prepare_img() , return_tensors='pt' )
UpperCAmelCase__ = encoding["""pixel_values"""]
UpperCAmelCase__ = detr(snake_case__ )
UpperCAmelCase__ = model(snake_case__ )
assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-3 )
assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-3 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
# Save model and image processor
logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." )
Path(snake_case__ ).mkdir(exist_ok=snake_case__ )
model.save_pretrained(snake_case__ )
processor.save_pretrained(snake_case__ )
if push_to_hub:
# Upload model and image processor to the hub
logger.info('Uploading PyTorch model and image processor to the hub...' )
model.push_to_hub(f"nielsr/{model_name}" )
processor.push_to_hub(f"nielsr/{model_name}" )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''detr-resnet-50''',
type=str,
choices=['''detr-resnet-50''', '''detr-resnet-101'''],
help='''Name of the DETR model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''')
_UpperCamelCase = parser.parse_args()
convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 360 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """sew-d"""
def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str:
"""simple docstring"""
super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a )
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = feat_extract_norm
UpperCAmelCase__ = feat_extract_activation
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = conv_bias
UpperCAmelCase__ = num_conv_pos_embeddings
UpperCAmelCase__ = num_conv_pos_embedding_groups
UpperCAmelCase__ = len(self.conv_dim )
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = squeeze_factor
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = position_buckets
UpperCAmelCase__ = share_att_key
UpperCAmelCase__ = relative_attention
UpperCAmelCase__ = norm_rel_ebd
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_dropout
UpperCAmelCase__ = attention_dropout
UpperCAmelCase__ = activation_dropout
UpperCAmelCase__ = feat_proj_dropout
UpperCAmelCase__ = final_dropout
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = feature_layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"
F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase__ = apply_spec_augment
UpperCAmelCase__ = mask_time_prob
UpperCAmelCase__ = mask_time_length
UpperCAmelCase__ = mask_time_min_masks
UpperCAmelCase__ = mask_feature_prob
UpperCAmelCase__ = mask_feature_length
UpperCAmelCase__ = mask_feature_min_masks
# ctc loss
UpperCAmelCase__ = ctc_loss_reduction
UpperCAmelCase__ = ctc_zero_infinity
# sequence classification
UpperCAmelCase__ = use_weighted_layer_sum
UpperCAmelCase__ = classifier_proj_size
@property
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 335 | 0 |
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
_UpperCamelCase = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
_UpperCamelCase = [0, 25, 50]
_UpperCamelCase = [25, 50, 75]
_UpperCamelCase = fuzz.membership.trimf(X, abca)
_UpperCamelCase = fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
_UpperCamelCase = np.ones(75)
_UpperCamelCase = np.zeros((75,))
# 1. Union = max(µA(x), µB(x))
_UpperCamelCase = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
_UpperCamelCase = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
_UpperCamelCase = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
_UpperCamelCase = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
_UpperCamelCase = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
_UpperCamelCase = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
_UpperCamelCase = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
_UpperCamelCase = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title('''Young''')
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title('''Middle aged''')
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title('''union''')
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title('''intersection''')
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title('''complement_a''')
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title('''difference a/b''')
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title('''alg_sum''')
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title('''alg_product''')
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title('''bdd_sum''')
plt.grid(True)
plt.subplot(4, 3, 10)
plt.plot(X, bdd_difference)
plt.title('''bdd_difference''')
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| 361 |
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
_UpperCamelCase = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
['''memory_attention''', '''encoder_attn'''],
['''attention''', '''attn'''],
['''/''', '''.'''],
['''.LayerNorm.gamma''', '''_layer_norm.weight'''],
['''.LayerNorm.beta''', '''_layer_norm.bias'''],
['''r.layer_''', '''r.layers.'''],
['''output_proj''', '''out_proj'''],
['''ffn.dense_1.''', '''fc2.'''],
['''ffn.dense.''', '''fc1.'''],
['''ffn_layer_norm''', '''final_layer_norm'''],
['''kernel''', '''weight'''],
['''encoder_layer_norm.''', '''encoder.layer_norm.'''],
['''decoder_layer_norm.''', '''decoder.layer_norm.'''],
['''embeddings.weights''', '''shared.weight'''],
]
def UpperCamelCase_( snake_case__: int ) -> str:
for pegasus_name, hf_name in PATTERNS:
UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ )
return k
def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration:
UpperCAmelCase__ = DEFAULTS.copy()
cfg_kwargs.update(snake_case__ )
UpperCAmelCase__ = PegasusConfig(**snake_case__ )
UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ )
UpperCAmelCase__ = torch_model.model.state_dict()
UpperCAmelCase__ = {}
for k, v in tf_weights.items():
UpperCAmelCase__ = rename_state_dict_key(snake_case__ )
if new_k not in sd:
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" )
if "dense" in k or "proj" in new_k:
UpperCAmelCase__ = v.T
UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}"
# make sure embedding.padding_idx is respected
UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] )
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = mapping['shared.weight']
UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping}
mapping.update(**snake_case__ )
UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ )
UpperCAmelCase__ = [
k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight']
]
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
assert extra == [], f"no matches found for the following tf keys {extra}"
return torch_model
def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
UpperCAmelCase__ = tf.train.list_variables(snake_case__ )
UpperCAmelCase__ = {}
UpperCAmelCase__ = ['Adafactor', 'global_step']
for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ):
UpperCAmelCase__ = any(pat in name for pat in ignore_name )
if skip_key:
continue
UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ )
UpperCAmelCase__ = array
return tf_weights
def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]:
# save tokenizer first
UpperCAmelCase__ = Path(snake_case__ ).parent.name
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings']
UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(snake_case__ )
# convert model
UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ )
UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]
if dataset == "large":
UpperCAmelCase__ = task_specific_params
UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ )
torch_model.save_pretrained(snake_case__ )
UpperCAmelCase__ = torch_model.state_dict()
sd.pop('model.decoder.embed_positions.weight' )
sd.pop('model.encoder.embed_positions.weight' )
torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''')
parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
if args.save_dir is None:
_UpperCamelCase = Path(args.tf_ckpt_path).parent.name
_UpperCamelCase = os.path.join('''pegasus''', dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 335 | 0 |
"""simple docstring"""
def UpperCamelCase_( snake_case__: Optional[Any] ) -> bool:
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 362 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = 13
UpperCAmelCase__ = 7
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = 99
UpperCAmelCase__ = 384
UpperCAmelCase__ = 2
UpperCAmelCase__ = 4
UpperCAmelCase__ = 37
UpperCAmelCase__ = 'gelu'
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 512
UpperCAmelCase__ = 16
UpperCAmelCase__ = 2
UpperCAmelCase__ = 0.02
UpperCAmelCase__ = 3
UpperCAmelCase__ = 4
UpperCAmelCase__ = 128
UpperCAmelCase__ = 2
UpperCAmelCase__ = 9
UpperCAmelCase__ = 1
UpperCAmelCase__ = None
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_input_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel(config=__a )
UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
UpperCAmelCase__ = [input_ids, input_mask]
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.num_choices
UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a )
UpperCAmelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
__SCREAMING_SNAKE_CASE = (
{
"""feature-extraction""": TFConvBertModel,
"""fill-mask""": TFConvBertForMaskedLM,
"""question-answering""": TFConvBertForQuestionAnswering,
"""text-classification""": TFConvBertForSequenceClassification,
"""token-classification""": TFConvBertForTokenClassification,
"""zero-shot""": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__a )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__a )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__a )
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
UpperCAmelCase__ = True
if hasattr(__a , 'use_cache' ):
UpperCAmelCase__ = True
UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = self._prepare_for_class(__a , __a )
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = len(model(__a ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__a , saved_model=__a )
UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' )
UpperCAmelCase__ = tf.keras.models.load_model(__a )
UpperCAmelCase__ = model(__a )
if self.is_encoder_decoder:
UpperCAmelCase__ = outputs['encoder_hidden_states']
UpperCAmelCase__ = outputs['encoder_attentions']
else:
UpperCAmelCase__ = outputs['hidden_states']
UpperCAmelCase__ = outputs['attentions']
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a )
def check_decoder_attentions_output(__a ):
UpperCAmelCase__ = len(__a )
self.assertEqual(out_len % 2 , 0 )
UpperCAmelCase__ = outputs.decoder_attentions
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(__a ):
UpperCAmelCase__ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = len(__a )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
if self.is_encoder_decoder:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_decoder_attentions_output(__a )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) )
self.assertEqual(model.config.output_hidden_states , __a )
check_encoder_attentions_output(__a )
@require_tf
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase__ = model(__a )[0]
UpperCAmelCase__ = [1, 6, 768]
self.assertEqual(output.shape , __a )
UpperCAmelCase__ = tf.constant(
[
[
[-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32],
[0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24],
[0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
| 335 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_UpperCamelCase = {
'''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig''']
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''ConvNextFeatureExtractor''']
_UpperCamelCase = ['''ConvNextImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ConvNextForImageClassification''',
'''ConvNextModel''',
'''ConvNextPreTrainedModel''',
'''ConvNextBackbone''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TFConvNextForImageClassification''',
'''TFConvNextModel''',
'''TFConvNextPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 363 |
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING
_UpperCamelCase = logging.get_logger(__name__)
@add_end_docstrings(_UpperCamelCase )
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , **__a ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**__a )
requires_backends(self , 'vision' )
requires_backends(self , 'torch' )
if self.framework != "pt":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
self.check_model_type(__a )
def UpperCamelCase__ (self , **__a ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
# preprocess args
if "points_per_batch" in kwargs:
UpperCAmelCase__ = kwargs['points_per_batch']
if "points_per_crop" in kwargs:
UpperCAmelCase__ = kwargs['points_per_crop']
if "crops_n_layers" in kwargs:
UpperCAmelCase__ = kwargs['crops_n_layers']
if "crop_overlap_ratio" in kwargs:
UpperCAmelCase__ = kwargs['crop_overlap_ratio']
if "crop_n_points_downscale_factor" in kwargs:
UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor']
# postprocess args
if "pred_iou_thresh" in kwargs:
UpperCAmelCase__ = kwargs['pred_iou_thresh']
if "stability_score_offset" in kwargs:
UpperCAmelCase__ = kwargs['stability_score_offset']
if "mask_threshold" in kwargs:
UpperCAmelCase__ = kwargs['mask_threshold']
if "stability_score_thresh" in kwargs:
UpperCAmelCase__ = kwargs['stability_score_thresh']
if "crops_nms_thresh" in kwargs:
UpperCAmelCase__ = kwargs['crops_nms_thresh']
if "output_rle_mask" in kwargs:
UpperCAmelCase__ = kwargs['output_rle_mask']
if "output_bboxes_mask" in kwargs:
UpperCAmelCase__ = kwargs['output_bboxes_mask']
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]:
"""simple docstring"""
return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a )
def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = load_image(__a )
UpperCAmelCase__ = self.image_processor.size['longest_edge']
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes(
__a , __a , __a , __a , __a , __a )
UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' )
with self.device_placement():
if self.framework == "pt":
UpperCAmelCase__ = self.get_inference_context()
with inference_context():
UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device )
UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) )
UpperCAmelCase__ = image_embeddings
UpperCAmelCase__ = grid_points.shape[1]
UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. '
'To return all points at once, set points_per_batch to None' )
for i in range(0 , __a , __a ):
UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :]
UpperCAmelCase__ = input_labels[:, i : i + points_per_batch]
UpperCAmelCase__ = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = model_inputs.pop('input_boxes' )
UpperCAmelCase__ = model_inputs.pop('is_last' )
UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist()
UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist()
UpperCAmelCase__ = self.model(**__a )
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
UpperCAmelCase__ = model_outputs['pred_masks']
UpperCAmelCase__ = self.image_processor.post_process_masks(
__a , __a , __a , __a , binarize=__a )
UpperCAmelCase__ = model_outputs['iou_scores']
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks(
masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , )
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = []
UpperCAmelCase__ = []
for model_output in model_outputs:
all_scores.append(model_output.pop('iou_scores' ) )
all_masks.extend(model_output.pop('masks' ) )
all_boxes.append(model_output.pop('boxes' ) )
UpperCAmelCase__ = torch.cat(__a )
UpperCAmelCase__ = torch.cat(__a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation(
__a , __a , __a , __a )
UpperCAmelCase__ = defaultdict(__a )
for output in model_outputs:
for k, v in output.items():
extra[k].append(__a )
UpperCAmelCase__ = {}
if output_rle_mask:
UpperCAmelCase__ = rle_mask
if output_bboxes_mask:
UpperCAmelCase__ = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| 335 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
class lowercase ( lowerCAmelCase__ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = "timm_backbone"
def __init__(self , __a=None , __a=3 , __a=True , __a=True , __a=None , **__a , ) -> Optional[int]:
"""simple docstring"""
super().__init__(**a__ )
UpperCAmelCase__ = backbone
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = features_only
UpperCAmelCase__ = use_pretrained_backbone
UpperCAmelCase__ = True
UpperCAmelCase__ = out_indices if out_indices is not None else (-1,)
| 364 |
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} )
__SCREAMING_SNAKE_CASE = field(
default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} )
__SCREAMING_SNAKE_CASE = field(
default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} )
__SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} )
__SCREAMING_SNAKE_CASE = field(
default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} )
__SCREAMING_SNAKE_CASE = field(
default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} )
__SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} )
__SCREAMING_SNAKE_CASE = field(
default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} )
__SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} )
__SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} )
__SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} )
__SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} )
__SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} )
__SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} )
__SCREAMING_SNAKE_CASE = field(
default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} )
__SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} )
__SCREAMING_SNAKE_CASE = field(
default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} )
__SCREAMING_SNAKE_CASE = field(
default=-1 , metadata={
"""help""": (
"""Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive"""
""" number corresponds to which GPU device id to run on."""
)
} , )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={
"""help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available."""
} , )
__SCREAMING_SNAKE_CASE = field(
default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} )
__SCREAMING_SNAKE_CASE = field(
default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} )
__SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} )
__SCREAMING_SNAKE_CASE = field(
default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , )
__SCREAMING_SNAKE_CASE = field(
default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} )
__SCREAMING_SNAKE_CASE = field(
default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} )
__SCREAMING_SNAKE_CASE = field(
default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} )
__SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(
default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} )
__SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} )
__SCREAMING_SNAKE_CASE = field(
default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} )
@dataclass
class lowercase :
'''simple docstring'''
__SCREAMING_SNAKE_CASE = field(
default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} )
__SCREAMING_SNAKE_CASE = field(
default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} )
__SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} )
__SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
| 335 | 0 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
_UpperCamelCase = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
_UpperCamelCase = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"""{len(upper_files)} files contain uppercase characters:""")
print('''\n'''.join(upper_files) + '''\n''')
_UpperCamelCase = [file for file in filepaths if ''' ''' in file]
if space_files:
print(F"""{len(space_files)} files contain space characters:""")
print('''\n'''.join(space_files) + '''\n''')
_UpperCamelCase = [file for file in filepaths if '''-''' in file]
if hyphen_files:
print(F"""{len(hyphen_files)} files contain hyphen characters:""")
print('''\n'''.join(hyphen_files) + '''\n''')
_UpperCamelCase = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"""{len(nodir_files)} files are not in a directory:""")
print('''\n'''.join(nodir_files) + '''\n''')
_UpperCamelCase = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 365 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_attention_mask
UpperCAmelCase__ = use_token_type_ids
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_choices
def UpperCamelCase__ (self ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_attention_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = True
UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = FlaxRobertaModelTester(self )
@slow
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
for model_class_name in self.all_model_classes:
UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a )
UpperCAmelCase__ = model(np.ones((1, 1) ) )
self.assertIsNotNone(__a )
| 335 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json',
# See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox
}
class lowercase ( _lowerCAmelCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """gpt_neox"""
def __init__(self , __a=50432 , __a=6144 , __a=44 , __a=64 , __a=24576 , __a="gelu" , __a=0.25 , __a=10000 , __a=0.0 , __a=0.0 , __a=0.1 , __a=2048 , __a=0.02 , __a=1E-5 , __a=True , __a=0 , __a=2 , __a=False , __a=True , __a=None , **__a , ) -> List[Any]:
"""simple docstring"""
super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = rotary_pct
UpperCAmelCase__ = rotary_emb_base
UpperCAmelCase__ = attention_dropout
UpperCAmelCase__ = hidden_dropout
UpperCAmelCase__ = classifier_dropout
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = use_cache
UpperCAmelCase__ = tie_word_embeddings
UpperCAmelCase__ = use_parallel_residual
UpperCAmelCase__ = rope_scaling
self._rope_scaling_validation()
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
'The hidden size is not divisble by the number of attention heads! Make sure to update them!' )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE_ ) or len(self.rope_scaling ) != 2:
raise ValueError(
'`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '
F"got {self.rope_scaling}" )
UpperCAmelCase__ = self.rope_scaling.get('type' , SCREAMING_SNAKE_CASE_ )
UpperCAmelCase__ = self.rope_scaling.get('factor' , SCREAMING_SNAKE_CASE_ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F"`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}" )
if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or rope_scaling_factor <= 1.0:
raise ValueError(F"`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}" )
| 366 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class lowercase ( _UpperCamelCase ):
'''simple docstring'''
def __init__(self , *__a , **__a ) -> None:
"""simple docstring"""
warnings.warn(
'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use MobileViTImageProcessor instead.' , __a , )
super().__init__(*__a , **__a )
| 335 | 0 |
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class lowercase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """ssube/stable-diffusion-x4-upscaler-onnx"""
def UpperCamelCase__ (self , __a=0 ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = floats_tensor((1, 3, 128, 128) , rng=random.Random(UpperCamelCase__ ) )
UpperCAmelCase__ = torch.manual_seed(UpperCamelCase__ )
UpperCAmelCase__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
UpperCAmelCase__ = self.get_dummy_inputs()
UpperCAmelCase__ = pipe(**UpperCamelCase__ ).images
UpperCAmelCase__ = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase__ = np.array(
[0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
UpperCAmelCase__ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
UpperCAmelCase__ = self.get_dummy_inputs()
UpperCAmelCase__ = pipe(**UpperCamelCase__ ).images
UpperCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase__ = np.array(
[0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
UpperCAmelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
UpperCAmelCase__ = self.get_dummy_inputs()
UpperCAmelCase__ = pipe(**UpperCamelCase__ ).images
UpperCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase__ = np.array(
[0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
UpperCAmelCase__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
UpperCAmelCase__ = self.get_dummy_inputs()
UpperCAmelCase__ = pipe(**UpperCamelCase__ ).images
UpperCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase__ = np.array(
[0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
UpperCAmelCase__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
UpperCAmelCase__ = self.get_dummy_inputs()
UpperCAmelCase__ = pipe(**UpperCamelCase__ ).images
UpperCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase__ = np.array(
[0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@property
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = ort.SessionOptions()
UpperCAmelCase__ = False
return options
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
UpperCAmelCase__ = init_image.resize((128, 128) )
# using the PNDM scheduler by default
UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'ssube/stable-diffusion-x4-upscaler-onnx' , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
UpperCAmelCase__ = '''A fantasy landscape, trending on artstation'''
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = pipe(
prompt=UpperCamelCase__ , image=UpperCamelCase__ , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase__ , output_type='np' , )
UpperCAmelCase__ = output.images
UpperCAmelCase__ = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
UpperCAmelCase__ = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
UpperCAmelCase__ = init_image.resize((128, 128) )
UpperCAmelCase__ = LMSDiscreteScheduler.from_pretrained(
'ssube/stable-diffusion-x4-upscaler-onnx' , subfolder='scheduler' )
UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'ssube/stable-diffusion-x4-upscaler-onnx' , scheduler=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
UpperCAmelCase__ = '''A fantasy landscape, trending on artstation'''
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = pipe(
prompt=UpperCamelCase__ , image=UpperCamelCase__ , guidance_scale=7.5 , num_inference_steps=20 , generator=UpperCamelCase__ , output_type='np' , )
UpperCAmelCase__ = output.images
UpperCAmelCase__ = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
UpperCAmelCase__ = np.array(
[0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 | 367 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {
'''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PegasusXForConditionalGeneration''',
'''PegasusXModel''',
'''PegasusXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 335 | 0 |
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
_UpperCamelCase = get_logger(__name__)
_UpperCamelCase = r"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n"
class lowercase :
'''simple docstring'''
@add_start_docstrings(__a )
def __call__(self , __a , __a ) -> jnp.ndarray:
"""simple docstring"""
raise NotImplementedError(
F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." )
class lowercase :
'''simple docstring'''
@add_start_docstrings(__a )
def __call__(self , __a , __a ) -> jnp.ndarray:
"""simple docstring"""
raise NotImplementedError(
F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." )
class lowercase ( _a ):
'''simple docstring'''
@add_start_docstrings(__a )
def __call__(self , __a , __a , __a , **__a ) -> jnp.ndarray:
"""simple docstring"""
for processor in self:
UpperCAmelCase__ = inspect.signature(processor.__call__ ).parameters
if len(__a ) > 3:
if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ):
raise ValueError(
F"Make sure that all the required parameters: {list(function_args.keys() )} for "
F"{processor.__class__} are passed to the logits processor." )
UpperCAmelCase__ = processor(__a , __a , __a , **__a )
else:
UpperCAmelCase__ = processor(__a , __a , __a )
return scores
class lowercase ( _a ):
'''simple docstring'''
def __init__(self , __a ) -> int:
"""simple docstring"""
if not isinstance(__a , __a ) or not (temperature > 0):
raise ValueError(F"`temperature` has to be a strictly positive float, but is {temperature}" )
UpperCAmelCase__ = temperature
def __call__(self , __a , __a , __a ) -> jnp.ndarray:
"""simple docstring"""
UpperCAmelCase__ = scores / self.temperature
return scores
class lowercase ( _a ):
'''simple docstring'''
def __init__(self , __a , __a = -float('Inf' ) , __a = 1 ) -> str:
"""simple docstring"""
if not isinstance(__a , __a ) or (top_p < 0 or top_p > 1.0):
raise ValueError(F"`top_p` has to be a float > 0 and < 1, but is {top_p}" )
if not isinstance(__a , __a ) or (min_tokens_to_keep < 1):
raise ValueError(F"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}" )
UpperCAmelCase__ = top_p
UpperCAmelCase__ = filter_value
UpperCAmelCase__ = min_tokens_to_keep
def __call__(self , __a , __a , __a ) -> jnp.ndarray:
"""simple docstring"""
UpperCAmelCase__ = lax.top_k(__a , scores.shape[-1] )
UpperCAmelCase__ = jnp.full_like(__a , self.filter_value )
UpperCAmelCase__ = jax.nn.softmax(__a , axis=-1 ).cumsum(axis=-1 )
UpperCAmelCase__ = cumulative_probs < self.top_p
# include the token that is higher than top_p as well
UpperCAmelCase__ = jnp.roll(__a , 1 )
score_mask |= score_mask.at[:, 0].set(__a )
# min tokens to keep
UpperCAmelCase__ = score_mask.at[:, : self.min_tokens_to_keep].set(__a )
UpperCAmelCase__ = jnp.where(__a , __a , __a )
UpperCAmelCase__ = jax.lax.sort_key_val(__a , __a )[-1]
return next_scores
class lowercase ( _a ):
'''simple docstring'''
def __init__(self , __a , __a = -float('Inf' ) , __a = 1 ) -> Any:
"""simple docstring"""
if not isinstance(__a , __a ) or top_k <= 0:
raise ValueError(F"`top_k` has to be a strictly positive integer, but is {top_k}" )
UpperCAmelCase__ = max(__a , __a )
UpperCAmelCase__ = filter_value
def __call__(self , __a , __a , __a ) -> jnp.ndarray:
"""simple docstring"""
UpperCAmelCase__ = scores.shape
UpperCAmelCase__ = jnp.full(batch_size * vocab_size , self.filter_value )
UpperCAmelCase__ = min(self.top_k , scores.shape[-1] ) # Safety check
UpperCAmelCase__ = lax.top_k(__a , __a )
UpperCAmelCase__ = jnp.broadcast_to((jnp.arange(__a ) * vocab_size)[:, None] , (batch_size, topk) ).flatten()
UpperCAmelCase__ = topk_scores.flatten()
UpperCAmelCase__ = topk_indices.flatten() + shift
UpperCAmelCase__ = next_scores_flat.at[topk_indices_flat].set(__a )
UpperCAmelCase__ = next_scores_flat.reshape(__a , __a )
return next_scores
class lowercase ( _a ):
'''simple docstring'''
def __init__(self , __a ) -> str:
"""simple docstring"""
UpperCAmelCase__ = bos_token_id
def __call__(self , __a , __a , __a ) -> jnp.ndarray:
"""simple docstring"""
UpperCAmelCase__ = jnp.full(scores.shape , -float('inf' ) )
UpperCAmelCase__ = 1 - jnp.bool_(cur_len - 1 )
UpperCAmelCase__ = jnp.where(__a , new_scores.at[:, self.bos_token_id].set(0 ) , __a )
return scores
class lowercase ( _a ):
'''simple docstring'''
def __init__(self , __a , __a ) -> int:
"""simple docstring"""
UpperCAmelCase__ = max_length
UpperCAmelCase__ = eos_token_id
def __call__(self , __a , __a , __a ) -> jnp.ndarray:
"""simple docstring"""
UpperCAmelCase__ = jnp.full(scores.shape , -float('inf' ) )
UpperCAmelCase__ = 1 - jnp.bool_(cur_len - self.max_length + 1 )
UpperCAmelCase__ = jnp.where(__a , new_scores.at[:, self.eos_token_id].set(0 ) , __a )
return scores
class lowercase ( _a ):
'''simple docstring'''
def __init__(self , __a , __a ) -> Dict:
"""simple docstring"""
if not isinstance(__a , __a ) or min_length < 0:
raise ValueError(F"`min_length` has to be a positive integer, but is {min_length}" )
if not isinstance(__a , __a ) or eos_token_id < 0:
raise ValueError(F"`eos_token_id` has to be a positive integer, but is {eos_token_id}" )
UpperCAmelCase__ = min_length
UpperCAmelCase__ = eos_token_id
def __call__(self , __a , __a , __a ) -> jnp.ndarray:
"""simple docstring"""
UpperCAmelCase__ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 )
UpperCAmelCase__ = jnp.where(__a , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , __a )
return scores
class lowercase ( _a ):
'''simple docstring'''
def __init__(self , __a , __a ) -> int:
"""simple docstring"""
UpperCAmelCase__ = list(__a )
UpperCAmelCase__ = begin_index
def __call__(self , __a , __a , __a ) -> str:
"""simple docstring"""
UpperCAmelCase__ = 1 - jnp.bool_(cur_len - self.begin_index )
UpperCAmelCase__ = jnp.where(__a , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , __a )
return scores
class lowercase ( _a ):
'''simple docstring'''
def __init__(self , __a ) -> int:
"""simple docstring"""
UpperCAmelCase__ = list(__a )
def __call__(self , __a , __a , __a ) -> jnp.ndarray:
"""simple docstring"""
UpperCAmelCase__ = scores.at[..., self.suppress_tokens].set(-float('inf' ) )
return scores
class lowercase ( _a ):
'''simple docstring'''
def __init__(self , __a ) -> str:
"""simple docstring"""
UpperCAmelCase__ = dict(__a )
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
UpperCAmelCase__ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1
for index, token in force_token_map.items():
if token is not None:
UpperCAmelCase__ = force_token_array.at[index].set(__a )
UpperCAmelCase__ = jnp.intaa(__a )
def __call__(self , __a , __a , __a ) -> jnp.ndarray:
"""simple docstring"""
def _force_token(__a ):
UpperCAmelCase__ = scores.shape[0]
UpperCAmelCase__ = self.force_token_array[generation_idx]
UpperCAmelCase__ = jnp.ones_like(__a , dtype=scores.dtype ) * -float('inf' )
UpperCAmelCase__ = jnp.zeros((batch_size, 1) , dtype=scores.dtype )
UpperCAmelCase__ = lax.dynamic_update_slice(__a , __a , (0, current_token) )
return new_scores
UpperCAmelCase__ = lax.cond(
cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond(
self.force_token_array[cur_len] >= 0 , lambda: _force_token(__a ) , lambda: scores , ) , )
return scores
class lowercase ( _a ):
'''simple docstring'''
def __init__(self , __a , __a , __a ) -> str:
"""simple docstring"""
UpperCAmelCase__ = generate_config.eos_token_id
UpperCAmelCase__ = generate_config.no_timestamps_token_id
UpperCAmelCase__ = generate_config.no_timestamps_token_id + 1
UpperCAmelCase__ = decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(__a , 'max_initial_timestamp_index' ):
UpperCAmelCase__ = generate_config.max_initial_timestamp_index
else:
UpperCAmelCase__ = model_config.vocab_size
if self.max_initial_timestamp_index is None:
UpperCAmelCase__ = model_config.vocab_size
def __call__(self , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) )
def handle_pairs(__a , __a ):
UpperCAmelCase__ = jnp.where((cur_len - self.begin_index) >= 1 , __a , __a )
UpperCAmelCase__ = jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , __a , )
UpperCAmelCase__ = jnp.where((cur_len - self.begin_index) < 2 , __a , __a )
UpperCAmelCase__ = jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin , __a , __a , )
return jnp.where(
__a , jnp.where(
penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , __a , )
UpperCAmelCase__ = jax.vmap(__a )(__a , __a )
UpperCAmelCase__ = jnp.where(cur_len == self.begin_index , __a , __a )
UpperCAmelCase__ = jnp.where(
self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , __a , )
UpperCAmelCase__ = self.timestamp_begin + self.max_initial_timestamp_index
UpperCAmelCase__ = jnp.where(
__a , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , __a , )
# if sum of probability over timestamps is above any other token, sample timestamp
UpperCAmelCase__ = jax.nn.log_softmax(__a , axis=-1 )
def handle_cumulative_probs(__a , __a ):
UpperCAmelCase__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 )
UpperCAmelCase__ = jnp.max(logprobs_k[: self.timestamp_begin] )
return jnp.where(
timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , __a , )
UpperCAmelCase__ = jax.vmap(__a )(__a , __a )
return scores | 368 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class lowercase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ (self , __a ) -> List[Any]:
"""simple docstring"""
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ):
UpperCAmelCase__ = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random'
UpperCAmelCase__ = AutoConfig.from_pretrained(__a )
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
benchmark.run()
self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(__a ):
self.assertTrue(hasattr(__a , 'sequential' ) )
self.assertTrue(hasattr(__a , 'cumulative' ) )
self.assertTrue(hasattr(__a , 'current' ) )
self.assertTrue(hasattr(__a , 'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , )
UpperCAmelCase__ = TensorFlowBenchmark(__a )
UpperCAmelCase__ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
| 335 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''microsoft/swin-tiny-patch4-window7-224''': (
'''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json'''
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class lowercase ( __a , __a ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """swin"""
__SCREAMING_SNAKE_CASE = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__(self , __a=224 , __a=4 , __a=3 , __a=96 , __a=[2, 2, 6, 2] , __a=[3, 6, 12, 24] , __a=7 , __a=4.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=0.02 , __a=1E-5 , __a=32 , __a=None , __a=None , **__a , ) -> Any:
"""simple docstring"""
super().__init__(**UpperCamelCase__ )
UpperCAmelCase__ = image_size
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = embed_dim
UpperCAmelCase__ = depths
UpperCAmelCase__ = len(UpperCamelCase__ )
UpperCAmelCase__ = num_heads
UpperCAmelCase__ = window_size
UpperCAmelCase__ = mlp_ratio
UpperCAmelCase__ = qkv_bias
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = drop_path_rate
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = use_absolute_embeddings
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
UpperCAmelCase__ = int(embed_dim * 2 ** (len(UpperCamelCase__ ) - 1) )
UpperCAmelCase__ = ['stem'] + [F"stage{idx}" for idx in range(1 , len(UpperCamelCase__ ) + 1 )]
UpperCAmelCase__ , UpperCAmelCase__ = get_aligned_output_features_output_indices(
out_features=UpperCamelCase__ , out_indices=UpperCamelCase__ , stage_names=self.stage_names )
class lowercase ( __a ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = version.parse("""1.11""" )
@property
def UpperCamelCase__ (self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def UpperCamelCase__ (self ) -> float:
"""simple docstring"""
return 1E-4
| 369 |
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 335 | 0 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCamelCase = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'MRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'MraForMaskedLM',
'MraForMultipleChoice',
'MraForQuestionAnswering',
'MraForSequenceClassification',
'MraForTokenClassification',
'MraLayer',
'MraModel',
'MraPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 370 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class lowercase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
@register_to_config
def __init__(self , *,
__a = 4 , __a = 768 , __a , __a , ) -> str:
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) )
# parameters for additional clip time embeddings
UpperCAmelCase__ = nn.Linear(__a , __a )
UpperCAmelCase__ = nn.Linear(__a , __a )
# parameters for encoder hidden states
UpperCAmelCase__ = clip_extra_context_tokens
UpperCAmelCase__ = nn.Linear(
__a , self.clip_extra_context_tokens * cross_attention_dim )
UpperCAmelCase__ = nn.Linear(__a , __a )
UpperCAmelCase__ = nn.LayerNorm(__a )
def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
UpperCAmelCase__ = image_embeddings.shape[0]
UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
UpperCAmelCase__ = classifier_free_guidance_embeddings.expand(
__a , -1 )
UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
UpperCAmelCase__ = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
UpperCAmelCase__ = self.embedding_proj(__a )
UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a )
UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a )
UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens )
UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 )
UpperCAmelCase__ = self.encoder_hidden_states_proj(__a )
UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a )
UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 335 | 0 |
from .imports import is_tqdm_available
if is_tqdm_available():
from tqdm.auto import tqdm as _tqdm
from ..state import PartialState
def UpperCamelCase_( snake_case__: bool = True , *snake_case__: str , **snake_case__: Optional[int] ) -> List[str]:
if not is_tqdm_available():
raise ImportError('Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.' )
UpperCAmelCase__ = False
if main_process_only:
UpperCAmelCase__ = PartialState().local_process_index == 0
return _tqdm(*a__ , **a__ , disable=a__ )
| 371 |
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = BioGptTokenizer
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase__ = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) )
UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' ) as fp:
fp.write(json.dumps(__a ) )
with open(self.merges_file , 'w' ) as fp:
fp.write('\n'.join(__a ) )
def UpperCamelCase__ (self , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = 'lower newer'
UpperCAmelCase__ = 'lower newer'
return input_text, output_text
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file )
UpperCAmelCase__ = 'lower'
UpperCAmelCase__ = ['low', 'er</w>']
UpperCAmelCase__ = tokenizer.tokenize(__a )
self.assertListEqual(__a , __a )
UpperCAmelCase__ = tokens + ['<unk>']
UpperCAmelCase__ = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
@slow
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' )
UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a )
UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a )
UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a )
UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 335 | 0 |
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
def UpperCamelCase_( snake_case__: Tuple ) -> Union[str, Any]:
UpperCAmelCase__ = torch.load(__a , map_location='cpu' )
if "model" in sd.keys():
UpperCAmelCase__ = torch.load(__a , map_location='cpu' )['model']
# pop unnecessary weights
UpperCAmelCase__ = [
'decoder.version',
'decoder.output_projection.weight',
]
for key in keys_to_delete:
if key in sd:
sd.pop(__a )
UpperCAmelCase__ = {
'decoder.project_in_dim.weight': 'decoder.project_in.weight',
'decoder.project_out_dim.weight': 'decoder.project_out.weight',
'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight',
'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias',
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
UpperCAmelCase__ = sd.pop(__a )
UpperCAmelCase__ = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
UpperCAmelCase__ = sd[key]
# We split QKV in separate Q,K,V
UpperCAmelCase__ = key.replace('.qkv_proj.' , '.q_proj.' )
UpperCAmelCase__ = key.replace('.qkv_proj.' , '.k_proj.' )
UpperCAmelCase__ = key.replace('.qkv_proj.' , '.v_proj.' )
UpperCAmelCase__ = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
UpperCAmelCase__ = torch.split(__a , depth // 3 , dim=0 )
UpperCAmelCase__ = q
UpperCAmelCase__ = k
UpperCAmelCase__ = v
del sd[key]
return sd
@torch.no_grad()
def UpperCamelCase_( snake_case__: int , snake_case__: Union[str, Any] , snake_case__: Tuple=None ) -> Optional[Any]:
UpperCAmelCase__ = load_checkpoint(__a )
if config is not None:
UpperCAmelCase__ = OPTConfig.from_pretrained(__a )
else:
UpperCAmelCase__ = OPTConfig()
UpperCAmelCase__ = OPTModel(__a ).half().eval()
model.load_state_dict(__a )
# Check results
Path(__a ).mkdir(exist_ok=__a )
model.save_pretrained(__a )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--fairseq_path''',
type=str,
help=(
'''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:'''
''' https://huggingface.co/models?other=opt_metasq'''
),
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''')
_UpperCamelCase = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 350 |
class lowercase : # Public class to implement a graph
'''simple docstring'''
def __init__(self , __a , __a , __a ) -> None:
"""simple docstring"""
UpperCAmelCase__ = row
UpperCAmelCase__ = col
UpperCAmelCase__ = graph
def UpperCamelCase__ (self , __a , __a , __a ) -> bool:
"""simple docstring"""
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def UpperCamelCase__ (self , __a , __a , __a ) -> None:
"""simple docstring"""
UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1]
UpperCAmelCase__ = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a )
def UpperCamelCase__ (self ) -> int: # And finally, count all islands.
"""simple docstring"""
UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )]
UpperCAmelCase__ = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(__a , __a , __a )
count += 1
return count
| 335 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.