code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _UpperCamelCase = logging.getLogger(__name__) class lowercase : '''simple docstring''' def __init__(self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = False def UpperCamelCase__ (self , __a , __a , __a , __a ) -> int: """simple docstring""" if not self.initialized: UpperCAmelCase__ = RagRetriever( __a , question_encoder_tokenizer=__a , generator_tokenizer=__a , index=__a , init_retrieval=__a , ) UpperCAmelCase__ = True def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" self.retriever.index.init_index() def UpperCamelCase__ (self , __a , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.retriever._main_retrieve(__a , __a ) return doc_ids, retrieved_doc_embeds class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , __a , __a , __a , __a , __a=None ) -> str: """simple docstring""" if index is not None and index.is_initialized() and len(__a ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( __a , question_encoder_tokenizer=__a , generator_tokenizer=__a , index=__a , init_retrieval=__a , ) UpperCAmelCase__ = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(__a , __a , __a , __a ) for worker in self.retrieval_workers ] ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def UpperCamelCase__ (self , __a , __a ) -> Dict: """simple docstring""" if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. UpperCAmelCase__ = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] UpperCAmelCase__ , UpperCAmelCase__ = ray.get(random_worker.retrieve.remote(__a , __a ) ) else: UpperCAmelCase__ , UpperCAmelCase__ = self._main_retrieve(__a , __a ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__a ) @classmethod def UpperCamelCase__ (cls , __a , __a=None , **__a ) -> Optional[int]: """simple docstring""" return super(__a , cls ).get_tokenizers(__a , __a , **__a ) @classmethod def UpperCamelCase__ (cls , __a , __a , __a=None , **__a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = kwargs.pop('config' , __a ) or RagConfig.from_pretrained(__a , **__a ) UpperCAmelCase__ = RagTokenizer.from_pretrained(__a , config=__a ) UpperCAmelCase__ = rag_tokenizer.question_encoder UpperCAmelCase__ = rag_tokenizer.generator if indexed_dataset is not None: UpperCAmelCase__ = 'custom' UpperCAmelCase__ = CustomHFIndex(config.retrieval_vector_size , __a ) else: UpperCAmelCase__ = cls._build_index(__a ) return cls( __a , question_encoder_tokenizer=__a , generator_tokenizer=__a , retrieval_workers=__a , index=__a , )
335
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _UpperCamelCase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCamelCase_( snake_case__: int ) -> str: for pegasus_name, hf_name in PATTERNS: UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ ) return k def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration: UpperCAmelCase__ = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) UpperCAmelCase__ = PegasusConfig(**snake_case__ ) UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ ) UpperCAmelCase__ = torch_model.model.state_dict() UpperCAmelCase__ = {} for k, v in tf_weights.items(): UpperCAmelCase__ = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: UpperCAmelCase__ = v.T UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) UpperCAmelCase__ = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: UpperCAmelCase__ = tf.train.list_variables(snake_case__ ) UpperCAmelCase__ = {} UpperCAmelCase__ = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): UpperCAmelCase__ = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ ) UpperCAmelCase__ = array return tf_weights def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]: # save tokenizer first UpperCAmelCase__ = Path(snake_case__ ).parent.name UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ ) UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"] if dataset == "large": UpperCAmelCase__ = task_specific_params UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) UpperCAmelCase__ = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() if args.save_dir is None: _UpperCamelCase = Path(args.tf_ckpt_path).parent.name _UpperCamelCase = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
335
1
def UpperCamelCase_( snake_case__: int = 4_00_00_00 ) -> int: UpperCAmelCase__ = [0, 1] UpperCAmelCase__ = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 UpperCAmelCase__ = 0 for j in range(len(snake_case__ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F"""{solution() = }""")
335
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 13 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = 99 UpperCAmelCase__ = 384 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 37 UpperCAmelCase__ = 'gelu' UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 512 UpperCAmelCase__ = 16 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = 128 UpperCAmelCase__ = 2 UpperCAmelCase__ = 9 UpperCAmelCase__ = 1 UpperCAmelCase__ = None def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TFConvBertModel(config=__a ) UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = True if hasattr(__a , 'use_cache' ): UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) for model_class in self.all_model_classes: UpperCAmelCase__ = self._prepare_for_class(__a , __a ) UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' ) UpperCAmelCase__ = tf.keras.models.load_model(__a ) UpperCAmelCase__ = model(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = outputs['encoder_hidden_states'] UpperCAmelCase__ = outputs['encoder_attentions'] else: UpperCAmelCase__ = outputs['hidden_states'] UpperCAmelCase__ = outputs['attentions'] self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) def check_decoder_attentions_output(__a ): UpperCAmelCase__ = len(__a ) self.assertEqual(out_len % 2 , 0 ) UpperCAmelCase__ = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a ): UpperCAmelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__a )[0] UpperCAmelCase__ = [1, 6, 768] self.assertEqual(output.shape , __a ) UpperCAmelCase__ = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
335
1
def UpperCamelCase_( snake_case__: int | float | str ) -> tuple[int, int]: try: UpperCAmelCase__ = float(snake_case__ ) except ValueError: raise ValueError('Please enter a valid number' ) UpperCAmelCase__ = decimal - int(snake_case__ ) if fractional_part == 0: return int(snake_case__ ), 1 else: UpperCAmelCase__ = len(str(snake_case__ ).split('.' )[1] ) UpperCAmelCase__ = int(decimal * (10**number_of_frac_digits) ) UpperCAmelCase__ = 10**number_of_frac_digits UpperCAmelCase__ , UpperCAmelCase__ = denominator, numerator while True: UpperCAmelCase__ = dividend % divisor if remainder == 0: break UpperCAmelCase__ , UpperCAmelCase__ = divisor, remainder UpperCAmelCase__ , UpperCAmelCase__ = numerator / divisor, denominator / divisor return int(snake_case__ ), int(snake_case__ ) if __name__ == "__main__": print(F"""{decimal_to_fraction(2) = }""") print(F"""{decimal_to_fraction(8_9.0) = }""") print(F"""{decimal_to_fraction("67") = }""") print(F"""{decimal_to_fraction("45.0") = }""") print(F"""{decimal_to_fraction(1.5) = }""") print(F"""{decimal_to_fraction("6.25") = }""") print(F"""{decimal_to_fraction("78td") = }""")
335
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCamelCase ) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , **__a ) -> Optional[Any]: """simple docstring""" super().__init__(**__a ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(__a ) def UpperCamelCase__ (self , **__a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = {} UpperCAmelCase__ = {} UpperCAmelCase__ = {} # preprocess args if "points_per_batch" in kwargs: UpperCAmelCase__ = kwargs['points_per_batch'] if "points_per_crop" in kwargs: UpperCAmelCase__ = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: UpperCAmelCase__ = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: UpperCAmelCase__ = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: UpperCAmelCase__ = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: UpperCAmelCase__ = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: UpperCAmelCase__ = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: UpperCAmelCase__ = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: UpperCAmelCase__ = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: UpperCAmelCase__ = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: UpperCAmelCase__ = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]: """simple docstring""" return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a ) def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = load_image(__a ) UpperCAmelCase__ = self.image_processor.size['longest_edge'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes( __a , __a , __a , __a , __a , __a ) UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": UpperCAmelCase__ = self.get_inference_context() with inference_context(): UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device ) UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) UpperCAmelCase__ = image_embeddings UpperCAmelCase__ = grid_points.shape[1] UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , __a , __a ): UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :] UpperCAmelCase__ = input_labels[:, i : i + points_per_batch] UpperCAmelCase__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = model_inputs.pop('input_boxes' ) UpperCAmelCase__ = model_inputs.pop('is_last' ) UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist() UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist() UpperCAmelCase__ = self.model(**__a ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCAmelCase__ = model_outputs['pred_masks'] UpperCAmelCase__ = self.image_processor.post_process_masks( __a , __a , __a , __a , binarize=__a ) UpperCAmelCase__ = model_outputs['iou_scores'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation( __a , __a , __a , __a ) UpperCAmelCase__ = defaultdict(__a ) for output in model_outputs: for k, v in output.items(): extra[k].append(__a ) UpperCAmelCase__ = {} if output_rle_mask: UpperCAmelCase__ = rle_mask if output_bboxes_mask: UpperCAmelCase__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
335
1
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""vqvae"""] def __init__(self , __a , __a , __a , __a , ) -> Any: """simple docstring""" super().__init__() self.register_modules(unet=__a , scheduler=__a , mel=__a , vqvae=__a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , __a ) else 1000 @torch.no_grad() def __call__(self , __a = 1 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = 0 , __a = None , __a = None , __a=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" UpperCAmelCase__ = steps or self.get_default_steps() self.scheduler.set_timesteps(__a ) UpperCAmelCase__ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: UpperCAmelCase__ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: UpperCAmelCase__ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__a , device=self.device , ) UpperCAmelCase__ = noise UpperCAmelCase__ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__a , __a ) UpperCAmelCase__ = self.mel.audio_slice_to_image(__a ) UpperCAmelCase__ = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) UpperCAmelCase__ = (input_image / 255) * 2 - 1 UpperCAmelCase__ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: UpperCAmelCase__ = self.vqvae.encode(torch.unsqueeze(__a , 0 ) ).latent_dist.sample( generator=__a )[0] UpperCAmelCase__ = self.vqvae.config.scaling_factor * input_images if start_step > 0: UpperCAmelCase__ = self.scheduler.add_noise(__a , __a , self.scheduler.timesteps[start_step - 1] ) UpperCAmelCase__ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) UpperCAmelCase__ = int(mask_start_secs * pixels_per_second ) UpperCAmelCase__ = int(mask_end_secs * pixels_per_second ) UpperCAmelCase__ = self.scheduler.add_noise(__a , __a , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __a ): UpperCAmelCase__ = self.unet(__a , __a , __a )['sample'] else: UpperCAmelCase__ = self.unet(__a , __a )['sample'] if isinstance(self.scheduler , __a ): UpperCAmelCase__ = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , eta=__a , generator=__a , )['prev_sample'] else: UpperCAmelCase__ = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , generator=__a , )['prev_sample'] if mask is not None: if mask_start > 0: UpperCAmelCase__ = mask[:, step, :, :mask_start] if mask_end > 0: UpperCAmelCase__ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance UpperCAmelCase__ = 1 / self.vqvae.config.scaling_factor * images UpperCAmelCase__ = self.vqvae.decode(__a )['sample'] UpperCAmelCase__ = (images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase__ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() UpperCAmelCase__ = (images * 255).round().astype('uint8' ) UpperCAmelCase__ = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__a , mode='RGB' ).convert('L' ) for _ in images) ) UpperCAmelCase__ = [self.mel.image_to_audio(__a ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__a )[:, np.newaxis, :] ) , **ImagePipelineOutput(__a ) ) @torch.no_grad() def UpperCamelCase__ (self , __a , __a = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , __a ) self.scheduler.set_timesteps(__a ) UpperCAmelCase__ = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) UpperCAmelCase__ = (sample / 255) * 2 - 1 UpperCAmelCase__ = torch.Tensor(__a ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): UpperCAmelCase__ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps UpperCAmelCase__ = self.scheduler.alphas_cumprod[t] UpperCAmelCase__ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) UpperCAmelCase__ = 1 - alpha_prod_t UpperCAmelCase__ = self.unet(__a , __a )['sample'] UpperCAmelCase__ = (1 - alpha_prod_t_prev) ** 0.5 * model_output UpperCAmelCase__ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) UpperCAmelCase__ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase__ (__a , __a , __a ) -> torch.Tensor: """simple docstring""" UpperCAmelCase__ = acos(torch.dot(torch.flatten(__a ) , torch.flatten(__a ) ) / torch.norm(__a ) / torch.norm(__a ) ) return sin((1 - alpha) * theta ) * xa / sin(__a ) + sin(alpha * theta ) * xa / sin(__a )
335
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) __SCREAMING_SNAKE_CASE = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) __SCREAMING_SNAKE_CASE = field( default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} ) __SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) __SCREAMING_SNAKE_CASE = field( default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) __SCREAMING_SNAKE_CASE = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) __SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} ) __SCREAMING_SNAKE_CASE = field( default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} ) __SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) __SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) __SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} ) __SCREAMING_SNAKE_CASE = field( default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) __SCREAMING_SNAKE_CASE = field( default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field( default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) __SCREAMING_SNAKE_CASE = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field( default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) __SCREAMING_SNAKE_CASE = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
335
1
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = BloomTokenizerFast __SCREAMING_SNAKE_CASE = BloomTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = """tokenizer_file""" __SCREAMING_SNAKE_CASE = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" super().setUp() UpperCAmelCase__ = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ (self , **__a ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] UpperCAmelCase__ = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] UpperCAmelCase__ = tokenizer.batch_encode_plus(__a )['input_ids'] self.assertListEqual(__a , __a ) UpperCAmelCase__ = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def UpperCamelCase__ (self , __a=6 ) -> Optional[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase__ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input UpperCAmelCase__ = 'This is a simple input' UpperCAmelCase__ = ['This is a simple input 1', 'This is a simple input 2'] UpperCAmelCase__ = ('This is a simple input', 'This is a pair') UpperCAmelCase__ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(__a , max_length=__a ) tokenizer_r.encode_plus(__a , max_length=__a ) tokenizer_r.batch_encode_plus(__a , max_length=__a ) tokenizer_r.encode(__a , max_length=__a ) tokenizer_r.batch_encode_plus(__a , max_length=__a ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) UpperCAmelCase__ = None # Hotfixing padding = None self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = load_dataset('xnli' , 'all_languages' , split='test' , streaming=__a ) UpperCAmelCase__ = next(iter(__a ) )['premise'] # pick up one data UpperCAmelCase__ = list(sample_data.values() ) UpperCAmelCase__ = list(map(tokenizer.encode , __a ) ) UpperCAmelCase__ = [tokenizer.decode(__a , clean_up_tokenization_spaces=__a ) for x in output_tokens] self.assertListEqual(__a , __a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
335
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_attention_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_choices def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_attention_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = FlaxRobertaModelTester(self ) @slow def UpperCamelCase__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a ) UpperCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a )
335
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """align_text_model""" def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=2 , __a=0.02 , __a=1E-1_2 , __a=0 , __a="absolute" , __a=True , **__a , ) -> Tuple: """simple docstring""" super().__init__(**__a ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = use_cache UpperCAmelCase__ = pad_token_id @classmethod def UpperCamelCase__ (cls , __a , **__a ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__a ) UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(__a , **__a ) # get the text config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": UpperCAmelCase__ = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__a , **__a ) class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """align_vision_model""" def __init__(self , __a = 3 , __a = 600 , __a = 2.0 , __a = 3.1 , __a = 8 , __a = [3, 3, 5, 3, 5, 5, 3] , __a = [32, 16, 24, 40, 80, 112, 192] , __a = [16, 24, 40, 80, 112, 192, 320] , __a = [] , __a = [1, 2, 2, 2, 1, 2, 1] , __a = [1, 2, 2, 3, 3, 4, 1] , __a = [1, 6, 6, 6, 6, 6, 6] , __a = 0.25 , __a = "swish" , __a = 2560 , __a = "mean" , __a = 0.02 , __a = 0.0_01 , __a = 0.99 , __a = 0.2 , **__a , ) -> Union[str, Any]: """simple docstring""" super().__init__(**__a ) UpperCAmelCase__ = num_channels UpperCAmelCase__ = image_size UpperCAmelCase__ = width_coefficient UpperCAmelCase__ = depth_coefficient UpperCAmelCase__ = depth_divisor UpperCAmelCase__ = kernel_sizes UpperCAmelCase__ = in_channels UpperCAmelCase__ = out_channels UpperCAmelCase__ = depthwise_padding UpperCAmelCase__ = strides UpperCAmelCase__ = num_block_repeats UpperCAmelCase__ = expand_ratios UpperCAmelCase__ = squeeze_expansion_ratio UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dim UpperCAmelCase__ = pooling_type UpperCAmelCase__ = initializer_range UpperCAmelCase__ = batch_norm_eps UpperCAmelCase__ = batch_norm_momentum UpperCAmelCase__ = drop_connect_rate UpperCAmelCase__ = sum(__a ) * 4 @classmethod def UpperCamelCase__ (cls , __a , **__a ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__a ) UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(__a , **__a ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": UpperCAmelCase__ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__a , **__a ) class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """align""" __SCREAMING_SNAKE_CASE = True def __init__(self , __a=None , __a=None , __a=640 , __a=1.0 , __a=0.02 , **__a , ) -> Optional[int]: """simple docstring""" super().__init__(**__a ) if text_config is None: UpperCAmelCase__ = {} logger.info('text_config is None. Initializing the AlignTextConfig with default values.' ) if vision_config is None: UpperCAmelCase__ = {} logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' ) UpperCAmelCase__ = AlignTextConfig(**__a ) UpperCAmelCase__ = AlignVisionConfig(**__a ) UpperCAmelCase__ = projection_dim UpperCAmelCase__ = temperature_init_value UpperCAmelCase__ = initializer_range @classmethod def UpperCamelCase__ (cls , __a , __a , **__a ) -> int: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__a ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ = self.text_config.to_dict() UpperCAmelCase__ = self.vision_config.to_dict() UpperCAmelCase__ = self.__class__.model_type return output
335
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _UpperCamelCase = logging.get_logger(__name__) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , *__a , **__a ) -> None: """simple docstring""" warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
335
1
from datetime import datetime import matplotlib.pyplot as plt import torch def UpperCamelCase_( snake_case__: Optional[int] ) -> Dict: for param in module.parameters(): UpperCAmelCase__ = False def UpperCamelCase_( ) -> List[str]: UpperCAmelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCAmelCase__ = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def UpperCamelCase_( snake_case__: Optional[int] ) -> Dict: UpperCAmelCase__ = plt.imshow(snake_case__ ) fig.axes.get_xaxis().set_visible(snake_case__ ) fig.axes.get_yaxis().set_visible(snake_case__ ) plt.show() def UpperCamelCase_( ) -> Any: UpperCAmelCase__ = datetime.now() UpperCAmelCase__ = current_time.strftime('%H:%M:%S' ) return timestamp
335
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
1
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , *__a , __a=None , __a=None , **__a ) -> List[str]: """simple docstring""" super().__init__(*__a , **__a ) UpperCAmelCase__ = eval_examples UpperCAmelCase__ = post_process_function def UpperCamelCase__ (self , __a = None , __a=None , __a = None , __a = "eval" , **__a , ) -> Dict[str, float]: """simple docstring""" UpperCAmelCase__ = gen_kwargs.copy() UpperCAmelCase__ = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length' ) is not None else self.args.generation_max_length ) UpperCAmelCase__ = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams' ) is not None else self.args.generation_num_beams ) UpperCAmelCase__ = gen_kwargs UpperCAmelCase__ = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase__ = self.get_eval_dataloader(__a ) UpperCAmelCase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase__ = self.compute_metrics UpperCAmelCase__ = None UpperCAmelCase__ = time.time() UpperCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase__ = eval_loop( __a , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: UpperCAmelCase__ = compute_metrics UpperCAmelCase__ = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase__ = self.post_process_function(__a , __a , __a ) UpperCAmelCase__ = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): UpperCAmelCase__ = metrics.pop(__a ) metrics.update(output.metrics ) else: UpperCAmelCase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a ) return metrics def UpperCamelCase__ (self , __a , __a , __a=None , __a = "test" , **__a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = gen_kwargs.copy() UpperCAmelCase__ = self.get_test_dataloader(__a ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase__ = self.compute_metrics UpperCAmelCase__ = None UpperCAmelCase__ = time.time() UpperCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase__ = eval_loop( __a , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: UpperCAmelCase__ = compute_metrics UpperCAmelCase__ = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase__ = self.post_process_function(__a , __a , __a , 'predict' ) UpperCAmelCase__ = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): UpperCAmelCase__ = metrics.pop(__a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
335
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self , __a ) -> List[Any]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): UpperCAmelCase__ = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) benchmark.run() self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__a ): self.assertTrue(hasattr(__a , 'sequential' ) ) self.assertTrue(hasattr(__a , 'cumulative' ) ) self.assertTrue(hasattr(__a , 'current' ) ) self.assertTrue(hasattr(__a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
335
1
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _UpperCamelCase = logging.get_logger(__name__) # General docstring _UpperCamelCase = '''MobileNetV1Config''' # Base docstring _UpperCamelCase = '''google/mobilenet_v1_1.0_224''' _UpperCamelCase = [1, 1024, 7, 7] # Image classification docstring _UpperCamelCase = '''google/mobilenet_v1_1.0_224''' _UpperCamelCase = '''tabby, tabby cat''' _UpperCamelCase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCamelCase_( snake_case__: List[str] , snake_case__: Optional[int] , snake_case__: Optional[Any]=None ) -> int: UpperCAmelCase__ = {} if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase__ = model.mobilenet_va else: UpperCAmelCase__ = model UpperCAmelCase__ = 'MobilenetV1/Conv2d_0/' UpperCAmelCase__ = backbone.conv_stem.convolution.weight UpperCAmelCase__ = backbone.conv_stem.normalization.bias UpperCAmelCase__ = backbone.conv_stem.normalization.weight UpperCAmelCase__ = backbone.conv_stem.normalization.running_mean UpperCAmelCase__ = backbone.conv_stem.normalization.running_var for i in range(13 ): UpperCAmelCase__ = i + 1 UpperCAmelCase__ = i * 2 UpperCAmelCase__ = backbone.layer[pt_index] UpperCAmelCase__ = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" UpperCAmelCase__ = pointer.convolution.weight UpperCAmelCase__ = pointer.normalization.bias UpperCAmelCase__ = pointer.normalization.weight UpperCAmelCase__ = pointer.normalization.running_mean UpperCAmelCase__ = pointer.normalization.running_var UpperCAmelCase__ = backbone.layer[pt_index + 1] UpperCAmelCase__ = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" UpperCAmelCase__ = pointer.convolution.weight UpperCAmelCase__ = pointer.normalization.bias UpperCAmelCase__ = pointer.normalization.weight UpperCAmelCase__ = pointer.normalization.running_mean UpperCAmelCase__ = pointer.normalization.running_var if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase__ = 'MobilenetV1/Logits/Conv2d_1c_1x1/' UpperCAmelCase__ = model.classifier.weight UpperCAmelCase__ = model.classifier.bias return tf_to_pt_map def UpperCamelCase_( snake_case__: Tuple , snake_case__: Tuple , snake_case__: Optional[Any] ) -> Optional[int]: try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model UpperCAmelCase__ = tf.train.list_variables(snake_case__ ) UpperCAmelCase__ = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ ) UpperCAmelCase__ = array # Build TF to PyTorch weights loading map UpperCAmelCase__ = _build_tf_to_pytorch_map(snake_case__ , snake_case__ , snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue UpperCAmelCase__ = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) UpperCAmelCase__ = np.transpose(snake_case__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer UpperCAmelCase__ = array.squeeze().transpose() else: UpperCAmelCase__ = np.transpose(snake_case__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) UpperCAmelCase__ = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ , snake_case__ ) tf_weights.pop(name + '/RMSProp' , snake_case__ ) tf_weights.pop(name + '/RMSProp_1' , snake_case__ ) tf_weights.pop(name + '/ExponentialMovingAverage' , snake_case__ ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def UpperCamelCase_( snake_case__: torch.Tensor , snake_case__: nn.Convad ) -> torch.Tensor: UpperCAmelCase__ , UpperCAmelCase__ = features.shape[-2:] UpperCAmelCase__ , UpperCAmelCase__ = conv_layer.stride UpperCAmelCase__ , UpperCAmelCase__ = conv_layer.kernel_size if in_height % stride_height == 0: UpperCAmelCase__ = max(kernel_height - stride_height , 0 ) else: UpperCAmelCase__ = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: UpperCAmelCase__ = max(kernel_width - stride_width , 0 ) else: UpperCAmelCase__ = max(kernel_width - (in_width % stride_width) , 0 ) UpperCAmelCase__ = pad_along_width // 2 UpperCAmelCase__ = pad_along_width - pad_left UpperCAmelCase__ = pad_along_height // 2 UpperCAmelCase__ = pad_along_height - pad_top UpperCAmelCase__ = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ , snake_case__ , 'constant' , 0.0 ) class lowercase ( nn.Module ): '''simple docstring''' def __init__(self , __a , __a , __a , __a , __a = 1 , __a = 1 , __a = False , __a = True , __a = True , ) -> None: """simple docstring""" super().__init__() UpperCAmelCase__ = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups." ) if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups." ) UpperCAmelCase__ = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) UpperCAmelCase__ = nn.Convad( in_channels=__a , out_channels=__a , kernel_size=__a , stride=__a , padding=__a , groups=__a , bias=__a , padding_mode='zeros' , ) if use_normalization: UpperCAmelCase__ = nn.BatchNormad( num_features=__a , eps=config.layer_norm_eps , momentum=0.99_97 , affine=__a , track_running_stats=__a , ) else: UpperCAmelCase__ = None if use_activation: if isinstance(__a , __a ): UpperCAmelCase__ = ACTaFN[use_activation] elif isinstance(config.hidden_act , __a ): UpperCAmelCase__ = ACTaFN[config.hidden_act] else: UpperCAmelCase__ = config.hidden_act else: UpperCAmelCase__ = None def UpperCamelCase__ (self , __a ) -> torch.Tensor: """simple docstring""" if self.config.tf_padding: UpperCAmelCase__ = apply_tf_padding(__a , self.convolution ) UpperCAmelCase__ = self.convolution(__a ) if self.normalization is not None: UpperCAmelCase__ = self.normalization(__a ) if self.activation is not None: UpperCAmelCase__ = self.activation(__a ) return features class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = MobileNetVaConfig __SCREAMING_SNAKE_CASE = load_tf_weights_in_mobilenet_va __SCREAMING_SNAKE_CASE = """mobilenet_v1""" __SCREAMING_SNAKE_CASE = """pixel_values""" __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self , __a ) -> None: """simple docstring""" if isinstance(__a , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__a , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , ) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , __a , __a = True ) -> int: """simple docstring""" super().__init__(__a ) UpperCAmelCase__ = config UpperCAmelCase__ = 32 UpperCAmelCase__ = max(int(depth * config.depth_multiplier ) , config.min_depth ) UpperCAmelCase__ = MobileNetVaConvLayer( __a , in_channels=config.num_channels , out_channels=__a , kernel_size=3 , stride=2 , ) UpperCAmelCase__ = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] UpperCAmelCase__ = nn.ModuleList() for i in range(13 ): UpperCAmelCase__ = out_channels if strides[i] == 2 or i == 0: depth *= 2 UpperCAmelCase__ = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( __a , in_channels=__a , out_channels=__a , kernel_size=3 , stride=strides[i] , groups=__a , ) ) self.layer.append( MobileNetVaConvLayer( __a , in_channels=__a , out_channels=__a , kernel_size=1 , ) ) UpperCAmelCase__ = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase__ (self , __a ) -> str: """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__a , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase__ (self , __a = None , __a = None , __a = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: """simple docstring""" UpperCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) UpperCAmelCase__ = self.conv_stem(__a ) UpperCAmelCase__ = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): UpperCAmelCase__ = layer_module(__a ) if output_hidden_states: UpperCAmelCase__ = all_hidden_states + (hidden_states,) UpperCAmelCase__ = hidden_states if self.pooler is not None: UpperCAmelCase__ = torch.flatten(self.pooler(__a ) , start_dim=1 ) else: UpperCAmelCase__ = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__a , pooler_output=__a , hidden_states=__a , ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , _UpperCamelCase , ) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , __a ) -> None: """simple docstring""" super().__init__(__a ) UpperCAmelCase__ = config.num_labels UpperCAmelCase__ = MobileNetVaModel(__a ) UpperCAmelCase__ = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head UpperCAmelCase__ = nn.Dropout(config.classifier_dropout_prob , inplace=__a ) UpperCAmelCase__ = nn.Linear(__a , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase__ (self , __a = None , __a = None , __a = None , __a = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" UpperCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ = self.mobilenet_va(__a , output_hidden_states=__a , return_dict=__a ) UpperCAmelCase__ = outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase__ = self.classifier(self.dropout(__a ) ) UpperCAmelCase__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCAmelCase__ = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCAmelCase__ = 'single_label_classification' else: UpperCAmelCase__ = 'multi_label_classification' if self.config.problem_type == "regression": UpperCAmelCase__ = MSELoss() if self.num_labels == 1: UpperCAmelCase__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCAmelCase__ = loss_fct(__a , __a ) elif self.config.problem_type == "single_label_classification": UpperCAmelCase__ = CrossEntropyLoss() UpperCAmelCase__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCAmelCase__ = BCEWithLogitsLoss() UpperCAmelCase__ = loss_fct(__a , __a ) if not return_dict: UpperCAmelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__a , logits=__a , hidden_states=outputs.hidden_states , )
335
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
335
1
from __future__ import annotations def UpperCamelCase_( snake_case__: int = 4 ) -> list[list[int]]: UpperCAmelCase__ = abs(snake_case__ ) or 4 return [[1 + x + y * row_size for x in range(snake_case__ )] for y in range(snake_case__ )] def UpperCamelCase_( snake_case__: list[list[int]] ) -> list[list[int]]: return reverse_row(transpose(snake_case__ ) ) # OR.. transpose(reverse_column(matrix)) def UpperCamelCase_( snake_case__: list[list[int]] ) -> list[list[int]]: return reverse_row(reverse_column(snake_case__ ) ) # OR.. reverse_column(reverse_row(matrix)) def UpperCamelCase_( snake_case__: list[list[int]] ) -> list[list[int]]: return reverse_column(transpose(snake_case__ ) ) # OR.. transpose(reverse_row(matrix)) def UpperCamelCase_( snake_case__: list[list[int]] ) -> list[list[int]]: UpperCAmelCase__ = [list(snake_case__ ) for x in zip(*snake_case__ )] return matrix def UpperCamelCase_( snake_case__: list[list[int]] ) -> list[list[int]]: UpperCAmelCase__ = matrix[::-1] return matrix def UpperCamelCase_( snake_case__: list[list[int]] ) -> list[list[int]]: UpperCAmelCase__ = [x[::-1] for x in matrix] return matrix def UpperCamelCase_( snake_case__: list[list[int]] ) -> None: for i in matrix: print(*snake_case__ ) if __name__ == "__main__": _UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) _UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) _UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
335
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__(self , *, __a = 4 , __a = 768 , __a , __a , ) -> str: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) ) # parameters for additional clip time embeddings UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.Linear(__a , __a ) # parameters for encoder hidden states UpperCAmelCase__ = clip_extra_context_tokens UpperCAmelCase__ = nn.Linear( __a , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.LayerNorm(__a ) def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase__ = image_embeddings.shape[0] UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase__ = classifier_free_guidance_embeddings.expand( __a , -1 ) UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase__ = self.embedding_proj(__a ) UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a ) UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a ) UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens ) UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase__ = self.encoder_hidden_states_proj(__a ) UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a ) UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
335
1
from collections import defaultdict def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> bool: UpperCAmelCase__ = first_str.lower().strip() UpperCAmelCase__ = second_str.lower().strip() # Remove whitespace UpperCAmelCase__ = first_str.replace(' ' , '' ) UpperCAmelCase__ = second_str.replace(' ' , '' ) # Strings of different lengths are not anagrams if len(snake_case__ ) != len(snake_case__ ): return False # Default values for count should be 0 UpperCAmelCase__ = defaultdict(snake_case__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(snake_case__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _UpperCamelCase = input('''Enter the first string ''').strip() _UpperCamelCase = input('''Enter the second string ''').strip() _UpperCamelCase = check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
335
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BioGptTokenizer __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(__a ) ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = 'lower newer' UpperCAmelCase__ = 'lower newer' return input_text, output_text def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ = 'lower' UpperCAmelCase__ = ['low', 'er</w>'] UpperCAmelCase__ = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase__ = tokens + ['<unk>'] UpperCAmelCase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
335
1
import csv import tweepy # Twitter API credentials _UpperCamelCase = '''''' _UpperCamelCase = '''''' _UpperCamelCase = '''''' _UpperCamelCase = '''''' def UpperCamelCase_( snake_case__: str ) -> None: # authorize twitter, initialize tweepy UpperCAmelCase__ = tweepy.OAuthHandler(_UpperCAmelCase , _UpperCAmelCase ) auth.set_access_token(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = tweepy.API(_UpperCAmelCase ) # initialize a list to hold all the tweepy Tweets UpperCAmelCase__ = [] # make initial request for most recent tweets (200 is the maximum allowed count) UpperCAmelCase__ = api.user_timeline(screen_name=_UpperCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(_UpperCAmelCase ) # save the id of the oldest tweet less one UpperCAmelCase__ = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_UpperCAmelCase ) > 0: print(f"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates UpperCAmelCase__ = api.user_timeline( screen_name=_UpperCAmelCase , count=2_00 , max_id=_UpperCAmelCase ) # save most recent tweets alltweets.extend(_UpperCAmelCase ) # update the id of the oldest tweet less one UpperCAmelCase__ = alltweets[-1].id - 1 print(f"...{len(_UpperCAmelCase )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv UpperCAmelCase__ = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f"new_{screen_name}_tweets.csv" , 'w' ) as f: UpperCAmelCase__ = csv.writer(_UpperCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(_UpperCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
350
class lowercase : # Public class to implement a graph '''simple docstring''' def __init__(self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = row UpperCAmelCase__ = col UpperCAmelCase__ = graph def UpperCamelCase__ (self , __a , __a , __a ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a ) def UpperCamelCase__ (self ) -> int: # And finally, count all islands. """simple docstring""" UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__a , __a , __a ) count += 1 return count
335
0
import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowercase ( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): '''simple docstring''' def __init__(self , __a=None , **__a ) -> List[Any]: """simple docstring""" super().__init__(features=__A ) UpperCAmelCase__ = torch_tensor_kwargs import torch # noqa import torch at initialization def UpperCamelCase__ (self , __a ) -> str: """simple docstring""" import torch if isinstance(__A , __A ) and column: if all( isinstance(__A , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(__A ) return column def UpperCamelCase__ (self , __a ) -> List[str]: """simple docstring""" import torch if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase__ = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): UpperCAmelCase__ = {"""dtype""": torch.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase__ = {"""dtype""": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): UpperCAmelCase__ = np.asarray(__A ) return torch.tensor(__A , **{**default_dtype, **self.torch_tensor_kwargs} ) def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" import torch # support for torch, tf, jax etc. if hasattr(__A , '__array__' ) and not isinstance(__A , torch.Tensor ): UpperCAmelCase__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def UpperCamelCase__ (self , __a ) -> Optional[Any]: """simple docstring""" return map_nested(self._recursive_tensorize , __A , map_list=__A ) def UpperCamelCase__ (self , __a ) -> Mapping: """simple docstring""" UpperCAmelCase__ = self.numpy_arrow_extractor().extract_row(__A ) UpperCAmelCase__ = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def UpperCamelCase__ (self , __a ) -> "torch.Tensor": """simple docstring""" UpperCAmelCase__ = self.numpy_arrow_extractor().extract_column(__A ) UpperCAmelCase__ = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) UpperCAmelCase__ = self.recursive_tensorize(__A ) UpperCAmelCase__ = self._consolidate(__A ) return column def UpperCamelCase__ (self , __a ) -> Mapping: """simple docstring""" UpperCAmelCase__ = self.numpy_arrow_extractor().extract_batch(__A ) UpperCAmelCase__ = self.python_features_decoder.decode_batch(__A ) UpperCAmelCase__ = self.recursive_tensorize(__A ) for column_name in batch: UpperCAmelCase__ = self._consolidate(batch[column_name] ) return batch
351
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _UpperCamelCase = Lock() def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Dict , snake_case__: Any ) -> str: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase__ = min(snake_case__ , snake_case__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase__ = max(snake_case__ , snake_case__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__ ) def UpperCamelCase_( snake_case__: Any ) -> Tuple: UpperCAmelCase__ = [] UpperCAmelCase__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr for i in range(1 , len(snake_case__ ) - 1 ): UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__ ) - 1, arr[len(snake_case__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__ ) ): UpperCAmelCase__ = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase_( ) -> Dict: UpperCAmelCase__ = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*snake_case__ ) UpperCAmelCase__ = odd_even_transposition(snake_case__ ) print('Sorted List\n' ) print(*snake_case__ ) if __name__ == "__main__": main()
335
0
from ....configuration_utils import PretrainedConfig from ....utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''speechbrain/m-ctc-t-large''': '''https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json''', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class lowercase ( _UpperCAmelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = "mctct" def __init__(self , __a=8065 , __a=1536 , __a=36 , __a=6144 , __a=4 , __a=384 , __a=920 , __a=1E-5 , __a=0.3 , __a="relu" , __a=0.02 , __a=0.3 , __a=0.3 , __a=1 , __a=0 , __a=2 , __a=1 , __a=0.3 , __a=1 , __a=(7,) , __a=(3,) , __a=80 , __a=1 , __a=None , __a="sum" , __a=False , **__a , ) -> List[str]: """simple docstring""" super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = attention_head_dim UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = layerdrop UpperCAmelCase__ = hidden_act UpperCAmelCase__ = initializer_range UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = pad_token_id UpperCAmelCase__ = bos_token_id UpperCAmelCase__ = eos_token_id UpperCAmelCase__ = conv_glu_dim UpperCAmelCase__ = conv_dropout UpperCAmelCase__ = num_conv_layers UpperCAmelCase__ = input_feat_per_channel UpperCAmelCase__ = input_channels UpperCAmelCase__ = conv_channels UpperCAmelCase__ = ctc_loss_reduction UpperCAmelCase__ = ctc_zero_infinity # prevents config testing fail with exporting to json UpperCAmelCase__ = list(_UpperCAmelCase ) UpperCAmelCase__ = list(_UpperCAmelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ' F"but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, " F"`config.num_conv_layers = {self.num_conv_layers}`." )
352
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowercase : '''simple docstring''' def __init__(self ) -> str: """simple docstring""" UpperCAmelCase__ = '' UpperCAmelCase__ = '' UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = 256 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = cva.imread(__a , 0 ) UpperCAmelCase__ = copy.deepcopy(self.img ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCAmelCase__ = np.sum(__a ) for i in range(len(__a ) ): UpperCAmelCase__ = x[i] / self.k self.sk += prk UpperCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase__ = int(last % last ) UpperCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__a ) UpperCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase__ = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase__ = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') _UpperCamelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
335
0
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 A_ = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') A_ = get_tests_dir('''fixtures/vocab.json''') A_ = get_tests_dir('''fixtures''') class lowercase ( unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = 0 def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(__snake_case , __snake_case ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ = WavaVecaConfig() UpperCAmelCase__ = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) # save in new folder model_config.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) UpperCAmelCase__ = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def UpperCamelCase__ (self ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , __snake_case ) ) copyfile(__snake_case , os.path.join(__snake_case , 'vocab.json' ) ) UpperCAmelCase__ = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def UpperCamelCase__ (self ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ = WavaVecaFeatureExtractor() UpperCAmelCase__ = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) UpperCAmelCase__ = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in tokenizer with open(os.path.join(__snake_case , __snake_case ) , 'r' ) as f: UpperCAmelCase__ = json.load(__snake_case ) config_dict.pop('processor_class' ) with open(os.path.join(__snake_case , __snake_case ) , 'w' ) as f: f.write(json.dumps(__snake_case ) ) UpperCAmelCase__ = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ = WavaVecaFeatureExtractor() UpperCAmelCase__ = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) UpperCAmelCase__ = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in feature extractor with open(os.path.join(__snake_case , __snake_case ) , 'r' ) as f: UpperCAmelCase__ = json.load(__snake_case ) config_dict.pop('processor_class' ) with open(os.path.join(__snake_case , __snake_case ) , 'w' ) as f: f.write(json.dumps(__snake_case ) ) UpperCAmelCase__ = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def UpperCamelCase__ (self ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ = WavaVecaConfig(processor_class='Wav2Vec2Processor' ) model_config.save_pretrained(__snake_case ) # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , 'vocab.json' ) ) # create emtpy sample processor with open(os.path.join(__snake_case , __snake_case ) , 'w' ) as f: f.write('{}' ) UpperCAmelCase__ = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" with self.assertRaises(__snake_case ): UpperCAmelCase__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): UpperCAmelCase__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=__snake_case ) UpperCAmelCase__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' , trust_remote_code=__snake_case ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) UpperCAmelCase__ = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) UpperCAmelCase__ = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version UpperCAmelCase__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=__snake_case , use_fast=__snake_case ) UpperCAmelCase__ = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" try: AutoConfig.register('custom' , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoProcessor.register(__snake_case , __snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase__ = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = os.path.join(__snake_case , 'vocab.txt' ) with open(__snake_case , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCAmelCase__ = CustomTokenizer(__snake_case ) UpperCAmelCase__ = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__snake_case ) UpperCAmelCase__ = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = False class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = False class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """AutoFeatureExtractor""" __SCREAMING_SNAKE_CASE = """AutoTokenizer""" __SCREAMING_SNAKE_CASE = False try: AutoConfig.register('custom' , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local classes. UpperCAmelCase__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. UpperCAmelCase__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. UpperCAmelCase__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(processor.__class__.__name__ , 'BertTokenizerFast' ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' ) self.assertEqual(processor.__class__.__name__ , 'ConvNextImageProcessor' ) @is_staging_test class lowercase ( unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def UpperCamelCase__ (cls ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TOKEN HfFolder.save_token(__snake_case ) @classmethod def UpperCamelCase__ (cls ) -> Optional[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-processor' ) except HTTPError: pass def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , 'test-processor' ) , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase__ = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , 'test-processor-org' ) , push_to_hub=__snake_case , use_auth_token=self._token , organization='valid_org' , ) UpperCAmelCase__ = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def UpperCamelCase__ (self ) -> int: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() UpperCAmelCase__ = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = os.path.join(__snake_case , 'vocab.txt' ) with open(__snake_case , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCAmelCase__ = CustomTokenizer(__snake_case ) UpperCAmelCase__ = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) UpperCAmelCase__ = Repository(__snake_case , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(__snake_case ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__snake_case , 'tokenizer_config.json' ) ) as f: UpperCAmelCase__ = json.load(__snake_case ) self.assertDictEqual( tokenizer_config['auto_map'] , { 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__snake_case , 'custom_feature_extraction.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , 'custom_tokenization.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , 'custom_processing.py' ) ) ) repo.push_to_hub() UpperCAmelCase__ = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , 'CustomProcessor' )
353
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = embed_dim UpperCAmelCase__ = depths UpperCAmelCase__ = num_heads UpperCAmelCase__ = window_size UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = hidden_act UpperCAmelCase__ = use_absolute_embeddings UpperCAmelCase__ = patch_norm UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = is_training UpperCAmelCase__ = scope UpperCAmelCase__ = use_labels UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = encoder_stride def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ (self ) -> str: """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = SwinvaModel(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase__ = 1 UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.type_sequence_label_size UpperCAmelCase__ = SwinvaForImageClassification(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = SwinvaModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def UpperCamelCase__ (self ) -> int: """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions UpperCAmelCase__ = len(self.model_tester.depths ) self.assertEqual(len(__a ) , __a ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = config.window_size**2 UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) UpperCAmelCase__ = len(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): UpperCAmelCase__ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase__ = 2 self.assertEqual(out_len + added_hidden_states , len(__a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.hidden_states UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__a ) , __a ) # Swinv2 has a different seq_length UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCAmelCase__ = outputs.reshaped_hidden_states self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape UpperCAmelCase__ = ( reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = 3 UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Dict: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = SwinvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = _config_zero_init(__a ) for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(config=__a ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( __a ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**__a ) # verify the logits UpperCAmelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
335
0
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _UpperCamelCase = sys.version_info >= (3, 10) def UpperCamelCase_( snake_case__: Union[str, Any]=None , snake_case__: str=None ) -> List[Any]: return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = field(default="""toto""" , metadata={"""help""": """help message"""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None class lowercase ( a__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """titi""" __SCREAMING_SNAKE_CASE = """toto""" class lowercase ( a__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """titi""" __SCREAMING_SNAKE_CASE = """toto""" __SCREAMING_SNAKE_CASE = 42 @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = """toto""" def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = BasicEnum(self.foo ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = """toto""" def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = MixedTypeEnum(self.foo ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = field(default=a__ , metadata={"""help""": """help message"""} ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = list_field(default=[] ) __SCREAMING_SNAKE_CASE = list_field(default=[] ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = list_field(default=[] ) __SCREAMING_SNAKE_CASE = list_field(default=[1, 2, 3] ) __SCREAMING_SNAKE_CASE = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) __SCREAMING_SNAKE_CASE = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field() __SCREAMING_SNAKE_CASE = field() __SCREAMING_SNAKE_CASE = field() def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = BasicEnum(self.required_enum ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = field() __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = field(default="""toto""" , metadata={"""help""": """help message"""} ) __SCREAMING_SNAKE_CASE = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = field(default=a__ , metadata={"""help""": """help message"""} ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = list_field(default=[] ) __SCREAMING_SNAKE_CASE = list_field(default=[] ) class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self , __a , __a ) -> Optional[Any]: """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): UpperCAmelCase__ = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} UpperCAmelCase__ = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , _lowerCamelCase ) and yy.get('choices' , _lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](_lowerCamelCase ) , yy['type'](_lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ = argparse.ArgumentParser() expected.add_argument('--foo' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('--bar' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('--baz' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('--flag' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='?' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] (UpperCAmelCase__) = parser.parse_args_into_dataclasses(_lowerCamelCase , look_for_args_file=_lowerCamelCase ) self.assertFalse(example.flag ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ = argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=_lowerCamelCase ) expected.add_argument('--baz' , default='toto' , type=_lowerCamelCase , help='help message' ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = argparse.ArgumentParser() expected.add_argument('--foo' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='?' ) expected.add_argument('--baz' , type=_lowerCamelCase , default=_lowerCamelCase , const=_lowerCamelCase , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=_lowerCamelCase , dest='baz' ) expected.add_argument('--opt' , type=_lowerCamelCase , default=_lowerCamelCase ) UpperCAmelCase__ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) UpperCAmelCase__ = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) UpperCAmelCase__ = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) UpperCAmelCase__ = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) UpperCAmelCase__ = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , baz=_lowerCamelCase , opt=_lowerCamelCase ) ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) UpperCAmelCase__ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) UpperCAmelCase__ = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) UpperCAmelCase__ = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) UpperCAmelCase__ = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) UpperCAmelCase__ = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = """toto""" UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) UpperCAmelCase__ = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) UpperCAmelCase__ = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=_lowerCamelCase ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=_lowerCamelCase ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=_lowerCamelCase ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ = parser.parse_args([] ) self.assertEqual( _lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) UpperCAmelCase__ = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = argparse.ArgumentParser() expected.add_argument('--foo' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('--bar' , default=_lowerCamelCase , type=_lowerCamelCase , help='help message' ) expected.add_argument('--baz' , default=_lowerCamelCase , type=_lowerCamelCase ) expected.add_argument('--ces' , nargs='+' , default=[] , type=_lowerCamelCase ) expected.add_argument('--des' , nargs='+' , default=[] , type=_lowerCamelCase ) UpperCAmelCase__ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ = parser.parse_args([] ) self.assertEqual(_lowerCamelCase , Namespace(foo=_lowerCamelCase , bar=_lowerCamelCase , baz=_lowerCamelCase , ces=[] , des=[] ) ) UpperCAmelCase__ = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(_lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument('--required_str' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=_lowerCamelCase , ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ = argparse.ArgumentParser() expected.add_argument('--foo' , type=_lowerCamelCase , required=_lowerCamelCase ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=_lowerCamelCase , ) expected.add_argument('--opt' , type=_lowerCamelCase , default=_lowerCamelCase ) expected.add_argument('--baz' , default='toto' , type=_lowerCamelCase , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } UpperCAmelCase__ = parser.parse_dict(_lowerCamelCase )[0] UpperCAmelCase__ = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_lowerCamelCase , parser.parse_dict , _lowerCamelCase , allow_extra_keys=_lowerCamelCase ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = os.path.join(_lowerCamelCase , 'temp_json' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] UpperCAmelCase__ = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase ) UpperCAmelCase__ = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = os.path.join(_lowerCamelCase , 'temp_yaml' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] UpperCAmelCase__ = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = HfArgumentParser(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase )
354
from collections import deque def UpperCamelCase_( snake_case__: Tuple ) -> Tuple: UpperCAmelCase__ = len(snake_case__ ) UpperCAmelCase__ = deque() UpperCAmelCase__ = [False for _ in range(snake_case__ )] UpperCAmelCase__ = [-1 for _ in range(snake_case__ )] UpperCAmelCase__ = index_of[:] def strong_connect(snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[str] ): UpperCAmelCase__ = index # the number when this node is seen UpperCAmelCase__ = index # lowest rank node reachable from here index += 1 stack.append(snake_case__ ) UpperCAmelCase__ = True for w in g[v]: if index_of[w] == -1: UpperCAmelCase__ = strong_connect(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: UpperCAmelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: UpperCAmelCase__ = [] UpperCAmelCase__ = stack.pop() UpperCAmelCase__ = False component.append(snake_case__ ) while w != v: UpperCAmelCase__ = stack.pop() UpperCAmelCase__ = False component.append(snake_case__ ) components.append(snake_case__ ) return index UpperCAmelCase__ = [] for v in range(snake_case__ ): if index_of[v] == -1: strong_connect(snake_case__ , 0 , snake_case__ ) return components def UpperCamelCase_( snake_case__: Dict , snake_case__: List[Any] ) -> Optional[int]: UpperCAmelCase__ = [[] for _ in range(snake_case__ )] for u, v in edges: g[u].append(snake_case__ ) return g if __name__ == "__main__": # Test _UpperCamelCase = 7 _UpperCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6] _UpperCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5] _UpperCamelCase = [(u, v) for u, v in zip(source, target)] _UpperCamelCase = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
335
0
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _UpperCamelCase = '''src/transformers''' _UpperCamelCase = '''docs/source/en''' _UpperCamelCase = '''.''' def UpperCamelCase_( snake_case__: List[str] , snake_case__: Dict , snake_case__: Optional[Any] ) -> List[Any]: with open(__a , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCAmelCase__ = f.readlines() # Find the start prompt. UpperCAmelCase__ = 0 while not lines[start_index].startswith(__a ): start_index += 1 start_index += 1 UpperCAmelCase__ = start_index while not lines[end_index].startswith(__a ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _UpperCamelCase = '''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. _UpperCamelCase = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') _UpperCamelCase = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase = direct_transformers_import(TRANSFORMERS_PATH) def UpperCamelCase_( snake_case__: int ) -> List[str]: UpperCAmelCase__ = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , __a ) return [m.group(0 ) for m in matches] def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: Optional[Any] ) -> str: UpperCAmelCase__ = 2 if text == '✅' or text == '❌' else len(__a ) UpperCAmelCase__ = (width - text_length) // 2 UpperCAmelCase__ = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def UpperCamelCase_( ) -> List[str]: UpperCAmelCase__ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase__ = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } UpperCAmelCase__ = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. UpperCAmelCase__ = collections.defaultdict(__a ) UpperCAmelCase__ = collections.defaultdict(__a ) UpperCAmelCase__ = collections.defaultdict(__a ) UpperCAmelCase__ = collections.defaultdict(__a ) UpperCAmelCase__ = collections.defaultdict(__a ) # Let's lookup through all transformers object (once). for attr_name in dir(__a ): UpperCAmelCase__ = None if attr_name.endswith('Tokenizer' ): UpperCAmelCase__ = slow_tokenizers UpperCAmelCase__ = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): UpperCAmelCase__ = fast_tokenizers UpperCAmelCase__ = attr_name[:-13] elif _re_tf_models.match(__a ) is not None: UpperCAmelCase__ = tf_models UpperCAmelCase__ = _re_tf_models.match(__a ).groups()[0] elif _re_flax_models.match(__a ) is not None: UpperCAmelCase__ = flax_models UpperCAmelCase__ = _re_flax_models.match(__a ).groups()[0] elif _re_pt_models.match(__a ) is not None: UpperCAmelCase__ = pt_models UpperCAmelCase__ = _re_pt_models.match(__a ).groups()[0] if lookup_dict is not None: while len(__a ) > 0: if attr_name in model_name_to_prefix.values(): UpperCAmelCase__ = True break # Try again after removing the last word in the name UpperCAmelCase__ = ''.join(camel_case_split(__a )[:-1] ) # Let's build that table! UpperCAmelCase__ = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) UpperCAmelCase__ = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). UpperCAmelCase__ = [len(__a ) + 2 for c in columns] UpperCAmelCase__ = max([len(__a ) for name in model_names] ) + 2 # Build the table per se UpperCAmelCase__ = '|' + '|'.join([_center_text(__a , __a ) for c, w in zip(__a , __a )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" UpperCAmelCase__ = {True: '✅', False: '❌'} for name in model_names: UpperCAmelCase__ = model_name_to_prefix[name] UpperCAmelCase__ = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(__a , __a ) for l, w in zip(__a , __a )] ) + "|\n" return table def UpperCamelCase_( snake_case__: List[Any]=False ) -> Any: UpperCAmelCase__ = _find_text_in_file( filename=os.path.join(__a , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) UpperCAmelCase__ = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(__a , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _UpperCamelCase = parser.parse_args() check_model_table(args.fix_and_overwrite)
355
from ...configuration_utils import PretrainedConfig _UpperCamelCase = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """tapas""" def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=1024 , __a=[3, 256, 256, 2, 256, 256, 10] , __a=0.02 , __a=1E-1_2 , __a=0 , __a=10.0 , __a=0 , __a=1.0 , __a=None , __a=1.0 , __a=False , __a=None , __a=1.0 , __a=1.0 , __a=False , __a=False , __a="ratio" , __a=None , __a=None , __a=64 , __a=32 , __a=False , __a=True , __a=False , __a=False , __a=True , __a=False , __a=None , __a=None , **__a , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=__a , **__a ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_sizes UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps # Fine-tuning task hyperparameters UpperCAmelCase__ = positive_label_weight UpperCAmelCase__ = num_aggregation_labels UpperCAmelCase__ = aggregation_loss_weight UpperCAmelCase__ = use_answer_as_supervision UpperCAmelCase__ = answer_loss_importance UpperCAmelCase__ = use_normalized_answer_loss UpperCAmelCase__ = huber_loss_delta UpperCAmelCase__ = temperature UpperCAmelCase__ = aggregation_temperature UpperCAmelCase__ = use_gumbel_for_cells UpperCAmelCase__ = use_gumbel_for_aggregation UpperCAmelCase__ = average_approximation_function UpperCAmelCase__ = cell_selection_preference UpperCAmelCase__ = answer_loss_cutoff UpperCAmelCase__ = max_num_rows UpperCAmelCase__ = max_num_columns UpperCAmelCase__ = average_logits_per_cell UpperCAmelCase__ = select_one_column UpperCAmelCase__ = allow_empty_column_selection UpperCAmelCase__ = init_cell_selection_weights_to_zero UpperCAmelCase__ = reset_position_index_per_cell UpperCAmelCase__ = disable_per_token_loss # Aggregation hyperparameters UpperCAmelCase__ = aggregation_labels UpperCAmelCase__ = no_aggregation_label_index if isinstance(self.aggregation_labels , __a ): UpperCAmelCase__ = {int(__a ): v for k, v in aggregation_labels.items()}
335
0
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup _UpperCamelCase = logging.get_logger(__name__) class lowercase ( lowerCamelCase__ ): '''simple docstring''' def __init__(self , **__a ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['bs4'] ) super().__init__(**__a ) def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag UpperCAmelCase__ = parent.find_all(child.name , recursive=__a ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__a ) else next(i for i, s in enumerate(__a , 1 ) if s is child ) ) UpperCAmelCase__ = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def UpperCamelCase__ (self , __a ) -> List[str]: """simple docstring""" UpperCAmelCase__ = BeautifulSoup(__a , 'html.parser' ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for element in html_code.descendants: if type(__a ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue UpperCAmelCase__ = html.unescape(__a ).strip() if not text_in_this_tag: continue all_doc_strings.append(__a ) UpperCAmelCase__ , UpperCAmelCase__ = self.xpath_soup(__a ) stringaxtag_seq.append(__a ) stringaxsubs_seq.append(__a ) if len(__a ) != len(__a ): raise ValueError('Number of doc strings and xtags does not correspond' ) if len(__a ) != len(__a ): raise ValueError('Number of doc strings and xsubs does not correspond' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def UpperCamelCase__ (self , __a , __a ) -> int: """simple docstring""" UpperCAmelCase__ = '' for tagname, subs in zip(__a , __a ): xpath += F"/{tagname}" if subs != 0: xpath += F"[{subs}]" return xpath def __call__(self , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = False # Check that strings has a valid type if isinstance(__a , __a ): UpperCAmelCase__ = True elif isinstance(__a , (list, tuple) ): if len(__a ) == 0 or isinstance(html_strings[0] , __a ): UpperCAmelCase__ = True if not valid_strings: raise ValueError( 'HTML strings must of type `str`, `List[str]` (batch of examples), ' F"but is of type {type(__a )}." ) UpperCAmelCase__ = bool(isinstance(__a , (list, tuple) ) and (isinstance(html_strings[0] , __a )) ) if not is_batched: UpperCAmelCase__ = [html_strings] # Get nodes + xpaths UpperCAmelCase__ = [] UpperCAmelCase__ = [] for html_string in html_strings: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.get_three_from_single(__a ) nodes.append(__a ) UpperCAmelCase__ = [] for node, tag_list, sub_list in zip(__a , __a , __a ): UpperCAmelCase__ = self.construct_xpath(__a , __a ) xpath_strings.append(__a ) xpaths.append(__a ) # return as Dict UpperCAmelCase__ = {'nodes': nodes, 'xpaths': xpaths} UpperCAmelCase__ = BatchFeature(data=__a , tensor_type=__a ) return encoded_inputs
356
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
0
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor _UpperCamelCase = logging.get_logger(__name__) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , *__a , **__a ) -> Union[str, Any]: """simple docstring""" warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
357
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase__ = XCLIPTextConfig() # derive patch size from model name UpperCAmelCase__ = model_name.find('patch' ) UpperCAmelCase__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) UpperCAmelCase__ = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 UpperCAmelCase__ = 12 UpperCAmelCase__ = 10_24 UpperCAmelCase__ = 40_96 UpperCAmelCase__ = 16 UpperCAmelCase__ = 24 UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 if model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = 3_36 UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 return config def UpperCamelCase_( snake_case__: Any ) -> Tuple: # text encoder if name == "token_embedding.weight": UpperCAmelCase__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": UpperCAmelCase__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: UpperCAmelCase__ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: UpperCAmelCase__ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: UpperCAmelCase__ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: UpperCAmelCase__ = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): UpperCAmelCase__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: UpperCAmelCase__ = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: UpperCAmelCase__ = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": UpperCAmelCase__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": UpperCAmelCase__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): UpperCAmelCase__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: UpperCAmelCase__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: UpperCAmelCase__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: UpperCAmelCase__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: UpperCAmelCase__ = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: UpperCAmelCase__ = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: UpperCAmelCase__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: UpperCAmelCase__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": UpperCAmelCase__ = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): UpperCAmelCase__ = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): UpperCAmelCase__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): UpperCAmelCase__ = orig_state_dict.pop(snake_case__ ) if "attn.in_proj" in key: UpperCAmelCase__ = key.split('.' ) if key.startswith('visual' ): UpperCAmelCase__ = key_split[3] UpperCAmelCase__ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[ :dim ] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[ -dim: ] else: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] elif key.startswith('mit' ): UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.vision_config.mit_hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[dim : dim * 2, :] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[dim : dim * 2] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.text_config.hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = rename_key(snake_case__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCAmelCase__ = val.T UpperCAmelCase__ = val return orig_state_dict def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]: if num_frames == 8: UpperCAmelCase__ = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: UpperCAmelCase__ = 'eating_spaghetti.npy' elif num_frames == 32: UpperCAmelCase__ = 'eating_spaghetti_32_frames.npy' UpperCAmelCase__ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , ) UpperCAmelCase__ = np.load(snake_case__ ) return list(snake_case__ ) def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None , snake_case__: Union[str, Any]=False ) -> List[Any]: UpperCAmelCase__ = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } UpperCAmelCase__ = model_to_url[model_name] UpperCAmelCase__ = 8 if "16-frames" in model_name: UpperCAmelCase__ = 16 elif "shot" in model_name: UpperCAmelCase__ = 32 UpperCAmelCase__ = get_xclip_config(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) model.eval() if "drive" in checkpoint_url: UpperCAmelCase__ = 'pytorch_model.bin' gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] else: UpperCAmelCase__ = torch.hub.load_state_dict_from_url(snake_case__ )['model'] UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(snake_case__ , strict=snake_case__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCAmelCase__ = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24 UpperCAmelCase__ = VideoMAEImageProcessor(size=snake_case__ ) UpperCAmelCase__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase__ = prepare_video(snake_case__ ) UpperCAmelCase__ = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): UpperCAmelCase__ = model(**snake_case__ ) # Verify outputs UpperCAmelCase__ = outputs.logits_per_video UpperCAmelCase__ = logits_per_video.softmax(dim=1 ) print('Probs:' , snake_case__ ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCAmelCase__ = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] ) elif model_name == "xclip-base-patch16": UpperCAmelCase__ = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] ) elif model_name == "xclip-large-patch14": UpperCAmelCase__ = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCAmelCase__ = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] ) else: raise ValueError(f"Model name {model_name} not supported" ) assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(snake_case__ , organization='nielsr' ) processor.push_to_hub(snake_case__ , organization='nielsr' ) slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _UpperCamelCase = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
335
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _UpperCamelCase = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class lowercase ( lowercase__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'albert' def __init__(self , __a=30000 , __a=128 , __a=4096 , __a=12 , __a=1 , __a=64 , __a=16384 , __a=1 , __a="gelu_new" , __a=0 , __a=0 , __a=512 , __a=2 , __a=0.02 , __a=1E-1_2 , __a=0.1 , __a="absolute" , __a=0 , __a=2 , __a=3 , **__a , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = embedding_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_hidden_groups UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = inner_group_num UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = classifier_dropout_prob UpperCAmelCase__ = position_embedding_type class lowercase ( lowercase__ ): '''simple docstring''' @property def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
358
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: Union[str, Any] ) -> Tuple: UpperCAmelCase__ = OmegaConf.load(snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] UpperCAmelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE UpperCAmelCase__ = {} UpperCAmelCase__ = 'first_stage_model.' for key in keys: if key.startswith(snake_case__ ): UpperCAmelCase__ = state_dict[key] # extract state_dict for UNetLDM UpperCAmelCase__ = {} UpperCAmelCase__ = 'model.diffusion_model.' for key in keys: if key.startswith(snake_case__ ): UpperCAmelCase__ = state_dict[key] UpperCAmelCase__ = config.model.params.first_stage_config.params UpperCAmelCase__ = config.model.params.unet_config.params UpperCAmelCase__ = VQModel(**snake_case__ ).eval() vqvae.load_state_dict(snake_case__ ) UpperCAmelCase__ = UNetLDMModel(**snake_case__ ).eval() unet.load_state_dict(snake_case__ ) UpperCAmelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , ) UpperCAmelCase__ = LDMPipeline(snake_case__ , snake_case__ , snake_case__ ) pipeline.save_pretrained(snake_case__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) _UpperCamelCase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
335
0
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( __A , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = CTRLTokenizer __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] UpperCAmelCase__ = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) UpperCAmelCase__ = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] UpperCAmelCase__ = {'unk_token': '<unk>'} UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__lowercase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__lowercase ) ) def UpperCamelCase__ (self , **__a ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def UpperCamelCase__ (self , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'adapt react readapt apt' UpperCAmelCase__ = 'adapt react readapt apt' return input_text, output_text def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase__ = 'adapt react readapt apt' UpperCAmelCase__ = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() UpperCAmelCase__ = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) UpperCAmelCase__ = tokens + [tokenizer.unk_token] UpperCAmelCase__ = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase )
359
# flake8: noqa # Lint as: python3 _UpperCamelCase = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
335
0
def UpperCamelCase_( snake_case__: int , snake_case__: int ) -> int: while second != 0: UpperCAmelCase__ = first & second first ^= second UpperCAmelCase__ = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = int(input('''Enter the first number: ''').strip()) _UpperCamelCase = int(input('''Enter the second number: ''').strip()) print(F"""{add(first, second) = }""")
360
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """sew-d""" def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str: """simple docstring""" super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = feat_extract_norm UpperCAmelCase__ = feat_extract_activation UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = conv_bias UpperCAmelCase__ = num_conv_pos_embeddings UpperCAmelCase__ = num_conv_pos_embedding_groups UpperCAmelCase__ = len(self.conv_dim ) UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = squeeze_factor UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = position_buckets UpperCAmelCase__ = share_att_key UpperCAmelCase__ = relative_attention UpperCAmelCase__ = norm_rel_ebd UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = hidden_act UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = feat_proj_dropout UpperCAmelCase__ = final_dropout UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = feature_layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase__ = apply_spec_augment UpperCAmelCase__ = mask_time_prob UpperCAmelCase__ = mask_time_length UpperCAmelCase__ = mask_time_min_masks UpperCAmelCase__ = mask_feature_prob UpperCAmelCase__ = mask_feature_length UpperCAmelCase__ = mask_feature_min_masks # ctc loss UpperCAmelCase__ = ctc_loss_reduction UpperCAmelCase__ = ctc_zero_infinity # sequence classification UpperCAmelCase__ = use_weighted_layer_sum UpperCAmelCase__ = classifier_proj_size @property def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
335
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def UpperCamelCase_( snake_case__: int ) -> int: UpperCAmelCase__ = prime_factors(lowerCAmelCase__ ) if is_square_free(lowerCAmelCase__ ): return -1 if len(lowerCAmelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
361
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _UpperCamelCase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCamelCase_( snake_case__: int ) -> str: for pegasus_name, hf_name in PATTERNS: UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ ) return k def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration: UpperCAmelCase__ = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) UpperCAmelCase__ = PegasusConfig(**snake_case__ ) UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ ) UpperCAmelCase__ = torch_model.model.state_dict() UpperCAmelCase__ = {} for k, v in tf_weights.items(): UpperCAmelCase__ = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: UpperCAmelCase__ = v.T UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) UpperCAmelCase__ = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: UpperCAmelCase__ = tf.train.list_variables(snake_case__ ) UpperCAmelCase__ = {} UpperCAmelCase__ = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): UpperCAmelCase__ = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ ) UpperCAmelCase__ = array return tf_weights def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]: # save tokenizer first UpperCAmelCase__ = Path(snake_case__ ).parent.name UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ ) UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"] if dataset == "large": UpperCAmelCase__ = task_specific_params UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) UpperCAmelCase__ = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() if args.save_dir is None: _UpperCamelCase = Path(args.tf_ckpt_path).parent.name _UpperCamelCase = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
335
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _UpperCamelCase = logging.get_logger(__name__) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , *__a , **__a ) -> Optional[Any]: """simple docstring""" warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
362
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 13 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = 99 UpperCAmelCase__ = 384 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 37 UpperCAmelCase__ = 'gelu' UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 512 UpperCAmelCase__ = 16 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = 128 UpperCAmelCase__ = 2 UpperCAmelCase__ = 9 UpperCAmelCase__ = 1 UpperCAmelCase__ = None def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TFConvBertModel(config=__a ) UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = True if hasattr(__a , 'use_cache' ): UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) for model_class in self.all_model_classes: UpperCAmelCase__ = self._prepare_for_class(__a , __a ) UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' ) UpperCAmelCase__ = tf.keras.models.load_model(__a ) UpperCAmelCase__ = model(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = outputs['encoder_hidden_states'] UpperCAmelCase__ = outputs['encoder_attentions'] else: UpperCAmelCase__ = outputs['hidden_states'] UpperCAmelCase__ = outputs['attentions'] self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) def check_decoder_attentions_output(__a ): UpperCAmelCase__ = len(__a ) self.assertEqual(out_len % 2 , 0 ) UpperCAmelCase__ = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a ): UpperCAmelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__a )[0] UpperCAmelCase__ = [1, 6, 768] self.assertEqual(output.shape , __a ) UpperCAmelCase__ = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
335
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Any , snake_case__: Union[str, Any] , snake_case__: Dict ) -> List[Any]: UpperCAmelCase__ = FunnelConfig.from_json_file(_lowerCamelCase ) print(f"Building PyTorch model from configuration: {config}" ) UpperCAmelCase__ = FunnelBaseModel(_lowerCamelCase ) if base_model else FunnelModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _lowerCamelCase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.''' ) _UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
363
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCamelCase ) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , **__a ) -> Optional[Any]: """simple docstring""" super().__init__(**__a ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(__a ) def UpperCamelCase__ (self , **__a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = {} UpperCAmelCase__ = {} UpperCAmelCase__ = {} # preprocess args if "points_per_batch" in kwargs: UpperCAmelCase__ = kwargs['points_per_batch'] if "points_per_crop" in kwargs: UpperCAmelCase__ = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: UpperCAmelCase__ = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: UpperCAmelCase__ = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: UpperCAmelCase__ = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: UpperCAmelCase__ = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: UpperCAmelCase__ = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: UpperCAmelCase__ = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: UpperCAmelCase__ = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: UpperCAmelCase__ = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: UpperCAmelCase__ = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]: """simple docstring""" return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a ) def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = load_image(__a ) UpperCAmelCase__ = self.image_processor.size['longest_edge'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes( __a , __a , __a , __a , __a , __a ) UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": UpperCAmelCase__ = self.get_inference_context() with inference_context(): UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device ) UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) UpperCAmelCase__ = image_embeddings UpperCAmelCase__ = grid_points.shape[1] UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , __a , __a ): UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :] UpperCAmelCase__ = input_labels[:, i : i + points_per_batch] UpperCAmelCase__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = model_inputs.pop('input_boxes' ) UpperCAmelCase__ = model_inputs.pop('is_last' ) UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist() UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist() UpperCAmelCase__ = self.model(**__a ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCAmelCase__ = model_outputs['pred_masks'] UpperCAmelCase__ = self.image_processor.post_process_masks( __a , __a , __a , __a , binarize=__a ) UpperCAmelCase__ = model_outputs['iou_scores'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation( __a , __a , __a , __a ) UpperCAmelCase__ = defaultdict(__a ) for output in model_outputs: for k, v in output.items(): extra[k].append(__a ) UpperCAmelCase__ = {} if output_rle_mask: UpperCAmelCase__ = rle_mask if output_bboxes_mask: UpperCAmelCase__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
335
0
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] _UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def UpperCamelCase_( snake_case__: str ) -> str: UpperCAmelCase__ = torch.load(a_ , map_location='cpu' ) return sd def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[str] , snake_case__: Tuple=rename_keys_prefix ) -> List[str]: UpperCAmelCase__ = OrderedDict() UpperCAmelCase__ = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue UpperCAmelCase__ = key for name_pair in rename_keys_prefix: UpperCAmelCase__ = new_key.replace(name_pair[0] , name_pair[1] ) UpperCAmelCase__ = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately UpperCAmelCase__ = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def UpperCamelCase_( snake_case__: int , snake_case__: Union[str, Any] ) -> Optional[Any]: assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), f"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}." # Get Config if "pre" in checkpoint_path: UpperCAmelCase__ = 'pretraining' if "vcr" in checkpoint_path: UpperCAmelCase__ = {'visual_embedding_dim': 5_12} elif "vqa_advanced" in checkpoint_path: UpperCAmelCase__ = {'visual_embedding_dim': 20_48} elif "vqa" in checkpoint_path: UpperCAmelCase__ = {'visual_embedding_dim': 20_48} elif "nlvr" in checkpoint_path: UpperCAmelCase__ = {'visual_embedding_dim': 10_24} else: raise NotImplementedError(f"No implementation found for `{checkpoint_path}`." ) else: if "vcr" in checkpoint_path: UpperCAmelCase__ = {'visual_embedding_dim': 5_12} UpperCAmelCase__ = 'multichoice' elif "vqa_advanced" in checkpoint_path: UpperCAmelCase__ = {'visual_embedding_dim': 20_48} UpperCAmelCase__ = 'vqa_advanced' elif "vqa" in checkpoint_path: UpperCAmelCase__ = {'visual_embedding_dim': 20_48, 'num_labels': 31_29} UpperCAmelCase__ = 'vqa' elif "nlvr" in checkpoint_path: UpperCAmelCase__ = { 'visual_embedding_dim': 10_24, 'num_labels': 2, } UpperCAmelCase__ = 'nlvr' UpperCAmelCase__ = VisualBertConfig(**a_ ) # Load State Dict UpperCAmelCase__ = load_state_dict(a_ ) UpperCAmelCase__ = get_new_dict(a_ , a_ ) if model_type == "pretraining": UpperCAmelCase__ = VisualBertForPreTraining(a_ ) elif model_type == "vqa": UpperCAmelCase__ = VisualBertForQuestionAnswering(a_ ) elif model_type == "nlvr": UpperCAmelCase__ = VisualBertForVisualReasoning(a_ ) elif model_type == "multichoice": UpperCAmelCase__ = VisualBertForMultipleChoice(a_ ) model.load_state_dict(a_ ) # Save Checkpoints Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
364
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) __SCREAMING_SNAKE_CASE = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) __SCREAMING_SNAKE_CASE = field( default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} ) __SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) __SCREAMING_SNAKE_CASE = field( default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) __SCREAMING_SNAKE_CASE = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) __SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} ) __SCREAMING_SNAKE_CASE = field( default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} ) __SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) __SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) __SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} ) __SCREAMING_SNAKE_CASE = field( default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) __SCREAMING_SNAKE_CASE = field( default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field( default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) __SCREAMING_SNAKE_CASE = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field( default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) __SCREAMING_SNAKE_CASE = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
335
0
def UpperCamelCase_( snake_case__: int ) -> int: if n == 1 or not isinstance(__a , __a ): return 0 elif n == 2: return 1 else: UpperCAmelCase__ = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase_( snake_case__: int ) -> int: UpperCAmelCase__ = 0 UpperCAmelCase__ = 2 while digits < n: index += 1 UpperCAmelCase__ = len(str(fibonacci(__a ) ) ) return index def UpperCamelCase_( snake_case__: int = 10_00 ) -> int: return fibonacci_digits_index(__a ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
365
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_attention_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_choices def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_attention_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = FlaxRobertaModelTester(self ) @slow def UpperCamelCase__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a ) UpperCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a )
335
0
from functools import lru_cache def UpperCamelCase_( snake_case__: int ) -> Dict: """simple docstring""" UpperCAmelCase__ = 2 UpperCAmelCase__ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(lowerCAmelCase__ ) if n > 1: factors.add(lowerCAmelCase__ ) return factors @lru_cache def UpperCamelCase_( snake_case__: int ) -> List[Any]: """simple docstring""" return len(unique_prime_factors(lowerCAmelCase__ ) ) def UpperCamelCase_( snake_case__: list ) -> Tuple: """simple docstring""" return len(set(lowerCAmelCase__ ) ) in (0, 1) def UpperCamelCase_( snake_case__: int ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 2 while True: # Increment each value of a generated range UpperCAmelCase__ = [base + i for i in range(lowerCAmelCase__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCAmelCase__ = [upf_len(lowerCAmelCase__ ) for x in group] checker.append(lowerCAmelCase__ ) # If all numbers in the list are equal, return the group variable. if equality(lowerCAmelCase__ ): return group # Increment our base variable by 1 base += 1 def UpperCamelCase_( snake_case__: int = 4 ) -> List[str]: """simple docstring""" UpperCAmelCase__ = run(lowerCAmelCase__ ) return results[0] if len(lowerCAmelCase__ ) else None if __name__ == "__main__": print(solution())
366
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _UpperCamelCase = logging.get_logger(__name__) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , *__a , **__a ) -> None: """simple docstring""" warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
335
0
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = parent def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" return {} def UpperCamelCase_( ) -> Dict: UpperCAmelCase__ = "<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>" UpperCAmelCase__ = "\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n " return [html_string_a, html_string_a] @require_bsa class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = MarkupLMFeatureExtractor if is_bsa_available() else None def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = MarkupLMFeatureExtractionTester(self ) @property def UpperCamelCase__ (self ) -> int: """simple docstring""" return self.feature_extract_tester.prepare_feat_extract_dict() def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.feature_extraction_class() # Test not batched input UpperCAmelCase__ = get_html_strings()[0] UpperCAmelCase__ = feature_extractor(lowerCAmelCase__ ) # fmt: off UpperCAmelCase__ = [["sample document", "Goog", "This is one header", "This is a another Header", "Travel from", "SFO to JFK", "on May 2, 2015 at 2:00 pm. For details go to confirm.com", "Traveler", "name", "is", "John Doe"]] UpperCAmelCase__ = [["/html/head/title", "/html/body/a", "/html/body/h1", "/html/body/h2", "/html/body/p", "/html/body/p/p/b[1]", "/html/body/p/p/b[2]/i", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/b", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/p"]] # fmt: on self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ ) # Test batched UpperCAmelCase__ = get_html_strings() UpperCAmelCase__ = feature_extractor(lowerCAmelCase__ ) # fmt: off UpperCAmelCase__ = expected_nodes + [["My First Heading", "My first paragraph."]] UpperCAmelCase__ = expected_xpaths + [["/html/body/h1", "/html/body/p"]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ )
367
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
0
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa _UpperCamelCase = logging.getLogger(__name__) class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'summarization' __SCREAMING_SNAKE_CASE = ['loss'] __SCREAMING_SNAKE_CASE = ROUGE_KEYS __SCREAMING_SNAKE_CASE = 'rouge2' def __init__(self , __a , **__a ) -> Union[str, Any]: """simple docstring""" if hparams.sortish_sampler and hparams.gpus > 1: UpperCAmelCase__ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' ) if hparams.sortish_sampler: raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' ) super().__init__(_SCREAMING_SNAKE_CASE , num_labels=_SCREAMING_SNAKE_CASE , mode=self.mode , **_SCREAMING_SNAKE_CASE ) use_task_specific_params(self.model , 'summarization' ) save_git_info(self.hparams.output_dir ) UpperCAmelCase__ = Path(self.output_dir ) / 'metrics.json' UpperCAmelCase__ = Path(self.output_dir ) / 'hparams.pkl' pickle_save(self.hparams , self.hparams_save_path ) UpperCAmelCase__ = 0 UpperCAmelCase__ = defaultdict(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = self.config.model_type UpperCAmelCase__ = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size UpperCAmelCase__ = { 'data_dir': self.hparams.data_dir, 'max_source_length': self.hparams.max_source_length, 'prefix': self.model.config.prefix or '', } UpperCAmelCase__ = { 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } UpperCAmelCase__ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} UpperCAmelCase__ = { 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F"target_lens: {self.target_lens}" assert self.target_lens["train"] <= self.target_lens["test"], F"target_lens: {self.target_lens}" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) UpperCAmelCase__ = get_git_info()['repo_sha'] UpperCAmelCase__ = hparams.num_workers UpperCAmelCase__ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ): UpperCAmelCase__ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] UpperCAmelCase__ = self.decoder_start_token_id UpperCAmelCase__ = ( SeqaSeqDataset if hasattr(self.tokenizer , 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset ) UpperCAmelCase__ = False UpperCAmelCase__ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: UpperCAmelCase__ = self.hparams.eval_max_gen_length else: UpperCAmelCase__ = self.model.config.max_length UpperCAmelCase__ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCamelCase__ (self , __a ) -> Dict[str, List[str]]: """simple docstring""" UpperCAmelCase__ = { k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(_SCREAMING_SNAKE_CASE , Path(self.output_dir ) / 'text_batch.json' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / 'tok_batch.json' ) UpperCAmelCase__ = True return readable_batch def UpperCamelCase__ (self , __a , **__a ) -> Dict: """simple docstring""" return self.model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ (self , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.tokenizer.batch_decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) return lmap(str.strip , _SCREAMING_SNAKE_CASE ) def UpperCamelCase__ (self , __a ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.tokenizer.pad_token_id UpperCAmelCase__ , UpperCAmelCase__ = batch['input_ids'], batch['attention_mask'] UpperCAmelCase__ = batch['labels'] if isinstance(self.model , _SCREAMING_SNAKE_CASE ): UpperCAmelCase__ = self.model._shift_right(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase__ = shift_tokens_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero UpperCAmelCase__ = decoder_input_ids self.save_readable_batch(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = self(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id UpperCAmelCase__ = nn.CrossEntropyLoss(ignore_index=_SCREAMING_SNAKE_CASE ) assert lm_logits.shape[-1] == self.vocab_size UpperCAmelCase__ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: UpperCAmelCase__ = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ = label_smoothed_nll_loss( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.hparams.label_smoothing , ignore_index=_SCREAMING_SNAKE_CASE ) return (loss,) @property def UpperCamelCase__ (self ) -> int: """simple docstring""" return self.tokenizer.pad_token_id def UpperCamelCase__ (self , __a , __a ) -> Dict: """simple docstring""" UpperCAmelCase__ = self._step(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = dict(zip(self.loss_names , _SCREAMING_SNAKE_CASE ) ) # tokens per batch UpperCAmelCase__ = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum() UpperCAmelCase__ = batch['input_ids'].shape[0] UpperCAmelCase__ = batch['input_ids'].eq(self.pad ).sum() UpperCAmelCase__ = batch['input_ids'].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCamelCase__ (self , __a , __a ) -> Dict: """simple docstring""" return self._generative_step(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ (self , __a , __a="val" ) -> Dict: """simple docstring""" self.step_count += 1 UpperCAmelCase__ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} UpperCAmelCase__ = losses['loss'] UpperCAmelCase__ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } UpperCAmelCase__ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) UpperCAmelCase__ = torch.tensor(_SCREAMING_SNAKE_CASE ).type_as(_SCREAMING_SNAKE_CASE ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = {F"{prefix}_avg_{k}": x for k, x in losses.items()} UpperCAmelCase__ = self.step_count self.metrics[prefix].append(_SCREAMING_SNAKE_CASE ) # callback writes this to self.metrics_save_path UpperCAmelCase__ = flatten_list([x['preds'] for x in outputs] ) return { "log": all_metrics, "preds": preds, F"{prefix}_loss": loss, F"{prefix}_{self.val_metric}": metric_tensor, } def UpperCamelCase__ (self , __a , __a ) -> Dict: """simple docstring""" return calculate_rouge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCamelCase__ (self , __a ) -> dict: """simple docstring""" UpperCAmelCase__ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') UpperCAmelCase__ = self.model.generate( batch['input_ids'] , attention_mask=batch['attention_mask'] , use_cache=_SCREAMING_SNAKE_CASE , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) UpperCAmelCase__ = (time.time() - ta) / batch['input_ids'].shape[0] UpperCAmelCase__ = self.ids_to_clean_text(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = self.ids_to_clean_text(batch['labels'] ) UpperCAmelCase__ = self._step(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = dict(zip(self.loss_names , _SCREAMING_SNAKE_CASE ) ) UpperCAmelCase__ = self.calc_generative_metrics(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = np.mean(lmap(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) base_metrics.update(gen_time=_SCREAMING_SNAKE_CASE , gen_len=_SCREAMING_SNAKE_CASE , preds=_SCREAMING_SNAKE_CASE , target=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return base_metrics def UpperCamelCase__ (self , __a , __a ) -> List[Any]: """simple docstring""" return self._generative_step(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ (self , __a ) -> Optional[int]: """simple docstring""" return self.validation_epoch_end(_SCREAMING_SNAKE_CASE , prefix='test' ) def UpperCamelCase__ (self , __a ) -> SeqaSeqDataset: """simple docstring""" UpperCAmelCase__ = self.n_obs[type_path] UpperCAmelCase__ = self.target_lens[type_path] UpperCAmelCase__ = self.dataset_class( self.tokenizer , type_path=_SCREAMING_SNAKE_CASE , n_obs=_SCREAMING_SNAKE_CASE , max_target_length=_SCREAMING_SNAKE_CASE , **self.dataset_kwargs , ) return dataset def UpperCamelCase__ (self , __a , __a , __a = False ) -> DataLoader: """simple docstring""" UpperCAmelCase__ = self.get_dataset(_SCREAMING_SNAKE_CASE ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": UpperCAmelCase__ = dataset.make_sortish_sampler(_SCREAMING_SNAKE_CASE , distributed=self.hparams.gpus > 1 ) return DataLoader( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=_SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=_SCREAMING_SNAKE_CASE , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": UpperCAmelCase__ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _SCREAMING_SNAKE_CASE , batch_sampler=_SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=_SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=_SCREAMING_SNAKE_CASE , ) def UpperCamelCase__ (self ) -> DataLoader: """simple docstring""" UpperCAmelCase__ = self.get_dataloader('train' , batch_size=self.hparams.train_batch_size , shuffle=_SCREAMING_SNAKE_CASE ) return dataloader def UpperCamelCase__ (self ) -> DataLoader: """simple docstring""" return self.get_dataloader('val' , batch_size=self.hparams.eval_batch_size ) def UpperCamelCase__ (self ) -> DataLoader: """simple docstring""" return self.get_dataloader('test' , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCamelCase__ (__a , __a ) -> Union[str, Any]: """simple docstring""" BaseTransformer.add_model_specific_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) add_generic_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) parser.add_argument( '--max_source_length' , default=1024 , type=_SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--max_target_length' , default=56 , type=_SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--val_max_target_length' , default=142 , type=_SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--test_max_target_length' , default=142 , type=_SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument('--freeze_encoder' , action='store_true' ) parser.add_argument('--freeze_embeds' , action='store_true' ) parser.add_argument('--sortish_sampler' , action='store_true' , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('--overwrite_output_dir' , action='store_true' , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('--max_tokens_per_batch' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('--logger_name' , type=_SCREAMING_SNAKE_CASE , choices=['default', 'wandb', 'wandb_shared'] , default='default' ) parser.add_argument('--n_train' , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' ) parser.add_argument('--n_val' , type=_SCREAMING_SNAKE_CASE , default=500 , required=_SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' ) parser.add_argument('--n_test' , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' ) parser.add_argument( '--task' , type=_SCREAMING_SNAKE_CASE , default='summarization' , required=_SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' ) parser.add_argument('--label_smoothing' , type=_SCREAMING_SNAKE_CASE , default=0.0 , required=_SCREAMING_SNAKE_CASE ) parser.add_argument('--src_lang' , type=_SCREAMING_SNAKE_CASE , default='' , required=_SCREAMING_SNAKE_CASE ) parser.add_argument('--tgt_lang' , type=_SCREAMING_SNAKE_CASE , default='' , required=_SCREAMING_SNAKE_CASE ) parser.add_argument('--eval_beams' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE ) parser.add_argument( '--val_metric' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , choices=['bleu', 'rouge2', 'loss', None] ) parser.add_argument('--eval_max_gen_length' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='never generate more than n tokens' ) parser.add_argument('--save_top_k' , type=_SCREAMING_SNAKE_CASE , default=1 , required=_SCREAMING_SNAKE_CASE , help='How many checkpoints to save' ) parser.add_argument( '--early_stopping_patience' , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help=( '-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So' ' val_check_interval will effect it.' ) , ) return parser class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'translation' __SCREAMING_SNAKE_CASE = ['loss'] __SCREAMING_SNAKE_CASE = ['bleu'] __SCREAMING_SNAKE_CASE = 'bleu' def __init__(self , __a , **__a ) -> Tuple: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = hparams.src_lang UpperCAmelCase__ = hparams.tgt_lang def UpperCamelCase__ (self , __a , __a ) -> dict: """simple docstring""" return calculate_bleu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None ) -> SummarizationModule: Path(args.output_dir ).mkdir(exist_ok=_UpperCamelCase ) check_output_dir(_UpperCamelCase , expected_items=3 ) if model is None: if "summarization" in args.task: UpperCAmelCase__ = SummarizationModule(_UpperCamelCase ) else: UpperCAmelCase__ = TranslationModule(_UpperCamelCase ) UpperCAmelCase__ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('/tmp' ) or str(args.output_dir ).startswith('/var' ) ): UpperCAmelCase__ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase__ = os.environ.get('WANDB_PROJECT' , _UpperCamelCase ) UpperCAmelCase__ = WandbLogger(name=model.output_dir.name , project=_UpperCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase__ = WandbLogger(name=model.output_dir.name , project=f"hf_{dataset}" ) if args.early_stopping_patience >= 0: UpperCAmelCase__ = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: UpperCAmelCase__ = False UpperCAmelCase__ = args.val_metric == 'loss' UpperCAmelCase__ = generic_train( _UpperCamelCase , _UpperCamelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _UpperCamelCase ) , early_stopping_callback=_UpperCamelCase , logger=_UpperCamelCase , ) pickle_save(model.hparams , model.output_dir / 'hparams.pkl' ) if not args.do_predict: return model UpperCAmelCase__ = '' UpperCAmelCase__ = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt' ) , recursive=_UpperCamelCase ) ) if checkpoints: UpperCAmelCase__ = checkpoints[-1] UpperCAmelCase__ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() _UpperCamelCase = pl.Trainer.add_argparse_args(parser) _UpperCamelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) _UpperCamelCase = parser.parse_args() main(args)
368
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self , __a ) -> List[Any]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): UpperCAmelCase__ = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) benchmark.run() self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__a ): self.assertTrue(hasattr(__a , 'sequential' ) ) self.assertTrue(hasattr(__a , 'cumulative' ) ) self.assertTrue(hasattr(__a , 'current' ) ) self.assertTrue(hasattr(__a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
335
0
from torch import nn class lowercase ( nn.Module ): '''simple docstring''' def __init__(self , __a , __a ) -> Union[str, Any]: """simple docstring""" super().__init__() UpperCAmelCase__ = class_size UpperCAmelCase__ = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) UpperCAmelCase__ = nn.Linear(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase__ (self , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.mlp(_lowerCamelCase ) return logits
369
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
335
0
from math import sqrt def UpperCamelCase_( snake_case__: int ) -> List[Any]: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" UpperCAmelCase__ = True # 0 and 1 are none primes. if number <= 1: UpperCAmelCase__ = False for divisor in range(2 , int(round(sqrt(__SCREAMING_SNAKE_CASE ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: UpperCAmelCase__ = False break # precondition assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'status' must been from type bool" return status def UpperCamelCase_( snake_case__: List[Any] ) -> Optional[Any]: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N UpperCAmelCase__ = list(range(2 , n + 1 ) ) UpperCAmelCase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(__SCREAMING_SNAKE_CASE ) ): for j in range(i + 1 , len(__SCREAMING_SNAKE_CASE ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): UpperCAmelCase__ = 0 # filters actual prime numbers. UpperCAmelCase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def UpperCamelCase_( snake_case__: Optional[Any] ) -> Optional[int]: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" UpperCAmelCase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(__SCREAMING_SNAKE_CASE ): ans.append(__SCREAMING_SNAKE_CASE ) # precondition assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def UpperCamelCase_( snake_case__: Tuple ) -> List[Any]: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and number >= 0, "'number' must been an int and >= 0" UpperCAmelCase__ = [] # this list will be returns of the function. # potential prime number factors. UpperCAmelCase__ = 2 UpperCAmelCase__ = number if number == 0 or number == 1: ans.append(__SCREAMING_SNAKE_CASE ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__SCREAMING_SNAKE_CASE ): while quotient != 1: if is_prime(__SCREAMING_SNAKE_CASE ) and (quotient % factor == 0): ans.append(__SCREAMING_SNAKE_CASE ) quotient /= factor else: factor += 1 else: ans.append(__SCREAMING_SNAKE_CASE ) # precondition assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def UpperCamelCase_( snake_case__: int ) -> List[str]: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCAmelCase__ = 0 # prime factorization of 'number' UpperCAmelCase__ = prime_factorization(__SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = max(__SCREAMING_SNAKE_CASE ) # precondition assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def UpperCamelCase_( snake_case__: List[Any] ) -> Dict: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCAmelCase__ = 0 # prime factorization of 'number' UpperCAmelCase__ = prime_factorization(__SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = min(__SCREAMING_SNAKE_CASE ) # precondition assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def UpperCamelCase_( snake_case__: Dict ) -> Any: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 == 0 , __SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 == 0 def UpperCamelCase_( snake_case__: Any ) -> str: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 != 0 , __SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 != 0 def UpperCamelCase_( snake_case__: Optional[int] ) -> List[Any]: assert ( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (number > 2) and is_even(__SCREAMING_SNAKE_CASE ) ), "'number' must been an int, even and > 2" UpperCAmelCase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' UpperCAmelCase__ = get_prime_numbers(__SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = len(__SCREAMING_SNAKE_CASE ) # run variable for while-loops. UpperCAmelCase__ = 0 UpperCAmelCase__ = None # exit variable. for break up the loops UpperCAmelCase__ = True while i < len_pn and loop: UpperCAmelCase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: UpperCAmelCase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (len(__SCREAMING_SNAKE_CASE ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCamelCase_( snake_case__: List[Any] , snake_case__: Optional[int] ) -> Tuple: assert ( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." UpperCAmelCase__ = 0 while numbera != 0: UpperCAmelCase__ = numbera % numbera UpperCAmelCase__ = numbera UpperCAmelCase__ = rest # precondition assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCamelCase_( snake_case__: List[str] , snake_case__: Union[str, Any] ) -> str: assert ( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." UpperCAmelCase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' UpperCAmelCase__ = prime_factorization(__SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = prime_factorization(__SCREAMING_SNAKE_CASE ) elif numbera == 1 or numbera == 1: UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: UpperCAmelCase__ = prime_fac_a.count(__SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = prime_fac_a.count(__SCREAMING_SNAKE_CASE ) for _ in range(max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ): ans *= n else: UpperCAmelCase__ = prime_fac_a.count(__SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE ): ans *= n done.append(__SCREAMING_SNAKE_CASE ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: UpperCAmelCase__ = prime_fac_a.count(__SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE ): ans *= n done.append(__SCREAMING_SNAKE_CASE ) # precondition assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCamelCase_( snake_case__: Tuple ) -> Dict: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n >= 0), "'number' must been a positive int" UpperCAmelCase__ = 0 UpperCAmelCase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__SCREAMING_SNAKE_CASE ): ans += 1 # precondition assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and is_prime( __SCREAMING_SNAKE_CASE ), "'ans' must been a prime number and from type int" return ans def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Optional[int] ) -> Dict: assert ( is_prime(__SCREAMING_SNAKE_CASE ) and is_prime(__SCREAMING_SNAKE_CASE ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" UpperCAmelCase__ = p_number_a + 1 # jump to the next number UpperCAmelCase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__SCREAMING_SNAKE_CASE ): number += 1 while number < p_number_a: ans.append(__SCREAMING_SNAKE_CASE ) number += 1 # fetch the next prime number. while not is_prime(__SCREAMING_SNAKE_CASE ): number += 1 # precondition assert ( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and ans[0] != p_number_a and ans[len(__SCREAMING_SNAKE_CASE ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCamelCase_( snake_case__: Optional[int] ) -> Tuple: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n >= 1), "'n' must been int and >= 1" UpperCAmelCase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(__SCREAMING_SNAKE_CASE ) # precondition assert ans[0] == 1 and ans[len(__SCREAMING_SNAKE_CASE ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and ( number > 1 ), "'number' must been an int and >= 1" UpperCAmelCase__ = get_divisors(__SCREAMING_SNAKE_CASE ) # precondition assert ( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (divisors[0] == 1) and (divisors[len(__SCREAMING_SNAKE_CASE ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: int ) -> Optional[int]: assert ( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. UpperCAmelCase__ = gcd(abs(__SCREAMING_SNAKE_CASE ) , abs(__SCREAMING_SNAKE_CASE ) ) # precondition assert ( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCamelCase_( snake_case__: str ) -> Dict: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been a int and >= 0" UpperCAmelCase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCamelCase_( snake_case__: Tuple ) -> Union[str, Any]: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been an int and >= 0" UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 1 # this will be return for _ in range(n - 1 ): UpperCAmelCase__ = ans ans += fiba UpperCAmelCase__ = tmp return ans
370
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__(self , *, __a = 4 , __a = 768 , __a , __a , ) -> str: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) ) # parameters for additional clip time embeddings UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.Linear(__a , __a ) # parameters for encoder hidden states UpperCAmelCase__ = clip_extra_context_tokens UpperCAmelCase__ = nn.Linear( __a , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.LayerNorm(__a ) def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase__ = image_embeddings.shape[0] UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase__ = classifier_free_guidance_embeddings.expand( __a , -1 ) UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase__ = self.embedding_proj(__a ) UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a ) UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a ) UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens ) UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase__ = self.encoder_hidden_states_proj(__a ) UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a ) UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
335
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowercase ( _UpperCAmelCase ): '''simple docstring''' def __init__(self , *__a , **__a ) -> str: """simple docstring""" super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCamelCase__ (self , __a=None , __a=None , __a=None ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = {} UpperCAmelCase__ = {} if prompt is not None: UpperCAmelCase__ = prompt if generate_kwargs is not None: UpperCAmelCase__ = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCAmelCase__ = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) UpperCAmelCase__ = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__(self , __a , **__a ) -> int: """simple docstring""" return super().__call__(lowercase_ , **lowercase_ ) def UpperCamelCase__ (self , __a , __a=None ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = load_image(lowercase_ ) if prompt is not None: if not isinstance(lowercase_ , lowercase_ ): raise ValueError( F"Received an invalid text input, got - {type(lowercase_ )} - but expected a single string. " 'Note also that one single text can be provided for conditional image to text generation.' ) UpperCAmelCase__ = self.model.config.model_type if model_type == "git": UpperCAmelCase__ = self.image_processor(images=lowercase_ , return_tensors=self.framework ) UpperCAmelCase__ = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_ ).input_ids UpperCAmelCase__ = [self.tokenizer.cls_token_id] + input_ids UpperCAmelCase__ = torch.tensor(lowercase_ ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": UpperCAmelCase__ = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCAmelCase__ = self.image_processor(images=lowercase_ , return_tensors=self.framework ) UpperCAmelCase__ = self.tokenizer(lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) else: raise ValueError(F"Model type {model_type} does not support conditional text generation" ) else: UpperCAmelCase__ = self.image_processor(images=lowercase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCAmelCase__ = None return model_inputs def UpperCamelCase__ (self , __a , __a=None ) -> int: """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , lowercase_ ) and all(x is None for x in model_inputs['input_ids'] ) ): UpperCAmelCase__ = None if generate_kwargs is None: UpperCAmelCase__ = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCAmelCase__ = model_inputs.pop(self.model.main_input_name ) UpperCAmelCase__ = self.model.generate(lowercase_ , **lowercase_ , **lowercase_ ) return model_outputs def UpperCamelCase__ (self , __a ) -> int: """simple docstring""" UpperCAmelCase__ = [] for output_ids in model_outputs: UpperCAmelCase__ = { """generated_text""": self.tokenizer.decode( lowercase_ , skip_special_tokens=lowercase_ , ) } records.append(lowercase_ ) return records
371
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BioGptTokenizer __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(__a ) ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = 'lower newer' UpperCAmelCase__ = 'lower newer' return input_text, output_text def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ = 'lower' UpperCAmelCase__ = ['low', 'er</w>'] UpperCAmelCase__ = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase__ = tokens + ['<unk>'] UpperCAmelCase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
335
0
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCamelCase = 256 class lowercase ( __lowercase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""melgan"""] def __init__(self , __a , __a , __a , __a , __a , ) -> None: """simple docstring""" super().__init__() # From MELGAN UpperCAmelCase__ = math.log(1E-5 ) # Matches MelGAN training. UpperCAmelCase__ = 4.0 # Largest value for most examples UpperCAmelCase__ = 128 self.register_modules( notes_encoder=_a , continuous_encoder=_a , decoder=_a , scheduler=_a , melgan=_a , ) def UpperCamelCase__ (self , __a , __a=(-1.0, 1.0) , __a=False ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = output_range if clip: UpperCAmelCase__ = torch.clip(_a , self.min_value , self.max_value ) # Scale to [0, 1]. UpperCAmelCase__ = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def UpperCamelCase__ (self , __a , __a=(-1.0, 1.0) , __a=False ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = input_range UpperCAmelCase__ = torch.clip(_a , _a , _a ) if clip else outputs # Scale to [0, 1]. UpperCAmelCase__ = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def UpperCamelCase__ (self , __a , __a , __a ) -> int: """simple docstring""" UpperCAmelCase__ = input_tokens > 0 UpperCAmelCase__ , UpperCAmelCase__ = self.notes_encoder( encoder_input_tokens=_a , encoder_inputs_mask=_a ) UpperCAmelCase__ , UpperCAmelCase__ = self.continuous_encoder( encoder_inputs=_a , encoder_inputs_mask=_a ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = noise_time if not torch.is_tensor(_a ): UpperCAmelCase__ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0: UpperCAmelCase__ = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase__ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase__ = self.decoder( encodings_and_masks=_a , decoder_input_tokens=_a , decoder_noise_time=_a ) return logits @torch.no_grad() def __call__(self , __a , __a = None , __a = 100 , __a = True , __a = "numpy" , __a = None , __a = 1 , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_a , _a ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(_a )}." ) UpperCAmelCase__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) UpperCAmelCase__ = np.zeros([1, 0, self.n_dims] , np.floataa ) UpperCAmelCase__ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_a , device=self.device ) for i, encoder_input_tokens in enumerate(_a ): if i == 0: UpperCAmelCase__ = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. UpperCAmelCase__ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_a , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. UpperCAmelCase__ = ones UpperCAmelCase__ = self.scale_features( _a , output_range=[-1.0, 1.0] , clip=_a ) UpperCAmelCase__ = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_a , continuous_mask=_a , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop UpperCAmelCase__ = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_a , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_a ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase__ = self.decode( encodings_and_masks=_a , input_tokens=_a , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 UpperCAmelCase__ = self.scheduler.step(_a , _a , _a , generator=_a ).prev_sample UpperCAmelCase__ = self.scale_to_features(_a , input_range=[-1.0, 1.0] ) UpperCAmelCase__ = mel[:1] UpperCAmelCase__ = mel.cpu().float().numpy() UpperCAmelCase__ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_a , _a ) logger.info('Generated segment' , _a ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": UpperCAmelCase__ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: UpperCAmelCase__ = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_a )
350
class lowercase : # Public class to implement a graph '''simple docstring''' def __init__(self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = row UpperCAmelCase__ = col UpperCAmelCase__ = graph def UpperCamelCase__ (self , __a , __a , __a ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a ) def UpperCamelCase__ (self ) -> int: # And finally, count all islands. """simple docstring""" UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__a , __a , __a ) count += 1 return count
335
0
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor _UpperCamelCase = logging.getLogger(__name__) _UpperCamelCase = 50 # max width of layer names _UpperCamelCase = 70 # max width of quantizer names def UpperCamelCase_( snake_case__: List[Any] ) -> Any: UpperCAmelCase__ = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=__lowerCamelCase , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=__lowerCamelCase , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=__lowerCamelCase , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=__lowerCamelCase , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=__lowerCamelCase , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=__lowerCamelCase , type=__lowerCamelCase , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=__lowerCamelCase , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def UpperCamelCase_( snake_case__: int ) -> Optional[int]: if args.calibrator == "max": UpperCAmelCase__ = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) UpperCAmelCase__ = "histogram" elif args.calibrator == "mse": UpperCAmelCase__ = "histogram" else: raise ValueError(f"Invalid calibrator {args.calibrator}" ) UpperCAmelCase__ = QuantDescriptor(num_bits=args.aprec , calib_method=__lowerCamelCase ) UpperCAmelCase__ = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__lowerCamelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(__lowerCamelCase ) def UpperCamelCase_( snake_case__: Tuple , snake_case__: int , snake_case__: Dict=False , snake_case__: Union[str, Any]=False ) -> List[Any]: logger.info('Configuring Model for Quantization' ) logger.info(f"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__lowerCamelCase , ['embeddings'] , which='weight' , _disabled=__lowerCamelCase ) if args.quant_disable: set_quantizer_by_name(__lowerCamelCase , [''] , _disabled=__lowerCamelCase ) if args.quant_disable_keyword: set_quantizer_by_name(__lowerCamelCase , args.quant_disable_keyword , _disabled=__lowerCamelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(__lowerCamelCase , [r'layer.\d+.' + args.quant_disable_layer_module] , _disabled=__lowerCamelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(__lowerCamelCase , [r'layer.\d+.' + args.quant_enable_layer_module] , _disabled=__lowerCamelCase ) if args.recalibrate_weights: recalibrate_weights(__lowerCamelCase ) if args.fuse_qkv: fuse_qkv(__lowerCamelCase , __lowerCamelCase ) if args.clip_gelu: clip_gelu(__lowerCamelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__lowerCamelCase ) def UpperCamelCase_( snake_case__: Union[str, Any] ) -> str: logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f"{name:80}: {module}" ) def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: str ) -> Any: logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__lowerCamelCase ) def UpperCamelCase_( snake_case__: List[str] , snake_case__: Optional[int] ) -> Optional[Any]: def fusea(snake_case__: Tuple , snake_case__: Optional[int] , snake_case__: int ): for mod in [qq, qk, qv]: if not hasattr(__lowerCamelCase , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return UpperCAmelCase__ = qq._amax.detach().item() UpperCAmelCase__ = qk._amax.detach().item() UpperCAmelCase__ = qv._amax.detach().item() UpperCAmelCase__ = max(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) qq._amax.fill_(__lowerCamelCase ) qk._amax.fill_(__lowerCamelCase ) qv._amax.fill_(__lowerCamelCase ) logger.info(f" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(f"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def UpperCamelCase_( snake_case__: List[str] , snake_case__: List[Any] ) -> List[str]: for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): UpperCAmelCase__ = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__lowerCamelCase ) UpperCAmelCase__ = mod._input_quantizer._amax.data.detach().item() logger.info(f"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def UpperCamelCase_( snake_case__: Dict ) -> Optional[int]: for name, mod in model.named_modules(): if hasattr(__lowerCamelCase , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: UpperCAmelCase__ = mod.weight.shape[0] UpperCAmelCase__ = mod._weight_quantizer._amax.detach() UpperCAmelCase__ = torch.ones(__lowerCamelCase , dtype=amax.dtype , device=amax.device ) * amax print(f"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def UpperCamelCase_( snake_case__: Optional[Any] ) -> int: for name, mod in model.named_modules(): if hasattr(__lowerCamelCase , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCAmelCase__ = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCAmelCase__ = set(range(len(mod.weight.size() ) ) ) - axis_set UpperCAmelCase__ = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__lowerCamelCase , keepdims=__lowerCamelCase ).detach() logger.info(f"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) UpperCAmelCase__ = amax def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[str]=25 , snake_case__: List[str]=1_80 , snake_case__: Tuple=None ) -> Optional[Any]: if ignore is None: UpperCAmelCase__ = [] elif not isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCAmelCase__ = [ignore] UpperCAmelCase__ = 0 for name, mod in model.named_modules(): if not hasattr(__lowerCamelCase , 'weight' ): continue UpperCAmelCase__ = max(__lowerCamelCase , len(__lowerCamelCase ) ) for name, mod in model.named_modules(): UpperCAmelCase__ = getattr(__lowerCamelCase , '_input_quantizer' , __lowerCamelCase ) UpperCAmelCase__ = getattr(__lowerCamelCase , '_weight_quantizer' , __lowerCamelCase ) if not hasattr(__lowerCamelCase , 'weight' ): continue if type(__lowerCamelCase ) in ignore: continue if [True for s in ignore if type(__lowerCamelCase ) is str and s in name]: continue UpperCAmelCase__ = f"Act:{input_q.extra_repr()}" UpperCAmelCase__ = f"Wgt:{weight_q.extra_repr()}" UpperCAmelCase__ = f"{name:{name_width}} {act_str} {wgt_str}" if len(__lowerCamelCase ) <= line_width: logger.info(__lowerCamelCase ) else: logger.info(f"{name:{name_width}} {act_str}" ) logger.info(f"{' ':{name_width}} {wgt_str}" ) def UpperCamelCase_( snake_case__: Union[str, Any] ) -> Optional[int]: UpperCAmelCase__ = 0 for name, mod in model.named_modules(): if isinstance(__lowerCamelCase , pytorch_quantization.nn.TensorQuantizer ): print(f"{name:80} {mod}" ) count += 1 print(f"{count} TensorQuantizers found in model" ) def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Union[str, Any] , snake_case__: List[str] , snake_case__: Dict , snake_case__: Optional[int] ) -> Optional[Any]: UpperCAmelCase__ = getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if quantizer_mod is not None: assert hasattr(__lowerCamelCase , __lowerCamelCase ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: logger.warning(f"{name} has no {quantizer}" ) def UpperCamelCase_( snake_case__: List[Any] , snake_case__: List[Any] , snake_case__: Union[str, Any]="both" , **snake_case__: List[Any] ) -> Dict: UpperCAmelCase__ = f"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += f" {k}={v}" if which in ["input", "both"]: set_quantizer(__lowerCamelCase , __lowerCamelCase , '_input_quantizer' , __lowerCamelCase , __lowerCamelCase ) if which in ["weight", "both"]: set_quantizer(__lowerCamelCase , __lowerCamelCase , '_weight_quantizer' , __lowerCamelCase , __lowerCamelCase ) logger.info(__lowerCamelCase ) def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: List[Any] , **snake_case__: Tuple ) -> Union[str, Any]: for name, mod in model.named_modules(): if hasattr(__lowerCamelCase , '_input_quantizer' ) or hasattr(__lowerCamelCase , '_weight_quantizer' ): for n in names: if re.search(__lowerCamelCase , __lowerCamelCase ): set_quantizers(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) elif name.endswith('_quantizer' ): for n in names: if re.search(__lowerCamelCase , __lowerCamelCase ): UpperCAmelCase__ = f"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += f" {k}={v}" setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) logger.info(__lowerCamelCase )
351
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _UpperCamelCase = Lock() def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Dict , snake_case__: Any ) -> str: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase__ = min(snake_case__ , snake_case__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase__ = max(snake_case__ , snake_case__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__ ) def UpperCamelCase_( snake_case__: Any ) -> Tuple: UpperCAmelCase__ = [] UpperCAmelCase__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr for i in range(1 , len(snake_case__ ) - 1 ): UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__ ) - 1, arr[len(snake_case__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__ ) ): UpperCAmelCase__ = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase_( ) -> Dict: UpperCAmelCase__ = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*snake_case__ ) UpperCAmelCase__ = odd_even_transposition(snake_case__ ) print('Sorted List\n' ) print(*snake_case__ ) if __name__ == "__main__": main()
335
0
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _UpperCamelCase = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def UpperCamelCase_( snake_case__: List[str] , snake_case__: Any , snake_case__: int=None ) -> Tuple: if rng is None: UpperCAmelCase__ = random.Random() UpperCAmelCase__ = 1 for dim in shape: total_dims *= dim UpperCAmelCase__ = [] for _ in range(_snake_case ): values.append(rng.randint(0 , vocab_size - 1 ) ) UpperCAmelCase__ = np.array(_snake_case , dtype=jnp.intaa ).reshape(_snake_case ) return output def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any]=None ) -> Any: UpperCAmelCase__ = ids_tensor(_snake_case , vocab_size=2 , rng=_snake_case ) # make sure that at least one token is attended to for each batch UpperCAmelCase__ = 1 return attn_mask @require_flax class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = () def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 UpperCAmelCase__ = 2 UpperCAmelCase__ = inputs['''input_ids'''].shape[-1] // 2 UpperCAmelCase__ = inputs['''input_ids'''][:max_batch_size, :sequence_length] UpperCAmelCase__ = jnp.ones_like(a_ ) UpperCAmelCase__ = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens UpperCAmelCase__ = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` UpperCAmelCase__ = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = False UpperCAmelCase__ = max_length UpperCAmelCase__ = 0 for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(a_ ) UpperCAmelCase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase__ = getattr(a_ , a_ ) UpperCAmelCase__ = pt_model_class(a_ ).eval() UpperCAmelCase__ = load_flax_weights_in_pytorch_model(a_ , flax_model.params ) UpperCAmelCase__ = flax_model.generate(a_ ).sequences UpperCAmelCase__ = pt_model.generate(torch.tensor(a_ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: UpperCAmelCase__ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = False UpperCAmelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(a_ ) UpperCAmelCase__ = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = True UpperCAmelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(a_ ) UpperCAmelCase__ = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = False UpperCAmelCase__ = max_length UpperCAmelCase__ = 2 for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(a_ ) UpperCAmelCase__ = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = False UpperCAmelCase__ = max_length UpperCAmelCase__ = 2 UpperCAmelCase__ = 2 for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(a_ ) UpperCAmelCase__ = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = True UpperCAmelCase__ = max_length UpperCAmelCase__ = 0.8 UpperCAmelCase__ = 10 UpperCAmelCase__ = 0.3 UpperCAmelCase__ = 1 UpperCAmelCase__ = 8 UpperCAmelCase__ = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(a_ ) UpperCAmelCase__ = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = max_length UpperCAmelCase__ = 1 UpperCAmelCase__ = 8 UpperCAmelCase__ = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(a_ ) UpperCAmelCase__ = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = max_length UpperCAmelCase__ = 2 UpperCAmelCase__ = 1 UpperCAmelCase__ = 8 UpperCAmelCase__ = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(a_ ) UpperCAmelCase__ = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase__ = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase__ = False UpperCAmelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(a_ ) UpperCAmelCase__ = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase__ = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase__ = True UpperCAmelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(a_ ) UpperCAmelCase__ = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase__ = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase__ = 2 UpperCAmelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(a_ ) UpperCAmelCase__ = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) UpperCAmelCase__ = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) UpperCAmelCase__ = '''Hello world''' UpperCAmelCase__ = tokenizer(a_ , return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(a_ , 'do_samples' ): model.generate(a_ , do_samples=a_ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(a_ , 'foo' ): UpperCAmelCase__ = {'''foo''': '''bar'''} model.generate(a_ , **a_ )
352
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowercase : '''simple docstring''' def __init__(self ) -> str: """simple docstring""" UpperCAmelCase__ = '' UpperCAmelCase__ = '' UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = 256 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = cva.imread(__a , 0 ) UpperCAmelCase__ = copy.deepcopy(self.img ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCAmelCase__ = np.sum(__a ) for i in range(len(__a ) ): UpperCAmelCase__ = x[i] / self.k self.sk += prk UpperCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase__ = int(last % last ) UpperCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__a ) UpperCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase__ = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase__ = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') _UpperCamelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
335
0
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowercase ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = SMALL_MODEL_IDENTIFIER UpperCAmelCase__ = 'pt' UpperCAmelCase__ = 'tf' def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(snake_case__ ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = TFAutoModel.from_pretrained(self.test_model , from_pt=snake_case__ ) model_tf.save_pretrained(snake_case__ ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'mock_framework' # Framework provided - return whatever the user provides UpperCAmelCase__ = FeaturesManager.determine_framework(self.test_model , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) UpperCAmelCase__ = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) UpperCAmelCase__ = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) UpperCAmelCase__ = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) UpperCAmelCase__ = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(snake_case__ ): UpperCAmelCase__ = FeaturesManager.determine_framework(snake_case__ ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ): UpperCAmelCase__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow UpperCAmelCase__ = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_torch_available' , snake_case__ ): UpperCAmelCase__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_tf ) # Both in environment -> use PyTorch UpperCAmelCase__ = MagicMock(return_value=snake_case__ ) UpperCAmelCase__ = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): UpperCAmelCase__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # Both not in environment -> raise error UpperCAmelCase__ = MagicMock(return_value=snake_case__ ) UpperCAmelCase__ = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): with self.assertRaises(snake_case__ ): UpperCAmelCase__ = FeaturesManager.determine_framework(self.test_model )
353
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = embed_dim UpperCAmelCase__ = depths UpperCAmelCase__ = num_heads UpperCAmelCase__ = window_size UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = hidden_act UpperCAmelCase__ = use_absolute_embeddings UpperCAmelCase__ = patch_norm UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = is_training UpperCAmelCase__ = scope UpperCAmelCase__ = use_labels UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = encoder_stride def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ (self ) -> str: """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = SwinvaModel(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase__ = 1 UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.type_sequence_label_size UpperCAmelCase__ = SwinvaForImageClassification(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = SwinvaModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def UpperCamelCase__ (self ) -> int: """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions UpperCAmelCase__ = len(self.model_tester.depths ) self.assertEqual(len(__a ) , __a ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = config.window_size**2 UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) UpperCAmelCase__ = len(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): UpperCAmelCase__ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase__ = 2 self.assertEqual(out_len + added_hidden_states , len(__a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.hidden_states UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__a ) , __a ) # Swinv2 has a different seq_length UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCAmelCase__ = outputs.reshaped_hidden_states self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape UpperCAmelCase__ = ( reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = 3 UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Dict: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = SwinvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = _config_zero_init(__a ) for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(config=__a ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( __a ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**__a ) # verify the logits UpperCAmelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
335
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCamelCase = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
354
from collections import deque def UpperCamelCase_( snake_case__: Tuple ) -> Tuple: UpperCAmelCase__ = len(snake_case__ ) UpperCAmelCase__ = deque() UpperCAmelCase__ = [False for _ in range(snake_case__ )] UpperCAmelCase__ = [-1 for _ in range(snake_case__ )] UpperCAmelCase__ = index_of[:] def strong_connect(snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[str] ): UpperCAmelCase__ = index # the number when this node is seen UpperCAmelCase__ = index # lowest rank node reachable from here index += 1 stack.append(snake_case__ ) UpperCAmelCase__ = True for w in g[v]: if index_of[w] == -1: UpperCAmelCase__ = strong_connect(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: UpperCAmelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: UpperCAmelCase__ = [] UpperCAmelCase__ = stack.pop() UpperCAmelCase__ = False component.append(snake_case__ ) while w != v: UpperCAmelCase__ = stack.pop() UpperCAmelCase__ = False component.append(snake_case__ ) components.append(snake_case__ ) return index UpperCAmelCase__ = [] for v in range(snake_case__ ): if index_of[v] == -1: strong_connect(snake_case__ , 0 , snake_case__ ) return components def UpperCamelCase_( snake_case__: Dict , snake_case__: List[Any] ) -> Optional[int]: UpperCAmelCase__ = [[] for _ in range(snake_case__ )] for u, v in edges: g[u].append(snake_case__ ) return g if __name__ == "__main__": # Test _UpperCamelCase = 7 _UpperCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6] _UpperCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5] _UpperCamelCase = [(u, v) for u, v in zip(source, target)] _UpperCamelCase = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
335
0
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class lowercase ( _UpperCAmelCase ): '''simple docstring''' def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = pa.array(TypedSequence([1, 2, 3] , try_type=Value('bool' ) , type=Value('int64' ) ) ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = pa.array(TypedSequence([1, 2, 3] , type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCAmelCase__ = pa.array(TypedSequence(['foo', 'bar'] , type=Value('int64' ) ) ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = pa.array(TypedSequence([1, 2, 3] , try_type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = pa.array(TypedSequence(['foo', 'bar'] , try_type=Value('int64' ) ) ) self.assertEqual(arr.type , pa.string() ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCAmelCase__ = pa.array(TypedSequence(['foo', 'bar'] , type=ArrayaD((1, 3) , 'int64' ) ) ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = pa.array(TypedSequence(['foo', 'bar'] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" import PIL.Image UpperCAmelCase__ = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' , side_effect=SCREAMING_SNAKE_CASE_ ) as mock_cast_to_python_objects: UpperCAmelCase__ = pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] , type=Image() ) ) UpperCAmelCase__ = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' , SCREAMING_SNAKE_CASE_ ) self.assertFalse(kwargs['optimize_list_casting'] ) def UpperCamelCase_( snake_case__: Any , snake_case__: int ) -> Union[str, Any]: UpperCAmelCase__ = pa.BufferReader(snake_case_ ) if isinstance(snake_case_ , pa.Buffer ) else pa.memory_map(snake_case_ ) UpperCAmelCase__ = pa.ipc.open_stream(snake_case_ ) UpperCAmelCase__ = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def UpperCamelCase_( snake_case__: int , snake_case__: Any ) -> List[Any]: UpperCAmelCase__ = pa.BufferOutputStream() UpperCAmelCase__ = pa.schema(snake_case_ ) if fields else None with ArrowWriter(stream=snake_case_ , schema=snake_case_ , writer_batch_size=snake_case_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) UpperCAmelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(snake_case_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def UpperCamelCase_( ) -> str: UpperCAmelCase__ = pa.BufferOutputStream() UpperCAmelCase__ = Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=snake_case_ , features=snake_case_ ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) UpperCAmelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata UpperCAmelCase__ = pa.BufferReader(output.getvalue() ) UpperCAmelCase__ = pa.ipc.open_stream(snake_case_ ) UpperCAmelCase__ = f.read_all() UpperCAmelCase__ = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(snake_case_ ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) def UpperCamelCase_( snake_case__: Optional[int] ) -> int: UpperCAmelCase__ = pa.BufferOutputStream() with ArrowWriter( stream=snake_case_ , writer_batch_size=snake_case_ , hash_salt='split_name' , check_duplicates=snake_case_ , ) as writer: with pytest.raises(snake_case_ ): writer.write({'col_1': 'foo', 'col_2': 1} , key=[1, 2] ) UpperCAmelCase__ = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def UpperCamelCase_( snake_case__: Optional[int] ) -> List[Any]: UpperCAmelCase__ = pa.BufferOutputStream() with ArrowWriter( stream=snake_case_ , writer_batch_size=snake_case_ , hash_salt='split_name' , check_duplicates=snake_case_ , ) as writer: with pytest.raises(snake_case_ ): writer.write({'col_1': 'foo', 'col_2': 1} , key=10 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=10 ) UpperCAmelCase__ = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def UpperCamelCase_( snake_case__: Any ) -> str: UpperCAmelCase__ = pa.BufferOutputStream() with ArrowWriter( stream=snake_case_ , writer_batch_size=snake_case_ , hash_salt='split_name' , check_duplicates=snake_case_ , ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} , key=1 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=2 ) UpperCAmelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: int ) -> Union[str, Any]: UpperCAmelCase__ = pa.BufferOutputStream() UpperCAmelCase__ = pa.schema(snake_case_ ) if fields else None with ArrowWriter(stream=snake_case_ , schema=snake_case_ , writer_batch_size=snake_case_ ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) UpperCAmelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(snake_case_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def UpperCamelCase_( snake_case__: Any , snake_case__: Optional[Any] ) -> Optional[int]: UpperCAmelCase__ = pa.BufferOutputStream() UpperCAmelCase__ = pa.schema(snake_case_ ) if fields else None with ArrowWriter(stream=snake_case_ , schema=snake_case_ , writer_batch_size=snake_case_ ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) UpperCAmelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(snake_case_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[Any] ) -> List[Any]: UpperCAmelCase__ = pa.BufferOutputStream() UpperCAmelCase__ = pa.schema(snake_case_ ) if fields else None with ArrowWriter(stream=snake_case_ , schema=snake_case_ , writer_batch_size=snake_case_ ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) UpperCAmelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(snake_case_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def UpperCamelCase_( ) -> str: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} UpperCAmelCase__ = os.path.join(snake_case_ , 'test.arrow' ) with ArrowWriter(path=snake_case_ , schema=pa.schema(snake_case_ ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) UpperCAmelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(snake_case_ , metadata=writer._schema.metadata ) _check_output(snake_case_ , 1 ) def UpperCamelCase_( snake_case__: Dict ) -> Optional[int]: if pa.types.is_list(snake_case_ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: Dict ) -> int: if isinstance(lst[0] , snake_case_ ): change_first_primitive_element_in_list(lst[0] , snake_case_ ) else: UpperCAmelCase__ = value @pytest.mark.parametrize('optimized_int_type, expected_dtype' , [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def UpperCamelCase_( snake_case__: Tuple , snake_case__: List[Any] , snake_case__: Dict ) -> List[Any]: UpperCAmelCase__ = pa.array(TypedSequence(snake_case_ , optimized_int_type=snake_case_ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype' , [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ] , ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] , snake_case__: str ) -> List[Any]: UpperCAmelCase__ = pa.array(OptimizedTypedSequence(snake_case_ , col=snake_case_ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications UpperCAmelCase__ = copy.deepcopy(snake_case_ ) UpperCAmelCase__ = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(snake_case_ , snake_case_ ) UpperCAmelCase__ = pa.array(OptimizedTypedSequence(snake_case_ , col=snake_case_ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception' , [False, True] ) def UpperCamelCase_( snake_case__: Dict , snake_case__: Tuple ) -> Tuple: UpperCAmelCase__ = str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=snake_case_ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def UpperCamelCase_( snake_case__: List[str] ) -> Optional[int]: UpperCAmelCase__ = """mock://dataset-train.arrow""" with ArrowWriter(path=snake_case_ , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(snake_case_ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) UpperCAmelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(snake_case_ ) def UpperCamelCase_( ) -> Tuple: UpperCAmelCase__ = pa.BufferOutputStream() with ParquetWriter(stream=snake_case_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) UpperCAmelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 UpperCAmelCase__ = pa.BufferReader(output.getvalue() ) UpperCAmelCase__ = pq.read_table(snake_case_ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files' , [False, True] ) def UpperCamelCase_( snake_case__: str , snake_case__: List[Any] ) -> List[Any]: import PIL.Image UpperCAmelCase__ = str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(snake_case_ , format='png' ) UpperCAmelCase__ = pa.BufferOutputStream() with ParquetWriter( stream=snake_case_ , features=Features({'image': Image()} ) , embed_local_files=snake_case_ ) as writer: writer.write({'image': image_path} ) writer.finalize() UpperCAmelCase__ = pa.BufferReader(output.getvalue() ) UpperCAmelCase__ = pq.read_table(snake_case_ ) UpperCAmelCase__ = pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'] , snake_case_ ) with open(snake_case_ , 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def UpperCamelCase_( ) -> List[Any]: UpperCAmelCase__ = pa.schema([pa.field('col_1' , pa.string() , nullable=snake_case_ )] ) UpperCAmelCase__ = pa.BufferOutputStream() with ArrowWriter(stream=snake_case_ ) as writer: writer._build_writer(inferred_schema=snake_case_ ) assert writer._schema == pa.schema([pa.field('col_1' , pa.string() )] )
355
from ...configuration_utils import PretrainedConfig _UpperCamelCase = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """tapas""" def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=1024 , __a=[3, 256, 256, 2, 256, 256, 10] , __a=0.02 , __a=1E-1_2 , __a=0 , __a=10.0 , __a=0 , __a=1.0 , __a=None , __a=1.0 , __a=False , __a=None , __a=1.0 , __a=1.0 , __a=False , __a=False , __a="ratio" , __a=None , __a=None , __a=64 , __a=32 , __a=False , __a=True , __a=False , __a=False , __a=True , __a=False , __a=None , __a=None , **__a , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=__a , **__a ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_sizes UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps # Fine-tuning task hyperparameters UpperCAmelCase__ = positive_label_weight UpperCAmelCase__ = num_aggregation_labels UpperCAmelCase__ = aggregation_loss_weight UpperCAmelCase__ = use_answer_as_supervision UpperCAmelCase__ = answer_loss_importance UpperCAmelCase__ = use_normalized_answer_loss UpperCAmelCase__ = huber_loss_delta UpperCAmelCase__ = temperature UpperCAmelCase__ = aggregation_temperature UpperCAmelCase__ = use_gumbel_for_cells UpperCAmelCase__ = use_gumbel_for_aggregation UpperCAmelCase__ = average_approximation_function UpperCAmelCase__ = cell_selection_preference UpperCAmelCase__ = answer_loss_cutoff UpperCAmelCase__ = max_num_rows UpperCAmelCase__ = max_num_columns UpperCAmelCase__ = average_logits_per_cell UpperCAmelCase__ = select_one_column UpperCAmelCase__ = allow_empty_column_selection UpperCAmelCase__ = init_cell_selection_weights_to_zero UpperCAmelCase__ = reset_position_index_per_cell UpperCAmelCase__ = disable_per_token_loss # Aggregation hyperparameters UpperCAmelCase__ = aggregation_labels UpperCAmelCase__ = no_aggregation_label_index if isinstance(self.aggregation_labels , __a ): UpperCAmelCase__ = {int(__a ): v for k, v in aggregation_labels.items()}
335
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
356
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
0
from __future__ import annotations def UpperCamelCase_( snake_case__: float , snake_case__: float , snake_case__: float , ) -> Union[str, Any]: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative in a semiconductor' ) elif hole_conc < 0: raise ValueError('Hole concentration cannot be negative in a semiconductor' ) elif intrinsic_conc < 0: raise ValueError( 'Intrinsic concentration cannot be negative in a semiconductor' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
357
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase__ = XCLIPTextConfig() # derive patch size from model name UpperCAmelCase__ = model_name.find('patch' ) UpperCAmelCase__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) UpperCAmelCase__ = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 UpperCAmelCase__ = 12 UpperCAmelCase__ = 10_24 UpperCAmelCase__ = 40_96 UpperCAmelCase__ = 16 UpperCAmelCase__ = 24 UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 if model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = 3_36 UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 return config def UpperCamelCase_( snake_case__: Any ) -> Tuple: # text encoder if name == "token_embedding.weight": UpperCAmelCase__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": UpperCAmelCase__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: UpperCAmelCase__ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: UpperCAmelCase__ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: UpperCAmelCase__ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: UpperCAmelCase__ = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): UpperCAmelCase__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: UpperCAmelCase__ = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: UpperCAmelCase__ = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": UpperCAmelCase__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": UpperCAmelCase__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): UpperCAmelCase__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: UpperCAmelCase__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: UpperCAmelCase__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: UpperCAmelCase__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: UpperCAmelCase__ = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: UpperCAmelCase__ = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: UpperCAmelCase__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: UpperCAmelCase__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": UpperCAmelCase__ = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): UpperCAmelCase__ = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): UpperCAmelCase__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): UpperCAmelCase__ = orig_state_dict.pop(snake_case__ ) if "attn.in_proj" in key: UpperCAmelCase__ = key.split('.' ) if key.startswith('visual' ): UpperCAmelCase__ = key_split[3] UpperCAmelCase__ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[ :dim ] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[ -dim: ] else: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] elif key.startswith('mit' ): UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.vision_config.mit_hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[dim : dim * 2, :] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[dim : dim * 2] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.text_config.hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = rename_key(snake_case__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCAmelCase__ = val.T UpperCAmelCase__ = val return orig_state_dict def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]: if num_frames == 8: UpperCAmelCase__ = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: UpperCAmelCase__ = 'eating_spaghetti.npy' elif num_frames == 32: UpperCAmelCase__ = 'eating_spaghetti_32_frames.npy' UpperCAmelCase__ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , ) UpperCAmelCase__ = np.load(snake_case__ ) return list(snake_case__ ) def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None , snake_case__: Union[str, Any]=False ) -> List[Any]: UpperCAmelCase__ = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } UpperCAmelCase__ = model_to_url[model_name] UpperCAmelCase__ = 8 if "16-frames" in model_name: UpperCAmelCase__ = 16 elif "shot" in model_name: UpperCAmelCase__ = 32 UpperCAmelCase__ = get_xclip_config(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) model.eval() if "drive" in checkpoint_url: UpperCAmelCase__ = 'pytorch_model.bin' gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] else: UpperCAmelCase__ = torch.hub.load_state_dict_from_url(snake_case__ )['model'] UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(snake_case__ , strict=snake_case__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCAmelCase__ = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24 UpperCAmelCase__ = VideoMAEImageProcessor(size=snake_case__ ) UpperCAmelCase__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase__ = prepare_video(snake_case__ ) UpperCAmelCase__ = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): UpperCAmelCase__ = model(**snake_case__ ) # Verify outputs UpperCAmelCase__ = outputs.logits_per_video UpperCAmelCase__ = logits_per_video.softmax(dim=1 ) print('Probs:' , snake_case__ ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCAmelCase__ = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] ) elif model_name == "xclip-base-patch16": UpperCAmelCase__ = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] ) elif model_name == "xclip-large-patch14": UpperCAmelCase__ = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCAmelCase__ = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] ) else: raise ValueError(f"Model name {model_name} not supported" ) assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(snake_case__ , organization='nielsr' ) processor.push_to_hub(snake_case__ , organization='nielsr' ) slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _UpperCamelCase = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
335
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowercase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = IFInpaintingSuperResolutionPipeline __SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) __SCREAMING_SNAKE_CASE = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" return self._get_superresolution_dummy_components() def UpperCamelCase__ (self , __a , __a=0 ) -> Dict: """simple docstring""" if str(__lowerCAmelCase ).startswith('mps' ): UpperCAmelCase__ = torch.manual_seed(__lowerCAmelCase ) else: UpperCAmelCase__ = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) UpperCAmelCase__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) UpperCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) UpperCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) UpperCAmelCase__ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ (self ) -> int: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" self._test_save_load_local() def UpperCamelCase__ (self ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
358
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: Union[str, Any] ) -> Tuple: UpperCAmelCase__ = OmegaConf.load(snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] UpperCAmelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE UpperCAmelCase__ = {} UpperCAmelCase__ = 'first_stage_model.' for key in keys: if key.startswith(snake_case__ ): UpperCAmelCase__ = state_dict[key] # extract state_dict for UNetLDM UpperCAmelCase__ = {} UpperCAmelCase__ = 'model.diffusion_model.' for key in keys: if key.startswith(snake_case__ ): UpperCAmelCase__ = state_dict[key] UpperCAmelCase__ = config.model.params.first_stage_config.params UpperCAmelCase__ = config.model.params.unet_config.params UpperCAmelCase__ = VQModel(**snake_case__ ).eval() vqvae.load_state_dict(snake_case__ ) UpperCAmelCase__ = UNetLDMModel(**snake_case__ ).eval() unet.load_state_dict(snake_case__ ) UpperCAmelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , ) UpperCAmelCase__ = LDMPipeline(snake_case__ , snake_case__ , snake_case__ ) pipeline.save_pretrained(snake_case__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) _UpperCamelCase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
335
0
from __future__ import annotations _UpperCamelCase = "#" class lowercase : '''simple docstring''' def __init__(self ) -> int: """simple docstring""" UpperCAmelCase__ = {} def UpperCamelCase__ (self , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self._trie for char in text: if char not in trie: UpperCAmelCase__ = {} UpperCAmelCase__ = trie[char] UpperCAmelCase__ = True def UpperCamelCase__ (self , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self._trie for char in prefix: if char in trie: UpperCAmelCase__ = trie[char] else: return [] return self._elements(a_ ) def UpperCamelCase__ (self , __a ) -> Tuple: """simple docstring""" UpperCAmelCase__ = [] for c, v in d.items(): UpperCAmelCase__ = [' '] if c == END else [(c + s) for s in self._elements(a_ )] result.extend(a_ ) return tuple(a_ ) _UpperCamelCase = Trie() _UpperCamelCase = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def UpperCamelCase_( snake_case__: str ) -> tuple: UpperCAmelCase__ = trie.find_word(_UpperCamelCase ) return tuple(string + word for word in suffixes ) def UpperCamelCase_( ) -> None: print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
359
# flake8: noqa # Lint as: python3 _UpperCamelCase = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
335
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: List[str] , snake_case__: List[Any] ) -> List[str]: UpperCAmelCase__ = os.path.abspath(lowerCAmelCase__ ) logger.info(f"Converting TensorFlow checkpoint from {tf_path}" ) # Load weights from TF model UpperCAmelCase__ = tf.train.list_variables(lowerCAmelCase__ ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") UpperCAmelCase__ = full_name.split('/' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"Skipping non-model layer {full_name}" ) continue if "optimizer" in full_name: logger.info(f"Skipping optimization layer {full_name}" ) continue if name[0] == "model": # ignore initial 'model' UpperCAmelCase__ = name[1:] # figure out how many levels deep the name is UpperCAmelCase__ = 0 for _name in name: if _name.startswith('layer_with_weights' ): depth += 1 else: break layer_depth.append(lowerCAmelCase__ ) # read data UpperCAmelCase__ = tf.train.load_variable(lowerCAmelCase__ , lowerCAmelCase__ ) names.append('/'.join(lowerCAmelCase__ ) ) arrays.append(lowerCAmelCase__ ) logger.info(f"Read a total of {len(lowerCAmelCase__ ):,} layers" ) # Sanity check if len(set(lowerCAmelCase__ ) ) != 1: raise ValueError(f"Found layer names with different depths (layer depth {list(set(lowerCAmelCase__ ) )})" ) UpperCAmelCase__ = list(set(lowerCAmelCase__ ) )[0] if layer_depth != 1: raise ValueError( 'The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP' ' heads.' ) # convert layers logger.info('Converting weights...' ) for full_name, array in zip(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ = full_name.split('/' ) UpperCAmelCase__ = model UpperCAmelCase__ = [] for i, m_name in enumerate(lowerCAmelCase__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('layer_with_weights' ): UpperCAmelCase__ = int(m_name.split('-' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['embeddings', 'LayerNorm'] ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'embeddings' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'LayerNorm' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['encoder', 'layer', str(layer_num - 4 )] ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'encoder' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'layer' ) UpperCAmelCase__ = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['pooler', 'dense'] ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'pooler' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'dense' ) elif m_name == "embeddings": trace.append('embeddings' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'embeddings' ) if layer_num == 0: trace.append('word_embeddings' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'word_embeddings' ) elif layer_num == 1: trace.append('position_embeddings' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'position_embeddings' ) elif layer_num == 2: trace.append('token_type_embeddings' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'token_type_embeddings' ) else: raise ValueError(f"Unknown embedding layer with name {full_name}" ) trace.append('weight' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'weight' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['attention', 'self'] ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'attention' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'self' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['attention', 'output', 'LayerNorm'] ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'attention' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'output' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'LayerNorm' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['attention', 'output', 'dense'] ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'attention' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'output' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'dense' ) elif m_name == "_output_dense": # output dense trace.extend(['output', 'dense'] ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'output' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'dense' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['output', 'LayerNorm'] ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'output' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'LayerNorm' ) elif m_name == "_key_dense": # attention key trace.append('key' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'key' ) elif m_name == "_query_dense": # attention query trace.append('query' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'query' ) elif m_name == "_value_dense": # attention value trace.append('value' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'value' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['intermediate', 'dense'] ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'intermediate' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'dense' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('output' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'output' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('bias' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'bias' ) elif m_name in ["kernel", "gamma"]: trace.append('weight' ) UpperCAmelCase__ = getattr(lowerCAmelCase__ , 'weight' ) else: logger.warning(f"Ignored {m_name}" ) # for certain layers reshape is necessary UpperCAmelCase__ = '.'.join(lowerCAmelCase__ ) if re.match(r'(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)' , lowerCAmelCase__ ) or re.match( r'(\S+)\.attention\.output\.dense\.weight' , lowerCAmelCase__ ): UpperCAmelCase__ = array.reshape(pointer.data.shape ) if "kernel" in full_name: UpperCAmelCase__ = array.transpose() if pointer.shape == array.shape: UpperCAmelCase__ = torch.from_numpy(lowerCAmelCase__ ) else: raise ValueError( f"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:" f" {array.shape}" ) logger.info(f"Successfully set variable {full_name} to PyTorch layer {trace}" ) return model def UpperCamelCase_( snake_case__: List[Any] , snake_case__: Optional[Any] , snake_case__: Optional[Any] ) -> Optional[Any]: logger.info(f"Loading model based on config from {config_path}..." ) UpperCAmelCase__ = BertConfig.from_json_file(lowerCAmelCase__ ) UpperCAmelCase__ = BertModel(lowerCAmelCase__ ) # Load weights from checkpoint logger.info(f"Loading weights from checkpoint {tf_checkpoint_path}..." ) load_tfa_weights_in_bert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model logger.info(f"Saving PyTorch model to {pytorch_dump_path}..." ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) _UpperCamelCase = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
360
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """sew-d""" def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str: """simple docstring""" super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = feat_extract_norm UpperCAmelCase__ = feat_extract_activation UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = conv_bias UpperCAmelCase__ = num_conv_pos_embeddings UpperCAmelCase__ = num_conv_pos_embedding_groups UpperCAmelCase__ = len(self.conv_dim ) UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = squeeze_factor UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = position_buckets UpperCAmelCase__ = share_att_key UpperCAmelCase__ = relative_attention UpperCAmelCase__ = norm_rel_ebd UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = hidden_act UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = feat_proj_dropout UpperCAmelCase__ = final_dropout UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = feature_layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase__ = apply_spec_augment UpperCAmelCase__ = mask_time_prob UpperCAmelCase__ = mask_time_length UpperCAmelCase__ = mask_time_min_masks UpperCAmelCase__ = mask_feature_prob UpperCAmelCase__ = mask_feature_length UpperCAmelCase__ = mask_feature_min_masks # ctc loss UpperCAmelCase__ = ctc_loss_reduction UpperCAmelCase__ = ctc_zero_infinity # sequence classification UpperCAmelCase__ = use_weighted_layer_sum UpperCAmelCase__ = classifier_proj_size @property def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
335
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowercase ( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): '''simple docstring''' def __init__(self , __a=None , **__a ) -> Tuple: """simple docstring""" super().__init__(features=_snake_case ) UpperCAmelCase__ = torch_tensor_kwargs import torch # noqa import torch at initialization def UpperCamelCase__ (self , __a ) -> Dict: """simple docstring""" import torch if isinstance(_snake_case , _snake_case ) and column: if all( isinstance(_snake_case , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(_snake_case ) return column def UpperCamelCase__ (self , __a ) -> List[Any]: """simple docstring""" import torch if isinstance(_snake_case , (str, bytes, type(_snake_case )) ): return value elif isinstance(_snake_case , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase__ = {} if isinstance(_snake_case , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): UpperCAmelCase__ = {'dtype': torch.intaa} elif isinstance(_snake_case , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase__ = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_snake_case , PIL.Image.Image ): UpperCAmelCase__ = np.asarray(_snake_case ) return torch.tensor(_snake_case , **{**default_dtype, **self.torch_tensor_kwargs} ) def UpperCamelCase__ (self , __a ) -> int: """simple docstring""" import torch # support for torch, tf, jax etc. if hasattr(_snake_case , '__array__' ) and not isinstance(_snake_case , torch.Tensor ): UpperCAmelCase__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_snake_case , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_snake_case ) for substruct in data_struct] ) elif isinstance(_snake_case , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_snake_case ) for substruct in data_struct] ) return self._tensorize(_snake_case ) def UpperCamelCase__ (self , __a ) -> List[str]: """simple docstring""" return map_nested(self._recursive_tensorize , _snake_case , map_list=_snake_case ) def UpperCamelCase__ (self , __a ) -> Mapping: """simple docstring""" UpperCAmelCase__ = self.numpy_arrow_extractor().extract_row(_snake_case ) UpperCAmelCase__ = self.python_features_decoder.decode_row(_snake_case ) return self.recursive_tensorize(_snake_case ) def UpperCamelCase__ (self , __a ) -> "torch.Tensor": """simple docstring""" UpperCAmelCase__ = self.numpy_arrow_extractor().extract_column(_snake_case ) UpperCAmelCase__ = self.python_features_decoder.decode_column(_snake_case , pa_table.column_names[0] ) UpperCAmelCase__ = self.recursive_tensorize(_snake_case ) UpperCAmelCase__ = self._consolidate(_snake_case ) return column def UpperCamelCase__ (self , __a ) -> Mapping: """simple docstring""" UpperCAmelCase__ = self.numpy_arrow_extractor().extract_batch(_snake_case ) UpperCAmelCase__ = self.python_features_decoder.decode_batch(_snake_case ) UpperCAmelCase__ = self.recursive_tensorize(_snake_case ) for column_name in batch: UpperCAmelCase__ = self._consolidate(batch[column_name] ) return batch
361
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _UpperCamelCase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCamelCase_( snake_case__: int ) -> str: for pegasus_name, hf_name in PATTERNS: UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ ) return k def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration: UpperCAmelCase__ = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) UpperCAmelCase__ = PegasusConfig(**snake_case__ ) UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ ) UpperCAmelCase__ = torch_model.model.state_dict() UpperCAmelCase__ = {} for k, v in tf_weights.items(): UpperCAmelCase__ = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: UpperCAmelCase__ = v.T UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) UpperCAmelCase__ = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: UpperCAmelCase__ = tf.train.list_variables(snake_case__ ) UpperCAmelCase__ = {} UpperCAmelCase__ = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): UpperCAmelCase__ = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ ) UpperCAmelCase__ = array return tf_weights def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]: # save tokenizer first UpperCAmelCase__ = Path(snake_case__ ).parent.name UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ ) UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"] if dataset == "large": UpperCAmelCase__ = task_specific_params UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) UpperCAmelCase__ = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() if args.save_dir is None: _UpperCamelCase = Path(args.tf_ckpt_path).parent.name _UpperCamelCase = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
335
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def UpperCamelCase_( snake_case__: List[Any]=None ) -> Optional[int]: if subparsers is not None: UpperCAmelCase__ = subparsers.add_parser('test' ) else: UpperCAmelCase__ = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=lowercase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowercase_ ) return parser def UpperCamelCase_( snake_case__: List[Any] ) -> int: UpperCAmelCase__ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: UpperCAmelCase__ = script_name else: UpperCAmelCase__ = f"--config_file={args.config_file} {script_name}" UpperCAmelCase__ = ['accelerate-launch'] + test_args.split() UpperCAmelCase__ = execute_subprocess_async(lowercase_ , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def UpperCamelCase_( ) -> List[str]: UpperCAmelCase__ = test_command_parser() UpperCAmelCase__ = parser.parse_args() test_command(lowercase_ ) if __name__ == "__main__": main()
362
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 13 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = 99 UpperCAmelCase__ = 384 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 37 UpperCAmelCase__ = 'gelu' UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 512 UpperCAmelCase__ = 16 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = 128 UpperCAmelCase__ = 2 UpperCAmelCase__ = 9 UpperCAmelCase__ = 1 UpperCAmelCase__ = None def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TFConvBertModel(config=__a ) UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = True if hasattr(__a , 'use_cache' ): UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) for model_class in self.all_model_classes: UpperCAmelCase__ = self._prepare_for_class(__a , __a ) UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' ) UpperCAmelCase__ = tf.keras.models.load_model(__a ) UpperCAmelCase__ = model(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = outputs['encoder_hidden_states'] UpperCAmelCase__ = outputs['encoder_attentions'] else: UpperCAmelCase__ = outputs['hidden_states'] UpperCAmelCase__ = outputs['attentions'] self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) def check_decoder_attentions_output(__a ): UpperCAmelCase__ = len(__a ) self.assertEqual(out_len % 2 , 0 ) UpperCAmelCase__ = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a ): UpperCAmelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__a )[0] UpperCAmelCase__ = [1, 6, 768] self.assertEqual(output.shape , __a ) UpperCAmelCase__ = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
335
0
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def UpperCamelCase_( snake_case__: List[Any] ) -> Optional[Any]: # picklable for multiprocessing return x.sum() def UpperCamelCase_( snake_case__: str ) -> Optional[Any]: # picklable for multiprocessing return i + 1 @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 class lowercase ( _UpperCamelCase ): '''simple docstring''' def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = {} UpperCAmelCase__ = [] UpperCAmelCase__ = 1 UpperCAmelCase__ = [1, 2] UpperCAmelCase__ = {'a': 1, 'b': 2} UpperCAmelCase__ = {'a': [1, 2], 'b': [3, 4]} UpperCAmelCase__ = {'a': {'1': 1}, 'b': 2} UpperCAmelCase__ = {'a': 1, 'b': 2, 'c': 3, 'd': 4} UpperCAmelCase__ = {} UpperCAmelCase__ = [] UpperCAmelCase__ = 2 UpperCAmelCase__ = [2, 3] UpperCAmelCase__ = {'a': 2, 'b': 3} UpperCAmelCase__ = {'a': [2, 3], 'b': [4, 5]} UpperCAmelCase__ = {'a': {'1': 2}, 'b': 3} UpperCAmelCase__ = {'a': 2, 'b': 3, 'c': 4, 'd': 5} self.assertEqual(map_nested(_a , _a ) , _a ) self.assertEqual(map_nested(_a , _a ) , _a ) self.assertEqual(map_nested(_a , _a ) , _a ) self.assertEqual(map_nested(_a , _a ) , _a ) self.assertEqual(map_nested(_a , _a ) , _a ) self.assertEqual(map_nested(_a , _a ) , _a ) self.assertEqual(map_nested(_a , _a ) , _a ) self.assertEqual(map_nested(_a , _a ) , _a ) UpperCAmelCase__ = 2 self.assertEqual(map_nested(_a , _a , num_proc=_a ) , _a ) self.assertEqual(map_nested(_a , _a , num_proc=_a ) , _a ) self.assertEqual(map_nested(_a , _a , num_proc=_a ) , _a ) self.assertEqual(map_nested(_a , _a , num_proc=_a ) , _a ) self.assertEqual(map_nested(_a , _a , num_proc=_a ) , _a ) self.assertEqual(map_nested(_a , _a , num_proc=_a ) , _a ) self.assertEqual(map_nested(_a , _a , num_proc=_a ) , _a ) self.assertEqual(map_nested(_a , _a , num_proc=_a ) , _a ) UpperCAmelCase__ = {'a': np.eye(2 ), 'b': np.zeros(3 ), 'c': np.ones(2 )} UpperCAmelCase__ = {'a': 2, 'b': 0, 'c': 2} UpperCAmelCase__ = { 'a': np.eye(2 ).astype(_a ), 'b': np.zeros(3 ).astype(_a ), 'c': np.ones(2 ).astype(_a ), } self.assertEqual(map_nested(_a , _a , map_numpy=_a ) , _a ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_a , _a , map_numpy=_a ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_a , _a , map_numpy=_a , num_proc=_a ) , _a ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_a , _a , map_numpy=_a , num_proc=_a ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_a ): # can't pickle a local lambda map_nested(lambda __a : x + 1 , _a , num_proc=_a ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = {'a': 1, 'b': 2} UpperCAmelCase__ = {'a': 3, 'b': 4} UpperCAmelCase__ = {'a': 5, 'b': 6} UpperCAmelCase__ = sorted([('a', (1, 3, 5)), ('b', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_a , _a , _a ) ) , _a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = '''bar''' UpperCAmelCase__ = Foo() self.assertEqual(foo.my_attr , 'bar' ) with temporary_assignment(_a , 'my_attr' , 'BAR' ): self.assertEqual(foo.my_attr , 'BAR' ) self.assertEqual(foo.my_attr , 'bar' ) @pytest.mark.parametrize( 'iterable_length, num_proc, expected_num_proc' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def UpperCamelCase_( snake_case__: List[str] , snake_case__: str , snake_case__: Dict ) -> Optional[Any]: with patch('datasets.utils.py_utils._single_map_nested' ) as mock_single_map_nested, patch( 'datasets.parallel.parallel.Pool' ) as mock_multiprocessing_pool: UpperCAmelCase__ = {f"{i}": i for i in range(UpperCamelCase__ )} UpperCAmelCase__ = map_nested(lambda snake_case__ : x + 10 , UpperCamelCase__ , num_proc=UpperCamelCase__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class lowercase ( _UpperCamelCase ): '''simple docstring''' @require_tf def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" import tensorflow as tf from tensorflow.keras import layers UpperCAmelCase__ = layers.Dense(2 ) def gen_random_output(): UpperCAmelCase__ = tf.random.uniform((1, 3) ) return model(_a ).numpy() with temp_seed(42 , set_tensorflow=_a ): UpperCAmelCase__ = gen_random_output() with temp_seed(42 , set_tensorflow=_a ): UpperCAmelCase__ = gen_random_output() UpperCAmelCase__ = gen_random_output() np.testing.assert_equal(_a , _a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def UpperCamelCase__ (self ) -> str: """simple docstring""" import torch def gen_random_output(): UpperCAmelCase__ = torch.nn.Linear(3 , 2 ) UpperCAmelCase__ = torch.rand(1 , 3 ) return model(_a ).detach().numpy() with temp_seed(42 , set_pytorch=_a ): UpperCAmelCase__ = gen_random_output() with temp_seed(42 , set_pytorch=_a ): UpperCAmelCase__ = gen_random_output() UpperCAmelCase__ = gen_random_output() np.testing.assert_equal(_a , _a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def UpperCamelCase__ (self ) -> int: """simple docstring""" def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): UpperCAmelCase__ = gen_random_output() with temp_seed(42 ): UpperCAmelCase__ = gen_random_output() UpperCAmelCase__ = gen_random_output() np.testing.assert_equal(_a , _a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('input_data' , [{}] ) def UpperCamelCase_( snake_case__: Any ) -> List[str]: UpperCAmelCase__ = NestedDataStructure(UpperCamelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( 'data, expected_output' , [ ({}, []), ([], []), ('foo', ['foo']), (['foo', 'bar'], ['foo', 'bar']), ([['foo', 'bar']], ['foo', 'bar']), ([[['foo'], ['bar']]], ['foo', 'bar']), ([[['foo'], 'bar']], ['foo', 'bar']), ({'a': 1, 'b': 2}, [1, 2]), ({'a': [1, 2], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[[3], [4]]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, [4]]}, [1, 2, 3, 4]), ({'a': {'1': 1}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': [2]}, [1, 2]), ] , ) def UpperCamelCase_( snake_case__: int , snake_case__: Dict ) -> str: UpperCAmelCase__ = NestedDataStructure(UpperCamelCase__ ).flatten() assert output == expected_output def UpperCamelCase_( ) -> Optional[int]: UpperCAmelCase__ = A(x=1 , y='foobar' ) UpperCAmelCase__ = {'x': 1, 'y': 'foobar'} assert asdict(UpperCamelCase__ ) == expected_output UpperCAmelCase__ = {'a': {'b': A(x=10 , y='foo' )}, 'c': [A(x=20 , y='bar' )]} UpperCAmelCase__ = {'a': {'b': {'x': 10, 'y': 'foo'}}, 'c': [{'x': 20, 'y': 'bar'}]} assert asdict(UpperCamelCase__ ) == expected_output with pytest.raises(UpperCamelCase__ ): asdict([1, A(x=10 , y='foo' )] ) def UpperCamelCase_( snake_case__: str ) -> Union[str, Any]: return text.split() def UpperCamelCase_( snake_case__: List[Any] ) -> List[Any]: yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def UpperCamelCase_( ) -> Optional[int]: with Pool(2 ) as pool: UpperCAmelCase__ = list(iflatmap_unordered(UpperCamelCase__ , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(UpperCamelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: UpperCAmelCase__ = list(iflatmap_unordered(UpperCamelCase__ , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(UpperCamelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: UpperCAmelCase__ = [] for yield_time, content in iflatmap_unordered( UpperCamelCase__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'content': 'a'}, {'content': 'b'}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(UpperCamelCase__ ) assert out.count('a' ) == 2 assert out.count('b' ) == 2 assert len(UpperCamelCase__ ) == 4
363
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCamelCase ) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , **__a ) -> Optional[Any]: """simple docstring""" super().__init__(**__a ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(__a ) def UpperCamelCase__ (self , **__a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = {} UpperCAmelCase__ = {} UpperCAmelCase__ = {} # preprocess args if "points_per_batch" in kwargs: UpperCAmelCase__ = kwargs['points_per_batch'] if "points_per_crop" in kwargs: UpperCAmelCase__ = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: UpperCAmelCase__ = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: UpperCAmelCase__ = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: UpperCAmelCase__ = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: UpperCAmelCase__ = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: UpperCAmelCase__ = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: UpperCAmelCase__ = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: UpperCAmelCase__ = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: UpperCAmelCase__ = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: UpperCAmelCase__ = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]: """simple docstring""" return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a ) def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = load_image(__a ) UpperCAmelCase__ = self.image_processor.size['longest_edge'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes( __a , __a , __a , __a , __a , __a ) UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": UpperCAmelCase__ = self.get_inference_context() with inference_context(): UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device ) UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) UpperCAmelCase__ = image_embeddings UpperCAmelCase__ = grid_points.shape[1] UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , __a , __a ): UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :] UpperCAmelCase__ = input_labels[:, i : i + points_per_batch] UpperCAmelCase__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = model_inputs.pop('input_boxes' ) UpperCAmelCase__ = model_inputs.pop('is_last' ) UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist() UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist() UpperCAmelCase__ = self.model(**__a ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCAmelCase__ = model_outputs['pred_masks'] UpperCAmelCase__ = self.image_processor.post_process_masks( __a , __a , __a , __a , binarize=__a ) UpperCAmelCase__ = model_outputs['iou_scores'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation( __a , __a , __a , __a ) UpperCAmelCase__ = defaultdict(__a ) for output in model_outputs: for k, v in output.items(): extra[k].append(__a ) UpperCAmelCase__ = {} if output_rle_mask: UpperCAmelCase__ = rle_mask if output_bboxes_mask: UpperCAmelCase__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
335
0
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def UpperCamelCase_( snake_case__: Optional[int] ) -> Union[str, Any]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def UpperCamelCase_( snake_case__: str ) -> str: # word like '180' or '身高' or '神' for char in word: UpperCAmelCase__ = ord(_a ) if not _is_chinese_char(_a ): return 0 return 1 def UpperCamelCase_( snake_case__: List[str] ) -> int: UpperCAmelCase__ = set() for token in tokens: UpperCAmelCase__ = len(_a ) > 1 and is_chinese(_a ) if chinese_word: word_set.add(_a ) UpperCAmelCase__ = list(_a ) return word_list def UpperCamelCase_( snake_case__: List[str] , snake_case__: set() ) -> List[str]: if not chinese_word_set: return bert_tokens UpperCAmelCase__ = max([len(_a ) for w in chinese_word_set] ) UpperCAmelCase__ = bert_tokens UpperCAmelCase__ = 0, len(_a ) while start < end: UpperCAmelCase__ = True if is_chinese(bert_word[start] ): UpperCAmelCase__ = min(end - start , _a ) for i in range(_a , 1 , -1 ): UpperCAmelCase__ = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCAmelCase__ = "##" + bert_word[j] UpperCAmelCase__ = start + i UpperCAmelCase__ = False break if single_word: start += 1 return bert_word def UpperCamelCase_( snake_case__: List[str] , snake_case__: LTP , snake_case__: BertTokenizer ) -> Optional[Any]: UpperCAmelCase__ = [] for i in range(0 , len(_a ) , 1_00 ): UpperCAmelCase__ = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] UpperCAmelCase__ = [get_chinese_word(_a ) for r in res] ltp_res.extend(_a ) assert len(_a ) == len(_a ) UpperCAmelCase__ = [] for i in range(0 , len(_a ) , 1_00 ): UpperCAmelCase__ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=_a , truncation=_a , max_length=5_12 ) bert_res.extend(res['input_ids'] ) assert len(_a ) == len(_a ) UpperCAmelCase__ = [] for input_ids, chinese_word in zip(_a , _a ): UpperCAmelCase__ = [] for id in input_ids: UpperCAmelCase__ = bert_tokenizer._convert_id_to_token(_a ) input_tokens.append(_a ) UpperCAmelCase__ = add_sub_symbol(_a , _a ) UpperCAmelCase__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_a ): if token[:2] == "##": UpperCAmelCase__ = token[2:] # save chinese tokens' pos if len(_a ) == 1 and _is_chinese_char(ord(_a ) ): ref_id.append(_a ) ref_ids.append(_a ) assert len(_a ) == len(_a ) return ref_ids def UpperCamelCase_( snake_case__: int ) -> str: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , 'r' , encoding='utf-8' ) as f: UpperCAmelCase__ = f.readlines() UpperCAmelCase__ = [line.strip() for line in data if len(_a ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCAmelCase__ = LTP(args.ltp ) # faster in GPU device UpperCAmelCase__ = BertTokenizer.from_pretrained(args.bert ) UpperCAmelCase__ = prepare_ref(_a , _a , _a ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: UpperCAmelCase__ = [json.dumps(_a ) + "\n" for ref in ref_ids] f.writelines(_a ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') _UpperCamelCase = parser.parse_args() main(args)
364
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) __SCREAMING_SNAKE_CASE = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) __SCREAMING_SNAKE_CASE = field( default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} ) __SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) __SCREAMING_SNAKE_CASE = field( default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) __SCREAMING_SNAKE_CASE = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) __SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} ) __SCREAMING_SNAKE_CASE = field( default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} ) __SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) __SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) __SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} ) __SCREAMING_SNAKE_CASE = field( default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) __SCREAMING_SNAKE_CASE = field( default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field( default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) __SCREAMING_SNAKE_CASE = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field( default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) __SCREAMING_SNAKE_CASE = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
335
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = "▁" _UpperCamelCase = {"vocab_file": "sentencepiece.bpe.model"} _UpperCamelCase = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _UpperCamelCase = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class lowercase ( snake_case__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__(self , __a , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a = None , **__a , ) -> int: """simple docstring""" UpperCAmelCase__ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase_ ) ) UpperCAmelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase__ = 1 UpperCAmelCase__ = len(self.sp_model ) + self.fairseq_offset UpperCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.__dict__.copy() UpperCAmelCase__ = None UpperCAmelCase__ = self.sp_model.serialized_model_proto() return state def __setstate__(self , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase__ = {} UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase__ (self , __a , __a = None ) -> Optional[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] UpperCAmelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ (self , __a , __a = None , __a = False ) -> Any: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_ )) + [1] return [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] + ([0] * len(UpperCAmelCase_ )) + [1] def UpperCamelCase__ (self , __a , __a = None ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ (self , __a ) -> Optional[Any]: """simple docstring""" return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) def UpperCamelCase__ (self , __a ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase__ = self.sp_model.PieceToId(UpperCAmelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase__ (self , __a ) -> int: """simple docstring""" UpperCAmelCase__ = "".join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , ' ' ).strip() return out_string def UpperCamelCase__ (self , __a , __a = None ) -> Optional[Any]: """simple docstring""" if not os.path.isdir(UpperCAmelCase_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase__ = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , 'wb' ) as fi: UpperCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
365
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_attention_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_choices def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_attention_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = FlaxRobertaModelTester(self ) @slow def UpperCamelCase__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a ) UpperCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a )
335
0
import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class lowercase ( lowerCamelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """naver-clova-ix/donut-base-finetuned-docvqa""" __SCREAMING_SNAKE_CASE = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) __SCREAMING_SNAKE_CASE = """document_qa""" __SCREAMING_SNAKE_CASE = AutoProcessor __SCREAMING_SNAKE_CASE = VisionEncoderDecoderModel __SCREAMING_SNAKE_CASE = ["""image""", """text"""] __SCREAMING_SNAKE_CASE = ["""text"""] def __init__(self , *__a , **__a ) -> Any: """simple docstring""" if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase__ (self , __a , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' UpperCAmelCase__ = task_prompt.replace('{user_input}' , lowerCAmelCase__ ) UpperCAmelCase__ = self.pre_processor.tokenizer( lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors='pt' ).input_ids UpperCAmelCase__ = self.pre_processor(lowerCAmelCase__ , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCamelCase__ (self , __a ) -> List[str]: """simple docstring""" return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=lowerCAmelCase__ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=lowerCAmelCase__ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=lowerCAmelCase__ , ).sequences def UpperCamelCase__ (self , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.pre_processor.batch_decode(lowerCAmelCase__ )[0] UpperCAmelCase__ = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) UpperCAmelCase__ = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) UpperCAmelCase__ = re.sub(r'<.*?>' , '' , lowerCAmelCase__ , count=1 ).strip() # remove first task start token UpperCAmelCase__ = self.pre_processor.tokenajson(lowerCAmelCase__ ) return sequence["answer"]
366
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _UpperCamelCase = logging.get_logger(__name__) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , *__a , **__a ) -> None: """simple docstring""" warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
335
0
from heapq import heappop, heappush import numpy as np def UpperCamelCase_( snake_case__: np.ndarray , snake_case__: tuple[int, int] , snake_case__: tuple[int, int] , snake_case__: bool , ) -> tuple[float | int, list[tuple[int, int]]]: UpperCAmelCase__ , UpperCAmelCase__ = grid.shape UpperCAmelCase__ = [-1, 1, 0, 0] UpperCAmelCase__ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCAmelCase__ , UpperCAmelCase__ = [(0, source)], set() UpperCAmelCase__ = np.full((rows, cols) , np.inf ) UpperCAmelCase__ = 0 UpperCAmelCase__ = np.empty((rows, cols) , dtype=UpperCamelCase__ ) UpperCAmelCase__ = None while queue: ((UpperCAmelCase__) , (UpperCAmelCase__)) = heappop(UpperCamelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCAmelCase__ = [] while (x, y) != source: path.append((x, y) ) UpperCAmelCase__ , UpperCAmelCase__ = predecessors[x, y] path.append(UpperCamelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(UpperCamelCase__ ) ): UpperCAmelCase__ , UpperCAmelCase__ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCAmelCase__ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(UpperCamelCase__ , (dist + 1, (nx, ny)) ) UpperCAmelCase__ = dist + 1 UpperCAmelCase__ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
367
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
0
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = False if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--repo_path''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') _UpperCamelCase = parser.parse_args() _UpperCamelCase = { '''image_size''': '''sample_size''', '''num_res_blocks''': '''layers_per_block''', '''block_channels''': '''block_out_channels''', '''down_blocks''': '''down_block_types''', '''up_blocks''': '''up_block_types''', '''downscale_freq_shift''': '''freq_shift''', '''resnet_num_groups''': '''norm_num_groups''', '''resnet_act_fn''': '''act_fn''', '''resnet_eps''': '''norm_eps''', '''num_head_channels''': '''attention_head_dim''', } _UpperCamelCase = { '''time_steps''': '''time_proj''', '''mid''': '''mid_block''', '''downsample_blocks''': '''down_blocks''', '''upsample_blocks''': '''up_blocks''', } _UpperCamelCase = '''''' if has_file(args.repo_path, '''config.json''') else '''unet''' with open(os.path.join(args.repo_path, subfolder, '''config.json'''), '''r''', encoding='''utf-8''') as reader: _UpperCamelCase = reader.read() _UpperCamelCase = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, '''config.json'''): _UpperCamelCase = UNetaDModel(**config) else: _UpperCamelCase = UNetaDConditionModel if '''ldm-text2im-large-256''' in args.repo_path else UNetaDModel _UpperCamelCase = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) _UpperCamelCase = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: _UpperCamelCase = config[key] del config[key] _UpperCamelCase = [k.replace('''UNetRes''', '''''') for k in config['''down_block_types''']] _UpperCamelCase = [k.replace('''UNetRes''', '''''') for k in config['''up_block_types''']] if do_only_weights: _UpperCamelCase = torch.load(os.path.join(args.repo_path, subfolder, '''diffusion_pytorch_model.bin''')) _UpperCamelCase = {} for param_key, param_value in state_dict.items(): if param_key.endswith('''.op.bias''') or param_key.endswith('''.op.weight'''): continue _UpperCamelCase = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('''.''')[0] == key: _UpperCamelCase = param_value _UpperCamelCase = True if not has_changed: _UpperCamelCase = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
368
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self , __a ) -> List[Any]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): UpperCAmelCase__ = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) benchmark.run() self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__a ): self.assertTrue(hasattr(__a , 'sequential' ) ) self.assertTrue(hasattr(__a , 'cumulative' ) ) self.assertTrue(hasattr(__a , 'current' ) ) self.assertTrue(hasattr(__a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
335
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _UpperCamelCase = logging.get_logger(__name__) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , *__a , **__a ) -> Union[str, Any]: """simple docstring""" warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' , _a , ) super().__init__(*_a , **_a )
369
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
335
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class lowercase ( _a ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """xmod""" def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=2 , __a=0.02 , __a=1E-1_2 , __a=1 , __a=0 , __a=2 , __a="absolute" , __a=True , __a=None , __a=False , __a=2 , __a=False , __a=True , __a=True , __a=("en_XX",) , __a=None , **__a , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = use_cache UpperCAmelCase__ = classifier_dropout UpperCAmelCase__ = pre_norm UpperCAmelCase__ = adapter_reduction_factor UpperCAmelCase__ = adapter_layer_norm UpperCAmelCase__ = adapter_reuse_layer_norm UpperCAmelCase__ = ln_before_adapter UpperCAmelCase__ = list(_a ) UpperCAmelCase__ = default_language class lowercase ( _a ): '''simple docstring''' @property def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase__ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
370
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__(self , *, __a = 4 , __a = 768 , __a , __a , ) -> str: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) ) # parameters for additional clip time embeddings UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.Linear(__a , __a ) # parameters for encoder hidden states UpperCAmelCase__ = clip_extra_context_tokens UpperCAmelCase__ = nn.Linear( __a , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.LayerNorm(__a ) def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase__ = image_embeddings.shape[0] UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase__ = classifier_free_guidance_embeddings.expand( __a , -1 ) UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase__ = self.embedding_proj(__a ) UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a ) UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a ) UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens ) UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase__ = self.encoder_hidden_states_proj(__a ) UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a ) UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
335
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a , __a=7 , __a=3 , __a=30 , __a=400 , __a=True , __a=None , __a=True , __a=[0.5, 0.5, 0.5] , __a=[0.5, 0.5, 0.5] , __a=True , __a=1 / 255 , __a=True , ) -> List[str]: """simple docstring""" UpperCAmelCase__ = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = min_resolution UpperCAmelCase__ = max_resolution UpperCAmelCase__ = do_resize UpperCAmelCase__ = size UpperCAmelCase__ = do_normalize UpperCAmelCase__ = image_mean UpperCAmelCase__ = image_std UpperCAmelCase__ = do_rescale UpperCAmelCase__ = rescale_factor UpperCAmelCase__ = do_pad def UpperCamelCase__ (self ) -> int: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase__ (self , __a , __a=False ) -> Tuple: """simple docstring""" if not batched: UpperCAmelCase__ = image_inputs[0] if isinstance(snake_case_ , Image.Image ): UpperCAmelCase__ = image.size else: UpperCAmelCase__ = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ = int(self.size['shortest_edge'] * h / w ) UpperCAmelCase__ = self.size["""shortest_edge"""] elif w > h: UpperCAmelCase__ = self.size["""shortest_edge"""] UpperCAmelCase__ = int(self.size['shortest_edge'] * w / h ) else: UpperCAmelCase__ = self.size["""shortest_edge"""] UpperCAmelCase__ = self.size["""shortest_edge"""] else: UpperCAmelCase__ = [] for image in image_inputs: UpperCAmelCase__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ = max(snake_case_ , key=lambda __a : item[0] )[0] UpperCAmelCase__ = max(snake_case_ , key=lambda __a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( _a , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ConditionalDetrImageProcessor if is_vision_available() else None def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = ConditionalDetrImageProcessingTester(self ) @property def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , 'image_mean' ) ) self.assertTrue(hasattr(snake_case_ , 'image_std' ) ) self.assertTrue(hasattr(snake_case_ , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case_ , 'do_resize' ) ) self.assertTrue(hasattr(snake_case_ , 'size' ) ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , snake_case_ ) UpperCAmelCase__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=snake_case_ ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , snake_case_ ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" pass def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_ ) UpperCAmelCase__ = image_processing(snake_case_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ = image_processing(snake_case_ , return_tensors='pt' ).pixel_values UpperCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ = image_processing(snake_case_ , return_tensors='pt' ).pixel_values UpperCAmelCase__ = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: UpperCAmelCase__ = json.loads(f.read() ) UpperCAmelCase__ = {"""image_id""": 39769, """annotations""": target} # encode them UpperCAmelCase__ = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) UpperCAmelCase__ = image_processing(images=snake_case_ , annotations=snake_case_ , return_tensors='pt' ) # verify pixel values UpperCAmelCase__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , snake_case_ ) UpperCAmelCase__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case_ , atol=1E-4 ) ) # verify area UpperCAmelCase__ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case_ ) ) # verify boxes UpperCAmelCase__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case_ ) UpperCAmelCase__ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case_ , atol=1E-3 ) ) # verify image_id UpperCAmelCase__ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case_ ) ) # verify is_crowd UpperCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case_ ) ) # verify class_labels UpperCAmelCase__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case_ ) ) # verify orig_size UpperCAmelCase__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case_ ) ) # verify size UpperCAmelCase__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case_ ) ) @slow def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: UpperCAmelCase__ = json.loads(f.read() ) UpperCAmelCase__ = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} UpperCAmelCase__ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them UpperCAmelCase__ = ConditionalDetrImageProcessor(format='coco_panoptic' ) UpperCAmelCase__ = image_processing(images=snake_case_ , annotations=snake_case_ , masks_path=snake_case_ , return_tensors='pt' ) # verify pixel values UpperCAmelCase__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , snake_case_ ) UpperCAmelCase__ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case_ , atol=1E-4 ) ) # verify area UpperCAmelCase__ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case_ ) ) # verify boxes UpperCAmelCase__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case_ ) UpperCAmelCase__ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case_ , atol=1E-3 ) ) # verify image_id UpperCAmelCase__ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case_ ) ) # verify is_crowd UpperCAmelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case_ ) ) # verify class_labels UpperCAmelCase__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case_ ) ) # verify masks UpperCAmelCase__ = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , snake_case_ ) # verify orig_size UpperCAmelCase__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case_ ) ) # verify size UpperCAmelCase__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case_ ) )
371
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BioGptTokenizer __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(__a ) ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = 'lower newer' UpperCAmelCase__ = 'lower newer' return input_text, output_text def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ = 'lower' UpperCAmelCase__ = ['low', 'er</w>'] UpperCAmelCase__ = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase__ = tokens + ['<unk>'] UpperCAmelCase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
335
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
350
class lowercase : # Public class to implement a graph '''simple docstring''' def __init__(self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = row UpperCAmelCase__ = col UpperCAmelCase__ = graph def UpperCamelCase__ (self , __a , __a , __a ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a ) def UpperCamelCase__ (self ) -> int: # And finally, count all islands. """simple docstring""" UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__a , __a , __a ) count += 1 return count
335
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _UpperCamelCase = None _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCamelCase = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } _UpperCamelCase = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } _UpperCamelCase = """▁""" class lowercase ( __UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = AlbertTokenizer def __init__(self , __a=None , __a=None , __a=True , __a=True , __a=False , __a="[CLS]" , __a="[SEP]" , __a="<unk>" , __a="[SEP]" , __a="<pad>" , __a="[CLS]" , __a="[MASK]" , **__a , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = ( AddedToken(__a , lstrip=__a , rstrip=__a , normalized=__a ) if isinstance(__a , __a ) else mask_token ) super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , **__a , ) UpperCAmelCase__ = do_lower_case UpperCAmelCase__ = remove_space UpperCAmelCase__ = keep_accents UpperCAmelCase__ = vocab_file UpperCAmelCase__ = False if not self.vocab_file else True def UpperCamelCase__ (self , __a , __a = None ) -> List[int]: """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase__ (self , __a , __a = None ) -> List[int]: """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ (self , __a , __a = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase__ = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
351
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _UpperCamelCase = Lock() def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Dict , snake_case__: Any ) -> str: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase__ = min(snake_case__ , snake_case__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase__ = max(snake_case__ , snake_case__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__ ) def UpperCamelCase_( snake_case__: Any ) -> Tuple: UpperCAmelCase__ = [] UpperCAmelCase__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr for i in range(1 , len(snake_case__ ) - 1 ): UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__ ) - 1, arr[len(snake_case__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__ ) ): UpperCAmelCase__ = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase_( ) -> Dict: UpperCAmelCase__ = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*snake_case__ ) UpperCAmelCase__ = odd_even_transposition(snake_case__ ) print('Sorted List\n' ) print(*snake_case__ ) if __name__ == "__main__": main()
335
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) _UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def UpperCamelCase_( snake_case__: str ) -> Any: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCAmelCase__ = model_type_to_module_name(snake_case__ ) UpperCAmelCase__ = importlib.import_module(f".{module_name}" , 'transformers.models' ) try: return getattr(snake_case__ , snake_case__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(snake_case__ , '__name__' , snake_case__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCAmelCase__ = importlib.import_module('transformers' ) if hasattr(snake_case__ , snake_case__ ): return getattr(snake_case__ , snake_case__ ) return None def UpperCamelCase_( snake_case__: Dict , snake_case__: Dict = None , snake_case__: int = False , snake_case__: Optional[Any] = False , snake_case__: Optional[int] = None , snake_case__: Union[str, Any] = None , snake_case__: List[str] = None , snake_case__: int = False , **snake_case__: List[str] , ) -> List[Any]: UpperCAmelCase__ = get_file_from_repo( snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(snake_case__ , encoding='utf-8' ) as reader: return json.load(snake_case__ ) class lowercase : '''simple docstring''' def __init__(self ) -> List[Any]: """simple docstring""" raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ (cls , __a , **__a ) -> List[str]: """simple docstring""" UpperCAmelCase__ = kwargs.pop('config' , __SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = kwargs.pop('trust_remote_code' , __SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = True UpperCAmelCase__ , UpperCAmelCase__ = ImageProcessingMixin.get_image_processor_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = config_dict.get('image_processor_type' , __SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): UpperCAmelCase__ = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: UpperCAmelCase__ = config_dict.pop('feature_extractor_type' , __SCREAMING_SNAKE_CASE ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) UpperCAmelCase__ = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): UpperCAmelCase__ = config_dict['auto_map']['AutoFeatureExtractor'] UpperCAmelCase__ = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCAmelCase__ = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # It could be in `config.image_processor_type`` UpperCAmelCase__ = getattr(__SCREAMING_SNAKE_CASE , 'image_processor_type' , __SCREAMING_SNAKE_CASE ) if hasattr(__SCREAMING_SNAKE_CASE , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: UpperCAmelCase__ = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: UpperCAmelCase__ = image_processor_class_from_name(__SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = image_processor_auto_map is not None UpperCAmelCase__ = image_processor_class is not None or type(__SCREAMING_SNAKE_CASE ) in IMAGE_PROCESSOR_MAPPING UpperCAmelCase__ = resolve_trust_remote_code( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if has_remote_code and trust_remote_code: UpperCAmelCase__ = get_class_from_dynamic_module( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = kwargs.pop('code_revision' , __SCREAMING_SNAKE_CASE ) if os.path.isdir(__SCREAMING_SNAKE_CASE ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) elif image_processor_class is not None: return image_processor_class.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__SCREAMING_SNAKE_CASE ) in IMAGE_PROCESSOR_MAPPING: UpperCAmelCase__ = IMAGE_PROCESSOR_MAPPING[type(__SCREAMING_SNAKE_CASE )] return image_processor_class.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) raise ValueError( F"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " F"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" ) @staticmethod def UpperCamelCase__ (__a , __a ) -> Dict: """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
352
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowercase : '''simple docstring''' def __init__(self ) -> str: """simple docstring""" UpperCAmelCase__ = '' UpperCAmelCase__ = '' UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = 256 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = cva.imread(__a , 0 ) UpperCAmelCase__ = copy.deepcopy(self.img ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCAmelCase__ = np.sum(__a ) for i in range(len(__a ) ): UpperCAmelCase__ = x[i] / self.k self.sk += prk UpperCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase__ = int(last % last ) UpperCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__a ) UpperCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase__ = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase__ = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') _UpperCamelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
335
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json''', '''google/bigbird-roberta-large''': '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json''', '''google/bigbird-base-trivia-itc''': '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json''', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowercase ( snake_case_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """big_bird""" def __init__(self , __a=50358 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu_new" , __a=0.1 , __a=0.1 , __a=4096 , __a=2 , __a=0.02 , __a=1E-1_2 , __a=True , __a=0 , __a=1 , __a=2 , __a=66 , __a="block_sparse" , __a=True , __a=False , __a=64 , __a=3 , __a=None , **__a , ) -> Union[str, Any]: """simple docstring""" super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , sep_token_id=__a , **__a , ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = use_cache UpperCAmelCase__ = rescale_embeddings UpperCAmelCase__ = attention_type UpperCAmelCase__ = use_bias UpperCAmelCase__ = block_size UpperCAmelCase__ = num_random_blocks UpperCAmelCase__ = classifier_dropout class lowercase ( snake_case_ ): '''simple docstring''' @property def UpperCamelCase__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
353
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = embed_dim UpperCAmelCase__ = depths UpperCAmelCase__ = num_heads UpperCAmelCase__ = window_size UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = hidden_act UpperCAmelCase__ = use_absolute_embeddings UpperCAmelCase__ = patch_norm UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = is_training UpperCAmelCase__ = scope UpperCAmelCase__ = use_labels UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = encoder_stride def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ (self ) -> str: """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = SwinvaModel(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase__ = 1 UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.type_sequence_label_size UpperCAmelCase__ = SwinvaForImageClassification(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = SwinvaModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def UpperCamelCase__ (self ) -> int: """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions UpperCAmelCase__ = len(self.model_tester.depths ) self.assertEqual(len(__a ) , __a ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = config.window_size**2 UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) UpperCAmelCase__ = len(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): UpperCAmelCase__ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase__ = 2 self.assertEqual(out_len + added_hidden_states , len(__a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.hidden_states UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__a ) , __a ) # Swinv2 has a different seq_length UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCAmelCase__ = outputs.reshaped_hidden_states self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape UpperCAmelCase__ = ( reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = 3 UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Dict: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = SwinvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = _config_zero_init(__a ) for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(config=__a ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( __a ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**__a ) # verify the logits UpperCAmelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
335
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart _UpperCamelCase = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } _UpperCamelCase = { '''facebook/bart-base''': 1024, '''facebook/bart-large''': 1024, '''facebook/bart-large-mnli''': 1024, '''facebook/bart-large-cnn''': 1024, '''facebook/bart-large-xsum''': 1024, '''yjernite/bart_eli5''': 1024, } @lru_cache() def UpperCamelCase_( ) -> Any: UpperCAmelCase__ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) UpperCAmelCase__ = bs[:] UpperCAmelCase__ = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCAmelCase ) cs.append(2**8 + n ) n += 1 UpperCAmelCase__ = [chr(_lowerCAmelCase ) for n in cs] return dict(zip(_lowerCAmelCase , _lowerCAmelCase ) ) def UpperCamelCase_( snake_case__: Any ) -> Union[str, Any]: UpperCAmelCase__ = set() UpperCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ = char return pairs class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__(self , __a , __a , __a="replace" , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a=False , **__a , ) -> Dict: """simple docstring""" UpperCAmelCase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else bos_token UpperCAmelCase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else eos_token UpperCAmelCase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else sep_token UpperCAmelCase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else cls_token UpperCAmelCase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else unk_token UpperCAmelCase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token super().__init__( errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) with open(_lowerCAmelCase , encoding='utf-8' ) as vocab_handle: UpperCAmelCase__ = json.load(_lowerCAmelCase ) UpperCAmelCase__ = {v: k for k, v in self.encoder.items()} UpperCAmelCase__ = errors # how to handle errors in decoding UpperCAmelCase__ = bytes_to_unicode() UpperCAmelCase__ = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCAmelCase , encoding='utf-8' ) as merges_handle: UpperCAmelCase__ = merges_handle.read().split('\n' )[1:-1] UpperCAmelCase__ = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase__ = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) UpperCAmelCase__ = {} UpperCAmelCase__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase__ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCamelCase__ (self ) -> Dict: """simple docstring""" return len(self.encoder ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ (self , __a ) -> Optional[int]: """simple docstring""" if token in self.cache: return self.cache[token] UpperCAmelCase__ = tuple(_lowerCAmelCase ) UpperCAmelCase__ = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: UpperCAmelCase__ = min(_lowerCAmelCase , key=lambda __a : self.bpe_ranks.get(_lowerCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ = bigram UpperCAmelCase__ = [] UpperCAmelCase__ = 0 while i < len(_lowerCAmelCase ): try: UpperCAmelCase__ = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ = tuple(_lowerCAmelCase ) UpperCAmelCase__ = new_word if len(_lowerCAmelCase ) == 1: break else: UpperCAmelCase__ = get_pairs(_lowerCAmelCase ) UpperCAmelCase__ = ' '.join(_lowerCAmelCase ) UpperCAmelCase__ = word return word def UpperCamelCase__ (self , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = [] for token in re.findall(self.pat , _lowerCAmelCase ): UpperCAmelCase__ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCAmelCase ).split(' ' ) ) return bpe_tokens def UpperCamelCase__ (self , __a ) -> str: """simple docstring""" return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" return self.decoder.get(_lowerCAmelCase ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = ''.join(_lowerCAmelCase ) UpperCAmelCase__ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCamelCase__ (self , __a , __a = None ) -> Union[str, Any]: """simple docstring""" if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase__ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + '\n' ) UpperCAmelCase__ = 0 with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __a : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) UpperCAmelCase__ = token_index writer.write(' '.join(_lowerCAmelCase ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase__ (self , __a , __a = None ) -> int: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] UpperCAmelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ (self , __a , __a = None , __a = False ) -> List[str]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def UpperCamelCase__ (self , __a , __a = None ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ (self , __a , __a=False , **__a ) -> Any: """simple docstring""" UpperCAmelCase__ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowerCAmelCase ) > 0 and not text[0].isspace()): UpperCAmelCase__ = ' ' + text return (text, kwargs)
354
from collections import deque def UpperCamelCase_( snake_case__: Tuple ) -> Tuple: UpperCAmelCase__ = len(snake_case__ ) UpperCAmelCase__ = deque() UpperCAmelCase__ = [False for _ in range(snake_case__ )] UpperCAmelCase__ = [-1 for _ in range(snake_case__ )] UpperCAmelCase__ = index_of[:] def strong_connect(snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[str] ): UpperCAmelCase__ = index # the number when this node is seen UpperCAmelCase__ = index # lowest rank node reachable from here index += 1 stack.append(snake_case__ ) UpperCAmelCase__ = True for w in g[v]: if index_of[w] == -1: UpperCAmelCase__ = strong_connect(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: UpperCAmelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: UpperCAmelCase__ = [] UpperCAmelCase__ = stack.pop() UpperCAmelCase__ = False component.append(snake_case__ ) while w != v: UpperCAmelCase__ = stack.pop() UpperCAmelCase__ = False component.append(snake_case__ ) components.append(snake_case__ ) return index UpperCAmelCase__ = [] for v in range(snake_case__ ): if index_of[v] == -1: strong_connect(snake_case__ , 0 , snake_case__ ) return components def UpperCamelCase_( snake_case__: Dict , snake_case__: List[Any] ) -> Optional[int]: UpperCAmelCase__ = [[] for _ in range(snake_case__ )] for u, v in edges: g[u].append(snake_case__ ) return g if __name__ == "__main__": # Test _UpperCamelCase = 7 _UpperCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6] _UpperCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5] _UpperCamelCase = [(u, v) for u, v in zip(source, target)] _UpperCamelCase = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
335
0
import copy import random from transformers import CLIPTokenizer class lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , *__a , **__a ) -> List[Any]: """simple docstring""" super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = {} def UpperCamelCase__ (self , __a , *__a , **__a ) -> str: """simple docstring""" UpperCAmelCase__ = super().add_tokens(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if num_added_tokens == 0: raise ValueError( F"The tokenizer already contains the token {placeholder_token}. Please pass a different" ' `placeholder_token` that is not already in the tokenizer.' ) def UpperCamelCase__ (self , __a , *__a , __a=1 , **__a ) -> List[str]: """simple docstring""" UpperCAmelCase__ = [] if num_vec_per_token == 1: self.try_adding_tokens(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) output.append(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase__ = [] for i in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase__ = placeholder_token + F"_{i}" self.try_adding_tokens(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) output.append(_SCREAMING_SNAKE_CASE ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"The tokenizer already has placeholder token {token} that can get confused with" F" {placeholder_token}keep placeholder tokens independent" ) UpperCAmelCase__ = output def UpperCamelCase__ (self , __a , __a=False , __a=1.0 ) -> int: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase__ = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=_SCREAMING_SNAKE_CASE ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: UpperCAmelCase__ = self.token_map[placeholder_token] UpperCAmelCase__ = tokens[: 1 + int(len(_SCREAMING_SNAKE_CASE ) * prop_tokens_to_load )] if vector_shuffle: UpperCAmelCase__ = copy.copy(_SCREAMING_SNAKE_CASE ) random.shuffle(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = text.replace(_SCREAMING_SNAKE_CASE , ' '.join(_SCREAMING_SNAKE_CASE ) ) return text def __call__(self , __a , *__a , __a=False , __a=1.0 , **__a ) -> Tuple: """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( _SCREAMING_SNAKE_CASE , vector_shuffle=_SCREAMING_SNAKE_CASE , prop_tokens_to_load=_SCREAMING_SNAKE_CASE ) , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def UpperCamelCase__ (self , __a , *__a , __a=False , __a=1.0 , **__a ) -> Any: """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( _SCREAMING_SNAKE_CASE , vector_shuffle=_SCREAMING_SNAKE_CASE , prop_tokens_to_load=_SCREAMING_SNAKE_CASE ) , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
355
from ...configuration_utils import PretrainedConfig _UpperCamelCase = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """tapas""" def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=1024 , __a=[3, 256, 256, 2, 256, 256, 10] , __a=0.02 , __a=1E-1_2 , __a=0 , __a=10.0 , __a=0 , __a=1.0 , __a=None , __a=1.0 , __a=False , __a=None , __a=1.0 , __a=1.0 , __a=False , __a=False , __a="ratio" , __a=None , __a=None , __a=64 , __a=32 , __a=False , __a=True , __a=False , __a=False , __a=True , __a=False , __a=None , __a=None , **__a , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=__a , **__a ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_sizes UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps # Fine-tuning task hyperparameters UpperCAmelCase__ = positive_label_weight UpperCAmelCase__ = num_aggregation_labels UpperCAmelCase__ = aggregation_loss_weight UpperCAmelCase__ = use_answer_as_supervision UpperCAmelCase__ = answer_loss_importance UpperCAmelCase__ = use_normalized_answer_loss UpperCAmelCase__ = huber_loss_delta UpperCAmelCase__ = temperature UpperCAmelCase__ = aggregation_temperature UpperCAmelCase__ = use_gumbel_for_cells UpperCAmelCase__ = use_gumbel_for_aggregation UpperCAmelCase__ = average_approximation_function UpperCAmelCase__ = cell_selection_preference UpperCAmelCase__ = answer_loss_cutoff UpperCAmelCase__ = max_num_rows UpperCAmelCase__ = max_num_columns UpperCAmelCase__ = average_logits_per_cell UpperCAmelCase__ = select_one_column UpperCAmelCase__ = allow_empty_column_selection UpperCAmelCase__ = init_cell_selection_weights_to_zero UpperCAmelCase__ = reset_position_index_per_cell UpperCAmelCase__ = disable_per_token_loss # Aggregation hyperparameters UpperCAmelCase__ = aggregation_labels UpperCAmelCase__ = no_aggregation_label_index if isinstance(self.aggregation_labels , __a ): UpperCAmelCase__ = {int(__a ): v for k, v in aggregation_labels.items()}
335
0
def UpperCamelCase_( snake_case__: int = 50 ) -> List[Any]: UpperCAmelCase__ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
356
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
0
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCamelCase = datasets.load_iris() _UpperCamelCase = np.array(data['''data''']) _UpperCamelCase = np.array(data['''target''']) _UpperCamelCase = data["target_names"] _UpperCamelCase = train_test_split(X, y) def UpperCamelCase_( snake_case__: Tuple , snake_case__: Optional[Any] ) -> str: return np.linalg.norm(np.array(snake_case__ ) - np.array(snake_case__ ) ) def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: int , snake_case__: Union[str, Any] , snake_case__: Any , snake_case__: str=5 ) -> List[Any]: UpperCAmelCase__ = zip(snake_case__ , snake_case__ ) # List of distances of all points from the point to be classified UpperCAmelCase__ = [] for data_point in data: UpperCAmelCase__ = euclidean_distance(data_point[0] , snake_case__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. UpperCAmelCase__ = [i[1] for i in sorted(snake_case__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified UpperCAmelCase__ = Counter(snake_case__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
357
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase__ = XCLIPTextConfig() # derive patch size from model name UpperCAmelCase__ = model_name.find('patch' ) UpperCAmelCase__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) UpperCAmelCase__ = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 UpperCAmelCase__ = 12 UpperCAmelCase__ = 10_24 UpperCAmelCase__ = 40_96 UpperCAmelCase__ = 16 UpperCAmelCase__ = 24 UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 if model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = 3_36 UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 return config def UpperCamelCase_( snake_case__: Any ) -> Tuple: # text encoder if name == "token_embedding.weight": UpperCAmelCase__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": UpperCAmelCase__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: UpperCAmelCase__ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: UpperCAmelCase__ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: UpperCAmelCase__ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: UpperCAmelCase__ = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): UpperCAmelCase__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: UpperCAmelCase__ = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: UpperCAmelCase__ = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": UpperCAmelCase__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": UpperCAmelCase__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): UpperCAmelCase__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: UpperCAmelCase__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: UpperCAmelCase__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: UpperCAmelCase__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: UpperCAmelCase__ = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: UpperCAmelCase__ = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: UpperCAmelCase__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: UpperCAmelCase__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": UpperCAmelCase__ = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): UpperCAmelCase__ = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): UpperCAmelCase__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): UpperCAmelCase__ = orig_state_dict.pop(snake_case__ ) if "attn.in_proj" in key: UpperCAmelCase__ = key.split('.' ) if key.startswith('visual' ): UpperCAmelCase__ = key_split[3] UpperCAmelCase__ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[ :dim ] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[ -dim: ] else: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] elif key.startswith('mit' ): UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.vision_config.mit_hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[dim : dim * 2, :] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[dim : dim * 2] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.text_config.hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = rename_key(snake_case__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCAmelCase__ = val.T UpperCAmelCase__ = val return orig_state_dict def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]: if num_frames == 8: UpperCAmelCase__ = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: UpperCAmelCase__ = 'eating_spaghetti.npy' elif num_frames == 32: UpperCAmelCase__ = 'eating_spaghetti_32_frames.npy' UpperCAmelCase__ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , ) UpperCAmelCase__ = np.load(snake_case__ ) return list(snake_case__ ) def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None , snake_case__: Union[str, Any]=False ) -> List[Any]: UpperCAmelCase__ = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } UpperCAmelCase__ = model_to_url[model_name] UpperCAmelCase__ = 8 if "16-frames" in model_name: UpperCAmelCase__ = 16 elif "shot" in model_name: UpperCAmelCase__ = 32 UpperCAmelCase__ = get_xclip_config(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) model.eval() if "drive" in checkpoint_url: UpperCAmelCase__ = 'pytorch_model.bin' gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] else: UpperCAmelCase__ = torch.hub.load_state_dict_from_url(snake_case__ )['model'] UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(snake_case__ , strict=snake_case__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCAmelCase__ = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24 UpperCAmelCase__ = VideoMAEImageProcessor(size=snake_case__ ) UpperCAmelCase__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase__ = prepare_video(snake_case__ ) UpperCAmelCase__ = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): UpperCAmelCase__ = model(**snake_case__ ) # Verify outputs UpperCAmelCase__ = outputs.logits_per_video UpperCAmelCase__ = logits_per_video.softmax(dim=1 ) print('Probs:' , snake_case__ ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCAmelCase__ = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] ) elif model_name == "xclip-base-patch16": UpperCAmelCase__ = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] ) elif model_name == "xclip-large-patch14": UpperCAmelCase__ = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCAmelCase__ = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] ) else: raise ValueError(f"Model name {model_name} not supported" ) assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(snake_case__ , organization='nielsr' ) processor.push_to_hub(snake_case__ , organization='nielsr' ) slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _UpperCamelCase = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
335
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class lowercase ( lowerCamelCase__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'luke' def __init__(self , __a=50267 , __a=500000 , __a=768 , __a=256 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=2 , __a=0.02 , __a=1E-1_2 , __a=True , __a=None , __a=1 , __a=0 , __a=2 , **__a , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = entity_vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = entity_emb_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = use_entity_aware_attention UpperCAmelCase__ = classifier_dropout
358
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: Union[str, Any] ) -> Tuple: UpperCAmelCase__ = OmegaConf.load(snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] UpperCAmelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE UpperCAmelCase__ = {} UpperCAmelCase__ = 'first_stage_model.' for key in keys: if key.startswith(snake_case__ ): UpperCAmelCase__ = state_dict[key] # extract state_dict for UNetLDM UpperCAmelCase__ = {} UpperCAmelCase__ = 'model.diffusion_model.' for key in keys: if key.startswith(snake_case__ ): UpperCAmelCase__ = state_dict[key] UpperCAmelCase__ = config.model.params.first_stage_config.params UpperCAmelCase__ = config.model.params.unet_config.params UpperCAmelCase__ = VQModel(**snake_case__ ).eval() vqvae.load_state_dict(snake_case__ ) UpperCAmelCase__ = UNetLDMModel(**snake_case__ ).eval() unet.load_state_dict(snake_case__ ) UpperCAmelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , ) UpperCAmelCase__ = LDMPipeline(snake_case__ , snake_case__ , snake_case__ ) pipeline.save_pretrained(snake_case__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) _UpperCamelCase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
335
0
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def UpperCamelCase_( snake_case__: List[str] , snake_case__: List[Any] , snake_case__: List[str] ) -> int: UpperCAmelCase__ = hf_hub_url(repo_id=_UpperCAmelCase , path=_UpperCAmelCase , revision=_UpperCAmelCase ) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(_UpperCAmelCase )}"
359
# flake8: noqa # Lint as: python3 _UpperCamelCase = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
335
0
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( 'kwargs, expected' , [ ({'num_shards': 0, 'max_num_jobs': 1}, []), ({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]), ({'num_shards': 10, 'max_num_jobs': 10}, [range(a__ , i + 1 ) for i in range(10 )]), ({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]), ({'num_shards': 10, 'max_num_jobs': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'num_shards': 3, 'max_num_jobs': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def UpperCamelCase_( snake_case__: Tuple , snake_case__: Optional[Any] ) -> Any: UpperCAmelCase__ = _distribute_shards(**a__ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, max_num_jobs, expected' , [ ({'foo': 0}, 10, [{'foo': 0}]), ({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]), ({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]), ({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]), ({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]), ] , ) def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] , snake_case__: Optional[Any] ) -> int: UpperCAmelCase__ = _split_gen_kwargs(a__ , a__ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, expected' , [ ({'foo': 0}, 1), ({'shards': [0]}, 1), ({'shards': [0, 1, 2, 3]}, 4), ({'shards': [0, 1, 2, 3], 'foo': 0}, 4), ({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4), ({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError), ] , ) def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Tuple ) -> List[Any]: if expected is RuntimeError: with pytest.raises(a__ ): _number_of_shards_in_gen_kwargs(a__ ) else: UpperCAmelCase__ = _number_of_shards_in_gen_kwargs(a__ ) assert out == expected
360
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """sew-d""" def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str: """simple docstring""" super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = feat_extract_norm UpperCAmelCase__ = feat_extract_activation UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = conv_bias UpperCAmelCase__ = num_conv_pos_embeddings UpperCAmelCase__ = num_conv_pos_embedding_groups UpperCAmelCase__ = len(self.conv_dim ) UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = squeeze_factor UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = position_buckets UpperCAmelCase__ = share_att_key UpperCAmelCase__ = relative_attention UpperCAmelCase__ = norm_rel_ebd UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = hidden_act UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = feat_proj_dropout UpperCAmelCase__ = final_dropout UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = feature_layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase__ = apply_spec_augment UpperCAmelCase__ = mask_time_prob UpperCAmelCase__ = mask_time_length UpperCAmelCase__ = mask_time_min_masks UpperCAmelCase__ = mask_feature_prob UpperCAmelCase__ = mask_feature_length UpperCAmelCase__ = mask_feature_min_masks # ctc loss UpperCAmelCase__ = ctc_loss_reduction UpperCAmelCase__ = ctc_zero_infinity # sequence classification UpperCAmelCase__ = use_weighted_layer_sum UpperCAmelCase__ = classifier_proj_size @property def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
335
0
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig _UpperCamelCase = { '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } _UpperCamelCase = logging.get_logger(__name__) class lowercase ( __lowercase ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = '''maskformer''' __SCREAMING_SNAKE_CASE : List[Any] = {'''hidden_size''': '''mask_feature_size'''} __SCREAMING_SNAKE_CASE : List[Any] = ['''resnet''', '''swin'''] __SCREAMING_SNAKE_CASE : List[str] = ['''detr'''] def __init__(self , __a = 256 , __a = 256 , __a = 0.1 , __a = False , __a = None , __a = None , __a = 0.02 , __a = 1.0 , __a = 1.0 , __a = 1.0 , __a = 20.0 , __a = None , **__a , ) -> int: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCAmelCase__ = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCAmelCase__ = backbone_config.pop('model_type' ) UpperCAmelCase__ = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase__ = config_class.from_dict(UpperCAmelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. " F"Supported model types: {','.join(self.backbones_supported )}" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCAmelCase__ = DetrConfig() else: # verify that the decoder is supported UpperCAmelCase__ = ( decoder_config.pop('model_type' ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"Transformer Decoder {decoder_type} not supported, please use one of" F" {','.join(self.decoders_supported )}" ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCAmelCase__ = CONFIG_MAPPING[decoder_type] UpperCAmelCase__ = config_class.from_dict(UpperCAmelCase__ ) UpperCAmelCase__ = backbone_config UpperCAmelCase__ = decoder_config # main feature dimension for the model UpperCAmelCase__ = fpn_feature_size UpperCAmelCase__ = mask_feature_size # initializer UpperCAmelCase__ = init_std UpperCAmelCase__ = init_xavier_std # Hungarian matcher && loss UpperCAmelCase__ = cross_entropy_weight UpperCAmelCase__ = dice_weight UpperCAmelCase__ = mask_weight UpperCAmelCase__ = use_auxiliary_loss UpperCAmelCase__ = no_object_weight UpperCAmelCase__ = output_auxiliary_logits UpperCAmelCase__ = self.decoder_config.encoder_attention_heads UpperCAmelCase__ = self.decoder_config.num_hidden_layers super().__init__(**UpperCAmelCase__ ) @classmethod def UpperCamelCase__ (cls , __a , __a , **__a ) -> Union[str, Any]: """simple docstring""" return cls( backbone_config=UpperCAmelCase__ , decoder_config=UpperCAmelCase__ , **UpperCAmelCase__ , ) def UpperCamelCase__ (self ) -> Dict[str, any]: """simple docstring""" UpperCAmelCase__ = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ = self.backbone_config.to_dict() UpperCAmelCase__ = self.decoder_config.to_dict() UpperCAmelCase__ = self.__class__.model_type return output
361
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _UpperCamelCase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCamelCase_( snake_case__: int ) -> str: for pegasus_name, hf_name in PATTERNS: UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ ) return k def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration: UpperCAmelCase__ = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) UpperCAmelCase__ = PegasusConfig(**snake_case__ ) UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ ) UpperCAmelCase__ = torch_model.model.state_dict() UpperCAmelCase__ = {} for k, v in tf_weights.items(): UpperCAmelCase__ = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: UpperCAmelCase__ = v.T UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) UpperCAmelCase__ = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: UpperCAmelCase__ = tf.train.list_variables(snake_case__ ) UpperCAmelCase__ = {} UpperCAmelCase__ = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): UpperCAmelCase__ = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ ) UpperCAmelCase__ = array return tf_weights def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]: # save tokenizer first UpperCAmelCase__ = Path(snake_case__ ).parent.name UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ ) UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"] if dataset == "large": UpperCAmelCase__ = task_specific_params UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) UpperCAmelCase__ = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() if args.save_dir is None: _UpperCamelCase = Path(args.tf_ckpt_path).parent.name _UpperCamelCase = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
335
0
"""simple docstring""" def UpperCamelCase_( snake_case__: Any ) -> set: UpperCAmelCase__ = set() # edges = list of graph's edges UpperCAmelCase__ = get_edges(__lowerCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: UpperCAmelCase__ = edges.pop() chosen_vertices.add(__lowerCAmelCase ) chosen_vertices.add(__lowerCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__lowerCAmelCase ) return chosen_vertices def UpperCamelCase_( snake_case__: List[Any] ) -> set: UpperCAmelCase__ = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
362
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 13 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = 99 UpperCAmelCase__ = 384 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 37 UpperCAmelCase__ = 'gelu' UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 512 UpperCAmelCase__ = 16 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = 128 UpperCAmelCase__ = 2 UpperCAmelCase__ = 9 UpperCAmelCase__ = 1 UpperCAmelCase__ = None def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TFConvBertModel(config=__a ) UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = True if hasattr(__a , 'use_cache' ): UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) for model_class in self.all_model_classes: UpperCAmelCase__ = self._prepare_for_class(__a , __a ) UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' ) UpperCAmelCase__ = tf.keras.models.load_model(__a ) UpperCAmelCase__ = model(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = outputs['encoder_hidden_states'] UpperCAmelCase__ = outputs['encoder_attentions'] else: UpperCAmelCase__ = outputs['hidden_states'] UpperCAmelCase__ = outputs['attentions'] self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) def check_decoder_attentions_output(__a ): UpperCAmelCase__ = len(__a ) self.assertEqual(out_len % 2 , 0 ) UpperCAmelCase__ = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a ): UpperCAmelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__a )[0] UpperCAmelCase__ = [1, 6, 768] self.assertEqual(output.shape , __a ) UpperCAmelCase__ = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
335
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCamelCase_( snake_case__: Tuple ) -> Union[str, Any]: UpperCAmelCase__ = filter(lambda snake_case__ : p.requires_grad , model.parameters() ) UpperCAmelCase__ = sum([np.prod(p.size() ) for p in model_parameters] ) return params _UpperCamelCase = logging.getLogger(__name__) def UpperCamelCase_( snake_case__: int , snake_case__: List[str] ) -> int: if metric == "rouge2": UpperCAmelCase__ = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": UpperCAmelCase__ = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": UpperCAmelCase__ = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) UpperCAmelCase__ = ModelCheckpoint( dirpath=lowercase__ , filename=lowercase__ , monitor=f"val_{metric}" , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def UpperCamelCase_( snake_case__: str , snake_case__: Dict ) -> Union[str, Any]: return EarlyStopping( monitor=f"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=lowercase__ , verbose=lowercase__ , ) class lowercase ( pl.Callback ): '''simple docstring''' def UpperCamelCase__ (self , __a , __a ) -> str: """simple docstring""" UpperCAmelCase__ = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__SCREAMING_SNAKE_CASE ) @rank_zero_only def UpperCamelCase__ (self , __a , __a , __a , __a=True ) -> Dict: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) UpperCAmelCase__ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results UpperCAmelCase__ = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCAmelCase__ = od / 'test_results.txt' UpperCAmelCase__ = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCAmelCase__ = od / F"{type_path}_results/{trainer.global_step:05d}.txt" UpperCAmelCase__ = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) generations_file.parent.mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , 'a+' ) as writer: for key in sorted(__SCREAMING_SNAKE_CASE ): if key in ["log", "progress_bar", "preds"]: continue UpperCAmelCase__ = metrics[key] if isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ): UpperCAmelCase__ = val.item() UpperCAmelCase__ = F"{key}: {val:.6f}\n" writer.write(__SCREAMING_SNAKE_CASE ) if not save_generations: return if "preds" in metrics: UpperCAmelCase__ = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(__SCREAMING_SNAKE_CASE ) @rank_zero_only def UpperCamelCase__ (self , __a , __a ) -> int: """simple docstring""" try: UpperCAmelCase__ = pl_module.model.model.num_parameters() except AttributeError: UpperCAmelCase__ = pl_module.model.num_parameters() UpperCAmelCase__ = count_trainable_parameters(__SCREAMING_SNAKE_CASE ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def UpperCamelCase__ (self , __a , __a ) -> str: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 'test' ) @rank_zero_only def UpperCamelCase__ (self , __a , __a ) -> List[str]: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
363
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCamelCase ) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , **__a ) -> Optional[Any]: """simple docstring""" super().__init__(**__a ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(__a ) def UpperCamelCase__ (self , **__a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = {} UpperCAmelCase__ = {} UpperCAmelCase__ = {} # preprocess args if "points_per_batch" in kwargs: UpperCAmelCase__ = kwargs['points_per_batch'] if "points_per_crop" in kwargs: UpperCAmelCase__ = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: UpperCAmelCase__ = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: UpperCAmelCase__ = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: UpperCAmelCase__ = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: UpperCAmelCase__ = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: UpperCAmelCase__ = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: UpperCAmelCase__ = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: UpperCAmelCase__ = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: UpperCAmelCase__ = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: UpperCAmelCase__ = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]: """simple docstring""" return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a ) def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = load_image(__a ) UpperCAmelCase__ = self.image_processor.size['longest_edge'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes( __a , __a , __a , __a , __a , __a ) UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": UpperCAmelCase__ = self.get_inference_context() with inference_context(): UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device ) UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) UpperCAmelCase__ = image_embeddings UpperCAmelCase__ = grid_points.shape[1] UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , __a , __a ): UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :] UpperCAmelCase__ = input_labels[:, i : i + points_per_batch] UpperCAmelCase__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = model_inputs.pop('input_boxes' ) UpperCAmelCase__ = model_inputs.pop('is_last' ) UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist() UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist() UpperCAmelCase__ = self.model(**__a ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCAmelCase__ = model_outputs['pred_masks'] UpperCAmelCase__ = self.image_processor.post_process_masks( __a , __a , __a , __a , binarize=__a ) UpperCAmelCase__ = model_outputs['iou_scores'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation( __a , __a , __a , __a ) UpperCAmelCase__ = defaultdict(__a ) for output in model_outputs: for k, v in output.items(): extra[k].append(__a ) UpperCAmelCase__ = {} if output_rle_mask: UpperCAmelCase__ = rle_mask if output_bboxes_mask: UpperCAmelCase__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
335
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
364
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) __SCREAMING_SNAKE_CASE = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) __SCREAMING_SNAKE_CASE = field( default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} ) __SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) __SCREAMING_SNAKE_CASE = field( default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) __SCREAMING_SNAKE_CASE = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) __SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} ) __SCREAMING_SNAKE_CASE = field( default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} ) __SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) __SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) __SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} ) __SCREAMING_SNAKE_CASE = field( default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) __SCREAMING_SNAKE_CASE = field( default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field( default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) __SCREAMING_SNAKE_CASE = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field( default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) __SCREAMING_SNAKE_CASE = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
335
0
from __future__ import annotations def UpperCamelCase_( snake_case__: list[int] ) -> Dict: return len(set(_a ) ) == len(_a ) if __name__ == "__main__": import doctest doctest.testmod()
365
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_attention_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_choices def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_attention_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = FlaxRobertaModelTester(self ) @slow def UpperCamelCase__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a ) UpperCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a )
335
0
import doctest from collections import deque import numpy as np class lowercase : '''simple docstring''' def __init__(self ) -> None: """simple docstring""" UpperCAmelCase__ = [2, 1, 2, -1] UpperCAmelCase__ = [1, 2, 3, 4] def UpperCamelCase__ (self ) -> list[float]: """simple docstring""" UpperCAmelCase__ = len(self.first_signal ) UpperCAmelCase__ = len(self.second_signal ) UpperCAmelCase__ = max(_lowercase , _lowercase ) # create a zero matrix of max_length x max_length UpperCAmelCase__ = [[0] * max_length for i in range(_lowercase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_lowercase ): UpperCAmelCase__ = deque(self.second_signal ) rotated_signal.rotate(_lowercase ) for j, item in enumerate(_lowercase ): matrix[i][j] += item # multiply the matrix with the first signal UpperCAmelCase__ = np.matmul(np.transpose(_lowercase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_lowercase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
366
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _UpperCamelCase = logging.get_logger(__name__) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , *__a , **__a ) -> None: """simple docstring""" warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
335
0
_UpperCamelCase = 9.8_0_6_6_5 def UpperCamelCase_( snake_case__: float , snake_case__: float , snake_case__: float = g ) -> Optional[Any]: if fluid_density <= 0: raise ValueError('Impossible fluid density' ) if volume < 0: raise ValueError('Impossible Object volume' ) if gravity <= 0: raise ValueError('Impossible Gravity' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
367
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
0
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class lowercase ( _a ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """conditional_detr""" __SCREAMING_SNAKE_CASE = ["""past_key_values"""] __SCREAMING_SNAKE_CASE = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__(self , __a=True , __a=None , __a=3 , __a=300 , __a=6 , __a=2048 , __a=8 , __a=6 , __a=2048 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=256 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=2 , __a=5 , __a=2 , __a=1 , __a=1 , __a=2 , __a=5 , __a=2 , __a=0.25 , **__a , ) -> Union[str, Any]: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) UpperCAmelCase__ = CONFIG_MAPPING["""resnet"""](out_features=['stage4'] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCAmelCase__ = backbone_config.get('model_type' ) UpperCAmelCase__ = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase__ = config_class.from_dict(__lowerCamelCase ) UpperCAmelCase__ = use_timm_backbone UpperCAmelCase__ = backbone_config UpperCAmelCase__ = num_channels UpperCAmelCase__ = num_queries UpperCAmelCase__ = d_model UpperCAmelCase__ = encoder_ffn_dim UpperCAmelCase__ = encoder_layers UpperCAmelCase__ = encoder_attention_heads UpperCAmelCase__ = decoder_ffn_dim UpperCAmelCase__ = decoder_layers UpperCAmelCase__ = decoder_attention_heads UpperCAmelCase__ = dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = activation_function UpperCAmelCase__ = init_std UpperCAmelCase__ = init_xavier_std UpperCAmelCase__ = encoder_layerdrop UpperCAmelCase__ = decoder_layerdrop UpperCAmelCase__ = encoder_layers UpperCAmelCase__ = auxiliary_loss UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = backbone UpperCAmelCase__ = use_pretrained_backbone UpperCAmelCase__ = dilation # Hungarian matcher UpperCAmelCase__ = class_cost UpperCAmelCase__ = bbox_cost UpperCAmelCase__ = giou_cost # Loss coefficients UpperCAmelCase__ = mask_loss_coefficient UpperCAmelCase__ = dice_loss_coefficient UpperCAmelCase__ = cls_loss_coefficient UpperCAmelCase__ = bbox_loss_coefficient UpperCAmelCase__ = giou_loss_coefficient UpperCAmelCase__ = focal_alpha super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def UpperCamelCase__ (self ) -> str: """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" return self.d_model def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCAmelCase__ = self.backbone_config.to_dict() UpperCAmelCase__ = self.__class__.model_type return output class lowercase ( _a ): '''simple docstring''' __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def UpperCamelCase__ (self ) -> int: """simple docstring""" return 1E-5 @property def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" return 12
368
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self , __a ) -> List[Any]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): UpperCAmelCase__ = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) benchmark.run() self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__a ): self.assertTrue(hasattr(__a , 'sequential' ) ) self.assertTrue(hasattr(__a , 'cumulative' ) ) self.assertTrue(hasattr(__a , 'current' ) ) self.assertTrue(hasattr(__a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
335
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: _UpperCamelCase = None _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''', }, } _UpperCamelCase = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } _UpperCamelCase = '''▁''' # Segments (not really needed) _UpperCamelCase = 0 _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = 3 _UpperCamelCase = 4 class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = """left""" __SCREAMING_SNAKE_CASE = XLNetTokenizer def __init__(self , __a=None , __a=None , __a=False , __a=True , __a=False , __a="<s>" , __a="</s>" , __a="<unk>" , __a="<sep>" , __a="<pad>" , __a="<cls>" , __a="<mask>" , __a=["<eop>", "<eod>"] , **__a , ) -> List[str]: """simple docstring""" UpperCAmelCase__ = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( vocab_file=lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) UpperCAmelCase__ = 3 UpperCAmelCase__ = do_lower_case UpperCAmelCase__ = remove_space UpperCAmelCase__ = keep_accents UpperCAmelCase__ = vocab_file UpperCAmelCase__ = False if not self.vocab_file else True def UpperCamelCase__ (self , __a , __a = None ) -> List[int]: """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCamelCase__ (self , __a , __a = None ) -> List[int]: """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCamelCase__ (self , __a , __a = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowercase_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase__ = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
369
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
335
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _UpperCamelCase = logging.get_logger(__name__) def UpperCamelCase_( snake_case__: Union[str, Any] ) -> str: UpperCAmelCase__ = r"\w+[.]\d+" UpperCAmelCase__ = re.findall(_lowerCamelCase , _lowerCamelCase ) for pat in pats: UpperCAmelCase__ = key.replace(_lowerCamelCase , '_'.join(pat.split('.' ) ) ) return key def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Any , snake_case__: Optional[int] ) -> Dict: UpperCAmelCase__ = pt_tuple_key[:-1] + ("scale",) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase__ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase__ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase__ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": UpperCAmelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCamelCase_( snake_case__: int , snake_case__: Any , snake_case__: Tuple=42 ) -> Tuple: UpperCAmelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase__ = flax_model.init_weights(PRNGKey(_lowerCamelCase ) ) UpperCAmelCase__ = flatten_dict(_lowerCamelCase ) UpperCAmelCase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase__ = rename_key(_lowerCamelCase ) UpperCAmelCase__ = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters UpperCAmelCase__ = rename_key_and_reshape_tensor(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown UpperCAmelCase__ = jnp.asarray(_lowerCamelCase ) return unflatten_dict(_lowerCamelCase )
370
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__(self , *, __a = 4 , __a = 768 , __a , __a , ) -> str: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) ) # parameters for additional clip time embeddings UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.Linear(__a , __a ) # parameters for encoder hidden states UpperCAmelCase__ = clip_extra_context_tokens UpperCAmelCase__ = nn.Linear( __a , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.LayerNorm(__a ) def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase__ = image_embeddings.shape[0] UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase__ = classifier_free_guidance_embeddings.expand( __a , -1 ) UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase__ = self.embedding_proj(__a ) UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a ) UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a ) UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens ) UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase__ = self.encoder_hidden_states_proj(__a ) UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a ) UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
335
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.6, """eval_loss""": 0.9}, }, { """framework""": """tensorflow""", """script""": """run_tf.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.3, """eval_loss""": 0.9}, }, ] ) class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='utf-8' , check=_SCREAMING_SNAKE_CASE , ) assert hasattr(self , 'env' ) def UpperCamelCase__ (self , __a=1 ) -> Union[str, Any]: """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-single" , instance_count=_SCREAMING_SNAKE_CASE , instance_type=self.instance_type , debugger_hook_config=_SCREAMING_SNAKE_CASE , hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='py36' , ) def UpperCamelCase__ (self , __a ) -> Dict: """simple docstring""" TrainingJobAnalytics(_SCREAMING_SNAKE_CASE ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.create_estimator() # run training estimator.fit() # result dataframe UpperCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) UpperCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , _SCREAMING_SNAKE_CASE )
371
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BioGptTokenizer __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(__a ) ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = 'lower newer' UpperCAmelCase__ = 'lower newer' return input_text, output_text def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ = 'lower' UpperCAmelCase__ = ['low', 'er</w>'] UpperCAmelCase__ = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase__ = tokens + ['<unk>'] UpperCAmelCase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
335
0
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin _UpperCamelCase = logging.get_logger(__name__) enable_full_determinism() class lowercase ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = UNetaDModel __SCREAMING_SNAKE_CASE = "sample" @property def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = 4 UpperCAmelCase__ = 3 UpperCAmelCase__ = (32, 32) UpperCAmelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(__a ) UpperCAmelCase__ = torch.tensor([10] ).to(__a ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) @property def UpperCamelCase__ (self ) -> Dict: """simple docstring""" return (3, 32, 32) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = { 'block_out_channels': (32, 64), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 32, } UpperCAmelCase__ = self.dummy_input return init_dict, inputs_dict class lowercase ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = UNetaDModel __SCREAMING_SNAKE_CASE = "sample" @property def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = 4 UpperCAmelCase__ = 4 UpperCAmelCase__ = (32, 32) UpperCAmelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(__a ) UpperCAmelCase__ = torch.tensor([10] ).to(__a ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" return (4, 32, 32) @property def UpperCamelCase__ (self ) -> Dict: """simple docstring""" return (4, 32, 32) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = { 'sample_size': 32, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (32, 64), 'attention_head_dim': 32, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } UpperCAmelCase__ = self.dummy_input return init_dict, inputs_dict def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__a ) self.assertIsNotNone(__a ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(__a ) UpperCAmelCase__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__a ) model.to(__a ) UpperCAmelCase__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__a ) model_accelerate.to(__a ) model_accelerate.eval() UpperCAmelCase__ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ = noise.to(__a ) UpperCAmelCase__ = torch.tensor([10] * noise.shape[0] ).to(__a ) UpperCAmelCase__ = model_accelerate(__a , __a )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCAmelCase__ , UpperCAmelCase__ = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=__a , low_cpu_mem_usage=__a ) model_normal_load.to(__a ) model_normal_load.eval() UpperCAmelCase__ = model_normal_load(__a , __a )['sample'] assert torch_all_close(__a , __a , rtol=1E-3 ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(__a ) UpperCAmelCase__ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ = noise.to(__a ) UpperCAmelCase__ = torch.tensor([10] * noise.shape[0] ).to(__a ) with torch.no_grad(): UpperCAmelCase__ = model(__a , __a ).sample UpperCAmelCase__ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase__ = torch.tensor([-13.32_58, -20.11_00, -15.98_73, -17.66_17, -23.05_96, -17.94_19, -13.36_75, -16.18_89, -12.38_00] ) # fmt: on self.assertTrue(torch_all_close(__a , __a , rtol=1E-3 ) ) class lowercase ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = UNetaDModel __SCREAMING_SNAKE_CASE = "sample" @property def UpperCamelCase__ (self , __a=(32, 32) ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = 4 UpperCAmelCase__ = 3 UpperCAmelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(__a ) UpperCAmelCase__ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=__a ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) @property def UpperCamelCase__ (self ) -> Dict: """simple docstring""" return (3, 32, 32) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = { 'block_out_channels': [32, 64, 64, 64], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } UpperCAmelCase__ = self.dummy_input return init_dict, inputs_dict @slow def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=__a ) self.assertIsNotNone(__a ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(__a ) UpperCAmelCase__ = self.dummy_input UpperCAmelCase__ = floats_tensor((4, 3) + (256, 256) ).to(__a ) UpperCAmelCase__ = noise UpperCAmelCase__ = model(**__a ) assert image is not None, "Make sure output is not None" @slow def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(__a ) UpperCAmelCase__ = 4 UpperCAmelCase__ = 3 UpperCAmelCase__ = (256, 256) UpperCAmelCase__ = torch.ones((batch_size, num_channels) + sizes ).to(__a ) UpperCAmelCase__ = torch.tensor(batch_size * [1E-4] ).to(__a ) with torch.no_grad(): UpperCAmelCase__ = model(__a , __a ).sample UpperCAmelCase__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ = torch.tensor([-48_42.86_91, -64_99.66_31, -38_00.19_53, -79_78.26_86, -1_09_80.71_29, -2_00_28.85_35, 81_48.28_22, 23_42.29_05, 5_67.76_08] ) # fmt: on self.assertTrue(torch_all_close(__a , __a , rtol=1E-2 ) ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(__a ) UpperCAmelCase__ = 4 UpperCAmelCase__ = 3 UpperCAmelCase__ = (32, 32) UpperCAmelCase__ = torch.ones((batch_size, num_channels) + sizes ).to(__a ) UpperCAmelCase__ = torch.tensor(batch_size * [1E-4] ).to(__a ) with torch.no_grad(): UpperCAmelCase__ = model(__a , __a ).sample UpperCAmelCase__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ = torch.tensor([-0.03_25, -0.09_00, -0.08_69, -0.03_32, -0.07_25, -0.02_70, -0.01_01, 0.02_27, 0.02_56] ) # fmt: on self.assertTrue(torch_all_close(__a , __a , rtol=1E-2 ) ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" pass
350
class lowercase : # Public class to implement a graph '''simple docstring''' def __init__(self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = row UpperCAmelCase__ = col UpperCAmelCase__ = graph def UpperCamelCase__ (self , __a , __a , __a ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a ) def UpperCamelCase__ (self ) -> int: # And finally, count all islands. """simple docstring""" UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__a , __a , __a ) count += 1 return count
335
0
import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCamelCase_( snake_case__: List[Any]=None ) -> List[str]: if subparsers is not None: UpperCAmelCase__ = subparsers.add_parser('env' ) else: UpperCAmelCase__ = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file' , default=_SCREAMING_SNAKE_CASE , help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def UpperCamelCase_( snake_case__: str ) -> Optional[Any]: UpperCAmelCase__ = torch.__version__ UpperCAmelCase__ = torch.cuda.is_available() UpperCAmelCase__ = is_xpu_available() UpperCAmelCase__ = is_npu_available() UpperCAmelCase__ = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): UpperCAmelCase__ = load_config_from_file(args.config_file ).to_dict() UpperCAmelCase__ = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})", "PyTorch XPU available": str(_SCREAMING_SNAKE_CASE ), "PyTorch NPU available": str(_SCREAMING_SNAKE_CASE ), "System RAM": f"{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB", } if pt_cuda_available: UpperCAmelCase__ = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([f"- {prop}: {val}" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) UpperCAmelCase__ = ( "\n".join([f"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else f"\t{accelerate_config}" ) print(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = accelerate_config return info def UpperCamelCase_( ) -> int: UpperCAmelCase__ = env_command_parser() UpperCAmelCase__ = parser.parse_args() env_command(_SCREAMING_SNAKE_CASE ) return 0 if __name__ == "__main__": raise SystemExit(main())
351
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _UpperCamelCase = Lock() def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Dict , snake_case__: Any ) -> str: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase__ = min(snake_case__ , snake_case__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase__ = max(snake_case__ , snake_case__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__ ) def UpperCamelCase_( snake_case__: Any ) -> Tuple: UpperCAmelCase__ = [] UpperCAmelCase__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr for i in range(1 , len(snake_case__ ) - 1 ): UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__ ) - 1, arr[len(snake_case__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__ ) ): UpperCAmelCase__ = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase_( ) -> Dict: UpperCAmelCase__ = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*snake_case__ ) UpperCAmelCase__ = odd_even_transposition(snake_case__ ) print('Sorted List\n' ) print(*snake_case__ ) if __name__ == "__main__": main()
335
0
from functools import reduce _UpperCamelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def UpperCamelCase_( snake_case__: str = N ) -> List[str]: return max( # mypy cannot properly interpret reduce int(reduce(lambda snake_case__ , snake_case__ : str(int(UpperCamelCase__ ) * int(UpperCamelCase__ ) ) , n[i : i + 13] ) ) for i in range(len(UpperCamelCase__ ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
352
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowercase : '''simple docstring''' def __init__(self ) -> str: """simple docstring""" UpperCAmelCase__ = '' UpperCAmelCase__ = '' UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = 256 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = cva.imread(__a , 0 ) UpperCAmelCase__ = copy.deepcopy(self.img ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCAmelCase__ = np.sum(__a ) for i in range(len(__a ) ): UpperCAmelCase__ = x[i] / self.k self.sk += prk UpperCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase__ = int(last % last ) UpperCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__a ) UpperCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase__ = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase__ = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') _UpperCamelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
335
0
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline A_ = logging.get_logger(__name__) @add_end_docstrings(_lowerCamelCase ) class lowercase ( _lowerCamelCase ): '''simple docstring''' def __init__(self , **__a ) -> Optional[Any]: """simple docstring""" super().__init__(**__a ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__(self , __a , **__a ) -> Any: """simple docstring""" return super().__call__(__a , **__a ) def UpperCamelCase__ (self , **__a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = {} if "candidate_labels" in kwargs: UpperCAmelCase__ = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: UpperCAmelCase__ = kwargs['hypothesis_template'] return preprocess_params, {}, {} def UpperCamelCase__ (self , __a , __a=None , __a="This is a sound of {}." ) -> Dict: """simple docstring""" if isinstance(__a , __a ): if audio.startswith('http://' ) or audio.startswith('https://' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png UpperCAmelCase__ = requests.get(__a ).content else: with open(__a , 'rb' ) as f: UpperCAmelCase__ = f.read() if isinstance(__a , __a ): UpperCAmelCase__ = ffmpeg_read(__a , self.feature_extractor.sampling_rate ) if not isinstance(__a , np.ndarray ): raise ValueError('We expect a numpy ndarray as input' ) if len(audio.shape ) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' ) UpperCAmelCase__ = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='pt' ) UpperCAmelCase__ = candidate_labels UpperCAmelCase__ = [hypothesis_template.format(__a ) for x in candidate_labels] UpperCAmelCase__ = self.tokenizer(__a , return_tensors=self.framework , padding=__a ) UpperCAmelCase__ = [text_inputs] return inputs def UpperCamelCase__ (self , __a ) -> Tuple: """simple docstring""" UpperCAmelCase__ = model_inputs.pop('candidate_labels' ) UpperCAmelCase__ = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , __a ): UpperCAmelCase__ = text_inputs[0] else: # Batching case. UpperCAmelCase__ = text_inputs[0][0] UpperCAmelCase__ = self.model(**__a , **__a ) UpperCAmelCase__ = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def UpperCamelCase__ (self , __a ) -> List[str]: """simple docstring""" UpperCAmelCase__ = model_outputs.pop('candidate_labels' ) UpperCAmelCase__ = model_outputs['logits'][0] if self.framework == "pt": UpperCAmelCase__ = logits.softmax(dim=0 ) UpperCAmelCase__ = probs.tolist() else: raise ValueError('`tf` framework not supported.' ) UpperCAmelCase__ = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(__a , __a ) , key=lambda __a : -x[0] ) ] return result
353
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = embed_dim UpperCAmelCase__ = depths UpperCAmelCase__ = num_heads UpperCAmelCase__ = window_size UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = hidden_act UpperCAmelCase__ = use_absolute_embeddings UpperCAmelCase__ = patch_norm UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = is_training UpperCAmelCase__ = scope UpperCAmelCase__ = use_labels UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = encoder_stride def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ (self ) -> str: """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = SwinvaModel(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase__ = 1 UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.type_sequence_label_size UpperCAmelCase__ = SwinvaForImageClassification(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = SwinvaModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def UpperCamelCase__ (self ) -> int: """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions UpperCAmelCase__ = len(self.model_tester.depths ) self.assertEqual(len(__a ) , __a ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = config.window_size**2 UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) UpperCAmelCase__ = len(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): UpperCAmelCase__ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase__ = 2 self.assertEqual(out_len + added_hidden_states , len(__a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.hidden_states UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__a ) , __a ) # Swinv2 has a different seq_length UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCAmelCase__ = outputs.reshaped_hidden_states self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape UpperCAmelCase__ = ( reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = 3 UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Dict: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = SwinvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = _config_zero_init(__a ) for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(config=__a ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( __a ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**__a ) # verify the logits UpperCAmelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
335
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class lowercase : '''simple docstring''' def __init__(self , __a , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 13 UpperCAmelCase__ = 7 UpperCAmelCase__ = 30 UpperCAmelCase__ = self.seq_length + self.mem_len UpperCAmelCase__ = 15 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = 99 UpperCAmelCase__ = [10, 50, 80] UpperCAmelCase__ = 32 UpperCAmelCase__ = 32 UpperCAmelCase__ = 4 UpperCAmelCase__ = 8 UpperCAmelCase__ = 128 UpperCAmelCase__ = 2 UpperCAmelCase__ = 2 UpperCAmelCase__ = None UpperCAmelCase__ = 1 UpperCAmelCase__ = 0 UpperCAmelCase__ = 3 UpperCAmelCase__ = self.vocab_size - 1 UpperCAmelCase__ = 0.01 def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" random.seed(self.seed ) tf.random.set_seed(self.seed ) def UpperCamelCase__ (self , __a , __a , __a , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFTransfoXLModel(__a ) UpperCAmelCase__ = model(__a ).to_tuple() UpperCAmelCase__ = {"input_ids": input_ids_a, "mems": mems_a} UpperCAmelCase__ = model(__a ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = TFTransfoXLLMHeadModel(__a ) UpperCAmelCase__ = model(__a ).to_tuple() UpperCAmelCase__ = {"input_ids": input_ids_a, "labels": lm_labels} UpperCAmelCase__ = model(__a ).to_tuple() UpperCAmelCase__ = model([input_ids_a, mems_a] ).to_tuple() UpperCAmelCase__ = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} UpperCAmelCase__ = model(__a ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = TFTransfoXLForSequenceClassification(__a ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() (UpperCAmelCase__) = config_and_inputs UpperCAmelCase__ = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class lowercase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = () if is_tf_available() else () __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": TFTransfoXLModel, """text-classification""": TFTransfoXLForSequenceClassification, """text-generation""": TFTransfoXLLMHeadModel, """zero-shot""": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self , __a , __a , __a , __a , __a ) -> str: """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TFTransfoXLModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , d_embed=37 ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" self.model_tester.set_seed() UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*__a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" self.model_tester.set_seed() UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*__a ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*__a ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: UpperCAmelCase__ = model.get_output_embeddings() assert isinstance(__a , tf.keras.layers.Layer ) UpperCAmelCase__ = model.get_bias() assert name is None else: UpperCAmelCase__ = model.get_output_embeddings() assert x is None UpperCAmelCase__ = model.get_bias() assert name is None def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" pass @slow def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = TFTransfoXLModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip(reason='This model doesn\'t play well with fit() due to not returning a single loss.' ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" pass @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' @unittest.skip('Skip test until #12651 is resolved.' ) @slow def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = TFTransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103' ) # fmt: off UpperCAmelCase__ = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off UpperCAmelCase__ = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> UpperCAmelCase__ = model.generate(__a , max_length=200 , do_sample=__a ) self.assertListEqual(output_ids[0].numpy().tolist() , __a )
354
from collections import deque def UpperCamelCase_( snake_case__: Tuple ) -> Tuple: UpperCAmelCase__ = len(snake_case__ ) UpperCAmelCase__ = deque() UpperCAmelCase__ = [False for _ in range(snake_case__ )] UpperCAmelCase__ = [-1 for _ in range(snake_case__ )] UpperCAmelCase__ = index_of[:] def strong_connect(snake_case__: List[str] , snake_case__: List[str] , snake_case__: List[str] ): UpperCAmelCase__ = index # the number when this node is seen UpperCAmelCase__ = index # lowest rank node reachable from here index += 1 stack.append(snake_case__ ) UpperCAmelCase__ = True for w in g[v]: if index_of[w] == -1: UpperCAmelCase__ = strong_connect(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: UpperCAmelCase__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: UpperCAmelCase__ = [] UpperCAmelCase__ = stack.pop() UpperCAmelCase__ = False component.append(snake_case__ ) while w != v: UpperCAmelCase__ = stack.pop() UpperCAmelCase__ = False component.append(snake_case__ ) components.append(snake_case__ ) return index UpperCAmelCase__ = [] for v in range(snake_case__ ): if index_of[v] == -1: strong_connect(snake_case__ , 0 , snake_case__ ) return components def UpperCamelCase_( snake_case__: Dict , snake_case__: List[Any] ) -> Optional[int]: UpperCAmelCase__ = [[] for _ in range(snake_case__ )] for u, v in edges: g[u].append(snake_case__ ) return g if __name__ == "__main__": # Test _UpperCamelCase = 7 _UpperCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6] _UpperCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5] _UpperCamelCase = [(u, v) for u, v in zip(source, target)] _UpperCamelCase = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
335
0
def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> list: UpperCAmelCase__ = len(snake_case__ ) UpperCAmelCase__ = [] for i in range(len(snake_case__ ) - pat_len + 1 ): UpperCAmelCase__ = True for j in range(snake_case__ ): if s[i + j] != pattern[j]: UpperCAmelCase__ = False break if match_found: position.append(snake_case__ ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
355
from ...configuration_utils import PretrainedConfig _UpperCamelCase = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """tapas""" def __init__(self , __a=30522 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=1024 , __a=[3, 256, 256, 2, 256, 256, 10] , __a=0.02 , __a=1E-1_2 , __a=0 , __a=10.0 , __a=0 , __a=1.0 , __a=None , __a=1.0 , __a=False , __a=None , __a=1.0 , __a=1.0 , __a=False , __a=False , __a="ratio" , __a=None , __a=None , __a=64 , __a=32 , __a=False , __a=True , __a=False , __a=False , __a=True , __a=False , __a=None , __a=None , **__a , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=__a , **__a ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_sizes UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps # Fine-tuning task hyperparameters UpperCAmelCase__ = positive_label_weight UpperCAmelCase__ = num_aggregation_labels UpperCAmelCase__ = aggregation_loss_weight UpperCAmelCase__ = use_answer_as_supervision UpperCAmelCase__ = answer_loss_importance UpperCAmelCase__ = use_normalized_answer_loss UpperCAmelCase__ = huber_loss_delta UpperCAmelCase__ = temperature UpperCAmelCase__ = aggregation_temperature UpperCAmelCase__ = use_gumbel_for_cells UpperCAmelCase__ = use_gumbel_for_aggregation UpperCAmelCase__ = average_approximation_function UpperCAmelCase__ = cell_selection_preference UpperCAmelCase__ = answer_loss_cutoff UpperCAmelCase__ = max_num_rows UpperCAmelCase__ = max_num_columns UpperCAmelCase__ = average_logits_per_cell UpperCAmelCase__ = select_one_column UpperCAmelCase__ = allow_empty_column_selection UpperCAmelCase__ = init_cell_selection_weights_to_zero UpperCAmelCase__ = reset_position_index_per_cell UpperCAmelCase__ = disable_per_token_loss # Aggregation hyperparameters UpperCAmelCase__ = aggregation_labels UpperCAmelCase__ = no_aggregation_label_index if isinstance(self.aggregation_labels , __a ): UpperCAmelCase__ = {int(__a ): v for k, v in aggregation_labels.items()}
335
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
356
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = { '''configuration_lxmert''': ['''LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LxmertConfig'''], '''tokenization_lxmert''': ['''LxmertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''LxmertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''LxmertEncoder''', '''LxmertForPreTraining''', '''LxmertForQuestionAnswering''', '''LxmertModel''', '''LxmertPreTrainedModel''', '''LxmertVisualFeatureEncoder''', '''LxmertXLayer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLxmertForPreTraining''', '''TFLxmertMainLayer''', '''TFLxmertModel''', '''TFLxmertPreTrainedModel''', '''TFLxmertVisualFeatureEncoder''', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
357
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase__ = XCLIPTextConfig() # derive patch size from model name UpperCAmelCase__ = model_name.find('patch' ) UpperCAmelCase__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) UpperCAmelCase__ = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 UpperCAmelCase__ = 12 UpperCAmelCase__ = 10_24 UpperCAmelCase__ = 40_96 UpperCAmelCase__ = 16 UpperCAmelCase__ = 24 UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 if model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = 3_36 UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 return config def UpperCamelCase_( snake_case__: Any ) -> Tuple: # text encoder if name == "token_embedding.weight": UpperCAmelCase__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": UpperCAmelCase__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: UpperCAmelCase__ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: UpperCAmelCase__ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: UpperCAmelCase__ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: UpperCAmelCase__ = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): UpperCAmelCase__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: UpperCAmelCase__ = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: UpperCAmelCase__ = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": UpperCAmelCase__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": UpperCAmelCase__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): UpperCAmelCase__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: UpperCAmelCase__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: UpperCAmelCase__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: UpperCAmelCase__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: UpperCAmelCase__ = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: UpperCAmelCase__ = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: UpperCAmelCase__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: UpperCAmelCase__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": UpperCAmelCase__ = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): UpperCAmelCase__ = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): UpperCAmelCase__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): UpperCAmelCase__ = orig_state_dict.pop(snake_case__ ) if "attn.in_proj" in key: UpperCAmelCase__ = key.split('.' ) if key.startswith('visual' ): UpperCAmelCase__ = key_split[3] UpperCAmelCase__ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[ :dim ] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[ -dim: ] else: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] elif key.startswith('mit' ): UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.vision_config.mit_hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[dim : dim * 2, :] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[dim : dim * 2] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.text_config.hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = rename_key(snake_case__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCAmelCase__ = val.T UpperCAmelCase__ = val return orig_state_dict def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]: if num_frames == 8: UpperCAmelCase__ = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: UpperCAmelCase__ = 'eating_spaghetti.npy' elif num_frames == 32: UpperCAmelCase__ = 'eating_spaghetti_32_frames.npy' UpperCAmelCase__ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , ) UpperCAmelCase__ = np.load(snake_case__ ) return list(snake_case__ ) def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None , snake_case__: Union[str, Any]=False ) -> List[Any]: UpperCAmelCase__ = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } UpperCAmelCase__ = model_to_url[model_name] UpperCAmelCase__ = 8 if "16-frames" in model_name: UpperCAmelCase__ = 16 elif "shot" in model_name: UpperCAmelCase__ = 32 UpperCAmelCase__ = get_xclip_config(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) model.eval() if "drive" in checkpoint_url: UpperCAmelCase__ = 'pytorch_model.bin' gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] else: UpperCAmelCase__ = torch.hub.load_state_dict_from_url(snake_case__ )['model'] UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(snake_case__ , strict=snake_case__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCAmelCase__ = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24 UpperCAmelCase__ = VideoMAEImageProcessor(size=snake_case__ ) UpperCAmelCase__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase__ = prepare_video(snake_case__ ) UpperCAmelCase__ = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): UpperCAmelCase__ = model(**snake_case__ ) # Verify outputs UpperCAmelCase__ = outputs.logits_per_video UpperCAmelCase__ = logits_per_video.softmax(dim=1 ) print('Probs:' , snake_case__ ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCAmelCase__ = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] ) elif model_name == "xclip-base-patch16": UpperCAmelCase__ = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] ) elif model_name == "xclip-large-patch14": UpperCAmelCase__ = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCAmelCase__ = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] ) else: raise ValueError(f"Model name {model_name} not supported" ) assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(snake_case__ , organization='nielsr' ) processor.push_to_hub(snake_case__ , organization='nielsr' ) slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _UpperCamelCase = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
335
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''microsoft/unispeech-sat-base-100h-libri-ft''': ( '''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json''' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowercase ( a_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """unispeech-sat""" def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.02 , __a=1E-5 , __a="group" , __a="gelu" , __a=(512, 512, 512, 512, 512, 512, 512) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=128 , __a=16 , __a=False , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a=320 , __a=2 , __a=0.1 , __a=100 , __a=256 , __a=256 , __a=0.1 , __a="mean" , __a=False , __a=False , __a=256 , __a=(512, 512, 512, 512, 1500) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=512 , __a=0 , __a=1 , __a=2 , __a=504 , **__a , ) -> List[Any]: """simple docstring""" super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = feat_extract_norm UpperCAmelCase__ = feat_extract_activation UpperCAmelCase__ = list(lowercase_ ) UpperCAmelCase__ = list(lowercase_ ) UpperCAmelCase__ = list(lowercase_ ) UpperCAmelCase__ = conv_bias UpperCAmelCase__ = num_conv_pos_embeddings UpperCAmelCase__ = num_conv_pos_embedding_groups UpperCAmelCase__ = len(self.conv_dim ) UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = feat_proj_dropout UpperCAmelCase__ = final_dropout UpperCAmelCase__ = layerdrop UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = vocab_size UpperCAmelCase__ = num_clusters UpperCAmelCase__ = do_stable_layer_norm UpperCAmelCase__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase__ = apply_spec_augment UpperCAmelCase__ = mask_time_prob UpperCAmelCase__ = mask_time_length UpperCAmelCase__ = mask_time_min_masks UpperCAmelCase__ = mask_feature_prob UpperCAmelCase__ = mask_feature_length UpperCAmelCase__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase__ = num_codevectors_per_group UpperCAmelCase__ = num_codevector_groups UpperCAmelCase__ = contrastive_logits_temperature UpperCAmelCase__ = feat_quantizer_dropout UpperCAmelCase__ = num_negatives UpperCAmelCase__ = codevector_dim UpperCAmelCase__ = proj_codevector_dim UpperCAmelCase__ = diversity_loss_weight # ctc loss UpperCAmelCase__ = ctc_loss_reduction UpperCAmelCase__ = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase__ = list(lowercase_ ) UpperCAmelCase__ = list(lowercase_ ) UpperCAmelCase__ = list(lowercase_ ) UpperCAmelCase__ = xvector_output_dim @property def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
358
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: Union[str, Any] ) -> Tuple: UpperCAmelCase__ = OmegaConf.load(snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] UpperCAmelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE UpperCAmelCase__ = {} UpperCAmelCase__ = 'first_stage_model.' for key in keys: if key.startswith(snake_case__ ): UpperCAmelCase__ = state_dict[key] # extract state_dict for UNetLDM UpperCAmelCase__ = {} UpperCAmelCase__ = 'model.diffusion_model.' for key in keys: if key.startswith(snake_case__ ): UpperCAmelCase__ = state_dict[key] UpperCAmelCase__ = config.model.params.first_stage_config.params UpperCAmelCase__ = config.model.params.unet_config.params UpperCAmelCase__ = VQModel(**snake_case__ ).eval() vqvae.load_state_dict(snake_case__ ) UpperCAmelCase__ = UNetLDMModel(**snake_case__ ).eval() unet.load_state_dict(snake_case__ ) UpperCAmelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , ) UpperCAmelCase__ = LDMPipeline(snake_case__ , snake_case__ , snake_case__ ) pipeline.save_pretrained(snake_case__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) _UpperCamelCase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
335
0
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging _UpperCamelCase = logging.get_logger(__name__) def UpperCamelCase_( ) -> int: UpperCAmelCase__ = os.getenv('SM_HP_MP_PARAMETERS' , '{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. UpperCAmelCase__ = json.loads(_lowercase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. UpperCAmelCase__ = os.getenv('SM_FRAMEWORK_PARAMS' , '{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". UpperCAmelCase__ = json.loads(_lowercase ) if not mpi_options.get('sagemaker_mpi_enabled' , _lowercase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , ) def UpperCamelCase__ (self ) -> str: """simple docstring""" super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , __A , ) @cached_property def UpperCamelCase__ (self ) -> "torch.device": """simple docstring""" logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: UpperCAmelCase__ = torch.device('cpu' ) UpperCAmelCase__ = 0 elif is_sagemaker_model_parallel_available(): UpperCAmelCase__ = smp.local_rank() UpperCAmelCase__ = torch.device('cuda' , __A ) UpperCAmelCase__ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta ) UpperCAmelCase__ = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) UpperCAmelCase__ = torch.device('cuda' , self.local_rank ) UpperCAmelCase__ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 UpperCAmelCase__ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. UpperCAmelCase__ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta ) UpperCAmelCase__ = torch.device('cuda' , self.local_rank ) UpperCAmelCase__ = 1 if device.type == "cuda": torch.cuda.set_device(__A ) return device @property def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" return not is_sagemaker_model_parallel_available() @property def UpperCamelCase__ (self ) -> str: """simple docstring""" return False
359
# flake8: noqa # Lint as: python3 _UpperCamelCase = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
335
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) def UpperCamelCase_( snake_case__: Dict ) -> List[Any]: # initialize config if "resnet-50" in model_name: UpperCAmelCase__ = ResNetConfig.from_pretrained('microsoft/resnet-50' ) elif "resnet-101" in model_name: UpperCAmelCase__ = ResNetConfig.from_pretrained('microsoft/resnet-101' ) else: raise ValueError('Model name should include either resnet50 or resnet101' ) UpperCAmelCase__ = DetrConfig(use_timm_backbone=snake_case__ , backbone_config=snake_case__ ) # set label attributes UpperCAmelCase__ = """panoptic""" in model_name if is_panoptic: UpperCAmelCase__ = 2_50 else: UpperCAmelCase__ = 91 UpperCAmelCase__ = """huggingface/label-files""" UpperCAmelCase__ = """coco-detection-id2label.json""" UpperCAmelCase__ = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) UpperCAmelCase__ = {int(snake_case__ ): v for k, v in idalabel.items()} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCamelCase_( snake_case__: Union[str, Any] ) -> Any: # here we list all keys to be renamed (original name on the left, our name on the right) UpperCAmelCase__ = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight') ) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight') ) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias') ) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean') ) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias") ) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) return rename_keys def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Any , snake_case__: List[str] ) -> int: UpperCAmelCase__ = state_dict.pop(snake_case__ ) UpperCAmelCase__ = val def UpperCamelCase_( snake_case__: str , snake_case__: Optional[int]=False ) -> List[Any]: UpperCAmelCase__ = """""" if is_panoptic: UpperCAmelCase__ = """detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase__ = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) UpperCAmelCase__ = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ = in_proj_weight[:2_56, :] UpperCAmelCase__ = in_proj_bias[:2_56] UpperCAmelCase__ = in_proj_weight[2_56:5_12, :] UpperCAmelCase__ = in_proj_bias[2_56:5_12] UpperCAmelCase__ = in_proj_weight[-2_56:, :] UpperCAmelCase__ = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase__ = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) UpperCAmelCase__ = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ = in_proj_weight[:2_56, :] UpperCAmelCase__ = in_proj_bias[:2_56] UpperCAmelCase__ = in_proj_weight[2_56:5_12, :] UpperCAmelCase__ = in_proj_bias[2_56:5_12] UpperCAmelCase__ = in_proj_weight[-2_56:, :] UpperCAmelCase__ = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase__ = state_dict.pop( f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) UpperCAmelCase__ = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase__ = in_proj_weight_cross_attn[:2_56, :] UpperCAmelCase__ = in_proj_bias_cross_attn[:2_56] UpperCAmelCase__ = in_proj_weight_cross_attn[2_56:5_12, :] UpperCAmelCase__ = in_proj_bias_cross_attn[2_56:5_12] UpperCAmelCase__ = in_proj_weight_cross_attn[-2_56:, :] UpperCAmelCase__ = in_proj_bias_cross_attn[-2_56:] def UpperCamelCase_( ) -> Optional[int]: UpperCAmelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase__ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: str=None , snake_case__: int=False ) -> List[str]: UpperCAmelCase__ = get_detr_config(snake_case__ ) # load original model from torch hub UpperCAmelCase__ = { """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(f"Converting model {model_name}..." ) UpperCAmelCase__ = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=snake_case__ ).eval() UpperCAmelCase__ = detr.state_dict() # rename keys for src, dest in create_rename_keys(snake_case__ ): if is_panoptic: UpperCAmelCase__ = """detr.""" + src rename_key(snake_case__ , snake_case__ , snake_case__ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case__ , is_panoptic=snake_case__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase__ = """detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): UpperCAmelCase__ = state_dict.pop(snake_case__ ) UpperCAmelCase__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase__ = state_dict.pop(snake_case__ ) UpperCAmelCase__ = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: UpperCAmelCase__ = state_dict.pop(snake_case__ ) UpperCAmelCase__ = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): UpperCAmelCase__ = state_dict.pop(snake_case__ ) UpperCAmelCase__ = val # finally, create HuggingFace model and load state dict UpperCAmelCase__ = DetrForSegmentation(snake_case__ ) if is_panoptic else DetrForObjectDetection(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # verify our conversion on an image UpperCAmelCase__ = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase__ = DetrImageProcessor(format=snake_case__ ) UpperCAmelCase__ = processor(images=prepare_img() , return_tensors='pt' ) UpperCAmelCase__ = encoding["""pixel_values"""] UpperCAmelCase__ = detr(snake_case__ ) UpperCAmelCase__ = model(snake_case__ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...' ) model.push_to_hub(f"nielsr/{model_name}" ) processor.push_to_hub(f"nielsr/{model_name}" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') _UpperCamelCase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
360
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """sew-d""" def __init__(self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a=2 , __a=512 , __a=256 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1E-7 , __a=1E-5 , __a="group" , __a="gelu" , __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=128 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=256 , __a=0 , __a=1 , __a=2 , **__a , ) -> str: """simple docstring""" super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = feat_extract_norm UpperCAmelCase__ = feat_extract_activation UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = conv_bias UpperCAmelCase__ = num_conv_pos_embeddings UpperCAmelCase__ = num_conv_pos_embedding_groups UpperCAmelCase__ = len(self.conv_dim ) UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = squeeze_factor UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = position_buckets UpperCAmelCase__ = share_att_key UpperCAmelCase__ = relative_attention UpperCAmelCase__ = norm_rel_ebd UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = hidden_act UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = feat_proj_dropout UpperCAmelCase__ = final_dropout UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = feature_layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase__ = apply_spec_augment UpperCAmelCase__ = mask_time_prob UpperCAmelCase__ = mask_time_length UpperCAmelCase__ = mask_time_min_masks UpperCAmelCase__ = mask_feature_prob UpperCAmelCase__ = mask_feature_length UpperCAmelCase__ = mask_feature_min_masks # ctc loss UpperCAmelCase__ = ctc_loss_reduction UpperCAmelCase__ = ctc_zero_infinity # sequence classification UpperCAmelCase__ = use_weighted_layer_sum UpperCAmelCase__ = classifier_proj_size @property def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
335
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () _UpperCamelCase = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). _UpperCamelCase = [0, 25, 50] _UpperCamelCase = [25, 50, 75] _UpperCamelCase = fuzz.membership.trimf(X, abca) _UpperCamelCase = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. _UpperCamelCase = np.ones(75) _UpperCamelCase = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) _UpperCamelCase = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) _UpperCamelCase = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) _UpperCamelCase = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) _UpperCamelCase = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] _UpperCamelCase = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) _UpperCamelCase = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] _UpperCamelCase = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] _UpperCamelCase = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
361
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _UpperCamelCase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCamelCase_( snake_case__: int ) -> str: for pegasus_name, hf_name in PATTERNS: UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ ) return k def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration: UpperCAmelCase__ = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) UpperCAmelCase__ = PegasusConfig(**snake_case__ ) UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ ) UpperCAmelCase__ = torch_model.model.state_dict() UpperCAmelCase__ = {} for k, v in tf_weights.items(): UpperCAmelCase__ = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: UpperCAmelCase__ = v.T UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) UpperCAmelCase__ = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: UpperCAmelCase__ = tf.train.list_variables(snake_case__ ) UpperCAmelCase__ = {} UpperCAmelCase__ = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): UpperCAmelCase__ = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ ) UpperCAmelCase__ = array return tf_weights def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]: # save tokenizer first UpperCAmelCase__ = Path(snake_case__ ).parent.name UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ ) UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"] if dataset == "large": UpperCAmelCase__ = task_specific_params UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) UpperCAmelCase__ = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() if args.save_dir is None: _UpperCamelCase = Path(args.tf_ckpt_path).parent.name _UpperCamelCase = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
335
0
"""simple docstring""" def UpperCamelCase_( snake_case__: Optional[Any] ) -> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
362
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 13 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = 99 UpperCAmelCase__ = 384 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 37 UpperCAmelCase__ = 'gelu' UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 512 UpperCAmelCase__ = 16 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = 128 UpperCAmelCase__ = 2 UpperCAmelCase__ = 9 UpperCAmelCase__ = 1 UpperCAmelCase__ = None def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TFConvBertModel(config=__a ) UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertForMaskedLM(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForSequenceClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFConvBertForMultipleChoice(config=__a ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFConvBertForTokenClassification(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertForQuestionAnswering(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = TFConvBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , hidden_size=37 ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = True if hasattr(__a , 'use_cache' ): UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) for model_class in self.all_model_classes: UpperCAmelCase__ = self._prepare_for_class(__a , __a ) UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = len(model(__a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) UpperCAmelCase__ = os.path.join(__a , 'saved_model' , '1' ) UpperCAmelCase__ = tf.keras.models.load_model(__a ) UpperCAmelCase__ = model(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = outputs['encoder_hidden_states'] UpperCAmelCase__ = outputs['encoder_attentions'] else: UpperCAmelCase__ = outputs['hidden_states'] UpperCAmelCase__ = outputs['attentions'] self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True UpperCAmelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) UpperCAmelCase__ = getattr(self.model_tester , 'key_length' , __a ) def check_decoder_attentions_output(__a ): UpperCAmelCase__ = len(__a ) self.assertEqual(out_len % 2 , 0 ) UpperCAmelCase__ = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__a ): UpperCAmelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__a )[0] UpperCAmelCase__ = [1, 6, 768] self.assertEqual(output.shape , __a ) UpperCAmelCase__ = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
335
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''ConvNextFeatureExtractor'''] _UpperCamelCase = ['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
363
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCamelCase ) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , **__a ) -> Optional[Any]: """simple docstring""" super().__init__(**__a ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(__a ) def UpperCamelCase__ (self , **__a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = {} UpperCAmelCase__ = {} UpperCAmelCase__ = {} # preprocess args if "points_per_batch" in kwargs: UpperCAmelCase__ = kwargs['points_per_batch'] if "points_per_crop" in kwargs: UpperCAmelCase__ = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: UpperCAmelCase__ = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: UpperCAmelCase__ = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: UpperCAmelCase__ = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: UpperCAmelCase__ = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: UpperCAmelCase__ = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: UpperCAmelCase__ = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: UpperCAmelCase__ = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: UpperCAmelCase__ = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: UpperCAmelCase__ = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]: """simple docstring""" return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a ) def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = load_image(__a ) UpperCAmelCase__ = self.image_processor.size['longest_edge'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes( __a , __a , __a , __a , __a , __a ) UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": UpperCAmelCase__ = self.get_inference_context() with inference_context(): UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device ) UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) UpperCAmelCase__ = image_embeddings UpperCAmelCase__ = grid_points.shape[1] UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , __a , __a ): UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :] UpperCAmelCase__ = input_labels[:, i : i + points_per_batch] UpperCAmelCase__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = model_inputs.pop('input_boxes' ) UpperCAmelCase__ = model_inputs.pop('is_last' ) UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist() UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist() UpperCAmelCase__ = self.model(**__a ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCAmelCase__ = model_outputs['pred_masks'] UpperCAmelCase__ = self.image_processor.post_process_masks( __a , __a , __a , __a , binarize=__a ) UpperCAmelCase__ = model_outputs['iou_scores'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation( __a , __a , __a , __a ) UpperCAmelCase__ = defaultdict(__a ) for output in model_outputs: for k, v in output.items(): extra[k].append(__a ) UpperCAmelCase__ = {} if output_rle_mask: UpperCAmelCase__ = rle_mask if output_bboxes_mask: UpperCAmelCase__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
335
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) class lowercase ( lowerCAmelCase__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = "timm_backbone" def __init__(self , __a=None , __a=3 , __a=True , __a=True , __a=None , **__a , ) -> Optional[int]: """simple docstring""" super().__init__(**a__ ) UpperCAmelCase__ = backbone UpperCAmelCase__ = num_channels UpperCAmelCase__ = features_only UpperCAmelCase__ = use_pretrained_backbone UpperCAmelCase__ = True UpperCAmelCase__ = out_indices if out_indices is not None else (-1,)
364
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) __SCREAMING_SNAKE_CASE = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) __SCREAMING_SNAKE_CASE = field( default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} ) __SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) __SCREAMING_SNAKE_CASE = field( default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) __SCREAMING_SNAKE_CASE = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) __SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} ) __SCREAMING_SNAKE_CASE = field( default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} ) __SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) __SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) __SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} ) __SCREAMING_SNAKE_CASE = field( default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) __SCREAMING_SNAKE_CASE = field( default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field( default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) __SCREAMING_SNAKE_CASE = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field( default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) __SCREAMING_SNAKE_CASE = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
335
0
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore _UpperCamelCase = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" _UpperCamelCase = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('''\n'''.join(upper_files) + '''\n''') _UpperCamelCase = [file for file in filepaths if ''' ''' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('''\n'''.join(space_files) + '''\n''') _UpperCamelCase = [file for file in filepaths if '''-''' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('''\n'''.join(hyphen_files) + '''\n''') _UpperCamelCase = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('''\n'''.join(nodir_files) + '''\n''') _UpperCamelCase = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
365
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_attention_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_choices def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_attention_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = FlaxRobertaModelTester(self ) @slow def UpperCamelCase__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a ) UpperCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a )
335
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class lowercase ( _lowerCAmelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """gpt_neox""" def __init__(self , __a=50432 , __a=6144 , __a=44 , __a=64 , __a=24576 , __a="gelu" , __a=0.25 , __a=10000 , __a=0.0 , __a=0.0 , __a=0.1 , __a=2048 , __a=0.02 , __a=1E-5 , __a=True , __a=0 , __a=2 , __a=False , __a=True , __a=None , **__a , ) -> List[Any]: """simple docstring""" super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = rotary_pct UpperCAmelCase__ = rotary_emb_base UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = hidden_dropout UpperCAmelCase__ = classifier_dropout UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = use_cache UpperCAmelCase__ = tie_word_embeddings UpperCAmelCase__ = use_parallel_residual UpperCAmelCase__ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!' ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F"got {self.rope_scaling}" ) UpperCAmelCase__ = self.rope_scaling.get('type' , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ = self.rope_scaling.get('factor' , SCREAMING_SNAKE_CASE_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}" )
366
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _UpperCamelCase = logging.get_logger(__name__) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , *__a , **__a ) -> None: """simple docstring""" warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
335
0
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """ssube/stable-diffusion-x4-upscaler-onnx""" def UpperCamelCase__ (self , __a=0 ) -> Dict: """simple docstring""" UpperCAmelCase__ = floats_tensor((1, 3, 128, 128) , rng=random.Random(UpperCamelCase__ ) ) UpperCAmelCase__ = torch.manual_seed(UpperCamelCase__ ) UpperCAmelCase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase__ = self.get_dummy_inputs() UpperCAmelCase__ = pipe(**UpperCamelCase__ ).images UpperCAmelCase__ = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCAmelCase__ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase__ = self.get_dummy_inputs() UpperCAmelCase__ = pipe(**UpperCamelCase__ ).images UpperCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCAmelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase__ = self.get_dummy_inputs() UpperCAmelCase__ = pipe(**UpperCamelCase__ ).images UpperCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCAmelCase__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase__ = self.get_dummy_inputs() UpperCAmelCase__ = pipe(**UpperCamelCase__ ).images UpperCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCAmelCase__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase__ = self.get_dummy_inputs() UpperCAmelCase__ = pipe(**UpperCamelCase__ ).images UpperCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase__ (self ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = ort.SessionOptions() UpperCAmelCase__ = False return options def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) UpperCAmelCase__ = init_image.resize((128, 128) ) # using the PNDM scheduler by default UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase__ = '''A fantasy landscape, trending on artstation''' UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase__ , output_type='np' , ) UpperCAmelCase__ = output.images UpperCAmelCase__ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase__ = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) UpperCAmelCase__ = init_image.resize((128, 128) ) UpperCAmelCase__ = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , subfolder='scheduler' ) UpperCAmelCase__ = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , scheduler=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase__ = '''A fantasy landscape, trending on artstation''' UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , guidance_scale=7.5 , num_inference_steps=20 , generator=UpperCamelCase__ , output_type='np' , ) UpperCAmelCase__ = output.images UpperCAmelCase__ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase__ = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
367
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
0
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _UpperCamelCase = get_logger(__name__) _UpperCamelCase = r"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class lowercase : '''simple docstring''' @add_start_docstrings(__a ) def __call__(self , __a , __a ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class lowercase : '''simple docstring''' @add_start_docstrings(__a ) def __call__(self , __a , __a ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class lowercase ( _a ): '''simple docstring''' @add_start_docstrings(__a ) def __call__(self , __a , __a , __a , **__a ) -> jnp.ndarray: """simple docstring""" for processor in self: UpperCAmelCase__ = inspect.signature(processor.__call__ ).parameters if len(__a ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F"Make sure that all the required parameters: {list(function_args.keys() )} for " F"{processor.__class__} are passed to the logits processor." ) UpperCAmelCase__ = processor(__a , __a , __a , **__a ) else: UpperCAmelCase__ = processor(__a , __a , __a ) return scores class lowercase ( _a ): '''simple docstring''' def __init__(self , __a ) -> int: """simple docstring""" if not isinstance(__a , __a ) or not (temperature > 0): raise ValueError(F"`temperature` has to be a strictly positive float, but is {temperature}" ) UpperCAmelCase__ = temperature def __call__(self , __a , __a , __a ) -> jnp.ndarray: """simple docstring""" UpperCAmelCase__ = scores / self.temperature return scores class lowercase ( _a ): '''simple docstring''' def __init__(self , __a , __a = -float('Inf' ) , __a = 1 ) -> str: """simple docstring""" if not isinstance(__a , __a ) or (top_p < 0 or top_p > 1.0): raise ValueError(F"`top_p` has to be a float > 0 and < 1, but is {top_p}" ) if not isinstance(__a , __a ) or (min_tokens_to_keep < 1): raise ValueError(F"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}" ) UpperCAmelCase__ = top_p UpperCAmelCase__ = filter_value UpperCAmelCase__ = min_tokens_to_keep def __call__(self , __a , __a , __a ) -> jnp.ndarray: """simple docstring""" UpperCAmelCase__ = lax.top_k(__a , scores.shape[-1] ) UpperCAmelCase__ = jnp.full_like(__a , self.filter_value ) UpperCAmelCase__ = jax.nn.softmax(__a , axis=-1 ).cumsum(axis=-1 ) UpperCAmelCase__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well UpperCAmelCase__ = jnp.roll(__a , 1 ) score_mask |= score_mask.at[:, 0].set(__a ) # min tokens to keep UpperCAmelCase__ = score_mask.at[:, : self.min_tokens_to_keep].set(__a ) UpperCAmelCase__ = jnp.where(__a , __a , __a ) UpperCAmelCase__ = jax.lax.sort_key_val(__a , __a )[-1] return next_scores class lowercase ( _a ): '''simple docstring''' def __init__(self , __a , __a = -float('Inf' ) , __a = 1 ) -> Any: """simple docstring""" if not isinstance(__a , __a ) or top_k <= 0: raise ValueError(F"`top_k` has to be a strictly positive integer, but is {top_k}" ) UpperCAmelCase__ = max(__a , __a ) UpperCAmelCase__ = filter_value def __call__(self , __a , __a , __a ) -> jnp.ndarray: """simple docstring""" UpperCAmelCase__ = scores.shape UpperCAmelCase__ = jnp.full(batch_size * vocab_size , self.filter_value ) UpperCAmelCase__ = min(self.top_k , scores.shape[-1] ) # Safety check UpperCAmelCase__ = lax.top_k(__a , __a ) UpperCAmelCase__ = jnp.broadcast_to((jnp.arange(__a ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() UpperCAmelCase__ = topk_scores.flatten() UpperCAmelCase__ = topk_indices.flatten() + shift UpperCAmelCase__ = next_scores_flat.at[topk_indices_flat].set(__a ) UpperCAmelCase__ = next_scores_flat.reshape(__a , __a ) return next_scores class lowercase ( _a ): '''simple docstring''' def __init__(self , __a ) -> str: """simple docstring""" UpperCAmelCase__ = bos_token_id def __call__(self , __a , __a , __a ) -> jnp.ndarray: """simple docstring""" UpperCAmelCase__ = jnp.full(scores.shape , -float('inf' ) ) UpperCAmelCase__ = 1 - jnp.bool_(cur_len - 1 ) UpperCAmelCase__ = jnp.where(__a , new_scores.at[:, self.bos_token_id].set(0 ) , __a ) return scores class lowercase ( _a ): '''simple docstring''' def __init__(self , __a , __a ) -> int: """simple docstring""" UpperCAmelCase__ = max_length UpperCAmelCase__ = eos_token_id def __call__(self , __a , __a , __a ) -> jnp.ndarray: """simple docstring""" UpperCAmelCase__ = jnp.full(scores.shape , -float('inf' ) ) UpperCAmelCase__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) UpperCAmelCase__ = jnp.where(__a , new_scores.at[:, self.eos_token_id].set(0 ) , __a ) return scores class lowercase ( _a ): '''simple docstring''' def __init__(self , __a , __a ) -> Dict: """simple docstring""" if not isinstance(__a , __a ) or min_length < 0: raise ValueError(F"`min_length` has to be a positive integer, but is {min_length}" ) if not isinstance(__a , __a ) or eos_token_id < 0: raise ValueError(F"`eos_token_id` has to be a positive integer, but is {eos_token_id}" ) UpperCAmelCase__ = min_length UpperCAmelCase__ = eos_token_id def __call__(self , __a , __a , __a ) -> jnp.ndarray: """simple docstring""" UpperCAmelCase__ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) UpperCAmelCase__ = jnp.where(__a , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , __a ) return scores class lowercase ( _a ): '''simple docstring''' def __init__(self , __a , __a ) -> int: """simple docstring""" UpperCAmelCase__ = list(__a ) UpperCAmelCase__ = begin_index def __call__(self , __a , __a , __a ) -> str: """simple docstring""" UpperCAmelCase__ = 1 - jnp.bool_(cur_len - self.begin_index ) UpperCAmelCase__ = jnp.where(__a , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , __a ) return scores class lowercase ( _a ): '''simple docstring''' def __init__(self , __a ) -> int: """simple docstring""" UpperCAmelCase__ = list(__a ) def __call__(self , __a , __a , __a ) -> jnp.ndarray: """simple docstring""" UpperCAmelCase__ = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class lowercase ( _a ): '''simple docstring''' def __init__(self , __a ) -> str: """simple docstring""" UpperCAmelCase__ = dict(__a ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. UpperCAmelCase__ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: UpperCAmelCase__ = force_token_array.at[index].set(__a ) UpperCAmelCase__ = jnp.intaa(__a ) def __call__(self , __a , __a , __a ) -> jnp.ndarray: """simple docstring""" def _force_token(__a ): UpperCAmelCase__ = scores.shape[0] UpperCAmelCase__ = self.force_token_array[generation_idx] UpperCAmelCase__ = jnp.ones_like(__a , dtype=scores.dtype ) * -float('inf' ) UpperCAmelCase__ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) UpperCAmelCase__ = lax.dynamic_update_slice(__a , __a , (0, current_token) ) return new_scores UpperCAmelCase__ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(__a ) , lambda: scores , ) , ) return scores class lowercase ( _a ): '''simple docstring''' def __init__(self , __a , __a , __a ) -> str: """simple docstring""" UpperCAmelCase__ = generate_config.eos_token_id UpperCAmelCase__ = generate_config.no_timestamps_token_id UpperCAmelCase__ = generate_config.no_timestamps_token_id + 1 UpperCAmelCase__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(__a , 'max_initial_timestamp_index' ): UpperCAmelCase__ = generate_config.max_initial_timestamp_index else: UpperCAmelCase__ = model_config.vocab_size if self.max_initial_timestamp_index is None: UpperCAmelCase__ = model_config.vocab_size def __call__(self , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(__a , __a ): UpperCAmelCase__ = jnp.where((cur_len - self.begin_index) >= 1 , __a , __a ) UpperCAmelCase__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , __a , ) UpperCAmelCase__ = jnp.where((cur_len - self.begin_index) < 2 , __a , __a ) UpperCAmelCase__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , __a , __a , ) return jnp.where( __a , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , __a , ) UpperCAmelCase__ = jax.vmap(__a )(__a , __a ) UpperCAmelCase__ = jnp.where(cur_len == self.begin_index , __a , __a ) UpperCAmelCase__ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , __a , ) UpperCAmelCase__ = self.timestamp_begin + self.max_initial_timestamp_index UpperCAmelCase__ = jnp.where( __a , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , __a , ) # if sum of probability over timestamps is above any other token, sample timestamp UpperCAmelCase__ = jax.nn.log_softmax(__a , axis=-1 ) def handle_cumulative_probs(__a , __a ): UpperCAmelCase__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) UpperCAmelCase__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , __a , ) UpperCAmelCase__ = jax.vmap(__a )(__a , __a ) return scores
368
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self , __a ) -> List[Any]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): UpperCAmelCase__ = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sgugger/tiny-distilbert-classification' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , only_pretrain_model=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , [config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'patrickvonplaten/t5-tiny-random' UpperCAmelCase__ = AutoConfig.from_pretrained(__a ) UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a , configs=[config] ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__a , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , save_to_csv=__a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__a , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__a , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__a , 'env.csv' ) , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) benchmark.run() self.assertTrue(Path(os.path.join(__a , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__a , 'env.csv' ) ).exists() ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__a ): self.assertTrue(hasattr(__a , 'sequential' ) ) self.assertTrue(hasattr(__a , 'cumulative' ) ) self.assertTrue(hasattr(__a , 'current' ) ) self.assertTrue(hasattr(__a , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__a , 'log.txt' ) , log_print=__a , trace_memory_line_by_line=__a , eager_mode=__a , multi_process=__a , ) UpperCAmelCase__ = TensorFlowBenchmark(__a ) UpperCAmelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__a , 'log.txt' ) ).exists() )
335
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase ( __a , __a ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """swin""" __SCREAMING_SNAKE_CASE = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__(self , __a=224 , __a=4 , __a=3 , __a=96 , __a=[2, 2, 6, 2] , __a=[3, 6, 12, 24] , __a=7 , __a=4.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=0.02 , __a=1E-5 , __a=32 , __a=None , __a=None , **__a , ) -> Any: """simple docstring""" super().__init__(**UpperCamelCase__ ) UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = embed_dim UpperCAmelCase__ = depths UpperCAmelCase__ = len(UpperCamelCase__ ) UpperCAmelCase__ = num_heads UpperCAmelCase__ = window_size UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = hidden_act UpperCAmelCase__ = use_absolute_embeddings UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase__ = int(embed_dim * 2 ** (len(UpperCamelCase__ ) - 1) ) UpperCAmelCase__ = ['stem'] + [F"stage{idx}" for idx in range(1 , len(UpperCamelCase__ ) + 1 )] UpperCAmelCase__ , UpperCAmelCase__ = get_aligned_output_features_output_indices( out_features=UpperCamelCase__ , out_indices=UpperCamelCase__ , stage_names=self.stage_names ) class lowercase ( __a ): '''simple docstring''' __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def UpperCamelCase__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCamelCase__ (self ) -> float: """simple docstring""" return 1E-4
369
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
335
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
370
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__(self , *, __a = 4 , __a = 768 , __a , __a , ) -> str: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) ) # parameters for additional clip time embeddings UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.Linear(__a , __a ) # parameters for encoder hidden states UpperCAmelCase__ = clip_extra_context_tokens UpperCAmelCase__ = nn.Linear( __a , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.LayerNorm(__a ) def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase__ = image_embeddings.shape[0] UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase__ = classifier_free_guidance_embeddings.expand( __a , -1 ) UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase__ = self.embedding_proj(__a ) UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a ) UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a ) UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens ) UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase__ = self.encoder_hidden_states_proj(__a ) UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a ) UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
335
0
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def UpperCamelCase_( snake_case__: bool = True , *snake_case__: str , **snake_case__: Optional[int] ) -> List[str]: if not is_tqdm_available(): raise ImportError('Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.' ) UpperCAmelCase__ = False if main_process_only: UpperCAmelCase__ = PartialState().local_process_index == 0 return _tqdm(*a__ , **a__ , disable=a__ )
371
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BioGptTokenizer __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCAmelCase__ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(__a ) ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = 'lower newer' UpperCAmelCase__ = 'lower newer' return input_text, output_text def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ = 'lower' UpperCAmelCase__ = ['low', 'er</w>'] UpperCAmelCase__ = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase__ = tokens + ['<unk>'] UpperCAmelCase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) UpperCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__a , __a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
335
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) def UpperCamelCase_( snake_case__: Tuple ) -> Union[str, Any]: UpperCAmelCase__ = torch.load(__a , map_location='cpu' ) if "model" in sd.keys(): UpperCAmelCase__ = torch.load(__a , map_location='cpu' )['model'] # pop unnecessary weights UpperCAmelCase__ = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(__a ) UpperCAmelCase__ = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase__ = sd.pop(__a ) UpperCAmelCase__ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase__ = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase__ = key.replace('.qkv_proj.' , '.q_proj.' ) UpperCAmelCase__ = key.replace('.qkv_proj.' , '.k_proj.' ) UpperCAmelCase__ = key.replace('.qkv_proj.' , '.v_proj.' ) UpperCAmelCase__ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase__ = torch.split(__a , depth // 3 , dim=0 ) UpperCAmelCase__ = q UpperCAmelCase__ = k UpperCAmelCase__ = v del sd[key] return sd @torch.no_grad() def UpperCamelCase_( snake_case__: int , snake_case__: Union[str, Any] , snake_case__: Tuple=None ) -> Optional[Any]: UpperCAmelCase__ = load_checkpoint(__a ) if config is not None: UpperCAmelCase__ = OPTConfig.from_pretrained(__a ) else: UpperCAmelCase__ = OPTConfig() UpperCAmelCase__ = OPTModel(__a ).half().eval() model.load_state_dict(__a ) # Check results Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') _UpperCamelCase = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
350
class lowercase : # Public class to implement a graph '''simple docstring''' def __init__(self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = row UpperCAmelCase__ = col UpperCAmelCase__ = graph def UpperCamelCase__ (self , __a , __a , __a ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a ) def UpperCamelCase__ (self ) -> int: # And finally, count all islands. """simple docstring""" UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__a , __a , __a ) count += 1 return count
335
0