code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]: A: str = np.inf def set_batch_size(__lowercase ) -> None: nonlocal batch_size if isinstance(A__ , A__ ): A: Dict = min(A__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(A__ , A__ ): A: Union[str, Any] = min(A__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(A__ , A__ ) and feature.dtype == "binary": A: Any = min(A__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(A__ , A__ ) return None if batch_size is np.inf else batch_size class lowerCAmelCase_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : NestedDataStructureLike[PathLike] , SCREAMING_SNAKE_CASE_ : Optional[NamedSplit] = None , SCREAMING_SNAKE_CASE_ : Optional[Features] = None , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ) -> List[Any]: '''simple docstring''' super().__init__( UpperCamelCase_ , split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , num_proc=UpperCamelCase_ , **UpperCamelCase_ , ) A: Optional[int] = path_or_paths if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else {self.split: path_or_paths} A: str = _PACKAGED_DATASETS_MODULES['''parquet'''][1] A: Dict = Parquet( cache_dir=UpperCamelCase_ , data_files=UpperCamelCase_ , features=UpperCamelCase_ , hash=UpperCamelCase_ , **UpperCamelCase_ , ) def _snake_case ( self : Dict ) -> str: '''simple docstring''' if self.streaming: A: Optional[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A: Optional[Any] = None A: List[str] = None A: Tuple = None A: Optional[int] = None self.builder.download_and_prepare( download_config=UpperCamelCase_ , download_mode=UpperCamelCase_ , verification_mode=UpperCamelCase_ , base_path=UpperCamelCase_ , num_proc=self.num_proc , ) A: List[str] = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase_ , in_memory=self.keep_in_memory ) return dataset class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dataset , SCREAMING_SNAKE_CASE_ : Union[PathLike, BinaryIO] , SCREAMING_SNAKE_CASE_ : Optional[int] = None , **SCREAMING_SNAKE_CASE_ : Any , ) -> Any: '''simple docstring''' A: Dict = dataset A: List[Any] = path_or_buf A: List[Any] = batch_size or get_writer_batch_size(dataset.features ) A: int = parquet_writer_kwargs def _snake_case ( self : Union[str, Any] ) -> int: '''simple docstring''' A: Any = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: A: Union[str, Any] = self._write(file_obj=UpperCamelCase_ , batch_size=UpperCamelCase_ , **self.parquet_writer_kwargs ) else: A: Optional[Any] = self._write(file_obj=self.path_or_buf , batch_size=UpperCamelCase_ , **self.parquet_writer_kwargs ) return written def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : BinaryIO , SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: '''simple docstring''' A: str = 0 A: str = parquet_writer_kwargs.pop('''path_or_buf''' , UpperCamelCase_ ) A: Dict = self.dataset.features.arrow_schema A: Optional[Any] = pq.ParquetWriter(UpperCamelCase_ , schema=UpperCamelCase_ , **UpperCamelCase_ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , UpperCamelCase_ ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): A: List[str] = query_table( table=self.dataset._data , key=slice(UpperCamelCase_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(UpperCamelCase_ ) written += batch.nbytes writer.close() return written
357
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
0
'''simple docstring''' import torch from torch import nn class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : Optional[int]=False ) -> str: '''simple docstring''' super().__init__() A: Any = n_token A: Optional[Any] = d_embed A: Dict = d_proj A: str = cutoffs + [n_token] A: List[Any] = [0] + self.cutoffs A: Tuple = div_val A: List[Any] = self.cutoffs[0] A: List[Any] = len(self.cutoffs ) - 1 A: Tuple = self.shortlist_size + self.n_clusters if self.n_clusters > 0: A: Any = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) A: Optional[int] = nn.Parameter(torch.zeros(self.n_clusters ) ) A: Union[str, Any] = nn.ModuleList() A: int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowerCAmelCase , __lowerCAmelCase ) ) ) else: self.out_projs.append(__lowerCAmelCase ) self.out_layers.append(nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): A , A: Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1] A: List[str] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowerCAmelCase , __lowerCAmelCase ) ) ) self.out_layers.append(nn.Linear(__lowerCAmelCase , r_idx - l_idx ) ) A: str = keep_order def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[Any]: '''simple docstring''' if proj is None: A: Union[str, Any] = nn.functional.linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: A: Union[str, Any] = nn.functional.linear(__lowerCAmelCase , proj.t().contiguous() ) A: List[str] = nn.functional.linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : List[str]=False ) -> Optional[int]: '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n A: Optional[int] = hidden[..., :-1, :].contiguous() A: List[Any] = labels[..., 1:].contiguous() A: str = hidden.view(-1 , hidden.size(-1 ) ) A: Any = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: A: Optional[Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: A: Optional[Any] = self._compute_logit(__lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: A: List[Any] = labels != -1_00 A: int = torch.zeros_like(__lowerCAmelCase , dtype=hidden.dtype , device=hidden.device ) A: str = ( -nn.functional.log_softmax(__lowerCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: A: Any = nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) else: # construct weights and biases A , A: str = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: A , A: str = self.cutoff_ends[i], self.cutoff_ends[i + 1] A: List[str] = self.out_layers[0].weight[l_idx:r_idx] A: Tuple = self.out_layers[0].bias[l_idx:r_idx] else: A: Any = self.out_layers[i].weight A: Optional[int] = self.out_layers[i].bias if i == 0: A: List[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) A: List[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowerCAmelCase ) biases.append(__lowerCAmelCase ) A , A , A: Tuple = weights[0], biases[0], self.out_projs[0] A: Union[str, Any] = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A: int = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) if labels is None: A: List[str] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: A: Optional[Any] = torch.zeros_like(__lowerCAmelCase , dtype=hidden.dtype , device=hidden.device ) A: str = 0 A: Tuple = [0] + self.cutoffs for i in range(len(__lowerCAmelCase ) - 1 ): A , A: Optional[Any] = cutoff_values[i], cutoff_values[i + 1] if labels is not None: A: Tuple = (labels >= l_idx) & (labels < r_idx) A: Union[str, Any] = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue A: Tuple = labels.index_select(0 , __lowerCAmelCase ) - l_idx A: str = head_logprob.index_select(0 , __lowerCAmelCase ) A: List[Any] = hidden.index_select(0 , __lowerCAmelCase ) else: A: Optional[int] = hidden if i == 0: if labels is not None: A: Union[str, Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: A: List[Any] = head_logprob[:, : self.cutoffs[0]] else: A , A , A: Dict = weights[i], biases[i], self.out_projs[i] A: Any = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A: Union[str, Any] = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) A: Dict = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: A: Optional[Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: A: List[Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i A: Dict = logprob_i if labels is not None: if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 , __lowerCAmelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Any ) -> Dict: '''simple docstring''' if self.n_clusters == 0: A: List[str] = self._compute_logit(__lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) else: # construct weights and biases A , A: str = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: A , A: str = self.cutoff_ends[i], self.cutoff_ends[i + 1] A: List[Any] = self.out_layers[0].weight[l_idx:r_idx] A: Dict = self.out_layers[0].bias[l_idx:r_idx] else: A: str = self.out_layers[i].weight A: str = self.out_layers[i].bias if i == 0: A: List[str] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) A: Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowerCAmelCase ) biases.append(__lowerCAmelCase ) A , A , A: str = weights[0], biases[0], self.out_projs[0] A: Union[str, Any] = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A: Any = hidden.new_empty((head_logit.size(0 ), self.n_token) ) A: Union[str, Any] = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) A: List[str] = [0] + self.cutoffs for i in range(len(__lowerCAmelCase ) - 1 ): A , A: List[str] = cutoff_values[i], cutoff_values[i + 1] if i == 0: A: List[Any] = head_logprob[:, : self.cutoffs[0]] else: A , A , A: Any = weights[i], biases[i], self.out_projs[i] A: Tuple = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A: Any = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) A: int = head_logprob[:, -i] + tail_logprob_i A: Tuple = logprob_i return out
358
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' pass class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> None: '''simple docstring''' A: Any = data A: Node | None = None def __iter__( self : Optional[int] ) -> List[str]: '''simple docstring''' A: List[str] = self A: Dict = [] while node: if node in visited: raise ContainsLoopError visited.append(SCREAMING_SNAKE_CASE_ ) yield node.data A: str = node.next_node @property def _snake_case ( self : List[str] ) -> bool: '''simple docstring''' try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": UpperCamelCase = Node(1) UpperCamelCase = Node(2) UpperCamelCase = Node(3) UpperCamelCase = Node(4) print(root_node.has_loop) # False UpperCamelCase = root_node.next_node print(root_node.has_loop) # True UpperCamelCase = Node(5) UpperCamelCase = Node(6) UpperCamelCase = Node(5) UpperCamelCase = Node(6) print(root_node.has_loop) # False UpperCamelCase = Node(1) print(root_node.has_loop) # False
334
0
'''simple docstring''' import qiskit def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> qiskit.result.counts.Counts: A: Any = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register A: Any = qiskit.QuantumCircuit(_UpperCamelCase , _UpperCamelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator A: Dict = qiskit.execute(_UpperCamelCase , _UpperCamelCase , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCamelCase ) if __name__ == "__main__": UpperCamelCase = single_qubit_measure(2, 2) print(f'Total count for various states are: {counts}')
359
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE( __lowercase = 4 ) -> list[list[int]]: A: Tuple = abs(__lowercase ) or 4 return [[1 + x + y * row_size for x in range(__lowercase )] for y in range(__lowercase )] def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_row(transpose(__lowercase ) ) # OR.. transpose(reverse_column(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_row(reverse_column(__lowercase ) ) # OR.. reverse_column(reverse_row(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_column(transpose(__lowercase ) ) # OR.. transpose(reverse_row(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Union[str, Any] = [list(__lowercase ) for x in zip(*__lowercase )] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Optional[int] = matrix[::-1] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Optional[Any] = [x[::-1] for x in matrix] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> None: for i in matrix: print(*__lowercase ) if __name__ == "__main__": UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
334
0
'''simple docstring''' from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """nielsr/canine-s""": 2048, } # Unicode defines 1,114,112 total “codepoints” UpperCamelCase = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py UpperCamelCase = 0 UpperCamelCase = 0xE0_00 UpperCamelCase = 0xE0_01 UpperCamelCase = 0xE0_02 UpperCamelCase = 0xE0_03 UpperCamelCase = 0xE0_04 # Maps special codepoints to human-readable names. UpperCamelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. UpperCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str=chr(__lowerCAmelCase ) , SCREAMING_SNAKE_CASE_ : Union[str, Any]=chr(__lowerCAmelCase ) , SCREAMING_SNAKE_CASE_ : List[Any]=chr(__lowerCAmelCase ) , SCREAMING_SNAKE_CASE_ : Optional[Any]=chr(__lowerCAmelCase ) , SCREAMING_SNAKE_CASE_ : List[Any]=chr(__lowerCAmelCase ) , SCREAMING_SNAKE_CASE_ : Union[str, Any]=chr(__lowerCAmelCase ) , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , SCREAMING_SNAKE_CASE_ : List[str]=20_48 , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ) -> Union[str, Any]: '''simple docstring''' A: Dict = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else bos_token A: Union[str, Any] = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else eos_token A: Tuple = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else sep_token A: str = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else cls_token A: List[str] = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A: int = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token super().__init__( bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , model_max_length=__lowerCAmelCase , **__lowerCAmelCase , ) # Creates a mapping for looking up the IDs of special symbols. A: int = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): A: Any = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. A: Optional[Any] = { codepoint: name for name, codepoint in self._special_codepoints.items() } A: str = UNICODE_VOCAB_SIZE A: int = len(self._special_codepoints ) @property def _snake_case ( self : List[Any] ) -> Any: '''simple docstring''' return self._unicode_vocab_size def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Any: '''simple docstring''' return list(__lowerCAmelCase ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]: '''simple docstring''' try: return ord(__lowerCAmelCase ) except TypeError: raise ValueError(f"""invalid token: \'{token}\'""" ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> str: '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__lowerCAmelCase ) except TypeError: raise ValueError(f"""invalid id: {index}""" ) def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[int]: '''simple docstring''' return "".join(__lowerCAmelCase ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] = None ) -> Dict: '''simple docstring''' A: List[str] = [self.sep_token_id] A: Any = [self.cls_token_id] A: Dict = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple = None , SCREAMING_SNAKE_CASE_ : List[str] = False ) -> Dict: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) A: List[Any] = [1] + ([0] * len(__lowerCAmelCase )) + [1] if token_ids_a is not None: result += ([0] * len(__lowerCAmelCase )) + [1] return result def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] = None ) -> Dict: '''simple docstring''' A: Tuple = [self.sep_token_id] A: Optional[int] = [self.cls_token_id] A: Tuple = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] = None ) -> Dict: '''simple docstring''' return ()
360
'''simple docstring''' from __future__ import annotations import numpy as np def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict: return np.maximum(0 , __lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
334
0
from __future__ import annotations def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = None , __lowercase = None ) -> None: if start is None: A: str = 0 if end is None: A: Union[str, Any] = len(a__ ) - 1 if start >= end: return A: Dict = (start + end) // 2 slowsort(a__ , a__ , a__ ) slowsort(a__ , mid + 1 , a__ ) if sequence[end] < sequence[mid]: A , A: Union[str, Any] = sequence[mid], sequence[end] slowsort(a__ , a__ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
361
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
0
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = None , __lowercase = None ) -> None: if start is None: A: Optional[int] = 0 if end is None: A: Optional[int] = len(lowercase_ ) - 1 if start >= end: return A: Optional[Any] = (start + end) // 2 slowsort(lowercase_ , lowercase_ , lowercase_ ) slowsort(lowercase_ , mid + 1 , lowercase_ ) if sequence[end] < sequence[mid]: A , A: Optional[int] = sequence[mid], sequence[end] slowsort(lowercase_ , lowercase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
362
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
334
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int=13 , SCREAMING_SNAKE_CASE_ : List[Any]=7 , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Dict=99 , SCREAMING_SNAKE_CASE_ : Optional[Any]=32 , SCREAMING_SNAKE_CASE_ : Tuple=5 , SCREAMING_SNAKE_CASE_ : Any=4 , SCREAMING_SNAKE_CASE_ : Tuple=37 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Tuple=0.1 , SCREAMING_SNAKE_CASE_ : Any=5_12 , SCREAMING_SNAKE_CASE_ : Tuple=16 , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : str=0.02 , SCREAMING_SNAKE_CASE_ : List[str]=4 , ) -> Dict: '''simple docstring''' A: List[str] = parent A: Optional[int] = batch_size A: int = seq_length A: Tuple = is_training A: Tuple = use_attention_mask A: Optional[Any] = use_token_type_ids A: str = use_labels A: int = vocab_size A: Union[str, Any] = hidden_size A: int = num_hidden_layers A: Tuple = num_attention_heads A: Tuple = intermediate_size A: int = hidden_act A: List[str] = hidden_dropout_prob A: str = attention_probs_dropout_prob A: Dict = max_position_embeddings A: Any = type_vocab_size A: int = type_sequence_label_size A: int = initializer_range A: Optional[Any] = num_choices def _snake_case ( self : List[Any] ) -> str: '''simple docstring''' A: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A: Union[str, Any] = None if self.use_attention_mask: A: str = random_attention_mask([self.batch_size, self.seq_length] ) A: Optional[int] = None if self.use_token_type_ids: A: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A: Any = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A: List[str] = self.prepare_config_and_inputs() A , A , A , A: int = config_and_inputs A: List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _snake_case ( self : Tuple ) -> Any: '''simple docstring''' A: Optional[int] = self.prepare_config_and_inputs() A , A , A , A: int = config_and_inputs A: Tuple = True A: Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Any = True UpperCamelCase_ : Tuple = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _snake_case ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A: List[Any] = FlaxRobertaModelTester(self ) @slow def _snake_case ( self : Tuple ) -> Any: '''simple docstring''' for model_class_name in self.all_model_classes: A: List[str] = model_class_name.from_pretrained('''roberta-base''' , from_pt=_a ) A: Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a )
363
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , SCREAMING_SNAKE_CASE_ : int = 6_55_36 , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : str = "fourier" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , SCREAMING_SNAKE_CASE_ : Tuple[str] = "UNetMidBlock1D" , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : Tuple[int] = (32, 32, 64) , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : int = 8 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : bool = False , ) -> Tuple: '''simple docstring''' super().__init__() A: Optional[Any] = sample_size # time if time_embedding_type == "fourier": A: Tuple = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=SCREAMING_SNAKE_CASE_ , log=SCREAMING_SNAKE_CASE_ , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ ) A: List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": A: str = Timesteps( block_out_channels[0] , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ , downscale_freq_shift=SCREAMING_SNAKE_CASE_ ) A: Any = block_out_channels[0] if use_timestep_embedding: A: Optional[Any] = block_out_channels[0] * 4 A: List[Any] = TimestepEmbedding( in_channels=SCREAMING_SNAKE_CASE_ , time_embed_dim=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , out_dim=block_out_channels[0] , ) A: Optional[Any] = nn.ModuleList([] ) A: str = None A: str = nn.ModuleList([] ) A: Tuple = None # down A: Any = in_channels for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): A: Optional[int] = output_channel A: List[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels A: List[Any] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 A: Optional[int] = get_down_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(SCREAMING_SNAKE_CASE_ ) # mid A: Union[str, Any] = get_mid_block( SCREAMING_SNAKE_CASE_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=SCREAMING_SNAKE_CASE_ , add_downsample=SCREAMING_SNAKE_CASE_ , ) # up A: Optional[Any] = list(reversed(SCREAMING_SNAKE_CASE_ ) ) A: List[str] = reversed_block_out_channels[0] if out_block_type is None: A: int = out_channels else: A: Union[str, Any] = block_out_channels[0] for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): A: List[Any] = output_channel A: int = ( reversed_block_out_channels[i + 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 else final_upsample_channels ) A: Optional[int] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 A: Optional[Any] = get_up_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(SCREAMING_SNAKE_CASE_ ) A: Any = output_channel # out A: List[str] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) A: Optional[int] = get_out_block( out_block_type=SCREAMING_SNAKE_CASE_ , num_groups_out=SCREAMING_SNAKE_CASE_ , embed_dim=block_out_channels[0] , out_channels=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , fc_dim=block_out_channels[-1] // 4 , ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Union[torch.Tensor, float, int] , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[UNetaDOutput, Tuple]: '''simple docstring''' A: Any = timestep if not torch.is_tensor(SCREAMING_SNAKE_CASE_ ): A: Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ) and len(timesteps.shape ) == 0: A: List[str] = timesteps[None].to(sample.device ) A: int = self.time_proj(SCREAMING_SNAKE_CASE_ ) if self.config.use_timestep_embedding: A: List[Any] = self.time_mlp(SCREAMING_SNAKE_CASE_ ) else: A: str = timestep_embed[..., None] A: Union[str, Any] = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) A: Tuple = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down A: List[str] = () for downsample_block in self.down_blocks: A , A: Optional[int] = downsample_block(hidden_states=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: A: Dict = self.mid_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): A: List[Any] = down_block_res_samples[-1:] A: List[str] = down_block_res_samples[:-1] A: Optional[int] = upsample_block(SCREAMING_SNAKE_CASE_ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) # 5. post-process if self.out_block: A: Any = self.out_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=SCREAMING_SNAKE_CASE_ )
334
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = 'beit' def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int]=81_92 , SCREAMING_SNAKE_CASE_ : Optional[int]=7_68 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : List[Any]=12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=30_72 , SCREAMING_SNAKE_CASE_ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE_ : Tuple=0.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : Any=1E-12 , SCREAMING_SNAKE_CASE_ : Tuple=2_24 , SCREAMING_SNAKE_CASE_ : Optional[int]=16 , SCREAMING_SNAKE_CASE_ : Optional[int]=3 , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : List[str]=False , SCREAMING_SNAKE_CASE_ : List[Any]=False , SCREAMING_SNAKE_CASE_ : Any=False , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=[3, 5, 7, 11] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=[1, 2, 3, 6] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : Any=0.4 , SCREAMING_SNAKE_CASE_ : List[str]=2_56 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : Optional[Any]=2_55 , **SCREAMING_SNAKE_CASE_ : str , ) -> List[str]: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) A: Optional[Any] = vocab_size A: Dict = hidden_size A: Tuple = num_hidden_layers A: str = num_attention_heads A: Tuple = intermediate_size A: str = hidden_act A: Tuple = hidden_dropout_prob A: int = attention_probs_dropout_prob A: Optional[int] = initializer_range A: Optional[Any] = layer_norm_eps A: Tuple = image_size A: int = patch_size A: Any = num_channels A: Union[str, Any] = use_mask_token A: Optional[Any] = use_absolute_position_embeddings A: str = use_relative_position_bias A: Dict = use_shared_relative_position_bias A: Union[str, Any] = layer_scale_init_value A: str = drop_path_rate A: Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) A: Union[str, Any] = out_indices A: str = pool_scales # auxiliary head attributes (semantic segmentation) A: List[str] = use_auxiliary_head A: str = auxiliary_loss_weight A: Dict = auxiliary_channels A: List[str] = auxiliary_num_convs A: Any = auxiliary_concat_input A: Dict = semantic_loss_ignore_index class lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = version.parse("""1.11""" ) @property def _snake_case ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self : str ) -> float: '''simple docstring''' return 1E-4
364
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : int , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Dict ) -> None: '''simple docstring''' warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
334
0
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> int: if num < 0: return False A: int = num A: int = 0 while num > 0: A: str = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
365
'''simple docstring''' from collections import deque class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> None: '''simple docstring''' A: Union[str, Any] = process_name # process name A: List[str] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time A: Dict = arrival_time A: Optional[Any] = burst_time # remaining burst time A: Any = 0 # total time of the process wait in ready queue A: Any = 0 # time from arrival time to completion time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int , ) -> None: '''simple docstring''' A: Dict = number_of_queues # time slice of queues that round robin algorithm applied A: int = time_slices # unfinished process is in this ready_queue A: Tuple = queue # current time A: int = current_time # finished process is in this sequence queue A: deque[Process] = deque() def _snake_case ( self : List[Any] ) -> list[str]: '''simple docstring''' A: str = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: Optional[int] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: Any = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: List[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): completion_times.append(queue[i].stop_time ) return completion_times def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : deque[Process] ) -> list[int]: '''simple docstring''' return [q.burst_time for q in queue] def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : Process ) -> int: '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : deque[Process] ) -> deque[Process]: '''simple docstring''' A: deque[Process] = deque() # sequence deque of finished process while len(SCREAMING_SNAKE_CASE_ ) != 0: A: Optional[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 A: Any = 0 # set the process's turnaround time because it is finished A: int = self.current_time - cp.arrival_time # set the completion time A: List[str] = self.current_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int ) -> tuple[deque[Process], deque[Process]]: '''simple docstring''' A: deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(SCREAMING_SNAKE_CASE_ ) ): A: Dict = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time A: Optional[Any] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(SCREAMING_SNAKE_CASE_ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished A: int = 0 # set the finish time A: Union[str, Any] = self.current_time # update the process' turnaround time because it is finished A: Tuple = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def _snake_case ( self : Optional[Any] ) -> deque[Process]: '''simple docstring''' for i in range(self.number_of_queues - 1 ): A , A: Optional[Any] = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest UpperCamelCase = Process('''P1''', 0, 53) UpperCamelCase = Process('''P2''', 0, 17) UpperCamelCase = Process('''P3''', 0, 68) UpperCamelCase = Process('''P4''', 0, 24) UpperCamelCase = 3 UpperCamelCase = [17, 25] UpperCamelCase = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) UpperCamelCase = Process('''P1''', 0, 53) UpperCamelCase = Process('''P2''', 0, 17) UpperCamelCase = Process('''P3''', 0, 68) UpperCamelCase = Process('''P4''', 0, 24) UpperCamelCase = 3 UpperCamelCase = [17, 25] UpperCamelCase = deque([Pa, Pa, Pa, Pa]) UpperCamelCase = MLFQ(number_of_queues, time_slices, queue, 0) UpperCamelCase = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( f'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( f'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
334
0
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' A: Union[str, Any] = tempfile.mkdtemp() A: Optional[int] = 8 # DPR tok A: int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A: Tuple = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) A: Tuple = os.path.join(lowerCAmelCase__ , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok A: int = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] A: str = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) A: Tuple = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A: List[Any] = {'''unk_token''': '''<unk>'''} A: Optional[Any] = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) A: Any = os.path.join(lowerCAmelCase__ , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) A: List[str] = os.path.join(lowerCAmelCase__ , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase__ ) ) def _snake_case ( self : Union[str, Any] ) -> DPRQuestionEncoderTokenizer: '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def _snake_case ( self : int ) -> DPRContextEncoderTokenizer: '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def _snake_case ( self : Any ) -> BartTokenizer: '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _snake_case ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A: int = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def _snake_case ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A: List[str] = self.get_dummy_dataset() A: Optional[int] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: A: Optional[Any] = dataset A: List[Any] = RagRetriever( lowerCAmelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple ) -> str: '''simple docstring''' A: Optional[int] = self.get_dummy_dataset() A: Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: A: List[str] = os.path.join(self.tmpdirname , '''dataset''' ) A: Optional[Any] = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset A: Tuple = RagRetriever( lowerCAmelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: A: int = RagRetriever( lowerCAmelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , lowerCAmelCase__ ) , ) return retriever def _snake_case ( self : Optional[Any] ) -> Dict: '''simple docstring''' A: Dict = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) A: List[str] = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) A: Union[str, Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) A: List[Any] = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(lowerCAmelCase__ , open(lowerCAmelCase__ , '''wb''' ) ) A: Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) A: Tuple = RagRetriever( lowerCAmelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def _snake_case ( self : Tuple ) -> Tuple: '''simple docstring''' A: int = 1 A: Optional[int] = self.get_dummy_canonical_hf_index_retriever() A: List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) A , A , A: Dict = retriever.retrieve(lowerCAmelCase__ , n_docs=lowerCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , lowerCAmelCase__ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _snake_case ( self : int ) -> Tuple: '''simple docstring''' A: int = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: A: Optional[Any] = self.get_dummy_dataset() retriever.save_pretrained(lowerCAmelCase__ ) A: Union[str, Any] = RagRetriever.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) A: List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) A: str = retriever.retrieve(lowerCAmelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def _snake_case ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A: Tuple = 1 A: Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ ) A: List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) A , A , A: str = retriever.retrieve(lowerCAmelCase__ , n_docs=lowerCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , lowerCAmelCase__ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _snake_case ( self : int ) -> Optional[int]: '''simple docstring''' A: int = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase__ ) A: str = RagRetriever.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) A: str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) A: int = retriever.retrieve(lowerCAmelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def _snake_case ( self : List[str] ) -> Tuple: '''simple docstring''' A: Dict = 1 A: int = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ ) A: Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) A , A , A: Optional[int] = retriever.retrieve(lowerCAmelCase__ , n_docs=lowerCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , lowerCAmelCase__ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _snake_case ( self : Tuple ) -> str: '''simple docstring''' A: List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase__ ) A: Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) A: Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) A: Any = retriever.retrieve(lowerCAmelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def _snake_case ( self : List[Any] ) -> Any: '''simple docstring''' A: List[Any] = 1 A: str = self.get_dummy_legacy_index_retriever() A: Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) A , A , A: str = retriever.retrieve(lowerCAmelCase__ , n_docs=lowerCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , lowerCAmelCase__ ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _snake_case ( self : Optional[int] ) -> Tuple: '''simple docstring''' A: List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase__ ) A: List[Any] = RagRetriever.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) A: List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) A: Union[str, Any] = retriever.retrieve(lowerCAmelCase__ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def _snake_case ( self : List[str] ) -> List[str]: '''simple docstring''' import torch A: Any = 1 A: Union[str, Any] = self.get_dummy_canonical_hf_index_retriever() A: Dict = [[5, 7], [10, 11]] A: str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) A: Union[str, Any] = retriever(lowerCAmelCase__ , lowerCAmelCase__ , prefix=retriever.config.generator.prefix , n_docs=lowerCAmelCase__ ) A , A , A: Tuple = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) A: int = retriever( lowerCAmelCase__ , lowerCAmelCase__ , prefix=retriever.config.generator.prefix , n_docs=lowerCAmelCase__ , return_tensors='''pt''' , ) A , A , A , A: int = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def _snake_case ( self : str ) -> Union[str, Any]: '''simple docstring''' A: int = self.get_dpr_ctx_encoder_tokenizer() A: Optional[int] = 1 A: Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ ) retriever.set_ctx_encoder_tokenizer(lowerCAmelCase__ ) A: str = [[5, 7], [10, 11]] A: Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) A: Any = retriever(lowerCAmelCase__ , lowerCAmelCase__ , prefix=retriever.config.generator.prefix , n_docs=lowerCAmelCase__ ) self.assertEqual( len(lowerCAmelCase__ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , lowerCAmelCase__ ) # check for doc token related keys in dictionary.
366
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger() @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : List[nn.Module] = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : list = field(default_factory=UpperCAmelCase_ ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tensor , SCREAMING_SNAKE_CASE_ : Tensor ) -> int: '''simple docstring''' A: List[str] = len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE_ ) def __call__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tensor ) -> Dict: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(SCREAMING_SNAKE_CASE_ ) [x.remove() for x in self.handles] return self @property def _snake_case ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return list(filter(lambda SCREAMING_SNAKE_CASE_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : nn.Module UpperCamelCase_ : int = 0 UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) def __call__( self : Any , SCREAMING_SNAKE_CASE_ : Tensor ) -> Optional[Any]: '''simple docstring''' A: Dict = Tracker(self.dest )(SCREAMING_SNAKE_CASE_ ).parametrized A: Tuple = Tracker(self.src )(SCREAMING_SNAKE_CASE_ ).parametrized A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.src_skip , SCREAMING_SNAKE_CASE_ ) ) A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.dest_skip , SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise Exception( f"""Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE_ )} operations while""" f""" destination module has {len(SCREAMING_SNAKE_CASE_ )}.""" ) for dest_m, src_m in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase = True ) -> Any: print(F"""Converting {name}...""" ) with torch.no_grad(): A: Union[str, Any] = timm.create_model(__lowercase , pretrained=__lowercase ).eval() A: List[str] = ResNetForImageClassification(__lowercase ).eval() A: int = ModuleTransfer(src=__lowercase , dest=__lowercase ) A: List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(__lowercase ) assert torch.allclose(from_model(__lowercase ) , our_model(__lowercase ).logits ), "The model logits don't match the original one." A: str = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(__lowercase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__lowercase , ) # we can use the convnext one A: Any = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__lowercase , ) print(F"""Pushed {checkpoint_name}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = None , __lowercase = True ) -> List[Any]: A: Union[str, Any] = '''imagenet-1k-id2label.json''' A: Union[str, Any] = 1_0_0_0 A: Optional[int] = (1, num_labels) A: Dict = '''huggingface/label-files''' A: Any = num_labels A: Union[str, Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Optional[int] = {int(__lowercase ): v for k, v in idalabel.items()} A: Optional[int] = idalabel A: List[str] = {v: k for k, v in idalabel.items()} A: str = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase ) A: Optional[Any] = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__lowercase , names_to_config[model_name] , __lowercase , __lowercase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowercase , __lowercase , __lowercase , __lowercase ) return config, expected_shape if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase = parser.parse_args() UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
'''simple docstring''' from collections.abc import Generator from math import sin def SCREAMING_SNAKE_CASE( __lowercase ) -> bytes: if len(UpperCamelCase__ ) != 3_2: raise ValueError('''Input must be of length 32''' ) A: Optional[int] = b'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def SCREAMING_SNAKE_CASE( __lowercase ) -> bytes: if i < 0: raise ValueError('''Input must be non-negative''' ) A: List[str] = format(UpperCamelCase__ , '''08x''' )[-8:] A: List[str] = b'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def SCREAMING_SNAKE_CASE( __lowercase ) -> bytes: A: Any = b'''''' for char in message: bit_string += format(UpperCamelCase__ , '''08b''' ).encode('''utf-8''' ) A: Tuple = format(len(UpperCamelCase__ ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCamelCase__ ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def SCREAMING_SNAKE_CASE( __lowercase ) -> Generator[list[int], None, None]: if len(UpperCamelCase__ ) % 5_1_2 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(UpperCamelCase__ ) , 5_1_2 ): A: List[Any] = bit_string[pos : pos + 5_1_2] A: Optional[Any] = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def SCREAMING_SNAKE_CASE( __lowercase ) -> int: if i < 0: raise ValueError('''Input must be non-negative''' ) A: Any = format(UpperCamelCase__ , '''032b''' ) A: int = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCamelCase__ , 2 ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> int: return (a + b) % 2**3_2 def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> int: if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def SCREAMING_SNAKE_CASE( __lowercase ) -> bytes: A: Optional[Any] = preprocess(UpperCamelCase__ ) A: List[str] = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states A: Optional[int] = 0x67452301 A: Union[str, Any] = 0xefcdab89 A: List[Any] = 0x98badcfe A: List[str] = 0x10325476 A: str = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCamelCase__ ): A: str = aa A: str = ba A: List[Any] = ca A: List[str] = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f A: Optional[int] = d ^ (b & (c ^ d)) A: List[str] = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f A: int = c ^ (d & (b ^ c)) A: Optional[Any] = (5 * i + 1) % 1_6 elif i <= 4_7: A: int = b ^ c ^ d A: List[str] = (3 * i + 5) % 1_6 else: A: Union[str, Any] = c ^ (b | not_aa(UpperCamelCase__ )) A: Any = (7 * i) % 1_6 A: Union[str, Any] = (f + a + added_consts[i] + block_words[g]) % 2**3_2 A: List[str] = d A: Optional[int] = c A: Dict = b A: Optional[int] = sum_aa(UpperCamelCase__ , left_rotate_aa(UpperCamelCase__ , shift_amounts[i] ) ) # Add hashed chunk to running total A: str = sum_aa(UpperCamelCase__ , UpperCamelCase__ ) A: Dict = sum_aa(UpperCamelCase__ , UpperCamelCase__ ) A: Optional[int] = sum_aa(UpperCamelCase__ , UpperCamelCase__ ) A: Optional[int] = sum_aa(UpperCamelCase__ , UpperCamelCase__ ) A: Tuple = reformat_hex(UpperCamelCase__ ) + reformat_hex(UpperCamelCase__ ) + reformat_hex(UpperCamelCase__ ) + reformat_hex(UpperCamelCase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
367
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> str | Literal[False]: A: List[str] = list(__lowercase ) A: Optional[Any] = list(__lowercase ) A: int = 0 for i in range(len(__lowercase ) ): if lista[i] != lista[i]: count += 1 A: Optional[Any] = '''_''' if count > 1: return False else: return "".join(__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[str]: A: Any = [] while True: A: Dict = ['''$'''] * len(__lowercase ) A: Union[str, Any] = [] for i in range(len(__lowercase ) ): for j in range(i + 1 , len(__lowercase ) ): A: Any = compare_string(binary[i] , binary[j] ) if k is False: A: Any = '''*''' A: List[Any] = '''*''' temp.append('''X''' ) for i in range(len(__lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__lowercase ) == 0: return pi A: List[Any] = list(set(__lowercase ) ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[str]: A: Optional[int] = [] for minterm in minterms: A: Optional[int] = '''''' for _ in range(__lowercase ): A: List[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(__lowercase ) return temp def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> bool: A: Union[str, Any] = list(__lowercase ) A: Union[str, Any] = list(__lowercase ) A: Optional[int] = 0 for i in range(len(__lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[str]: A: List[Any] = [] A: Dict = [0] * len(__lowercase ) for i in range(len(chart[0] ) ): A: List[str] = 0 A: str = -1 for j in range(len(__lowercase ) ): if chart[j][i] == 1: count += 1 A: Any = j if count == 1: A: Any = 1 for i in range(len(__lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__lowercase ) ): A: Optional[int] = 0 temp.append(prime_implicants[i] ) while True: A: Dict = 0 A: Optional[int] = -1 A: Dict = 0 for i in range(len(__lowercase ) ): A: str = chart[i].count(1 ) if count_n > max_n: A: Tuple = count_n A: Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__lowercase ) ): A: Any = 0 def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[list[int]]: A: str = [[0 for x in range(len(__lowercase ) )] for x in range(len(__lowercase ) )] for i in range(len(__lowercase ) ): A: Tuple = prime_implicants[i].count('''_''' ) for j in range(len(__lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , __lowercase ): A: Optional[Any] = 1 return chart def SCREAMING_SNAKE_CASE( ) -> None: A: int = int(input('''Enter the no. of variables\n''' ) ) A: Optional[int] = [ float(__lowercase ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] A: List[str] = decimal_to_binary(__lowercase , __lowercase ) A: str = check(__lowercase ) print('''Prime Implicants are:''' ) print(__lowercase ) A: List[Any] = prime_implicant_chart(__lowercase , __lowercase ) A: Any = selection(__lowercase , __lowercase ) print('''Essential Prime Implicants are:''' ) print(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
334
0
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[int]: A: Tuple = 0 A: Union[str, Any] = len(__lowerCamelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: A: List[str] = i + 1 else: A: Optional[Any] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'{two_pointer([2, 7, 11, 15], 9) = }')
368
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: A: Tuple = len(__lowercase ) for i in range(length - 1 ): A: Dict = i for k in range(i + 1 , __lowercase ): if collection[k] < collection[least]: A: List[str] = k if least != i: A , A: Tuple = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
334
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : List[str] = """canine""" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Optional[Any]=7_68 , SCREAMING_SNAKE_CASE_ : List[Any]=12 , SCREAMING_SNAKE_CASE_ : Tuple=12 , SCREAMING_SNAKE_CASE_ : Any=30_72 , SCREAMING_SNAKE_CASE_ : str="gelu" , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_63_84 , SCREAMING_SNAKE_CASE_ : str=16 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE_ : int=0Xe_0_0_0 , SCREAMING_SNAKE_CASE_ : Dict=0Xe_0_0_1 , SCREAMING_SNAKE_CASE_ : List[Any]=4 , SCREAMING_SNAKE_CASE_ : str=4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=8 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_63_84 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_28 , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) A: Union[str, Any] = max_position_embeddings A: str = hidden_size A: Union[str, Any] = num_hidden_layers A: Any = num_attention_heads A: Tuple = intermediate_size A: Optional[int] = hidden_act A: int = hidden_dropout_prob A: Any = attention_probs_dropout_prob A: Optional[Any] = initializer_range A: Any = type_vocab_size A: List[Any] = layer_norm_eps # Character config: A: Any = downsampling_rate A: Optional[int] = upsampling_kernel_size A: List[Any] = num_hash_functions A: Tuple = num_hash_buckets A: Tuple = local_transformer_stride
369
'''simple docstring''' class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] ) -> int: '''simple docstring''' A: Tuple = None A: Dict = None A: Optional[int] = graph self._normalize_graph(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: str = len(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = None def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ) -> str: '''simple docstring''' if sources is int: A: Union[str, Any] = [sources] if sinks is int: A: Tuple = [sinks] if len(SCREAMING_SNAKE_CASE_ ) == 0 or len(SCREAMING_SNAKE_CASE_ ) == 0: return A: List[str] = sources[0] A: Optional[int] = sinks[0] # make fake vertex if there are more # than one source or sink if len(SCREAMING_SNAKE_CASE_ ) > 1 or len(SCREAMING_SNAKE_CASE_ ) > 1: A: Any = 0 for i in sources: max_input_flow += sum(self.graph[i] ) A: Dict = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: A: Optional[Any] = max_input_flow A: Optional[Any] = 0 A: str = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: A: Optional[Any] = max_input_flow A: str = size - 1 def _snake_case ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: '''simple docstring''' A: Optional[Any] = algorithm(self ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: '''simple docstring''' A: str = flow_network A: List[str] = flow_network.verticesCount A: Dict = flow_network.sourceIndex A: Any = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that A: str = flow_network.graph A: str = False def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' if not self.executed: self._algorithm() A: str = True def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) # use this to save your result A: Any = -1 def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = [[0] * self.verticies_count for i in range(self.verticies_count )] A: Any = [0] * self.verticies_count A: Optional[Any] = [0] * self.verticies_count def _snake_case ( self : str ) -> Optional[Any]: '''simple docstring''' A: Any = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule A: str = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list A: Dict = 0 while i < len(SCREAMING_SNAKE_CASE_ ): A: Any = vertices_list[i] A: str = self.heights[vertex_index] self.process_vertex(SCREAMING_SNAKE_CASE_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE_ ) ) A: Tuple = 0 else: i += 1 A: Tuple = sum(self.preflow[self.source_index] ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.relabel(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: '''simple docstring''' A: Optional[int] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> int: '''simple docstring''' A: Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): A: List[Any] = self.heights[to_index] if min_height is not None: A: int = min_height + 1 if __name__ == "__main__": UpperCamelCase = [0] UpperCamelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCamelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCamelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCamelCase = flow_network.find_maximum_flow() print(f'maximum flow is {maximum_flow}')
334
0
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple=13 , SCREAMING_SNAKE_CASE_ : Tuple=30 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=32 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Optional[int]=4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=37 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : Tuple=0.1 , SCREAMING_SNAKE_CASE_ : Optional[int]=10 , SCREAMING_SNAKE_CASE_ : Tuple=0.02 , SCREAMING_SNAKE_CASE_ : List[str]=3 , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : Optional[int]=2 , ) -> str: '''simple docstring''' A: Dict = parent A: Optional[int] = batch_size A: List[Any] = image_size A: Tuple = patch_size A: Union[str, Any] = num_channels A: List[Any] = is_training A: List[Any] = use_labels A: Any = hidden_size A: Union[str, Any] = num_hidden_layers A: List[Any] = num_attention_heads A: Tuple = intermediate_size A: Any = hidden_act A: Union[str, Any] = hidden_dropout_prob A: int = attention_probs_dropout_prob A: Dict = type_sequence_label_size A: List[str] = initializer_range A: Union[str, Any] = scope A: Dict = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A: Optional[int] = (image_size // patch_size) ** 2 A: Optional[int] = num_patches + 2 def _snake_case ( self : Optional[Any] ) -> int: '''simple docstring''' A: int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A: Tuple = None if self.use_labels: A: Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A: Optional[int] = self.get_config() return config, pixel_values, labels def _snake_case ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any ) -> int: '''simple docstring''' A: str = TFDeiTModel(config=_a ) A: Dict = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[int]: '''simple docstring''' A: Optional[int] = TFDeiTForMaskedImageModeling(config=_a ) A: List[Any] = model(_a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A: int = 1 A: Optional[int] = TFDeiTForMaskedImageModeling(_a ) A: str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A: int = model(_a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: '''simple docstring''' A: int = self.type_sequence_label_size A: Optional[Any] = TFDeiTForImageClassification(_a ) A: Dict = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A: List[Any] = 1 A: str = TFDeiTForImageClassification(_a ) A: Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A: List[str] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self : Optional[Any] ) -> Dict: '''simple docstring''' A: Union[str, Any] = self.prepare_config_and_inputs() A: List[Any] = config_and_inputs A: int = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _a , _a , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : str = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase_ : List[str] = ( { """feature-extraction""": TFDeiTModel, """image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Dict = False UpperCamelCase_ : List[str] = False UpperCamelCase_ : Tuple = False def _snake_case ( self : Optional[int] ) -> List[Any]: '''simple docstring''' A: Optional[int] = TFDeiTModelTester(self ) A: Optional[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def _snake_case ( self : int ) -> Any: '''simple docstring''' pass def _snake_case ( self : Tuple ) -> List[Any]: '''simple docstring''' A: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A: List[str] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) A: int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , tf.keras.layers.Dense ) ) def _snake_case ( self : Optional[int] ) -> Tuple: '''simple docstring''' A: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A: str = model_class(_a ) A: Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A: Union[str, Any] = [*signature.parameters.keys()] A: List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , _a ) def _snake_case ( self : int ) -> Optional[int]: '''simple docstring''' A: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _snake_case ( self : int ) -> int: '''simple docstring''' A: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_a ) def _snake_case ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str]=False ) -> Optional[int]: '''simple docstring''' A: List[Any] = super()._prepare_for_class(_a , _a , return_labels=_a ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _snake_case ( self : List[Any] ) -> Any: '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A: Tuple = TFDeiTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE( ) -> Optional[Any]: A: List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Tuple ) -> List[Any]: '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def _snake_case ( self : List[Any] ) -> Any: '''simple docstring''' A: List[str] = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) A: Optional[Any] = self.default_image_processor A: str = prepare_img() A: List[Any] = image_processor(images=_a , return_tensors='''tf''' ) # forward pass A: Optional[int] = model(**_a ) # verify the logits A: Optional[Any] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , _a ) A: List[Any] = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) )
370
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ["""input_features""", """attention_mask"""] def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=80 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_60_00 , SCREAMING_SNAKE_CASE_ : int=80 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__(feature_size=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , padding_value=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = num_mel_bins A: str = do_ceptral_normalize A: int = normalize_means A: List[Any] = normalize_vars A: Any = True def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : np.ndarray , ) -> np.ndarray: '''simple docstring''' A: Optional[int] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers A: Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) A: List[Any] = ta_kaldi.fbank(SCREAMING_SNAKE_CASE_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _snake_case ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : float = 0.0 , ) -> np.ndarray: '''simple docstring''' if normalize_means: A: str = x[:input_length].mean(axis=0 ) A: Dict = np.subtract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if normalize_vars: A: Tuple = x[:input_length].std(axis=0 ) A: List[Any] = np.divide(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if input_length < x.shape[0]: A: Optional[int] = padding_value # make sure array is in float32 A: Optional[Any] = x.astype(np.floataa ) return x def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[np.ndarray] , SCREAMING_SNAKE_CASE_ : Optional[np.ndarray] = None ) -> List[np.ndarray]: '''simple docstring''' A: int = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] def __call__( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , SCREAMING_SNAKE_CASE_ : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) A: Any = isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) A: Optional[Any] = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A: Optional[int] = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ): A: int = np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A: Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A: Union[str, Any] = [raw_speech] # extract fbank features A: str = [self._extract_fbank_features(SCREAMING_SNAKE_CASE_ ) for waveform in raw_speech] # convert into correct format for padding A: int = BatchFeature({'''input_features''': features} ) A: int = self.pad( SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # make sure list is in array format A: List[str] = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , SCREAMING_SNAKE_CASE_ ): A: Optional[Any] = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for feature in input_features] A: List[Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: A: Dict = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: A: Dict = ( np.array(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) if self._get_padding_strategies(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) is not PaddingStrategy.DO_NOT_PAD else None ) A: List[Any] = self.normalize( padded_inputs['''input_features'''] , attention_mask=SCREAMING_SNAKE_CASE_ ) if return_tensors is not None: A: Dict = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE_ ) return padded_inputs
334
0
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : list[tuple[float, float]] ) -> Optional[Any]: '''simple docstring''' A: str = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. A: Dict = len(snake_case_ ) - 1 def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : float ) -> str: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." A: list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , snake_case_ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(snake_case_ ) , 5 ) == 1 return output_values def _snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : float ) -> str: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." A: Any = self.basis_function(snake_case_ ) A: Dict = 0.0 A: Optional[Any] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : float = 0.01 ) -> List[str]: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore A: list[float] = [] # x coordinates of points to plot A: list[float] = [] # y coordinates of points to plot A: Tuple = 0.0 while t <= 1: A: str = self.bezier_curve_function(snake_case_ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size A: List[str] = [i[0] for i in self.list_of_points] A: str = [i[1] for i in self.list_of_points] plt.plot( snake_case_ , snake_case_ , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(snake_case_ , snake_case_ , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
371
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = DebertaTokenizer UpperCamelCase_ : List[str] = True UpperCamelCase_ : int = DebertaTokenizerFast def _snake_case ( self : Optional[int] ) -> Dict: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A: Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] A: int = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A: Union[str, Any] = {'''unk_token''': '''[UNK]'''} A: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict ) -> Union[str, Any]: '''simple docstring''' A: Optional[int] = '''lower newer''' A: str = '''lower newer''' return input_text, output_text def _snake_case ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A: str = self.get_tokenizer() A: Any = '''lower newer''' A: Dict = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] A: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokens + [tokenizer.unk_token] A: int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] ) -> Any: '''simple docstring''' A: str = self.get_tokenizer() A: List[str] = tokenizer('''Hello''' , '''World''' ) A: Union[str, Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , SCREAMING_SNAKE_CASE_ ) @slow def _snake_case ( self : Tuple ) -> Optional[int]: '''simple docstring''' A: Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A: Any = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) A: int = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A: int = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: A: List[Any] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A: Dict = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] A: Dict = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) A: Any = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) for seq in encoding['''input_ids''']] # fmt: off A: Any = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on A: Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , SCREAMING_SNAKE_CASE_ ) for expected, decoded in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
334
0
'''simple docstring''' # Algorithm for the pigeonhole sorting def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]: A: str = min(__lowerCAmelCase ) # min() finds the minimum value A: Optional[int] = max(__lowerCAmelCase ) # max() finds the maximum value A: Tuple = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size A: Dict = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. A: Dict = 0 for count in range(__lowerCAmelCase ): while holes[count] > 0: holes[count] -= 1 A: List[str] = count + min_val i += 1 def SCREAMING_SNAKE_CASE( ) -> List[Any]: A: Any = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(__lowerCAmelCase ) print('''Sorted order is:''' , ''' '''.join(__lowerCAmelCase ) ) if __name__ == "__main__": main()
350
'''simple docstring''' import requests UpperCamelCase = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def SCREAMING_SNAKE_CASE( __lowercase ) -> None: # fetching a list of articles in json format A: Tuple = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
334
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint UpperCamelCase = { """169M""": 12, """430M""": 24, """1B5""": 24, """3B""": 32, """7B""": 32, """14B""": 40, } UpperCamelCase = { """169M""": 768, """430M""": 1024, """1B5""": 2048, """3B""": 2560, """7B""": 4096, """14B""": 5120, } def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict: A: List[Any] = list(state_dict.keys() ) for name in state_dict_keys: A: Union[str, Any] = state_dict.pop(_UpperCAmelCase ) # emb -> embedding if name.startswith('''emb.''' ): A: List[str] = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): A: Union[str, Any] = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention A: Tuple = re.sub(r'''blocks\.(\d+)\.att''' , r'''blocks.\1.attention''' , _UpperCAmelCase ) # ffn -> feed_forward A: List[str] = re.sub(r'''blocks\.(\d+)\.ffn''' , r'''blocks.\1.feed_forward''' , _UpperCAmelCase ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): A: List[Any] = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): A: Optional[int] = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): A: Optional[int] = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": A: List[str] = 'rwkv.' + name A: int = weight return state_dict def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=False , __lowercase=None ) -> Any: # 1. If possible, build the tokenizer. if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) A: Dict = 5_0_2_7_7 A: Any = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: A: str = PreTrainedTokenizerFast(tokenizer_file=_UpperCAmelCase ) A: List[Any] = len(_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) # 2. Build the config A: Optional[Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: A: Optional[Any] = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) A: Tuple = RwkvConfig( vocab_size=_UpperCAmelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_UpperCAmelCase ) # 3. Download model file then convert state_dict A: Tuple = hf_hub_download(_UpperCAmelCase , _UpperCAmelCase ) A: List[str] = torch.load(_UpperCAmelCase , map_location='''cpu''' ) A: int = convert_state_dict(_UpperCAmelCase ) # 4. Split in shards and save A: Any = shard_checkpoint(_UpperCAmelCase ) for shard_file, shard in shards.items(): torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) if index is not None: A: Any = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) # Save the index as well with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: A: str = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase ) + '\n' f.write(_UpperCAmelCase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) A: List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: A: Optional[Any] = torch.load(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) A: Any = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase ) model.push_to_hub(_UpperCAmelCase , max_shard_size='''2GB''' ) tokenizer.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) UpperCamelCase = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
351
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } UpperCamelCase = { '''camembert-base''': 512, } UpperCamelCase = '''▁''' class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : str = ["""input_ids""", """attention_mask"""] UpperCamelCase_ : int = CamembertTokenizer def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="</s>" , SCREAMING_SNAKE_CASE_ : int="<s>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE_ : str="<pad>" , SCREAMING_SNAKE_CASE_ : List[str]="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=["<s>NOTUSED", "</s>NOTUSED"] , **SCREAMING_SNAKE_CASE_ : Any , ) -> Any: '''simple docstring''' A: Tuple = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Any = vocab_file A: Any = False if not self.vocab_file else True def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A: List[str] = [self.cls_token_id] A: List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A: List[str] = [self.sep_token_id] A: Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A: Dict = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
334
0
'''simple docstring''' from manim import * class lowerCAmelCase_ ( lowerCAmelCase_ ): '''simple docstring''' def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A = Rectangle(height=0.5 , width=0.5 ) A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) A = [mem.copy() for i in range(6 )] A = [mem.copy() for i in range(6 )] A = VGroup(*__SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) A = VGroup(*__SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) A = VGroup(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) A = Text('''CPU''' , font_size=24 ) A = Group(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=__SCREAMING_SNAKE_CASE ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__SCREAMING_SNAKE_CASE ) A = [mem.copy() for i in range(1 )] A = VGroup(*__SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) A = Text('''GPU''' , font_size=24 ) A = Group(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=__SCREAMING_SNAKE_CASE ) gpu.align_to(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) gpu.set_x(gpu.get_x() - 1 ) self.add(__SCREAMING_SNAKE_CASE ) A = [mem.copy() for i in range(6 )] A = VGroup(*__SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) A = Text('''Model''' , font_size=24 ) A = Group(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=__SCREAMING_SNAKE_CASE ) model.move_to([3, -1.0, 0] ) self.play( Create(__SCREAMING_SNAKE_CASE , run_time=1 ) , Create(__SCREAMING_SNAKE_CASE , run_time=1 ) , Create(__SCREAMING_SNAKE_CASE , run_time=1 ) , ) A = MarkupText( f"""First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.""" , font_size=24 , ) A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(__SCREAMING_SNAKE_CASE , run_time=2.5 ) , Write(__SCREAMING_SNAKE_CASE ) , Write(__SCREAMING_SNAKE_CASE ) ) self.add(__SCREAMING_SNAKE_CASE ) A = [] A = [] A = [] for i, rect in enumerate(__SCREAMING_SNAKE_CASE ): A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(__SCREAMING_SNAKE_CASE , opacity=0.7 ) cpu_target.move_to(__SCREAMING_SNAKE_CASE ) cpu_target.generate_target() A = 0.46 / 4 A = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__SCREAMING_SNAKE_CASE ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=__SCREAMING_SNAKE_CASE , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=__SCREAMING_SNAKE_CASE , buff=0.0 ) cpu_targs.append(__SCREAMING_SNAKE_CASE ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(__SCREAMING_SNAKE_CASE ) ) second_animations.append(MoveToTarget(__SCREAMING_SNAKE_CASE , run_time=1.5 ) ) self.play(*__SCREAMING_SNAKE_CASE ) self.play(*__SCREAMING_SNAKE_CASE ) self.wait()
352
'''simple docstring''' import os from distutils.util import strtobool def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[Any]: for e in env_keys: A: Dict = int(os.environ.get(__lowercase , -1 ) ) if val >= 0: return val return default def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False ) -> List[str]: A: str = os.environ.get(__lowercase , str(__lowercase ) ) return strtobool(__lowercase ) == 1 # As its name indicates `strtobool` actually returns an int... def SCREAMING_SNAKE_CASE( __lowercase , __lowercase="no" ) -> str: A: Optional[int] = os.environ.get(__lowercase , str(__lowercase ) ) return value
334
0
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase_ ( snake_case_ ): '''simple docstring''' def _snake_case ( self : Tuple ) -> Tuple: '''simple docstring''' A: List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''width_multiplier''' ) ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any=13 , SCREAMING_SNAKE_CASE_ : Dict=64 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3 , SCREAMING_SNAKE_CASE_ : Optional[Any]="swish" , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : Tuple=32 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE_ : int=0.02 , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : Tuple=10 , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : int=0.25 , SCREAMING_SNAKE_CASE_ : int=0.0 , SCREAMING_SNAKE_CASE_ : Dict=0.0 , ) -> List[Any]: '''simple docstring''' A: Tuple = parent A: List[Any] = batch_size A: Union[str, Any] = image_size A: List[Any] = patch_size A: List[str] = num_channels A: List[Any] = make_divisible(5_12 * width_multiplier , divisor=8 ) A: int = hidden_act A: int = conv_kernel_size A: List[str] = output_stride A: Optional[Any] = classifier_dropout_prob A: Union[str, Any] = use_labels A: Dict = is_training A: Union[str, Any] = num_labels A: Optional[Any] = initializer_range A: Dict = scope A: List[str] = width_multiplier A: Optional[Any] = ffn_dropout A: Union[str, Any] = attn_dropout def _snake_case ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' A: str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A: int = None A: Tuple = None if self.use_labels: A: str = ids_tensor([self.batch_size] , self.num_labels ) A: List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A: Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any ) -> Dict: '''simple docstring''' A: int = MobileViTVaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A: Optional[int] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> int: '''simple docstring''' A: int = self.num_labels A: Dict = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A: Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A: Optional[int] = self.num_labels A: Optional[int] = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A: Any = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) A: str = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _snake_case ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' A: List[str] = self.prepare_config_and_inputs() A , A , A , A: List[str] = config_and_inputs A: Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : int = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase_ : Dict = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase_ : str = False UpperCamelCase_ : Dict = False UpperCamelCase_ : str = False UpperCamelCase_ : List[str] = False def _snake_case ( self : Union[str, Any] ) -> Any: '''simple docstring''' A: Optional[Any] = MobileViTVaModelTester(self ) A: Optional[int] = MobileViTVaConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def _snake_case ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def _snake_case ( self : str ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def _snake_case ( self : Optional[int] ) -> Any: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def _snake_case ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _snake_case ( self : Dict ) -> Optional[int]: '''simple docstring''' pass def _snake_case ( self : int ) -> int: '''simple docstring''' A , A: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A: Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) A: Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A: Optional[int] = [*signature.parameters.keys()] A: Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] ) -> int: '''simple docstring''' A: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Tuple ) -> List[str]: '''simple docstring''' def check_hidden_states_output(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str ): A: Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): A: Dict = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) A: List[str] = outputs.hidden_states A: List[Any] = 5 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. A: Optional[Any] = 2 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) A , A: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A: Dict = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A: Any = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Dict ) -> Optional[int]: '''simple docstring''' A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) @slow def _snake_case ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A: Optional[Any] = MobileViTVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE( ) -> Dict: A: Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : str ) -> Dict: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def _snake_case ( self : str ) -> Dict: '''simple docstring''' A: int = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( SCREAMING_SNAKE_CASE_ ) A: str = self.default_image_processor A: int = prepare_img() A: Optional[int] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): A: List[str] = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits A: Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) A: str = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def _snake_case ( self : List[str] ) -> List[str]: '''simple docstring''' A: int = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) A: Union[str, Any] = model.to(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) A: List[str] = prepare_img() A: Optional[int] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): A: Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ) A: Dict = outputs.logits # verify the logits A: Tuple = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) A: Tuple = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=SCREAMING_SNAKE_CASE_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def _snake_case ( self : Any ) -> Optional[int]: '''simple docstring''' A: List[str] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) A: Any = model.to(SCREAMING_SNAKE_CASE_ ) A: List[str] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) A: Union[str, Any] = prepare_img() A: int = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): A: Dict = model(**SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = outputs.logits.detach().cpu() A: str = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ , target_sizes=[(50, 60)] ) A: Union[str, Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE_ ) A: Tuple = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ ) A: int = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE_ )
353
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() UpperCamelCase = logging.get_logger('''transformers.models.encodec''') UpperCamelCase = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } UpperCamelCase = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } UpperCamelCase = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } UpperCamelCase = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } UpperCamelCase = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } UpperCamelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } UpperCamelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } UpperCamelCase = [] UpperCamelCase = [] def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Dict: for attribute in key.split('''.''' ): A: Union[str, Any] = getattr(__lowercase , __lowercase ) if weight_type is not None: A: Tuple = getattr(__lowercase , __lowercase ).shape else: A: str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": A: Dict = value elif weight_type == "weight_g": A: Tuple = value elif weight_type == "weight_v": A: Any = value elif weight_type == "bias": A: str = value elif weight_type == "running_mean": A: List[Any] = value elif weight_type == "running_var": A: Dict = value elif weight_type == "num_batches_tracked": A: List[str] = value elif weight_type == "weight_ih_l0": A: Dict = value elif weight_type == "weight_hh_l0": A: Optional[int] = value elif weight_type == "bias_ih_l0": A: List[Any] = value elif weight_type == "bias_hh_l0": A: str = value elif weight_type == "weight_ih_l1": A: Optional[int] = value elif weight_type == "weight_hh_l1": A: int = value elif weight_type == "bias_ih_l1": A: Optional[Any] = value elif weight_type == "bias_hh_l1": A: str = value else: A: Optional[int] = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: A , A: Any = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Tuple: A: Any = [] if model_name == "encodec_24khz" or "encodec_32khz": A: List[str] = MAPPING_24K elif model_name == "encodec_48khz": A: List[Any] = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(__lowercase , __lowercase ): logger.info(F"""{name} was ignored""" ) continue A: Optional[int] = False for key, mapped_key in MAPPING.items(): if "*" in key: A , A: Optional[int] = key.split('''.*.''' ) if prefix in name and suffix in name: A: str = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue A: Optional[Any] = True if "*" in mapped_key: A: Any = name.split(__lowercase )[0].split('''.''' )[-2] A: Tuple = mapped_key.replace('''*''' , __lowercase ) if "weight_g" in name: A: str = '''weight_g''' elif "weight_v" in name: A: List[Any] = '''weight_v''' elif "weight_ih_l0" in name: A: Dict = '''weight_ih_l0''' elif "weight_hh_l0" in name: A: int = '''weight_hh_l0''' elif "bias_ih_l0" in name: A: Union[str, Any] = '''bias_ih_l0''' elif "bias_hh_l0" in name: A: Tuple = '''bias_hh_l0''' elif "weight_ih_l1" in name: A: int = '''weight_ih_l1''' elif "weight_hh_l1" in name: A: Optional[Any] = '''weight_hh_l1''' elif "bias_ih_l1" in name: A: Dict = '''bias_ih_l1''' elif "bias_hh_l1" in name: A: str = '''bias_hh_l1''' elif "bias" in name: A: Union[str, Any] = '''bias''' elif "weight" in name: A: Dict = '''weight''' elif "running_mean" in name: A: Tuple = '''running_mean''' elif "running_var" in name: A: Any = '''running_var''' elif "num_batches_tracked" in name: A: str = '''num_batches_tracked''' else: A: Tuple = None set_recursively(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(F"""Unused weights: {unused_weights}""" ) @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , ) -> Dict: if config_path is not None: A: Tuple = EncodecConfig.from_pretrained(__lowercase ) else: A: Union[str, Any] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": A: Union[str, Any] = [8, 5, 4, 4] A: Dict = [2.2] A: List[Any] = 6_4 A: Optional[Any] = 3_2_0_0_0 A: List[Any] = 2_0_4_8 A: Optional[Any] = False A: int = False A: Union[str, Any] = False elif model_name == "encodec_48khz": A: Optional[int] = [8, 5, 4, 2] A: List[Any] = [3.0, 6.0, 1_2.0, 2_4.0] A: List[Any] = 4_8_0_0_0 A: int = 2 A: List[Any] = False A: Any = '''time_group_norm''' A: Optional[Any] = True A: Any = 1.0 A: Any = 0.0_1 else: raise ValueError(F"""Unknown model name: {model_name}""" ) A: str = EncodecModel(__lowercase ) A: Optional[Any] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__lowercase ) A: Union[str, Any] = torch.load(__lowercase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights A: Optional[int] = original_checkpoint['''best_state'''] recursively_load_weights(__lowercase , __lowercase , __lowercase ) model.save_pretrained(__lowercase ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(__lowercase ) model.push_to_hub(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCamelCase = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
334
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Dict = XLMRobertaTokenizer UpperCamelCase_ : Tuple = XLMRobertaTokenizerFast UpperCamelCase_ : Tuple = True UpperCamelCase_ : Tuple = True def _snake_case ( self : List[Any] ) -> str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A: Any = XLMRobertaTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A: Optional[int] = '''<pad>''' A: Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def _snake_case ( self : Any ) -> int: '''simple docstring''' A: Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_lowerCAmelCase ) , 10_02 ) def _snake_case ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def _snake_case ( self : str ) -> List[str]: '''simple docstring''' A: List[str] = XLMRobertaTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) A: List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A: Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) A: Any = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) A: Any = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _snake_case ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return A: Optional[int] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): A: List[Any] = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) A: Tuple = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) A: str = tempfile.mkdtemp() A: Optional[int] = tokenizer_r.save_pretrained(_lowerCAmelCase ) A: Optional[Any] = tokenizer_p.save_pretrained(_lowerCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) A: List[str] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_lowerCAmelCase , _lowerCAmelCase ) # Checks everything loads correctly in the same way A: List[Any] = tokenizer_r.from_pretrained(_lowerCAmelCase ) A: str = tokenizer_p.from_pretrained(_lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_lowerCAmelCase ) # Save tokenizer rust, legacy_format=True A: Optional[Any] = tempfile.mkdtemp() A: List[str] = tokenizer_r.save_pretrained(_lowerCAmelCase , legacy_format=_lowerCAmelCase ) A: Any = tokenizer_p.save_pretrained(_lowerCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(_lowerCAmelCase , _lowerCAmelCase ) # Checks everything loads correctly in the same way A: Union[str, Any] = tokenizer_r.from_pretrained(_lowerCAmelCase ) A: Optional[int] = tokenizer_p.from_pretrained(_lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) ) shutil.rmtree(_lowerCAmelCase ) # Save tokenizer rust, legacy_format=False A: List[Any] = tempfile.mkdtemp() A: List[str] = tokenizer_r.save_pretrained(_lowerCAmelCase , legacy_format=_lowerCAmelCase ) A: Union[str, Any] = tokenizer_p.save_pretrained(_lowerCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A: Any = tokenizer_r.from_pretrained(_lowerCAmelCase ) A: str = tokenizer_p.from_pretrained(_lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) ) shutil.rmtree(_lowerCAmelCase ) @cached_property def _snake_case ( self : Tuple ) -> int: '''simple docstring''' return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def _snake_case ( self : Tuple ) -> Any: '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_lowerCAmelCase , f.name ) A: str = XLMRobertaTokenizer(f.name , keep_accents=_lowerCAmelCase ) A: Optional[int] = pickle.dumps(_lowerCAmelCase ) pickle.loads(_lowerCAmelCase ) def _snake_case ( self : List[str] ) -> str: '''simple docstring''' if not self.test_rust_tokenizer: return A: Any = self.get_tokenizer() A: List[Any] = self.get_rust_tokenizer() A: int = '''I was born in 92000, and this is falsé.''' A: List[str] = tokenizer.tokenize(_lowerCAmelCase ) A: Optional[int] = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) A: Any = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) A: List[Any] = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) A: Union[str, Any] = self.get_rust_tokenizer() A: int = tokenizer.encode(_lowerCAmelCase ) A: List[Any] = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) @slow def _snake_case ( self : List[str] ) -> Optional[int]: '''simple docstring''' A: Optional[Any] = '''Hello World!''' A: List[str] = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_lowerCAmelCase , self.big_tokenizer.encode(_lowerCAmelCase ) ) @slow def _snake_case ( self : List[str] ) -> Any: '''simple docstring''' A: List[str] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) A: int = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_lowerCAmelCase , self.big_tokenizer.encode(_lowerCAmelCase ) ) @slow def _snake_case ( self : Optional[int] ) -> str: '''simple docstring''' A: str = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
354
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
0
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase : float ) -> float: return 1_0 - x * x def SCREAMING_SNAKE_CASE( __lowercase : float , __lowercase : float ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(_A ) * equation(_A ) >= 0: raise ValueError('''Wrong space!''' ) A: Optional[int] = a while (b - a) >= 0.0_1: # Find middle point A: int = (a + b) / 2 # Check if middle point is root if equation(_A ) == 0.0: break # Decide the side to repeat the steps if equation(_A ) * equation(_A ) < 0: A: Optional[int] = c else: A: Tuple = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
355
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[float]]: A: list[list[float]] = [] for data in source_data: for i, el in enumerate(__lowercase ): if len(__lowercase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(__lowercase ) ) return data_lists def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[list[float]]: A: list[list[float]] = [] for dlist, weight in zip(__lowercase , __lowercase ): A: List[str] = min(__lowercase ) A: Union[str, Any] = max(__lowercase ) A: list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: A: List[str] = F"""Invalid weight of {weight:f} provided""" raise ValueError(__lowercase ) score_lists.append(__lowercase ) return score_lists def SCREAMING_SNAKE_CASE( __lowercase ) -> list[float]: A: list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(__lowercase ): A: str = final_scores[j] + ele return final_scores def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[list[float]]: A: Any = get_data(__lowercase ) A: str = calculate_each_score(__lowercase , __lowercase ) A: int = generate_final_scores(__lowercase ) # append scores to source data for i, ele in enumerate(__lowercase ): source_data[i].append(__lowercase ) return source_data
334
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } UpperCamelCase = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( snake_case_ ): '''simple docstring''' UpperCamelCase_ : List[str] = VOCAB_FILES_NAMES UpperCamelCase_ : Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[Any] = RealmTokenizer def __init__( self : str , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE_ : Any="[SEP]" , SCREAMING_SNAKE_CASE_ : int="[PAD]" , SCREAMING_SNAKE_CASE_ : Optional[Any]="[CLS]" , SCREAMING_SNAKE_CASE_ : Any="[MASK]" , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : int=None , **SCREAMING_SNAKE_CASE_ : Any , ) -> List[Any]: '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): A: Any = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('''type''' ) ) A: Tuple = do_lower_case A: Optional[Any] = strip_accents A: List[Any] = tokenize_chinese_chars A: List[Any] = normalizer_class(**SCREAMING_SNAKE_CASE_ ) A: Optional[int] = do_lower_case def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Any: '''simple docstring''' A: Any = PaddingStrategy.MAX_LENGTH A: Optional[Any] = text A: str = kwargs.pop('''text_pair''' , SCREAMING_SNAKE_CASE_ ) A: List[str] = kwargs.pop('''return_tensors''' , SCREAMING_SNAKE_CASE_ ) A: str = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(SCREAMING_SNAKE_CASE_ ): if batch_text_pair is not None: A: Optional[Any] = batch_text_pair[idx] else: A: Optional[Any] = None A: int = super().__call__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) A: Optional[int] = encoded_candidates.get('''input_ids''' ) A: Union[str, Any] = encoded_candidates.get('''attention_mask''' ) A: Tuple = encoded_candidates.get('''token_type_ids''' ) if encoded_input_ids is not None: output_data["input_ids"].append(SCREAMING_SNAKE_CASE_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(SCREAMING_SNAKE_CASE_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(SCREAMING_SNAKE_CASE_ ) A: Any = {key: item for key, item in output_data.items() if len(SCREAMING_SNAKE_CASE_ ) != 0} return BatchEncoding(SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None ) -> str: '''simple docstring''' A: Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A: int = [self.sep_token_id] A: Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' A: Any = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
356
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = VOCAB_FILES_NAMES UpperCamelCase_ : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Any = DPRContextEncoderTokenizer class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Dict = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Tuple = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Optional[int] = DPRQuestionEncoderTokenizer UpperCamelCase = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) UpperCamelCase = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) UpperCamelCase = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(UpperCAmelCase_ ) class lowerCAmelCase_ : '''simple docstring''' def __call__( self : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Union[bool, str] = False , SCREAMING_SNAKE_CASE_ : Union[bool, str] = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) elif titles is None or texts is None: A: Union[str, Any] = titles if texts is None else texts return super().__call__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Union[str, Any] = titles if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [titles] A: Optional[Any] = texts if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [texts] A: str = len(SCREAMING_SNAKE_CASE_ ) A: List[Any] = questions if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [questions] * n_passages assert len(SCREAMING_SNAKE_CASE_ ) == len( SCREAMING_SNAKE_CASE_ ), f"""There should be as many titles than texts but got {len(SCREAMING_SNAKE_CASE_ )} titles and {len(SCREAMING_SNAKE_CASE_ )} texts.""" A: Union[str, Any] = super().__call__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )['''input_ids'''] A: Dict = super().__call__(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )['''input_ids'''] A: str = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] } if return_attention_mask is not False: A: Union[str, Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) A: Optional[Any] = attention_mask return self.pad(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : BatchEncoding , SCREAMING_SNAKE_CASE_ : DPRReaderOutput , SCREAMING_SNAKE_CASE_ : int = 16 , SCREAMING_SNAKE_CASE_ : int = 64 , SCREAMING_SNAKE_CASE_ : int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' A: Any = reader_input['''input_ids'''] A , A , A: str = reader_output[:3] A: str = len(SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = sorted(range(SCREAMING_SNAKE_CASE_ ) , reverse=SCREAMING_SNAKE_CASE_ , key=relevance_logits.__getitem__ ) A: List[DPRReaderOutput] = [] for doc_id in sorted_docs: A: List[str] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence A: Dict = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A: Union[str, Any] = sequence_ids.index(self.pad_token_id ) else: A: int = len(SCREAMING_SNAKE_CASE_ ) A: Dict = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=SCREAMING_SNAKE_CASE_ , top_spans=SCREAMING_SNAKE_CASE_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=SCREAMING_SNAKE_CASE_ , start_index=SCREAMING_SNAKE_CASE_ , end_index=SCREAMING_SNAKE_CASE_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(SCREAMING_SNAKE_CASE_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , ) -> List[DPRSpanPrediction]: '''simple docstring''' A: Union[str, Any] = [] for start_index, start_score in enumerate(SCREAMING_SNAKE_CASE_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) A: Any = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x[1] , reverse=SCREAMING_SNAKE_CASE_ ) A: Dict = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" A: int = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(SCREAMING_SNAKE_CASE_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase_ ) class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : List[Any] = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Dict = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Any = ["""input_ids""", """attention_mask"""] UpperCamelCase_ : Optional[Any] = DPRReaderTokenizer
334
0
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> int: if length <= 0 or not isinstance(__lowercase , __lowercase ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(__lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
357
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _snake_case ( self : int ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) A: str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _snake_case ( self : Optional[Any] ) -> int: '''simple docstring''' A: str = self.dummy_uncond_unet A: Dict = KarrasVeScheduler() A: int = KarrasVePipeline(unet=lowercase__ , scheduler=lowercase__ ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) A: Optional[Any] = torch.manual_seed(0 ) A: Dict = pipe(num_inference_steps=2 , generator=lowercase__ , output_type='''numpy''' ).images A: Union[str, Any] = torch.manual_seed(0 ) A: Optional[int] = pipe(num_inference_steps=2 , generator=lowercase__ , output_type='''numpy''' , return_dict=lowercase__ )[0] A: Union[str, Any] = image[0, -3:, -3:, -1] A: List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A: List[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Tuple ) -> Any: '''simple docstring''' A: int = '''google/ncsnpp-celebahq-256''' A: List[Any] = UNetaDModel.from_pretrained(lowercase__ ) A: Any = KarrasVeScheduler() A: Union[str, Any] = KarrasVePipeline(unet=lowercase__ , scheduler=lowercase__ ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) A: Dict = torch.manual_seed(0 ) A: Optional[int] = pipe(num_inference_steps=20 , generator=lowercase__ , output_type='''numpy''' ).images A: Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) A: str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
358
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' pass class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> None: '''simple docstring''' A: Any = data A: Node | None = None def __iter__( self : Optional[int] ) -> List[str]: '''simple docstring''' A: List[str] = self A: Dict = [] while node: if node in visited: raise ContainsLoopError visited.append(SCREAMING_SNAKE_CASE_ ) yield node.data A: str = node.next_node @property def _snake_case ( self : List[str] ) -> bool: '''simple docstring''' try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": UpperCamelCase = Node(1) UpperCamelCase = Node(2) UpperCamelCase = Node(3) UpperCamelCase = Node(4) print(root_node.has_loop) # False UpperCamelCase = root_node.next_node print(root_node.has_loop) # True UpperCamelCase = Node(5) UpperCamelCase = Node(6) UpperCamelCase = Node(5) UpperCamelCase = Node(6) print(root_node.has_loop) # False UpperCamelCase = Node(1) print(root_node.has_loop) # False
334
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'BAAI/AltCLIP': 'https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = """altclip_text_model""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=25_00_02 , SCREAMING_SNAKE_CASE_ : Tuple=10_24 , SCREAMING_SNAKE_CASE_ : int=24 , SCREAMING_SNAKE_CASE_ : Optional[Any]=16 , SCREAMING_SNAKE_CASE_ : List[Any]=40_96 , SCREAMING_SNAKE_CASE_ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE_ : Tuple=0.1 , SCREAMING_SNAKE_CASE_ : Dict=0.1 , SCREAMING_SNAKE_CASE_ : Tuple=5_14 , SCREAMING_SNAKE_CASE_ : Dict=1 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : int=0.02 , SCREAMING_SNAKE_CASE_ : Optional[int]=1E-05 , SCREAMING_SNAKE_CASE_ : List[Any]=1 , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Optional[Any]="absolute" , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=7_68 , **SCREAMING_SNAKE_CASE_ : Dict , ) -> int: '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = vocab_size A: Optional[int] = hidden_size A: Optional[int] = num_hidden_layers A: Optional[Any] = num_attention_heads A: List[Any] = hidden_act A: Optional[int] = intermediate_size A: List[str] = hidden_dropout_prob A: Tuple = attention_probs_dropout_prob A: Union[str, Any] = max_position_embeddings A: Optional[Any] = type_vocab_size A: List[str] = initializer_range A: Any = initializer_factor A: Optional[Any] = layer_norm_eps A: Union[str, Any] = position_embedding_type A: int = use_cache A: Any = project_dim class lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = """altclip_vision_model""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : List[Any]=7_68 , SCREAMING_SNAKE_CASE_ : Dict=30_72 , SCREAMING_SNAKE_CASE_ : Any=5_12 , SCREAMING_SNAKE_CASE_ : List[Any]=12 , SCREAMING_SNAKE_CASE_ : str=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=3 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2_24 , SCREAMING_SNAKE_CASE_ : Dict=32 , SCREAMING_SNAKE_CASE_ : Dict="quick_gelu" , SCREAMING_SNAKE_CASE_ : int=1E-5 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.02 , SCREAMING_SNAKE_CASE_ : Optional[int]=1.0 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> List[str]: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) A: List[str] = hidden_size A: List[str] = intermediate_size A: Optional[Any] = projection_dim A: Any = num_hidden_layers A: Tuple = num_attention_heads A: str = num_channels A: Tuple = patch_size A: int = image_size A: Any = initializer_range A: List[Any] = initializer_factor A: Optional[int] = attention_dropout A: str = layer_norm_eps A: Any = hidden_act @classmethod def _snake_case ( cls : Dict , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) A: List[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('''model_type''' ) == "altclip": A: Optional[Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' UpperCamelCase_ : Optional[int] = """altclip""" UpperCamelCase_ : Optional[Any] = True def __init__( self : str , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=7_68 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2.6592 , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Any: '''simple docstring''' A: List[str] = kwargs.pop('''text_config_dict''' , SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = kwargs.pop('''vision_config_dict''' , SCREAMING_SNAKE_CASE_ ) super().__init__(**SCREAMING_SNAKE_CASE_ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: A: Dict = {} # This is the complete result when using `text_config_dict`. A: List[str] = AltCLIPTextConfig(**SCREAMING_SNAKE_CASE_ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: A: Union[str, Any] = ( f"""`{key}` is found in both `text_config_dict` and `text_config` but with different values. """ f"""The value `text_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: A: Optional[int] = ( f"""`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The """ f"""value `text_config[\"{key}\"]` will be overriden.""" ) logger.warning(SCREAMING_SNAKE_CASE_ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: A: Any = {} # This is the complete result when using `vision_config_dict`. A: Optional[int] = AltCLIPVisionConfig(**SCREAMING_SNAKE_CASE_ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: A: Union[str, Any] = { str(SCREAMING_SNAKE_CASE_ ): value for key, value in _vision_config_dict['id2label'].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: A: Any = ( f"""`{key}` is found in both `vision_config_dict` and `vision_config` but with different """ f"""values. The value `vision_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: A: Any = ( f"""`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. """ f"""The value `vision_config[\"{key}\"]` will be overriden.""" ) logger.warning(SCREAMING_SNAKE_CASE_ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: A: str = {} logger.info('''`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.''' ) if vision_config is None: A: List[Any] = {} logger.info('''`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.''' ) A: Union[str, Any] = AltCLIPTextConfig(**SCREAMING_SNAKE_CASE_ ) A: int = AltCLIPVisionConfig(**SCREAMING_SNAKE_CASE_ ) A: Any = projection_dim A: Any = logit_scale_init_value A: int = 1.0 @classmethod def _snake_case ( cls : int , SCREAMING_SNAKE_CASE_ : AltCLIPTextConfig , SCREAMING_SNAKE_CASE_ : AltCLIPVisionConfig , **SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' A: Optional[Any] = copy.deepcopy(self.__dict__ ) A: Optional[Any] = self.text_config.to_dict() A: Dict = self.vision_config.to_dict() A: str = self.__class__.model_type return output
359
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE( __lowercase = 4 ) -> list[list[int]]: A: Tuple = abs(__lowercase ) or 4 return [[1 + x + y * row_size for x in range(__lowercase )] for y in range(__lowercase )] def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_row(transpose(__lowercase ) ) # OR.. transpose(reverse_column(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_row(reverse_column(__lowercase ) ) # OR.. reverse_column(reverse_row(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_column(transpose(__lowercase ) ) # OR.. transpose(reverse_row(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Union[str, Any] = [list(__lowercase ) for x in zip(*__lowercase )] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Optional[int] = matrix[::-1] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Optional[Any] = [x[::-1] for x in matrix] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> None: for i in matrix: print(*__lowercase ) if __name__ == "__main__": UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
334
0
'''simple docstring''' import datasets from .evaluate import evaluate UpperCamelCase = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' UpperCamelCase = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' UpperCamelCase = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _snake_case ( self : str ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: '''simple docstring''' A: int = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} A: int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] A: Union[str, Any] = evaluate(dataset=__UpperCamelCase , predictions=__UpperCamelCase ) return score
360
'''simple docstring''' from __future__ import annotations import numpy as np def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict: return np.maximum(0 , __lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
334
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __lowercase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = XGLMTokenizer UpperCamelCase_ : Any = XGLMTokenizerFast UpperCamelCase_ : Dict = True UpperCamelCase_ : int = True def _snake_case ( self : int ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A: Optional[int] = XGLMTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : Any ) -> Any: '''simple docstring''' A: List[Any] = '''<pad>''' A: str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _snake_case ( self : str ) -> Dict: '''simple docstring''' A: List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(UpperCAmelCase__ ) , 10_08 ) def _snake_case ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_08 ) def _snake_case ( self : List[Any] ) -> str: '''simple docstring''' A: Optional[int] = XGLMTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) A: int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A: Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) A: Dict = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A: Dict = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def _snake_case ( self : Optional[int] ) -> int: '''simple docstring''' return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def _snake_case ( self : Any ) -> Tuple: '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCAmelCase__ , f.name ) A: int = XGLMTokenizer(f.name , keep_accents=UpperCAmelCase__ ) A: List[Any] = pickle.dumps(UpperCAmelCase__ ) pickle.loads(UpperCAmelCase__ ) def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return A: Optional[Any] = self.get_tokenizer() A: int = self.get_rust_tokenizer() A: str = '''I was born in 92000, and this is falsé.''' A: int = tokenizer.tokenize(UpperCAmelCase__ ) A: Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) A: int = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) A: Any = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) A: Any = self.get_rust_tokenizer() A: List[str] = tokenizer.encode(UpperCAmelCase__ ) A: List[Any] = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _snake_case ( self : Dict ) -> List[str]: '''simple docstring''' A: Dict = '''Hello World!''' A: List[Any] = [2, 3_12_27, 44_47, 35] self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) ) @slow def _snake_case ( self : Optional[Any] ) -> Any: '''simple docstring''' A: str = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off A: List[str] = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) ) @slow def _snake_case ( self : Tuple ) -> int: '''simple docstring''' A: List[Any] = { '''input_ids''': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name='''facebook/xglm-564M''' , padding=UpperCAmelCase__ , )
361
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
0
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[int] = (UnCLIPScheduler,) def _snake_case ( self : str , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: '''simple docstring''' A: Union[str, Any] = { """num_train_timesteps""": 10_00, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_a ) return config def _snake_case ( self : Optional[Any] ) -> Tuple: '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def _snake_case ( self : Optional[Any] ) -> int: '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_a ) def _snake_case ( self : List[Any] ) -> List[str]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def _snake_case ( self : str ) -> Union[str, Any]: '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_a ) def _snake_case ( self : Any ) -> Dict: '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_a ) def _snake_case ( self : str ) -> Optional[int]: '''simple docstring''' for time_step in [0, 5_00, 9_99]: for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_a , prev_timestep=_a ) def _snake_case ( self : Optional[Any] ) -> str: '''simple docstring''' A: str = self.scheduler_classes[0] A: int = self.get_scheduler_config(variance_type='''fixed_small_log''' ) A: Optional[int] = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.999_4987 ) ) < 1E-5 def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A: List[str] = self.scheduler_classes[0] A: str = self.get_scheduler_config(variance_type='''learned_range''' ) A: int = scheduler_class(**_a ) A: Union[str, Any] = 0.5 assert scheduler._get_variance(1 , predicted_variance=_a ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(4_87 , predicted_variance=_a ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(9_99 , predicted_variance=_a ) - -0.001_0011 < 1E-5 def _snake_case ( self : Optional[Any] ) -> Any: '''simple docstring''' A: str = self.scheduler_classes[0] A: List[str] = self.get_scheduler_config() A: Dict = scheduler_class(**_a ) A: Union[str, Any] = scheduler.timesteps A: Optional[int] = self.dummy_model() A: List[Any] = self.dummy_sample_deter A: Any = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual A: Optional[int] = model(_a , _a ) # 2. predict previous mean of sample x_t-1 A: Union[str, Any] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample A: Dict = pred_prev_sample A: Optional[int] = torch.sum(torch.abs(_a ) ) A: Optional[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def _snake_case ( self : Tuple ) -> List[str]: '''simple docstring''' A: int = self.scheduler_classes[0] A: List[str] = self.get_scheduler_config() A: Any = scheduler_class(**_a ) scheduler.set_timesteps(25 ) A: List[Any] = scheduler.timesteps A: Dict = self.dummy_model() A: Optional[Any] = self.dummy_sample_deter A: Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual A: Dict = model(_a , _a ) if i + 1 == timesteps.shape[0]: A: List[Any] = None else: A: Union[str, Any] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 A: Any = scheduler.step( _a , _a , _a , prev_timestep=_a , generator=_a ).prev_sample A: str = pred_prev_sample A: str = torch.sum(torch.abs(_a ) ) A: int = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def _snake_case ( self : Union[str, Any] ) -> Any: '''simple docstring''' pass def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' pass
362
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
334
0
'''simple docstring''' UpperCamelCase = { 'Pillow': 'Pillow', 'accelerate': 'accelerate>=0.11.0', 'compel': 'compel==0.1.8', 'black': 'black~=23.1', 'datasets': 'datasets', 'filelock': 'filelock', 'flax': 'flax>=0.4.1', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.13.2', 'requests-mock': 'requests-mock==1.10.0', 'importlib_metadata': 'importlib_metadata', 'invisible-watermark': 'invisible-watermark', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2', 'jaxlib': 'jaxlib>=0.1.65', 'Jinja2': 'Jinja2', 'k-diffusion': 'k-diffusion>=0.0.12', 'torchsde': 'torchsde', 'note_seq': 'note_seq', 'librosa': 'librosa', 'numpy': 'numpy', 'omegaconf': 'omegaconf', 'parameterized': 'parameterized', 'protobuf': 'protobuf>=3.20.3,<4', 'pytest': 'pytest', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'ruff': 'ruff>=0.0.241', 'safetensors': 'safetensors', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'scipy': 'scipy', 'onnx': 'onnx', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'tensorboard': 'tensorboard', 'torch': 'torch>=1.4', 'torchvision': 'torchvision', 'transformers': 'transformers>=4.25.1', 'urllib3': 'urllib3<=2.0.0', }
363
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , SCREAMING_SNAKE_CASE_ : int = 6_55_36 , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : str = "fourier" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , SCREAMING_SNAKE_CASE_ : Tuple[str] = "UNetMidBlock1D" , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : Tuple[int] = (32, 32, 64) , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : int = 8 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : bool = False , ) -> Tuple: '''simple docstring''' super().__init__() A: Optional[Any] = sample_size # time if time_embedding_type == "fourier": A: Tuple = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=SCREAMING_SNAKE_CASE_ , log=SCREAMING_SNAKE_CASE_ , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ ) A: List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": A: str = Timesteps( block_out_channels[0] , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ , downscale_freq_shift=SCREAMING_SNAKE_CASE_ ) A: Any = block_out_channels[0] if use_timestep_embedding: A: Optional[Any] = block_out_channels[0] * 4 A: List[Any] = TimestepEmbedding( in_channels=SCREAMING_SNAKE_CASE_ , time_embed_dim=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , out_dim=block_out_channels[0] , ) A: Optional[Any] = nn.ModuleList([] ) A: str = None A: str = nn.ModuleList([] ) A: Tuple = None # down A: Any = in_channels for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): A: Optional[int] = output_channel A: List[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels A: List[Any] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 A: Optional[int] = get_down_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(SCREAMING_SNAKE_CASE_ ) # mid A: Union[str, Any] = get_mid_block( SCREAMING_SNAKE_CASE_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=SCREAMING_SNAKE_CASE_ , add_downsample=SCREAMING_SNAKE_CASE_ , ) # up A: Optional[Any] = list(reversed(SCREAMING_SNAKE_CASE_ ) ) A: List[str] = reversed_block_out_channels[0] if out_block_type is None: A: int = out_channels else: A: Union[str, Any] = block_out_channels[0] for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): A: List[Any] = output_channel A: int = ( reversed_block_out_channels[i + 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 else final_upsample_channels ) A: Optional[int] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 A: Optional[Any] = get_up_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(SCREAMING_SNAKE_CASE_ ) A: Any = output_channel # out A: List[str] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) A: Optional[int] = get_out_block( out_block_type=SCREAMING_SNAKE_CASE_ , num_groups_out=SCREAMING_SNAKE_CASE_ , embed_dim=block_out_channels[0] , out_channels=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , fc_dim=block_out_channels[-1] // 4 , ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Union[torch.Tensor, float, int] , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[UNetaDOutput, Tuple]: '''simple docstring''' A: Any = timestep if not torch.is_tensor(SCREAMING_SNAKE_CASE_ ): A: Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ) and len(timesteps.shape ) == 0: A: List[str] = timesteps[None].to(sample.device ) A: int = self.time_proj(SCREAMING_SNAKE_CASE_ ) if self.config.use_timestep_embedding: A: List[Any] = self.time_mlp(SCREAMING_SNAKE_CASE_ ) else: A: str = timestep_embed[..., None] A: Union[str, Any] = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) A: Tuple = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down A: List[str] = () for downsample_block in self.down_blocks: A , A: Optional[int] = downsample_block(hidden_states=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: A: Dict = self.mid_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): A: List[Any] = down_block_res_samples[-1:] A: List[str] = down_block_res_samples[:-1] A: Optional[int] = upsample_block(SCREAMING_SNAKE_CASE_ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) # 5. post-process if self.out_block: A: Any = self.out_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=SCREAMING_SNAKE_CASE_ )
334
0
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = 'RegNetConfig' # Base docstring UpperCamelCase = 'facebook/regnet-y-040' UpperCamelCase = [1, 1088, 7, 7] # Image classification docstring UpperCamelCase = 'facebook/regnet-y-040' UpperCamelCase = 'tabby, tabby cat' UpperCamelCase = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 3 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : Optional[str] = "relu" , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ) -> Tuple: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb A: Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) A: List[str] = tf.keras.layers.ConvaD( filters=_SCREAMING_SNAKE_CASE , kernel_size=_SCREAMING_SNAKE_CASE , strides=_SCREAMING_SNAKE_CASE , padding='''VALID''' , groups=_SCREAMING_SNAKE_CASE , use_bias=_SCREAMING_SNAKE_CASE , name='''convolution''' , ) A: Union[str, Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) A: Tuple = ACTaFN[activation] if activation is not None else tf.identity def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Dict: '''simple docstring''' A: str = self.convolution(self.padding(_SCREAMING_SNAKE_CASE ) ) A: Tuple = self.normalization(_SCREAMING_SNAKE_CASE ) A: int = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : RegNetConfig , **SCREAMING_SNAKE_CASE_ : List[str] ) -> str: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) A: Optional[Any] = config.num_channels A: List[Any] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: '''simple docstring''' A: Union[str, Any] = shape_list(_SCREAMING_SNAKE_CASE )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) A: Union[str, Any] = tf.transpose(_SCREAMING_SNAKE_CASE , perm=(0, 2, 3, 1) ) A: Union[str, Any] = self.embedder(_SCREAMING_SNAKE_CASE ) return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 2 , **SCREAMING_SNAKE_CASE_ : int ) -> Any: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) A: Any = tf.keras.layers.ConvaD( filters=_SCREAMING_SNAKE_CASE , kernel_size=1 , strides=_SCREAMING_SNAKE_CASE , use_bias=_SCREAMING_SNAKE_CASE , name='''convolution''' ) A: List[str] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : tf.Tensor , SCREAMING_SNAKE_CASE_ : bool = False ) -> tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(_SCREAMING_SNAKE_CASE ) , training=_SCREAMING_SNAKE_CASE ) class lowerCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) A: List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_SCREAMING_SNAKE_CASE , name='''pooler''' ) A: Dict = [ tf.keras.layers.ConvaD(filters=_SCREAMING_SNAKE_CASE , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=_SCREAMING_SNAKE_CASE , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: '''simple docstring''' A: Optional[int] = self.pooler(_SCREAMING_SNAKE_CASE ) for layer_module in self.attention: A: Union[str, Any] = layer_module(_SCREAMING_SNAKE_CASE ) A: List[str] = hidden_state * pooled return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 1 , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) A: Optional[int] = in_channels != out_channels or stride != 1 A: Any = max(1 , out_channels // config.groups_width ) A: Union[str, Any] = ( TFRegNetShortCut(_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. A: Tuple = [ TFRegNetConvLayer(_SCREAMING_SNAKE_CASE , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , groups=_SCREAMING_SNAKE_CASE , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(_SCREAMING_SNAKE_CASE , kernel_size=1 , activation=_SCREAMING_SNAKE_CASE , name='''layer.2''' ), ] A: Dict = ACTaFN[config.hidden_act] def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: '''simple docstring''' A: str = hidden_state for layer_module in self.layers: A: Dict = layer_module(_SCREAMING_SNAKE_CASE ) A: str = self.shortcut(_SCREAMING_SNAKE_CASE ) hidden_state += residual A: Optional[Any] = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 1 , **SCREAMING_SNAKE_CASE_ : int ) -> str: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) A: Any = in_channels != out_channels or stride != 1 A: Any = max(1 , out_channels // config.groups_width ) A: Any = ( TFRegNetShortCut(_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) A: Union[str, Any] = [ TFRegNetConvLayer(_SCREAMING_SNAKE_CASE , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , groups=_SCREAMING_SNAKE_CASE , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(_SCREAMING_SNAKE_CASE , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(_SCREAMING_SNAKE_CASE , kernel_size=1 , activation=_SCREAMING_SNAKE_CASE , name='''layer.3''' ), ] A: Union[str, Any] = ACTaFN[config.hidden_act] def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[str]: '''simple docstring''' A: Optional[int] = hidden_state for layer_module in self.layers: A: Tuple = layer_module(_SCREAMING_SNAKE_CASE ) A: int = self.shortcut(_SCREAMING_SNAKE_CASE ) hidden_state += residual A: Optional[int] = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Optional[int]: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) A: Any = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer A: Union[str, Any] = [ # downsampling is done in the first layer with stride of 2 layer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , name='''layers.0''' ), *[layer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Dict ) -> str: '''simple docstring''' for layer_module in self.layers: A: Optional[int] = layer_module(_SCREAMING_SNAKE_CASE ) return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : RegNetConfig , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) A: Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _SCREAMING_SNAKE_CASE , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) A: Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_SCREAMING_SNAKE_CASE , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , depth=_SCREAMING_SNAKE_CASE , name=f"""stages.{i+1}""" ) ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : tf.Tensor , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = True ) -> TFBaseModelOutputWithNoAttention: '''simple docstring''' A: List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A: Tuple = hidden_states + (hidden_state,) A: Dict = stage_module(_SCREAMING_SNAKE_CASE ) if output_hidden_states: A: Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_SCREAMING_SNAKE_CASE , hidden_states=_SCREAMING_SNAKE_CASE ) @keras_serializable class lowerCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' UpperCamelCase_ : Any = RegNetConfig def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) A: List[str] = config A: List[Any] = TFRegNetEmbeddings(_SCREAMING_SNAKE_CASE , name='''embedder''' ) A: Optional[Any] = TFRegNetEncoder(_SCREAMING_SNAKE_CASE , name='''encoder''' ) A: Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_SCREAMING_SNAKE_CASE , name='''pooler''' ) @unpack_inputs def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : tf.Tensor , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' A: Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A: Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict A: Dict = self.embedder(_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) A: Dict = self.encoder( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) A: Optional[Any] = encoder_outputs[0] A: Optional[Any] = self.pooler(_SCREAMING_SNAKE_CASE ) # Change to NCHW output format have uniformity in the modules A: Optional[Any] = tf.transpose(_SCREAMING_SNAKE_CASE , perm=(0, 3, 1, 2) ) A: Tuple = tf.transpose(_SCREAMING_SNAKE_CASE , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: A: Dict = tuple([tf.transpose(_SCREAMING_SNAKE_CASE , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_SCREAMING_SNAKE_CASE , pooler_output=_SCREAMING_SNAKE_CASE , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase_ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase_ : Tuple = RegNetConfig UpperCamelCase_ : Dict = """regnet""" UpperCamelCase_ : Dict = """pixel_values""" @property def _snake_case ( self : Tuple ) -> Any: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} UpperCamelCase = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' UpperCamelCase = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , __SCREAMING_SNAKE_CASE , ) class lowerCAmelCase_ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : RegNetConfig , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Any: '''simple docstring''' super().__init__(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) A: List[str] = TFRegNetMainLayer(_SCREAMING_SNAKE_CASE , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : tf.Tensor , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : List[str]=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' A: Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A: int = return_dict if return_dict is not None else self.config.use_return_dict A: Optional[Any] = self.regnet( pixel_values=_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n """ , __SCREAMING_SNAKE_CASE , ) class lowerCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE_ : RegNetConfig , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]: '''simple docstring''' super().__init__(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) A: List[str] = config.num_labels A: Dict = TFRegNetMainLayer(_SCREAMING_SNAKE_CASE , name='''regnet''' ) # classification head A: int = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : tf.Tensor = None , SCREAMING_SNAKE_CASE_ : tf.Tensor = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : List[str]=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' A: Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A: Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict A: Any = self.regnet( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) A: Tuple = outputs.pooler_output if return_dict else outputs[1] A: str = self.classifier[0](_SCREAMING_SNAKE_CASE ) A: Optional[Any] = self.classifier[1](_SCREAMING_SNAKE_CASE ) A: Union[str, Any] = None if labels is None else self.hf_compute_loss(labels=_SCREAMING_SNAKE_CASE , logits=_SCREAMING_SNAKE_CASE ) if not return_dict: A: List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_SCREAMING_SNAKE_CASE , logits=_SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states )
364
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : int , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Dict ) -> None: '''simple docstring''' warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
334
0
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowerCAmelCase_ ( unittest.TestCase ): UpperCamelCase_ : Tuple = inspect.getfile(accelerate.test_utils ) UpperCamelCase_ : Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] ) UpperCamelCase_ : List[str] = ["accelerate", "launch"] UpperCamelCase_ : List[Any] = Path.home() / ".cache/huggingface/accelerate" UpperCamelCase_ : Tuple = "default_config.yaml" UpperCamelCase_ : Tuple = config_folder / config_file UpperCamelCase_ : int = config_folder / "_default_config.yaml" UpperCamelCase_ : Optional[Any] = Path("""tests/test_configs""" ) @classmethod def _snake_case ( cls : int ) -> Optional[Any]: '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def _snake_case ( cls : Any ) -> Optional[Any]: '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def _snake_case ( self : Tuple ) -> str: '''simple docstring''' A: str = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def _snake_case ( self : List[Any] ) -> str: '''simple docstring''' for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=lowerCamelCase_ ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(lowerCamelCase_ ), self.test_file_path] , env=os.environ.copy() ) def _snake_case ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class lowerCAmelCase_ ( unittest.TestCase ): UpperCamelCase_ : Optional[int] = "test-tpu" UpperCamelCase_ : Optional[int] = "us-central1-a" UpperCamelCase_ : Dict = "ls" UpperCamelCase_ : Optional[int] = ["accelerate", "tpu-config"] UpperCamelCase_ : Optional[Any] = "cd /usr/share" UpperCamelCase_ : Optional[Any] = "tests/test_samples/test_command_file.sh" UpperCamelCase_ : int = "Running gcloud compute tpus tpu-vm ssh" def _snake_case ( self : Dict ) -> List[Any]: '''simple docstring''' A: Optional[Any] = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=lowerCamelCase_ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , lowerCamelCase_ , ) def _snake_case ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' A: int = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=lowerCamelCase_ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , lowerCamelCase_ , ) def _snake_case ( self : Dict ) -> Tuple: '''simple docstring''' A: Union[str, Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=lowerCamelCase_ ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , lowerCamelCase_ , ) def _snake_case ( self : Optional[int] ) -> List[str]: '''simple docstring''' A: Dict = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=lowerCamelCase_ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , lowerCamelCase_ , ) def _snake_case ( self : Union[str, Any] ) -> int: '''simple docstring''' A: Union[str, Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo \"Hello World\"''', '''--debug''', ] , return_stdout=lowerCamelCase_ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , lowerCamelCase_ , ) def _snake_case ( self : str ) -> Optional[Any]: '''simple docstring''' A: int = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=lowerCamelCase_ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , lowerCamelCase_ , ) def _snake_case ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A: Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=lowerCamelCase_ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , lowerCamelCase_ , ) def _snake_case ( self : Optional[int] ) -> Dict: '''simple docstring''' A: List[str] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=lowerCamelCase_ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , lowerCamelCase_ , ) def _snake_case ( self : List[str] ) -> List[str]: '''simple docstring''' A: Dict = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=lowerCamelCase_ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , lowerCamelCase_ , )
365
'''simple docstring''' from collections import deque class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> None: '''simple docstring''' A: Union[str, Any] = process_name # process name A: List[str] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time A: Dict = arrival_time A: Optional[Any] = burst_time # remaining burst time A: Any = 0 # total time of the process wait in ready queue A: Any = 0 # time from arrival time to completion time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int , ) -> None: '''simple docstring''' A: Dict = number_of_queues # time slice of queues that round robin algorithm applied A: int = time_slices # unfinished process is in this ready_queue A: Tuple = queue # current time A: int = current_time # finished process is in this sequence queue A: deque[Process] = deque() def _snake_case ( self : List[Any] ) -> list[str]: '''simple docstring''' A: str = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: Optional[int] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: Any = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: List[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): completion_times.append(queue[i].stop_time ) return completion_times def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : deque[Process] ) -> list[int]: '''simple docstring''' return [q.burst_time for q in queue] def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : Process ) -> int: '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : deque[Process] ) -> deque[Process]: '''simple docstring''' A: deque[Process] = deque() # sequence deque of finished process while len(SCREAMING_SNAKE_CASE_ ) != 0: A: Optional[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 A: Any = 0 # set the process's turnaround time because it is finished A: int = self.current_time - cp.arrival_time # set the completion time A: List[str] = self.current_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int ) -> tuple[deque[Process], deque[Process]]: '''simple docstring''' A: deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(SCREAMING_SNAKE_CASE_ ) ): A: Dict = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time A: Optional[Any] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(SCREAMING_SNAKE_CASE_ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished A: int = 0 # set the finish time A: Union[str, Any] = self.current_time # update the process' turnaround time because it is finished A: Tuple = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def _snake_case ( self : Optional[Any] ) -> deque[Process]: '''simple docstring''' for i in range(self.number_of_queues - 1 ): A , A: Optional[Any] = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest UpperCamelCase = Process('''P1''', 0, 53) UpperCamelCase = Process('''P2''', 0, 17) UpperCamelCase = Process('''P3''', 0, 68) UpperCamelCase = Process('''P4''', 0, 24) UpperCamelCase = 3 UpperCamelCase = [17, 25] UpperCamelCase = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) UpperCamelCase = Process('''P1''', 0, 53) UpperCamelCase = Process('''P2''', 0, 17) UpperCamelCase = Process('''P3''', 0, 68) UpperCamelCase = Process('''P4''', 0, 24) UpperCamelCase = 3 UpperCamelCase = [17, 25] UpperCamelCase = deque([Pa, Pa, Pa, Pa]) UpperCamelCase = MLFQ(number_of_queues, time_slices, queue, 0) UpperCamelCase = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( f'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( f'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
334
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM A: List[str] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : Optional[Any] = None , SCREAMING_SNAKE_CASE_ : Optional[Any] = 0.0 , SCREAMING_SNAKE_CASE_ : int = 50 , SCREAMING_SNAKE_CASE_ : Any = None , SCREAMING_SNAKE_CASE_ : str = "pil" , SCREAMING_SNAKE_CASE_ : Optional[int] = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(self.unet.config.sample_size , _lowercase ): A: Optional[int] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: A: str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) A: str = randn_tensor(_lowercase , generator=_lowercase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A: Dict = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A: Any = self.scheduler.step( _lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase ).prev_sample A: Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 ) A: Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A: str = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
366
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger() @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : List[nn.Module] = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : list = field(default_factory=UpperCAmelCase_ ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tensor , SCREAMING_SNAKE_CASE_ : Tensor ) -> int: '''simple docstring''' A: List[str] = len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE_ ) def __call__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tensor ) -> Dict: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(SCREAMING_SNAKE_CASE_ ) [x.remove() for x in self.handles] return self @property def _snake_case ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return list(filter(lambda SCREAMING_SNAKE_CASE_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : nn.Module UpperCamelCase_ : int = 0 UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) def __call__( self : Any , SCREAMING_SNAKE_CASE_ : Tensor ) -> Optional[Any]: '''simple docstring''' A: Dict = Tracker(self.dest )(SCREAMING_SNAKE_CASE_ ).parametrized A: Tuple = Tracker(self.src )(SCREAMING_SNAKE_CASE_ ).parametrized A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.src_skip , SCREAMING_SNAKE_CASE_ ) ) A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.dest_skip , SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise Exception( f"""Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE_ )} operations while""" f""" destination module has {len(SCREAMING_SNAKE_CASE_ )}.""" ) for dest_m, src_m in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase = True ) -> Any: print(F"""Converting {name}...""" ) with torch.no_grad(): A: Union[str, Any] = timm.create_model(__lowercase , pretrained=__lowercase ).eval() A: List[str] = ResNetForImageClassification(__lowercase ).eval() A: int = ModuleTransfer(src=__lowercase , dest=__lowercase ) A: List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(__lowercase ) assert torch.allclose(from_model(__lowercase ) , our_model(__lowercase ).logits ), "The model logits don't match the original one." A: str = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(__lowercase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__lowercase , ) # we can use the convnext one A: Any = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__lowercase , ) print(F"""Pushed {checkpoint_name}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = None , __lowercase = True ) -> List[Any]: A: Union[str, Any] = '''imagenet-1k-id2label.json''' A: Union[str, Any] = 1_0_0_0 A: Optional[int] = (1, num_labels) A: Dict = '''huggingface/label-files''' A: Any = num_labels A: Union[str, Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Optional[int] = {int(__lowercase ): v for k, v in idalabel.items()} A: Optional[int] = idalabel A: List[str] = {v: k for k, v in idalabel.items()} A: str = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase ) A: Optional[Any] = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__lowercase , names_to_config[model_name] , __lowercase , __lowercase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowercase , __lowercase , __lowercase , __lowercase ) return config, expected_shape if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase = parser.parse_args() UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
'''simple docstring''' from string import ascii_uppercase UpperCamelCase = {str(ord(c) - 55): c for c in ascii_uppercase} def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''int() can\'t convert non-string with explicit base''' ) if num < 0: raise ValueError('''parameter must be positive int''' ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if base in (0, 1): raise ValueError('''base must be >= 2''' ) if base > 3_6: raise ValueError('''base must be <= 36''' ) A: str = '''''' A: Dict = 0 A: Dict = 0 while div != 1: A , A: Optional[Any] = divmod(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if base >= 1_1 and 9 < mod < 3_6: A: Optional[Any] = ALPHABET_VALUES[str(SCREAMING_SNAKE_CASE__ )] else: A: Optional[int] = str(SCREAMING_SNAKE_CASE__ ) new_value += actual_value A: str = num // base A: Dict = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(SCREAMING_SNAKE_CASE__ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
367
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> str | Literal[False]: A: List[str] = list(__lowercase ) A: Optional[Any] = list(__lowercase ) A: int = 0 for i in range(len(__lowercase ) ): if lista[i] != lista[i]: count += 1 A: Optional[Any] = '''_''' if count > 1: return False else: return "".join(__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[str]: A: Any = [] while True: A: Dict = ['''$'''] * len(__lowercase ) A: Union[str, Any] = [] for i in range(len(__lowercase ) ): for j in range(i + 1 , len(__lowercase ) ): A: Any = compare_string(binary[i] , binary[j] ) if k is False: A: Any = '''*''' A: List[Any] = '''*''' temp.append('''X''' ) for i in range(len(__lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__lowercase ) == 0: return pi A: List[Any] = list(set(__lowercase ) ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[str]: A: Optional[int] = [] for minterm in minterms: A: Optional[int] = '''''' for _ in range(__lowercase ): A: List[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(__lowercase ) return temp def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> bool: A: Union[str, Any] = list(__lowercase ) A: Union[str, Any] = list(__lowercase ) A: Optional[int] = 0 for i in range(len(__lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[str]: A: List[Any] = [] A: Dict = [0] * len(__lowercase ) for i in range(len(chart[0] ) ): A: List[str] = 0 A: str = -1 for j in range(len(__lowercase ) ): if chart[j][i] == 1: count += 1 A: Any = j if count == 1: A: Any = 1 for i in range(len(__lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__lowercase ) ): A: Optional[int] = 0 temp.append(prime_implicants[i] ) while True: A: Dict = 0 A: Optional[int] = -1 A: Dict = 0 for i in range(len(__lowercase ) ): A: str = chart[i].count(1 ) if count_n > max_n: A: Tuple = count_n A: Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__lowercase ) ): A: Any = 0 def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[list[int]]: A: str = [[0 for x in range(len(__lowercase ) )] for x in range(len(__lowercase ) )] for i in range(len(__lowercase ) ): A: Tuple = prime_implicants[i].count('''_''' ) for j in range(len(__lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , __lowercase ): A: Optional[Any] = 1 return chart def SCREAMING_SNAKE_CASE( ) -> None: A: int = int(input('''Enter the no. of variables\n''' ) ) A: Optional[int] = [ float(__lowercase ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] A: List[str] = decimal_to_binary(__lowercase , __lowercase ) A: str = check(__lowercase ) print('''Prime Implicants are:''' ) print(__lowercase ) A: List[Any] = prime_implicant_chart(__lowercase , __lowercase ) A: Any = selection(__lowercase , __lowercase ) print('''Essential Prime Implicants are:''' ) print(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
334
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Dict = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase_ : Tuple = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCamelCase_ : List[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCamelCase_ : Optional[Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: '''simple docstring''' A: Optional[int] = ZeroShotClassificationPipeline( model=__lowerCamelCase , tokenizer=__lowerCamelCase , candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: '''simple docstring''' A: Tuple = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' ) self.assertEqual(__lowerCamelCase , {'''sequence''': ANY(__lowerCamelCase ), '''labels''': [ANY(__lowerCamelCase )], '''scores''': [ANY(__lowerCamelCase )]} ) # No kwarg A: str = classifier('''Who are you voting for in 2020?''' , ['''politics'''] ) self.assertEqual(__lowerCamelCase , {'''sequence''': ANY(__lowerCamelCase ), '''labels''': [ANY(__lowerCamelCase )], '''scores''': [ANY(__lowerCamelCase )]} ) A: List[str] = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] ) self.assertEqual(__lowerCamelCase , {'''sequence''': ANY(__lowerCamelCase ), '''labels''': [ANY(__lowerCamelCase )], '''scores''': [ANY(__lowerCamelCase )]} ) A: str = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' ) self.assertEqual( __lowerCamelCase , {'''sequence''': ANY(__lowerCamelCase ), '''labels''': [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )], '''scores''': [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) A: Optional[int] = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( __lowerCamelCase , {'''sequence''': ANY(__lowerCamelCase ), '''labels''': [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )], '''scores''': [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) A: Union[str, Any] = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' ) self.assertEqual(__lowerCamelCase , {'''sequence''': ANY(__lowerCamelCase ), '''labels''': [ANY(__lowerCamelCase )], '''scores''': [ANY(__lowerCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 A: int = classifier(['''I am happy'''] , ['''positive''', '''negative'''] ) self.assertEqual( __lowerCamelCase , [ {'''sequence''': ANY(__lowerCamelCase ), '''labels''': [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )], '''scores''': [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )]} for i in range(1 ) ] , ) A: int = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] ) self.assertEqual( __lowerCamelCase , [ {'''sequence''': ANY(__lowerCamelCase ), '''labels''': [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )], '''scores''': [ANY(__lowerCamelCase ), ANY(__lowerCamelCase )]} for i in range(2 ) ] , ) with self.assertRaises(__lowerCamelCase ): classifier('''''' , candidate_labels='''politics''' ) with self.assertRaises(__lowerCamelCase ): classifier(__lowerCamelCase , candidate_labels='''politics''' ) with self.assertRaises(__lowerCamelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' ) with self.assertRaises(__lowerCamelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels=__lowerCamelCase ) with self.assertRaises(__lowerCamelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(__lowerCamelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=__lowerCamelCase , ) self.run_entailment_id(__lowerCamelCase ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Pipeline ) -> List[str]: '''simple docstring''' A: List[Any] = zero_shot_classifier.model.config A: List[str] = config.labelaid A: Union[str, Any] = zero_shot_classifier.entailment_id A: str = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) A: Any = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) A: Optional[Any] = {"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) A: int = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) A: str = original_labelaid self.assertEqual(__lowerCamelCase , zero_shot_classifier.entailment_id ) @require_torch def _snake_case ( self : Any ) -> List[Any]: '''simple docstring''' A: Tuple = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 1_00 , candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def _snake_case ( self : Any ) -> Dict: '''simple docstring''' A: Any = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) A: Any = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @require_tf def _snake_case ( self : Optional[int] ) -> Tuple: '''simple docstring''' A: List[Any] = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) A: Optional[int] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @slow @require_torch def _snake_case ( self : Dict ) -> int: '''simple docstring''' A: str = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' ) A: Any = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) A: Tuple = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=__lowerCamelCase , ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def _snake_case ( self : Optional[int] ) -> Any: '''simple docstring''' A: Union[str, Any] = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' ) A: Optional[Any] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) A: Tuple = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=__lowerCamelCase , ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , )
368
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: A: Tuple = len(__lowercase ) for i in range(length - 1 ): A: Dict = i for k in range(i + 1 , __lowercase ): if collection[k] < collection[least]: A: List[str] = k if least != i: A , A: Tuple = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
334
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
369
'''simple docstring''' class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] ) -> int: '''simple docstring''' A: Tuple = None A: Dict = None A: Optional[int] = graph self._normalize_graph(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: str = len(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = None def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ) -> str: '''simple docstring''' if sources is int: A: Union[str, Any] = [sources] if sinks is int: A: Tuple = [sinks] if len(SCREAMING_SNAKE_CASE_ ) == 0 or len(SCREAMING_SNAKE_CASE_ ) == 0: return A: List[str] = sources[0] A: Optional[int] = sinks[0] # make fake vertex if there are more # than one source or sink if len(SCREAMING_SNAKE_CASE_ ) > 1 or len(SCREAMING_SNAKE_CASE_ ) > 1: A: Any = 0 for i in sources: max_input_flow += sum(self.graph[i] ) A: Dict = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: A: Optional[Any] = max_input_flow A: Optional[Any] = 0 A: str = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: A: Optional[Any] = max_input_flow A: str = size - 1 def _snake_case ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: '''simple docstring''' A: Optional[Any] = algorithm(self ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: '''simple docstring''' A: str = flow_network A: List[str] = flow_network.verticesCount A: Dict = flow_network.sourceIndex A: Any = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that A: str = flow_network.graph A: str = False def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' if not self.executed: self._algorithm() A: str = True def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) # use this to save your result A: Any = -1 def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = [[0] * self.verticies_count for i in range(self.verticies_count )] A: Any = [0] * self.verticies_count A: Optional[Any] = [0] * self.verticies_count def _snake_case ( self : str ) -> Optional[Any]: '''simple docstring''' A: Any = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule A: str = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list A: Dict = 0 while i < len(SCREAMING_SNAKE_CASE_ ): A: Any = vertices_list[i] A: str = self.heights[vertex_index] self.process_vertex(SCREAMING_SNAKE_CASE_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE_ ) ) A: Tuple = 0 else: i += 1 A: Tuple = sum(self.preflow[self.source_index] ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.relabel(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: '''simple docstring''' A: Optional[int] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> int: '''simple docstring''' A: Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): A: List[Any] = self.heights[to_index] if min_height is not None: A: int = min_height + 1 if __name__ == "__main__": UpperCamelCase = [0] UpperCamelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCamelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCamelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCamelCase = flow_network.find_maximum_flow() print(f'maximum flow is {maximum_flow}')
334
0
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCAmelCase_ ( a__ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = 0 UpperCamelCase_ : Dict = False UpperCamelCase_ : str = 3.0 class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=SCREAMING_SNAKE_CASE_ ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def _snake_case ( self : Optional[Any] ) -> str: '''simple docstring''' A: str = GradScalerKwargs(init_scale=10_24 , growth_factor=2 ) AcceleratorState._reset_state() A: Optional[int] = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) A: Union[str, Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 20_00 ) self.assertEqual(scaler._enabled , SCREAMING_SNAKE_CASE_ ) @require_multi_gpu def _snake_case ( self : Optional[Any] ) -> str: '''simple docstring''' A: Tuple = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": UpperCamelCase = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) UpperCamelCase = Accelerator(kwargs_handlers=[ddp_scaler]) UpperCamelCase = torch.nn.Linear(100, 200) UpperCamelCase = accelerator.prepare(model) # Check the values changed in kwargs UpperCamelCase = '''''' UpperCamelCase = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
370
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ["""input_features""", """attention_mask"""] def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=80 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_60_00 , SCREAMING_SNAKE_CASE_ : int=80 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__(feature_size=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , padding_value=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = num_mel_bins A: str = do_ceptral_normalize A: int = normalize_means A: List[Any] = normalize_vars A: Any = True def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : np.ndarray , ) -> np.ndarray: '''simple docstring''' A: Optional[int] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers A: Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) A: List[Any] = ta_kaldi.fbank(SCREAMING_SNAKE_CASE_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _snake_case ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : float = 0.0 , ) -> np.ndarray: '''simple docstring''' if normalize_means: A: str = x[:input_length].mean(axis=0 ) A: Dict = np.subtract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if normalize_vars: A: Tuple = x[:input_length].std(axis=0 ) A: List[Any] = np.divide(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if input_length < x.shape[0]: A: Optional[int] = padding_value # make sure array is in float32 A: Optional[Any] = x.astype(np.floataa ) return x def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[np.ndarray] , SCREAMING_SNAKE_CASE_ : Optional[np.ndarray] = None ) -> List[np.ndarray]: '''simple docstring''' A: int = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] def __call__( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , SCREAMING_SNAKE_CASE_ : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) A: Any = isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) A: Optional[Any] = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A: Optional[int] = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ): A: int = np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A: Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A: Union[str, Any] = [raw_speech] # extract fbank features A: str = [self._extract_fbank_features(SCREAMING_SNAKE_CASE_ ) for waveform in raw_speech] # convert into correct format for padding A: int = BatchFeature({'''input_features''': features} ) A: int = self.pad( SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # make sure list is in array format A: List[str] = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , SCREAMING_SNAKE_CASE_ ): A: Optional[Any] = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for feature in input_features] A: List[Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: A: Dict = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: A: Dict = ( np.array(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) if self._get_padding_strategies(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) is not PaddingStrategy.DO_NOT_PAD else None ) A: List[Any] = self.normalize( padded_inputs['''input_features'''] , attention_mask=SCREAMING_SNAKE_CASE_ ) if return_tensors is not None: A: Dict = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE_ ) return padded_inputs
334
0
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> Tuple: A: str = len(__lowercase ), len(grid[0] ) if ( min(__lowercase , __lowercase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) A: Optional[int] = 0 count += depth_first_search(__lowercase , row + 1 , __lowercase , __lowercase ) count += depth_first_search(__lowercase , row - 1 , __lowercase , __lowercase ) count += depth_first_search(__lowercase , __lowercase , col + 1 , __lowercase ) count += depth_first_search(__lowercase , __lowercase , col - 1 , __lowercase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
371
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = DebertaTokenizer UpperCamelCase_ : List[str] = True UpperCamelCase_ : int = DebertaTokenizerFast def _snake_case ( self : Optional[int] ) -> Dict: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A: Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] A: int = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A: Union[str, Any] = {'''unk_token''': '''[UNK]'''} A: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict ) -> Union[str, Any]: '''simple docstring''' A: Optional[int] = '''lower newer''' A: str = '''lower newer''' return input_text, output_text def _snake_case ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A: str = self.get_tokenizer() A: Any = '''lower newer''' A: Dict = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] A: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokens + [tokenizer.unk_token] A: int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] ) -> Any: '''simple docstring''' A: str = self.get_tokenizer() A: List[str] = tokenizer('''Hello''' , '''World''' ) A: Union[str, Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , SCREAMING_SNAKE_CASE_ ) @slow def _snake_case ( self : Tuple ) -> Optional[int]: '''simple docstring''' A: Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A: Any = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) A: int = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A: int = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: A: List[Any] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A: Dict = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] A: Dict = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) A: Any = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) for seq in encoding['''input_ids''']] # fmt: off A: Any = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on A: Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , SCREAMING_SNAKE_CASE_ ) for expected, decoded in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
334
0
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase = 1_0_0_0 ) -> List[Any]: A: Any = 3 A: Tuple = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'{solution() = }')
350
'''simple docstring''' import requests UpperCamelCase = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def SCREAMING_SNAKE_CASE( __lowercase ) -> None: # fetching a list of articles in json format A: Tuple = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
334
0
from collections.abc import Sequence from queue import Queue class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : Any=None ) -> List[Any]: '''simple docstring''' A: Tuple = start A: Any = end A: Dict = val A: Optional[Any] = (start + end) // 2 A: int = left A: Dict = right def __repr__( self : Optional[Any] ) -> List[Any]: '''simple docstring''' return f"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})""" class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' A: int = collection A: int = function if self.collection: A: Optional[int] = self._build_tree(0 , len(_snake_case ) - 1 ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: '''simple docstring''' self._update_tree(self.root , _snake_case , _snake_case ) def _snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Tuple: '''simple docstring''' return self._query_range(self.root , _snake_case , _snake_case ) def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: '''simple docstring''' if start == end: return SegmentTreeNode(_snake_case , _snake_case , self.collection[start] ) A: List[Any] = (start + end) // 2 A: List[str] = self._build_tree(_snake_case , _snake_case ) A: List[Any] = self._build_tree(mid + 1 , _snake_case ) return SegmentTreeNode(_snake_case , _snake_case , self.fn(left.val , right.val ) , _snake_case , _snake_case ) def _snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[Any]: '''simple docstring''' if node.start == i and node.end == i: A: Any = val return if i <= node.mid: self._update_tree(node.left , _snake_case , _snake_case ) else: self._update_tree(node.right , _snake_case , _snake_case ) A: List[str] = self.fn(node.left.val , node.right.val ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]: '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , _snake_case , _snake_case ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , _snake_case , node.mid ) , self._query_range(node.right , node.mid + 1 , _snake_case ) , ) else: # range in right child tree return self._query_range(node.right , _snake_case , _snake_case ) def _snake_case ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if self.root is not None: A: List[str] = Queue() queue.put(self.root ) while not queue.empty(): A: Dict = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) UpperCamelCase = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
351
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } UpperCamelCase = { '''camembert-base''': 512, } UpperCamelCase = '''▁''' class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : str = ["""input_ids""", """attention_mask"""] UpperCamelCase_ : int = CamembertTokenizer def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="</s>" , SCREAMING_SNAKE_CASE_ : int="<s>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE_ : str="<pad>" , SCREAMING_SNAKE_CASE_ : List[str]="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=["<s>NOTUSED", "</s>NOTUSED"] , **SCREAMING_SNAKE_CASE_ : Any , ) -> Any: '''simple docstring''' A: Tuple = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Any = vocab_file A: Any = False if not self.vocab_file else True def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A: List[str] = [self.cls_token_id] A: List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A: List[str] = [self.sep_token_id] A: Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A: Dict = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
334
0
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: A = len(UpperCamelCase__ ) for i in range(UpperCamelCase__ ): for j in range(i + 1 , UpperCamelCase__ ): if numbers[j] < numbers[i]: A = numbers[j], numbers[i] return numbers if __name__ == "__main__": UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
352
'''simple docstring''' import os from distutils.util import strtobool def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[Any]: for e in env_keys: A: Dict = int(os.environ.get(__lowercase , -1 ) ) if val >= 0: return val return default def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False ) -> List[str]: A: str = os.environ.get(__lowercase , str(__lowercase ) ) return strtobool(__lowercase ) == 1 # As its name indicates `strtobool` actually returns an int... def SCREAMING_SNAKE_CASE( __lowercase , __lowercase="no" ) -> str: A: Optional[int] = os.environ.get(__lowercase , str(__lowercase ) ) return value
334
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase = 'pt' elif is_tf_available(): UpperCamelCase = 'tf' else: UpperCamelCase = 'jax' class lowerCAmelCase_ ( _lowerCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Any = PerceiverTokenizer UpperCamelCase_ : List[str] = False def _snake_case ( self : Tuple ) -> Tuple: '''simple docstring''' super().setUp() A: Dict = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _snake_case ( self : str ) -> Any: '''simple docstring''' return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def _snake_case ( self : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[str]: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any]=False , SCREAMING_SNAKE_CASE_ : Any=20 , SCREAMING_SNAKE_CASE_ : Any=5 ) -> str: '''simple docstring''' A: List[str] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): try: A: List[str] = tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) A: List[str] = list(filter(lambda SCREAMING_SNAKE_CASE_ : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , SCREAMING_SNAKE_CASE_ ) ) A: Union[str, Any] = list(filter(lambda SCREAMING_SNAKE_CASE_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE_ ) > max_length: A: Tuple = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE_ ) < min_length and len(SCREAMING_SNAKE_CASE_ ) > 0: while len(SCREAMING_SNAKE_CASE_ ) < min_length: A: Optional[int] = toks + toks # toks_str = [t[1] for t in toks] A: List[Any] = [t[0] for t in toks] # Ensure consistency A: List[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE_ ) > 1: A: Optional[int] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) ) if with_prefix_space: A: Union[str, Any] = ''' ''' + output_txt A: int = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) return output_txt, output_ids def _snake_case ( self : Any ) -> Any: '''simple docstring''' A: str = self.perceiver_tokenizer A: Any = '''Unicode €.''' A: Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = [4, 91, 1_16, 1_11, 1_05, 1_17, 1_06, 1_07, 38, 2_32, 1_36, 1_78, 52, 5] self.assertEqual(encoded['''input_ids'''] , SCREAMING_SNAKE_CASE_ ) # decoding A: List[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''[CLS]Unicode €.[SEP]''' ) A: Tuple = tokenizer('''e è é ê ë''' ) A: Union[str, Any] = [4, 1_07, 38, 2_01, 1_74, 38, 2_01, 1_75, 38, 2_01, 1_76, 38, 2_01, 1_77, 5] self.assertEqual(encoded['''input_ids'''] , SCREAMING_SNAKE_CASE_ ) # decoding A: Optional[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def _snake_case ( self : List[str] ) -> int: '''simple docstring''' A: Optional[int] = self.perceiver_tokenizer A: Optional[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off A: int = [4, 71, 38, 1_14, 1_17, 1_16, 1_09, 38, 1_18, 1_03, 1_20, 1_03, 1_09, 1_20, 1_03, 1_18, 1_10, 38, 1_08, 1_17, 1_20, 38, 1_21, 1_23, 1_15, 1_15, 1_03, 1_20, 1_11, 1_28, 1_03, 1_22, 1_11, 1_17, 1_16, 52, 5, 0] # fmt: on A: List[Any] = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if FRAMEWORK != "jax": A: str = list(batch.input_ids.numpy()[0] ) else: A: Union[str, Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def _snake_case ( self : str ) -> Union[str, Any]: '''simple docstring''' A: Dict = self.perceiver_tokenizer A: Tuple = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] A: List[Any] = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , SCREAMING_SNAKE_CASE_ ) self.assertIn('''attention_mask''' , SCREAMING_SNAKE_CASE_ ) self.assertNotIn('''decoder_input_ids''' , SCREAMING_SNAKE_CASE_ ) self.assertNotIn('''decoder_attention_mask''' , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Any ) -> List[str]: '''simple docstring''' A: Optional[int] = self.perceiver_tokenizer A: str = [ '''Summary of the text.''', '''Another summary.''', ] A: int = tokenizer( text_target=SCREAMING_SNAKE_CASE_ , max_length=32 , padding='''max_length''' , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _snake_case ( self : Dict ) -> Tuple: '''simple docstring''' A: str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test A: List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc A: Optional[int] = tempfile.mkdtemp() A: Union[str, Any] = ''' He is very happy, UNwant\u00E9d,running''' A: Any = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) A: int = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE_ ) A: Dict = after_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) A: str = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc A: Union[str, Any] = tempfile.mkdtemp() A: List[str] = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) A: Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) A: List[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE_ ) A: str = after_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) A: Optional[int] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] ) -> Dict: '''simple docstring''' A: Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: A: int = json.load(SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: A: Any = json.load(SCREAMING_SNAKE_CASE_ ) A: Any = [f"""<extra_id_{i}>""" for i in range(1_25 )] A: int = added_tokens_extra_ids + [ '''an_additional_special_token''' ] A: int = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(SCREAMING_SNAKE_CASE_ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files A: List[Any] = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained A: Optional[Any] = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=SCREAMING_SNAKE_CASE_ )] A: List[Any] = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _snake_case ( self : Any ) -> int: '''simple docstring''' A: Any = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_78] ) , '''�''' ) def _snake_case ( self : Any ) -> str: '''simple docstring''' pass def _snake_case ( self : List[Any] ) -> List[str]: '''simple docstring''' pass def _snake_case ( self : Any ) -> Optional[Any]: '''simple docstring''' pass def _snake_case ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' pass def _snake_case ( self : str ) -> str: '''simple docstring''' A: List[str] = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): A: Optional[int] = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] A: Optional[Any] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
353
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() UpperCamelCase = logging.get_logger('''transformers.models.encodec''') UpperCamelCase = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } UpperCamelCase = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } UpperCamelCase = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } UpperCamelCase = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } UpperCamelCase = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } UpperCamelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } UpperCamelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } UpperCamelCase = [] UpperCamelCase = [] def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Dict: for attribute in key.split('''.''' ): A: Union[str, Any] = getattr(__lowercase , __lowercase ) if weight_type is not None: A: Tuple = getattr(__lowercase , __lowercase ).shape else: A: str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": A: Dict = value elif weight_type == "weight_g": A: Tuple = value elif weight_type == "weight_v": A: Any = value elif weight_type == "bias": A: str = value elif weight_type == "running_mean": A: List[Any] = value elif weight_type == "running_var": A: Dict = value elif weight_type == "num_batches_tracked": A: List[str] = value elif weight_type == "weight_ih_l0": A: Dict = value elif weight_type == "weight_hh_l0": A: Optional[int] = value elif weight_type == "bias_ih_l0": A: List[Any] = value elif weight_type == "bias_hh_l0": A: str = value elif weight_type == "weight_ih_l1": A: Optional[int] = value elif weight_type == "weight_hh_l1": A: int = value elif weight_type == "bias_ih_l1": A: Optional[Any] = value elif weight_type == "bias_hh_l1": A: str = value else: A: Optional[int] = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: A , A: Any = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Tuple: A: Any = [] if model_name == "encodec_24khz" or "encodec_32khz": A: List[str] = MAPPING_24K elif model_name == "encodec_48khz": A: List[Any] = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(__lowercase , __lowercase ): logger.info(F"""{name} was ignored""" ) continue A: Optional[int] = False for key, mapped_key in MAPPING.items(): if "*" in key: A , A: Optional[int] = key.split('''.*.''' ) if prefix in name and suffix in name: A: str = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue A: Optional[Any] = True if "*" in mapped_key: A: Any = name.split(__lowercase )[0].split('''.''' )[-2] A: Tuple = mapped_key.replace('''*''' , __lowercase ) if "weight_g" in name: A: str = '''weight_g''' elif "weight_v" in name: A: List[Any] = '''weight_v''' elif "weight_ih_l0" in name: A: Dict = '''weight_ih_l0''' elif "weight_hh_l0" in name: A: int = '''weight_hh_l0''' elif "bias_ih_l0" in name: A: Union[str, Any] = '''bias_ih_l0''' elif "bias_hh_l0" in name: A: Tuple = '''bias_hh_l0''' elif "weight_ih_l1" in name: A: int = '''weight_ih_l1''' elif "weight_hh_l1" in name: A: Optional[Any] = '''weight_hh_l1''' elif "bias_ih_l1" in name: A: Dict = '''bias_ih_l1''' elif "bias_hh_l1" in name: A: str = '''bias_hh_l1''' elif "bias" in name: A: Union[str, Any] = '''bias''' elif "weight" in name: A: Dict = '''weight''' elif "running_mean" in name: A: Tuple = '''running_mean''' elif "running_var" in name: A: Any = '''running_var''' elif "num_batches_tracked" in name: A: str = '''num_batches_tracked''' else: A: Tuple = None set_recursively(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(F"""Unused weights: {unused_weights}""" ) @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , ) -> Dict: if config_path is not None: A: Tuple = EncodecConfig.from_pretrained(__lowercase ) else: A: Union[str, Any] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": A: Union[str, Any] = [8, 5, 4, 4] A: Dict = [2.2] A: List[Any] = 6_4 A: Optional[Any] = 3_2_0_0_0 A: List[Any] = 2_0_4_8 A: Optional[Any] = False A: int = False A: Union[str, Any] = False elif model_name == "encodec_48khz": A: Optional[int] = [8, 5, 4, 2] A: List[Any] = [3.0, 6.0, 1_2.0, 2_4.0] A: List[Any] = 4_8_0_0_0 A: int = 2 A: List[Any] = False A: Any = '''time_group_norm''' A: Optional[Any] = True A: Any = 1.0 A: Any = 0.0_1 else: raise ValueError(F"""Unknown model name: {model_name}""" ) A: str = EncodecModel(__lowercase ) A: Optional[Any] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__lowercase ) A: Union[str, Any] = torch.load(__lowercase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights A: Optional[int] = original_checkpoint['''best_state'''] recursively_load_weights(__lowercase , __lowercase , __lowercase ) model.save_pretrained(__lowercase ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(__lowercase ) model.push_to_hub(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCamelCase = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
334
0
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=13 , SCREAMING_SNAKE_CASE_ : Dict=7 , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : str=99 , SCREAMING_SNAKE_CASE_ : Optional[Any]=32 , SCREAMING_SNAKE_CASE_ : Dict=5 , SCREAMING_SNAKE_CASE_ : Any=4 , SCREAMING_SNAKE_CASE_ : List[str]=37 , SCREAMING_SNAKE_CASE_ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : str=5_12 , SCREAMING_SNAKE_CASE_ : List[Any]=16 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : int=0.02 , SCREAMING_SNAKE_CASE_ : int=3 , SCREAMING_SNAKE_CASE_ : List[str]=4 , SCREAMING_SNAKE_CASE_ : Dict=None , ) -> List[str]: '''simple docstring''' A: Any = parent A: Any = batch_size A: List[str] = seq_length A: Optional[Any] = is_training A: List[str] = use_input_mask A: Dict = use_token_type_ids A: Optional[int] = use_labels A: Tuple = vocab_size A: str = hidden_size A: Dict = num_hidden_layers A: Dict = num_attention_heads A: Union[str, Any] = intermediate_size A: Union[str, Any] = hidden_act A: Union[str, Any] = hidden_dropout_prob A: Union[str, Any] = attention_probs_dropout_prob A: Any = max_position_embeddings A: Any = type_vocab_size A: Optional[int] = type_sequence_label_size A: str = initializer_range A: int = num_labels A: Tuple = num_choices A: Dict = scope def _snake_case ( self : Dict ) -> int: '''simple docstring''' A: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A: Union[str, Any] = None if self.use_input_mask: A: Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) A: Dict = None A: List[Any] = None A: List[Any] = None if self.use_labels: A: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A: Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) A: Any = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self : List[Any] ) -> Dict: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' A: Tuple = DistilBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A: List[str] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: int = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[int]: '''simple docstring''' A: Dict = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A: Tuple = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple ) -> List[Any]: '''simple docstring''' A: Any = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A: List[Any] = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Any: '''simple docstring''' A: Union[str, Any] = self.num_labels A: Union[str, Any] = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A: Tuple = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: '''simple docstring''' A: str = self.num_labels A: int = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A: Dict = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: '''simple docstring''' A: Dict = self.num_choices A: int = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A: List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A: List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A: Any = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self : str ) -> Optional[Any]: '''simple docstring''' A: List[str] = self.prepare_config_and_inputs() (A): int = config_and_inputs A: Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Dict = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase_ : List[str] = ( { """feature-extraction""": DistilBertModel, """fill-mask""": DistilBertForMaskedLM, """question-answering""": DistilBertForQuestionAnswering, """text-classification""": DistilBertForSequenceClassification, """token-classification""": DistilBertForTokenClassification, """zero-shot""": DistilBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : int = True UpperCamelCase_ : Optional[Any] = True UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : str = True def _snake_case ( self : Optional[int] ) -> Tuple: '''simple docstring''' A: List[Any] = DistilBertModelTester(self ) A: Dict = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 ) def _snake_case ( self : List[str] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self : str ) -> Optional[Any]: '''simple docstring''' A: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int ) -> Dict: '''simple docstring''' A: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : str ) -> Optional[int]: '''simple docstring''' A: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Any ) -> str: '''simple docstring''' A: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A: Any = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu def _snake_case ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' A: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return A: List[str] = True A: Dict = model_class(config=SCREAMING_SNAKE_CASE_ ) A: str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: int = torch.jit.trace( SCREAMING_SNAKE_CASE_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) ) A: Optional[int] = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE_ ) loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE_ ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self : Any ) -> str: '''simple docstring''' A: int = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) A: Any = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) A: Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A: Optional[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] A: Tuple = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) A: int = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
354
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int]=13 , SCREAMING_SNAKE_CASE_ : List[Any]=7 , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[Any]=False , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : List[str]=99 , SCREAMING_SNAKE_CASE_ : Tuple=32 , SCREAMING_SNAKE_CASE_ : Optional[Any]=5 , SCREAMING_SNAKE_CASE_ : str=4 , SCREAMING_SNAKE_CASE_ : List[str]=37 , SCREAMING_SNAKE_CASE_ : str="gelu" , SCREAMING_SNAKE_CASE_ : Any=0.1 , SCREAMING_SNAKE_CASE_ : str=0.1 , SCREAMING_SNAKE_CASE_ : Dict=5_12 , SCREAMING_SNAKE_CASE_ : int=16 , SCREAMING_SNAKE_CASE_ : Optional[int]=2 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE_ : Dict=3 , SCREAMING_SNAKE_CASE_ : List[Any]=4 , SCREAMING_SNAKE_CASE_ : Any=None , ) -> str: '''simple docstring''' A: Tuple = parent A: Any = batch_size A: List[str] = seq_length A: Dict = is_training A: str = use_input_mask A: Any = use_token_type_ids A: Dict = use_labels A: str = vocab_size A: Tuple = hidden_size A: List[str] = num_hidden_layers A: str = num_attention_heads A: Any = intermediate_size A: List[str] = hidden_act A: Optional[int] = hidden_dropout_prob A: Optional[int] = attention_probs_dropout_prob A: Dict = max_position_embeddings A: str = type_vocab_size A: Union[str, Any] = type_sequence_label_size A: int = initializer_range A: int = num_labels A: int = num_choices A: List[Any] = scope def _snake_case ( self : List[str] ) -> Tuple: '''simple docstring''' A: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A: Dict = None if self.use_input_mask: A: List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) A: int = None if self.use_token_type_ids: A: Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A: List[str] = None A: int = None A: List[Any] = None if self.use_labels: A: List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A: str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A: List[Any] = ids_tensor([self.batch_size] , self.num_choices ) A: List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) def _snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[str]: '''simple docstring''' A: Optional[int] = LlamaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A: Tuple = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) A: Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , ) -> Any: '''simple docstring''' A: int = True A: Any = LlamaModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A: int = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , ) A: Dict = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , ) A: int = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , ) -> str: '''simple docstring''' A: int = LlamaForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A: List[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , ) -> int: '''simple docstring''' A: Union[str, Any] = True A: Optional[int] = True A: Union[str, Any] = LlamaForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass A: str = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , use_cache=lowerCamelCase_ , ) A: List[str] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A: Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A: Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A: Any = torch.cat([input_ids, next_tokens] , dim=-1 ) A: Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) A: int = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , )['''hidden_states'''][0] A: List[Any] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , )['''hidden_states'''][0] # select random slice A: Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() A: List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() A: List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-3 ) ) def _snake_case ( self : Tuple ) -> List[Any]: '''simple docstring''' A: List[str] = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ): List[Any] = config_and_inputs A: Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Dict = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () UpperCamelCase_ : Union[str, Any] = (LlamaForCausalLM,) if is_torch_available() else () UpperCamelCase_ : List[Any] = ( { """feature-extraction""": LlamaModel, """text-classification""": LlamaForSequenceClassification, """text-generation""": LlamaForCausalLM, """zero-shot""": LlamaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : Union[str, Any] = False def _snake_case ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' A: int = LlamaModelTester(self ) A: str = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def _snake_case ( self : str ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self : str ) -> Union[str, Any]: '''simple docstring''' A: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def _snake_case ( self : Optional[int] ) -> List[Any]: '''simple docstring''' A: Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A: Any = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def _snake_case ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' A , A: Tuple = self.model_tester.prepare_config_and_inputs_for_common() A: Dict = 3 A: List[str] = input_dict['''input_ids'''] A: int = input_ids.ne(1 ).to(lowerCamelCase_ ) A: Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A: int = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A: Optional[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _snake_case ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A , A: int = self.model_tester.prepare_config_and_inputs_for_common() A: int = 3 A: Dict = '''single_label_classification''' A: str = input_dict['''input_ids'''] A: List[Any] = input_ids.ne(1 ).to(lowerCamelCase_ ) A: Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A: Optional[int] = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A: Dict = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _snake_case ( self : List[str] ) -> str: '''simple docstring''' A , A: Tuple = self.model_tester.prepare_config_and_inputs_for_common() A: Any = 3 A: Any = '''multi_label_classification''' A: int = input_dict['''input_ids'''] A: str = input_ids.ne(1 ).to(lowerCamelCase_ ) A: Tuple = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A: Any = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A: str = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def _snake_case ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Any ) -> int: '''simple docstring''' A , A: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() A: Union[str, Any] = ids_tensor([1, 10] , config.vocab_size ) A: Optional[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A: Any = LlamaModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() A: Optional[Any] = original_model(lowerCamelCase_ ).last_hidden_state A: Any = original_model(lowerCamelCase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A: int = {'''type''': scaling_type, '''factor''': 10.0} A: str = LlamaModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() A: Optional[Any] = scaled_model(lowerCamelCase_ ).last_hidden_state A: Optional[int] = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-5 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def _snake_case ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A: Optional[Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] A: Union[str, Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) A: Optional[int] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 A: Optional[Any] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off A: Tuple = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def _snake_case ( self : Any ) -> Optional[Any]: '''simple docstring''' A: List[str] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] A: Union[str, Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) A: List[Any] = model(torch.tensor(lowerCamelCase_ ) ) # Expected mean on dim = -1 A: Optional[Any] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off A: Any = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def _snake_case ( self : str ) -> List[Any]: '''simple docstring''' A: Optional[Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] A: List[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) A: str = model(torch.tensor(lowerCamelCase_ ) ) # Expected mean on dim = -1 A: Any = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off A: Union[str, Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def _snake_case ( self : str ) -> List[Any]: '''simple docstring''' A: Any = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] A: List[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) A: Union[str, Any] = model(torch.tensor(lowerCamelCase_ ) ) A: List[str] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1E-2 , rtol=1E-2 ) # fmt: off A: Any = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Model is curently gated''' ) @slow def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A: Optional[Any] = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi''' A: Optional[int] = '''Simply put, the theory of relativity states that ''' A: Union[str, Any] = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) A: str = tokenizer.encode(lowerCamelCase_ , return_tensors='''pt''' ) A: Optional[Any] = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=lowerCamelCase_ ) # greedy generation outputs A: Optional[Any] = model.generate(lowerCamelCase_ , max_new_tokens=64 , top_p=lowerCamelCase_ , temperature=1 , do_sample=lowerCamelCase_ ) A: Tuple = tokenizer.decode(generated_ids[0] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
355
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[float]]: A: list[list[float]] = [] for data in source_data: for i, el in enumerate(__lowercase ): if len(__lowercase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(__lowercase ) ) return data_lists def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[list[float]]: A: list[list[float]] = [] for dlist, weight in zip(__lowercase , __lowercase ): A: List[str] = min(__lowercase ) A: Union[str, Any] = max(__lowercase ) A: list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: A: List[str] = F"""Invalid weight of {weight:f} provided""" raise ValueError(__lowercase ) score_lists.append(__lowercase ) return score_lists def SCREAMING_SNAKE_CASE( __lowercase ) -> list[float]: A: list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(__lowercase ): A: str = final_scores[j] + ele return final_scores def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[list[float]]: A: Any = get_data(__lowercase ) A: str = calculate_each_score(__lowercase , __lowercase ) A: int = generate_final_scores(__lowercase ) # append scores to source data for i, ele in enumerate(__lowercase ): source_data[i].append(__lowercase ) return source_data
334
0
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , ) -> Optional[int]: if config_name_or_path is None: A: Tuple = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: A: Optional[Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: A: Dict = question_encoder_name_or_path A: Union[str, Any] = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. A: Union[str, Any] = RagConfig.from_pretrained(__UpperCAmelCase ) A: Dict = AutoConfig.from_pretrained(__UpperCAmelCase ) A: List[Any] = AutoConfig.from_pretrained(__UpperCAmelCase ) A: Any = gen_config A: List[Any] = question_encoder_config A: Tuple = model_class.from_pretrained_question_encoder_generator( __UpperCAmelCase , __UpperCAmelCase , config=__UpperCAmelCase ) rag_model.save_pretrained(__UpperCAmelCase ) # Sanity check. model_class.from_pretrained(__UpperCAmelCase ) # Save tokenizers. A: Optional[Any] = AutoTokenizer.from_pretrained(__UpperCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) A: Dict = AutoTokenizer.from_pretrained(__UpperCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) UpperCamelCase = parser.parse_args() UpperCamelCase = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
356
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = VOCAB_FILES_NAMES UpperCamelCase_ : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Any = DPRContextEncoderTokenizer class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Dict = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Tuple = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Optional[int] = DPRQuestionEncoderTokenizer UpperCamelCase = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) UpperCamelCase = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) UpperCamelCase = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(UpperCAmelCase_ ) class lowerCAmelCase_ : '''simple docstring''' def __call__( self : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Union[bool, str] = False , SCREAMING_SNAKE_CASE_ : Union[bool, str] = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) elif titles is None or texts is None: A: Union[str, Any] = titles if texts is None else texts return super().__call__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Union[str, Any] = titles if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [titles] A: Optional[Any] = texts if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [texts] A: str = len(SCREAMING_SNAKE_CASE_ ) A: List[Any] = questions if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [questions] * n_passages assert len(SCREAMING_SNAKE_CASE_ ) == len( SCREAMING_SNAKE_CASE_ ), f"""There should be as many titles than texts but got {len(SCREAMING_SNAKE_CASE_ )} titles and {len(SCREAMING_SNAKE_CASE_ )} texts.""" A: Union[str, Any] = super().__call__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )['''input_ids'''] A: Dict = super().__call__(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )['''input_ids'''] A: str = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] } if return_attention_mask is not False: A: Union[str, Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) A: Optional[Any] = attention_mask return self.pad(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : BatchEncoding , SCREAMING_SNAKE_CASE_ : DPRReaderOutput , SCREAMING_SNAKE_CASE_ : int = 16 , SCREAMING_SNAKE_CASE_ : int = 64 , SCREAMING_SNAKE_CASE_ : int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' A: Any = reader_input['''input_ids'''] A , A , A: str = reader_output[:3] A: str = len(SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = sorted(range(SCREAMING_SNAKE_CASE_ ) , reverse=SCREAMING_SNAKE_CASE_ , key=relevance_logits.__getitem__ ) A: List[DPRReaderOutput] = [] for doc_id in sorted_docs: A: List[str] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence A: Dict = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A: Union[str, Any] = sequence_ids.index(self.pad_token_id ) else: A: int = len(SCREAMING_SNAKE_CASE_ ) A: Dict = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=SCREAMING_SNAKE_CASE_ , top_spans=SCREAMING_SNAKE_CASE_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=SCREAMING_SNAKE_CASE_ , start_index=SCREAMING_SNAKE_CASE_ , end_index=SCREAMING_SNAKE_CASE_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(SCREAMING_SNAKE_CASE_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , ) -> List[DPRSpanPrediction]: '''simple docstring''' A: Union[str, Any] = [] for start_index, start_score in enumerate(SCREAMING_SNAKE_CASE_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) A: Any = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x[1] , reverse=SCREAMING_SNAKE_CASE_ ) A: Dict = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" A: int = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(SCREAMING_SNAKE_CASE_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase_ ) class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : List[Any] = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Dict = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Any = ["""input_ids""", """attention_mask"""] UpperCamelCase_ : Optional[Any] = DPRReaderTokenizer
334
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''spiece.model'''} UpperCamelCase = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class lowerCAmelCase_ ( A__ ): '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : int="<s>" , SCREAMING_SNAKE_CASE_ : List[Any]="</s>" , SCREAMING_SNAKE_CASE_ : List[str]="<unk>" , SCREAMING_SNAKE_CASE_ : Any="<sep>" , SCREAMING_SNAKE_CASE_ : Any="<pad>" , SCREAMING_SNAKE_CASE_ : List[Any]="<cls>" , SCREAMING_SNAKE_CASE_ : Tuple="<mask>" , SCREAMING_SNAKE_CASE_ : Any=["<eop>", "<eod>"] , SCREAMING_SNAKE_CASE_ : Optional[int] = None , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ) -> Any: '''simple docstring''' A: Optional[int] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token A: str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) A: Union[str, Any] = 3 A: List[str] = do_lower_case A: Tuple = remove_space A: Dict = keep_accents A: Optional[Any] = vocab_file A: List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase__ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) A: Tuple = jieba A: str = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _snake_case ( self : str ) -> List[str]: '''simple docstring''' return len(self.sp_model ) def _snake_case ( self : Any ) -> Dict: '''simple docstring''' A: Optional[Any] = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ) -> int: '''simple docstring''' A: Any = self.__dict__.copy() A: str = None return state def __setstate__( self : int , SCREAMING_SNAKE_CASE_ : Tuple ) -> Any: '''simple docstring''' A: Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A: Tuple = {} A: str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple ) -> int: '''simple docstring''' if self.remove_space: A: Optional[Any] = ''' '''.join(inputs.strip().split() ) else: A: int = inputs A: Optional[int] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: A: Optional[int] = unicodedata.normalize('''NFKD''' , lowerCamelCase__ ) A: Optional[Any] = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase__ )] ) if self.do_lower_case: A: int = outputs.lower() return outputs def _snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: '''simple docstring''' A: str = self.preprocess_text(lowerCamelCase__ ) A: Optional[int] = self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) A: Dict = [] for piece in pieces: if len(lowerCamelCase__ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): A: Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase__ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A: Any = cur_pieces[1:] else: A: str = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCamelCase__ ) else: new_pieces.append(lowerCamelCase__ ) return new_pieces def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.PieceToId(lowerCamelCase__ ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[Any]: '''simple docstring''' return self.sp_model.IdToPiece(lowerCamelCase__ ) def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> Any: '''simple docstring''' A: Any = ''''''.join(lowerCamelCase__ ).replace(lowerCamelCase__ , ''' ''' ).strip() return out_string def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int = None ) -> Any: '''simple docstring''' A: Optional[Any] = [self.sep_token_id] A: List[str] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any = None , SCREAMING_SNAKE_CASE_ : str = False ) -> str: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is not None: return ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] return ([0] * len(lowerCamelCase__ )) + [1, 1] def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple = None ) -> List[Any]: '''simple docstring''' A: Dict = [self.sep_token_id] A: Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] = None ) -> int: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A: str = os.path.join( lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , '''wb''' ) as fi: A: int = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,) def _snake_case ( self : Any , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Tuple ) -> str: '''simple docstring''' A: List[str] = super()._decode(*lowerCamelCase__ , **lowerCamelCase__ ) A: Any = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
357
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right UpperCamelCase = 256047 UpperCamelCase = 256145 @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( a_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = NllbTokenizer UpperCamelCase_ : int = NllbTokenizerFast UpperCamelCase_ : Dict = True UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : Union[str, Any] = {} def _snake_case ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A: List[Any] = NllbTokenizer(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : Dict ) -> Optional[Any]: '''simple docstring''' A: Tuple = NllbTokenizer(lowercase_ , keep_accents=lowercase_ ) A: int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowercase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A: List[str] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) A: Union[str, Any] = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A: Tuple = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _snake_case ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' A: List[str] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): A: List[str] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) A: List[str] = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) A: Tuple = tempfile.mkdtemp() A: List[Any] = tokenizer_r.save_pretrained(lowercase_ ) A: int = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) A: Optional[int] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way A: List[Any] = tokenizer_r.from_pretrained(lowercase_ ) A: Dict = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=True A: Any = tempfile.mkdtemp() A: Any = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) A: List[str] = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way A: Optional[int] = tokenizer_r.from_pretrained(lowercase_ ) A: List[str] = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=False A: Union[str, Any] = tempfile.mkdtemp() A: List[Any] = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) A: Optional[Any] = tokenizer_p.save_pretrained(lowercase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A: int = tokenizer_r.from_pretrained(lowercase_ ) A: str = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) @require_torch def _snake_case ( self : Dict ) -> Tuple: '''simple docstring''' if not self.test_seqaseq: return A: Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Longer text that will definitely require truncation. A: Optional[int] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] A: Dict = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: A: str = tokenizer.prepare_seqaseq_batch( src_texts=lowercase_ , tgt_texts=lowercase_ , max_length=3 , max_target_length=10 , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified A: str = tokenizer.prepare_seqaseq_batch( lowercase_ , tgt_texts=lowercase_ , max_length=3 , return_tensors='''pt''' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) A: List[str] = tokenizer.prepare_seqaseq_batch( src_texts=lowercase_ , max_length=3 , max_target_length=10 , return_tensors='''pt''' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('''decoder_input_ids''' , lowercase_ ) @unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''' ) def _snake_case ( self : Dict ) -> Dict: '''simple docstring''' pass def _snake_case ( self : Optional[int] ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): A: Optional[int] = [AddedToken('''<special>''' , lstrip=lowercase_ )] A: Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ ) A: str = tokenizer_r.encode('''Hey this is a <special> token''' ) A: Optional[int] = tokenizer_r.encode('''<special>''' , add_special_tokens=lowercase_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: A: Tuple = self.rust_tokenizer_class.from_pretrained( lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) A: Any = self.tokenizer_class.from_pretrained( lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ ) A: Union[str, Any] = tokenizer_p.encode('''Hey this is a <special> token''' ) A: Tuple = tokenizer_cr.encode('''Hey this is a <special> token''' ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = """facebook/nllb-200-distilled-600M""" UpperCamelCase_ : Optional[Any] = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCamelCase_ : Any = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCamelCase_ : str = [ 25_6047, 1_6297, 13_4408, 8165, 24_8066, 1_4734, 950, 1135, 10_5721, 3573, 83, 2_7352, 108, 4_9486, 2, ] @classmethod def _snake_case ( cls : Optional[int] ) -> int: '''simple docstring''' A: NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' ) A: str = 1 return cls def _snake_case ( self : int ) -> Any: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''] , 25_60_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''] , 25_60_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''] , 25_60_57 ) def _snake_case ( self : int ) -> Optional[int]: '''simple docstring''' A: Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) def _snake_case ( self : Union[str, Any] ) -> int: '''simple docstring''' self.assertIn(lowercase_ , self.tokenizer.all_special_ids ) # fmt: off A: Dict = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on A: str = self.tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) A: str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertNotIn(self.tokenizer.eos_token , lowercase_ ) def _snake_case ( self : str ) -> Union[str, Any]: '''simple docstring''' A: Tuple = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowercase_ ) A: str = 10 A: Tuple = self.tokenizer(lowercase_ , max_length=lowercase_ , truncation=lowercase_ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , lowercase_ ) self.assertEqual(len(lowercase_ ) , lowercase_ ) def _snake_case ( self : Tuple ) -> int: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_62_03, 3] ) def _snake_case ( self : Optional[int] ) -> Any: '''simple docstring''' A: Optional[Any] = tempfile.mkdtemp() A: int = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase_ ) A: int = NllbTokenizer.from_pretrained(lowercase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase_ ) @require_torch def _snake_case ( self : str ) -> List[Any]: '''simple docstring''' A: List[str] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) A: List[Any] = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['''ron_Latn'''] ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) A: int = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) self.assertEqual(lowercase_ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _snake_case ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' A: List[str] = self.tokenizer(self.src_text , padding=lowercase_ , truncation=lowercase_ , max_length=3 , return_tensors='''pt''' ) A: Tuple = self.tokenizer( text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=10 , return_tensors='''pt''' ) A: Optional[Any] = targets['''input_ids'''] A: List[str] = shift_tokens_right( lowercase_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _snake_case ( self : Tuple ) -> int: '''simple docstring''' A: Optional[int] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( nested_simplify(lowercase_ ) , { # A, test, EOS, en_XX '''input_ids''': [[25_60_47, 70, 73_56, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_60_57, } , ) @require_torch def _snake_case ( self : int ) -> int: '''simple docstring''' A: List[Any] = True A: Optional[int] = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] ) A: Tuple = False A: Union[str, Any] = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
358
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' pass class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> None: '''simple docstring''' A: Any = data A: Node | None = None def __iter__( self : Optional[int] ) -> List[str]: '''simple docstring''' A: List[str] = self A: Dict = [] while node: if node in visited: raise ContainsLoopError visited.append(SCREAMING_SNAKE_CASE_ ) yield node.data A: str = node.next_node @property def _snake_case ( self : List[str] ) -> bool: '''simple docstring''' try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": UpperCamelCase = Node(1) UpperCamelCase = Node(2) UpperCamelCase = Node(3) UpperCamelCase = Node(4) print(root_node.has_loop) # False UpperCamelCase = root_node.next_node print(root_node.has_loop) # True UpperCamelCase = Node(5) UpperCamelCase = Node(6) UpperCamelCase = Node(5) UpperCamelCase = Node(6) print(root_node.has_loop) # False UpperCamelCase = Node(1) print(root_node.has_loop) # False
334
0
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging UpperCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE( ) -> Any: A: str = os.getenv('''SM_HP_MP_PARAMETERS''' , '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. A: Any = json.loads(_lowercase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. A: Tuple = os.getenv('''SM_FRAMEWORK_PARAMS''' , '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". A: str = json.loads(_lowercase ) if not mpi_options.get('''sagemaker_mpi_enabled''' , _lowercase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = field( default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , ) def _snake_case ( self : List[Any] ) -> str: '''simple docstring''' super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''' , __A , ) @cached_property def _snake_case ( self : Tuple ) -> "torch.device": '''simple docstring''' logger.info('''PyTorch: setting up devices''' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' ) if self.no_cuda: A: Optional[int] = torch.device('''cpu''' ) A: int = 0 elif is_sagemaker_model_parallel_available(): A: Union[str, Any] = smp.local_rank() A: Optional[Any] = torch.device('''cuda''' , __A ) A: List[str] = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''' , timeout=self.ddp_timeout_delta ) A: Tuple = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) ) A: int = torch.device('''cuda''' , self.local_rank ) A: List[Any] = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 A: Union[str, Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. A: Dict = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''' , timeout=self.ddp_timeout_delta ) A: str = torch.device('''cuda''' , self.local_rank ) A: Dict = 1 if device.type == "cuda": torch.cuda.set_device(__A ) return device @property def _snake_case ( self : Optional[int] ) -> List[str]: '''simple docstring''' if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def _snake_case ( self : str ) -> List[Any]: '''simple docstring''' return not is_sagemaker_model_parallel_available() @property def _snake_case ( self : int ) -> str: '''simple docstring''' return False
359
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE( __lowercase = 4 ) -> list[list[int]]: A: Tuple = abs(__lowercase ) or 4 return [[1 + x + y * row_size for x in range(__lowercase )] for y in range(__lowercase )] def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_row(transpose(__lowercase ) ) # OR.. transpose(reverse_column(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_row(reverse_column(__lowercase ) ) # OR.. reverse_column(reverse_row(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_column(transpose(__lowercase ) ) # OR.. transpose(reverse_row(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Union[str, Any] = [list(__lowercase ) for x in zip(*__lowercase )] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Optional[int] = matrix[::-1] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Optional[Any] = [x[::-1] for x in matrix] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> None: for i in matrix: print(*__lowercase ) if __name__ == "__main__": UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
334
0
'''simple docstring''' UpperCamelCase = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } UpperCamelCase = {value: key for key, value in encode_dict.items()} def SCREAMING_SNAKE_CASE( __lowercase ) -> List[str]: A: int = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict: if set(__lowercase ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) A: str = """""" for word in coded.split(): while len(__lowercase ) != 0: decoded += decode_dict[word[:5]] A: Optional[Any] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
360
'''simple docstring''' from __future__ import annotations import numpy as np def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict: return np.maximum(0 , __lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
334
0
def SCREAMING_SNAKE_CASE( __lowercase = 1_0_0_0 ) -> List[str]: return sum(e for e in range(3 , _a ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'{solution() = }')
361
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase = {'''configuration_speech_encoder_decoder''': ['''SpeechEncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''SpeechEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''FlaxSpeechEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
362
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
334
0
'''simple docstring''' from math import factorial UpperCamelCase = {str(digit): factorial(digit) for digit in range(10)} def SCREAMING_SNAKE_CASE( __lowercase ) -> int: if not isinstance(_lowercase , _lowercase ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(_lowercase ) ) def SCREAMING_SNAKE_CASE( __lowercase = 6_0 , __lowercase = 1_0_0_0_0_0_0 ) -> int: if not isinstance(_lowercase , _lowercase ) or not isinstance(_lowercase , _lowercase ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length A: Optional[Any] = 0 # the cached sizes of the previous chains A: dict[int, int] = {} for start_chain_element in range(1 , _lowercase ): # The temporary set will contain the elements of the chain A: Dict = set() A: str = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. A: int = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(_lowercase ) chain_set_length += 1 A: Dict = digit_factorial_sum(_lowercase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] A: Tuple = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'{solution()}')
363
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , SCREAMING_SNAKE_CASE_ : int = 6_55_36 , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : str = "fourier" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , SCREAMING_SNAKE_CASE_ : Tuple[str] = "UNetMidBlock1D" , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : Tuple[int] = (32, 32, 64) , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : int = 8 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : bool = False , ) -> Tuple: '''simple docstring''' super().__init__() A: Optional[Any] = sample_size # time if time_embedding_type == "fourier": A: Tuple = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=SCREAMING_SNAKE_CASE_ , log=SCREAMING_SNAKE_CASE_ , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ ) A: List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": A: str = Timesteps( block_out_channels[0] , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ , downscale_freq_shift=SCREAMING_SNAKE_CASE_ ) A: Any = block_out_channels[0] if use_timestep_embedding: A: Optional[Any] = block_out_channels[0] * 4 A: List[Any] = TimestepEmbedding( in_channels=SCREAMING_SNAKE_CASE_ , time_embed_dim=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , out_dim=block_out_channels[0] , ) A: Optional[Any] = nn.ModuleList([] ) A: str = None A: str = nn.ModuleList([] ) A: Tuple = None # down A: Any = in_channels for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): A: Optional[int] = output_channel A: List[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels A: List[Any] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 A: Optional[int] = get_down_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(SCREAMING_SNAKE_CASE_ ) # mid A: Union[str, Any] = get_mid_block( SCREAMING_SNAKE_CASE_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=SCREAMING_SNAKE_CASE_ , add_downsample=SCREAMING_SNAKE_CASE_ , ) # up A: Optional[Any] = list(reversed(SCREAMING_SNAKE_CASE_ ) ) A: List[str] = reversed_block_out_channels[0] if out_block_type is None: A: int = out_channels else: A: Union[str, Any] = block_out_channels[0] for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): A: List[Any] = output_channel A: int = ( reversed_block_out_channels[i + 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 else final_upsample_channels ) A: Optional[int] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 A: Optional[Any] = get_up_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(SCREAMING_SNAKE_CASE_ ) A: Any = output_channel # out A: List[str] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) A: Optional[int] = get_out_block( out_block_type=SCREAMING_SNAKE_CASE_ , num_groups_out=SCREAMING_SNAKE_CASE_ , embed_dim=block_out_channels[0] , out_channels=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , fc_dim=block_out_channels[-1] // 4 , ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Union[torch.Tensor, float, int] , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[UNetaDOutput, Tuple]: '''simple docstring''' A: Any = timestep if not torch.is_tensor(SCREAMING_SNAKE_CASE_ ): A: Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ) and len(timesteps.shape ) == 0: A: List[str] = timesteps[None].to(sample.device ) A: int = self.time_proj(SCREAMING_SNAKE_CASE_ ) if self.config.use_timestep_embedding: A: List[Any] = self.time_mlp(SCREAMING_SNAKE_CASE_ ) else: A: str = timestep_embed[..., None] A: Union[str, Any] = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) A: Tuple = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down A: List[str] = () for downsample_block in self.down_blocks: A , A: Optional[int] = downsample_block(hidden_states=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: A: Dict = self.mid_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): A: List[Any] = down_block_res_samples[-1:] A: List[str] = down_block_res_samples[:-1] A: Optional[int] = upsample_block(SCREAMING_SNAKE_CASE_ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) # 5. post-process if self.out_block: A: Any = self.out_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=SCREAMING_SNAKE_CASE_ )
334
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = StableDiffusionInpaintPipeline UpperCamelCase_ : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCamelCase_ : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase_ : Optional[int] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase_ : List[str] = frozenset([] ) def _snake_case ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A: List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a__ , ) A: Union[str, Any] = PNDMScheduler(skip_prk_steps=a__ ) torch.manual_seed(0 ) A: Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) A: str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) A: Any = CLIPTextModel(a__ ) A: List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A: str = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any=0 ) -> Tuple: '''simple docstring''' A: Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) A: Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] A: Optional[int] = Image.fromarray(np.uinta(a__ ) ).convert('''RGB''' ).resize((64, 64) ) A: int = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(a__ ).startswith('''mps''' ): A: Dict = torch.manual_seed(a__ ) else: A: str = torch.Generator(device=a__ ).manual_seed(a__ ) A: Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _snake_case ( self : Any ) -> Union[str, Any]: '''simple docstring''' A: List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator A: Tuple = self.get_dummy_components() A: Tuple = StableDiffusionInpaintPipeline(**a__ ) A: List[str] = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) A: Dict = self.get_dummy_inputs(a__ ) A: List[Any] = sd_pipe(**a__ ).images A: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A: Tuple = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : int ) -> List[str]: '''simple docstring''' A: Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A: int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A: List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) A: int = '''stabilityai/stable-diffusion-2-inpainting''' A: Dict = StableDiffusionInpaintPipeline.from_pretrained(a__ , safety_checker=a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() A: List[Any] = '''Face of a yellow cat, high resolution, sitting on a park bench''' A: List[str] = torch.manual_seed(0 ) A: int = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , output_type='''np''' , ) A: Optional[int] = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def _snake_case ( self : List[Any] ) -> List[str]: '''simple docstring''' A: int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A: List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A: Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) A: Tuple = '''stabilityai/stable-diffusion-2-inpainting''' A: List[Any] = StableDiffusionInpaintPipeline.from_pretrained( a__ , torch_dtype=torch.floataa , safety_checker=a__ , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() A: Optional[Any] = '''Face of a yellow cat, high resolution, sitting on a park bench''' A: List[str] = torch.manual_seed(0 ) A: str = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , output_type='''np''' , ) A: int = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _snake_case ( self : Any ) -> Tuple: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A: Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A: List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A: Any = '''stabilityai/stable-diffusion-2-inpainting''' A: Optional[Any] = PNDMScheduler.from_pretrained(a__ , subfolder='''scheduler''' ) A: Any = StableDiffusionInpaintPipeline.from_pretrained( a__ , safety_checker=a__ , scheduler=a__ , torch_dtype=torch.floataa , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A: str = '''Face of a yellow cat, high resolution, sitting on a park bench''' A: List[str] = torch.manual_seed(0 ) A: Optional[Any] = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , num_inference_steps=2 , output_type='''np''' , ) A: int = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
364
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : int , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Dict ) -> None: '''simple docstring''' warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
334
0
'''simple docstring''' import colorsys from PIL import Image # type: ignore def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> float: A: int = x A: Any = y for step in range(snake_case__ ): # noqa: B007 A: List[str] = a * a - b * b + x A: str = 2 * a * b + y A: Optional[int] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple: if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(snake_case__ , 1 , 1 ) ) def SCREAMING_SNAKE_CASE( __lowercase = 8_0_0 , __lowercase = 6_0_0 , __lowercase = -0.6 , __lowercase = 0 , __lowercase = 3.2 , __lowercase = 5_0 , __lowercase = True , ) -> Image.Image: A: Optional[Any] = Image.new('''RGB''' , (image_width, image_height) ) A: int = img.load() # loop through the image-coordinates for image_x in range(snake_case__ ): for image_y in range(snake_case__ ): # determine the figure-coordinates based on the image-coordinates A: Optional[Any] = figure_width / image_width * image_height A: List[Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width A: Dict = figure_center_y + (image_y / image_height - 0.5) * figure_height A: List[Any] = get_distance(snake_case__ , snake_case__ , snake_case__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: A: Any = get_color_coded_rgb(snake_case__ ) else: A: Optional[int] = get_black_and_white_rgb(snake_case__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure UpperCamelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
365
'''simple docstring''' from collections import deque class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> None: '''simple docstring''' A: Union[str, Any] = process_name # process name A: List[str] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time A: Dict = arrival_time A: Optional[Any] = burst_time # remaining burst time A: Any = 0 # total time of the process wait in ready queue A: Any = 0 # time from arrival time to completion time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int , ) -> None: '''simple docstring''' A: Dict = number_of_queues # time slice of queues that round robin algorithm applied A: int = time_slices # unfinished process is in this ready_queue A: Tuple = queue # current time A: int = current_time # finished process is in this sequence queue A: deque[Process] = deque() def _snake_case ( self : List[Any] ) -> list[str]: '''simple docstring''' A: str = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: Optional[int] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: Any = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: List[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): completion_times.append(queue[i].stop_time ) return completion_times def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : deque[Process] ) -> list[int]: '''simple docstring''' return [q.burst_time for q in queue] def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : Process ) -> int: '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : deque[Process] ) -> deque[Process]: '''simple docstring''' A: deque[Process] = deque() # sequence deque of finished process while len(SCREAMING_SNAKE_CASE_ ) != 0: A: Optional[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 A: Any = 0 # set the process's turnaround time because it is finished A: int = self.current_time - cp.arrival_time # set the completion time A: List[str] = self.current_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int ) -> tuple[deque[Process], deque[Process]]: '''simple docstring''' A: deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(SCREAMING_SNAKE_CASE_ ) ): A: Dict = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time A: Optional[Any] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(SCREAMING_SNAKE_CASE_ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished A: int = 0 # set the finish time A: Union[str, Any] = self.current_time # update the process' turnaround time because it is finished A: Tuple = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def _snake_case ( self : Optional[Any] ) -> deque[Process]: '''simple docstring''' for i in range(self.number_of_queues - 1 ): A , A: Optional[Any] = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest UpperCamelCase = Process('''P1''', 0, 53) UpperCamelCase = Process('''P2''', 0, 17) UpperCamelCase = Process('''P3''', 0, 68) UpperCamelCase = Process('''P4''', 0, 24) UpperCamelCase = 3 UpperCamelCase = [17, 25] UpperCamelCase = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) UpperCamelCase = Process('''P1''', 0, 53) UpperCamelCase = Process('''P2''', 0, 17) UpperCamelCase = Process('''P3''', 0, 68) UpperCamelCase = Process('''P4''', 0, 24) UpperCamelCase = 3 UpperCamelCase = [17, 25] UpperCamelCase = deque([Pa, Pa, Pa, Pa]) UpperCamelCase = MLFQ(number_of_queues, time_slices, queue, 0) UpperCamelCase = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( f'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( f'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
334
0
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy UpperCamelCase = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = False , ) -> Tuple: A: List[str] = bnb_quantization_config.load_in_abit A: Optional[int] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) A: Any = [] # custom device map if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(device_map.keys() ) > 1: A: List[str] = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: A: Tuple = get_keys_to_not_convert(lowerCAmelCase__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowerCAmelCase__ ) A: List[Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: A: Dict = [] A: Optional[int] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowerCAmelCase__ ) # compatibility with peft A: str = load_in_abit A: str = load_in_abit A: Tuple = get_parameter_device(lowerCAmelCase__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) A: List[str] = replace_with_bnb_layers(lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ ) # convert param to the right dtype A: Dict = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: A: List[str] = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) A: Optional[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(lowerCAmelCase__ ): param.to(lowerCAmelCase__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( F"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( F"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): A: Dict = replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ ) A: List[str] = get_quantized_model_device_map( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , max_memory=lowerCAmelCase__ , no_split_module_classes=lowerCAmelCase__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): A: Optional[Any] = True A: str = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowerCAmelCase__ , offload_state_dict=lowerCAmelCase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(lowerCAmelCase__ , device_map=lowerCAmelCase__ , offload_dir=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None ) -> str: if device_map is None: if torch.cuda.is_available(): A: int = {"""""": torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) A: Any = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) A: Dict = {} A: Optional[int] = special_dtypes A: Tuple = no_split_module_classes A: Dict = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": A: Optional[int] = get_balanced_memory( lowerCAmelCase__ , low_zero=(device_map == '''balanced_low_0''') , max_memory=lowerCAmelCase__ , **lowerCAmelCase__ , ) A: List[str] = max_memory A: List[str] = infer_auto_device_map(lowerCAmelCase__ , **lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # check if don't have any quantized module on the cpu A: Optional[Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules A: List[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=None , __lowercase=None ) -> str: if modules_to_not_convert is None: A: Dict = [] A: Optional[Any] = _replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=None , __lowercase=None , ) -> Optional[int]: A: Optional[int] = False for name, module in model.named_children(): if current_key_name is None: A: Union[str, Any] = [] current_key_name.append(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` A: int = """.""".join(lowerCAmelCase__ ) A: Dict = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: A: Union[str, Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: A: Optional[Any] = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowerCAmelCase__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: A: Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) A: Optional[Any] = module.weight.data if module.bias is not None: A: str = module.bias.data bnb_module.requires_grad_(lowerCAmelCase__ ) setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) A: Union[str, Any] = True if len(list(module.children() ) ) > 0: A: Any = _replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) A: Optional[Any] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: with init_empty_weights(): A: Optional[Any] = deepcopy(lowerCAmelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` A: Tuple = find_tied_parameters(lowerCAmelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): A: List[str] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: A: List[str] = sum(lowerCAmelCase__ , [] ) A: List[Any] = len(lowerCAmelCase__ ) > 0 # Check if it is a base model A: Optional[int] = False if hasattr(lowerCAmelCase__ , '''base_model_prefix''' ): A: Tuple = not hasattr(lowerCAmelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head A: Union[str, Any] = list(model.named_children() ) A: Optional[int] = [list_modules[-1][0]] # add last module together with tied weights A: List[str] = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ ) A: Any = list(set(lowerCAmelCase__ ) ) + list(lowerCAmelCase__ ) # remove ".weight" from the keys A: Union[str, Any] = [""".weight""", """.bias"""] A: Optional[int] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: A: Union[str, Any] = name.replace(lowerCAmelCase__ , '''''' ) filtered_module_names.append(lowerCAmelCase__ ) return filtered_module_names def SCREAMING_SNAKE_CASE( __lowercase ) -> Any: for m in model.modules(): if isinstance(lowerCAmelCase__ , bnb.nn.Linearabit ): return True return False def SCREAMING_SNAKE_CASE( __lowercase ) -> Union[str, Any]: return next(parameter.parameters() ).device def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Optional[Any]: if fpaa_statistics is None: set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , 0 , dtype=lowerCAmelCase__ , value=lowerCAmelCase__ ) A: Union[str, Any] = param_name A: Any = model if "." in tensor_name: A: int = tensor_name.split('''.''' ) for split in splits[:-1]: A: Union[str, Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) A: str = new_module A: Union[str, Any] = splits[-1] # offload weights A: List[str] = False offload_weight(module._parameters[tensor_name] , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , lowerCAmelCase__ , index=lowerCAmelCase__ , ) else: offload_weight(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ ) offload_weight(lowerCAmelCase__ , param_name.replace('''weight''' , '''SCB''' ) , lowerCAmelCase__ , index=lowerCAmelCase__ ) set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , '''meta''' , dtype=lowerCAmelCase__ , value=torch.empty(*param.size() ) )
366
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger() @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : List[nn.Module] = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : list = field(default_factory=UpperCAmelCase_ ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tensor , SCREAMING_SNAKE_CASE_ : Tensor ) -> int: '''simple docstring''' A: List[str] = len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE_ ) def __call__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tensor ) -> Dict: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(SCREAMING_SNAKE_CASE_ ) [x.remove() for x in self.handles] return self @property def _snake_case ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return list(filter(lambda SCREAMING_SNAKE_CASE_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : nn.Module UpperCamelCase_ : int = 0 UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) def __call__( self : Any , SCREAMING_SNAKE_CASE_ : Tensor ) -> Optional[Any]: '''simple docstring''' A: Dict = Tracker(self.dest )(SCREAMING_SNAKE_CASE_ ).parametrized A: Tuple = Tracker(self.src )(SCREAMING_SNAKE_CASE_ ).parametrized A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.src_skip , SCREAMING_SNAKE_CASE_ ) ) A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.dest_skip , SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise Exception( f"""Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE_ )} operations while""" f""" destination module has {len(SCREAMING_SNAKE_CASE_ )}.""" ) for dest_m, src_m in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase = True ) -> Any: print(F"""Converting {name}...""" ) with torch.no_grad(): A: Union[str, Any] = timm.create_model(__lowercase , pretrained=__lowercase ).eval() A: List[str] = ResNetForImageClassification(__lowercase ).eval() A: int = ModuleTransfer(src=__lowercase , dest=__lowercase ) A: List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(__lowercase ) assert torch.allclose(from_model(__lowercase ) , our_model(__lowercase ).logits ), "The model logits don't match the original one." A: str = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(__lowercase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__lowercase , ) # we can use the convnext one A: Any = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__lowercase , ) print(F"""Pushed {checkpoint_name}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = None , __lowercase = True ) -> List[Any]: A: Union[str, Any] = '''imagenet-1k-id2label.json''' A: Union[str, Any] = 1_0_0_0 A: Optional[int] = (1, num_labels) A: Dict = '''huggingface/label-files''' A: Any = num_labels A: Union[str, Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Optional[int] = {int(__lowercase ): v for k, v in idalabel.items()} A: Optional[int] = idalabel A: List[str] = {v: k for k, v in idalabel.items()} A: str = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase ) A: Optional[Any] = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__lowercase , names_to_config[model_name] , __lowercase , __lowercase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowercase , __lowercase , __lowercase , __lowercase ) return config, expected_shape if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase = parser.parse_args() UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: A: Optional[Any] = model_type_to_module_name(SCREAMING_SNAKE_CASE__ ) A: Dict = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE__ , '''__name__''' , SCREAMING_SNAKE_CASE__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. A: List[str] = importlib.import_module('''transformers''' ) if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return None def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = None , __lowercase = False , __lowercase = False , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = False , **__lowercase , ) -> Any: A: str = get_file_from_repo( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , revision=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as reader: return json.load(SCREAMING_SNAKE_CASE__ ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Tuple ) -> Union[str, Any]: '''simple docstring''' raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(UpperCamelCase__ ) def _snake_case ( cls : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : int ) -> Tuple: '''simple docstring''' A: Optional[Any] = kwargs.pop('''config''' , UpperCamelCase__ ) A: List[str] = kwargs.pop('''trust_remote_code''' , UpperCamelCase__ ) A: Union[str, Any] = True A: Union[str, Any] = ImageProcessingMixin.get_image_processor_dict(UpperCamelCase__ , **UpperCamelCase__ ) A: Dict = config_dict.get('''image_processor_type''' , UpperCamelCase__ ) A: Dict = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): A: Optional[Any] = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: A: Tuple = config_dict.pop('''feature_extractor_type''' , UpperCamelCase__ ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) A: str = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): A: int = config_dict['''auto_map''']['''AutoFeatureExtractor'''] A: Any = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): A: int = AutoConfig.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) # It could be in `config.image_processor_type`` A: str = getattr(UpperCamelCase__ , '''image_processor_type''' , UpperCamelCase__ ) if hasattr(UpperCamelCase__ , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: A: Optional[Any] = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: A: str = image_processor_class_from_name(UpperCamelCase__ ) A: Optional[Any] = image_processor_auto_map is not None A: Union[str, Any] = image_processor_class is not None or type(UpperCamelCase__ ) in IMAGE_PROCESSOR_MAPPING A: str = resolve_trust_remote_code( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if has_remote_code and trust_remote_code: A: Any = get_class_from_dynamic_module( UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) A: Tuple = kwargs.pop('''code_revision''' , UpperCamelCase__ ) if os.path.isdir(UpperCamelCase__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) elif image_processor_class is not None: return image_processor_class.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(UpperCamelCase__ ) in IMAGE_PROCESSOR_MAPPING: A: Dict = IMAGE_PROCESSOR_MAPPING[type(UpperCamelCase__ )] return image_processor_class.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) raise ValueError( f"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ f"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ f"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def _snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> int: '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(UpperCamelCase__ , UpperCamelCase__ )
367
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> str | Literal[False]: A: List[str] = list(__lowercase ) A: Optional[Any] = list(__lowercase ) A: int = 0 for i in range(len(__lowercase ) ): if lista[i] != lista[i]: count += 1 A: Optional[Any] = '''_''' if count > 1: return False else: return "".join(__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[str]: A: Any = [] while True: A: Dict = ['''$'''] * len(__lowercase ) A: Union[str, Any] = [] for i in range(len(__lowercase ) ): for j in range(i + 1 , len(__lowercase ) ): A: Any = compare_string(binary[i] , binary[j] ) if k is False: A: Any = '''*''' A: List[Any] = '''*''' temp.append('''X''' ) for i in range(len(__lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__lowercase ) == 0: return pi A: List[Any] = list(set(__lowercase ) ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[str]: A: Optional[int] = [] for minterm in minterms: A: Optional[int] = '''''' for _ in range(__lowercase ): A: List[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(__lowercase ) return temp def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> bool: A: Union[str, Any] = list(__lowercase ) A: Union[str, Any] = list(__lowercase ) A: Optional[int] = 0 for i in range(len(__lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[str]: A: List[Any] = [] A: Dict = [0] * len(__lowercase ) for i in range(len(chart[0] ) ): A: List[str] = 0 A: str = -1 for j in range(len(__lowercase ) ): if chart[j][i] == 1: count += 1 A: Any = j if count == 1: A: Any = 1 for i in range(len(__lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__lowercase ) ): A: Optional[int] = 0 temp.append(prime_implicants[i] ) while True: A: Dict = 0 A: Optional[int] = -1 A: Dict = 0 for i in range(len(__lowercase ) ): A: str = chart[i].count(1 ) if count_n > max_n: A: Tuple = count_n A: Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__lowercase ) ): A: Any = 0 def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[list[int]]: A: str = [[0 for x in range(len(__lowercase ) )] for x in range(len(__lowercase ) )] for i in range(len(__lowercase ) ): A: Tuple = prime_implicants[i].count('''_''' ) for j in range(len(__lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , __lowercase ): A: Optional[Any] = 1 return chart def SCREAMING_SNAKE_CASE( ) -> None: A: int = int(input('''Enter the no. of variables\n''' ) ) A: Optional[int] = [ float(__lowercase ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] A: List[str] = decimal_to_binary(__lowercase , __lowercase ) A: str = check(__lowercase ) print('''Prime Implicants are:''' ) print(__lowercase ) A: List[Any] = prime_implicant_chart(__lowercase , __lowercase ) A: Any = selection(__lowercase , __lowercase ) print('''Essential Prime Implicants are:''' ) print(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
334
0
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCAmelCase_ ( _a ): '''simple docstring''' pass class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> None: '''simple docstring''' A: Any = data A: Node | None = None def __iter__( self : Dict ) -> Tuple: '''simple docstring''' A: str = self A: int = [] while node: if node in visited: raise ContainsLoopError visited.append(SCREAMING_SNAKE_CASE_ ) yield node.data A: List[str] = node.next_node @property def _snake_case ( self : Tuple ) -> bool: '''simple docstring''' try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": UpperCamelCase = Node(1) UpperCamelCase = Node(2) UpperCamelCase = Node(3) UpperCamelCase = Node(4) print(root_node.has_loop) # False UpperCamelCase = root_node.next_node print(root_node.has_loop) # True UpperCamelCase = Node(5) UpperCamelCase = Node(6) UpperCamelCase = Node(5) UpperCamelCase = Node(6) print(root_node.has_loop) # False UpperCamelCase = Node(1) print(root_node.has_loop) # False
368
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: A: Tuple = len(__lowercase ) for i in range(length - 1 ): A: Dict = i for k in range(i + 1 , __lowercase ): if collection[k] < collection[least]: A: List[str] = k if least != i: A , A: Tuple = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
334
0
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> List[str]: for nxt, d in graph[v]: if nxt in visited_forward: continue A: str = cst_fwd.get(__UpperCamelCase , np.inf ) A: Optional[Any] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A: Dict = new_cost_f A: List[Any] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A: Union[str, Any] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> Dict: A: List[str] = -1 A: List[str] = set() A: Tuple = set() A: Any = {source: 0} A: Dict = {destination: 0} A: Optional[Any] = {source: None} A: str = {destination: None} A: Optional[int] = PriorityQueue() A: Any = PriorityQueue() A: str = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A , A: Optional[int] = queue_forward.get() visited_forward.add(__UpperCamelCase ) A , A: Tuple = queue_backward.get() visited_backward.add(__UpperCamelCase ) A: Any = pass_and_relaxation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) A: str = pass_and_relaxation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A: str = shortest_distance return shortest_path_distance UpperCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } UpperCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
369
'''simple docstring''' class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] ) -> int: '''simple docstring''' A: Tuple = None A: Dict = None A: Optional[int] = graph self._normalize_graph(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: str = len(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = None def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ) -> str: '''simple docstring''' if sources is int: A: Union[str, Any] = [sources] if sinks is int: A: Tuple = [sinks] if len(SCREAMING_SNAKE_CASE_ ) == 0 or len(SCREAMING_SNAKE_CASE_ ) == 0: return A: List[str] = sources[0] A: Optional[int] = sinks[0] # make fake vertex if there are more # than one source or sink if len(SCREAMING_SNAKE_CASE_ ) > 1 or len(SCREAMING_SNAKE_CASE_ ) > 1: A: Any = 0 for i in sources: max_input_flow += sum(self.graph[i] ) A: Dict = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: A: Optional[Any] = max_input_flow A: Optional[Any] = 0 A: str = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: A: Optional[Any] = max_input_flow A: str = size - 1 def _snake_case ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: '''simple docstring''' A: Optional[Any] = algorithm(self ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: '''simple docstring''' A: str = flow_network A: List[str] = flow_network.verticesCount A: Dict = flow_network.sourceIndex A: Any = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that A: str = flow_network.graph A: str = False def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' if not self.executed: self._algorithm() A: str = True def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) # use this to save your result A: Any = -1 def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = [[0] * self.verticies_count for i in range(self.verticies_count )] A: Any = [0] * self.verticies_count A: Optional[Any] = [0] * self.verticies_count def _snake_case ( self : str ) -> Optional[Any]: '''simple docstring''' A: Any = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule A: str = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list A: Dict = 0 while i < len(SCREAMING_SNAKE_CASE_ ): A: Any = vertices_list[i] A: str = self.heights[vertex_index] self.process_vertex(SCREAMING_SNAKE_CASE_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE_ ) ) A: Tuple = 0 else: i += 1 A: Tuple = sum(self.preflow[self.source_index] ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.relabel(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: '''simple docstring''' A: Optional[int] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> int: '''simple docstring''' A: Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): A: List[Any] = self.heights[to_index] if min_height is not None: A: int = min_height + 1 if __name__ == "__main__": UpperCamelCase = [0] UpperCamelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCamelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCamelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCamelCase = flow_network.find_maximum_flow() print(f'maximum flow is {maximum_flow}')
334
0
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( _lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = (UnCLIPScheduler,) def _snake_case ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : str ) -> Any: '''simple docstring''' A: int = { '''num_train_timesteps''': 10_00, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**_lowercase ) return config def _snake_case ( self : Dict ) -> Any: '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowercase ) def _snake_case ( self : Optional[Any] ) -> List[str]: '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowercase ) def _snake_case ( self : List[str] ) -> Tuple: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _snake_case ( self : Dict ) -> List[str]: '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowercase ) def _snake_case ( self : Dict ) -> Tuple: '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowercase ) def _snake_case ( self : Dict ) -> Dict: '''simple docstring''' for time_step in [0, 5_00, 9_99]: for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowercase , prev_timestep=_lowercase ) def _snake_case ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A: int = self.scheduler_classes[0] A: List[Any] = self.get_scheduler_config(variance_type='''fixed_small_log''' ) A: Optional[int] = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.999_4987 ) ) < 1E-5 def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' A: Tuple = self.scheduler_classes[0] A: Any = self.get_scheduler_config(variance_type='''learned_range''' ) A: Optional[int] = scheduler_class(**_lowercase ) A: List[Any] = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowercase ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(4_87 , predicted_variance=_lowercase ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(9_99 , predicted_variance=_lowercase ) - -0.001_0011 < 1E-5 def _snake_case ( self : Any ) -> List[str]: '''simple docstring''' A: Any = self.scheduler_classes[0] A: Optional[Any] = self.get_scheduler_config() A: int = scheduler_class(**_lowercase ) A: Optional[int] = scheduler.timesteps A: Dict = self.dummy_model() A: int = self.dummy_sample_deter A: Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(_lowercase ): # 1. predict noise residual A: Optional[int] = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 A: Dict = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample A: List[str] = pred_prev_sample A: Optional[Any] = torch.sum(torch.abs(_lowercase ) ) A: str = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def _snake_case ( self : Any ) -> int: '''simple docstring''' A: Tuple = self.scheduler_classes[0] A: Dict = self.get_scheduler_config() A: Any = scheduler_class(**_lowercase ) scheduler.set_timesteps(25 ) A: int = scheduler.timesteps A: Tuple = self.dummy_model() A: Optional[Any] = self.dummy_sample_deter A: List[str] = torch.manual_seed(0 ) for i, t in enumerate(_lowercase ): # 1. predict noise residual A: List[Any] = model(_lowercase , _lowercase ) if i + 1 == timesteps.shape[0]: A: List[str] = None else: A: Tuple = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 A: List[str] = scheduler.step( _lowercase , _lowercase , _lowercase , prev_timestep=_lowercase , generator=_lowercase ).prev_sample A: Tuple = pred_prev_sample A: List[str] = torch.sum(torch.abs(_lowercase ) ) A: int = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' pass def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' pass
370
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ["""input_features""", """attention_mask"""] def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=80 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_60_00 , SCREAMING_SNAKE_CASE_ : int=80 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__(feature_size=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , padding_value=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = num_mel_bins A: str = do_ceptral_normalize A: int = normalize_means A: List[Any] = normalize_vars A: Any = True def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : np.ndarray , ) -> np.ndarray: '''simple docstring''' A: Optional[int] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers A: Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) A: List[Any] = ta_kaldi.fbank(SCREAMING_SNAKE_CASE_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _snake_case ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : float = 0.0 , ) -> np.ndarray: '''simple docstring''' if normalize_means: A: str = x[:input_length].mean(axis=0 ) A: Dict = np.subtract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if normalize_vars: A: Tuple = x[:input_length].std(axis=0 ) A: List[Any] = np.divide(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if input_length < x.shape[0]: A: Optional[int] = padding_value # make sure array is in float32 A: Optional[Any] = x.astype(np.floataa ) return x def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[np.ndarray] , SCREAMING_SNAKE_CASE_ : Optional[np.ndarray] = None ) -> List[np.ndarray]: '''simple docstring''' A: int = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] def __call__( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , SCREAMING_SNAKE_CASE_ : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) A: Any = isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) A: Optional[Any] = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A: Optional[int] = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ): A: int = np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A: Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A: Union[str, Any] = [raw_speech] # extract fbank features A: str = [self._extract_fbank_features(SCREAMING_SNAKE_CASE_ ) for waveform in raw_speech] # convert into correct format for padding A: int = BatchFeature({'''input_features''': features} ) A: int = self.pad( SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # make sure list is in array format A: List[str] = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , SCREAMING_SNAKE_CASE_ ): A: Optional[Any] = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for feature in input_features] A: List[Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: A: Dict = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: A: Dict = ( np.array(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) if self._get_padding_strategies(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) is not PaddingStrategy.DO_NOT_PAD else None ) A: List[Any] = self.normalize( padded_inputs['''input_features'''] , attention_mask=SCREAMING_SNAKE_CASE_ ) if return_tensors is not None: A: Dict = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE_ ) return padded_inputs
334
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase = 1_0**-1_0 ) -> List[str]: A: Optional[int] = a while True: A: str = Decimal(a__ ) - ( Decimal(eval(a__ ) ) / Decimal(eval(str(diff(a__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(a__ ) ) < precision: # noqa: S307 return float(a__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
371
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = DebertaTokenizer UpperCamelCase_ : List[str] = True UpperCamelCase_ : int = DebertaTokenizerFast def _snake_case ( self : Optional[int] ) -> Dict: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A: Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] A: int = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A: Union[str, Any] = {'''unk_token''': '''[UNK]'''} A: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict ) -> Union[str, Any]: '''simple docstring''' A: Optional[int] = '''lower newer''' A: str = '''lower newer''' return input_text, output_text def _snake_case ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A: str = self.get_tokenizer() A: Any = '''lower newer''' A: Dict = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] A: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokens + [tokenizer.unk_token] A: int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] ) -> Any: '''simple docstring''' A: str = self.get_tokenizer() A: List[str] = tokenizer('''Hello''' , '''World''' ) A: Union[str, Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , SCREAMING_SNAKE_CASE_ ) @slow def _snake_case ( self : Tuple ) -> Optional[int]: '''simple docstring''' A: Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A: Any = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) A: int = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A: int = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: A: List[Any] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A: Dict = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] A: Dict = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) A: Any = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) for seq in encoding['''input_ids''']] # fmt: off A: Any = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on A: Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , SCREAMING_SNAKE_CASE_ ) for expected, decoded in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
334
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class lowerCAmelCase_ ( snake_case_ ): '''simple docstring''' UpperCamelCase_ : str = "perceiver" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Tuple=2_56 , SCREAMING_SNAKE_CASE_ : Optional[int]=12_80 , SCREAMING_SNAKE_CASE_ : List[Any]=7_68 , SCREAMING_SNAKE_CASE_ : Any=1 , SCREAMING_SNAKE_CASE_ : Dict=26 , SCREAMING_SNAKE_CASE_ : Tuple=8 , SCREAMING_SNAKE_CASE_ : Optional[int]=8 , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : Dict="kv" , SCREAMING_SNAKE_CASE_ : Optional[Any]=1 , SCREAMING_SNAKE_CASE_ : int=1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE_ : Dict=1E-12 , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=2_62 , SCREAMING_SNAKE_CASE_ : List[str]=20_48 , SCREAMING_SNAKE_CASE_ : str=56 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=[3_68, 4_96] , SCREAMING_SNAKE_CASE_ : Optional[int]=16 , SCREAMING_SNAKE_CASE_ : Optional[int]=19_20 , SCREAMING_SNAKE_CASE_ : Optional[int]=16 , SCREAMING_SNAKE_CASE_ : str=[1, 16, 2_24, 2_24] , **SCREAMING_SNAKE_CASE_ : Any , ) -> int: '''simple docstring''' super().__init__(**_A ) A: Dict = num_latents A: List[str] = d_latents A: int = d_model A: List[Any] = num_blocks A: Optional[int] = num_self_attends_per_block A: Optional[int] = num_self_attention_heads A: List[str] = num_cross_attention_heads A: Optional[int] = qk_channels A: Any = v_channels A: Union[str, Any] = cross_attention_shape_for_attention A: Tuple = self_attention_widening_factor A: List[Any] = cross_attention_widening_factor A: Optional[Any] = hidden_act A: str = attention_probs_dropout_prob A: Optional[int] = initializer_range A: Tuple = layer_norm_eps A: List[Any] = use_query_residual # masked language modeling attributes A: Dict = vocab_size A: List[Any] = max_position_embeddings # image classification attributes A: int = image_size # flow attributes A: Dict = train_size # multimodal autoencoding attributes A: str = num_frames A: Dict = audio_samples_per_frame A: Tuple = samples_per_patch A: Dict = output_shape class lowerCAmelCase_ ( snake_case_ ): '''simple docstring''' @property def _snake_case ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A: Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A: Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def _snake_case ( self : Optional[Any] ) -> float: '''simple docstring''' return 1E-4 def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[TensorType] = None , SCREAMING_SNAKE_CASE_ : int = 3 , SCREAMING_SNAKE_CASE_ : int = 40 , SCREAMING_SNAKE_CASE_ : int = 40 , ) -> Mapping[str, Any]: '''simple docstring''' if isinstance(_A , _A ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A: Optional[Any] = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A: Union[str, Any] = preprocessor.num_special_tokens_to_add(_A ) A: Optional[int] = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence A: List[Any] = [' '.join(['''a'''] ) * seq_length] * batch_size A: Dict = dict(preprocessor(_A , return_tensors=_A ) ) A: List[Any] = inputs.pop('''input_ids''' ) return inputs elif isinstance(_A , _A ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A: Optional[int] = compute_effective_axis_dimension(_A , fixed_dimension=OnnxConfig.default_fixed_batch ) A: int = self._generate_dummy_images(_A , _A , _A , _A ) A: Tuple = dict(preprocessor(images=_A , return_tensors=_A ) ) A: Optional[Any] = inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
350
'''simple docstring''' import requests UpperCamelCase = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def SCREAMING_SNAKE_CASE( __lowercase ) -> None: # fetching a list of articles in json format A: Tuple = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
334
0
from __future__ import annotations from decimal import Decimal from numpy import array def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: A: List[str] = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(A__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix A: Any = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements A: int = [[0.0, 0.0], [0.0, 0.0]] A: int = matrix[1][1], matrix[0][0] A: Tuple = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(A__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(A__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule A: Any = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix A: str = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] A: str = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) A: Dict = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) A: Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) A: List[Any] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) A: Tuple = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) A: Any = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) A: Optional[Any] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) A: List[Any] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) A: Tuple = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) A: List[Any] = array(A__ ) for i in range(3 ): for j in range(3 ): A: Union[str, Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix A: int = array(A__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(A__ ) # Calculate the inverse of the matrix return [[float(d(A__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
351
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } UpperCamelCase = { '''camembert-base''': 512, } UpperCamelCase = '''▁''' class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : str = ["""input_ids""", """attention_mask"""] UpperCamelCase_ : int = CamembertTokenizer def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="</s>" , SCREAMING_SNAKE_CASE_ : int="<s>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE_ : str="<pad>" , SCREAMING_SNAKE_CASE_ : List[str]="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=["<s>NOTUSED", "</s>NOTUSED"] , **SCREAMING_SNAKE_CASE_ : Any , ) -> Any: '''simple docstring''' A: Tuple = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Any = vocab_file A: Any = False if not self.vocab_file else True def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A: List[str] = [self.cls_token_id] A: List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A: List[str] = [self.sep_token_id] A: Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A: Dict = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
334
0
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> str: if len(lowerCAmelCase__ ) <= 1: return [tuple(lowerCAmelCase__ )] A = [] def generate(__lowercase , __lowercase ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCAmelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A = arr[k - 1], arr[i] else: # k is odd A = arr[k - 1], arr[0] generate(k - 1 , lowerCAmelCase__ ) generate(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) return res if __name__ == "__main__": UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
352
'''simple docstring''' import os from distutils.util import strtobool def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[Any]: for e in env_keys: A: Dict = int(os.environ.get(__lowercase , -1 ) ) if val >= 0: return val return default def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False ) -> List[str]: A: str = os.environ.get(__lowercase , str(__lowercase ) ) return strtobool(__lowercase ) == 1 # As its name indicates `strtobool` actually returns an int... def SCREAMING_SNAKE_CASE( __lowercase , __lowercase="no" ) -> str: A: Optional[int] = os.environ.get(__lowercase , str(__lowercase ) ) return value
334
0
'''simple docstring''' from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = "philschmid/bart-large-cnn-samsum" UpperCamelCase_ : Optional[int] = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) UpperCamelCase_ : Tuple = "summarizer" UpperCamelCase_ : int = AutoTokenizer UpperCamelCase_ : Dict = AutoModelForSeqaSeqLM UpperCamelCase_ : Tuple = ["text"] UpperCamelCase_ : int = ["text"] def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict: '''simple docstring''' return self.pre_processor(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , truncation=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' return self.model.generate(**SCREAMING_SNAKE_CASE_ )[0] def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: '''simple docstring''' return self.pre_processor.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
353
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() UpperCamelCase = logging.get_logger('''transformers.models.encodec''') UpperCamelCase = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } UpperCamelCase = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } UpperCamelCase = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } UpperCamelCase = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } UpperCamelCase = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } UpperCamelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } UpperCamelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } UpperCamelCase = [] UpperCamelCase = [] def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Dict: for attribute in key.split('''.''' ): A: Union[str, Any] = getattr(__lowercase , __lowercase ) if weight_type is not None: A: Tuple = getattr(__lowercase , __lowercase ).shape else: A: str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": A: Dict = value elif weight_type == "weight_g": A: Tuple = value elif weight_type == "weight_v": A: Any = value elif weight_type == "bias": A: str = value elif weight_type == "running_mean": A: List[Any] = value elif weight_type == "running_var": A: Dict = value elif weight_type == "num_batches_tracked": A: List[str] = value elif weight_type == "weight_ih_l0": A: Dict = value elif weight_type == "weight_hh_l0": A: Optional[int] = value elif weight_type == "bias_ih_l0": A: List[Any] = value elif weight_type == "bias_hh_l0": A: str = value elif weight_type == "weight_ih_l1": A: Optional[int] = value elif weight_type == "weight_hh_l1": A: int = value elif weight_type == "bias_ih_l1": A: Optional[Any] = value elif weight_type == "bias_hh_l1": A: str = value else: A: Optional[int] = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: A , A: Any = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Tuple: A: Any = [] if model_name == "encodec_24khz" or "encodec_32khz": A: List[str] = MAPPING_24K elif model_name == "encodec_48khz": A: List[Any] = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(__lowercase , __lowercase ): logger.info(F"""{name} was ignored""" ) continue A: Optional[int] = False for key, mapped_key in MAPPING.items(): if "*" in key: A , A: Optional[int] = key.split('''.*.''' ) if prefix in name and suffix in name: A: str = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue A: Optional[Any] = True if "*" in mapped_key: A: Any = name.split(__lowercase )[0].split('''.''' )[-2] A: Tuple = mapped_key.replace('''*''' , __lowercase ) if "weight_g" in name: A: str = '''weight_g''' elif "weight_v" in name: A: List[Any] = '''weight_v''' elif "weight_ih_l0" in name: A: Dict = '''weight_ih_l0''' elif "weight_hh_l0" in name: A: int = '''weight_hh_l0''' elif "bias_ih_l0" in name: A: Union[str, Any] = '''bias_ih_l0''' elif "bias_hh_l0" in name: A: Tuple = '''bias_hh_l0''' elif "weight_ih_l1" in name: A: int = '''weight_ih_l1''' elif "weight_hh_l1" in name: A: Optional[Any] = '''weight_hh_l1''' elif "bias_ih_l1" in name: A: Dict = '''bias_ih_l1''' elif "bias_hh_l1" in name: A: str = '''bias_hh_l1''' elif "bias" in name: A: Union[str, Any] = '''bias''' elif "weight" in name: A: Dict = '''weight''' elif "running_mean" in name: A: Tuple = '''running_mean''' elif "running_var" in name: A: Any = '''running_var''' elif "num_batches_tracked" in name: A: str = '''num_batches_tracked''' else: A: Tuple = None set_recursively(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(F"""Unused weights: {unused_weights}""" ) @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , ) -> Dict: if config_path is not None: A: Tuple = EncodecConfig.from_pretrained(__lowercase ) else: A: Union[str, Any] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": A: Union[str, Any] = [8, 5, 4, 4] A: Dict = [2.2] A: List[Any] = 6_4 A: Optional[Any] = 3_2_0_0_0 A: List[Any] = 2_0_4_8 A: Optional[Any] = False A: int = False A: Union[str, Any] = False elif model_name == "encodec_48khz": A: Optional[int] = [8, 5, 4, 2] A: List[Any] = [3.0, 6.0, 1_2.0, 2_4.0] A: List[Any] = 4_8_0_0_0 A: int = 2 A: List[Any] = False A: Any = '''time_group_norm''' A: Optional[Any] = True A: Any = 1.0 A: Any = 0.0_1 else: raise ValueError(F"""Unknown model name: {model_name}""" ) A: str = EncodecModel(__lowercase ) A: Optional[Any] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__lowercase ) A: Union[str, Any] = torch.load(__lowercase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights A: Optional[int] = original_checkpoint['''best_state'''] recursively_load_weights(__lowercase , __lowercase , __lowercase ) model.save_pretrained(__lowercase ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(__lowercase ) model.push_to_hub(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCamelCase = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
334
0
'''simple docstring''' import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> List[Any]: A: Optional[int] = MobileBertConfig.from_json_file(__lowercase ) print(F"""Building PyTorch model from configuration: {config}""" ) A: Dict = MobileBertForPreTraining(__lowercase ) # Load weights from tf checkpoint A: Optional[Any] = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
354
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
0
'''simple docstring''' import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger UpperCamelCase = get_logger(__name__) UpperCamelCase = R'''\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n''' class lowerCAmelCase_ : '''simple docstring''' @add_start_docstrings(UpperCamelCase_ ) def __call__( self : Dict , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray ) -> jnp.ndarray: '''simple docstring''' raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class lowerCAmelCase_ : '''simple docstring''' @add_start_docstrings(UpperCamelCase_ ) def __call__( self : Tuple , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray ) -> jnp.ndarray: '''simple docstring''' raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class lowerCAmelCase_ ( UpperCamelCase__ ): '''simple docstring''' @add_start_docstrings(UpperCamelCase_ ) def __call__( self : Dict , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : str ) -> jnp.ndarray: '''simple docstring''' for processor in self: A: Tuple = inspect.signature(processor.__call__ ).parameters if len(UpperCamelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f"""Make sure that all the required parameters: {list(function_args.keys() )} for """ f"""{processor.__class__} are passed to the logits processor.""" ) A: Union[str, Any] = processor(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) else: A: Union[str, Any] = processor(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return scores class lowerCAmelCase_ ( UpperCamelCase__ ): '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : float ) -> Optional[Any]: '''simple docstring''' if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or not (temperature > 0): raise ValueError(f"""`temperature` has to be a strictly positive float, but is {temperature}""" ) A: str = temperature def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int ) -> jnp.ndarray: '''simple docstring''' A: Dict = scores / self.temperature return scores class lowerCAmelCase_ ( UpperCamelCase__ ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float = -float('''Inf''' ) , SCREAMING_SNAKE_CASE_ : int = 1 ) -> Optional[Any]: '''simple docstring''' if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" ) if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(f"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" ) A: Optional[Any] = top_p A: Dict = filter_value A: Optional[Any] = min_tokens_to_keep def __call__( self : List[Any] , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int ) -> jnp.ndarray: '''simple docstring''' A , A: str = lax.top_k(UpperCamelCase_ , scores.shape[-1] ) A: Tuple = jnp.full_like(UpperCamelCase_ , self.filter_value ) A: List[str] = jax.nn.softmax(UpperCamelCase_ , axis=-1 ).cumsum(axis=-1 ) A: int = cumulative_probs < self.top_p # include the token that is higher than top_p as well A: Union[str, Any] = jnp.roll(UpperCamelCase_ , 1 ) score_mask |= score_mask.at[:, 0].set(UpperCamelCase_ ) # min tokens to keep A: Union[str, Any] = score_mask.at[:, : self.min_tokens_to_keep].set(UpperCamelCase_ ) A: int = jnp.where(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) A: Dict = jax.lax.sort_key_val(UpperCamelCase_ , UpperCamelCase_ )[-1] return next_scores class lowerCAmelCase_ ( UpperCamelCase__ ): '''simple docstring''' def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float = -float('''Inf''' ) , SCREAMING_SNAKE_CASE_ : int = 1 ) -> Dict: '''simple docstring''' if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or top_k <= 0: raise ValueError(f"""`top_k` has to be a strictly positive integer, but is {top_k}""" ) A: Any = max(UpperCamelCase_ , UpperCamelCase_ ) A: Dict = filter_value def __call__( self : Any , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int ) -> jnp.ndarray: '''simple docstring''' A , A: Union[str, Any] = scores.shape A: Optional[Any] = jnp.full(batch_size * vocab_size , self.filter_value ) A: int = min(self.top_k , scores.shape[-1] ) # Safety check A , A: Union[str, Any] = lax.top_k(UpperCamelCase_ , UpperCamelCase_ ) A: Dict = jnp.broadcast_to((jnp.arange(UpperCamelCase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() A: Tuple = topk_scores.flatten() A: List[str] = topk_indices.flatten() + shift A: Tuple = next_scores_flat.at[topk_indices_flat].set(UpperCamelCase_ ) A: str = next_scores_flat.reshape(UpperCamelCase_ , UpperCamelCase_ ) return next_scores class lowerCAmelCase_ ( UpperCamelCase__ ): '''simple docstring''' def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int ) -> Any: '''simple docstring''' A: Tuple = bos_token_id def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int ) -> jnp.ndarray: '''simple docstring''' A: Optional[int] = jnp.full(scores.shape , -float('''inf''' ) ) A: str = 1 - jnp.bool_(cur_len - 1 ) A: Optional[Any] = jnp.where(UpperCamelCase_ , new_scores.at[:, self.bos_token_id].set(0 ) , UpperCamelCase_ ) return scores class lowerCAmelCase_ ( UpperCamelCase__ ): '''simple docstring''' def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> Any: '''simple docstring''' A: str = max_length A: Optional[int] = eos_token_id def __call__( self : List[str] , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int ) -> jnp.ndarray: '''simple docstring''' A: str = jnp.full(scores.shape , -float('''inf''' ) ) A: Optional[int] = 1 - jnp.bool_(cur_len - self.max_length + 1 ) A: List[str] = jnp.where(UpperCamelCase_ , new_scores.at[:, self.eos_token_id].set(0 ) , UpperCamelCase_ ) return scores class lowerCAmelCase_ ( UpperCamelCase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> Any: '''simple docstring''' if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or min_length < 0: raise ValueError(f"""`min_length` has to be a positive integer, but is {min_length}""" ) if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or eos_token_id < 0: raise ValueError(f"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" ) A: int = min_length A: Optional[Any] = eos_token_id def __call__( self : List[str] , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int ) -> jnp.ndarray: '''simple docstring''' A: Tuple = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) A: Optional[Any] = jnp.where(UpperCamelCase_ , scores.at[:, self.eos_token_id].set(-float('''inf''' ) ) , UpperCamelCase_ ) return scores class lowerCAmelCase_ ( UpperCamelCase__ ): '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' A: str = list(UpperCamelCase_ ) A: Any = begin_index def __call__( self : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: '''simple docstring''' A: Optional[int] = 1 - jnp.bool_(cur_len - self.begin_index ) A: str = jnp.where(UpperCamelCase_ , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''' ) ) , UpperCamelCase_ ) return scores class lowerCAmelCase_ ( UpperCamelCase__ ): '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : list ) -> int: '''simple docstring''' A: Union[str, Any] = list(UpperCamelCase_ ) def __call__( self : int , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int ) -> jnp.ndarray: '''simple docstring''' A: Optional[int] = scores.at[..., self.suppress_tokens].set(-float('''inf''' ) ) return scores class lowerCAmelCase_ ( UpperCamelCase__ ): '''simple docstring''' def __init__( self : str , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: '''simple docstring''' A: int = dict(UpperCamelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. A: Any = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: A: Optional[int] = force_token_array.at[index].set(UpperCamelCase_ ) A: Tuple = jnp.intaa(UpperCamelCase_ ) def __call__( self : str , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int ) -> jnp.ndarray: '''simple docstring''' def _force_token(SCREAMING_SNAKE_CASE_ : List[str] ): A: str = scores.shape[0] A: str = self.force_token_array[generation_idx] A: str = jnp.ones_like(UpperCamelCase_ , dtype=scores.dtype ) * -float('''inf''' ) A: int = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) A: Tuple = lax.dynamic_update_slice(UpperCamelCase_ , UpperCamelCase_ , (0, current_token) ) return new_scores A: List[str] = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(UpperCamelCase_ ) , lambda: scores , ) , ) return scores class lowerCAmelCase_ ( UpperCamelCase__ ): '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]: '''simple docstring''' A: Any = generate_config.eos_token_id A: Optional[int] = generate_config.no_timestamps_token_id A: List[str] = generate_config.no_timestamps_token_id + 1 A: Dict = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(UpperCamelCase_ , '''max_initial_timestamp_index''' ): A: Optional[Any] = generate_config.max_initial_timestamp_index else: A: List[str] = model_config.vocab_size if self.max_initial_timestamp_index is None: A: str = model_config.vocab_size def __call__( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: '''simple docstring''' A: str = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''' ) ) def handle_pairs(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple ): A: Union[str, Any] = jnp.where((cur_len - self.begin_index) >= 1 , UpperCamelCase_ , UpperCamelCase_ ) A: List[Any] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , UpperCamelCase_ , ) A: int = jnp.where((cur_len - self.begin_index) < 2 , UpperCamelCase_ , UpperCamelCase_ ) A: Union[str, Any] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , UpperCamelCase_ , UpperCamelCase_ , ) return jnp.where( UpperCamelCase_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''' ) ) , scores_k.at[: self.eos_token_id].set(-float('''inf''' ) ) , ) , UpperCamelCase_ , ) A: int = jax.vmap(UpperCamelCase_ )(UpperCamelCase_ , UpperCamelCase_ ) A: Tuple = jnp.where(cur_len == self.begin_index , UpperCamelCase_ , UpperCamelCase_ ) A: int = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , UpperCamelCase_ , ) A: Any = self.timestamp_begin + self.max_initial_timestamp_index A: Any = jnp.where( UpperCamelCase_ , scores.at[:, last_allowed + 1 :].set(-float('''inf''' ) ) , UpperCamelCase_ , ) # if sum of probability over timestamps is above any other token, sample timestamp A: Optional[Any] = jax.nn.log_softmax(UpperCamelCase_ , axis=-1 ) def handle_cumulative_probs(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple ): A: Optional[Any] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) A: int = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''' ) ) , UpperCamelCase_ , ) A: Any = jax.vmap(UpperCamelCase_ )(UpperCamelCase_ , UpperCamelCase_ ) return scores
355
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[float]]: A: list[list[float]] = [] for data in source_data: for i, el in enumerate(__lowercase ): if len(__lowercase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(__lowercase ) ) return data_lists def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[list[float]]: A: list[list[float]] = [] for dlist, weight in zip(__lowercase , __lowercase ): A: List[str] = min(__lowercase ) A: Union[str, Any] = max(__lowercase ) A: list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: A: List[str] = F"""Invalid weight of {weight:f} provided""" raise ValueError(__lowercase ) score_lists.append(__lowercase ) return score_lists def SCREAMING_SNAKE_CASE( __lowercase ) -> list[float]: A: list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(__lowercase ): A: str = final_scores[j] + ele return final_scores def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[list[float]]: A: Any = get_data(__lowercase ) A: str = calculate_each_score(__lowercase , __lowercase ) A: int = generate_final_scores(__lowercase ) # append scores to source data for i, ele in enumerate(__lowercase ): source_data[i].append(__lowercase ) return source_data
334
0
def SCREAMING_SNAKE_CASE( __lowercase = 1_0_0_0_0_0_0 ) -> Tuple: A: int = set(range(3 , lowerCamelCase_ , 2 ) ) primes.add(2 ) for p in range(3 , lowerCamelCase_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowerCamelCase_ , lowerCamelCase_ ) ) ) A: int = [float(lowerCamelCase_ ) for n in range(limit + 1 )] for p in primes: for n in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'{solution() = }')
356
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = VOCAB_FILES_NAMES UpperCamelCase_ : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Any = DPRContextEncoderTokenizer class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Dict = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Tuple = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Optional[int] = DPRQuestionEncoderTokenizer UpperCamelCase = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) UpperCamelCase = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) UpperCamelCase = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(UpperCAmelCase_ ) class lowerCAmelCase_ : '''simple docstring''' def __call__( self : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Union[bool, str] = False , SCREAMING_SNAKE_CASE_ : Union[bool, str] = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) elif titles is None or texts is None: A: Union[str, Any] = titles if texts is None else texts return super().__call__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Union[str, Any] = titles if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [titles] A: Optional[Any] = texts if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [texts] A: str = len(SCREAMING_SNAKE_CASE_ ) A: List[Any] = questions if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [questions] * n_passages assert len(SCREAMING_SNAKE_CASE_ ) == len( SCREAMING_SNAKE_CASE_ ), f"""There should be as many titles than texts but got {len(SCREAMING_SNAKE_CASE_ )} titles and {len(SCREAMING_SNAKE_CASE_ )} texts.""" A: Union[str, Any] = super().__call__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )['''input_ids'''] A: Dict = super().__call__(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )['''input_ids'''] A: str = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] } if return_attention_mask is not False: A: Union[str, Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) A: Optional[Any] = attention_mask return self.pad(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : BatchEncoding , SCREAMING_SNAKE_CASE_ : DPRReaderOutput , SCREAMING_SNAKE_CASE_ : int = 16 , SCREAMING_SNAKE_CASE_ : int = 64 , SCREAMING_SNAKE_CASE_ : int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' A: Any = reader_input['''input_ids'''] A , A , A: str = reader_output[:3] A: str = len(SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = sorted(range(SCREAMING_SNAKE_CASE_ ) , reverse=SCREAMING_SNAKE_CASE_ , key=relevance_logits.__getitem__ ) A: List[DPRReaderOutput] = [] for doc_id in sorted_docs: A: List[str] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence A: Dict = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A: Union[str, Any] = sequence_ids.index(self.pad_token_id ) else: A: int = len(SCREAMING_SNAKE_CASE_ ) A: Dict = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=SCREAMING_SNAKE_CASE_ , top_spans=SCREAMING_SNAKE_CASE_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=SCREAMING_SNAKE_CASE_ , start_index=SCREAMING_SNAKE_CASE_ , end_index=SCREAMING_SNAKE_CASE_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(SCREAMING_SNAKE_CASE_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , ) -> List[DPRSpanPrediction]: '''simple docstring''' A: Union[str, Any] = [] for start_index, start_score in enumerate(SCREAMING_SNAKE_CASE_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) A: Any = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x[1] , reverse=SCREAMING_SNAKE_CASE_ ) A: Dict = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" A: int = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(SCREAMING_SNAKE_CASE_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase_ ) class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : List[Any] = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Dict = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Any = ["""input_ids""", """attention_mask"""] UpperCamelCase_ : Optional[Any] = DPRReaderTokenizer
334
0
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = "Hello, World!" UpperCamelCase = "en_XX" def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int: A: Any = Path('''data_bin''' ) A: str = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(UpperCAmelCase_ ).parent ) , checkpoint_file=Path(UpperCAmelCase_ ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(UpperCAmelCase_ ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(UpperCAmelCase_ ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(UpperCAmelCase_ ) A: int = xmod.model.encoder.sentence_encoder A: Dict = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: A: Optional[Any] = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('''Our X-MOD config:''' , UpperCAmelCase_ ) A: str = XmodForSequenceClassification(UpperCAmelCase_ ) if classification_head else XmodForMaskedLM(UpperCAmelCase_ ) model.eval() # Now let's copy all the weights. # Embeddings A: int = xmod_sent_encoder.embed_tokens.weight A: Any = xmod_sent_encoder.embed_positions.weight A: int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. A: Tuple = xmod_sent_encoder.layernorm_embedding.weight A: int = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer A: List[str] = model.roberta.encoder.layer[i] A: int = xmod_sent_encoder.layers[i] # self attention A: List[str] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) A: int = xmod_layer.self_attn.q_proj.weight A: List[str] = xmod_layer.self_attn.q_proj.bias A: List[str] = xmod_layer.self_attn.k_proj.weight A: int = xmod_layer.self_attn.k_proj.bias A: List[Any] = xmod_layer.self_attn.v_proj.weight A: Tuple = xmod_layer.self_attn.v_proj.bias # self-attention output A: Any = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) A: Tuple = xmod_layer.self_attn.out_proj.weight A: List[Any] = xmod_layer.self_attn.out_proj.bias A: str = xmod_layer.self_attn_layer_norm.weight A: Optional[int] = xmod_layer.self_attn_layer_norm.bias # intermediate A: Dict = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) A: Optional[int] = xmod_layer.fca.weight A: List[Any] = xmod_layer.fca.bias # output A: List[str] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) A: str = xmod_layer.fca.weight A: Dict = xmod_layer.fca.bias A: List[Any] = xmod_layer.final_layer_norm.weight A: str = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: A: List[str] = xmod_layer.adapter_layer_norm.weight A: List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): A: Any = bert_output.adapter_modules[lang_code] A: Tuple = xmod_layer.adapter_modules[lang_code] A: Any = from_adapter.fca.weight A: Dict = from_adapter.fca.bias A: Optional[Any] = from_adapter.fca.weight A: str = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: A: List[str] = xmod_sent_encoder.layer_norm.weight A: List[str] = xmod_sent_encoder.layer_norm.bias if classification_head: A: List[Any] = xmod.model.classification_heads['mnli'].dense.weight A: List[str] = xmod.model.classification_heads['mnli'].dense.bias A: Optional[Any] = xmod.model.classification_heads['mnli'].out_proj.weight A: List[Any] = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head A: str = xmod.model.encoder.lm_head.dense.weight A: Union[str, Any] = xmod.model.encoder.lm_head.dense.bias A: Tuple = xmod.model.encoder.lm_head.layer_norm.weight A: Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.bias A: Any = xmod.model.encoder.lm_head.weight A: str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. A: Dict = xmod.encode(UpperCAmelCase_ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(UpperCAmelCase_ ) A: str = model(UpperCAmelCase_ )[0] if classification_head: A: List[str] = xmod.model.classification_heads['mnli'](xmod.extract_features(UpperCAmelCase_ ) ) else: A: Optional[Any] = xmod.model(UpperCAmelCase_ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) A: Union[str, Any] = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 A: Optional[Any] = torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(UpperCAmelCase_ ).mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) UpperCamelCase = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
357
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
0
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' UpperCamelCase_ : List[Any] = ["""image_processor""", """tokenizer"""] UpperCamelCase_ : Optional[Any] = """BlipImageProcessor""" UpperCamelCase_ : List[Any] = """AutoTokenizer""" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: '''simple docstring''' super().__init__(__snake_case , __snake_case ) # add QFormer tokenizer A: Optional[Any] = qformer_tokenizer def __call__( self : Any , SCREAMING_SNAKE_CASE_ : ImageInput = None , SCREAMING_SNAKE_CASE_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE_ : Union[bool, str, TruncationStrategy] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> Dict: '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) A: Dict = BatchFeature() if text is not None: A: List[str] = self.tokenizer( text=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_token_type_ids=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) encoding.update(__snake_case ) A: int = self.qformer_tokenizer( text=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_token_type_ids=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) A: Union[str, Any] = qformer_text_encoding.pop('''input_ids''' ) A: List[str] = qformer_text_encoding.pop('''attention_mask''' ) if images is not None: A: List[Any] = self.image_processor(__snake_case , return_tensors=__snake_case ) encoding.update(__snake_case ) return encoding def _snake_case ( self : int , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _snake_case ( self : Dict , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : int ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _snake_case ( self : List[str] ) -> Tuple: '''simple docstring''' A: List[Any] = self.tokenizer.model_input_names A: Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]: '''simple docstring''' if os.path.isfile(__snake_case ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(__snake_case , exist_ok=__snake_case ) A: Tuple = os.path.join(__snake_case , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(__snake_case ) return super().save_pretrained(__snake_case , **__snake_case ) @classmethod def _snake_case ( cls : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : int ) -> str: '''simple docstring''' A: Tuple = AutoTokenizer.from_pretrained(__snake_case , subfolder='''qformer_tokenizer''' ) A: Any = cls._get_arguments_from_pretrained(__snake_case , **__snake_case ) args.append(__snake_case ) return cls(*__snake_case )
358
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' pass class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> None: '''simple docstring''' A: Any = data A: Node | None = None def __iter__( self : Optional[int] ) -> List[str]: '''simple docstring''' A: List[str] = self A: Dict = [] while node: if node in visited: raise ContainsLoopError visited.append(SCREAMING_SNAKE_CASE_ ) yield node.data A: str = node.next_node @property def _snake_case ( self : List[str] ) -> bool: '''simple docstring''' try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": UpperCamelCase = Node(1) UpperCamelCase = Node(2) UpperCamelCase = Node(3) UpperCamelCase = Node(4) print(root_node.has_loop) # False UpperCamelCase = root_node.next_node print(root_node.has_loop) # True UpperCamelCase = Node(5) UpperCamelCase = Node(6) UpperCamelCase = Node(5) UpperCamelCase = Node(6) print(root_node.has_loop) # False UpperCamelCase = Node(1) print(root_node.has_loop) # False
334
0
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
359
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE( __lowercase = 4 ) -> list[list[int]]: A: Tuple = abs(__lowercase ) or 4 return [[1 + x + y * row_size for x in range(__lowercase )] for y in range(__lowercase )] def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_row(transpose(__lowercase ) ) # OR.. transpose(reverse_column(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_row(reverse_column(__lowercase ) ) # OR.. reverse_column(reverse_row(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_column(transpose(__lowercase ) ) # OR.. transpose(reverse_row(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Union[str, Any] = [list(__lowercase ) for x in zip(*__lowercase )] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Optional[int] = matrix[::-1] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Optional[Any] = [x[::-1] for x in matrix] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> None: for i in matrix: print(*__lowercase ) if __name__ == "__main__": UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
334
0
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase=1_0_2_4 ) -> Union[str, Any]: A , A: Optional[Any] = [], [] A: Optional[Any] = list(zip(__lowercase , __lowercase ) ) A , A: Optional[int] = sorted_examples[0] def is_too_big(__lowercase ): return tok(__lowercase , return_tensors='''pt''' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): A: Optional[Any] = new_src + ''' ''' + src A: int = new_tgt + ''' ''' + tgt if is_too_big(__lowercase ) or is_too_big(__lowercase ): # cant fit, finalize example finished_src.append(__lowercase ) finished_tgt.append(__lowercase ) A , A: List[Any] = src, tgt else: # can fit, keep adding A , A: Union[str, Any] = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__lowercase ) finished_tgt.append(__lowercase ) return finished_src, finished_tgt def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> Any: A: List[str] = Path(__lowercase ) save_path.mkdir(exist_ok=__lowercase ) for split in ["train"]: A , A: str = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" A: Union[str, Any] = [x.rstrip() for x in Path(__lowercase ).open().readlines()] A: Optional[int] = [x.rstrip() for x in Path(__lowercase ).open().readlines()] A , A: int = pack_examples(__lowercase , __lowercase , __lowercase , __lowercase ) print(F"""packed {split} split from {len(__lowercase )} examples -> {len(__lowercase )}.""" ) Path(save_path / F"""{split}.source""" ).open('''w''' ).write('''\n'''.join(__lowercase ) ) Path(save_path / F"""{split}.target""" ).open('''w''' ).write('''\n'''.join(__lowercase ) ) for split in ["val", "test"]: A , A: List[str] = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(__lowercase , save_path / F"""{split}.source""" ) shutil.copyfile(__lowercase , save_path / F"""{split}.target""" ) def SCREAMING_SNAKE_CASE( ) -> List[str]: A: int = argparse.ArgumentParser() parser.add_argument('''--tok_name''' , type=__lowercase , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''--max_seq_len''' , type=__lowercase , default=1_2_8 ) parser.add_argument('''--data_dir''' , type=__lowercase ) parser.add_argument('''--save_path''' , type=__lowercase ) A: Dict = parser.parse_args() A: Tuple = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__lowercase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
360
'''simple docstring''' from __future__ import annotations import numpy as np def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict: return np.maximum(0 , __lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
334
0
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) UpperCamelCase = "bert-base-cased" UpperCamelCase = "fp16" UpperCamelCase = "bf16" UpperCamelCase = [FPaa, BFaa] @require_fsdp @require_cuda class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' def _snake_case ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().setUp() A: Optional[Any] = dict( ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , ) def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__A ): A: List[Any] = self.dist_env.copy() A: Union[str, Any] = f"""{i + 1}""" A: Union[str, Any] = strategy with mockenv_context(**__A ): A: Union[str, Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _snake_case ( self : Dict ) -> Tuple: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__A ): A: int = self.dist_env.copy() A: Dict = prefetch_policy with mockenv_context(**__A ): A: Optional[int] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _snake_case ( self : Any ) -> str: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__A ): A: Any = self.dist_env.copy() A: int = state_dict_type with mockenv_context(**__A ): A: str = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _snake_case ( self : int ) -> Tuple: '''simple docstring''' A: Optional[int] = AutoModel.from_pretrained(__A ) for policy in FSDP_AUTO_WRAP_POLICY: A: Any = self.dist_env.copy() A: List[Any] = policy if policy == "TRANSFORMER_BASED_WRAP": A: Tuple = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": A: List[str] = '''2000''' with mockenv_context(**__A ): A: Optional[Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) A: List[str] = self.dist_env.copy() A: Tuple = '''TRANSFORMER_BASED_WRAP''' A: Optional[Any] = '''T5Layer''' with mockenv_context(**__A ): A: int = FullyShardedDataParallelPlugin() with self.assertRaises(__A ) as cm: fsdp_plugin.set_auto_wrap_policy(__A ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) A: List[Any] = self.dist_env.copy() A: str = '''SIZE_BASED_WRAP''' A: str = '''0''' with mockenv_context(**__A ): A: Optional[int] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _snake_case ( self : int ) -> List[str]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: A: List[Any] = self.dist_env.copy() A: int = mp_dtype with mockenv_context(**__A ): A: int = Accelerator() if mp_dtype == "fp16": A: Any = torch.floataa elif mp_dtype == "bf16": A: Any = torch.bfloataa A: Optional[Any] = MixedPrecision(param_dtype=__A , reduce_dtype=__A , buffer_dtype=__A ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __A ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __A ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__A ) def _snake_case ( self : Optional[int] ) -> Tuple: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: A: Any = self.dist_env.copy() A: int = str(__A ).lower() with mockenv_context(**__A ): A: Union[str, Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__A ) ) @require_fsdp @require_multi_gpu @slow class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' def _snake_case ( self : List[Any] ) -> Dict: '''simple docstring''' super().setUp() A: int = 0.82 A: List[str] = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] A: int = { '''multi_gpu_fp16''': 32_00, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 20_00, '''fsdp_full_shard_transformer_based_wrap_fp16''': 19_00, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } A: List[str] = 1_60 A: Optional[int] = 1_60 A: Union[str, Any] = inspect.getfile(accelerate.test_utils ) A: Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def _snake_case ( self : str ) -> Any: '''simple docstring''' A: str = os.path.join(self.test_scripts_folder , '''test_performance.py''' ) A: Any = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: A: Union[str, Any] = cmd.copy() for i, strategy in enumerate(__A ): if strategy.lower() in config: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self : Tuple ) -> List[str]: '''simple docstring''' A: Dict = os.path.join(self.test_scripts_folder , '''test_checkpointing.py''' ) A: Optional[int] = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(__A ): A: Optional[Any] = cmd.copy() cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue A: Any = len(__A ) for state_dict_type in FSDP_STATE_DICT_TYPE: A: List[Any] = cmd_config[:state_dict_config_index] cmd_config.append(f"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) A: Tuple = cmd_config[:-1] A: List[str] = os.path.join(self.tmpdir , '''epoch_0''' ) cmd_config.extend( [ f"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self : Any ) -> Dict: '''simple docstring''' A: Optional[Any] = os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''' ) A: str = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): A: List[Any] = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(__A ): if strategy.lower() in spec: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--peak_memory_upper_bound={peak_mem_upper_bound}""", f"""--n_train={self.n_train}""", f"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() )
361
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
0
'''simple docstring''' import math def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Tuple: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(__snake_case ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCamelCase = '''Enter the base and the power separated by a comma: ''' UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(''',''')) UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. UpperCamelCase = res(xa, ya) UpperCamelCase = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
362
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
334
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_vision_text_dual_encoder''': ['''VisionTextDualEncoderConfig'''], '''processing_vision_text_dual_encoder''': ['''VisionTextDualEncoderProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''VisionTextDualEncoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''FlaxVisionTextDualEncoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''TFVisionTextDualEncoderModel'''] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
363
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , SCREAMING_SNAKE_CASE_ : int = 6_55_36 , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : str = "fourier" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , SCREAMING_SNAKE_CASE_ : Tuple[str] = "UNetMidBlock1D" , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : Tuple[int] = (32, 32, 64) , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : int = 8 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : bool = False , ) -> Tuple: '''simple docstring''' super().__init__() A: Optional[Any] = sample_size # time if time_embedding_type == "fourier": A: Tuple = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=SCREAMING_SNAKE_CASE_ , log=SCREAMING_SNAKE_CASE_ , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ ) A: List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": A: str = Timesteps( block_out_channels[0] , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ , downscale_freq_shift=SCREAMING_SNAKE_CASE_ ) A: Any = block_out_channels[0] if use_timestep_embedding: A: Optional[Any] = block_out_channels[0] * 4 A: List[Any] = TimestepEmbedding( in_channels=SCREAMING_SNAKE_CASE_ , time_embed_dim=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , out_dim=block_out_channels[0] , ) A: Optional[Any] = nn.ModuleList([] ) A: str = None A: str = nn.ModuleList([] ) A: Tuple = None # down A: Any = in_channels for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): A: Optional[int] = output_channel A: List[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels A: List[Any] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 A: Optional[int] = get_down_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(SCREAMING_SNAKE_CASE_ ) # mid A: Union[str, Any] = get_mid_block( SCREAMING_SNAKE_CASE_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=SCREAMING_SNAKE_CASE_ , add_downsample=SCREAMING_SNAKE_CASE_ , ) # up A: Optional[Any] = list(reversed(SCREAMING_SNAKE_CASE_ ) ) A: List[str] = reversed_block_out_channels[0] if out_block_type is None: A: int = out_channels else: A: Union[str, Any] = block_out_channels[0] for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): A: List[Any] = output_channel A: int = ( reversed_block_out_channels[i + 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 else final_upsample_channels ) A: Optional[int] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 A: Optional[Any] = get_up_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(SCREAMING_SNAKE_CASE_ ) A: Any = output_channel # out A: List[str] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) A: Optional[int] = get_out_block( out_block_type=SCREAMING_SNAKE_CASE_ , num_groups_out=SCREAMING_SNAKE_CASE_ , embed_dim=block_out_channels[0] , out_channels=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , fc_dim=block_out_channels[-1] // 4 , ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Union[torch.Tensor, float, int] , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[UNetaDOutput, Tuple]: '''simple docstring''' A: Any = timestep if not torch.is_tensor(SCREAMING_SNAKE_CASE_ ): A: Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ) and len(timesteps.shape ) == 0: A: List[str] = timesteps[None].to(sample.device ) A: int = self.time_proj(SCREAMING_SNAKE_CASE_ ) if self.config.use_timestep_embedding: A: List[Any] = self.time_mlp(SCREAMING_SNAKE_CASE_ ) else: A: str = timestep_embed[..., None] A: Union[str, Any] = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) A: Tuple = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down A: List[str] = () for downsample_block in self.down_blocks: A , A: Optional[int] = downsample_block(hidden_states=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: A: Dict = self.mid_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): A: List[Any] = down_block_res_samples[-1:] A: List[str] = down_block_res_samples[:-1] A: Optional[int] = upsample_block(SCREAMING_SNAKE_CASE_ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) # 5. post-process if self.out_block: A: Any = self.out_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=SCREAMING_SNAKE_CASE_ )
334
0
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. UpperCamelCase = 10 def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> Tuple: for i in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if array[i] == target: return i return -1 def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[int]: A: Any = 0 A: Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) while left <= right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Dict = (left + right) // 3 + 1 A: List[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: A: Any = one_third - 1 elif array[two_third] < target: A: Any = two_third + 1 else: A: List[str] = one_third + 1 A: List[Any] = two_third - 1 else: return -1 def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> Dict: if left < right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: List[Any] = (left + right) // 3 + 1 A: Tuple = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(SCREAMING_SNAKE_CASE_ , one_third - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by comma:\n''').strip() UpperCamelCase = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." UpperCamelCase = int(input('''Enter the number to be found in the list:\n''').strip()) UpperCamelCase = ite_ternary_search(collection, target) UpperCamelCase = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'Iterative search: {target} found at positions: {resulta}') print(f'Recursive search: {target} found at positions: {resulta}') else: print('''Not found''')
364
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : int , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Dict ) -> None: '''simple docstring''' warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
334
0
'''simple docstring''' from typing import Any class lowerCAmelCase_ : def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Optional[Any]: '''simple docstring''' A: Dict = data A: str = None def __repr__( self : Optional[int] ) -> str: '''simple docstring''' return f"""Node({self.data})""" class lowerCAmelCase_ : def __init__( self : Union[str, Any] ) -> Any: '''simple docstring''' A: str = None def __iter__( self : List[str] ) -> Any: '''simple docstring''' A: Tuple = self.head while node: yield node.data A: List[Any] = node.next def __len__( self : int ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : Any ) -> str: '''simple docstring''' return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] ) def __getitem__( self : int , SCREAMING_SNAKE_CASE_ : Dict ) -> Any: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : Any , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any ) -> None: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) A: List[str] = self.head for _ in range(SCREAMING_SNAKE_CASE_ ): A: Union[str, Any] = current.next A: Dict = data def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str ) -> None: '''simple docstring''' self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> None: '''simple docstring''' self.insert_nth(0 , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> None: '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('''list index out of range''' ) A: Any = Node(SCREAMING_SNAKE_CASE_ ) if self.head is None: A: Optional[int] = new_node elif index == 0: A: Any = self.head # link new_node to head A: Tuple = new_node else: A: str = self.head for _ in range(index - 1 ): A: Dict = temp.next A: int = temp.next A: Optional[int] = new_node def _snake_case ( self : List[str] ) -> None: # print every node data '''simple docstring''' print(self ) def _snake_case ( self : Optional[Any] ) -> Any: '''simple docstring''' return self.delete_nth(0 ) def _snake_case ( self : List[str] ) -> Any: # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] = 0 ) -> Any: '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('''List index out of range.''' ) A: List[str] = self.head # default first node if index == 0: A: int = self.head.next else: A: List[str] = self.head for _ in range(index - 1 ): A: str = temp.next A: Tuple = temp.next A: Any = temp.next.next return delete_node.data def _snake_case ( self : List[str] ) -> bool: '''simple docstring''' return self.head is None def _snake_case ( self : Dict ) -> None: '''simple docstring''' A: int = None A: Optional[Any] = self.head while current: # Store the current node's next node. A: str = current.next # Make the current node's next point backwards A: List[str] = prev # Make the previous node be the current node A: Tuple = current # Make the current node the next node (to progress iteration) A: Optional[Any] = next_node # Return prev in order to put the head at the end A: List[Any] = prev def SCREAMING_SNAKE_CASE( ) -> None: A: Union[str, Any] = LinkedList() assert linked_list.is_empty() is True assert str(snake_case__ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(snake_case__ ) == i linked_list.insert_nth(snake_case__ , i + 1 ) assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(snake_case__ ) == 9 assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): A: Union[str, Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(-8 , 1 ) ) def SCREAMING_SNAKE_CASE( ) -> None: A: Optional[Any] = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), 'dlrow olleH', 7, 5_5_5_5, 0, -1_9_2.5_5_5_5_5, 'Hello, world!', 7_7.9, Node(1_0 ), None, None, 1_2.2_0, ] A: Any = LinkedList() for i in test_input: linked_list.insert_tail(snake_case__ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(snake_case__ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head A: Dict = linked_list.delete_head() assert result == -9 assert ( str(snake_case__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail A: Any = linked_list.delete_tail() assert result == 1_2.2 assert ( str(snake_case__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list A: Tuple = linked_list.delete_nth(1_0 ) assert result is None assert ( str(snake_case__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(snake_case__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(snake_case__ ) assert ( str(snake_case__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(snake_case__ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def SCREAMING_SNAKE_CASE( ) -> int: from doctest import testmod testmod() A: Union[str, Any] = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(snake_case__ ) print('''\nReading/changing Node data using indexing:''' ) print(F"""Element at Position 1: {linked_list[1]}""" ) A: int = input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(snake_case__ ) print(F"""length of linked_list is : {len(snake_case__ )}""" ) if __name__ == "__main__": main()
365
'''simple docstring''' from collections import deque class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> None: '''simple docstring''' A: Union[str, Any] = process_name # process name A: List[str] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time A: Dict = arrival_time A: Optional[Any] = burst_time # remaining burst time A: Any = 0 # total time of the process wait in ready queue A: Any = 0 # time from arrival time to completion time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int , ) -> None: '''simple docstring''' A: Dict = number_of_queues # time slice of queues that round robin algorithm applied A: int = time_slices # unfinished process is in this ready_queue A: Tuple = queue # current time A: int = current_time # finished process is in this sequence queue A: deque[Process] = deque() def _snake_case ( self : List[Any] ) -> list[str]: '''simple docstring''' A: str = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: Optional[int] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: Any = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: List[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): completion_times.append(queue[i].stop_time ) return completion_times def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : deque[Process] ) -> list[int]: '''simple docstring''' return [q.burst_time for q in queue] def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : Process ) -> int: '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : deque[Process] ) -> deque[Process]: '''simple docstring''' A: deque[Process] = deque() # sequence deque of finished process while len(SCREAMING_SNAKE_CASE_ ) != 0: A: Optional[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 A: Any = 0 # set the process's turnaround time because it is finished A: int = self.current_time - cp.arrival_time # set the completion time A: List[str] = self.current_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int ) -> tuple[deque[Process], deque[Process]]: '''simple docstring''' A: deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(SCREAMING_SNAKE_CASE_ ) ): A: Dict = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time A: Optional[Any] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(SCREAMING_SNAKE_CASE_ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished A: int = 0 # set the finish time A: Union[str, Any] = self.current_time # update the process' turnaround time because it is finished A: Tuple = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def _snake_case ( self : Optional[Any] ) -> deque[Process]: '''simple docstring''' for i in range(self.number_of_queues - 1 ): A , A: Optional[Any] = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest UpperCamelCase = Process('''P1''', 0, 53) UpperCamelCase = Process('''P2''', 0, 17) UpperCamelCase = Process('''P3''', 0, 68) UpperCamelCase = Process('''P4''', 0, 24) UpperCamelCase = 3 UpperCamelCase = [17, 25] UpperCamelCase = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) UpperCamelCase = Process('''P1''', 0, 53) UpperCamelCase = Process('''P2''', 0, 17) UpperCamelCase = Process('''P3''', 0, 68) UpperCamelCase = Process('''P4''', 0, 24) UpperCamelCase = 3 UpperCamelCase = [17, 25] UpperCamelCase = deque([Pa, Pa, Pa, Pa]) UpperCamelCase = MLFQ(number_of_queues, time_slices, queue, 0) UpperCamelCase = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( f'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( f'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
334
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _snake_case ( self : Union[str, Any] ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) A: List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _snake_case ( self : Optional[int] ) -> List[str]: '''simple docstring''' A: List[str] = self.dummy_uncond_unet A: List[Any] = KarrasVeScheduler() A: Any = KarrasVePipeline(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) A: Optional[int] = torch.manual_seed(0 ) A: int = pipe(num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE_ , output_type='''numpy''' ).images A: Optional[int] = torch.manual_seed(0 ) A: int = pipe(num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE_ , output_type='''numpy''' , return_dict=SCREAMING_SNAKE_CASE_ )[0] A: Union[str, Any] = image[0, -3:, -3:, -1] A: int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A: Optional[int] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A: Optional[Any] = '''google/ncsnpp-celebahq-256''' A: Union[str, Any] = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = KarrasVeScheduler() A: int = KarrasVePipeline(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) A: Any = torch.manual_seed(0 ) A: Dict = pipe(num_inference_steps=20 , generator=SCREAMING_SNAKE_CASE_ , output_type='''numpy''' ).images A: Any = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) A: List[Any] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
366
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger() @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : List[nn.Module] = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : list = field(default_factory=UpperCAmelCase_ ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tensor , SCREAMING_SNAKE_CASE_ : Tensor ) -> int: '''simple docstring''' A: List[str] = len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE_ ) def __call__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tensor ) -> Dict: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(SCREAMING_SNAKE_CASE_ ) [x.remove() for x in self.handles] return self @property def _snake_case ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return list(filter(lambda SCREAMING_SNAKE_CASE_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : nn.Module UpperCamelCase_ : int = 0 UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) def __call__( self : Any , SCREAMING_SNAKE_CASE_ : Tensor ) -> Optional[Any]: '''simple docstring''' A: Dict = Tracker(self.dest )(SCREAMING_SNAKE_CASE_ ).parametrized A: Tuple = Tracker(self.src )(SCREAMING_SNAKE_CASE_ ).parametrized A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.src_skip , SCREAMING_SNAKE_CASE_ ) ) A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.dest_skip , SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise Exception( f"""Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE_ )} operations while""" f""" destination module has {len(SCREAMING_SNAKE_CASE_ )}.""" ) for dest_m, src_m in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase = True ) -> Any: print(F"""Converting {name}...""" ) with torch.no_grad(): A: Union[str, Any] = timm.create_model(__lowercase , pretrained=__lowercase ).eval() A: List[str] = ResNetForImageClassification(__lowercase ).eval() A: int = ModuleTransfer(src=__lowercase , dest=__lowercase ) A: List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(__lowercase ) assert torch.allclose(from_model(__lowercase ) , our_model(__lowercase ).logits ), "The model logits don't match the original one." A: str = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(__lowercase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__lowercase , ) # we can use the convnext one A: Any = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__lowercase , ) print(F"""Pushed {checkpoint_name}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = None , __lowercase = True ) -> List[Any]: A: Union[str, Any] = '''imagenet-1k-id2label.json''' A: Union[str, Any] = 1_0_0_0 A: Optional[int] = (1, num_labels) A: Dict = '''huggingface/label-files''' A: Any = num_labels A: Union[str, Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Optional[int] = {int(__lowercase ): v for k, v in idalabel.items()} A: Optional[int] = idalabel A: List[str] = {v: k for k, v in idalabel.items()} A: str = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase ) A: Optional[Any] = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__lowercase , names_to_config[model_name] , __lowercase , __lowercase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowercase , __lowercase , __lowercase , __lowercase ) return config, expected_shape if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase = parser.parse_args() UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { '''configuration_layoutlmv3''': [ '''LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv3Config''', '''LayoutLMv3OnnxConfig''', ], '''processing_layoutlmv3''': ['''LayoutLMv3Processor'''], '''tokenization_layoutlmv3''': ['''LayoutLMv3Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''LayoutLMv3TokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv3ForQuestionAnswering''', '''LayoutLMv3ForSequenceClassification''', '''LayoutLMv3ForTokenClassification''', '''LayoutLMv3Model''', '''LayoutLMv3PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLayoutLMv3ForQuestionAnswering''', '''TFLayoutLMv3ForSequenceClassification''', '''TFLayoutLMv3ForTokenClassification''', '''TFLayoutLMv3Model''', '''TFLayoutLMv3PreTrainedModel''', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''LayoutLMv3FeatureExtractor'''] UpperCamelCase = ['''LayoutLMv3ImageProcessor'''] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> str | Literal[False]: A: List[str] = list(__lowercase ) A: Optional[Any] = list(__lowercase ) A: int = 0 for i in range(len(__lowercase ) ): if lista[i] != lista[i]: count += 1 A: Optional[Any] = '''_''' if count > 1: return False else: return "".join(__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[str]: A: Any = [] while True: A: Dict = ['''$'''] * len(__lowercase ) A: Union[str, Any] = [] for i in range(len(__lowercase ) ): for j in range(i + 1 , len(__lowercase ) ): A: Any = compare_string(binary[i] , binary[j] ) if k is False: A: Any = '''*''' A: List[Any] = '''*''' temp.append('''X''' ) for i in range(len(__lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__lowercase ) == 0: return pi A: List[Any] = list(set(__lowercase ) ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[str]: A: Optional[int] = [] for minterm in minterms: A: Optional[int] = '''''' for _ in range(__lowercase ): A: List[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(__lowercase ) return temp def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> bool: A: Union[str, Any] = list(__lowercase ) A: Union[str, Any] = list(__lowercase ) A: Optional[int] = 0 for i in range(len(__lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[str]: A: List[Any] = [] A: Dict = [0] * len(__lowercase ) for i in range(len(chart[0] ) ): A: List[str] = 0 A: str = -1 for j in range(len(__lowercase ) ): if chart[j][i] == 1: count += 1 A: Any = j if count == 1: A: Any = 1 for i in range(len(__lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__lowercase ) ): A: Optional[int] = 0 temp.append(prime_implicants[i] ) while True: A: Dict = 0 A: Optional[int] = -1 A: Dict = 0 for i in range(len(__lowercase ) ): A: str = chart[i].count(1 ) if count_n > max_n: A: Tuple = count_n A: Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__lowercase ) ): A: Any = 0 def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[list[int]]: A: str = [[0 for x in range(len(__lowercase ) )] for x in range(len(__lowercase ) )] for i in range(len(__lowercase ) ): A: Tuple = prime_implicants[i].count('''_''' ) for j in range(len(__lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , __lowercase ): A: Optional[Any] = 1 return chart def SCREAMING_SNAKE_CASE( ) -> None: A: int = int(input('''Enter the no. of variables\n''' ) ) A: Optional[int] = [ float(__lowercase ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] A: List[str] = decimal_to_binary(__lowercase , __lowercase ) A: str = check(__lowercase ) print('''Prime Implicants are:''' ) print(__lowercase ) A: List[Any] = prime_implicant_chart(__lowercase , __lowercase ) A: Any = selection(__lowercase , __lowercase ) print('''Essential Prime Implicants are:''' ) print(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
334
0
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> str: if isinstance(snake_case_ , snake_case_ ): A: List[str] = np.full((len(snake_case_ ), sequence_length, 2) , snake_case_ ) else: A: int = np.full((len(snake_case_ ), sequence_length) , snake_case_ ) for i, tensor in enumerate(snake_case_ ): if padding_side == "right": if isinstance(snake_case_ , snake_case_ ): A: Tuple = tensor[:sequence_length] else: A: Optional[int] = tensor[:sequence_length] else: if isinstance(snake_case_ , snake_case_ ): A: Tuple = tensor[:sequence_length] else: A: Dict = tensor[:sequence_length] return out_tensor.tolist() def SCREAMING_SNAKE_CASE( __lowercase ) -> Any: A: Union[str, Any] = ord(snake_case_ ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True A: str = unicodedata.category(snake_case_ ) if cat.startswith('''P''' ): return True return False @dataclass class lowerCAmelCase_ ( UpperCamelCase__ ): '''simple docstring''' UpperCamelCase_ : PreTrainedTokenizerBase UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : int = -100 UpperCamelCase_ : str = "pt" def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' import torch A: List[str] = '''label''' if '''label''' in features[0].keys() else '''labels''' A: int = [feature[label_name] for feature in features] if label_name in features[0].keys() else None A: Tuple = self.tokenizer.pad( __a , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch A: Union[str, Any] = torch.tensor(batch['''entity_ids'''] ).shape[1] A: Tuple = self.tokenizer.padding_side if padding_side == "right": A: str = [ list(__a ) + [self.label_pad_token_id] * (sequence_length - len(__a )) for label in labels ] else: A: str = [ [self.label_pad_token_id] * (sequence_length - len(__a )) + list(__a ) for label in labels ] A: str = [feature['''ner_tags'''] for feature in features] A: Dict = padding_tensor(__a , -1 , __a , __a ) A: Any = [feature['''original_entity_spans'''] for feature in features] A: List[Any] = padding_tensor(__a , (-1, -1) , __a , __a ) A: int = {k: torch.tensor(__a , dtype=torch.intaa ) for k, v in batch.items()} return batch
368
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: A: Tuple = len(__lowercase ) for i in range(length - 1 ): A: Dict = i for k in range(i + 1 , __lowercase ): if collection[k] < collection[least]: A: List[str] = k if least != i: A , A: Tuple = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
334
0
'''simple docstring''' import math def SCREAMING_SNAKE_CASE( __lowercase = 1_0_0 ) -> int: A: List[Any] = sum(i * i for i in range(1 , n + 1 ) ) A: Dict = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'{solution() = }')
369
'''simple docstring''' class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] ) -> int: '''simple docstring''' A: Tuple = None A: Dict = None A: Optional[int] = graph self._normalize_graph(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: str = len(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = None def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ) -> str: '''simple docstring''' if sources is int: A: Union[str, Any] = [sources] if sinks is int: A: Tuple = [sinks] if len(SCREAMING_SNAKE_CASE_ ) == 0 or len(SCREAMING_SNAKE_CASE_ ) == 0: return A: List[str] = sources[0] A: Optional[int] = sinks[0] # make fake vertex if there are more # than one source or sink if len(SCREAMING_SNAKE_CASE_ ) > 1 or len(SCREAMING_SNAKE_CASE_ ) > 1: A: Any = 0 for i in sources: max_input_flow += sum(self.graph[i] ) A: Dict = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: A: Optional[Any] = max_input_flow A: Optional[Any] = 0 A: str = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: A: Optional[Any] = max_input_flow A: str = size - 1 def _snake_case ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: '''simple docstring''' A: Optional[Any] = algorithm(self ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: '''simple docstring''' A: str = flow_network A: List[str] = flow_network.verticesCount A: Dict = flow_network.sourceIndex A: Any = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that A: str = flow_network.graph A: str = False def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' if not self.executed: self._algorithm() A: str = True def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) # use this to save your result A: Any = -1 def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[int]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = [[0] * self.verticies_count for i in range(self.verticies_count )] A: Any = [0] * self.verticies_count A: Optional[Any] = [0] * self.verticies_count def _snake_case ( self : str ) -> Optional[Any]: '''simple docstring''' A: Any = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule A: str = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list A: Dict = 0 while i < len(SCREAMING_SNAKE_CASE_ ): A: Any = vertices_list[i] A: str = self.heights[vertex_index] self.process_vertex(SCREAMING_SNAKE_CASE_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE_ ) ) A: Tuple = 0 else: i += 1 A: Tuple = sum(self.preflow[self.source_index] ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.relabel(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: '''simple docstring''' A: Optional[int] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> int: '''simple docstring''' A: Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): A: List[Any] = self.heights[to_index] if min_height is not None: A: int = min_height + 1 if __name__ == "__main__": UpperCamelCase = [0] UpperCamelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCamelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCamelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCamelCase = flow_network.find_maximum_flow() print(f'maximum flow is {maximum_flow}')
334
0
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: A: List[Any] = [] A: int = set({'''(''', '''[''', '''{'''} ) A: Optional[Any] = set({''')''', ''']''', '''}'''} ) A: Optional[int] = {"{": "}", "[": "]", "(": ")"} for i in range(len(__SCREAMING_SNAKE_CASE ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(__SCREAMING_SNAKE_CASE ) == 0 or (len(__SCREAMING_SNAKE_CASE ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(__SCREAMING_SNAKE_CASE ) == 0 def SCREAMING_SNAKE_CASE( ) -> List[str]: A: str = input('''Enter sequence of brackets: ''' ) if is_balanced(__SCREAMING_SNAKE_CASE ): print(__SCREAMING_SNAKE_CASE , '''is balanced''' ) else: print(__SCREAMING_SNAKE_CASE , '''is not balanced''' ) if __name__ == "__main__": main()
370
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ["""input_features""", """attention_mask"""] def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=80 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_60_00 , SCREAMING_SNAKE_CASE_ : int=80 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__(feature_size=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , padding_value=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = num_mel_bins A: str = do_ceptral_normalize A: int = normalize_means A: List[Any] = normalize_vars A: Any = True def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : np.ndarray , ) -> np.ndarray: '''simple docstring''' A: Optional[int] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers A: Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) A: List[Any] = ta_kaldi.fbank(SCREAMING_SNAKE_CASE_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _snake_case ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : float = 0.0 , ) -> np.ndarray: '''simple docstring''' if normalize_means: A: str = x[:input_length].mean(axis=0 ) A: Dict = np.subtract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if normalize_vars: A: Tuple = x[:input_length].std(axis=0 ) A: List[Any] = np.divide(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if input_length < x.shape[0]: A: Optional[int] = padding_value # make sure array is in float32 A: Optional[Any] = x.astype(np.floataa ) return x def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[np.ndarray] , SCREAMING_SNAKE_CASE_ : Optional[np.ndarray] = None ) -> List[np.ndarray]: '''simple docstring''' A: int = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] def __call__( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , SCREAMING_SNAKE_CASE_ : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) A: Any = isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) A: Optional[Any] = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A: Optional[int] = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ): A: int = np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A: Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A: Union[str, Any] = [raw_speech] # extract fbank features A: str = [self._extract_fbank_features(SCREAMING_SNAKE_CASE_ ) for waveform in raw_speech] # convert into correct format for padding A: int = BatchFeature({'''input_features''': features} ) A: int = self.pad( SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # make sure list is in array format A: List[str] = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , SCREAMING_SNAKE_CASE_ ): A: Optional[Any] = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for feature in input_features] A: List[Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: A: Dict = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: A: Dict = ( np.array(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) if self._get_padding_strategies(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) is not PaddingStrategy.DO_NOT_PAD else None ) A: List[Any] = self.normalize( padded_inputs['''input_features'''] , attention_mask=SCREAMING_SNAKE_CASE_ ) if return_tensors is not None: A: Dict = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE_ ) return padded_inputs
334
0
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' UpperCamelCase_ : str = '''conditional_detr''' UpperCamelCase_ : Tuple = ['''past_key_values'''] UpperCamelCase_ : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : Dict=3 , SCREAMING_SNAKE_CASE_ : str=3_00 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=6 , SCREAMING_SNAKE_CASE_ : Any=20_48 , SCREAMING_SNAKE_CASE_ : str=8 , SCREAMING_SNAKE_CASE_ : Tuple=6 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=20_48 , SCREAMING_SNAKE_CASE_ : Any=8 , SCREAMING_SNAKE_CASE_ : Dict=0.0 , SCREAMING_SNAKE_CASE_ : Dict=0.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[int]="relu" , SCREAMING_SNAKE_CASE_ : Any=2_56 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Dict=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.02 , SCREAMING_SNAKE_CASE_ : List[str]=1.0 , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : Optional[Any]="sine" , SCREAMING_SNAKE_CASE_ : int="resnet50" , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Any=False , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : Optional[int]=5 , SCREAMING_SNAKE_CASE_ : Optional[int]=2 , SCREAMING_SNAKE_CASE_ : Tuple=1 , SCREAMING_SNAKE_CASE_ : int=1 , SCREAMING_SNAKE_CASE_ : Any=2 , SCREAMING_SNAKE_CASE_ : Tuple=5 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Dict=0.25 , **SCREAMING_SNAKE_CASE_ : Any , ) -> Tuple: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A: Union[str, Any] = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__snake_case , __snake_case ): A: List[str] = backbone_config.get('''model_type''' ) A: int = CONFIG_MAPPING[backbone_model_type] A: Union[str, Any] = config_class.from_dict(__snake_case ) A: List[Any] = use_timm_backbone A: Dict = backbone_config A: str = num_channels A: Union[str, Any] = num_queries A: Tuple = d_model A: Dict = encoder_ffn_dim A: Optional[Any] = encoder_layers A: Union[str, Any] = encoder_attention_heads A: str = decoder_ffn_dim A: Any = decoder_layers A: List[str] = decoder_attention_heads A: Optional[int] = dropout A: List[Any] = attention_dropout A: str = activation_dropout A: Optional[int] = activation_function A: Tuple = init_std A: Optional[Any] = init_xavier_std A: str = encoder_layerdrop A: Union[str, Any] = decoder_layerdrop A: List[Any] = encoder_layers A: Dict = auxiliary_loss A: List[str] = position_embedding_type A: Dict = backbone A: int = use_pretrained_backbone A: Optional[Any] = dilation # Hungarian matcher A: Optional[Any] = class_cost A: List[str] = bbox_cost A: Optional[int] = giou_cost # Loss coefficients A: List[Any] = mask_loss_coefficient A: Optional[int] = dice_loss_coefficient A: Dict = cls_loss_coefficient A: List[str] = bbox_loss_coefficient A: List[str] = giou_loss_coefficient A: Dict = focal_alpha super().__init__(is_encoder_decoder=__snake_case , **__snake_case ) @property def _snake_case ( self : Dict ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : str ) -> int: '''simple docstring''' return self.d_model def _snake_case ( self : List[str] ) -> Optional[int]: '''simple docstring''' A: str = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A: Union[str, Any] = self.backbone_config.to_dict() A: List[str] = self.__class__.model_type return output class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' UpperCamelCase_ : str = version.parse("""1.11""" ) @property def _snake_case ( self : int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _snake_case ( self : int ) -> float: '''simple docstring''' return 1E-5 @property def _snake_case ( self : Any ) -> int: '''simple docstring''' return 12
371
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = DebertaTokenizer UpperCamelCase_ : List[str] = True UpperCamelCase_ : int = DebertaTokenizerFast def _snake_case ( self : Optional[int] ) -> Dict: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A: Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] A: int = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A: Union[str, Any] = {'''unk_token''': '''[UNK]'''} A: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict ) -> Union[str, Any]: '''simple docstring''' A: Optional[int] = '''lower newer''' A: str = '''lower newer''' return input_text, output_text def _snake_case ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A: str = self.get_tokenizer() A: Any = '''lower newer''' A: Dict = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] A: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokens + [tokenizer.unk_token] A: int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] ) -> Any: '''simple docstring''' A: str = self.get_tokenizer() A: List[str] = tokenizer('''Hello''' , '''World''' ) A: Union[str, Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , SCREAMING_SNAKE_CASE_ ) @slow def _snake_case ( self : Tuple ) -> Optional[int]: '''simple docstring''' A: Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A: Any = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) A: int = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A: int = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: A: List[Any] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A: Dict = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] A: Dict = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) A: Any = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) for seq in encoding['''input_ids''']] # fmt: off A: Any = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on A: Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , SCREAMING_SNAKE_CASE_ ) for expected, decoded in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
334
0
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Tuple: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file A: str = TapasConfig.from_json_file(__lowercase ) # set absolute/relative position embeddings parameter A: Union[str, Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": A: int = TapasForQuestionAnswering(config=__lowercase ) elif task == "WTQ": # run_task_main.py hparams A: int = 4 A: Any = True # hparam_utils.py hparams A: Tuple = 0.6_6_4_6_9_4 A: int = 0.2_0_7_9_5_1 A: Any = 0.1_2_1_1_9_4 A: Tuple = True A: int = True A: Union[str, Any] = False A: Optional[Any] = 0.0_3_5_2_5_1_3 A: List[str] = TapasForQuestionAnswering(config=__lowercase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams A: str = 4 A: str = False # hparam_utils.py hparams A: List[str] = 3_6.4_5_1_9 A: Optional[int] = 0.9_0_3_4_2_1 A: Optional[int] = 2_2_2.0_8_8 A: str = True A: List[Any] = True A: Dict = True A: int = 0.7_6_3_1_4_1 A: Optional[int] = TapasForQuestionAnswering(config=__lowercase ) elif task == "TABFACT": A: Dict = TapasForSequenceClassification(config=__lowercase ) elif task == "MLM": A: str = TapasForMaskedLM(config=__lowercase ) elif task == "INTERMEDIATE_PRETRAINING": A: Any = TapasModel(config=__lowercase ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__lowercase , __lowercase , __lowercase ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__lowercase ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) A: Dict = TapasTokenizer(vocab_file=tf_checkpoint_path[:-1_0] + '''vocab.txt''' , model_max_length=5_1_2 ) tokenizer.save_pretrained(__lowercase ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.''' ) parser.add_argument( '''--reset_position_index_per_cell''', default=False, action='''store_true''', help='''Whether to use relative position embeddings or not. Defaults to True.''', ) parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--tapas_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained TAPAS model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
350
'''simple docstring''' import requests UpperCamelCase = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def SCREAMING_SNAKE_CASE( __lowercase ) -> None: # fetching a list of articles in json format A: Tuple = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
334
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase = { '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''ConvNextFeatureExtractor'''] UpperCamelCase = ['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
351
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } UpperCamelCase = { '''camembert-base''': 512, } UpperCamelCase = '''▁''' class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : str = ["""input_ids""", """attention_mask"""] UpperCamelCase_ : int = CamembertTokenizer def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="</s>" , SCREAMING_SNAKE_CASE_ : int="<s>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE_ : str="<pad>" , SCREAMING_SNAKE_CASE_ : List[str]="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=["<s>NOTUSED", "</s>NOTUSED"] , **SCREAMING_SNAKE_CASE_ : Any , ) -> Any: '''simple docstring''' A: Tuple = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Any = vocab_file A: Any = False if not self.vocab_file else True def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A: List[str] = [self.cls_token_id] A: List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A: List[str] = [self.sep_token_id] A: Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A: Dict = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
334
0
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : List[str] ) -> List[str]: '''simple docstring''' A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) try: pickle.loads(pickle.dumps(SCREAMING_SNAKE_CASE_ ) ) except Exception as e: self.fail(f"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
352
'''simple docstring''' import os from distutils.util import strtobool def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[Any]: for e in env_keys: A: Dict = int(os.environ.get(__lowercase , -1 ) ) if val >= 0: return val return default def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False ) -> List[str]: A: str = os.environ.get(__lowercase , str(__lowercase ) ) return strtobool(__lowercase ) == 1 # As its name indicates `strtobool` actually returns an int... def SCREAMING_SNAKE_CASE( __lowercase , __lowercase="no" ) -> str: A: Optional[int] = os.environ.get(__lowercase , str(__lowercase ) ) return value
334
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCamelCase = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } UpperCamelCase = {'''facebook/blenderbot-3B''': 128} class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Dict = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[int] = ["""input_ids""", """attention_mask"""] UpperCamelCase_ : Union[str, Any] = BlenderbotTokenizer def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Dict="replace" , SCREAMING_SNAKE_CASE_ : List[str]="<s>" , SCREAMING_SNAKE_CASE_ : Optional[int]="</s>" , SCREAMING_SNAKE_CASE_ : Tuple="</s>" , SCREAMING_SNAKE_CASE_ : Tuple="<s>" , SCREAMING_SNAKE_CASE_ : Any="<unk>" , SCREAMING_SNAKE_CASE_ : List[str]="<pad>" , SCREAMING_SNAKE_CASE_ : int="<mask>" , SCREAMING_SNAKE_CASE_ : List[str]=False , SCREAMING_SNAKE_CASE_ : Any=True , **SCREAMING_SNAKE_CASE_ : Dict , ) -> Any: '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: A: Union[str, Any] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('''type''' ) ) A: str = add_prefix_space A: Tuple = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) A: Optional[int] = add_prefix_space A: int = '''post_processor''' A: Tuple = getattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if tokenizer_component_instance: A: Optional[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A: Tuple = tuple(state['''sep'''] ) if "cls" in state: A: Union[str, Any] = tuple(state['''cls'''] ) A: Union[str, Any] = False if state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: A: str = add_prefix_space A: str = True if state.get('''trim_offsets''' , SCREAMING_SNAKE_CASE_ ) != trim_offsets: A: Dict = trim_offsets A: List[str] = True if changes_to_apply: A: str = getattr(SCREAMING_SNAKE_CASE_ , state.pop('''type''' ) ) A: Dict = component_class(**SCREAMING_SNAKE_CASE_ ) setattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self : Any ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: '''simple docstring''' A: Optional[int] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else value A: List[Any] = value def _snake_case ( self : str , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> BatchEncoding: '''simple docstring''' A: int = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Tuple ) -> BatchEncoding: '''simple docstring''' A: Optional[Any] = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' A: Union[str, Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A: Any = [self.sep_token_id] A: Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> str: '''simple docstring''' return token_ids_a + [self.eos_token_id] def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : "Conversation" ) -> List[int]: '''simple docstring''' A: Any = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(SCREAMING_SNAKE_CASE_ ) A: int = ''' '''.join(SCREAMING_SNAKE_CASE_ ) A: Dict = self.encode(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > self.model_max_length: A: Any = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
353
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() UpperCamelCase = logging.get_logger('''transformers.models.encodec''') UpperCamelCase = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } UpperCamelCase = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } UpperCamelCase = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } UpperCamelCase = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } UpperCamelCase = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } UpperCamelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } UpperCamelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } UpperCamelCase = [] UpperCamelCase = [] def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Dict: for attribute in key.split('''.''' ): A: Union[str, Any] = getattr(__lowercase , __lowercase ) if weight_type is not None: A: Tuple = getattr(__lowercase , __lowercase ).shape else: A: str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": A: Dict = value elif weight_type == "weight_g": A: Tuple = value elif weight_type == "weight_v": A: Any = value elif weight_type == "bias": A: str = value elif weight_type == "running_mean": A: List[Any] = value elif weight_type == "running_var": A: Dict = value elif weight_type == "num_batches_tracked": A: List[str] = value elif weight_type == "weight_ih_l0": A: Dict = value elif weight_type == "weight_hh_l0": A: Optional[int] = value elif weight_type == "bias_ih_l0": A: List[Any] = value elif weight_type == "bias_hh_l0": A: str = value elif weight_type == "weight_ih_l1": A: Optional[int] = value elif weight_type == "weight_hh_l1": A: int = value elif weight_type == "bias_ih_l1": A: Optional[Any] = value elif weight_type == "bias_hh_l1": A: str = value else: A: Optional[int] = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: A , A: Any = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Tuple: A: Any = [] if model_name == "encodec_24khz" or "encodec_32khz": A: List[str] = MAPPING_24K elif model_name == "encodec_48khz": A: List[Any] = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(__lowercase , __lowercase ): logger.info(F"""{name} was ignored""" ) continue A: Optional[int] = False for key, mapped_key in MAPPING.items(): if "*" in key: A , A: Optional[int] = key.split('''.*.''' ) if prefix in name and suffix in name: A: str = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue A: Optional[Any] = True if "*" in mapped_key: A: Any = name.split(__lowercase )[0].split('''.''' )[-2] A: Tuple = mapped_key.replace('''*''' , __lowercase ) if "weight_g" in name: A: str = '''weight_g''' elif "weight_v" in name: A: List[Any] = '''weight_v''' elif "weight_ih_l0" in name: A: Dict = '''weight_ih_l0''' elif "weight_hh_l0" in name: A: int = '''weight_hh_l0''' elif "bias_ih_l0" in name: A: Union[str, Any] = '''bias_ih_l0''' elif "bias_hh_l0" in name: A: Tuple = '''bias_hh_l0''' elif "weight_ih_l1" in name: A: int = '''weight_ih_l1''' elif "weight_hh_l1" in name: A: Optional[Any] = '''weight_hh_l1''' elif "bias_ih_l1" in name: A: Dict = '''bias_ih_l1''' elif "bias_hh_l1" in name: A: str = '''bias_hh_l1''' elif "bias" in name: A: Union[str, Any] = '''bias''' elif "weight" in name: A: Dict = '''weight''' elif "running_mean" in name: A: Tuple = '''running_mean''' elif "running_var" in name: A: Any = '''running_var''' elif "num_batches_tracked" in name: A: str = '''num_batches_tracked''' else: A: Tuple = None set_recursively(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(F"""Unused weights: {unused_weights}""" ) @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , ) -> Dict: if config_path is not None: A: Tuple = EncodecConfig.from_pretrained(__lowercase ) else: A: Union[str, Any] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": A: Union[str, Any] = [8, 5, 4, 4] A: Dict = [2.2] A: List[Any] = 6_4 A: Optional[Any] = 3_2_0_0_0 A: List[Any] = 2_0_4_8 A: Optional[Any] = False A: int = False A: Union[str, Any] = False elif model_name == "encodec_48khz": A: Optional[int] = [8, 5, 4, 2] A: List[Any] = [3.0, 6.0, 1_2.0, 2_4.0] A: List[Any] = 4_8_0_0_0 A: int = 2 A: List[Any] = False A: Any = '''time_group_norm''' A: Optional[Any] = True A: Any = 1.0 A: Any = 0.0_1 else: raise ValueError(F"""Unknown model name: {model_name}""" ) A: str = EncodecModel(__lowercase ) A: Optional[Any] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__lowercase ) A: Union[str, Any] = torch.load(__lowercase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights A: Optional[int] = original_checkpoint['''best_state'''] recursively_load_weights(__lowercase , __lowercase , __lowercase ) model.save_pretrained(__lowercase ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(__lowercase ) model.push_to_hub(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCamelCase = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
334
0
'''simple docstring''' from collections import deque class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> None: '''simple docstring''' A: Union[str, Any] = process_name # process name A: List[str] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time A: Dict = arrival_time A: Optional[Any] = burst_time # remaining burst time A: Any = 0 # total time of the process wait in ready queue A: Any = 0 # time from arrival time to completion time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int , ) -> None: '''simple docstring''' A: Dict = number_of_queues # time slice of queues that round robin algorithm applied A: int = time_slices # unfinished process is in this ready_queue A: Tuple = queue # current time A: int = current_time # finished process is in this sequence queue A: deque[Process] = deque() def _snake_case ( self : List[Any] ) -> list[str]: '''simple docstring''' A: str = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: Optional[int] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: Any = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: List[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): completion_times.append(queue[i].stop_time ) return completion_times def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : deque[Process] ) -> list[int]: '''simple docstring''' return [q.burst_time for q in queue] def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : Process ) -> int: '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : deque[Process] ) -> deque[Process]: '''simple docstring''' A: deque[Process] = deque() # sequence deque of finished process while len(SCREAMING_SNAKE_CASE_ ) != 0: A: Optional[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 A: Any = 0 # set the process's turnaround time because it is finished A: int = self.current_time - cp.arrival_time # set the completion time A: List[str] = self.current_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int ) -> tuple[deque[Process], deque[Process]]: '''simple docstring''' A: deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(SCREAMING_SNAKE_CASE_ ) ): A: Dict = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time A: Optional[Any] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(SCREAMING_SNAKE_CASE_ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished A: int = 0 # set the finish time A: Union[str, Any] = self.current_time # update the process' turnaround time because it is finished A: Tuple = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def _snake_case ( self : Optional[Any] ) -> deque[Process]: '''simple docstring''' for i in range(self.number_of_queues - 1 ): A: Optional[Any] = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest UpperCamelCase = Process('''P1''', 0, 53) UpperCamelCase = Process('''P2''', 0, 17) UpperCamelCase = Process('''P3''', 0, 68) UpperCamelCase = Process('''P4''', 0, 24) UpperCamelCase = 3 UpperCamelCase = [17, 25] UpperCamelCase = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) UpperCamelCase = Process('''P1''', 0, 53) UpperCamelCase = Process('''P2''', 0, 17) UpperCamelCase = Process('''P3''', 0, 68) UpperCamelCase = Process('''P4''', 0, 24) UpperCamelCase = 3 UpperCamelCase = [17, 25] UpperCamelCase = deque([Pa, Pa, Pa, Pa]) UpperCamelCase = MLFQ(number_of_queues, time_slices, queue, 0) UpperCamelCase = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( f'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( f'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
354
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
0
'''simple docstring''' import os from distutils.util import strtobool def SCREAMING_SNAKE_CASE( __lowercase : str , __lowercase : Tuple ) -> List[Any]: for e in env_keys: A: Dict = int(os.environ.get(__lowercase , -1 ) ) if val >= 0: return val return default def SCREAMING_SNAKE_CASE( __lowercase : Any , __lowercase : List[str]=False ) -> List[str]: A: str = os.environ.get(__lowercase , str(__lowercase ) ) return strtobool(__lowercase ) == 1 # As its name indicates `strtobool` actually returns an int... def SCREAMING_SNAKE_CASE( __lowercase : Dict , __lowercase : str="no" ) -> str: A: Optional[int] = os.environ.get(__lowercase , str(__lowercase ) ) return value
355
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[float]]: A: list[list[float]] = [] for data in source_data: for i, el in enumerate(__lowercase ): if len(__lowercase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(__lowercase ) ) return data_lists def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[list[float]]: A: list[list[float]] = [] for dlist, weight in zip(__lowercase , __lowercase ): A: List[str] = min(__lowercase ) A: Union[str, Any] = max(__lowercase ) A: list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: A: List[str] = F"""Invalid weight of {weight:f} provided""" raise ValueError(__lowercase ) score_lists.append(__lowercase ) return score_lists def SCREAMING_SNAKE_CASE( __lowercase ) -> list[float]: A: list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(__lowercase ): A: str = final_scores[j] + ele return final_scores def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[list[float]]: A: Any = get_data(__lowercase ) A: str = calculate_each_score(__lowercase , __lowercase ) A: int = generate_final_scores(__lowercase ) # append scores to source data for i, ele in enumerate(__lowercase ): source_data[i].append(__lowercase ) return source_data
334
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger() @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : List[nn.Module] = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : list = field(default_factory=UpperCAmelCase_ ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tensor , SCREAMING_SNAKE_CASE_ : Tensor ) -> Union[str, Any]: '''simple docstring''' A: Optional[int] = len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE_ ) def __call__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tensor ) -> Optional[Any]: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(SCREAMING_SNAKE_CASE_ ) [x.remove() for x in self.handles] return self @property def _snake_case ( self : List[Any] ) -> str: '''simple docstring''' return list(filter(lambda SCREAMING_SNAKE_CASE_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : nn.Module UpperCamelCase_ : int = 1 UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : bool = True def __call__( self : Tuple , SCREAMING_SNAKE_CASE_ : Tensor ) -> Optional[int]: '''simple docstring''' A: List[Any] = Tracker(self.dest )(SCREAMING_SNAKE_CASE_ ).parametrized A: Union[str, Any] = Tracker(self.src )(SCREAMING_SNAKE_CASE_ ).parametrized A: Any = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.src_skip , SCREAMING_SNAKE_CASE_ ) ) A: Union[str, Any] = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.dest_skip , SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ) and self.raise_if_mismatch: raise Exception( f"""Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE_ )} operations while""" f""" destination module has {len(SCREAMING_SNAKE_CASE_ )}.""" ) for dest_m, src_m in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : nn.Module ) -> Any: '''simple docstring''' super().__init__() A: List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('''conv1''', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block''' ), f"""Unexpected layer name {k}""" A: int = len(SCREAMING_SNAKE_CASE_ ) + 1 feature_blocks.append((f"""res{block_index}""", v) ) A: int = nn.ModuleDict(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Tensor ) -> str: '''simple docstring''' return get_trunk_forward_outputs( SCREAMING_SNAKE_CASE_ , out_feat_keys=SCREAMING_SNAKE_CASE_ , feature_blocks=self._feature_blocks , ) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str ) -> str: '''simple docstring''' A: str = x.split('''-''' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : List[str] , SCREAMING_SNAKE_CASE_ : str ) -> Callable[[], Tuple[nn.Module, Dict]]: '''simple docstring''' if x not in self: A: List[str] = self.convert_name_to_timm(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = partial(lambda: (timm.create_model(SCREAMING_SNAKE_CASE_ , pretrained=SCREAMING_SNAKE_CASE_ ).eval(), None) ) else: A: Optional[Any] = super().__getitem__(SCREAMING_SNAKE_CASE_ ) return val class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __getitem__( self : Dict , SCREAMING_SNAKE_CASE_ : str ) -> Callable[[], nn.Module]: '''simple docstring''' if "seer" in x and "in1k" not in x: A: int = RegNetModel else: A: int = RegNetForImageClassification return val def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int: for from_key, to_key in keys: A: List[Any] = from_state_dict[from_key].clone() print(F"""Copied key={from_key} to={to_key}""" ) return to_state_dict def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = True , ) -> Tuple: print(F"""Converting {name}...""" ) with torch.no_grad(): A: Dict = from_model_func() A: Tuple = our_model_func(__lowercase ).eval() A: Tuple = ModuleTransfer(src=__lowercase , dest=__lowercase , raise_if_mismatch=__lowercase ) A: str = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(__lowercase ) if from_state_dict is not None: A: int = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: A: Dict = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] A: int = manually_copy_vissl_head(__lowercase , our_model.state_dict() , __lowercase ) our_model.load_state_dict(__lowercase ) A: Optional[int] = our_model(__lowercase , output_hidden_states=__lowercase ) A: List[Any] = ( our_outputs.logits if isinstance(__lowercase , __lowercase ) else our_outputs.last_hidden_state ) A: List[str] = from_model(__lowercase ) A: Optional[int] = from_output[-1] if type(__lowercase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: A: Optional[Any] = our_outputs.hidden_states[-1] assert torch.allclose(__lowercase , __lowercase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=__lowercase , ) A: List[str] = 2_2_4 if '''seer''' not in name else 3_8_4 # we can use the convnext one A: Union[str, Any] = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=__lowercase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=__lowercase , ) print(F"""Pushed {name}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = None , __lowercase = True ) -> str: A: str = '''imagenet-1k-id2label.json''' A: Any = 1_0_0_0 A: Optional[Any] = (1, num_labels) A: Tuple = '''huggingface/label-files''' A: Optional[int] = num_labels A: Any = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='''dataset''' ) ) , '''r''' ) ) A: Dict = {int(__lowercase ): v for k, v in idalabel.items()} A: List[Any] = idalabel A: Optional[int] = {v: k for k, v in idalabel.items()} A: List[str] = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase ) A: Dict = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 , layer_type='''x''' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 1_2] , hidden_sizes=[3_2, 6_4, 1_6_0, 3_8_4] , groups_width=1_6 , layer_type='''x''' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[4_8, 9_6, 2_4_0, 5_2_8] , groups_width=2_4 , layer_type='''x''' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[6_4, 1_2_8, 2_8_8, 6_7_2] , groups_width=1_6 , layer_type='''x''' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 2] , hidden_sizes=[7_2, 1_6_8, 4_0_8, 9_1_2] , groups_width=2_4 , layer_type='''x''' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 1_5, 2] , hidden_sizes=[9_6, 1_9_2, 4_3_2, 1_0_0_8] , groups_width=4_8 , layer_type='''x''' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 1_4, 2] , hidden_sizes=[8_0, 2_4_0, 5_6_0, 1_3_6_0] , groups_width=4_0 , layer_type='''x''' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 3_9_2, 7_8_4, 1_6_2_4] , groups_width=5_6 , layer_type='''x''' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 1_5, 1] , hidden_sizes=[8_0, 2_4_0, 7_2_0, 1_9_2_0] , groups_width=1_2_0 , layer_type='''x''' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 , layer_type='''x''' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 1_3, 1] , hidden_sizes=[2_5_6, 5_1_2, 8_9_6, 2_0_4_8] , groups_width=1_2_8 , layer_type='''x''' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 1_3, 1] , hidden_sizes=[3_3_6, 6_7_2, 1_3_4_4, 2_5_2_0] , groups_width=1_6_8 , layer_type='''x''' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[4_8, 1_0_4, 2_0_8, 4_4_0] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[4_8, 1_1_2, 2_5_6, 6_0_8] , groups_width=1_6 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[6_4, 1_2_8, 3_2_0, 7_6_8] , groups_width=1_6 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 1_7, 2] , hidden_sizes=[4_8, 1_2_0, 3_3_6, 8_8_8] , groups_width=2_4 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 1_3, 1] , hidden_sizes=[7_2, 2_1_6, 5_7_6, 1_5_1_2] , groups_width=2_4 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 1_2, 2] , hidden_sizes=[1_2_8, 1_9_2, 5_1_2, 1_0_8_8] , groups_width=6_4 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 1_4, 2] , hidden_sizes=[1_4_4, 2_8_8, 5_7_6, 1_2_9_6] , groups_width=7_2 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 4_4_8, 8_9_6, 2_0_1_6] , groups_width=5_6 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 1_2_3_2, 3_0_2_4] , groups_width=1_1_2 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), } A: Optional[Any] = NameToOurModelFuncMap() A: List[Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__lowercase , __lowercase ) -> Tuple[nn.Module, Dict]: A: Dict = torch.hub.load_state_dict_from_url(__lowercase , model_dir=str(__lowercase ) , map_location='''cpu''' ) A: List[str] = model_func() # check if we have a head, if yes add it A: Optional[int] = files['''classy_state_dict''']['''base_model''']['''model'''] A: Optional[Any] = model_state_dict['''trunk'''] model.load_state_dict(__lowercase ) return model.eval(), model_state_dict["heads"] # pretrained A: List[Any] = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) A: int = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) A: Union[str, Any] = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) A: Tuple = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned A: Dict = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) A: Any = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) A: List[Any] = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) A: Dict = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( __lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __lowercase , __lowercase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __lowercase , __lowercase , __lowercase , ) return config, expected_shape if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase = parser.parse_args() UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
356
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = VOCAB_FILES_NAMES UpperCamelCase_ : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Any = DPRContextEncoderTokenizer class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Dict = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Tuple = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Optional[int] = DPRQuestionEncoderTokenizer UpperCamelCase = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) UpperCamelCase = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) UpperCamelCase = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(UpperCAmelCase_ ) class lowerCAmelCase_ : '''simple docstring''' def __call__( self : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Union[bool, str] = False , SCREAMING_SNAKE_CASE_ : Union[bool, str] = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) elif titles is None or texts is None: A: Union[str, Any] = titles if texts is None else texts return super().__call__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Union[str, Any] = titles if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [titles] A: Optional[Any] = texts if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [texts] A: str = len(SCREAMING_SNAKE_CASE_ ) A: List[Any] = questions if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [questions] * n_passages assert len(SCREAMING_SNAKE_CASE_ ) == len( SCREAMING_SNAKE_CASE_ ), f"""There should be as many titles than texts but got {len(SCREAMING_SNAKE_CASE_ )} titles and {len(SCREAMING_SNAKE_CASE_ )} texts.""" A: Union[str, Any] = super().__call__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )['''input_ids'''] A: Dict = super().__call__(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )['''input_ids'''] A: str = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] } if return_attention_mask is not False: A: Union[str, Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) A: Optional[Any] = attention_mask return self.pad(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : BatchEncoding , SCREAMING_SNAKE_CASE_ : DPRReaderOutput , SCREAMING_SNAKE_CASE_ : int = 16 , SCREAMING_SNAKE_CASE_ : int = 64 , SCREAMING_SNAKE_CASE_ : int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' A: Any = reader_input['''input_ids'''] A , A , A: str = reader_output[:3] A: str = len(SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = sorted(range(SCREAMING_SNAKE_CASE_ ) , reverse=SCREAMING_SNAKE_CASE_ , key=relevance_logits.__getitem__ ) A: List[DPRReaderOutput] = [] for doc_id in sorted_docs: A: List[str] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence A: Dict = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A: Union[str, Any] = sequence_ids.index(self.pad_token_id ) else: A: int = len(SCREAMING_SNAKE_CASE_ ) A: Dict = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=SCREAMING_SNAKE_CASE_ , top_spans=SCREAMING_SNAKE_CASE_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=SCREAMING_SNAKE_CASE_ , start_index=SCREAMING_SNAKE_CASE_ , end_index=SCREAMING_SNAKE_CASE_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(SCREAMING_SNAKE_CASE_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , ) -> List[DPRSpanPrediction]: '''simple docstring''' A: Union[str, Any] = [] for start_index, start_score in enumerate(SCREAMING_SNAKE_CASE_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) A: Any = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x[1] , reverse=SCREAMING_SNAKE_CASE_ ) A: Dict = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" A: int = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(SCREAMING_SNAKE_CASE_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase_ ) class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : List[Any] = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Dict = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Any = ["""input_ids""", """attention_mask"""] UpperCamelCase_ : Optional[Any] = DPRReaderTokenizer
334
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) UpperCamelCase_ : Optional[str] = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) UpperCamelCase_ : Optional[str] = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) UpperCamelCase_ : Optional[str] = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) UpperCamelCase_ : Optional[int] = field(default=2 , metadata={"""help""": """Batch size for training."""} ) UpperCamelCase_ : Optional[int] = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) UpperCamelCase_ : Optional[float] = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) UpperCamelCase_ : Optional[int] = field( default=1_0000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) UpperCamelCase_ : Optional[float] = field(default=2e-4 , metadata={"""help""": """Learning rate fo training."""} ) UpperCamelCase_ : Optional[str] = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) UpperCamelCase_ : Optional[int] = field( default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) UpperCamelCase_ : Optional[int] = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} ) UpperCamelCase_ : Optional[bool] = field( default=UpperCAmelCase_ , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) UpperCamelCase_ : Optional[int] = field(default=5_0000 , metadata={"""help""": """Maximum number of training steps."""} ) UpperCamelCase_ : Optional[int] = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) UpperCamelCase_ : Optional[int] = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} ) UpperCamelCase_ : Optional[int] = field(default=1 , metadata={"""help""": """Training seed."""} ) UpperCamelCase_ : Optional[int] = field( default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) UpperCamelCase_ : Optional[bool] = field(default=UpperCAmelCase_ , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) UpperCamelCase_ : Optional[str] = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) UpperCamelCase_ : Optional[int] = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) UpperCamelCase_ : Optional[int] = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) UpperCamelCase_ : Optional[int] = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} ) UpperCamelCase_ : Optional[int] = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) UpperCamelCase_ : Optional[int] = field(default=UpperCAmelCase_ , metadata={"""help""": """Number of workers used for code evaluation."""} ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) UpperCamelCase_ : Optional[bool] = field( default=UpperCAmelCase_ , metadata={"""help""": """Sample from the language model's output distribution."""} ) UpperCamelCase_ : Optional[float] = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) UpperCamelCase_ : Optional[int] = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) UpperCamelCase_ : Optional[int] = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) UpperCamelCase_ : Optional[float] = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) UpperCamelCase_ : Optional[int] = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} ) UpperCamelCase_ : Optional[int] = field( default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} ) UpperCamelCase_ : Optional[int] = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) UpperCamelCase_ : Optional[str] = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) UpperCamelCase_ : Optional[str] = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) UpperCamelCase_ : Optional[int] = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) UpperCamelCase_ : Optional[str] = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) UpperCamelCase_ : Optional[str] = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) UpperCamelCase_ : Optional[int] = field( default=10_0000 , metadata={"""help""": """Number of files to save per JSON output file."""} ) UpperCamelCase_ : Optional[str] = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) UpperCamelCase_ : Optional[float] = field( default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) UpperCamelCase_ : Optional[float] = field( default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) UpperCamelCase_ : Optional[float] = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) UpperCamelCase_ : Optional[float] = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) UpperCamelCase_ : Optional[float] = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) UpperCamelCase_ : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) UpperCamelCase_ : Optional[bool] = field( default=UpperCAmelCase_ , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) UpperCamelCase_ : Optional[float] = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) UpperCamelCase_ : Optional[str] = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) UpperCamelCase_ : Optional[str] = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) UpperCamelCase_ : Optional[int] = field(default=20_0000 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) UpperCamelCase_ : Optional[int] = field( default=3_2768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) UpperCamelCase_ : Optional[str] = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) UpperCamelCase_ : Optional[bool] = field(default=UpperCAmelCase_ , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) UpperCamelCase_ : Optional[str] = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) UpperCamelCase_ : Optional[str] = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) UpperCamelCase_ : Optional[int] = field(default=UpperCAmelCase_ , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) UpperCamelCase_ : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) UpperCamelCase_ : Optional[str] = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) UpperCamelCase_ : Optional[bool] = field(default=UpperCAmelCase_ , metadata={"""help""": """Push saved tokenizer to the hub."""} )
357
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
0
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : UNetaDModel , SCREAMING_SNAKE_CASE_ : UNetaDModel , SCREAMING_SNAKE_CASE_ : DDPMScheduler , SCREAMING_SNAKE_CASE_ : Dict , ) -> Tuple: '''simple docstring''' super().__init__() A: int = value_function A: int = unet A: Optional[Any] = scheduler A: Union[str, Any] = env A: Union[str, Any] = env.get_dataset() A: Tuple = {} for key in self.data.keys(): try: A: List[str] = self.data[key].mean() except: # noqa: E722 pass A: Tuple = {} for key in self.data.keys(): try: A: List[str] = self.data[key].std() except: # noqa: E722 pass A: Optional[int] = env.observation_space.shape[0] A: Any = env.action_space.shape[0] def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]: '''simple docstring''' if type(SCREAMING_SNAKE_CASE_ ) is dict: return {k: self.to_torch(SCREAMING_SNAKE_CASE_ ) for k, v in x_in.items()} elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ): return x_in.to(self.unet.device ) return torch.tensor(SCREAMING_SNAKE_CASE_ , device=self.unet.device ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' for key, val in cond.items(): A: List[Any] = val.clone() return x_in def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> str: '''simple docstring''' A: str = x.shape[0] A: List[Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model A: int = torch.full((batch_size,) , SCREAMING_SNAKE_CASE_ , device=self.unet.device , dtype=torch.long ) for _ in range(SCREAMING_SNAKE_CASE_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models A: List[str] = self.value_function(x.permute(0 , 2 , 1 ) , SCREAMING_SNAKE_CASE_ ).sample A: Optional[Any] = torch.autograd.grad([y.sum()] , [x] )[0] A: str = self.scheduler._get_variance(SCREAMING_SNAKE_CASE_ ) A: int = torch.exp(0.5 * posterior_variance ) A: Dict = model_std * grad A: List[Any] = 0 A: List[str] = x.detach() A: Dict = x + scale * grad A: Dict = self.reset_xa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.action_dim ) A: Optional[Any] = self.unet(x.permute(0 , 2 , 1 ) , SCREAMING_SNAKE_CASE_ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg A: str = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , predict_epsilon=SCREAMING_SNAKE_CASE_ )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) A: List[str] = self.reset_xa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.action_dim ) A: List[str] = self.to_torch(SCREAMING_SNAKE_CASE_ ) return x, y def __call__( self : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int=64 , SCREAMING_SNAKE_CASE_ : Optional[Any]=32 , SCREAMING_SNAKE_CASE_ : Any=2 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 ) -> List[Any]: '''simple docstring''' A: Dict = self.normalize(SCREAMING_SNAKE_CASE_ , '''observations''' ) A: Tuple = obs[None].repeat(SCREAMING_SNAKE_CASE_ , axis=0 ) A: int = {0: self.to_torch(SCREAMING_SNAKE_CASE_ )} A: List[str] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) A: Optional[int] = randn_tensor(SCREAMING_SNAKE_CASE_ , device=self.unet.device ) A: str = self.reset_xa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.action_dim ) A: int = self.to_torch(SCREAMING_SNAKE_CASE_ ) # run the diffusion process A: List[str] = self.run_diffusion(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # sort output trajectories by value A: str = y.argsort(0 , descending=SCREAMING_SNAKE_CASE_ ).squeeze() A: List[str] = x[sorted_idx] A: str = sorted_values[:, :, : self.action_dim] A: Any = actions.detach().cpu().numpy() A: List[str] = self.de_normalize(SCREAMING_SNAKE_CASE_ , key='''actions''' ) # select the action with the highest value if y is not None: A: Union[str, Any] = 0 else: # if we didn't run value guiding, select a random action A: List[Any] = np.random.randint(0 , SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = denorm_actions[selected_index, 0] return denorm_actions
358
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' pass class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> None: '''simple docstring''' A: Any = data A: Node | None = None def __iter__( self : Optional[int] ) -> List[str]: '''simple docstring''' A: List[str] = self A: Dict = [] while node: if node in visited: raise ContainsLoopError visited.append(SCREAMING_SNAKE_CASE_ ) yield node.data A: str = node.next_node @property def _snake_case ( self : List[str] ) -> bool: '''simple docstring''' try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": UpperCamelCase = Node(1) UpperCamelCase = Node(2) UpperCamelCase = Node(3) UpperCamelCase = Node(4) print(root_node.has_loop) # False UpperCamelCase = root_node.next_node print(root_node.has_loop) # True UpperCamelCase = Node(5) UpperCamelCase = Node(6) UpperCamelCase = Node(5) UpperCamelCase = Node(6) print(root_node.has_loop) # False UpperCamelCase = Node(1) print(root_node.has_loop) # False
334
0
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated UpperCamelCase = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ UpperCamelCase = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: A: Tuple = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowercase )[0] @deprecated(__lowercase , '''Please use tf.data to implement this functionality.''' ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowercase ) as bytestream: A: Union[str, Any] = _readaa(__lowercase ) if magic != 2_0_5_1: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) A: Any = _readaa(__lowercase ) A: int = _readaa(__lowercase ) A: Optional[int] = _readaa(__lowercase ) A: Optional[int] = bytestream.read(rows * cols * num_images ) A: Tuple = numpy.frombuffer(__lowercase , dtype=numpy.uinta ) A: Optional[int] = data.reshape(__lowercase , __lowercase , __lowercase , 1 ) return data @deprecated(__lowercase , '''Please use tf.one_hot on tensors.''' ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[Any]: A: int = labels_dense.shape[0] A: Union[str, Any] = numpy.arange(__lowercase ) * num_classes A: Optional[Any] = numpy.zeros((num_labels, num_classes) ) A: Dict = 1 return labels_one_hot @deprecated(__lowercase , '''Please use tf.data to implement this functionality.''' ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False , __lowercase=1_0 ) -> str: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowercase ) as bytestream: A: List[str] = _readaa(__lowercase ) if magic != 2_0_4_9: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) A: Optional[int] = _readaa(__lowercase ) A: Tuple = bytestream.read(__lowercase ) A: str = numpy.frombuffer(__lowercase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__lowercase , __lowercase ) return labels class lowerCAmelCase_ : '''simple docstring''' @deprecated( SCREAMING_SNAKE_CASE_ , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , SCREAMING_SNAKE_CASE_ : int=dtypes.floataa , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : Optional[int]=None , ) -> Optional[int]: '''simple docstring''' A: Optional[int] = random_seed.get_seed(SCREAMING_SNAKE_CASE_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) A: Optional[int] = dtypes.as_dtype(SCREAMING_SNAKE_CASE_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: A: List[str] = 1_00_00 A: Optional[Any] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"""images.shape: {images.shape} labels.shape: {labels.shape}""" A: Optional[int] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 A: List[Any] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. A: str = images.astype(numpy.floataa ) A: str = numpy.multiply(SCREAMING_SNAKE_CASE_ , 1.0 / 255.0 ) A: Union[str, Any] = images A: Union[str, Any] = labels A: List[str] = 0 A: Tuple = 0 @property def _snake_case ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' return self._images @property def _snake_case ( self : Optional[Any] ) -> int: '''simple docstring''' return self._labels @property def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return self._num_examples @property def _snake_case ( self : List[str] ) -> List[Any]: '''simple docstring''' return self._epochs_completed def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , SCREAMING_SNAKE_CASE_ : str=True ) -> Union[str, Any]: '''simple docstring''' if fake_data: A: List[str] = [1] * 7_84 A: Tuple = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(SCREAMING_SNAKE_CASE_ )], [fake_label for _ in range(SCREAMING_SNAKE_CASE_ )], ) A: List[Any] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: A: str = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = self.images[perma] A: Union[str, Any] = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch A: List[str] = self._num_examples - start A: Tuple = self._images[start : self._num_examples] A: str = self._labels[start : self._num_examples] # Shuffle the data if shuffle: A: Optional[int] = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = self.images[perm] A: Optional[int] = self.labels[perm] # Start next epoch A: List[str] = 0 A: List[str] = batch_size - rest_num_examples A: str = self._index_in_epoch A: Tuple = self._images[start:end] A: Union[str, Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size A: List[str] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__lowercase , '''Please write your own downloading logic.''' ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> str: if not gfile.Exists(__lowercase ): gfile.MakeDirs(__lowercase ) A: Any = os.path.join(__lowercase , __lowercase ) if not gfile.Exists(__lowercase ): urllib.request.urlretrieve(__lowercase , __lowercase ) # noqa: S310 with gfile.GFile(__lowercase ) as f: A: Union[str, Any] = f.size() print('''Successfully downloaded''' , __lowercase , __lowercase , '''bytes.''' ) return filepath @deprecated( __lowercase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False , __lowercase=False , __lowercase=dtypes.floataa , __lowercase=True , __lowercase=5_0_0_0 , __lowercase=None , __lowercase=DEFAULT_SOURCE_URL , ) -> int: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__lowercase , one_hot=__lowercase , dtype=__lowercase , seed=__lowercase ) A: str = fake() A: Union[str, Any] = fake() A: List[Any] = fake() return _Datasets(train=__lowercase , validation=__lowercase , test=__lowercase ) if not source_url: # empty string check A: Optional[Any] = DEFAULT_SOURCE_URL A: Any = '''train-images-idx3-ubyte.gz''' A: int = '''train-labels-idx1-ubyte.gz''' A: str = '''t10k-images-idx3-ubyte.gz''' A: Dict = '''t10k-labels-idx1-ubyte.gz''' A: Tuple = _maybe_download( __lowercase , __lowercase , source_url + train_images_file ) with gfile.Open(__lowercase , '''rb''' ) as f: A: int = _extract_images(__lowercase ) A: Dict = _maybe_download( __lowercase , __lowercase , source_url + train_labels_file ) with gfile.Open(__lowercase , '''rb''' ) as f: A: Union[str, Any] = _extract_labels(__lowercase , one_hot=__lowercase ) A: Optional[Any] = _maybe_download( __lowercase , __lowercase , source_url + test_images_file ) with gfile.Open(__lowercase , '''rb''' ) as f: A: List[Any] = _extract_images(__lowercase ) A: Tuple = _maybe_download( __lowercase , __lowercase , source_url + test_labels_file ) with gfile.Open(__lowercase , '''rb''' ) as f: A: Optional[Any] = _extract_labels(__lowercase , one_hot=__lowercase ) if not 0 <= validation_size <= len(__lowercase ): A: Optional[Any] = ( '''Validation size should be between 0 and ''' F"""{len(__lowercase )}. Received: {validation_size}.""" ) raise ValueError(__lowercase ) A: List[Any] = train_images[:validation_size] A: Union[str, Any] = train_labels[:validation_size] A: str = train_images[validation_size:] A: Dict = train_labels[validation_size:] A: int = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} A: int = _DataSet(__lowercase , __lowercase , **__lowercase ) A: Optional[int] = _DataSet(__lowercase , __lowercase , **__lowercase ) A: List[str] = _DataSet(__lowercase , __lowercase , **__lowercase ) return _Datasets(train=__lowercase , validation=__lowercase , test=__lowercase )
359
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE( __lowercase = 4 ) -> list[list[int]]: A: Tuple = abs(__lowercase ) or 4 return [[1 + x + y * row_size for x in range(__lowercase )] for y in range(__lowercase )] def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_row(transpose(__lowercase ) ) # OR.. transpose(reverse_column(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_row(reverse_column(__lowercase ) ) # OR.. reverse_column(reverse_row(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: return reverse_column(transpose(__lowercase ) ) # OR.. transpose(reverse_row(matrix)) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Union[str, Any] = [list(__lowercase ) for x in zip(*__lowercase )] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Optional[int] = matrix[::-1] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> list[list[int]]: A: Optional[Any] = [x[::-1] for x in matrix] return matrix def SCREAMING_SNAKE_CASE( __lowercase ) -> None: for i in matrix: print(*__lowercase ) if __name__ == "__main__": UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) UpperCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
334
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A: Union[str, Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' A: Dict = self.dummy_uncond_unet A: Any = ScoreSdeVeScheduler() A: Any = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) sde_ve.to(SCREAMING_SNAKE_CASE_ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) A: Any = torch.manual_seed(0 ) A: int = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE_ ).images A: List[str] = torch.manual_seed(0 ) A: List[Any] = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ )[ 0 ] A: Union[str, Any] = image[0, -3:, -3:, -1] A: Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A: int = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Any ) -> Tuple: '''simple docstring''' A: Dict = '''google/ncsnpp-church-256''' A: Any = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) A: Dict = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) sde_ve.to(SCREAMING_SNAKE_CASE_ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) A: Optional[int] = torch.manual_seed(0 ) A: Tuple = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE_ ).images A: Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) A: Optional[int] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
360
'''simple docstring''' from __future__ import annotations import numpy as np def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict: return np.maximum(0 , __lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
334
0
from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> str | Literal[False]: A: List[str] = list(__lowercase ) A: Optional[Any] = list(__lowercase ) A: int = 0 for i in range(len(__lowercase ) ): if lista[i] != lista[i]: count += 1 A: Optional[Any] = '''_''' if count > 1: return False else: return "".join(__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[str]: A: Any = [] while True: A: Dict = ['''$'''] * len(__lowercase ) A: Union[str, Any] = [] for i in range(len(__lowercase ) ): for j in range(i + 1 , len(__lowercase ) ): A: Any = compare_string(binary[i] , binary[j] ) if k is False: A: Any = '''*''' A: List[Any] = '''*''' temp.append('''X''' ) for i in range(len(__lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__lowercase ) == 0: return pi A: List[Any] = list(set(__lowercase ) ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[str]: A: Optional[int] = [] for minterm in minterms: A: Optional[int] = '''''' for _ in range(__lowercase ): A: List[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(__lowercase ) return temp def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> bool: A: Union[str, Any] = list(__lowercase ) A: Union[str, Any] = list(__lowercase ) A: Optional[int] = 0 for i in range(len(__lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[str]: A: List[Any] = [] A: Dict = [0] * len(__lowercase ) for i in range(len(chart[0] ) ): A: List[str] = 0 A: str = -1 for j in range(len(__lowercase ) ): if chart[j][i] == 1: count += 1 A: Any = j if count == 1: A: Any = 1 for i in range(len(__lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__lowercase ) ): A: Optional[int] = 0 temp.append(prime_implicants[i] ) while True: A: Dict = 0 A: Optional[int] = -1 A: Dict = 0 for i in range(len(__lowercase ) ): A: str = chart[i].count(1 ) if count_n > max_n: A: Tuple = count_n A: Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__lowercase ) ): A: Any = 0 def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[list[int]]: A: str = [[0 for x in range(len(__lowercase ) )] for x in range(len(__lowercase ) )] for i in range(len(__lowercase ) ): A: Tuple = prime_implicants[i].count('''_''' ) for j in range(len(__lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , __lowercase ): A: Optional[Any] = 1 return chart def SCREAMING_SNAKE_CASE( ) -> None: A: int = int(input('''Enter the no. of variables\n''' ) ) A: Optional[int] = [ float(__lowercase ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] A: List[str] = decimal_to_binary(__lowercase , __lowercase ) A: str = check(__lowercase ) print('''Prime Implicants are:''' ) print(__lowercase ) A: List[Any] = prime_implicant_chart(__lowercase , __lowercase ) A: Any = selection(__lowercase , __lowercase ) print('''Essential Prime Implicants are:''' ) print(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
361
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
362
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
334
0
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ('''foo.json''',)] ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Dict ) -> str: '''simple docstring''' A: Dict = GenerationConfig( do_sample=SCREAMING_SNAKE_CASE_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(SCREAMING_SNAKE_CASE_ , config_name=SCREAMING_SNAKE_CASE_ ) A: List[Any] = GenerationConfig.from_pretrained(SCREAMING_SNAKE_CASE_ , config_name=SCREAMING_SNAKE_CASE_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , SCREAMING_SNAKE_CASE_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A: Optional[Any] = AutoConfig.from_pretrained('''gpt2''' ) A: Optional[Any] = GenerationConfig.from_model_config(SCREAMING_SNAKE_CASE_ ) A: Any = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def _snake_case ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A: Tuple = GenerationConfig() A: Any = { '''max_new_tokens''': 10_24, '''foo''': '''bar''', } A: List[str] = copy.deepcopy(SCREAMING_SNAKE_CASE_ ) A: List[Any] = generation_config.update(**SCREAMING_SNAKE_CASE_ ) # update_kwargs was not modified (no side effects) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(SCREAMING_SNAKE_CASE_ , {'''foo''': '''bar'''} ) def _snake_case ( self : int ) -> Any: '''simple docstring''' A: List[Any] = GenerationConfig() A: Tuple = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = GenerationConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) A: Union[str, Any] = GenerationConfig.from_model_config(SCREAMING_SNAKE_CASE_ ) assert not hasattr(SCREAMING_SNAKE_CASE_ , '''foo''' ) # no new kwargs should be initialized if from config def _snake_case ( self : str ) -> Any: '''simple docstring''' A: int = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , SCREAMING_SNAKE_CASE_ ) self.assertEqual(default_config.num_beams , 1 ) A: int = GenerationConfig( do_sample=SCREAMING_SNAKE_CASE_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , SCREAMING_SNAKE_CASE_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(SCREAMING_SNAKE_CASE_ ) A: Any = GenerationConfig.from_pretrained(SCREAMING_SNAKE_CASE_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , SCREAMING_SNAKE_CASE_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @classmethod def _snake_case ( cls : Any ) -> Optional[int]: '''simple docstring''' A: Tuple = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE_ ) @classmethod def _snake_case ( cls : Optional[Any] ) -> Dict: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def _snake_case ( self : Any ) -> Union[str, Any]: '''simple docstring''' A: Tuple = GenerationConfig( do_sample=SCREAMING_SNAKE_CASE_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) A: List[Any] = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( SCREAMING_SNAKE_CASE_ , repo_id='''test-generation-config''' , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token ) A: Optional[Any] = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def _snake_case ( self : Any ) -> int: '''simple docstring''' A: List[Any] = GenerationConfig( do_sample=SCREAMING_SNAKE_CASE_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) A: Optional[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( SCREAMING_SNAKE_CASE_ , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token ) A: List[str] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
363
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , SCREAMING_SNAKE_CASE_ : int = 6_55_36 , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : str = "fourier" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , SCREAMING_SNAKE_CASE_ : Tuple[str] = "UNetMidBlock1D" , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : Tuple[int] = (32, 32, 64) , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : int = 8 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : bool = False , ) -> Tuple: '''simple docstring''' super().__init__() A: Optional[Any] = sample_size # time if time_embedding_type == "fourier": A: Tuple = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=SCREAMING_SNAKE_CASE_ , log=SCREAMING_SNAKE_CASE_ , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ ) A: List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": A: str = Timesteps( block_out_channels[0] , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ , downscale_freq_shift=SCREAMING_SNAKE_CASE_ ) A: Any = block_out_channels[0] if use_timestep_embedding: A: Optional[Any] = block_out_channels[0] * 4 A: List[Any] = TimestepEmbedding( in_channels=SCREAMING_SNAKE_CASE_ , time_embed_dim=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , out_dim=block_out_channels[0] , ) A: Optional[Any] = nn.ModuleList([] ) A: str = None A: str = nn.ModuleList([] ) A: Tuple = None # down A: Any = in_channels for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): A: Optional[int] = output_channel A: List[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels A: List[Any] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 A: Optional[int] = get_down_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(SCREAMING_SNAKE_CASE_ ) # mid A: Union[str, Any] = get_mid_block( SCREAMING_SNAKE_CASE_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=SCREAMING_SNAKE_CASE_ , add_downsample=SCREAMING_SNAKE_CASE_ , ) # up A: Optional[Any] = list(reversed(SCREAMING_SNAKE_CASE_ ) ) A: List[str] = reversed_block_out_channels[0] if out_block_type is None: A: int = out_channels else: A: Union[str, Any] = block_out_channels[0] for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): A: List[Any] = output_channel A: int = ( reversed_block_out_channels[i + 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 else final_upsample_channels ) A: Optional[int] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 A: Optional[Any] = get_up_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(SCREAMING_SNAKE_CASE_ ) A: Any = output_channel # out A: List[str] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) A: Optional[int] = get_out_block( out_block_type=SCREAMING_SNAKE_CASE_ , num_groups_out=SCREAMING_SNAKE_CASE_ , embed_dim=block_out_channels[0] , out_channels=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , fc_dim=block_out_channels[-1] // 4 , ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Union[torch.Tensor, float, int] , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[UNetaDOutput, Tuple]: '''simple docstring''' A: Any = timestep if not torch.is_tensor(SCREAMING_SNAKE_CASE_ ): A: Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ) and len(timesteps.shape ) == 0: A: List[str] = timesteps[None].to(sample.device ) A: int = self.time_proj(SCREAMING_SNAKE_CASE_ ) if self.config.use_timestep_embedding: A: List[Any] = self.time_mlp(SCREAMING_SNAKE_CASE_ ) else: A: str = timestep_embed[..., None] A: Union[str, Any] = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) A: Tuple = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down A: List[str] = () for downsample_block in self.down_blocks: A , A: Optional[int] = downsample_block(hidden_states=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: A: Dict = self.mid_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): A: List[Any] = down_block_res_samples[-1:] A: List[str] = down_block_res_samples[:-1] A: Optional[int] = upsample_block(SCREAMING_SNAKE_CASE_ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) # 5. post-process if self.out_block: A: Any = self.out_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=SCREAMING_SNAKE_CASE_ )
334
0
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase = 1_0 ) -> str: if not isinstance(__lowercase , __lowercase ) or n < 0: raise ValueError('''Invalid input''' ) A: List[str] = 1_0**n A: Tuple = 2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , __lowercase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f'{solution(10) = }')
364
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : int , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Dict ) -> None: '''simple docstring''' warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
334
0
'''simple docstring''' import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu UpperCamelCase = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=None , __lowercase=None , __lowercase=None ) -> Dict: A: Optional[int] = True while ask_again: A: Any = input(__lowercase ) try: if default is not None and len(__lowercase ) == 0: return default return convert_value(__lowercase ) if convert_value is not None else result except Exception: if error_message is not None: print(__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=[] , __lowercase=None , __lowercase=0 ) -> Optional[int]: A: Tuple = BulletMenu(__lowercase , __lowercase ) A: Union[str, Any] = menu.run(default_choice=__lowercase ) return convert_value(__lowercase ) if convert_value is not None else result def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: A: Optional[int] = int(__lowercase ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: A: Tuple = int(__lowercase ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def SCREAMING_SNAKE_CASE( __lowercase ) -> int: A: Dict = int(__lowercase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def SCREAMING_SNAKE_CASE( __lowercase ) -> Any: A: Optional[Any] = int(__lowercase ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]: A: Tuple = int(__lowercase ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def SCREAMING_SNAKE_CASE( __lowercase ) -> str: return {"yes": True, "no": False}[value.lower()] class lowerCAmelCase_ ( argparse.RawDescriptionHelpFormatter ): def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any ) -> Tuple: '''simple docstring''' A: Optional[int] = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Tuple = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
365
'''simple docstring''' from collections import deque class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> None: '''simple docstring''' A: Union[str, Any] = process_name # process name A: List[str] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time A: Dict = arrival_time A: Optional[Any] = burst_time # remaining burst time A: Any = 0 # total time of the process wait in ready queue A: Any = 0 # time from arrival time to completion time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int , ) -> None: '''simple docstring''' A: Dict = number_of_queues # time slice of queues that round robin algorithm applied A: int = time_slices # unfinished process is in this ready_queue A: Tuple = queue # current time A: int = current_time # finished process is in this sequence queue A: deque[Process] = deque() def _snake_case ( self : List[Any] ) -> list[str]: '''simple docstring''' A: str = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: Optional[int] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: Any = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : list[Process] ) -> list[int]: '''simple docstring''' A: List[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): completion_times.append(queue[i].stop_time ) return completion_times def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : deque[Process] ) -> list[int]: '''simple docstring''' return [q.burst_time for q in queue] def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : Process ) -> int: '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : deque[Process] ) -> deque[Process]: '''simple docstring''' A: deque[Process] = deque() # sequence deque of finished process while len(SCREAMING_SNAKE_CASE_ ) != 0: A: Optional[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 A: Any = 0 # set the process's turnaround time because it is finished A: int = self.current_time - cp.arrival_time # set the completion time A: List[str] = self.current_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int ) -> tuple[deque[Process], deque[Process]]: '''simple docstring''' A: deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(SCREAMING_SNAKE_CASE_ ) ): A: Dict = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time A: Optional[Any] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(SCREAMING_SNAKE_CASE_ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished A: int = 0 # set the finish time A: Union[str, Any] = self.current_time # update the process' turnaround time because it is finished A: Tuple = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def _snake_case ( self : Optional[Any] ) -> deque[Process]: '''simple docstring''' for i in range(self.number_of_queues - 1 ): A , A: Optional[Any] = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest UpperCamelCase = Process('''P1''', 0, 53) UpperCamelCase = Process('''P2''', 0, 17) UpperCamelCase = Process('''P3''', 0, 68) UpperCamelCase = Process('''P4''', 0, 24) UpperCamelCase = 3 UpperCamelCase = [17, 25] UpperCamelCase = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) UpperCamelCase = Process('''P1''', 0, 53) UpperCamelCase = Process('''P2''', 0, 17) UpperCamelCase = Process('''P3''', 0, 68) UpperCamelCase = Process('''P4''', 0, 24) UpperCamelCase = 3 UpperCamelCase = [17, 25] UpperCamelCase = deque([Pa, Pa, Pa, Pa]) UpperCamelCase = MLFQ(number_of_queues, time_slices, queue, 0) UpperCamelCase = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( f'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( f'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
334
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
366
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger() @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : List[nn.Module] = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : list = field(default_factory=UpperCAmelCase_ ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tensor , SCREAMING_SNAKE_CASE_ : Tensor ) -> int: '''simple docstring''' A: List[str] = len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE_ ) def __call__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tensor ) -> Dict: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(SCREAMING_SNAKE_CASE_ ) [x.remove() for x in self.handles] return self @property def _snake_case ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return list(filter(lambda SCREAMING_SNAKE_CASE_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : nn.Module UpperCamelCase_ : int = 0 UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) def __call__( self : Any , SCREAMING_SNAKE_CASE_ : Tensor ) -> Optional[Any]: '''simple docstring''' A: Dict = Tracker(self.dest )(SCREAMING_SNAKE_CASE_ ).parametrized A: Tuple = Tracker(self.src )(SCREAMING_SNAKE_CASE_ ).parametrized A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.src_skip , SCREAMING_SNAKE_CASE_ ) ) A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.dest_skip , SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise Exception( f"""Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE_ )} operations while""" f""" destination module has {len(SCREAMING_SNAKE_CASE_ )}.""" ) for dest_m, src_m in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase = True ) -> Any: print(F"""Converting {name}...""" ) with torch.no_grad(): A: Union[str, Any] = timm.create_model(__lowercase , pretrained=__lowercase ).eval() A: List[str] = ResNetForImageClassification(__lowercase ).eval() A: int = ModuleTransfer(src=__lowercase , dest=__lowercase ) A: List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(__lowercase ) assert torch.allclose(from_model(__lowercase ) , our_model(__lowercase ).logits ), "The model logits don't match the original one." A: str = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(__lowercase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__lowercase , ) # we can use the convnext one A: Any = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__lowercase , ) print(F"""Pushed {checkpoint_name}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = None , __lowercase = True ) -> List[Any]: A: Union[str, Any] = '''imagenet-1k-id2label.json''' A: Union[str, Any] = 1_0_0_0 A: Optional[int] = (1, num_labels) A: Dict = '''huggingface/label-files''' A: Any = num_labels A: Union[str, Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Optional[int] = {int(__lowercase ): v for k, v in idalabel.items()} A: Optional[int] = idalabel A: List[str] = {v: k for k, v in idalabel.items()} A: str = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase ) A: Optional[Any] = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__lowercase , names_to_config[model_name] , __lowercase , __lowercase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowercase , __lowercase , __lowercase , __lowercase ) return config, expected_shape if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase = parser.parse_args() UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> str: if not all(char in '''01''' for char in bin_string ): raise ValueError('''Non-binary value was passed to the function''' ) if not bin_string: raise ValueError('''Empty string was passed to the function''' ) A: List[str] = '''''' while len(__lowercase ) % 3 != 0: A: Optional[Any] = '''0''' + bin_string A: Dict = [ bin_string[index : index + 3] for index in range(len(__lowercase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: A: Optional[int] = 0 for index, val in enumerate(__lowercase ): oct_val += int(2 ** (2 - index) * int(__lowercase ) ) oct_string += str(__lowercase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
367
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> str | Literal[False]: A: List[str] = list(__lowercase ) A: Optional[Any] = list(__lowercase ) A: int = 0 for i in range(len(__lowercase ) ): if lista[i] != lista[i]: count += 1 A: Optional[Any] = '''_''' if count > 1: return False else: return "".join(__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase ) -> list[str]: A: Any = [] while True: A: Dict = ['''$'''] * len(__lowercase ) A: Union[str, Any] = [] for i in range(len(__lowercase ) ): for j in range(i + 1 , len(__lowercase ) ): A: Any = compare_string(binary[i] , binary[j] ) if k is False: A: Any = '''*''' A: List[Any] = '''*''' temp.append('''X''' ) for i in range(len(__lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__lowercase ) == 0: return pi A: List[Any] = list(set(__lowercase ) ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[str]: A: Optional[int] = [] for minterm in minterms: A: Optional[int] = '''''' for _ in range(__lowercase ): A: List[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(__lowercase ) return temp def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> bool: A: Union[str, Any] = list(__lowercase ) A: Union[str, Any] = list(__lowercase ) A: Optional[int] = 0 for i in range(len(__lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[str]: A: List[Any] = [] A: Dict = [0] * len(__lowercase ) for i in range(len(chart[0] ) ): A: List[str] = 0 A: str = -1 for j in range(len(__lowercase ) ): if chart[j][i] == 1: count += 1 A: Any = j if count == 1: A: Any = 1 for i in range(len(__lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__lowercase ) ): A: Optional[int] = 0 temp.append(prime_implicants[i] ) while True: A: Dict = 0 A: Optional[int] = -1 A: Dict = 0 for i in range(len(__lowercase ) ): A: str = chart[i].count(1 ) if count_n > max_n: A: Tuple = count_n A: Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__lowercase ) ): A: Any = 0 def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list[list[int]]: A: str = [[0 for x in range(len(__lowercase ) )] for x in range(len(__lowercase ) )] for i in range(len(__lowercase ) ): A: Tuple = prime_implicants[i].count('''_''' ) for j in range(len(__lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , __lowercase ): A: Optional[Any] = 1 return chart def SCREAMING_SNAKE_CASE( ) -> None: A: int = int(input('''Enter the no. of variables\n''' ) ) A: Optional[int] = [ float(__lowercase ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] A: List[str] = decimal_to_binary(__lowercase , __lowercase ) A: str = check(__lowercase ) print('''Prime Implicants are:''' ) print(__lowercase ) A: List[Any] = prime_implicant_chart(__lowercase , __lowercase ) A: Any = selection(__lowercase , __lowercase ) print('''Essential Prime Implicants are:''' ) print(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
334
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : List[str] = """speech_to_text""" UpperCamelCase_ : List[str] = ["""past_key_values"""] UpperCamelCase_ : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int=1_00_00 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE_ : List[str]=20_48 , SCREAMING_SNAKE_CASE_ : Dict=4 , SCREAMING_SNAKE_CASE_ : str=6 , SCREAMING_SNAKE_CASE_ : Tuple=20_48 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE_ : Any=0.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : str="relu" , SCREAMING_SNAKE_CASE_ : Dict=2_56 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : str=0.0 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : str=1 , SCREAMING_SNAKE_CASE_ : List[Any]=0 , SCREAMING_SNAKE_CASE_ : Optional[int]=2 , SCREAMING_SNAKE_CASE_ : List[str]=60_00 , SCREAMING_SNAKE_CASE_ : Optional[int]=10_24 , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : List[Any]=(5, 5) , SCREAMING_SNAKE_CASE_ : Tuple=10_24 , SCREAMING_SNAKE_CASE_ : Dict=80 , SCREAMING_SNAKE_CASE_ : str=1 , **SCREAMING_SNAKE_CASE_ : str , ) -> Union[str, Any]: '''simple docstring''' A: Tuple = vocab_size A: Union[str, Any] = d_model A: int = encoder_ffn_dim A: Any = encoder_layers A: str = encoder_attention_heads A: Dict = decoder_ffn_dim A: Tuple = decoder_layers A: Dict = decoder_attention_heads A: Any = dropout A: Dict = attention_dropout A: List[str] = activation_dropout A: List[Any] = activation_function A: Union[str, Any] = init_std A: Optional[Any] = encoder_layerdrop A: int = decoder_layerdrop A: int = use_cache A: List[str] = encoder_layers A: Tuple = scale_embedding # scale factor will be sqrt(d_model) if True A: Dict = max_source_positions A: Tuple = max_target_positions A: List[str] = num_conv_layers A: int = list(SCREAMING_SNAKE_CASE_ ) A: Dict = conv_channels A: Tuple = input_feat_per_channel A: Tuple = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ''' f"""but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, """ f"""`config.num_conv_layers = {self.num_conv_layers}`.""" ) super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
368
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: A: Tuple = len(__lowercase ) for i in range(length - 1 ): A: Dict = i for k in range(i + 1 , __lowercase ): if collection[k] < collection[least]: A: List[str] = k if least != i: A , A: Tuple = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
334
0