code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse('3.8'):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def __a ( A__ : Any , A__ : Optional[int]=False ):
try:
SCREAMING_SNAKE_CASE = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
SCREAMING_SNAKE_CASE = default
else:
# KEY is set, convert it to True or False.
try:
SCREAMING_SNAKE_CASE = strtobool(lowerCAmelCase_ )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F"If set, {key} must be yes or no." )
return _value
__A : str = parse_flag_from_env('RUN_SLOW', default=False)
__A : List[Any] = parse_flag_from_env('RUN_REMOTE', default=False)
__A : Any = parse_flag_from_env('RUN_LOCAL', default=True)
__A : List[str] = parse_flag_from_env('RUN_PACKAGED', default=True)
# Compression
__A : List[str] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4')
__A : Dict = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr')
__A : Union[str, Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard')
# Audio
__A : Any = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'),
reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ',
)
# Beam
__A : str = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'),
reason='test requires apache-beam and a compatible dill version',
)
# Dill-cloudpickle compatibility
__A : List[Any] = pytest.mark.skipif(
config.DILL_VERSION <= version.parse('0.3.2'),
reason='test requires dill>0.3.2 for cloudpickle compatibility',
)
# Windows
__A : List[str] = pytest.mark.skipif(
sys.platform == 'win32',
reason='test should not be run on Windows',
)
def __a ( A__ : Tuple ):
try:
import faiss # noqa
except ImportError:
SCREAMING_SNAKE_CASE = unittest.skip("test requires faiss" )(lowerCAmelCase_ )
return test_case
def __a ( A__ : List[Any] ):
try:
import regex # noqa
except ImportError:
SCREAMING_SNAKE_CASE = unittest.skip("test requires regex" )(lowerCAmelCase_ )
return test_case
def __a ( A__ : str ):
try:
import elasticsearch # noqa
except ImportError:
SCREAMING_SNAKE_CASE = unittest.skip("test requires elasticsearch" )(lowerCAmelCase_ )
return test_case
def __a ( A__ : str ):
try:
import sqlalchemy # noqa
except ImportError:
SCREAMING_SNAKE_CASE = unittest.skip("test requires sqlalchemy" )(lowerCAmelCase_ )
return test_case
def __a ( A__ : Union[str, Any] ):
if not config.TORCH_AVAILABLE:
SCREAMING_SNAKE_CASE = unittest.skip("test requires PyTorch" )(lowerCAmelCase_ )
return test_case
def __a ( A__ : List[str] ):
if not config.TF_AVAILABLE:
SCREAMING_SNAKE_CASE = unittest.skip("test requires TensorFlow" )(lowerCAmelCase_ )
return test_case
def __a ( A__ : List[str] ):
if not config.JAX_AVAILABLE:
SCREAMING_SNAKE_CASE = unittest.skip("test requires JAX" )(lowerCAmelCase_ )
return test_case
def __a ( A__ : Dict ):
if not config.PIL_AVAILABLE:
SCREAMING_SNAKE_CASE = unittest.skip("test requires Pillow" )(lowerCAmelCase_ )
return test_case
def __a ( A__ : Tuple ):
try:
import transformers # noqa F401
except ImportError:
return unittest.skip("test requires transformers" )(lowerCAmelCase_ )
else:
return test_case
def __a ( A__ : Optional[Any] ):
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip("test requires tiktoken" )(lowerCAmelCase_ )
else:
return test_case
def __a ( A__ : List[str] ):
try:
import spacy # noqa F401
except ImportError:
return unittest.skip("test requires spacy" )(lowerCAmelCase_ )
else:
return test_case
def __a ( A__ : Optional[int] ):
def _require_spacy_model(A__ : List[Any] ):
try:
import spacy # noqa F401
spacy.load(lowerCAmelCase_ )
except ImportError:
return unittest.skip("test requires spacy" )(lowerCAmelCase_ )
except OSError:
return unittest.skip("test requires spacy model '{}'".format(lowerCAmelCase_ ) )(lowerCAmelCase_ )
else:
return test_case
return _require_spacy_model
def __a ( A__ : Union[str, Any] ):
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip("test requires pyspark" )(lowerCAmelCase_ )
else:
return test_case
def __a ( A__ : Optional[Any] ):
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip("test requires joblibspark" )(lowerCAmelCase_ )
else:
return test_case
def __a ( A__ : Optional[int] ):
if not _run_slow_tests or _run_slow_tests == 0:
SCREAMING_SNAKE_CASE = unittest.skip("test is slow" )(lowerCAmelCase_ )
return test_case
def __a ( A__ : Optional[int] ):
if not _run_local_tests or _run_local_tests == 0:
SCREAMING_SNAKE_CASE = unittest.skip("test is local" )(lowerCAmelCase_ )
return test_case
def __a ( A__ : str ):
if not _run_packaged_tests or _run_packaged_tests == 0:
SCREAMING_SNAKE_CASE = unittest.skip("test is packaged" )(lowerCAmelCase_ )
return test_case
def __a ( A__ : Tuple ):
if not _run_remote_tests or _run_remote_tests == 0:
SCREAMING_SNAKE_CASE = unittest.skip("test requires remote" )(lowerCAmelCase_ )
return test_case
def __a ( *A__ : Any ):
def decorate(cls : Dict ):
for name, fn in cls.__dict__.items():
if callable(lowerCAmelCase_ ) and name.startswith("test" ):
for decorator in decorators:
SCREAMING_SNAKE_CASE = decorator(lowerCAmelCase_ )
setattr(cls , lowerCAmelCase_ , lowerCAmelCase_ )
return cls
return decorate
class _SCREAMING_SNAKE_CASE ( __lowerCamelCase ):
'''simple docstring'''
pass
class _SCREAMING_SNAKE_CASE ( __lowerCamelCase ):
'''simple docstring'''
lowerCamelCase__ = 0
lowerCamelCase__ = 1
lowerCamelCase__ = 2
@contextmanager
def __a ( A__ : Tuple=OfflineSimulationMode.CONNECTION_FAILS , A__ : Any=1E-1_6 ):
SCREAMING_SNAKE_CASE = requests.Session().request
def timeout_request(A__ : str , A__ : List[str] , A__ : str , **A__ : Union[str, Any] ):
# Change the url to an invalid url so that the connection hangs
SCREAMING_SNAKE_CASE = "https://10.255.255.1"
if kwargs.get("timeout" ) is None:
raise RequestWouldHangIndefinitelyError(
F"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." )
SCREAMING_SNAKE_CASE = timeout
try:
return online_request(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
SCREAMING_SNAKE_CASE = url
SCREAMING_SNAKE_CASE = e.args[0]
SCREAMING_SNAKE_CASE = (max_retry_error.args[0].replace("10.255.255.1" , F"OfflineMock[{url}]" ),)
SCREAMING_SNAKE_CASE = (max_retry_error,)
raise
def raise_connection_error(A__ : List[Any] , A__ : List[Any] , **A__ : str ):
raise requests.ConnectionError("Offline mode is enabled." , request=lowerCAmelCase_ )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch("requests.Session.send" , lowerCAmelCase_ ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch("requests.Session.request" , lowerCAmelCase_ ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch("datasets.config.HF_DATASETS_OFFLINE" , lowerCAmelCase_ ):
yield
else:
raise ValueError("Please use a value from the OfflineSimulationMode enum." )
@contextmanager
def __a ( *A__ : Union[str, Any] , **A__ : Tuple ):
SCREAMING_SNAKE_CASE = str(Path().resolve() )
with tempfile.TemporaryDirectory(*lowerCAmelCase_ , **lowerCAmelCase_ ) as tmp_dir:
try:
os.chdir(lowerCAmelCase_ )
yield
finally:
os.chdir(lowerCAmelCase_ )
@contextmanager
def __a ( ):
import gc
gc.collect()
SCREAMING_SNAKE_CASE = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def __a ( ):
import gc
gc.collect()
SCREAMING_SNAKE_CASE = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def __a ( A__ : List[str] , A__ : List[Any] ):
return deepcopy(lowerCAmelCase_ ).integers(0 , 100 , 10 ).tolist() == deepcopy(lowerCAmelCase_ ).integers(0 , 100 , 10 ).tolist()
def __a ( A__ : List[str] ):
import decorator
from requests.exceptions import HTTPError
def _wrapper(A__ : Dict , *A__ : List[Any] , **A__ : Union[str, Any] ):
try:
return func(*lowerCAmelCase_ , **lowerCAmelCase_ )
except HTTPError as err:
if str(lowerCAmelCase_ ).startswith("500" ) or str(lowerCAmelCase_ ).startswith("502" ):
pytest.xfail(str(lowerCAmelCase_ ) )
raise err
return decorator.decorator(_wrapper , lowerCAmelCase_ )
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE = returncode
SCREAMING_SNAKE_CASE = stdout
SCREAMING_SNAKE_CASE = stderr
async def __a ( A__ : List[Any] , A__ : Tuple ):
while True:
SCREAMING_SNAKE_CASE = await stream.readline()
if line:
callback(lowerCAmelCase_ )
else:
break
async def __a ( A__ : Any , A__ : Any=None , A__ : Optional[int]=None , A__ : List[str]=None , A__ : Any=False , A__ : List[Any]=False ):
if echo:
print("\nRunning: " , " ".join(lowerCAmelCase_ ) )
SCREAMING_SNAKE_CASE = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=lowerCAmelCase_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCAmelCase_ , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
def tee(A__ : str , A__ : Any , A__ : Tuple , A__ : Tuple="" ):
SCREAMING_SNAKE_CASE = line.decode("utf-8" ).rstrip()
sink.append(lowerCAmelCase_ )
if not quiet:
print(lowerCAmelCase_ , lowerCAmelCase_ , file=lowerCAmelCase_ )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout , lambda A__ : tee(lowerCAmelCase_ , lowerCAmelCase_ , sys.stdout , label="stdout:" ) ),
_read_stream(p.stderr , lambda A__ : tee(lowerCAmelCase_ , lowerCAmelCase_ , sys.stderr , label="stderr:" ) ),
] , timeout=lowerCAmelCase_ , )
return _RunOutput(await p.wait() , lowerCAmelCase_ , lowerCAmelCase_ )
def __a ( A__ : Optional[Any] , A__ : List[str]=None , A__ : List[Any]=None , A__ : Union[str, Any]=180 , A__ : str=False , A__ : Optional[int]=True ):
SCREAMING_SNAKE_CASE = asyncio.get_event_loop()
SCREAMING_SNAKE_CASE = loop.run_until_complete(
_stream_subprocess(lowerCAmelCase_ , env=lowerCAmelCase_ , stdin=lowerCAmelCase_ , timeout=lowerCAmelCase_ , quiet=lowerCAmelCase_ , echo=lowerCAmelCase_ ) )
SCREAMING_SNAKE_CASE = " ".join(lowerCAmelCase_ )
if result.returncode > 0:
SCREAMING_SNAKE_CASE = "\n".join(result.stderr )
raise RuntimeError(
F"'{cmd_str}' failed with returncode {result.returncode}\n\n"
F"The combined stderr from workers follows:\n{stderr}" )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(F"'{cmd_str}' produced no output." )
return result
def __a ( ):
SCREAMING_SNAKE_CASE = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" )
SCREAMING_SNAKE_CASE = re.sub(R"^gw" , "" , lowerCAmelCase_ , 0 , re.M )
return int(lowerCAmelCase_ )
def __a ( ):
SCREAMING_SNAKE_CASE = 29500
SCREAMING_SNAKE_CASE = pytest_xdist_worker_id()
return port + uniq_delta | 707 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@slow
@require_torch
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" )
SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" )
SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size
SCREAMING_SNAKE_CASE = tokenizer.sep_token_id
SCREAMING_SNAKE_CASE = tokenizer.cls_token_id
SCREAMING_SNAKE_CASE = 128
SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" )
SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" )
SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) )
SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) )
SCREAMING_SNAKE_CASE = 4
def _map_to_encoder_decoder_inputs(__lowerCamelCase : str ):
# Tokenizer will automatically set [BOS] <text> [EOS]
SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=__lowerCamelCase , max_length=512 )
SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=__lowerCamelCase , max_length=128 )
SCREAMING_SNAKE_CASE = inputs.input_ids
SCREAMING_SNAKE_CASE = inputs.attention_mask
SCREAMING_SNAKE_CASE = outputs.input_ids
SCREAMING_SNAKE_CASE = outputs.input_ids.copy()
SCREAMING_SNAKE_CASE = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
]
SCREAMING_SNAKE_CASE = outputs.attention_mask
assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids )
assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(__lowerCamelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE = pred.label_ids
SCREAMING_SNAKE_CASE = pred.predictions
# all unnecessary tokens are removed
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase )
return {"accuracy": accuracy}
# map train dataset
SCREAMING_SNAKE_CASE = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , )
train_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
# same for validation dataset
SCREAMING_SNAKE_CASE = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , )
val_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments(
output_dir=__lowerCamelCase , per_device_train_batch_size=__lowerCamelCase , per_device_eval_batch_size=__lowerCamelCase , predict_with_generate=__lowerCamelCase , evaluation_strategy="steps" , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
SCREAMING_SNAKE_CASE = SeqaSeqTrainer(
model=__lowerCamelCase , args=__lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , tokenizer=__lowerCamelCase , )
# start training
trainer.train() | 698 | 0 |
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
__A : Any = logging.get_logger('transformers.models.speecht5')
def __a ( A__ : Tuple , A__ : Dict , A__ : List[Any] ):
hf_model.apply_weight_norm()
SCREAMING_SNAKE_CASE = checkpoint["input_conv.weight_g"]
SCREAMING_SNAKE_CASE = checkpoint["input_conv.weight_v"]
SCREAMING_SNAKE_CASE = checkpoint["input_conv.bias"]
for i in range(len(config.upsample_rates ) ):
SCREAMING_SNAKE_CASE = checkpoint[F"upsamples.{i}.1.weight_g"]
SCREAMING_SNAKE_CASE = checkpoint[F"upsamples.{i}.1.weight_v"]
SCREAMING_SNAKE_CASE = checkpoint[F"upsamples.{i}.1.bias"]
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
SCREAMING_SNAKE_CASE = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"]
SCREAMING_SNAKE_CASE = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"]
SCREAMING_SNAKE_CASE = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"]
SCREAMING_SNAKE_CASE = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"]
SCREAMING_SNAKE_CASE = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"]
SCREAMING_SNAKE_CASE = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"]
SCREAMING_SNAKE_CASE = checkpoint["output_conv.1.weight_g"]
SCREAMING_SNAKE_CASE = checkpoint["output_conv.1.weight_v"]
SCREAMING_SNAKE_CASE = checkpoint["output_conv.1.bias"]
hf_model.remove_weight_norm()
@torch.no_grad()
def __a ( A__ : Optional[Any] , A__ : int , A__ : Tuple , A__ : Optional[int]=None , A__ : List[Any]=None , ):
if config_path is not None:
SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig.from_pretrained(_snake_case )
else:
SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig()
SCREAMING_SNAKE_CASE = SpeechTaHifiGan(_snake_case )
SCREAMING_SNAKE_CASE = torch.load(_snake_case )
load_weights(orig_checkpoint["model"]["generator"] , _snake_case , _snake_case )
SCREAMING_SNAKE_CASE = np.load(_snake_case )
SCREAMING_SNAKE_CASE = stats[0].reshape(-1 )
SCREAMING_SNAKE_CASE = stats[1].reshape(-1 )
SCREAMING_SNAKE_CASE = torch.from_numpy(_snake_case ).float()
SCREAMING_SNAKE_CASE = torch.from_numpy(_snake_case ).float()
model.save_pretrained(_snake_case )
if repo_id:
print("Pushing to the hub..." )
model.push_to_hub(_snake_case )
if __name__ == "__main__":
__A : int = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint')
parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
__A : Optional[Any] = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
) | 708 |
import inspect
import unittest
import warnings
from math import ceil, floor
from transformers import LevitConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
LevitForImageClassification,
LevitForImageClassificationWithTeacher,
LevitModel,
)
from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) )
self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) )
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ):
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = kernel_size
SCREAMING_SNAKE_CASE = stride
SCREAMING_SNAKE_CASE = padding
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = key_dim
SCREAMING_SNAKE_CASE = drop_path_rate
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = attention_ratio
SCREAMING_SNAKE_CASE = mlp_ratio
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = [
["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = num_labels
SCREAMING_SNAKE_CASE = initializer_range
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels )
SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def _snake_case ( self : List[str] ):
return LevitConfig(
image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , )
def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE = model(__lowerCamelCase )
SCREAMING_SNAKE_CASE = (self.image_size, self.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , )
def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ):
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs
SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (
(LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher)
if is_torch_available()
else ()
)
lowerCamelCase__ = (
{
"feature-extraction": LevitModel,
"image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = LevitModelTester(self )
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def _snake_case ( self : Any ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _snake_case ( self : Any ):
return
@unittest.skip(reason="Levit does not use inputs_embeds" )
def _snake_case ( self : Union[str, Any] ):
pass
@unittest.skip(reason="Levit does not support input and output embeddings" )
def _snake_case ( self : Tuple ):
pass
@unittest.skip(reason="Levit does not output attentions" )
def _snake_case ( self : Tuple ):
pass
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _snake_case ( self : List[Any] ):
def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
SCREAMING_SNAKE_CASE = outputs.hidden_states
SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE = floor(
(
(height + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
SCREAMING_SNAKE_CASE = floor(
(
(width + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [
height * width,
self.model_tester.hidden_sizes[0],
] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def _snake_case ( self : int ):
pass
def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ):
SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
def _snake_case ( self : List[Any] ):
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
# LevitForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(__lowerCamelCase )
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
loss.backward()
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
# LevitForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
continue
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.gradient_checkpointing_enable()
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
loss.backward()
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(__lowerCamelCase ),
]
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ):
SCREAMING_SNAKE_CASE = problem_type["title"]
SCREAMING_SNAKE_CASE = problem_type["num_labels"]
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if problem_type["num_labels"] > 1:
SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] )
SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list:
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
f"Something is going wrong in the regression problem: intercepted {w.message}" )
loss.backward()
@slow
def _snake_case ( self : List[Any] ):
for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def __a ( ):
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _snake_case ( self : Dict ):
return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.default_image_processor
SCREAMING_SNAKE_CASE = prepare_img()
SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase )
# verify the logits
SCREAMING_SNAKE_CASE = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) | 698 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__A : Any = logging.get_logger(__name__)
__A : Dict = {
'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json',
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ):
'''simple docstring'''
lowerCamelCase__ = "yolos"
def __init__( self : Any , __lowerCamelCase : Tuple=768 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : Dict=3072 , __lowerCamelCase : Union[str, Any]="gelu" , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.02 , __lowerCamelCase : Union[str, Any]=1e-12 , __lowerCamelCase : List[Any]=[512, 864] , __lowerCamelCase : Union[str, Any]=16 , __lowerCamelCase : Any=3 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : List[str]=100 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Dict=False , __lowerCamelCase : Any=1 , __lowerCamelCase : Any=5 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Union[str, Any]=0.1 , **__lowerCamelCase : Dict , ):
super().__init__(**_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = qkv_bias
SCREAMING_SNAKE_CASE = num_detection_tokens
SCREAMING_SNAKE_CASE = use_mid_position_embeddings
SCREAMING_SNAKE_CASE = auxiliary_loss
# Hungarian matcher
SCREAMING_SNAKE_CASE = class_cost
SCREAMING_SNAKE_CASE = bbox_cost
SCREAMING_SNAKE_CASE = giou_cost
# Loss coefficients
SCREAMING_SNAKE_CASE = bbox_loss_coefficient
SCREAMING_SNAKE_CASE = giou_loss_coefficient
SCREAMING_SNAKE_CASE = eos_coefficient
class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ):
'''simple docstring'''
lowerCamelCase__ = version.parse("1.11" )
@property
def _snake_case ( self : List[str] ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self : Dict ):
return 1e-4
@property
def _snake_case ( self : str ):
return 12 | 709 |
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ):
return None
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ):
return None
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = [
# (model_name, model_kwargs)
("bert-base-cased", {}),
("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def _snake_case ( self : List[Any] ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase )
@require_torch
@slow
def _snake_case ( self : List[Any] ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase )
@require_torch
@slow
def _snake_case ( self : Optional[int] ):
from transformers import BertModel
SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"]
with NamedTemporaryFile(mode="w+t" ) as vocab_file:
vocab_file.write("\n".join(__lowerCamelCase ) )
vocab_file.flush()
SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) )
model.save_pretrained(__lowerCamelCase )
self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase )
@require_tf
@slow
def _snake_case ( self : Any ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
@require_torch
@slow
def _snake_case ( self : Any ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ):
try:
# Compute path
with TemporaryDirectory() as tempdir:
SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
return path
except Exception as e:
self.fail(__lowerCamelCase )
@require_torch
@require_tokenizers
@slow
def _snake_case ( self : Dict ):
from transformers import BertModel
SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" )
@require_tf
@require_tokenizers
@slow
def _snake_case ( self : int ):
from transformers import TFBertModel
SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" )
def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase )
# Assert all variables are present
self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase )
self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} )
self.assertDictEqual(shapes["output_1"] , {0: "batch"} )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"]
SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]}
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__lowerCamelCase ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(len(__lowerCamelCase ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens["input_ids"] )
self.assertEqual(ordered_input_names[0] , "input_ids" )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" )
self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() ) | 698 | 0 |
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
__A : str = logging.get_logger(__name__)
def __a ( A__ : Any ):
SCREAMING_SNAKE_CASE = MobileNetVaConfig(layer_norm_eps=0.0_0_1 )
if "_quant" in model_name:
raise ValueError("Quantized models are not supported." )
SCREAMING_SNAKE_CASE = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , A_ )
if matches:
SCREAMING_SNAKE_CASE = float(matches[1] )
SCREAMING_SNAKE_CASE = int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
SCREAMING_SNAKE_CASE = 1001
SCREAMING_SNAKE_CASE = "imagenet-1k-id2label.json"
SCREAMING_SNAKE_CASE = "huggingface/label-files"
SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(A_ , A_ , repo_type="dataset" ) , "r" ) )
SCREAMING_SNAKE_CASE = {int(A_ ) + 1: v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE = "background"
SCREAMING_SNAKE_CASE = idalabel
SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()}
return config
def __a ( ):
SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg"
SCREAMING_SNAKE_CASE = Image.open(requests.get(A_ , stream=A_ ).raw )
return im
@torch.no_grad()
def __a ( A__ : str , A__ : List[str] , A__ : Dict , A__ : Optional[int]=False ):
SCREAMING_SNAKE_CASE = get_mobilenet_va_config(A_ )
# Load 🤗 model
SCREAMING_SNAKE_CASE = MobileNetVaForImageClassification(A_ ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(A_ , A_ , A_ )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
SCREAMING_SNAKE_CASE = MobileNetVaImageProcessor(
crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , )
SCREAMING_SNAKE_CASE = image_processor(images=prepare_img() , return_tensors="pt" )
SCREAMING_SNAKE_CASE = model(**A_ )
SCREAMING_SNAKE_CASE = outputs.logits
assert logits.shape == (1, 1001)
if model_name == "mobilenet_v1_1.0_224":
SCREAMING_SNAKE_CASE = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] )
elif model_name == "mobilenet_v1_0.75_192":
SCREAMING_SNAKE_CASE = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] )
else:
SCREAMING_SNAKE_CASE = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3] , A_ , atol=1E-4 )
Path(A_ ).mkdir(exist_ok=A_ )
print(F"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(A_ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(A_ )
if push_to_hub:
print("Pushing to the hub..." )
SCREAMING_SNAKE_CASE = "google/" + model_name
image_processor.push_to_hub(A_ )
model.push_to_hub(A_ )
if __name__ == "__main__":
__A : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='mobilenet_v1_1.0_224',
type=str,
help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.',
)
parser.add_argument(
'--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
__A : str = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 710 |
from manim import *
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 )
SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("CPU" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("GPU" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
gpu.move_to([-1, -1, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("Model" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
model.move_to([3, -1.0, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = []
for i, rect in enumerate(__lowerCamelCase ):
rect.set_stroke(__lowerCamelCase )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 )
self.add(__lowerCamelCase )
cpu_targs.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("Loaded Checkpoint" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
SCREAMING_SNAKE_CASE = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
SCREAMING_SNAKE_CASE = MarkupText(
f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = MarkupText(
f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , )
blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
SCREAMING_SNAKE_CASE = MarkupText(
f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) )
self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) )
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
for i, rect in enumerate(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 )
target.move_to(__lowerCamelCase )
first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) )
SCREAMING_SNAKE_CASE = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) )
self.play(*__lowerCamelCase )
self.play(*__lowerCamelCase )
self.wait() | 698 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__A : List[str] = logging.get_logger(__name__)
def __a ( A__ : Dict ):
if isinstance(A__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(A__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(A__ ):
return [[videos]]
raise ValueError(F"Could not make batched video from {videos}" )
class _SCREAMING_SNAKE_CASE ( snake_case__ ):
'''simple docstring'''
lowerCamelCase__ = ['''pixel_values''']
def __init__( self : List[str] , __lowerCamelCase : Optional[int] = True , __lowerCamelCase : Tuple = None , __lowerCamelCase : List[str] = PILImageResampling.BILINEAR , __lowerCamelCase : Any = True , __lowerCamelCase : List[Any] = None , __lowerCamelCase : Dict = True , __lowerCamelCase : int = 1 / 255 , __lowerCamelCase : Tuple = True , __lowerCamelCase : int = None , __lowerCamelCase : Tuple = None , **__lowerCamelCase : Optional[int] , ):
super().__init__(**_A )
SCREAMING_SNAKE_CASE = size if size is not None else {'shortest_edge': 224}
SCREAMING_SNAKE_CASE = get_size_dict(_A , default_to_square=_A )
SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {'height': 224, 'width': 224}
SCREAMING_SNAKE_CASE = get_size_dict(_A , param_name="crop_size" )
SCREAMING_SNAKE_CASE = do_resize
SCREAMING_SNAKE_CASE = size
SCREAMING_SNAKE_CASE = do_center_crop
SCREAMING_SNAKE_CASE = crop_size
SCREAMING_SNAKE_CASE = resample
SCREAMING_SNAKE_CASE = do_rescale
SCREAMING_SNAKE_CASE = rescale_factor
SCREAMING_SNAKE_CASE = do_normalize
SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _snake_case ( self : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] = PILImageResampling.BILINEAR , __lowerCamelCase : int = None , **__lowerCamelCase : List[str] , ):
SCREAMING_SNAKE_CASE = get_size_dict(_A , default_to_square=_A )
if "shortest_edge" in size:
SCREAMING_SNAKE_CASE = get_resize_output_image_size(_A , size["shortest_edge"] , default_to_square=_A )
elif "height" in size and "width" in size:
SCREAMING_SNAKE_CASE = (size['height'], size['width'])
else:
raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
return resize(_A , size=_A , resample=_A , data_format=_A , **_A )
def _snake_case ( self : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : Any = None , **__lowerCamelCase : str , ):
SCREAMING_SNAKE_CASE = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(_A , size=(size["height"], size["width"]) , data_format=_A , **_A )
def _snake_case ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] = None , **__lowerCamelCase : Dict , ):
return rescale(_A , scale=_A , data_format=_A , **_A )
def _snake_case ( self : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] = None , **__lowerCamelCase : Dict , ):
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def _snake_case ( self : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple = None , __lowerCamelCase : Optional[Any] = None , __lowerCamelCase : Tuple = None , __lowerCamelCase : Tuple = None , __lowerCamelCase : Dict = None , __lowerCamelCase : List[str] = None , __lowerCamelCase : Union[str, Any] = None , __lowerCamelCase : Tuple = None , __lowerCamelCase : Any = None , __lowerCamelCase : Optional[Any] = None , __lowerCamelCase : Tuple = ChannelDimension.FIRST , ):
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE = to_numpy_array(_A )
if do_resize:
SCREAMING_SNAKE_CASE = self.resize(image=_A , size=_A , resample=_A )
if do_center_crop:
SCREAMING_SNAKE_CASE = self.center_crop(_A , size=_A )
if do_rescale:
SCREAMING_SNAKE_CASE = self.rescale(image=_A , scale=_A )
if do_normalize:
SCREAMING_SNAKE_CASE = self.normalize(image=_A , mean=_A , std=_A )
SCREAMING_SNAKE_CASE = to_channel_dimension_format(_A , _A )
return image
def _snake_case ( self : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any = None , __lowerCamelCase : Union[str, Any] = None , __lowerCamelCase : Union[str, Any] = None , __lowerCamelCase : List[Any] = None , __lowerCamelCase : int = None , __lowerCamelCase : Dict = None , __lowerCamelCase : Dict = None , __lowerCamelCase : List[Any] = None , __lowerCamelCase : Union[str, Any] = None , __lowerCamelCase : Union[str, Any] = None , __lowerCamelCase : List[Any] = None , __lowerCamelCase : List[Any] = ChannelDimension.FIRST , **__lowerCamelCase : Any , ):
SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize
SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample
SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop
SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize
SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean
SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std
SCREAMING_SNAKE_CASE = size if size is not None else self.size
SCREAMING_SNAKE_CASE = get_size_dict(_A , default_to_square=_A )
SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size
SCREAMING_SNAKE_CASE = get_size_dict(_A , param_name="crop_size" )
if not valid_images(_A ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
SCREAMING_SNAKE_CASE = make_batched(_A )
SCREAMING_SNAKE_CASE = [
[
self._preprocess_image(
image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , )
for img in video
]
for video in videos
]
SCREAMING_SNAKE_CASE = {'pixel_values': videos}
return BatchFeature(data=_A , tensor_type=_A ) | 711 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
@staticmethod
def _snake_case ( *__lowerCamelCase : Any , **__lowerCamelCase : Any ):
pass
@is_pipeline_test
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@require_torch
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(__lowerCamelCase ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
] , )
@require_tf
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
] , )
@slow
@require_torch
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , ) | 698 | 0 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]=13 , __lowerCamelCase : int=32 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : int=3 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : str=[32, 64, 128] , __lowerCamelCase : List[Any]=[1, 2, 1] , __lowerCamelCase : Optional[int]=[2, 2, 4] , __lowerCamelCase : Any=2 , __lowerCamelCase : Any=2.0 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=0.0 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Union[str, Any]="gelu" , __lowerCamelCase : Dict=False , __lowerCamelCase : List[str]=True , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : str=1e-5 , __lowerCamelCase : List[str]=True , __lowerCamelCase : List[str]=None , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=10 , __lowerCamelCase : List[str]=8 , __lowerCamelCase : List[Any]=["stage1", "stage2"] , __lowerCamelCase : Optional[int]=[1, 2] , ):
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = embed_dim
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = num_heads
SCREAMING_SNAKE_CASE = window_size
SCREAMING_SNAKE_CASE = mlp_ratio
SCREAMING_SNAKE_CASE = qkv_bias
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = drop_path_rate
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = use_absolute_embeddings
SCREAMING_SNAKE_CASE = patch_norm
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = scope
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = type_sequence_label_size
SCREAMING_SNAKE_CASE = encoder_stride
SCREAMING_SNAKE_CASE = out_features
SCREAMING_SNAKE_CASE = out_indices
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def _snake_case ( self : int ):
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def _snake_case ( self : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = FocalNetModel(config=__a )
model.to(__a )
model.eval()
SCREAMING_SNAKE_CASE = model(__a )
SCREAMING_SNAKE_CASE = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
SCREAMING_SNAKE_CASE = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def _snake_case ( self : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = FocalNetBackbone(config=__a )
model.to(__a )
model.eval()
SCREAMING_SNAKE_CASE = model(__a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = FocalNetBackbone(config=__a )
model.to(__a )
model.eval()
SCREAMING_SNAKE_CASE = model(__a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ):
SCREAMING_SNAKE_CASE = FocalNetForMaskedImageModeling(config=__a )
model.to(__a )
model.eval()
SCREAMING_SNAKE_CASE = model(__a )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = FocalNetForMaskedImageModeling(__a )
model.to(__a )
model.eval()
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE = model(__a )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _snake_case ( self : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = self.type_sequence_label_size
SCREAMING_SNAKE_CASE = FocalNetForImageClassification(__a )
model.to(__a )
model.eval()
SCREAMING_SNAKE_CASE = model(__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = FocalNetForImageClassification(__a )
model.to(__a )
model.eval()
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs
SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase__ = (
{"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = FocalNetModelTester(self )
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__a , embed_dim=37 , has_text_modality=__a )
def _snake_case ( self : Dict ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _snake_case ( self : List[Any] ):
return
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__a )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__a )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__a )
@unittest.skip(reason="FocalNet does not use inputs_embeds" )
def _snake_case ( self : Tuple ):
pass
@unittest.skip(reason="FocalNet does not use feedforward chunking" )
def _snake_case ( self : Optional[Any] ):
pass
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
SCREAMING_SNAKE_CASE = model_class(__a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
SCREAMING_SNAKE_CASE = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__a , nn.Linear ) )
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
SCREAMING_SNAKE_CASE = model_class(__a )
SCREAMING_SNAKE_CASE = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __a )
def _snake_case ( self : Any , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] ):
SCREAMING_SNAKE_CASE = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__a , __a ) )
SCREAMING_SNAKE_CASE = outputs.hidden_states
SCREAMING_SNAKE_CASE = getattr(
self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__a ) , __a )
# FocalNet has a different seq_length
SCREAMING_SNAKE_CASE = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
SCREAMING_SNAKE_CASE = outputs.reshaped_hidden_states
self.assertEqual(len(__a ) , __a )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = reshaped_hidden_states[0].shape
SCREAMING_SNAKE_CASE = (
reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
SCREAMING_SNAKE_CASE = True
self.check_hidden_states_output(__a , __a , __a , __a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE = True
self.check_hidden_states_output(__a , __a , __a , __a )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = 3
SCREAMING_SNAKE_CASE = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
SCREAMING_SNAKE_CASE = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
SCREAMING_SNAKE_CASE = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
SCREAMING_SNAKE_CASE = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
SCREAMING_SNAKE_CASE = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
@slow
def _snake_case ( self : List[Any] ):
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = FocalNetModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = _config_zero_init(__a )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(config=__a )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , )
@require_vision
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _snake_case ( self : Optional[Any] ):
return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None
@slow
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__a )
SCREAMING_SNAKE_CASE = self.default_image_processor
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_processor(images=__a , return_tensors="pt" ).to(__a )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**__a )
# verify the logits
SCREAMING_SNAKE_CASE = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __a )
SCREAMING_SNAKE_CASE = torch.tensor([0.2_166, -0.4_368, 0.2_191] ).to(__a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 )
@require_torch
class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (FocalNetBackbone,) if is_torch_available() else ()
lowerCamelCase__ = FocalNetConfig
lowerCamelCase__ = False
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = FocalNetModelTester(self )
| 712 |
__A : dict[str, float] = {
"joule": 1.0,
"kilojoule": 1_0_0_0,
"megajoule": 1_0_0_0_0_0_0,
"gigajoule": 1_0_0_0_0_0_0_0_0_0,
"wattsecond": 1.0,
"watthour": 3_6_0_0,
"kilowatthour": 3_6_0_0_0_0_0,
"newtonmeter": 1.0,
"calorie_nutr": 4_1_8_6.8,
"kilocalorie_nutr": 4_1_8_6_8_0_0.0_0,
"electronvolt": 1.6_0217_6634e-19,
"britishthermalunit_it": 1_0_5_5.0_5_5_8_5,
"footpound": 1.355_818,
}
def __a ( A__ : str , A__ : str , A__ : float ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
SCREAMING_SNAKE_CASE = (
F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
F"Valid values are: {', '.join(A__ )}"
)
raise ValueError(A__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 | 0 |
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=13 , __lowerCamelCase : Union[str, Any]=30 , __lowerCamelCase : Any=2 , __lowerCamelCase : str=3 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : Any=4 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Any=10 , __lowerCamelCase : str=0.02 , __lowerCamelCase : int=3 , __lowerCamelCase : Optional[int]=None , ):
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = type_sequence_label_size
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2
SCREAMING_SNAKE_CASE = num_patches + 1
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def _snake_case ( self : List[Any] ):
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , )
def _snake_case ( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = TFViTModel(config=lowerCamelCase_ )
SCREAMING_SNAKE_CASE = model(lowerCamelCase_ , training=lowerCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
SCREAMING_SNAKE_CASE = self.image_size // 2
SCREAMING_SNAKE_CASE = pixel_values[:, :, :image_size, :image_size]
SCREAMING_SNAKE_CASE = model(lowerCamelCase_ , interpolate_pos_encoding=lowerCamelCase_ , training=lowerCamelCase_ )
SCREAMING_SNAKE_CASE = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) )
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.type_sequence_label_size
SCREAMING_SNAKE_CASE = TFViTForImageClassification(lowerCamelCase_ )
SCREAMING_SNAKE_CASE = model(lowerCamelCase_ , labels=lowerCamelCase_ , training=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
SCREAMING_SNAKE_CASE = self.image_size // 2
SCREAMING_SNAKE_CASE = pixel_values[:, :, :image_size, :image_size]
SCREAMING_SNAKE_CASE = model(lowerCamelCase_ , interpolate_pos_encoding=lowerCamelCase_ , training=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = TFViTForImageClassification(lowerCamelCase_ )
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE = model(lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE = config_and_inputs
SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
lowerCamelCase__ = (
{"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification}
if is_tf_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = TFViTModelTester(self )
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 )
def _snake_case ( self : Optional[Any] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="ViT does not use inputs_embeds" )
def _snake_case ( self : Optional[int] ):
pass
@unittest.skip(reason="ViT does not use inputs_embeds" )
def _snake_case ( self : int ):
pass
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(lowerCamelCase_ )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
SCREAMING_SNAKE_CASE = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCamelCase_ , tf.keras.layers.Layer ) )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(lowerCamelCase_ )
SCREAMING_SNAKE_CASE = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCamelCase_ )
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ )
@slow
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = TFViTModel.from_pretrained("google/vit-base-patch16-224" )
self.assertIsNotNone(lowerCamelCase_ )
def __a ( ):
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _snake_case ( self : Union[str, Any] ):
return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None
@slow
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" )
SCREAMING_SNAKE_CASE = self.default_image_processor
SCREAMING_SNAKE_CASE = prepare_img()
SCREAMING_SNAKE_CASE = image_processor(images=lowerCamelCase_ , return_tensors="tf" )
# forward pass
SCREAMING_SNAKE_CASE = model(**lowerCamelCase_ )
# verify the logits
SCREAMING_SNAKE_CASE = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , lowerCamelCase_ )
SCREAMING_SNAKE_CASE = tf.constant([-0.2_744, 0.8_215, -0.0_836] )
tf.debugging.assert_near(outputs.logits[0, :3] , lowerCamelCase_ , atol=1e-4 ) | 713 |
from collections import deque
from .hash_table import HashTable
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ):
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = deque([] ) if self.values[key] is None else self.values[key]
self.values[key].appendleft(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.values[key]
def _snake_case ( self : Union[str, Any] ):
return (
sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values )
/ self.size_table
* self.charge_factor
)
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None ):
if not (
len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0
):
return key
return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase ) | 698 | 0 |
from bisect import bisect
from itertools import accumulate
def __a ( A__ : Any , A__ : str , A__ : List[str] , A__ : Optional[int] ):
SCREAMING_SNAKE_CASE = sorted(zip(A__ , A__ ) , key=lambda A__ : x[0] / x[1] , reverse=A__ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [i[0] for i in r], [i[1] for i in r]
SCREAMING_SNAKE_CASE = list(accumulate(A__ ) )
SCREAMING_SNAKE_CASE = bisect(A__ , A__ )
return (
0
if k == 0
else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k])
if k != n
else sum(vl[:k] )
)
if __name__ == "__main__":
import doctest
doctest.testmod() | 714 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
__A : Optional[int] = logging.get_logger(__name__)
__A : int = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "gpt_neo"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__( self : str , __lowerCamelCase : Dict=50257 , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : int=24 , __lowerCamelCase : int=[[["global", "local"], 12]] , __lowerCamelCase : int=16 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=50256 , __lowerCamelCase : Optional[int]=50256 , **__lowerCamelCase : Dict , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_layers
SCREAMING_SNAKE_CASE = num_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = window_size
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = resid_dropout
SCREAMING_SNAKE_CASE = embed_dropout
SCREAMING_SNAKE_CASE = attention_dropout
SCREAMING_SNAKE_CASE = classifier_dropout
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = bos_token_id
SCREAMING_SNAKE_CASE = eos_token_id
SCREAMING_SNAKE_CASE = attention_types
SCREAMING_SNAKE_CASE = self.expand_attention_types_params(__lowerCamelCase )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.attention_layers)` == `config.num_layers` "
f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, "
f"`config.num_layers = {self.num_layers}`. "
"`config.attention_layers` is prepared using `config.attention_types`. "
"Please verify the value of `config.attention_types` argument." )
super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
@staticmethod
def _snake_case ( __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def __a ( A__ : str , A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] ):
import torch
SCREAMING_SNAKE_CASE = input.size()
SCREAMING_SNAKE_CASE = len(A__ )
SCREAMING_SNAKE_CASE = shape[dimension]
SCREAMING_SNAKE_CASE = torch.arange(0 , A__ , A__ )
SCREAMING_SNAKE_CASE = torch.div(sizedim - size , A__ , rounding_mode="floor" ) + 1
SCREAMING_SNAKE_CASE = torch.arange(A__ ) + low_indices[:min_length][:, None]
SCREAMING_SNAKE_CASE = [slice(A__ )] * rank
SCREAMING_SNAKE_CASE = indices
SCREAMING_SNAKE_CASE = input[s]
SCREAMING_SNAKE_CASE = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(A__ )
def __a ( A__ : Union[str, Any] , A__ : Optional[int] ):
import torch
SCREAMING_SNAKE_CASE = torch.arange(1 , A__ )
SCREAMING_SNAKE_CASE = torch.remainder(A__ , A__ )
SCREAMING_SNAKE_CASE = remainders == 0
SCREAMING_SNAKE_CASE = candidates[divisor_indices]
SCREAMING_SNAKE_CASE = torch.max(A__ )
return largest_divisor, torch.div(A__ , A__ , rounding_mode="floor" )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} )
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"}
else:
SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"}
return common_inputs
@property
def _snake_case ( self : Optional[int] ):
return self._config.num_heads
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
SCREAMING_SNAKE_CASE = super(__lowerCamelCase , self ).generate_dummy_inputs(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
# We need to order the input in the way they appears in the forward()
SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
SCREAMING_SNAKE_CASE = seqlen + 2
SCREAMING_SNAKE_CASE = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
SCREAMING_SNAKE_CASE = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers )
]
SCREAMING_SNAKE_CASE = common_inputs["attention_mask"]
if self.use_past:
SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype
SCREAMING_SNAKE_CASE = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
return ordered_inputs
@property
def _snake_case ( self : Optional[int] ):
return 13 | 698 | 0 |
def __a ( A__ : List[Any] = 1000000 ):
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = {1: 1}
for inputa in range(2 , lowerCamelCase__ ):
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = inputa
while True:
if number in counters:
counter += counters[number]
break
if number % 2 == 0:
number //= 2
counter += 1
else:
SCREAMING_SNAKE_CASE = (3 * number) + 1
counter += 1
if inputa not in counters:
SCREAMING_SNAKE_CASE = counter
if counter > pre_counter:
SCREAMING_SNAKE_CASE = inputa
SCREAMING_SNAKE_CASE = counter
return largest_number
if __name__ == "__main__":
print(solution(int(input().strip())))
| 715 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
__A : Any = {
'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = [
'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'LongT5EncoderModel',
'LongT5ForConditionalGeneration',
'LongT5Model',
'LongT5PreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'FlaxLongT5ForConditionalGeneration',
'FlaxLongT5Model',
'FlaxLongT5PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longta import (
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
LongTaEncoderModel,
LongTaForConditionalGeneration,
LongTaModel,
LongTaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_longta import (
FlaxLongTaForConditionalGeneration,
FlaxLongTaModel,
FlaxLongTaPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 | 0 |
import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
__A : Dict = logging.getLogger(__name__)
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "token-classification"
def __init__( self : str , __lowerCamelCase : Any ):
if type(lowercase_ ) == dict:
SCREAMING_SNAKE_CASE = Namespace(**lowercase_ )
SCREAMING_SNAKE_CASE = import_module("tasks" )
try:
SCREAMING_SNAKE_CASE = getattr(lowercase_ , hparams.task_type )
SCREAMING_SNAKE_CASE = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f"Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. "
f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" )
SCREAMING_SNAKE_CASE = self.token_classification_task.get_labels(hparams.labels )
SCREAMING_SNAKE_CASE = CrossEntropyLoss().ignore_index
super().__init__(lowercase_ , len(self.labels ) , self.mode )
def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[int] ):
return self.model(**lowercase_ )
def _snake_case ( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] ):
SCREAMING_SNAKE_CASE = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
SCREAMING_SNAKE_CASE = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
SCREAMING_SNAKE_CASE = self(**lowercase_ )
SCREAMING_SNAKE_CASE = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = self.hparams
for mode in ["train", "dev", "test"]:
SCREAMING_SNAKE_CASE = self._feature_file(lowercase_ )
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
logger.info("Loading features from cached file %s" , lowercase_ )
SCREAMING_SNAKE_CASE = torch.load(lowercase_ )
else:
logger.info("Creating features from dataset file at %s" , args.data_dir )
SCREAMING_SNAKE_CASE = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ )
SCREAMING_SNAKE_CASE = self.token_classification_task.convert_examples_to_features(
lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info("Saving features into cached file %s" , lowercase_ )
torch.save(lowercase_ , lowercase_ )
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : bool = False ):
SCREAMING_SNAKE_CASE = self._feature_file(lowercase_ )
logger.info("Loading features from cached file %s" , lowercase_ )
SCREAMING_SNAKE_CASE = torch.load(lowercase_ )
SCREAMING_SNAKE_CASE = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
SCREAMING_SNAKE_CASE = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
SCREAMING_SNAKE_CASE = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
SCREAMING_SNAKE_CASE = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
SCREAMING_SNAKE_CASE = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ )
def _snake_case ( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : str ):
"""Compute validation""" ""
SCREAMING_SNAKE_CASE = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
SCREAMING_SNAKE_CASE = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
SCREAMING_SNAKE_CASE = self(**lowercase_ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = outputs[:2]
SCREAMING_SNAKE_CASE = logits.detach().cpu().numpy()
SCREAMING_SNAKE_CASE = inputs["labels"].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def _snake_case ( self : Optional[Any] , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE = torch.stack([x["val_loss"] for x in outputs] ).mean()
SCREAMING_SNAKE_CASE = np.concatenate([x["pred"] for x in outputs] , axis=0 )
SCREAMING_SNAKE_CASE = np.argmax(lowercase_ , axis=2 )
SCREAMING_SNAKE_CASE = np.concatenate([x["target"] for x in outputs] , axis=0 )
SCREAMING_SNAKE_CASE = dict(enumerate(self.labels ) )
SCREAMING_SNAKE_CASE = [[] for _ in range(out_label_ids.shape[0] )]
SCREAMING_SNAKE_CASE = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
SCREAMING_SNAKE_CASE = {
"val_loss": val_loss_mean,
"accuracy_score": accuracy_score(lowercase_ , lowercase_ ),
"precision": precision_score(lowercase_ , lowercase_ ),
"recall": recall_score(lowercase_ , lowercase_ ),
"f1": fa_score(lowercase_ , lowercase_ ),
}
SCREAMING_SNAKE_CASE = dict(results.items() )
SCREAMING_SNAKE_CASE = results
return ret, preds_list, out_label_list
def _snake_case ( self : int , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._eval_end(lowercase_ )
SCREAMING_SNAKE_CASE = ret["log"]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def _snake_case ( self : List[Any] , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._eval_end(lowercase_ )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
SCREAMING_SNAKE_CASE = ret["log"]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def _snake_case ( __lowerCamelCase : List[str] , __lowerCamelCase : int ):
BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ )
parser.add_argument(
"--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" )
parser.add_argument(
"--max_seq_length" , default=128 , type=lowercase_ , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , )
parser.add_argument(
"--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , )
parser.add_argument(
"--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" )
return parser
if __name__ == "__main__":
__A : Optional[int] = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
__A : Optional[Any] = NERTransformer.add_model_specific_args(parser, os.getcwd())
__A : List[str] = parser.parse_args()
__A : str = NERTransformer(args)
__A : str = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
__A : Tuple = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True))
__A : Optional[int] = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model) | 716 |
import cmath
import math
def __a ( A__ : float , A__ : float , A__ : float , A__ : float ):
SCREAMING_SNAKE_CASE = math.radians(A__ )
SCREAMING_SNAKE_CASE = math.radians(A__ )
# Convert voltage and current to rectangular form
SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ )
SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 | 0 |
from importlib import import_module
from .logging import get_logger
__A : Tuple = get_logger(__name__)
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int]=None ):
SCREAMING_SNAKE_CASE = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith("__" ):
setattr(self , lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_ ) )
SCREAMING_SNAKE_CASE = module._original_module if isinstance(lowerCAmelCase_ , _PatchedModuleObj ) else module
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
lowerCamelCase__ = []
def __init__( self : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=None ):
SCREAMING_SNAKE_CASE = obj
SCREAMING_SNAKE_CASE = target
SCREAMING_SNAKE_CASE = new
SCREAMING_SNAKE_CASE = target.split("." )[0]
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = attrs or []
def __enter__( self : Any ):
*SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.target.split("." )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(lowerCAmelCase_ ) ):
try:
SCREAMING_SNAKE_CASE = import_module(".".join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
SCREAMING_SNAKE_CASE = getattr(self.obj , lowerCAmelCase_ )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(lowerCAmelCase_ , _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
SCREAMING_SNAKE_CASE = obj_attr
# patch at top level
setattr(self.obj , lowerCAmelCase_ , _PatchedModuleObj(lowerCAmelCase_ , attrs=self.attrs ) )
SCREAMING_SNAKE_CASE = getattr(self.obj , lowerCAmelCase_ )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(lowerCAmelCase_ , lowerCAmelCase_ , _PatchedModuleObj(getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , attrs=self.attrs ) )
SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase_ , lowerCAmelCase_ )
# finally set the target attribute
setattr(lowerCAmelCase_ , lowerCAmelCase_ , self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
SCREAMING_SNAKE_CASE = getattr(import_module(".".join(lowerCAmelCase_ ) ) , lowerCAmelCase_ )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj , lowerCAmelCase_ ) is attr_value:
SCREAMING_SNAKE_CASE = getattr(self.obj , lowerCAmelCase_ )
setattr(self.obj , lowerCAmelCase_ , self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
SCREAMING_SNAKE_CASE = globals()["__builtins__"][target_attr]
setattr(self.obj , lowerCAmelCase_ , self.new )
else:
raise RuntimeError(f"Tried to patch attribute {target_attr} instead of a submodule." )
def __exit__( self : str , *__lowerCamelCase : Tuple ):
for attr in list(self.original ):
setattr(self.obj , lowerCAmelCase_ , self.original.pop(lowerCAmelCase_ ) )
def _snake_case ( self : List[str] ):
self.__enter__()
self._active_patches.append(self )
def _snake_case ( self : Any ):
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__() | 717 |
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def __a ( A__ : List[str] ):
SCREAMING_SNAKE_CASE = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(A__ , A__ )
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ )
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
def __a ( A__ : Tuple , A__ : Union[str, Any]=None ):
SCREAMING_SNAKE_CASE = {}
for old_key in state_dict.keys():
SCREAMING_SNAKE_CASE = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" )
else:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts." , "ffn.experts.expert_" )
if "gate" in key:
SCREAMING_SNAKE_CASE = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" )
if "fc2" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc2." , ".ffn.fc2." )
if "fc1" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc1." , ".ffn.fc1." )
if ".encoder_attn." in key:
SCREAMING_SNAKE_CASE = key.replace(".encoder_attn." , ".cross_attention." )
if "encoder_attn_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" )
if "final_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("final_layer_norm" , "ff_layer_norm" )
SCREAMING_SNAKE_CASE = state_dict[old_key]
return new_dict
def __a ( A__ : List[str] , A__ : List[Any] , A__ : str , A__ : Union[str, Any] , A__ : str = WEIGHTS_NAME ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
os.makedirs(A__ , exist_ok=A__ )
for expert in range(A__ ):
SCREAMING_SNAKE_CASE = switch_checkpoint_path + F"-rank-{expert}.pt"
if os.path.isfile(A__ ):
SCREAMING_SNAKE_CASE = torch.load(A__ )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = os.path.join(
A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
torch.save(A__ , A__ )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(A__ )[0]].dtype )
# Add the last block
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + "-shared.pt" )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(A__ ) == 1:
SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ )
torch.save(A__ , A__ )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(A__ , A__ )
# Otherwise, let's build the index
SCREAMING_SNAKE_CASE = {}
for idx, shard in enumerate(A__ ):
SCREAMING_SNAKE_CASE = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" )
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) )
os.rename(A__ , os.path.join(A__ , A__ ) )
for key in shard:
SCREAMING_SNAKE_CASE = shard_file
# Add the metadata
SCREAMING_SNAKE_CASE = {"total_size": total_size}
SCREAMING_SNAKE_CASE = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(A__ , A__ ) , "w" , encoding="utf-8" ) as f:
SCREAMING_SNAKE_CASE = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n"
f.write(A__ )
return metadata, index
if __name__ == "__main__":
__A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--nllb_moe_checkpoint_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b',
type=str,
required=False,
help='Path to the output pytorch model.',
)
__A : Optional[int] = parser.parse_args()
__A , __A : Union[str, Any] = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_2_8,
args.dtype,
)
__A : Any = NllbMoeConfig.from_pretrained(
'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8
)
config.save_pretrained(args.pytorch_dump_folder_path)
__A : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('Done')
model.save_pretrained(args.pytorch_dump_folder_path) | 698 | 0 |
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = LongformerTokenizer
lowerCamelCase__ = True
lowerCamelCase__ = LongformerTokenizerFast
lowerCamelCase__ = True
def _snake_case ( self : str ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
SCREAMING_SNAKE_CASE = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) )
SCREAMING_SNAKE_CASE = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
SCREAMING_SNAKE_CASE = {'''unk_token''': '''<unk>'''}
SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(UpperCAmelCase__ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(UpperCAmelCase__ ) )
def _snake_case ( self : Dict , **__lowerCamelCase : Optional[int] ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase__ )
def _snake_case ( self : Any , **__lowerCamelCase : Tuple ):
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase__ )
def _snake_case ( self : Any , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE = '''lower newer'''
SCREAMING_SNAKE_CASE = '''lower newer'''
return input_text, output_text
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
SCREAMING_SNAKE_CASE = '''lower newer'''
SCREAMING_SNAKE_CASE = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase__ ) # , add_prefix_space=True)
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token]
SCREAMING_SNAKE_CASE = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ )
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=UpperCAmelCase__ ) , [0, 31414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=UpperCAmelCase__ ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , )
@slow
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" )
SCREAMING_SNAKE_CASE = tokenizer.encode("sequence builders" , add_special_tokens=UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokenizer.encode(
"sequence builders" , add_special_tokens=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokenizer.encode(
"sequence builders" , "multi-sequence build" , add_special_tokens=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = '''Encode this sequence.'''
SCREAMING_SNAKE_CASE = tokenizer.byte_encoder[''' '''.encode("utf-8" )[0]]
# Testing encoder arguments
SCREAMING_SNAKE_CASE = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(UpperCAmelCase__ , UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
tokenizer.add_special_tokens({"bos_token": "<s>"} )
SCREAMING_SNAKE_CASE = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(UpperCAmelCase__ , UpperCAmelCase__ )
# Testing spaces after special tokens
SCREAMING_SNAKE_CASE = '''<mask>'''
tokenizer.add_special_tokens(
{"mask_token": AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ )} ) # mask token has a left space
SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = '''Encode <mask> sequence'''
SCREAMING_SNAKE_CASE = '''Encode <mask>sequence'''
SCREAMING_SNAKE_CASE = tokenizer.encode(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = encoded.index(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokenizer.encode(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = encoded.index(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(UpperCAmelCase__ , UpperCAmelCase__ )
def _snake_case ( self : Optional[Any] ):
pass
def _snake_case ( self : Optional[Any] ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = '''A, <mask> AllenNLP sentence.'''
SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokenizer_p.encode_plus(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , )
SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] )
SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] )
self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] )
self.assertSequenceEqual(
UpperCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
self.assertSequenceEqual(
UpperCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
def _snake_case ( self : int ):
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
SCREAMING_SNAKE_CASE = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state["add_prefix_space"] , UpperCAmelCase__ )
self.assertEqual(post_processor_state["add_prefix_space"] , UpperCAmelCase__ )
self.assertEqual(post_processor_state["trim_offsets"] , UpperCAmelCase__ )
def _snake_case ( self : Optional[int] ):
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name`
SCREAMING_SNAKE_CASE = f"{text_of_1_token} {text_of_1_token}"
SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase__ , use_fast=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(UpperCAmelCase__ ) + 1, len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , )
SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase__ , use_fast=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(UpperCAmelCase__ ) + 1, len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , )
SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase__ , use_fast=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , )
SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase__ , use_fast=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(UpperCAmelCase__ ), len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , )
SCREAMING_SNAKE_CASE = f" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase__ , use_fast=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCAmelCase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(UpperCAmelCase__ ) + 1, 1 + len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , )
SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase__ , use_fast=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(UpperCAmelCase__ ), 1 + len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , )
SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase__ , use_fast=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ )
SCREAMING_SNAKE_CASE = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(UpperCAmelCase__ ), 1 + len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , ) | 718 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = BlipImageProcessor()
SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
def _snake_case ( self : Dict , **__lowerCamelCase : Any ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer
def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor
def _snake_case ( self : Union[str, Any] ):
shutil.rmtree(self.tmpdirname )
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 )
SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowerCamelCase )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" )
SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(__lowerCamelCase ):
processor()
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) | 698 | 0 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
__A : Tuple = """"""
__A : Optional[Any] = """"""
__A : Optional[int] = """"""
__A : int = 1 # (0 is vertical, 1 is horizontal)
def __a ( ):
SCREAMING_SNAKE_CASE = get_dataset(A__ , A__ )
print("Processing..." )
SCREAMING_SNAKE_CASE = update_image_and_anno(A__ , A__ , A__ )
for index, image in enumerate(A__ ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
SCREAMING_SNAKE_CASE = random_chars(32 )
SCREAMING_SNAKE_CASE = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0]
SCREAMING_SNAKE_CASE = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cva.imwrite(F"/{file_root}.jpg" , A__ , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F"Success {index+1}/{len(A__ )} with {file_name}" )
SCREAMING_SNAKE_CASE = []
for anno in new_annos[index]:
SCREAMING_SNAKE_CASE = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(A__ )
with open(F"/{file_root}.txt" , "w" ) as outfile:
outfile.write("\n".join(line for line in annos_list ) )
def __a ( A__ : str , A__ : int ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
for label_file in glob.glob(os.path.join(A__ , "*.txt" ) ):
SCREAMING_SNAKE_CASE = label_file.split(os.sep )[-1].rsplit("." , 1 )[0]
with open(A__ ) as in_file:
SCREAMING_SNAKE_CASE = in_file.readlines()
SCREAMING_SNAKE_CASE = os.path.join(A__ , F"{label_name}.jpg" )
SCREAMING_SNAKE_CASE = []
for obj_list in obj_lists:
SCREAMING_SNAKE_CASE = obj_list.rstrip("\n" ).split(" " )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(A__ )
labels.append(A__ )
return img_paths, labels
def __a ( A__ : Any , A__ : Optional[Any] , A__ : str = 1 ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
for idx in range(len(A__ ) ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = img_list[idx]
path_list.append(A__ )
SCREAMING_SNAKE_CASE = anno_list[idx]
SCREAMING_SNAKE_CASE = cva.imread(A__ )
if flip_type == 1:
SCREAMING_SNAKE_CASE = cva.flip(A__ , A__ )
for bbox in img_annos:
SCREAMING_SNAKE_CASE = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
SCREAMING_SNAKE_CASE = cva.flip(A__ , A__ )
for bbox in img_annos:
SCREAMING_SNAKE_CASE = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(A__ )
new_imgs_list.append(A__ )
return new_imgs_list, new_annos_lists, path_list
def __a ( A__ : Optional[int] = 32 ):
assert number_char > 1, "The number of character should greater than 1"
SCREAMING_SNAKE_CASE = ascii_lowercase + digits
return "".join(random.choice(A__ ) for _ in range(A__ ) )
if __name__ == "__main__":
main()
print('DONE ✅') | 719 |
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
@staticmethod
def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ):
pass
def __a ( A__ : str ):
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
__A : Tuple = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
SCREAMING_SNAKE_CASE = "What is the placebo?"
SCREAMING_SNAKE_CASE = [
{
"image": load_image(__lowerCamelCase ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ):
SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 )
self.assertEqual(
__lowerCamelCase , [
[
{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )},
{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )},
]
]
* 3 , )
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "How many cats are there?"
SCREAMING_SNAKE_CASE = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40},
]
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(__lowerCamelCase , [] )
# We can optionnally pass directly the words and bounding boxes
SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png"
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 )
self.assertEqual(__lowerCamelCase , [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
],
]
* 2 , )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
]
]
* 2 , )
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
# This model should also work if `image` is set to None
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 , )
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
# This model should also work if `image` is set to None
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
] , )
@slow
@require_torch
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _snake_case ( self : List[Any] ):
pass | 698 | 0 |
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="session" )
def __a ( ):
SCREAMING_SNAKE_CASE = 10
SCREAMING_SNAKE_CASE = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string" ) ),
"labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ),
"answers": datasets.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
"id": datasets.Value("int64" ),
} )
SCREAMING_SNAKE_CASE = datasets.Dataset.from_dict(
{
"tokens": [["foo"] * 5] * n,
"labels": [[1] * 5] * n,
"answers": [{"answer_start": [97], "text": ["1976"]}] * 10,
"id": list(range(__a ) ),
} , features=__a , )
return dataset
@pytest.fixture(scope="session" )
def __a ( A__ : Tuple , A__ : List[str] ):
SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp("data" ) / "file.arrow" )
dataset.map(cache_file_name=__a )
return filename
# FILE_CONTENT + files
__A : str = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope="session" )
def __a ( A__ : List[Any] ):
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "file.txt"
SCREAMING_SNAKE_CASE = FILE_CONTENT
with open(__a , "w" ) as f:
f.write(__a )
return filename
@pytest.fixture(scope="session" )
def __a ( A__ : str ):
import bza
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "file.txt.bz2"
SCREAMING_SNAKE_CASE = bytes(__a , "utf-8" )
with bza.open(__a , "wb" ) as f:
f.write(__a )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Union[str, Any] ):
import gzip
SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" )
SCREAMING_SNAKE_CASE = bytes(__a , "utf-8" )
with gzip.open(__a , "wb" ) as f:
f.write(__a )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Any ):
if datasets.config.LZ4_AVAILABLE:
import lza.frame
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "file.txt.lz4"
SCREAMING_SNAKE_CASE = bytes(__a , "utf-8" )
with lza.frame.open(__a , "wb" ) as f:
f.write(__a )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Dict , A__ : Any ):
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "file.txt.7z"
with pyazr.SevenZipFile(__a , "w" ) as archive:
archive.write(__a , arcname=os.path.basename(__a ) )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Union[str, Any] , A__ : int ):
import tarfile
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "file.txt.tar"
with tarfile.TarFile(__a , "w" ) as f:
f.add(__a , arcname=os.path.basename(__a ) )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Any ):
import lzma
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "file.txt.xz"
SCREAMING_SNAKE_CASE = bytes(__a , "utf-8" )
with lzma.open(__a , "wb" ) as f:
f.write(__a )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : List[Any] , A__ : str ):
import zipfile
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "file.txt.zip"
with zipfile.ZipFile(__a , "w" ) as f:
f.write(__a , arcname=os.path.basename(__a ) )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Dict ):
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "file.txt.zst"
SCREAMING_SNAKE_CASE = bytes(__a , "utf-8" )
with zstd.open(__a , "wb" ) as f:
f.write(__a )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : int ):
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "file.xml"
SCREAMING_SNAKE_CASE = textwrap.dedent(
"\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" )
with open(__a , "w" ) as f:
f.write(__a )
return filename
__A : List[str] = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
__A : Optional[int] = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
__A : Optional[Any] = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
__A : Optional[Any] = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
__A : Any = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope="session" )
def __a ( ):
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="session" )
def __a ( A__ : Optional[Any] ):
SCREAMING_SNAKE_CASE = datasets.Dataset.from_dict(__a )
SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" )
dataset.map(cache_file_name=__a )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Union[str, Any] ):
SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" )
with contextlib.closing(sqlitea.connect(__a ) ) as con:
SCREAMING_SNAKE_CASE = con.cursor()
cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" )
for item in DATA:
cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)" , tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="session" )
def __a ( A__ : List[str] ):
SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" )
with open(__a , "w" , newline="" ) as f:
SCREAMING_SNAKE_CASE = csv.DictWriter(__a , fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(__a )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : str ):
SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" )
with open(__a , "w" , newline="" ) as f:
SCREAMING_SNAKE_CASE = csv.DictWriter(__a , fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(__a )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Optional[int] , A__ : Union[str, Any] ):
import bza
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2"
with open(__a , "rb" ) as f:
SCREAMING_SNAKE_CASE = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(__a , "wb" ) as f:
f.write(__a )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Optional[Any] , A__ : List[str] , A__ : Dict ):
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(__a , "w" ) as f:
f.write(__a , arcname=os.path.basename(__a ) )
f.write(__a , arcname=os.path.basename(__a ) )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Optional[Any] , A__ : List[str] , A__ : Dict ):
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(__a , "w" ) as f:
f.write(__a , arcname=os.path.basename(csv_path.replace(".csv" , ".CSV" ) ) )
f.write(__a , arcname=os.path.basename(csva_path.replace(".csv" , ".CSV" ) ) )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : str , A__ : Tuple , A__ : Any ):
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip"
with zipfile.ZipFile(__a , "w" ) as f:
f.write(__a , arcname=os.path.join("main_dir" , os.path.basename(__a ) ) )
f.write(__a , arcname=os.path.join("main_dir" , os.path.basename(__a ) ) )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Optional[Any] ):
SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" )
SCREAMING_SNAKE_CASE = pa.schema(
{
"col_1": pa.string(),
"col_2": pa.intaa(),
"col_3": pa.floataa(),
} )
with open(__a , "wb" ) as f:
SCREAMING_SNAKE_CASE = pq.ParquetWriter(__a , schema=__a )
SCREAMING_SNAKE_CASE = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__a ) )] for k in DATA[0]} , schema=__a )
writer.write_table(__a )
writer.close()
return path
@pytest.fixture(scope="session" )
def __a ( A__ : List[str] ):
SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
SCREAMING_SNAKE_CASE = {"data": DATA}
with open(__a , "w" ) as f:
json.dump(__a , __a )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Union[str, Any] ):
SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
SCREAMING_SNAKE_CASE = {"data": DATA_DICT_OF_LISTS}
with open(__a , "w" ) as f:
json.dump(__a , __a )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : int ):
SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" )
with open(__a , "w" ) as f:
for item in DATA:
f.write(json.dumps(__a ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Union[str, Any] ):
SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" )
with open(__a , "w" ) as f:
for item in DATA:
f.write(json.dumps(__a ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" )
with open(__a , "w" ) as f:
for item in DATA_312:
f.write(json.dumps(__a ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Dict ):
SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" )
with open(__a , "w" ) as f:
for item in DATA_STR:
f.write(json.dumps(__a ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : str , A__ : Any ):
import gzip
SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" )
with open(__a , "rb" ) as orig_file:
with gzip.open(__a , "wb" ) as zipped_file:
zipped_file.writelines(__a )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Union[str, Any] , A__ : int ):
import gzip
SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" )
with open(__a , "rb" ) as orig_file:
with gzip.open(__a , "wb" ) as zipped_file:
zipped_file.writelines(__a )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Optional[int] , A__ : Any , A__ : int ):
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip"
with zipfile.ZipFile(__a , "w" ) as f:
f.write(__a , arcname=os.path.basename(__a ) )
f.write(__a , arcname=os.path.basename(__a ) )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Dict , A__ : Union[str, Any] , A__ : Dict , A__ : str ):
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip"
with zipfile.ZipFile(__a , "w" ) as f:
f.write(__a , arcname=os.path.join("nested" , os.path.basename(__a ) ) )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Optional[int] , A__ : Optional[int] , A__ : Union[str, Any] ):
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip"
with zipfile.ZipFile(__a , "w" ) as f:
f.write(__a , arcname=os.path.join("main_dir" , os.path.basename(__a ) ) )
f.write(__a , arcname=os.path.join("main_dir" , os.path.basename(__a ) ) )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Optional[Any] , A__ : Dict , A__ : Dict ):
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar"
with tarfile.TarFile(__a , "w" ) as f:
f.add(__a , arcname=os.path.basename(__a ) )
f.add(__a , arcname=os.path.basename(__a ) )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Optional[int] , A__ : Any , A__ : Tuple , A__ : int ):
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar"
with tarfile.TarFile(__a , "w" ) as f:
f.add(__a , arcname=os.path.join("nested" , os.path.basename(__a ) ) )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : List[str] ):
SCREAMING_SNAKE_CASE = ["0", "1", "2", "3"]
SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" )
with open(__a , "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : int ):
SCREAMING_SNAKE_CASE = ["0", "1", "2", "3"]
SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" )
with open(__a , "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Dict ):
SCREAMING_SNAKE_CASE = ["0", "1", "2", "3"]
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "dataset.abc"
with open(__a , "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : List[Any] , A__ : Tuple , A__ : str ):
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "dataset.text.zip"
with zipfile.ZipFile(__a , "w" ) as f:
f.write(__a , arcname=os.path.basename(__a ) )
f.write(__a , arcname=os.path.basename(__a ) )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Dict , A__ : List[str] , A__ : Tuple ):
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip"
with zipfile.ZipFile(__a , "w" ) as f:
f.write(__a , arcname=os.path.join("main_dir" , os.path.basename(__a ) ) )
f.write(__a , arcname=os.path.join("main_dir" , os.path.basename(__a ) ) )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : List[Any] , A__ : Tuple , A__ : List[str] ):
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip"
with zipfile.ZipFile(__a , "w" ) as f:
f.write(__a , arcname=os.path.basename("unsupported.ext" ) )
f.write(__a , arcname=os.path.basename("unsupported_2.ext" ) )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Optional[int] ):
SCREAMING_SNAKE_CASE = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] )
SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" )
with open(__a , "w" , encoding="utf-8" ) as f:
f.write(__a )
return path
@pytest.fixture(scope="session" )
def __a ( ):
return os.path.join("tests" , "features" , "data" , "test_image_rgb.jpg" )
@pytest.fixture(scope="session" )
def __a ( ):
return os.path.join("tests" , "features" , "data" , "test_audio_44100.wav" )
@pytest.fixture(scope="session" )
def __a ( A__ : int , A__ : Optional[Any] ):
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / "dataset.img.zip"
with zipfile.ZipFile(__a , "w" ) as f:
f.write(__a , arcname=os.path.basename(__a ) )
f.write(__a , arcname=os.path.basename(__a ).replace(".jpg" , "2.jpg" ) )
return path
@pytest.fixture(scope="session" )
def __a ( A__ : Optional[int] ):
SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data_dir" )
(data_dir / "subdir").mkdir()
with open(data_dir / "subdir" / "train.txt" , "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / "subdir" / "test.txt" , "w" ) as f:
f.write("bar\n" * 10 )
# hidden file
with open(data_dir / "subdir" / ".test.txt" , "w" ) as f:
f.write("bar\n" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / ".subdir" / "train.txt" , "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / ".subdir" / "test.txt" , "w" ) as f:
f.write("bar\n" * 10 )
return data_dir | 720 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "facebook/bart-large-mnli"
lowerCamelCase__ = (
"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which "
"should be the text to classify, and `labels`, which should be the list of labels to use for classification. "
"It returns the most likely label in the list of provided `labels` for the input text."
)
lowerCamelCase__ = "text_classifier"
lowerCamelCase__ = AutoTokenizer
lowerCamelCase__ = AutoModelForSequenceClassification
lowerCamelCase__ = ["text", ["text"]]
lowerCamelCase__ = ["text"]
def _snake_case ( self : Optional[Any] ):
super().setup()
SCREAMING_SNAKE_CASE = self.model.config
SCREAMING_SNAKE_CASE = -1
for idx, label in config.idalabel.items():
if label.lower().startswith("entail" ):
SCREAMING_SNAKE_CASE = int(__lowerCamelCase )
if self.entailment_id == -1:
raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." )
def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ):
SCREAMING_SNAKE_CASE = labels
return self.pre_processor(
[text] * len(__lowerCamelCase ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , )
def _snake_case ( self : str , __lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = outputs.logits
SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id] | 698 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__A : Optional[int] = logging.get_logger(__name__)
__A : List[str] = {
"""facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""",
}
class _SCREAMING_SNAKE_CASE ( _snake_case , _snake_case ):
'''simple docstring'''
lowerCamelCase__ = """convnextv2"""
def __init__( self : List[Any] , __lowerCamelCase : str=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Any=4 , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[Any]="gelu" , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Dict=1e-12 , __lowerCamelCase : List[str]=0.0 , __lowerCamelCase : int=224 , __lowerCamelCase : int=None , __lowerCamelCase : List[Any]=None , **__lowerCamelCase : Tuple , ):
super().__init__(**snake_case_ )
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = num_stages
SCREAMING_SNAKE_CASE = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes
SCREAMING_SNAKE_CASE = [3, 3, 9, 3] if depths is None else depths
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = drop_path_rate
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )]
SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(
out_features=snake_case_ , out_indices=snake_case_ , stage_names=self.stage_names ) | 721 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __a ( A__ : str=None ):
if subparsers is not None:
SCREAMING_SNAKE_CASE = subparsers.add_parser("test" )
else:
SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" )
parser.add_argument(
"--config_file" , default=A__ , help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) , )
if subparsers is not None:
parser.set_defaults(func=A__ )
return parser
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] )
if args.config_file is None:
SCREAMING_SNAKE_CASE = script_name
else:
SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}"
SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split()
SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() )
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!" )
def __a ( ):
SCREAMING_SNAKE_CASE = test_command_parser()
SCREAMING_SNAKE_CASE = parser.parse_args()
test_command(A__ )
if __name__ == "__main__":
main() | 698 | 0 |
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
__A : Any = logging.get_logger(__name__)
__A : List[str] = OrderedDict(
[
# Base model mapping
('albert', 'FlaxAlbertModel'),
('bart', 'FlaxBartModel'),
('beit', 'FlaxBeitModel'),
('bert', 'FlaxBertModel'),
('big_bird', 'FlaxBigBirdModel'),
('blenderbot', 'FlaxBlenderbotModel'),
('blenderbot-small', 'FlaxBlenderbotSmallModel'),
('clip', 'FlaxCLIPModel'),
('distilbert', 'FlaxDistilBertModel'),
('electra', 'FlaxElectraModel'),
('gpt-sw3', 'FlaxGPT2Model'),
('gpt2', 'FlaxGPT2Model'),
('gpt_neo', 'FlaxGPTNeoModel'),
('gptj', 'FlaxGPTJModel'),
('longt5', 'FlaxLongT5Model'),
('marian', 'FlaxMarianModel'),
('mbart', 'FlaxMBartModel'),
('mt5', 'FlaxMT5Model'),
('opt', 'FlaxOPTModel'),
('pegasus', 'FlaxPegasusModel'),
('regnet', 'FlaxRegNetModel'),
('resnet', 'FlaxResNetModel'),
('roberta', 'FlaxRobertaModel'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'),
('roformer', 'FlaxRoFormerModel'),
('t5', 'FlaxT5Model'),
('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'),
('vit', 'FlaxViTModel'),
('wav2vec2', 'FlaxWav2Vec2Model'),
('whisper', 'FlaxWhisperModel'),
('xglm', 'FlaxXGLMModel'),
('xlm-roberta', 'FlaxXLMRobertaModel'),
]
)
__A : Any = OrderedDict(
[
# Model for pre-training mapping
('albert', 'FlaxAlbertForPreTraining'),
('bart', 'FlaxBartForConditionalGeneration'),
('bert', 'FlaxBertForPreTraining'),
('big_bird', 'FlaxBigBirdForPreTraining'),
('electra', 'FlaxElectraForPreTraining'),
('longt5', 'FlaxLongT5ForConditionalGeneration'),
('mbart', 'FlaxMBartForConditionalGeneration'),
('mt5', 'FlaxMT5ForConditionalGeneration'),
('roberta', 'FlaxRobertaForMaskedLM'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'),
('roformer', 'FlaxRoFormerForMaskedLM'),
('t5', 'FlaxT5ForConditionalGeneration'),
('wav2vec2', 'FlaxWav2Vec2ForPreTraining'),
('whisper', 'FlaxWhisperForConditionalGeneration'),
('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'),
]
)
__A : Any = OrderedDict(
[
# Model for Masked LM mapping
('albert', 'FlaxAlbertForMaskedLM'),
('bart', 'FlaxBartForConditionalGeneration'),
('bert', 'FlaxBertForMaskedLM'),
('big_bird', 'FlaxBigBirdForMaskedLM'),
('distilbert', 'FlaxDistilBertForMaskedLM'),
('electra', 'FlaxElectraForMaskedLM'),
('mbart', 'FlaxMBartForConditionalGeneration'),
('roberta', 'FlaxRobertaForMaskedLM'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'),
('roformer', 'FlaxRoFormerForMaskedLM'),
('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'),
]
)
__A : Tuple = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
('bart', 'FlaxBartForConditionalGeneration'),
('blenderbot', 'FlaxBlenderbotForConditionalGeneration'),
('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'),
('encoder-decoder', 'FlaxEncoderDecoderModel'),
('longt5', 'FlaxLongT5ForConditionalGeneration'),
('marian', 'FlaxMarianMTModel'),
('mbart', 'FlaxMBartForConditionalGeneration'),
('mt5', 'FlaxMT5ForConditionalGeneration'),
('pegasus', 'FlaxPegasusForConditionalGeneration'),
('t5', 'FlaxT5ForConditionalGeneration'),
]
)
__A : Optional[Any] = OrderedDict(
[
# Model for Image-classsification
('beit', 'FlaxBeitForImageClassification'),
('regnet', 'FlaxRegNetForImageClassification'),
('resnet', 'FlaxResNetForImageClassification'),
('vit', 'FlaxViTForImageClassification'),
]
)
__A : Optional[Any] = OrderedDict(
[
('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'),
]
)
__A : Dict = OrderedDict(
[
# Model for Causal LM mapping
('bart', 'FlaxBartForCausalLM'),
('bert', 'FlaxBertForCausalLM'),
('big_bird', 'FlaxBigBirdForCausalLM'),
('electra', 'FlaxElectraForCausalLM'),
('gpt-sw3', 'FlaxGPT2LMHeadModel'),
('gpt2', 'FlaxGPT2LMHeadModel'),
('gpt_neo', 'FlaxGPTNeoForCausalLM'),
('gptj', 'FlaxGPTJForCausalLM'),
('opt', 'FlaxOPTForCausalLM'),
('roberta', 'FlaxRobertaForCausalLM'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'),
('xglm', 'FlaxXGLMForCausalLM'),
('xlm-roberta', 'FlaxXLMRobertaForCausalLM'),
]
)
__A : List[Any] = OrderedDict(
[
# Model for Sequence Classification mapping
('albert', 'FlaxAlbertForSequenceClassification'),
('bart', 'FlaxBartForSequenceClassification'),
('bert', 'FlaxBertForSequenceClassification'),
('big_bird', 'FlaxBigBirdForSequenceClassification'),
('distilbert', 'FlaxDistilBertForSequenceClassification'),
('electra', 'FlaxElectraForSequenceClassification'),
('mbart', 'FlaxMBartForSequenceClassification'),
('roberta', 'FlaxRobertaForSequenceClassification'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'),
('roformer', 'FlaxRoFormerForSequenceClassification'),
('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'),
]
)
__A : Optional[Any] = OrderedDict(
[
# Model for Question Answering mapping
('albert', 'FlaxAlbertForQuestionAnswering'),
('bart', 'FlaxBartForQuestionAnswering'),
('bert', 'FlaxBertForQuestionAnswering'),
('big_bird', 'FlaxBigBirdForQuestionAnswering'),
('distilbert', 'FlaxDistilBertForQuestionAnswering'),
('electra', 'FlaxElectraForQuestionAnswering'),
('mbart', 'FlaxMBartForQuestionAnswering'),
('roberta', 'FlaxRobertaForQuestionAnswering'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'),
('roformer', 'FlaxRoFormerForQuestionAnswering'),
('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'),
]
)
__A : Optional[int] = OrderedDict(
[
# Model for Token Classification mapping
('albert', 'FlaxAlbertForTokenClassification'),
('bert', 'FlaxBertForTokenClassification'),
('big_bird', 'FlaxBigBirdForTokenClassification'),
('distilbert', 'FlaxDistilBertForTokenClassification'),
('electra', 'FlaxElectraForTokenClassification'),
('roberta', 'FlaxRobertaForTokenClassification'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'),
('roformer', 'FlaxRoFormerForTokenClassification'),
('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'),
]
)
__A : Optional[Any] = OrderedDict(
[
# Model for Multiple Choice mapping
('albert', 'FlaxAlbertForMultipleChoice'),
('bert', 'FlaxBertForMultipleChoice'),
('big_bird', 'FlaxBigBirdForMultipleChoice'),
('distilbert', 'FlaxDistilBertForMultipleChoice'),
('electra', 'FlaxElectraForMultipleChoice'),
('roberta', 'FlaxRobertaForMultipleChoice'),
('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'),
('roformer', 'FlaxRoFormerForMultipleChoice'),
('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'),
]
)
__A : Tuple = OrderedDict(
[
('bert', 'FlaxBertForNextSentencePrediction'),
]
)
__A : List[Any] = OrderedDict(
[
('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'),
('whisper', 'FlaxWhisperForConditionalGeneration'),
]
)
__A : Tuple = OrderedDict(
[
('whisper', 'FlaxWhisperForAudioClassification'),
]
)
__A : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
__A : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
__A : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
__A : Optional[int] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
__A : int = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
__A : List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
__A : List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
__A : int = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
__A : Any = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
__A : str = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
__A : Union[str, Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
__A : Union[str, Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
__A : Tuple = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
__A : Union[str, Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ = FLAX_MODEL_MAPPING
__A : Dict = auto_class_update(FlaxAutoModel)
class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING
__A : int = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining')
class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
__A : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling')
class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING
__A : int = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling')
class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
__A : Optional[Any] = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base'
)
class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
__A : List[str] = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc='sequence classification'
)
class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
__A : Dict = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering')
class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
__A : int = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc='token classification'
)
class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
__A : List[Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice')
class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
__A : Dict = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction'
)
class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
__A : str = auto_class_update(
FlaxAutoModelForImageClassification, head_doc='image classification'
)
class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
__A : Dict = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling')
class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ):
'''simple docstring'''
lowerCamelCase__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
__A : Dict = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling'
) | 700 |
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__A : Optional[int] = logging.get_logger(__name__)
__A : List[str] = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
__A : Tuple = {
'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'},
'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'},
'tokenizer_config_file': {
'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'
},
}
__A : Dict = {'facebook/blenderbot-3B': 1_2_8}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def __a ( ):
SCREAMING_SNAKE_CASE = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
SCREAMING_SNAKE_CASE = bs[:]
SCREAMING_SNAKE_CASE = 0
for b in range(2**8 ):
if b not in bs:
bs.append(A__ )
cs.append(2**8 + n )
n += 1
SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs]
return dict(zip(A__ , A__ ) )
def __a ( A__ : Optional[int] ):
SCREAMING_SNAKE_CASE = set()
SCREAMING_SNAKE_CASE = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
SCREAMING_SNAKE_CASE = char
return pairs
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = ["input_ids", "attention_mask"]
def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]="replace" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : List[Any]="<mask>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Tuple , ):
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()}
SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding
SCREAMING_SNAKE_CASE = bytes_to_unicode()
SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1]
SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges]
SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def _snake_case ( self : Dict ):
return len(self.encoder )
def _snake_case ( self : int ):
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : Tuple , __lowerCamelCase : List[str] ):
if token in self.cache:
return self.cache[token]
SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase )
SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
while i < len(__lowerCamelCase ):
try:
SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
SCREAMING_SNAKE_CASE = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase )
SCREAMING_SNAKE_CASE = new_word
if len(__lowerCamelCase ) == 1:
break
else:
SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase )
SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = word
return word
def _snake_case ( self : str , __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = []
for token in re.findall(self.pat , __lowerCamelCase ):
SCREAMING_SNAKE_CASE = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def _snake_case ( self : List[str] , __lowerCamelCase : str ):
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple ):
return self.decoder.get(__lowerCamelCase )
def _snake_case ( self : Tuple , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
SCREAMING_SNAKE_CASE = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
SCREAMING_SNAKE_CASE = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _snake_case ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE = [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
SCREAMING_SNAKE_CASE = " " + text
return (text, kwargs)
def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
return token_ids_a + [self.eos_token_id]
def _snake_case ( self : Tuple , __lowerCamelCase : "Conversation" ):
SCREAMING_SNAKE_CASE = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(" " + text )
else:
# Generated responses should contain them already.
inputs.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase )
if len(__lowerCamelCase ) > self.model_max_length:
SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :]
logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." )
return input_ids | 698 | 0 |
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ):
'''simple docstring'''
lowerCamelCase__ = ""
lowerCamelCase__ = (
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
lowerCamelCase__ = None # compression type in fsspec. ex: "gzip"
lowerCamelCase__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__( self : List[str] , __lowerCamelCase : str = "" , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[dict] = None , **__lowerCamelCase : List[Any] ):
super().__init__(self , **_lowerCamelCase )
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
SCREAMING_SNAKE_CASE = fsspec.open(
_lowerCamelCase , mode="rb" , protocol=_lowerCamelCase , compression=self.compression , client_kwargs={
"requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459
"trust_env": True, # Enable reading proxy env variables.
**(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed.
} , **(target_options or {}) , )
SCREAMING_SNAKE_CASE = os.path.basename(self.file.path.split("::" )[0] )
SCREAMING_SNAKE_CASE = (
self.compressed_name[: self.compressed_name.rindex("." )]
if "." in self.compressed_name
else self.compressed_name
)
SCREAMING_SNAKE_CASE = None
@classmethod
def _snake_case ( cls : List[Any] , __lowerCamelCase : Tuple ):
# compressed file paths are always relative to the archive root
return super()._strip_protocol(_lowerCamelCase ).lstrip("/" )
def _snake_case ( self : Any ):
if self.dir_cache is None:
SCREAMING_SNAKE_CASE = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name}
SCREAMING_SNAKE_CASE = {f["name"]: f}
def _snake_case ( self : str , __lowerCamelCase : str ):
return self.file.open().read()
def _snake_case ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : str = "rb" , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : Optional[int] , ):
SCREAMING_SNAKE_CASE = self._strip_protocol(_lowerCamelCase )
if mode != "rb":
raise ValueError(f"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" )
return self.file.open()
class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ):
'''simple docstring'''
lowerCamelCase__ = "bz2"
lowerCamelCase__ = "bz2"
lowerCamelCase__ = ".bz2"
class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ):
'''simple docstring'''
lowerCamelCase__ = "gzip"
lowerCamelCase__ = "gzip"
lowerCamelCase__ = ".gz"
class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ):
'''simple docstring'''
lowerCamelCase__ = "lz4"
lowerCamelCase__ = "lz4"
lowerCamelCase__ = ".lz4"
class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ):
'''simple docstring'''
lowerCamelCase__ = "xz"
lowerCamelCase__ = "xz"
lowerCamelCase__ = ".xz"
class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ):
'''simple docstring'''
lowerCamelCase__ = "zstd"
lowerCamelCase__ = "zstd"
lowerCamelCase__ = ".zst"
def __init__( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : str = "rb" , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[dict] = None , __lowerCamelCase : int = DEFAULT_BLOCK_SIZE , **__lowerCamelCase : int , ):
super().__init__(
fo=_lowerCamelCase , mode=_lowerCamelCase , target_protocol=_lowerCamelCase , target_options=_lowerCamelCase , block_size=_lowerCamelCase , **_lowerCamelCase , )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
SCREAMING_SNAKE_CASE = self.file.__enter__
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : str , __lowerCamelCase : List[Any] ):
SCREAMING_SNAKE_CASE = file_
def __enter__( self : Tuple ):
self._file.__enter__()
return self
def __exit__( self : int , *__lowerCamelCase : Tuple , **__lowerCamelCase : int ):
self._file.__exit__(*_lowerCamelCase , **_lowerCamelCase )
def __iter__( self : Optional[int] ):
return iter(self._file )
def _snake_case ( self : str ):
return next(self._file )
def __getattr__( self : Union[str, Any] , __lowerCamelCase : Optional[Any] ):
return getattr(self._file , _lowerCamelCase )
def fixed_enter(*__lowerCamelCase : Dict , **__lowerCamelCase : Any ):
return WrappedFile(_enter(*_lowerCamelCase , **_lowerCamelCase ) )
SCREAMING_SNAKE_CASE = fixed_enter | 701 |
from __future__ import annotations
from cmath import sqrt
def __a ( A__ : int , A__ : int , A__ : int ):
if a == 0:
raise ValueError("Coefficient 'a' must not be zero." )
SCREAMING_SNAKE_CASE = b * b - 4 * a * c
SCREAMING_SNAKE_CASE = (-b + sqrt(A__ )) / (2 * a)
SCREAMING_SNAKE_CASE = (-b - sqrt(A__ )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def __a ( ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 )
print(F"The solutions are: {solutiona} and {solutiona}" )
if __name__ == "__main__":
main() | 698 | 0 |
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
__A : int = ['small', 'medium', 'large']
__A : List[Any] = 'lm_head.decoder.weight'
__A : str = 'lm_head.weight'
def __a ( A__ : str , A__ : str ):
SCREAMING_SNAKE_CASE = torch.load(lowerCamelCase_ )
SCREAMING_SNAKE_CASE = d.pop(lowerCamelCase_ )
os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ )
torch.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) )
if __name__ == "__main__":
__A : Optional[Any] = argparse.ArgumentParser()
parser.add_argument('--dialogpt_path', default='.', type=str)
__A : str = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
__A : int = os.path.join(args.dialogpt_path, f'{MODEL}_ft.pkl')
__A : Optional[Any] = f'./DialoGPT-{MODEL}'
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
) | 702 |
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :]
SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilgpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n"
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="pt" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text | 698 | 0 |
from math import sqrt
def __a ( A__ : Optional[Any] ):
SCREAMING_SNAKE_CASE = 0
for i in range(1 , int(sqrt(UpperCamelCase__ ) + 1 ) ):
if n % i == 0 and i != sqrt(UpperCamelCase__ ):
total += i + n // i
elif i == sqrt(UpperCamelCase__ ):
total += i
return total - n
def __a ( A__ : Dict = 10000 ):
SCREAMING_SNAKE_CASE = sum(
i
for i in range(1 , UpperCamelCase__ )
if sum_of_divisors(sum_of_divisors(UpperCamelCase__ ) ) == i and sum_of_divisors(UpperCamelCase__ ) != i )
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip()))) | 703 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = ['FNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = ['FNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'FNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'FNetForMaskedLM',
'FNetForMultipleChoice',
'FNetForNextSentencePrediction',
'FNetForPreTraining',
'FNetForQuestionAnswering',
'FNetForSequenceClassification',
'FNetForTokenClassification',
'FNetLayer',
'FNetModel',
'FNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
__A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 | 0 |
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def __a ( A__ : List[Any] ):
return (data["data"], data["target"])
def __a ( A__ : Tuple , A__ : List[Any] , A__ : Union[str, Any] ):
SCREAMING_SNAKE_CASE = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Predict target for test data
SCREAMING_SNAKE_CASE = xgb.predict(__SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE = predictions.reshape(len(__SCREAMING_SNAKE_CASE ) , 1 )
return predictions
def __a ( ):
SCREAMING_SNAKE_CASE = fetch_california_housing()
SCREAMING_SNAKE_CASE = data_handling(__SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE = train_test_split(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , test_size=0.2_5 , random_state=1 )
SCREAMING_SNAKE_CASE = xgboost(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Error printing
print(F"Mean Absolute Error : {mean_absolute_error(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}" )
print(F"Mean Square Error : {mean_squared_error(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}" )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main() | 704 |
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
__A : Optional[Any] = datasets.load_iris()
__A : Optional[Any] = np.array(data['data'])
__A : Optional[int] = np.array(data['target'])
__A : Union[str, Any] = data['target_names']
__A , __A , __A , __A : Optional[int] = train_test_split(X, y)
def __a ( A__ : Optional[int] , A__ : Dict ):
return np.linalg.norm(np.array(A__ ) - np.array(A__ ) )
def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ):
SCREAMING_SNAKE_CASE = zip(A__ , A__ )
# List of distances of all points from the point to be classified
SCREAMING_SNAKE_CASE = []
for data_point in data:
SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4])) | 698 | 0 |
def __a ( A__ : Any ):
if not isinstance(A__ , A__ ) or number < 0:
raise ValueError("Input must be a non-negative integer" )
SCREAMING_SNAKE_CASE = 0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 705 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__A : Union[str, Any] = logging.get_logger(__name__)
__A : Dict = {
'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json',
}
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "resnet"
lowerCamelCase__ = ["basic", "bottleneck"]
def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ):
super().__init__(**__lowerCamelCase )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = embedding_size
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = layer_type
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = downsample_in_first_stage
SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(
out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = version.parse("1.11" )
@property
def _snake_case ( self : Optional[int] ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self : Optional[int] ):
return 1e-3 | 698 | 0 |
import warnings
from pathlib import Path
from typing import List, Tuple, Union
import fire
from torch import nn
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel
from transformers.utils import logging
__A : str = logging.get_logger(__name__)
def __a ( A__ : nn.ModuleList , A__ : nn.ModuleList , A__ : List[int] ):
SCREAMING_SNAKE_CASE = nn.ModuleList([src_layers[i] for i in layers_to_copy] )
assert len(_lowerCamelCase ) == len(_lowerCamelCase ), F"{len(_lowerCamelCase )} != {len(_lowerCamelCase )}"
dest_layers.load_state_dict(layers_to_copy.state_dict() )
__A : List[str] = {
# maps num layers in teacher -> num_layers in student -> which teacher layers to copy.
# 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
1_2: {
1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher
2: [0, 6],
3: [0, 6, 1_1],
4: [0, 4, 8, 1_1],
6: [0, 2, 4, 7, 9, 1_1],
9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1],
1_2: list(range(1_2)),
},
1_6: { # maps num layers in student -> which teacher layers to copy
1: [0],
2: [0, 1_5],
3: [0, 8, 1_5],
4: [0, 5, 1_0, 1_5],
6: [0, 3, 6, 9, 1_2, 1_5],
8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5],
9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5],
1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5],
1_6: list(range(1_6)),
},
6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}
__A : List[Any] = {
# maps num layers in student -> which teacher layers to copy.
6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]},
1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]},
1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]},
}
def __a ( A__ : Optional[int] , A__ : Any ):
try:
SCREAMING_SNAKE_CASE = LAYERS_TO_COPY[n_teacher][n_student]
return val
except KeyError:
if n_student != n_teacher:
warnings.warn(
F"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first"
F" {n_student}" )
return list(range(_lowerCamelCase ) )
def __a ( A__ : Tuple , A__ : Optional[int] ):
if n_student > n_teacher:
raise ValueError(F"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}" )
elif n_teacher == n_student:
return list(range(_lowerCamelCase ) )
elif n_student == 1:
return [n_teacher - 1]
else:
return LAYERS_TO_SUPERVISE[n_teacher][n_student]
def __a ( A__ : Union[str, PreTrainedModel] , A__ : Union[str, Path] = "student" , A__ : Union[int, None] = None , A__ : Union[int, None] = None , A__ : int=False , A__ : Union[str, Any]=None , A__ : int=None , **A__ : Any , ):
SCREAMING_SNAKE_CASE = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher."
assert (e is not None) or (d is not None), _msg
if isinstance(_lowerCamelCase , _lowerCamelCase ):
AutoTokenizer.from_pretrained(_lowerCamelCase ).save_pretrained(_lowerCamelCase ) # purely for convenience
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(_lowerCamelCase ).eval()
else:
assert isinstance(_lowerCamelCase , _lowerCamelCase ), F"teacher must be a model or string got type {type(_lowerCamelCase )}"
SCREAMING_SNAKE_CASE = teacher.config.to_diff_dict()
try:
SCREAMING_SNAKE_CASE = teacher.config.encoder_layers, teacher.config.decoder_layers
if e is None:
SCREAMING_SNAKE_CASE = teacher_e
if d is None:
SCREAMING_SNAKE_CASE = teacher_d
init_kwargs.update({"encoder_layers": e, "decoder_layers": d} )
except AttributeError: # T5
if hasattr(teacher.config , "num_encoder_layers" ):
SCREAMING_SNAKE_CASE = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers
else:
SCREAMING_SNAKE_CASE = teacher.config.num_layers, teacher.config.num_decoder_layers
if e is None:
SCREAMING_SNAKE_CASE = teacher_e
if d is None:
SCREAMING_SNAKE_CASE = teacher_d
if hasattr(teacher.config , "num_encoder_layers" ):
init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} )
else:
init_kwargs.update({"num_layers": e, "num_decoder_layers": d} )
# Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs
init_kwargs.update(_lowerCamelCase )
# Copy weights
SCREAMING_SNAKE_CASE = teacher.config_class(**_lowerCamelCase )
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_config(_lowerCamelCase )
# Start by copying the full teacher state dict this will copy the first N teacher layers to the student.
SCREAMING_SNAKE_CASE = student.load_state_dict(teacher.state_dict() , strict=_lowerCamelCase )
assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys.
if copy_first_teacher_layers: # Our copying is done. We just log and save
SCREAMING_SNAKE_CASE = list(range(_lowerCamelCase ) ), list(range(_lowerCamelCase ) )
logger.info(
F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to"
F" {save_path}" )
student.save_pretrained(_lowerCamelCase )
return student, e_layers_to_copy, d_layers_to_copy
# Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer.
if e_layers_to_copy is None:
SCREAMING_SNAKE_CASE = pick_layers_to_copy(_lowerCamelCase , _lowerCamelCase )
if d_layers_to_copy is None:
SCREAMING_SNAKE_CASE = pick_layers_to_copy(_lowerCamelCase , _lowerCamelCase )
try:
if hasattr(
_lowerCamelCase , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers
copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _lowerCamelCase )
copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _lowerCamelCase )
else:
copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _lowerCamelCase )
copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _lowerCamelCase )
except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block
copy_layers(teacher.encoder.block , student.encoder.block , _lowerCamelCase )
copy_layers(teacher.decoder.block , student.decoder.block , _lowerCamelCase )
logger.info(
F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}" )
SCREAMING_SNAKE_CASE = {
"teacher_type": teacher.config.model_type,
"copied_encoder_layers": e_layers_to_copy,
"copied_decoder_layers": d_layers_to_copy,
}
student.save_pretrained(_lowerCamelCase )
# Save information about copying for easier reproducibility
return student, e_layers_to_copy, d_layers_to_copy
if __name__ == "__main__":
fire.Fire(create_student_by_copying_alternating_layers) | 706 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
__A : str = logging.get_logger(__name__)
__A : Optional[Any] = {
'openai/imagegpt-small': '',
'openai/imagegpt-medium': '',
'openai/imagegpt-large': '',
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "imagegpt"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : List[str] , __lowerCamelCase : Any=512 + 1 , __lowerCamelCase : str=32 * 32 , __lowerCamelCase : Any=512 , __lowerCamelCase : Optional[int]=24 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]="quick_gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , **__lowerCamelCase : Union[str, Any] , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = n_positions
SCREAMING_SNAKE_CASE = n_embd
SCREAMING_SNAKE_CASE = n_layer
SCREAMING_SNAKE_CASE = n_head
SCREAMING_SNAKE_CASE = n_inner
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = resid_pdrop
SCREAMING_SNAKE_CASE = embd_pdrop
SCREAMING_SNAKE_CASE = attn_pdrop
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = scale_attn_weights
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx
SCREAMING_SNAKE_CASE = reorder_and_upcast_attn
SCREAMING_SNAKE_CASE = tie_word_embeddings
super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Optional[Any] ):
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
] )
def _snake_case ( self : Optional[int] , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ):
SCREAMING_SNAKE_CASE = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) )
return inputs | 698 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : Optional[Any] = logging.get_logger(__name__)
__A : Any = {
"microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json",
"microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json",
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "markuplm"
def __init__( self : Optional[Any] , __lowerCamelCase : List[Any]=30522 , __lowerCamelCase : Dict=768 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : Tuple=3072 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : str=0.02 , __lowerCamelCase : Dict=1e-12 , __lowerCamelCase : Union[str, Any]=0 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : int=256 , __lowerCamelCase : Tuple=1024 , __lowerCamelCase : List[Any]=216 , __lowerCamelCase : str=1001 , __lowerCamelCase : str=32 , __lowerCamelCase : Union[str, Any]=50 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : int=None , **__lowerCamelCase : int , ):
super().__init__(
pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase , )
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = type_vocab_size
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = position_embedding_type
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = classifier_dropout
# additional properties
SCREAMING_SNAKE_CASE = max_depth
SCREAMING_SNAKE_CASE = max_xpath_tag_unit_embeddings
SCREAMING_SNAKE_CASE = max_xpath_subs_unit_embeddings
SCREAMING_SNAKE_CASE = tag_pad_id
SCREAMING_SNAKE_CASE = subs_pad_id
SCREAMING_SNAKE_CASE = xpath_unit_hidden_size | 707 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@slow
@require_torch
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" )
SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" )
SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size
SCREAMING_SNAKE_CASE = tokenizer.sep_token_id
SCREAMING_SNAKE_CASE = tokenizer.cls_token_id
SCREAMING_SNAKE_CASE = 128
SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" )
SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" )
SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) )
SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) )
SCREAMING_SNAKE_CASE = 4
def _map_to_encoder_decoder_inputs(__lowerCamelCase : str ):
# Tokenizer will automatically set [BOS] <text> [EOS]
SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=__lowerCamelCase , max_length=512 )
SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=__lowerCamelCase , max_length=128 )
SCREAMING_SNAKE_CASE = inputs.input_ids
SCREAMING_SNAKE_CASE = inputs.attention_mask
SCREAMING_SNAKE_CASE = outputs.input_ids
SCREAMING_SNAKE_CASE = outputs.input_ids.copy()
SCREAMING_SNAKE_CASE = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
]
SCREAMING_SNAKE_CASE = outputs.attention_mask
assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids )
assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(__lowerCamelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE = pred.label_ids
SCREAMING_SNAKE_CASE = pred.predictions
# all unnecessary tokens are removed
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase )
return {"accuracy": accuracy}
# map train dataset
SCREAMING_SNAKE_CASE = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , )
train_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
# same for validation dataset
SCREAMING_SNAKE_CASE = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , )
val_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments(
output_dir=__lowerCamelCase , per_device_train_batch_size=__lowerCamelCase , per_device_eval_batch_size=__lowerCamelCase , predict_with_generate=__lowerCamelCase , evaluation_strategy="steps" , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
SCREAMING_SNAKE_CASE = SeqaSeqTrainer(
model=__lowerCamelCase , args=__lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , tokenizer=__lowerCamelCase , )
# start training
trainer.train() | 698 | 0 |
import datetime
import platform
import subprocess
from typing import Optional, Tuple, Union
import numpy as np
def __a ( A__ : bytes , A__ : int ):
SCREAMING_SNAKE_CASE = F"{sampling_rate}"
SCREAMING_SNAKE_CASE = """1"""
SCREAMING_SNAKE_CASE = """f32le"""
SCREAMING_SNAKE_CASE = [
"""ffmpeg""",
"""-i""",
"""pipe:0""",
"""-ac""",
ac,
"""-ar""",
ar,
"""-f""",
format_for_conversion,
"""-hide_banner""",
"""-loglevel""",
"""quiet""",
"""pipe:1""",
]
try:
with subprocess.Popen(A__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process:
SCREAMING_SNAKE_CASE = ffmpeg_process.communicate(A__ )
except FileNotFoundError as error:
raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error
SCREAMING_SNAKE_CASE = output_stream[0]
SCREAMING_SNAKE_CASE = np.frombuffer(A__ , np.floataa )
if audio.shape[0] == 0:
raise ValueError("Malformed soundfile" )
return audio
def __a ( A__ : int , A__ : float , A__ : str = "f32le" , ):
SCREAMING_SNAKE_CASE = F"{sampling_rate}"
SCREAMING_SNAKE_CASE = """1"""
if format_for_conversion == "s16le":
SCREAMING_SNAKE_CASE = 2
elif format_for_conversion == "f32le":
SCREAMING_SNAKE_CASE = 4
else:
raise ValueError(F"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" )
SCREAMING_SNAKE_CASE = platform.system()
if system == "Linux":
SCREAMING_SNAKE_CASE = """alsa"""
SCREAMING_SNAKE_CASE = """default"""
elif system == "Darwin":
SCREAMING_SNAKE_CASE = """avfoundation"""
SCREAMING_SNAKE_CASE = """:0"""
elif system == "Windows":
SCREAMING_SNAKE_CASE = """dshow"""
SCREAMING_SNAKE_CASE = """default"""
SCREAMING_SNAKE_CASE = [
"""ffmpeg""",
"""-f""",
format_,
"""-i""",
input_,
"""-ac""",
ac,
"""-ar""",
ar,
"""-f""",
format_for_conversion,
"""-fflags""",
"""nobuffer""",
"""-hide_banner""",
"""-loglevel""",
"""quiet""",
"""pipe:1""",
]
SCREAMING_SNAKE_CASE = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
SCREAMING_SNAKE_CASE = _ffmpeg_stream(A__ , A__ )
for item in iterator:
yield item
def __a ( A__ : int , A__ : float , A__ : Optional[int] = None , A__ : Optional[Union[Tuple[float, float], float]] = None , A__ : str = "f32le" , ):
if stream_chunk_s is not None:
SCREAMING_SNAKE_CASE = stream_chunk_s
else:
SCREAMING_SNAKE_CASE = chunk_length_s
SCREAMING_SNAKE_CASE = ffmpeg_microphone(A__ , A__ , format_for_conversion=A__ )
if format_for_conversion == "s16le":
SCREAMING_SNAKE_CASE = np.intaa
SCREAMING_SNAKE_CASE = 2
elif format_for_conversion == "f32le":
SCREAMING_SNAKE_CASE = np.floataa
SCREAMING_SNAKE_CASE = 4
else:
raise ValueError(F"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" )
if stride_length_s is None:
SCREAMING_SNAKE_CASE = chunk_length_s / 6
SCREAMING_SNAKE_CASE = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
if isinstance(A__ , (int, float) ):
SCREAMING_SNAKE_CASE = [stride_length_s, stride_length_s]
SCREAMING_SNAKE_CASE = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample
SCREAMING_SNAKE_CASE = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample
SCREAMING_SNAKE_CASE = datetime.datetime.now()
SCREAMING_SNAKE_CASE = datetime.timedelta(seconds=A__ )
for item in chunk_bytes_iter(A__ , A__ , stride=(stride_left, stride_right) , stream=A__ ):
# Put everything back in numpy scale
SCREAMING_SNAKE_CASE = np.frombuffer(item["raw"] , dtype=A__ )
SCREAMING_SNAKE_CASE = (
item["""stride"""][0] // size_of_sample,
item["""stride"""][1] // size_of_sample,
)
SCREAMING_SNAKE_CASE = sampling_rate
audio_time += delta
if datetime.datetime.now() > audio_time + 10 * delta:
# We're late !! SKIP
continue
yield item
def __a ( A__ : List[str] , A__ : int , A__ : Tuple[int, int] , A__ : bool = False ):
SCREAMING_SNAKE_CASE = B""""""
SCREAMING_SNAKE_CASE = stride
if stride_left + stride_right >= chunk_len:
raise ValueError(
F"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" )
SCREAMING_SNAKE_CASE = 0
for raw in iterator:
acc += raw
if stream and len(A__ ) < chunk_len:
SCREAMING_SNAKE_CASE = (_stride_left, 0)
yield {"raw": acc[:chunk_len], "stride": stride, "partial": True}
else:
while len(A__ ) >= chunk_len:
# We are flushing the accumulator
SCREAMING_SNAKE_CASE = (_stride_left, stride_right)
SCREAMING_SNAKE_CASE = {"""raw""": acc[:chunk_len], """stride""": stride}
if stream:
SCREAMING_SNAKE_CASE = False
yield item
SCREAMING_SNAKE_CASE = stride_left
SCREAMING_SNAKE_CASE = acc[chunk_len - stride_left - stride_right :]
# Last chunk
if len(A__ ) > stride_left:
SCREAMING_SNAKE_CASE = {"""raw""": acc, """stride""": (_stride_left, 0)}
if stream:
SCREAMING_SNAKE_CASE = False
yield item
def __a ( A__ : Dict , A__ : int ):
SCREAMING_SNAKE_CASE = 2**24 # 16Mo
try:
with subprocess.Popen(A__ , stdout=subprocess.PIPE , bufsize=A__ ) as ffmpeg_process:
while True:
SCREAMING_SNAKE_CASE = ffmpeg_process.stdout.read(A__ )
if raw == b"":
break
yield raw
except FileNotFoundError as error:
raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error | 708 |
import inspect
import unittest
import warnings
from math import ceil, floor
from transformers import LevitConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
LevitForImageClassification,
LevitForImageClassificationWithTeacher,
LevitModel,
)
from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) )
self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) )
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ):
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = kernel_size
SCREAMING_SNAKE_CASE = stride
SCREAMING_SNAKE_CASE = padding
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = key_dim
SCREAMING_SNAKE_CASE = drop_path_rate
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = attention_ratio
SCREAMING_SNAKE_CASE = mlp_ratio
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = [
["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = num_labels
SCREAMING_SNAKE_CASE = initializer_range
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels )
SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def _snake_case ( self : List[str] ):
return LevitConfig(
image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , )
def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE = model(__lowerCamelCase )
SCREAMING_SNAKE_CASE = (self.image_size, self.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , )
def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ):
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs
SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (
(LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher)
if is_torch_available()
else ()
)
lowerCamelCase__ = (
{
"feature-extraction": LevitModel,
"image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = LevitModelTester(self )
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def _snake_case ( self : Any ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _snake_case ( self : Any ):
return
@unittest.skip(reason="Levit does not use inputs_embeds" )
def _snake_case ( self : Union[str, Any] ):
pass
@unittest.skip(reason="Levit does not support input and output embeddings" )
def _snake_case ( self : Tuple ):
pass
@unittest.skip(reason="Levit does not output attentions" )
def _snake_case ( self : Tuple ):
pass
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _snake_case ( self : List[Any] ):
def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
SCREAMING_SNAKE_CASE = outputs.hidden_states
SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE = floor(
(
(height + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
SCREAMING_SNAKE_CASE = floor(
(
(width + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [
height * width,
self.model_tester.hidden_sizes[0],
] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def _snake_case ( self : int ):
pass
def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ):
SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
def _snake_case ( self : List[Any] ):
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
# LevitForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(__lowerCamelCase )
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
loss.backward()
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
# LevitForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
continue
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.gradient_checkpointing_enable()
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
loss.backward()
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(__lowerCamelCase ),
]
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ):
SCREAMING_SNAKE_CASE = problem_type["title"]
SCREAMING_SNAKE_CASE = problem_type["num_labels"]
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if problem_type["num_labels"] > 1:
SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] )
SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list:
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
f"Something is going wrong in the regression problem: intercepted {w.message}" )
loss.backward()
@slow
def _snake_case ( self : List[Any] ):
for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def __a ( ):
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _snake_case ( self : Dict ):
return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.default_image_processor
SCREAMING_SNAKE_CASE = prepare_img()
SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase )
# verify the logits
SCREAMING_SNAKE_CASE = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) | 698 | 0 |
from __future__ import annotations
import collections
import pprint
from pathlib import Path
def __a ( A__ : str ):
return "".join(sorted(lowerCAmelCase__ ) )
def __a ( A__ : str ):
return word_by_signature[signature(lowerCAmelCase__ )]
__A : List[Any] = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8')
__A : int = sorted({word.strip().lower() for word in data.splitlines()})
__A : Union[str, Any] = collections.defaultdict(list)
for word in word_list:
word_by_signature[signature(word)].append(word)
if __name__ == "__main__":
__A : Any = {word: anagram(word) for word in word_list if len(anagram(word)) > 1}
with open('anagrams.txt', 'w') as file:
file.write('all_anagrams = \n ')
file.write(pprint.pformat(all_anagrams)) | 709 |
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ):
return None
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ):
return None
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = [
# (model_name, model_kwargs)
("bert-base-cased", {}),
("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def _snake_case ( self : List[Any] ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase )
@require_torch
@slow
def _snake_case ( self : List[Any] ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase )
@require_torch
@slow
def _snake_case ( self : Optional[int] ):
from transformers import BertModel
SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"]
with NamedTemporaryFile(mode="w+t" ) as vocab_file:
vocab_file.write("\n".join(__lowerCamelCase ) )
vocab_file.flush()
SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) )
model.save_pretrained(__lowerCamelCase )
self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase )
@require_tf
@slow
def _snake_case ( self : Any ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
@require_torch
@slow
def _snake_case ( self : Any ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ):
try:
# Compute path
with TemporaryDirectory() as tempdir:
SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
return path
except Exception as e:
self.fail(__lowerCamelCase )
@require_torch
@require_tokenizers
@slow
def _snake_case ( self : Dict ):
from transformers import BertModel
SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" )
@require_tf
@require_tokenizers
@slow
def _snake_case ( self : int ):
from transformers import TFBertModel
SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" )
def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase )
# Assert all variables are present
self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase )
self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} )
self.assertDictEqual(shapes["output_1"] , {0: "batch"} )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"]
SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]}
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__lowerCamelCase ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(len(__lowerCamelCase ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens["input_ids"] )
self.assertEqual(ordered_input_names[0] , "input_ids" )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" )
self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() ) | 698 | 0 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.activations import gelu_new, gelu_python, get_activation
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] )
SCREAMING_SNAKE_CASE = get_activation("gelu" )
self.assertTrue(torch.allclose(gelu_python(lowerCamelCase_ ) , torch_builtin(lowerCamelCase_ ) ) )
self.assertFalse(torch.allclose(gelu_python(lowerCamelCase_ ) , gelu_new(lowerCamelCase_ ) ) )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] )
SCREAMING_SNAKE_CASE = get_activation("gelu" )
SCREAMING_SNAKE_CASE = get_activation("gelu_10" )
SCREAMING_SNAKE_CASE = torch_builtin(lowerCamelCase_ )
SCREAMING_SNAKE_CASE = geluaa(lowerCamelCase_ )
SCREAMING_SNAKE_CASE = torch.where(y_gelu_aa < 10.0 , 1 , 0 )
self.assertTrue(torch.max(lowerCamelCase_ ).item() == 10.0 )
self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) )
def _snake_case ( self : Dict ):
get_activation("gelu" )
get_activation("gelu_10" )
get_activation("gelu_fast" )
get_activation("gelu_new" )
get_activation("gelu_python" )
get_activation("gelu_pytorch_tanh" )
get_activation("linear" )
get_activation("mish" )
get_activation("quick_gelu" )
get_activation("relu" )
get_activation("sigmoid" )
get_activation("silu" )
get_activation("swish" )
get_activation("tanh" )
with self.assertRaises(lowerCamelCase_ ):
get_activation("bogus" )
with self.assertRaises(lowerCamelCase_ ):
get_activation(lowerCamelCase_ )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = get_activation("gelu" )
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = get_activation("gelu" )
self.assertEqual(acta.a , 1 )
with self.assertRaises(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE = acta.a
| 710 |
from manim import *
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 )
SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("CPU" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("GPU" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
gpu.move_to([-1, -1, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("Model" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
model.move_to([3, -1.0, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = []
for i, rect in enumerate(__lowerCamelCase ):
rect.set_stroke(__lowerCamelCase )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 )
self.add(__lowerCamelCase )
cpu_targs.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("Loaded Checkpoint" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
SCREAMING_SNAKE_CASE = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
SCREAMING_SNAKE_CASE = MarkupText(
f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = MarkupText(
f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , )
blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
SCREAMING_SNAKE_CASE = MarkupText(
f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) )
self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) )
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
for i, rect in enumerate(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 )
target.move_to(__lowerCamelCase )
first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) )
SCREAMING_SNAKE_CASE = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) )
self.play(*__lowerCamelCase )
self.play(*__lowerCamelCase )
self.wait() | 698 | 0 |
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
__A : int = logging.getLogger()
def __a ( A__ : Path , A__ : list ):
SCREAMING_SNAKE_CASE = "\n".join(A__ )
Path(A__ ).open("w" ).writelines(A__ )
__A : List[Any] = 'patrickvonplaten/t5-tiny-random'
__A : Optional[Any] = 'sshleifer/bart-tiny-random'
__A : Any = 'sshleifer/tiny-mbart'
__A : Union[str, Any] = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class _SCREAMING_SNAKE_CASE ( lowercase_ ):
'''simple docstring'''
def _snake_case ( self : List[Any] , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source"
SCREAMING_SNAKE_CASE = input_file_name.parent / "utest_output.txt"
assert not output_file_name.exists()
SCREAMING_SNAKE_CASE = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
_dump_articles(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" )
SCREAMING_SNAKE_CASE = "translation_en_to_de" if model == T5_TINY else "summarization"
SCREAMING_SNAKE_CASE = f"\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n ".split()
with patch.object(UpperCamelCase__ , "argv" , UpperCamelCase__ ):
run_generate()
assert Path(UpperCamelCase__ ).exists()
# os.remove(Path(output_file_name))
def _snake_case ( self : Optional[Any] ):
self.run_eval_tester(UpperCamelCase__ )
@parameterized.expand([BART_TINY, MBART_TINY] )
@slow
def _snake_case ( self : Any , __lowerCamelCase : Tuple ):
self.run_eval_tester(UpperCamelCase__ )
@parameterized.expand([T5_TINY, MBART_TINY] )
@slow
def _snake_case ( self : Any , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source"
SCREAMING_SNAKE_CASE = input_file_name.parent / "utest_output.txt"
assert not output_file_name.exists()
SCREAMING_SNAKE_CASE = {
"en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"],
"de": [
"Maschinelles Lernen ist großartig, oder?",
"Ich esse gerne Bananen",
"Morgen ist wieder ein toller Tag!",
],
}
SCREAMING_SNAKE_CASE = Path(self.get_auto_remove_tmp_dir() )
SCREAMING_SNAKE_CASE = str(tmp_dir / "scores.json" )
SCREAMING_SNAKE_CASE = str(tmp_dir / "val.target" )
_dump_articles(UpperCamelCase__ , text["en"] )
_dump_articles(UpperCamelCase__ , text["de"] )
SCREAMING_SNAKE_CASE = "translation_en_to_de" if model == T5_TINY else "summarization"
SCREAMING_SNAKE_CASE = f"\n run_eval_search.py\n {model}\n {str(UpperCamelCase__ )}\n {str(UpperCamelCase__ )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n ".split()
testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] )
with patch.object(UpperCamelCase__ , "argv" , UpperCamelCase__ ):
with CaptureStdout() as cs:
run_search()
SCREAMING_SNAKE_CASE = [" num_beams | length_penalty", model, "Best score args"]
SCREAMING_SNAKE_CASE = ["Info"]
if "translation" in task:
expected_strings.append("bleu" )
else:
expected_strings.extend(UpperCamelCase__ )
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(UpperCamelCase__ ).exists()
os.remove(Path(UpperCamelCase__ ) ) | 711 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
@staticmethod
def _snake_case ( *__lowerCamelCase : Any , **__lowerCamelCase : Any ):
pass
@is_pipeline_test
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@require_torch
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(__lowerCamelCase ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
] , )
@require_tf
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
] , )
@slow
@require_torch
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , ) | 698 | 0 |
import torch
from torch import nn
class _SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str]=1 , __lowerCamelCase : int=False ):
super().__init__()
SCREAMING_SNAKE_CASE = n_token
SCREAMING_SNAKE_CASE = d_embed
SCREAMING_SNAKE_CASE = d_proj
SCREAMING_SNAKE_CASE = cutoffs + [n_token]
SCREAMING_SNAKE_CASE = [0] + self.cutoffs
SCREAMING_SNAKE_CASE = div_val
SCREAMING_SNAKE_CASE = self.cutoffs[0]
SCREAMING_SNAKE_CASE = len(self.cutoffs ) - 1
SCREAMING_SNAKE_CASE = self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) )
SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(self.n_clusters ) )
SCREAMING_SNAKE_CASE = nn.ModuleList()
SCREAMING_SNAKE_CASE = nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs ) ):
if d_proj != d_embed:
self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase_ , lowerCAmelCase_ ) ) )
else:
self.out_projs.append(lowerCAmelCase_ )
self.out_layers.append(nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) )
else:
for i in range(len(self.cutoffs ) ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.cutoff_ends[i], self.cutoff_ends[i + 1]
SCREAMING_SNAKE_CASE = d_embed // (div_val**i)
self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase_ , lowerCAmelCase_ ) ) )
self.out_layers.append(nn.Linear(lowerCAmelCase_ , r_idx - l_idx ) )
SCREAMING_SNAKE_CASE = keep_order
def _snake_case ( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : Dict ):
if proj is None:
SCREAMING_SNAKE_CASE = nn.functional.linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ )
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
SCREAMING_SNAKE_CASE = nn.functional.linear(lowerCAmelCase_ , proj.t().contiguous() )
SCREAMING_SNAKE_CASE = nn.functional.linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ )
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def _snake_case ( self : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : List[Any]=False ):
if labels is not None:
# Shift so that tokens < n predict n
SCREAMING_SNAKE_CASE = hidden[..., :-1, :].contiguous()
SCREAMING_SNAKE_CASE = labels[..., 1:].contiguous()
SCREAMING_SNAKE_CASE = hidden.view(-1 , hidden.size(-1 ) )
SCREAMING_SNAKE_CASE = labels.view(-1 )
if hidden.size(0 ) != labels.size(0 ):
raise RuntimeError("Input and labels should have the same size in the batch dimension." )
else:
SCREAMING_SNAKE_CASE = hidden.view(-1 , hidden.size(-1 ) )
if self.n_clusters == 0:
SCREAMING_SNAKE_CASE = self._compute_logit(lowerCAmelCase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
if labels is not None:
SCREAMING_SNAKE_CASE = labels != -100
SCREAMING_SNAKE_CASE = torch.zeros_like(lowerCAmelCase_ , dtype=hidden.dtype , device=hidden.device )
SCREAMING_SNAKE_CASE = (
-nn.functional.log_softmax(lowerCAmelCase_ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 )
)
else:
SCREAMING_SNAKE_CASE = nn.functional.log_softmax(lowerCAmelCase_ , dim=-1 )
else:
# construct weights and biases
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.cutoff_ends[i], self.cutoff_ends[i + 1]
SCREAMING_SNAKE_CASE = self.out_layers[0].weight[l_idx:r_idx]
SCREAMING_SNAKE_CASE = self.out_layers[0].bias[l_idx:r_idx]
else:
SCREAMING_SNAKE_CASE = self.out_layers[i].weight
SCREAMING_SNAKE_CASE = self.out_layers[i].bias
if i == 0:
SCREAMING_SNAKE_CASE = torch.cat([weight_i, self.cluster_weight] , dim=0 )
SCREAMING_SNAKE_CASE = torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(lowerCAmelCase_ )
biases.append(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = weights[0], biases[0], self.out_projs[0]
SCREAMING_SNAKE_CASE = self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
SCREAMING_SNAKE_CASE = nn.functional.log_softmax(lowerCAmelCase_ , dim=1 )
if labels is None:
SCREAMING_SNAKE_CASE = hidden.new_empty((head_logit.size(0 ), self.n_token) )
else:
SCREAMING_SNAKE_CASE = torch.zeros_like(lowerCAmelCase_ , dtype=hidden.dtype , device=hidden.device )
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = [0] + self.cutoffs
for i in range(len(lowerCAmelCase_ ) - 1 ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cutoff_values[i], cutoff_values[i + 1]
if labels is not None:
SCREAMING_SNAKE_CASE = (labels >= l_idx) & (labels < r_idx)
SCREAMING_SNAKE_CASE = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
SCREAMING_SNAKE_CASE = labels.index_select(0 , lowerCAmelCase_ ) - l_idx
SCREAMING_SNAKE_CASE = head_logprob.index_select(0 , lowerCAmelCase_ )
SCREAMING_SNAKE_CASE = hidden.index_select(0 , lowerCAmelCase_ )
else:
SCREAMING_SNAKE_CASE = hidden
if i == 0:
if labels is not None:
SCREAMING_SNAKE_CASE = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 )
else:
SCREAMING_SNAKE_CASE = head_logprob[:, : self.cutoffs[0]]
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = weights[i], biases[i], self.out_projs[i]
SCREAMING_SNAKE_CASE = self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
SCREAMING_SNAKE_CASE = nn.functional.log_softmax(lowerCAmelCase_ , dim=1 )
SCREAMING_SNAKE_CASE = self.cutoffs[0] + i - 1 # No probability for the head cluster
if labels is not None:
SCREAMING_SNAKE_CASE = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
1 , target_i[:, None] ).squeeze(1 )
else:
SCREAMING_SNAKE_CASE = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
SCREAMING_SNAKE_CASE = logprob_i
if labels is not None:
if (hasattr(self , "keep_order" ) and self.keep_order) or keep_order:
out.index_copy_(0 , lowerCAmelCase_ , -logprob_i )
else:
out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i )
offset += logprob_i.size(0 )
return out
def _snake_case ( self : List[Any] , __lowerCamelCase : str ):
if self.n_clusters == 0:
SCREAMING_SNAKE_CASE = self._compute_logit(lowerCAmelCase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
return nn.functional.log_softmax(lowerCAmelCase_ , dim=-1 )
else:
# construct weights and biases
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.cutoff_ends[i], self.cutoff_ends[i + 1]
SCREAMING_SNAKE_CASE = self.out_layers[0].weight[l_idx:r_idx]
SCREAMING_SNAKE_CASE = self.out_layers[0].bias[l_idx:r_idx]
else:
SCREAMING_SNAKE_CASE = self.out_layers[i].weight
SCREAMING_SNAKE_CASE = self.out_layers[i].bias
if i == 0:
SCREAMING_SNAKE_CASE = torch.cat([weight_i, self.cluster_weight] , dim=0 )
SCREAMING_SNAKE_CASE = torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(lowerCAmelCase_ )
biases.append(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = weights[0], biases[0], self.out_projs[0]
SCREAMING_SNAKE_CASE = self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
SCREAMING_SNAKE_CASE = hidden.new_empty((head_logit.size(0 ), self.n_token) )
SCREAMING_SNAKE_CASE = nn.functional.log_softmax(lowerCAmelCase_ , dim=1 )
SCREAMING_SNAKE_CASE = [0] + self.cutoffs
for i in range(len(lowerCAmelCase_ ) - 1 ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cutoff_values[i], cutoff_values[i + 1]
if i == 0:
SCREAMING_SNAKE_CASE = head_logprob[:, : self.cutoffs[0]]
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = weights[i], biases[i], self.out_projs[i]
SCREAMING_SNAKE_CASE = self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
SCREAMING_SNAKE_CASE = nn.functional.log_softmax(lowerCAmelCase_ , dim=1 )
SCREAMING_SNAKE_CASE = head_logprob[:, -i] + tail_logprob_i
SCREAMING_SNAKE_CASE = logprob_i
return out
| 712 |
__A : dict[str, float] = {
"joule": 1.0,
"kilojoule": 1_0_0_0,
"megajoule": 1_0_0_0_0_0_0,
"gigajoule": 1_0_0_0_0_0_0_0_0_0,
"wattsecond": 1.0,
"watthour": 3_6_0_0,
"kilowatthour": 3_6_0_0_0_0_0,
"newtonmeter": 1.0,
"calorie_nutr": 4_1_8_6.8,
"kilocalorie_nutr": 4_1_8_6_8_0_0.0_0,
"electronvolt": 1.6_0217_6634e-19,
"britishthermalunit_it": 1_0_5_5.0_5_5_8_5,
"footpound": 1.355_818,
}
def __a ( A__ : str , A__ : str , A__ : float ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
SCREAMING_SNAKE_CASE = (
F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
F"Valid values are: {', '.join(A__ )}"
)
raise ValueError(A__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 | 0 |
'''simple docstring'''
import json
import os
from typing import Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__A : List[Any] = logging.get_logger(__name__)
__A : Dict = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
}
__A : Any = {
'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'},
'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'},
}
__A : Optional[Any] = {
'ctrl': 2_5_6,
}
__A : str = {
'Pregnancy': 1_6_8_6_2_9,
'Christianity': 7_6_7_5,
'Explain': 1_0_6_4_2_3,
'Fitness': 6_3_4_4_0,
'Saving': 6_3_1_6_3,
'Ask': 2_7_1_7_1,
'Ass': 9_5_9_8_5,
'Joke': 1_6_3_5_0_9,
'Questions': 4_5_6_2_2,
'Thoughts': 4_9_6_0_5,
'Retail': 5_2_3_4_2,
'Feminism': 1_6_4_3_3_8,
'Writing': 1_1_9_9_2,
'Atheism': 1_9_2_2_6_3,
'Netflix': 4_8_6_1_6,
'Computing': 3_9_6_3_9,
'Opinion': 4_3_2_1_3,
'Alone': 4_4_9_6_7,
'Funny': 5_8_9_1_7,
'Gaming': 4_0_3_5_8,
'Human': 4_0_8_8,
'India': 1_3_3_1,
'Joker': 7_7_1_3_8,
'Diet': 3_6_2_0_6,
'Legal': 1_1_8_5_9,
'Norman': 4_9_3_9,
'Tip': 7_2_6_8_9,
'Weight': 5_2_3_4_3,
'Movies': 4_6_2_7_3,
'Running': 2_3_4_2_5,
'Science': 2_0_9_0,
'Horror': 3_7_7_9_3,
'Confession': 6_0_5_7_2,
'Finance': 1_2_2_5_0,
'Politics': 1_6_3_6_0,
'Scary': 1_9_1_9_8_5,
'Support': 1_2_6_5_4,
'Technologies': 3_2_5_1_6,
'Teenage': 6_6_1_6_0,
'Event': 3_2_7_6_9,
'Learned': 6_7_4_6_0,
'Notion': 1_8_2_7_7_0,
'Wikipedia': 3_7_5_8_3,
'Books': 6_6_6_5,
'Extract': 7_6_0_5_0,
'Confessions': 1_0_2_7_0_1,
'Conspiracy': 7_5_9_3_2,
'Links': 6_3_6_7_4,
'Narcissus': 1_5_0_4_2_5,
'Relationship': 5_4_7_6_6,
'Relationships': 1_3_4_7_9_6,
'Reviews': 4_1_6_7_1,
'News': 4_2_5_6,
'Translation': 2_6_8_2_0,
'multilingual': 1_2_8_4_0_6,
}
def __a ( A__ : Optional[int] ):
SCREAMING_SNAKE_CASE = set()
SCREAMING_SNAKE_CASE = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
SCREAMING_SNAKE_CASE = char
SCREAMING_SNAKE_CASE = set(a_ )
return pairs
class _SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = CONTROL_CODES
def __init__( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : Any="<unk>" , **__lowerCamelCase : Dict ):
super().__init__(unk_token=_UpperCAmelCase , **_UpperCAmelCase )
with open(_UpperCAmelCase , encoding="utf-8" ) as vocab_handle:
SCREAMING_SNAKE_CASE = json.load(_UpperCAmelCase )
SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()}
with open(_UpperCAmelCase , encoding="utf-8" ) as merges_handle:
SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1]
SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in merges]
SCREAMING_SNAKE_CASE = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
SCREAMING_SNAKE_CASE = {}
@property
def _snake_case ( self : Optional[int] ):
return len(self.encoder )
def _snake_case ( self : List[Any] ):
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : List[str] , __lowerCamelCase : str ):
if token in self.cache:
return self.cache[token]
SCREAMING_SNAKE_CASE = tuple(_UpperCAmelCase )
SCREAMING_SNAKE_CASE = tuple(list(word[:-1] ) + [word[-1] + "</w>"] )
SCREAMING_SNAKE_CASE = get_pairs(_UpperCAmelCase )
if not pairs:
return token
while True:
SCREAMING_SNAKE_CASE = min(_UpperCAmelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(_UpperCAmelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
SCREAMING_SNAKE_CASE = bigram
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
while i < len(_UpperCAmelCase ):
try:
SCREAMING_SNAKE_CASE = word.index(_UpperCAmelCase , _UpperCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
SCREAMING_SNAKE_CASE = j
if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
SCREAMING_SNAKE_CASE = tuple(_UpperCAmelCase )
SCREAMING_SNAKE_CASE = new_word
if len(_UpperCAmelCase ) == 1:
break
else:
SCREAMING_SNAKE_CASE = get_pairs(_UpperCAmelCase )
SCREAMING_SNAKE_CASE = '''@@ '''.join(_UpperCAmelCase )
SCREAMING_SNAKE_CASE = word[:-4]
SCREAMING_SNAKE_CASE = word
return word
def _snake_case ( self : int , __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = re.findall(r"\S+\n?" , _UpperCAmelCase )
for token in words:
split_tokens.extend(list(self.bpe(_UpperCAmelCase ).split(" " ) ) )
return split_tokens
def _snake_case ( self : int , __lowerCamelCase : Union[str, Any] ):
return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) )
def _snake_case ( self : Tuple , __lowerCamelCase : Tuple ):
return self.decoder.get(_UpperCAmelCase , self.unk_token )
def _snake_case ( self : List[Any] , __lowerCamelCase : int ):
SCREAMING_SNAKE_CASE = ''' '''.join(_UpperCAmelCase ).replace("@@ " , "" ).strip()
return out_string
def _snake_case ( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict = None ):
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE = os.path.join(
_UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
SCREAMING_SNAKE_CASE = os.path.join(
_UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(_UpperCAmelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + "\n" )
SCREAMING_SNAKE_CASE = 0
with open(_UpperCAmelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
SCREAMING_SNAKE_CASE = token_index
writer.write(" ".join(_UpperCAmelCase ) + "\n" )
index += 1
return vocab_file, merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far) | 713 |
from collections import deque
from .hash_table import HashTable
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ):
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = deque([] ) if self.values[key] is None else self.values[key]
self.values[key].appendleft(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.values[key]
def _snake_case ( self : Union[str, Any] ):
return (
sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values )
/ self.size_table
* self.charge_factor
)
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None ):
if not (
len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0
):
return key
return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase ) | 698 | 0 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Tuple=7 , __lowerCamelCase : List[str]=True , __lowerCamelCase : str=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Dict=36 , __lowerCamelCase : Optional[Any]=6 , __lowerCamelCase : Union[str, Any]=6 , __lowerCamelCase : List[Any]=6 , __lowerCamelCase : List[str]=37 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Optional[Any]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : str=0.02 , __lowerCamelCase : str=3 , __lowerCamelCase : Any=4 , __lowerCamelCase : Tuple=None , ):
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = seq_length
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_input_mask
SCREAMING_SNAKE_CASE = use_token_type_ids
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = embedding_size
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_hidden_groups
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = type_vocab_size
SCREAMING_SNAKE_CASE = type_sequence_label_size
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = num_labels
SCREAMING_SNAKE_CASE = num_choices
SCREAMING_SNAKE_CASE = scope
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices )
SCREAMING_SNAKE_CASE = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _snake_case ( self : str ):
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def _snake_case ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] ):
SCREAMING_SNAKE_CASE = AlbertModel(config=_A )
model.to(_A )
model.eval()
SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A , token_type_ids=_A )
SCREAMING_SNAKE_CASE = model(_A , token_type_ids=_A )
SCREAMING_SNAKE_CASE = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _snake_case ( self : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE = AlbertForPreTraining(config=_A )
model.to(_A )
model.eval()
SCREAMING_SNAKE_CASE = model(
_A , attention_mask=_A , token_type_ids=_A , labels=_A , sentence_order_label=_A , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = AlbertForMaskedLM(config=_A )
model.to(_A )
model.eval()
SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : int ):
SCREAMING_SNAKE_CASE = AlbertForQuestionAnswering(config=_A )
model.to(_A )
model.eval()
SCREAMING_SNAKE_CASE = model(
_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : int ):
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = AlbertForSequenceClassification(_A )
model.to(_A )
model.eval()
SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self : int , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = AlbertForTokenClassification(config=_A )
model.to(_A )
model.eval()
SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case ( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.num_choices
SCREAMING_SNAKE_CASE = AlbertForMultipleChoice(config=_A )
model.to(_A )
model.eval()
SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE = model(
_A , attention_mask=_A , token_type_ids=_A , labels=_A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) = config_and_inputs
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCamelCase__ = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase__ = True
def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict=False ):
SCREAMING_SNAKE_CASE = super()._prepare_for_class(_A , _A , return_labels=_A )
if return_labels:
if model_class in get_values(_A ):
SCREAMING_SNAKE_CASE = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_A )
SCREAMING_SNAKE_CASE = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_A )
return inputs_dict
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AlbertModelTester(self )
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_A , hidden_size=37 )
def _snake_case ( self : List[str] ):
self.config_tester.run_common_tests()
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_A )
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_A )
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_A )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_A )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_A )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
SCREAMING_SNAKE_CASE = type
self.model_tester.create_and_check_model(*_A )
@slow
def _snake_case ( self : Union[str, Any] ):
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = AlbertModel.from_pretrained(_A )
self.assertIsNotNone(_A )
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@slow
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AlbertModel.from_pretrained("albert-base-v2" )
SCREAMING_SNAKE_CASE = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A )[0]
SCREAMING_SNAKE_CASE = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , _A )
SCREAMING_SNAKE_CASE = torch.tensor(
[[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1e-4 ) ) | 714 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
__A : Optional[int] = logging.get_logger(__name__)
__A : int = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "gpt_neo"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__( self : str , __lowerCamelCase : Dict=50257 , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : int=24 , __lowerCamelCase : int=[[["global", "local"], 12]] , __lowerCamelCase : int=16 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=50256 , __lowerCamelCase : Optional[int]=50256 , **__lowerCamelCase : Dict , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_layers
SCREAMING_SNAKE_CASE = num_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = window_size
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = resid_dropout
SCREAMING_SNAKE_CASE = embed_dropout
SCREAMING_SNAKE_CASE = attention_dropout
SCREAMING_SNAKE_CASE = classifier_dropout
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = bos_token_id
SCREAMING_SNAKE_CASE = eos_token_id
SCREAMING_SNAKE_CASE = attention_types
SCREAMING_SNAKE_CASE = self.expand_attention_types_params(__lowerCamelCase )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.attention_layers)` == `config.num_layers` "
f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, "
f"`config.num_layers = {self.num_layers}`. "
"`config.attention_layers` is prepared using `config.attention_types`. "
"Please verify the value of `config.attention_types` argument." )
super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
@staticmethod
def _snake_case ( __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def __a ( A__ : str , A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] ):
import torch
SCREAMING_SNAKE_CASE = input.size()
SCREAMING_SNAKE_CASE = len(A__ )
SCREAMING_SNAKE_CASE = shape[dimension]
SCREAMING_SNAKE_CASE = torch.arange(0 , A__ , A__ )
SCREAMING_SNAKE_CASE = torch.div(sizedim - size , A__ , rounding_mode="floor" ) + 1
SCREAMING_SNAKE_CASE = torch.arange(A__ ) + low_indices[:min_length][:, None]
SCREAMING_SNAKE_CASE = [slice(A__ )] * rank
SCREAMING_SNAKE_CASE = indices
SCREAMING_SNAKE_CASE = input[s]
SCREAMING_SNAKE_CASE = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(A__ )
def __a ( A__ : Union[str, Any] , A__ : Optional[int] ):
import torch
SCREAMING_SNAKE_CASE = torch.arange(1 , A__ )
SCREAMING_SNAKE_CASE = torch.remainder(A__ , A__ )
SCREAMING_SNAKE_CASE = remainders == 0
SCREAMING_SNAKE_CASE = candidates[divisor_indices]
SCREAMING_SNAKE_CASE = torch.max(A__ )
return largest_divisor, torch.div(A__ , A__ , rounding_mode="floor" )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} )
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"}
else:
SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"}
return common_inputs
@property
def _snake_case ( self : Optional[int] ):
return self._config.num_heads
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
SCREAMING_SNAKE_CASE = super(__lowerCamelCase , self ).generate_dummy_inputs(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
# We need to order the input in the way they appears in the forward()
SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
SCREAMING_SNAKE_CASE = seqlen + 2
SCREAMING_SNAKE_CASE = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
SCREAMING_SNAKE_CASE = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers )
]
SCREAMING_SNAKE_CASE = common_inputs["attention_mask"]
if self.use_past:
SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype
SCREAMING_SNAKE_CASE = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
return ordered_inputs
@property
def _snake_case ( self : Optional[int] ):
return 13 | 698 | 0 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __a ( A__ : Optional[int]=None ):
if subparsers is not None:
SCREAMING_SNAKE_CASE = subparsers.add_parser("test" )
else:
SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" )
parser.add_argument(
"--config_file" , default=UpperCAmelCase__ , help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) , )
if subparsers is not None:
parser.set_defaults(func=UpperCAmelCase__ )
return parser
def __a ( A__ : Dict ):
SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] )
if args.config_file is None:
SCREAMING_SNAKE_CASE = script_name
else:
SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}"
SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split()
SCREAMING_SNAKE_CASE = execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy() )
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!" )
def __a ( ):
SCREAMING_SNAKE_CASE = test_command_parser()
SCREAMING_SNAKE_CASE = parser.parse_args()
test_command(UpperCAmelCase__ )
if __name__ == "__main__":
main()
| 715 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
__A : Any = {
'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = [
'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'LongT5EncoderModel',
'LongT5ForConditionalGeneration',
'LongT5Model',
'LongT5PreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'FlaxLongT5ForConditionalGeneration',
'FlaxLongT5Model',
'FlaxLongT5PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longta import (
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
LongTaEncoderModel,
LongTaForConditionalGeneration,
LongTaModel,
LongTaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_longta import (
FlaxLongTaForConditionalGeneration,
FlaxLongTaModel,
FlaxLongTaPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__A : int = logging.get_logger(__name__)
__A : List[str] = {
'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json',
'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json',
'junnyu/roformer_chinese_char_small': (
'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json'
),
'junnyu/roformer_chinese_char_base': (
'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json'
),
'junnyu/roformer_small_discriminator': (
'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json'
),
'junnyu/roformer_small_generator': (
'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json'
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = """roformer"""
def __init__( self : Optional[int] , __lowerCamelCase : Union[str, Any]=50000 , __lowerCamelCase : str=None , __lowerCamelCase : Dict=768 , __lowerCamelCase : List[str]=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Optional[int]=3072 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[str]=1536 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Union[str, Any]=0.02 , __lowerCamelCase : List[Any]=1e-12 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : List[str]=False , __lowerCamelCase : Union[str, Any]=True , **__lowerCamelCase : Optional[int] , ):
super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = hidden_size if embedding_size is None else embedding_size
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = type_vocab_size
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = rotary_value
SCREAMING_SNAKE_CASE = use_cache
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Union[str, Any] ):
if self.task == "multiple-choice":
SCREAMING_SNAKE_CASE = {0: "batch", 1: "choice", 2: "sequence"}
else:
SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"}
SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
] ) | 716 |
import cmath
import math
def __a ( A__ : float , A__ : float , A__ : float , A__ : float ):
SCREAMING_SNAKE_CASE = math.radians(A__ )
SCREAMING_SNAKE_CASE = math.radians(A__ )
# Convert voltage and current to rectangular form
SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ )
SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 | 0 |
import math
def __a ( A__ : Optional[int] , A__ : Any ):
if initial_intensity < 0:
raise ValueError("The value of intensity cannot be negative" )
# handling of negative values of initial intensity
if angle < 0 or angle > 360:
raise ValueError("In Malus Law, the angle is in the range 0-360 degrees" )
# handling of values out of allowed range
return initial_intensity * (math.cos(math.radians(A__ ) ) ** 2)
if __name__ == "__main__":
import doctest
doctest.testmod(name='malus_law') | 717 |
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def __a ( A__ : List[str] ):
SCREAMING_SNAKE_CASE = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(A__ , A__ )
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ )
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
def __a ( A__ : Tuple , A__ : Union[str, Any]=None ):
SCREAMING_SNAKE_CASE = {}
for old_key in state_dict.keys():
SCREAMING_SNAKE_CASE = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" )
else:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts." , "ffn.experts.expert_" )
if "gate" in key:
SCREAMING_SNAKE_CASE = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" )
if "fc2" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc2." , ".ffn.fc2." )
if "fc1" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc1." , ".ffn.fc1." )
if ".encoder_attn." in key:
SCREAMING_SNAKE_CASE = key.replace(".encoder_attn." , ".cross_attention." )
if "encoder_attn_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" )
if "final_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("final_layer_norm" , "ff_layer_norm" )
SCREAMING_SNAKE_CASE = state_dict[old_key]
return new_dict
def __a ( A__ : List[str] , A__ : List[Any] , A__ : str , A__ : Union[str, Any] , A__ : str = WEIGHTS_NAME ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
os.makedirs(A__ , exist_ok=A__ )
for expert in range(A__ ):
SCREAMING_SNAKE_CASE = switch_checkpoint_path + F"-rank-{expert}.pt"
if os.path.isfile(A__ ):
SCREAMING_SNAKE_CASE = torch.load(A__ )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = os.path.join(
A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
torch.save(A__ , A__ )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(A__ )[0]].dtype )
# Add the last block
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + "-shared.pt" )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(A__ ) == 1:
SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ )
torch.save(A__ , A__ )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(A__ , A__ )
# Otherwise, let's build the index
SCREAMING_SNAKE_CASE = {}
for idx, shard in enumerate(A__ ):
SCREAMING_SNAKE_CASE = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" )
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) )
os.rename(A__ , os.path.join(A__ , A__ ) )
for key in shard:
SCREAMING_SNAKE_CASE = shard_file
# Add the metadata
SCREAMING_SNAKE_CASE = {"total_size": total_size}
SCREAMING_SNAKE_CASE = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(A__ , A__ ) , "w" , encoding="utf-8" ) as f:
SCREAMING_SNAKE_CASE = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n"
f.write(A__ )
return metadata, index
if __name__ == "__main__":
__A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--nllb_moe_checkpoint_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b',
type=str,
required=False,
help='Path to the output pytorch model.',
)
__A : Optional[int] = parser.parse_args()
__A , __A : Union[str, Any] = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_2_8,
args.dtype,
)
__A : Any = NllbMoeConfig.from_pretrained(
'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8
)
config.save_pretrained(args.pytorch_dump_folder_path)
__A : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('Done')
model.save_pretrained(args.pytorch_dump_folder_path) | 698 | 0 |
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
UNetaDConditionModel,
VideoToVideoSDPipeline,
)
from diffusers.utils import floats_tensor, is_xformers_available, skip_mps
from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class _SCREAMING_SNAKE_CASE ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = VideoToVideoSDPipeline
lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"}
lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"}
lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {"latents"}
lowerCamelCase__ = False
# No `output_type`.
lowerCamelCase__ = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback",
"callback_steps",
] )
def _snake_case ( self : Union[str, Any] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , )
SCREAMING_SNAKE_CASE = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , )
SCREAMING_SNAKE_CASE = CLIPTextModel(lowerCamelCase__ )
SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
SCREAMING_SNAKE_CASE = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def _snake_case ( self : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : str=0 ):
SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ )
if str(lowerCamelCase__ ).startswith("mps" ):
SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCamelCase__ )
else:
SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ )
SCREAMING_SNAKE_CASE = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''video''': video,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''pt''',
}
return inputs
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = '''cpu''' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE = self.get_dummy_components()
SCREAMING_SNAKE_CASE = VideoToVideoSDPipeline(**lowerCamelCase__ )
SCREAMING_SNAKE_CASE = sd_pipe.to(lowerCamelCase__ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ )
SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase__ )
SCREAMING_SNAKE_CASE = '''np'''
SCREAMING_SNAKE_CASE = sd_pipe(**lowerCamelCase__ ).frames
SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1]
assert frames[0].shape == (32, 32, 3)
SCREAMING_SNAKE_CASE = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def _snake_case ( self : Dict ):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase__ , expected_max_diff=5e-3 )
@unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." )
def _snake_case ( self : Any ):
pass
@unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." )
def _snake_case ( self : Optional[Any] ):
pass
@unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." )
def _snake_case ( self : Any ):
pass
def _snake_case ( self : List[str] ):
return super().test_progress_bar()
@slow
@skip_mps
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL" , torch_dtype=torch.floataa )
pipe.enable_model_cpu_offload()
# 10 frames
SCREAMING_SNAKE_CASE = torch.Generator(device="cpu" ).manual_seed(0 )
SCREAMING_SNAKE_CASE = torch.randn((1, 10, 3, 1024, 576) , generator=lowerCamelCase__ )
SCREAMING_SNAKE_CASE = video.to("cuda" )
SCREAMING_SNAKE_CASE = '''Spiderman is surfing'''
SCREAMING_SNAKE_CASE = pipe(lowerCamelCase__ , video=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=3 , output_type="pt" ).frames
SCREAMING_SNAKE_CASE = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] )
assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2 | 718 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = BlipImageProcessor()
SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
def _snake_case ( self : Dict , **__lowerCamelCase : Any ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer
def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor
def _snake_case ( self : Union[str, Any] ):
shutil.rmtree(self.tmpdirname )
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 )
SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowerCamelCase )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" )
SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(__lowerCamelCase ):
processor()
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) | 698 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__A : List[Any] = {
'configuration_chinese_clip': [
'CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'ChineseCLIPConfig',
'ChineseCLIPOnnxConfig',
'ChineseCLIPTextConfig',
'ChineseCLIPVisionConfig',
],
'processing_chinese_clip': ['ChineseCLIPProcessor'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Optional[Any] = ['ChineseCLIPFeatureExtractor']
__A : str = ['ChineseCLIPImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = [
'CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'ChineseCLIPModel',
'ChineseCLIPPreTrainedModel',
'ChineseCLIPTextModel',
'ChineseCLIPVisionModel',
]
if TYPE_CHECKING:
from .configuration_chinese_clip import (
CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
ChineseCLIPConfig,
ChineseCLIPOnnxConfig,
ChineseCLIPTextConfig,
ChineseCLIPVisionConfig,
)
from .processing_chinese_clip import ChineseCLIPProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_chinese_clip import (
CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
ChineseCLIPModel,
ChineseCLIPPreTrainedModel,
ChineseCLIPTextModel,
ChineseCLIPVisionModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 719 |
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
@staticmethod
def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ):
pass
def __a ( A__ : str ):
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
__A : Tuple = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
SCREAMING_SNAKE_CASE = "What is the placebo?"
SCREAMING_SNAKE_CASE = [
{
"image": load_image(__lowerCamelCase ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ):
SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 )
self.assertEqual(
__lowerCamelCase , [
[
{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )},
{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )},
]
]
* 3 , )
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "How many cats are there?"
SCREAMING_SNAKE_CASE = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40},
]
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(__lowerCamelCase , [] )
# We can optionnally pass directly the words and bounding boxes
SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png"
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 )
self.assertEqual(__lowerCamelCase , [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
],
]
* 2 , )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
]
]
* 2 , )
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
# This model should also work if `image` is set to None
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 , )
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
# This model should also work if `image` is set to None
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
] , )
@slow
@require_torch
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _snake_case ( self : List[Any] ):
pass | 698 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__A : int = logging.get_logger(__name__)
__A : int = {
"""facebook/data2vec-vision-base-ft""": (
"""https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json"""
),
}
class _SCREAMING_SNAKE_CASE ( lowercase_ ):
'''simple docstring'''
lowerCamelCase__ = '''data2vec-vision'''
def __init__( self : Optional[int] , __lowerCamelCase : List[str]=768 , __lowerCamelCase : int=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Any=3072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : int=0.0 , __lowerCamelCase : List[str]=0.0 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : Optional[Any]=1e-12 , __lowerCamelCase : str=224 , __lowerCamelCase : Any=16 , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=False , __lowerCamelCase : Dict=False , __lowerCamelCase : List[str]=False , __lowerCamelCase : Tuple=False , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Tuple=[3, 5, 7, 11] , __lowerCamelCase : Optional[int]=[1, 2, 3, 6] , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Optional[int]=0.4 , __lowerCamelCase : Optional[Any]=256 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Tuple=255 , **__lowerCamelCase : Optional[int] , ):
super().__init__(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = use_mask_token
SCREAMING_SNAKE_CASE = use_absolute_position_embeddings
SCREAMING_SNAKE_CASE = use_relative_position_bias
SCREAMING_SNAKE_CASE = use_shared_relative_position_bias
SCREAMING_SNAKE_CASE = layer_scale_init_value
SCREAMING_SNAKE_CASE = drop_path_rate
SCREAMING_SNAKE_CASE = use_mean_pooling
# decode head attributes (semantic segmentation)
SCREAMING_SNAKE_CASE = out_indices
SCREAMING_SNAKE_CASE = pool_scales
# auxiliary head attributes (semantic segmentation)
SCREAMING_SNAKE_CASE = use_auxiliary_head
SCREAMING_SNAKE_CASE = auxiliary_loss_weight
SCREAMING_SNAKE_CASE = auxiliary_channels
SCREAMING_SNAKE_CASE = auxiliary_num_convs
SCREAMING_SNAKE_CASE = auxiliary_concat_input
SCREAMING_SNAKE_CASE = semantic_loss_ignore_index
class _SCREAMING_SNAKE_CASE ( lowercase_ ):
'''simple docstring'''
lowerCamelCase__ = version.parse("1.11" )
@property
def _snake_case ( self : str ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self : List[Any] ):
return 1e-4 | 720 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "facebook/bart-large-mnli"
lowerCamelCase__ = (
"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which "
"should be the text to classify, and `labels`, which should be the list of labels to use for classification. "
"It returns the most likely label in the list of provided `labels` for the input text."
)
lowerCamelCase__ = "text_classifier"
lowerCamelCase__ = AutoTokenizer
lowerCamelCase__ = AutoModelForSequenceClassification
lowerCamelCase__ = ["text", ["text"]]
lowerCamelCase__ = ["text"]
def _snake_case ( self : Optional[Any] ):
super().setup()
SCREAMING_SNAKE_CASE = self.model.config
SCREAMING_SNAKE_CASE = -1
for idx, label in config.idalabel.items():
if label.lower().startswith("entail" ):
SCREAMING_SNAKE_CASE = int(__lowerCamelCase )
if self.entailment_id == -1:
raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." )
def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ):
SCREAMING_SNAKE_CASE = labels
return self.pre_processor(
[text] * len(__lowerCamelCase ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , )
def _snake_case ( self : str , __lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = outputs.logits
SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id] | 698 | 0 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
__A : Optional[Any] = logging.get_logger(__name__)
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : Union[str, Any] , *__lowerCamelCase : List[str] , **__lowerCamelCase : List[Any] ):
warnings.warn(
"The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use MobileViTImageProcessor instead." , __lowerCamelCase , )
super().__init__(*__lowerCamelCase , **__lowerCamelCase ) | 721 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __a ( A__ : str=None ):
if subparsers is not None:
SCREAMING_SNAKE_CASE = subparsers.add_parser("test" )
else:
SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" )
parser.add_argument(
"--config_file" , default=A__ , help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) , )
if subparsers is not None:
parser.set_defaults(func=A__ )
return parser
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] )
if args.config_file is None:
SCREAMING_SNAKE_CASE = script_name
else:
SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}"
SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split()
SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() )
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!" )
def __a ( ):
SCREAMING_SNAKE_CASE = test_command_parser()
SCREAMING_SNAKE_CASE = parser.parse_args()
test_command(A__ )
if __name__ == "__main__":
main() | 698 | 0 |
def __a ( A__ : list[int] , A__ : int ):
SCREAMING_SNAKE_CASE = len(A__ )
SCREAMING_SNAKE_CASE = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
SCREAMING_SNAKE_CASE = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
SCREAMING_SNAKE_CASE = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
SCREAMING_SNAKE_CASE = subset[i - 1][j]
if arr[i - 1] <= j:
SCREAMING_SNAKE_CASE = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod() | 700 |
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__A : Optional[int] = logging.get_logger(__name__)
__A : List[str] = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
__A : Tuple = {
'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'},
'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'},
'tokenizer_config_file': {
'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'
},
}
__A : Dict = {'facebook/blenderbot-3B': 1_2_8}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def __a ( ):
SCREAMING_SNAKE_CASE = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
SCREAMING_SNAKE_CASE = bs[:]
SCREAMING_SNAKE_CASE = 0
for b in range(2**8 ):
if b not in bs:
bs.append(A__ )
cs.append(2**8 + n )
n += 1
SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs]
return dict(zip(A__ , A__ ) )
def __a ( A__ : Optional[int] ):
SCREAMING_SNAKE_CASE = set()
SCREAMING_SNAKE_CASE = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
SCREAMING_SNAKE_CASE = char
return pairs
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = ["input_ids", "attention_mask"]
def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]="replace" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : List[Any]="<mask>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Tuple , ):
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()}
SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding
SCREAMING_SNAKE_CASE = bytes_to_unicode()
SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1]
SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges]
SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def _snake_case ( self : Dict ):
return len(self.encoder )
def _snake_case ( self : int ):
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : Tuple , __lowerCamelCase : List[str] ):
if token in self.cache:
return self.cache[token]
SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase )
SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
while i < len(__lowerCamelCase ):
try:
SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
SCREAMING_SNAKE_CASE = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase )
SCREAMING_SNAKE_CASE = new_word
if len(__lowerCamelCase ) == 1:
break
else:
SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase )
SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = word
return word
def _snake_case ( self : str , __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = []
for token in re.findall(self.pat , __lowerCamelCase ):
SCREAMING_SNAKE_CASE = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def _snake_case ( self : List[str] , __lowerCamelCase : str ):
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple ):
return self.decoder.get(__lowerCamelCase )
def _snake_case ( self : Tuple , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
SCREAMING_SNAKE_CASE = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
SCREAMING_SNAKE_CASE = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _snake_case ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE = [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
SCREAMING_SNAKE_CASE = " " + text
return (text, kwargs)
def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
return token_ids_a + [self.eos_token_id]
def _snake_case ( self : Tuple , __lowerCamelCase : "Conversation" ):
SCREAMING_SNAKE_CASE = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(" " + text )
else:
# Generated responses should contain them already.
inputs.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase )
if len(__lowerCamelCase ) > self.model_max_length:
SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :]
logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." )
return input_ids | 698 | 0 |
from math import isqrt, loga
def __a ( A__ : int ):
SCREAMING_SNAKE_CASE = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , A__ , A__ ):
SCREAMING_SNAKE_CASE = False
return [i for i in range(2 , A__ ) if is_prime[i]]
def __a ( A__ : int = 800800 , A__ : int = 800800 ):
SCREAMING_SNAKE_CASE = degree * loga(A__ )
SCREAMING_SNAKE_CASE = int(A__ )
SCREAMING_SNAKE_CASE = calculate_prime_numbers(A__ )
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = len(A__ ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(f'{solution() = }') | 701 |
from __future__ import annotations
from cmath import sqrt
def __a ( A__ : int , A__ : int , A__ : int ):
if a == 0:
raise ValueError("Coefficient 'a' must not be zero." )
SCREAMING_SNAKE_CASE = b * b - 4 * a * c
SCREAMING_SNAKE_CASE = (-b + sqrt(A__ )) / (2 * a)
SCREAMING_SNAKE_CASE = (-b - sqrt(A__ )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def __a ( ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 )
print(F"The solutions are: {solutiona} and {solutiona}" )
if __name__ == "__main__":
main() | 698 | 0 |
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : List[Any] , *__lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : Optional[Any] ):
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = eval_examples
SCREAMING_SNAKE_CASE = post_process_function
def _snake_case ( self : Optional[int] , __lowerCamelCase : str=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : str = "eval" ):
SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset
SCREAMING_SNAKE_CASE = self.get_eval_dataloader(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE = self.compute_metrics
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
SCREAMING_SNAKE_CASE = time.time()
try:
SCREAMING_SNAKE_CASE = eval_loop(
__lowerCamelCase , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , metric_key_prefix=__lowerCamelCase , )
finally:
SCREAMING_SNAKE_CASE = compute_metrics
SCREAMING_SNAKE_CASE = self.args.eval_batch_size * self.args.world_size
if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
__lowerCamelCase , __lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
SCREAMING_SNAKE_CASE = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions )
SCREAMING_SNAKE_CASE = self.compute_metrics(__lowerCamelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"{metric_key_prefix}_" ):
SCREAMING_SNAKE_CASE = metrics.pop(__lowerCamelCase )
metrics.update(output.metrics )
else:
SCREAMING_SNAKE_CASE = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(__lowerCamelCase )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCamelCase )
return metrics
def _snake_case ( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : str = "test" ):
SCREAMING_SNAKE_CASE = self.get_test_dataloader(__lowerCamelCase )
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE = self.compute_metrics
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
SCREAMING_SNAKE_CASE = time.time()
try:
SCREAMING_SNAKE_CASE = eval_loop(
__lowerCamelCase , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , metric_key_prefix=__lowerCamelCase , )
finally:
SCREAMING_SNAKE_CASE = compute_metrics
SCREAMING_SNAKE_CASE = self.args.eval_batch_size * self.args.world_size
if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
__lowerCamelCase , __lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
SCREAMING_SNAKE_CASE = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions , "predict" )
SCREAMING_SNAKE_CASE = self.compute_metrics(__lowerCamelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"{metric_key_prefix}_" ):
SCREAMING_SNAKE_CASE = metrics.pop(__lowerCamelCase )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCamelCase ) | 702 |
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :]
SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilgpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n"
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="pt" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text | 698 | 0 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = inspect.getfile(accelerate.test_utils )
SCREAMING_SNAKE_CASE = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps", "test_metrics.py"] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
SCREAMING_SNAKE_CASE = test_metrics
@require_cpu
def _snake_case ( self : int ):
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def _snake_case ( self : Tuple ):
debug_launcher(self.test_metrics.main )
@require_single_gpu
def _snake_case ( self : str ):
self.test_metrics.main()
@require_multi_gpu
def _snake_case ( self : int ):
print(f"Found {torch.cuda.device_count()} devices." )
SCREAMING_SNAKE_CASE = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase , env=os.environ.copy() ) | 703 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = ['FNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = ['FNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'FNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'FNetForMaskedLM',
'FNetForMultipleChoice',
'FNetForNextSentencePrediction',
'FNetForPreTraining',
'FNetForQuestionAnswering',
'FNetForSequenceClassification',
'FNetForTokenClassification',
'FNetLayer',
'FNetModel',
'FNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
__A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 | 0 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM
@require_tf
@require_sentencepiece
@require_tokenizers
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@slow
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" )
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("google/mt5-small" )
SCREAMING_SNAKE_CASE = tokenizer("Hello there" , return_tensors="tf" ).input_ids
SCREAMING_SNAKE_CASE = tokenizer("Hi I am" , return_tensors="tf" ).input_ids
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ).loss
SCREAMING_SNAKE_CASE = -tf.math.reduce_mean(__lowerCamelCase ).numpy()
SCREAMING_SNAKE_CASE = -21.228_168
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 ) | 704 |
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
__A : Optional[Any] = datasets.load_iris()
__A : Optional[Any] = np.array(data['data'])
__A : Optional[int] = np.array(data['target'])
__A : Union[str, Any] = data['target_names']
__A , __A , __A , __A : Optional[int] = train_test_split(X, y)
def __a ( A__ : Optional[int] , A__ : Dict ):
return np.linalg.norm(np.array(A__ ) - np.array(A__ ) )
def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ):
SCREAMING_SNAKE_CASE = zip(A__ , A__ )
# List of distances of all points from the point to be classified
SCREAMING_SNAKE_CASE = []
for data_point in data:
SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4])) | 698 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__A : Union[str, Any] = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : str = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
__A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 705 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__A : Union[str, Any] = logging.get_logger(__name__)
__A : Dict = {
'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json',
}
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "resnet"
lowerCamelCase__ = ["basic", "bottleneck"]
def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ):
super().__init__(**__lowerCamelCase )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = embedding_size
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = layer_type
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = downsample_in_first_stage
SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(
out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = version.parse("1.11" )
@property
def _snake_case ( self : Optional[int] ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self : Optional[int] ):
return 1e-3 | 698 | 0 |
import json
import os
import unittest
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = XLMTokenizer
lowerCamelCase__ = False
def _snake_case ( self : Union[str, Any] ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"w</w>",
"r</w>",
"t</w>",
"lo",
"low",
"er</w>",
"low</w>",
"lowest</w>",
"newer</w>",
"wider</w>",
"<unk>",
]
SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
SCREAMING_SNAKE_CASE = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" ) as fp:
fp.write(json.dumps(__lowerCamelCase ) )
with open(self.merges_file , "w" ) as fp:
fp.write("\n".join(__lowerCamelCase ) )
def _snake_case ( self : Tuple , __lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = "lower newer"
return input_text, output_text
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = XLMTokenizer(self.vocab_file , self.merges_file )
SCREAMING_SNAKE_CASE = "lower"
SCREAMING_SNAKE_CASE = ["low", "er</w>"]
SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = tokens + ["<unk>"]
SCREAMING_SNAKE_CASE = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase )
@slow
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" )
SCREAMING_SNAKE_CASE = tokenizer.encode("sequence builders" , add_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.encode("multi-sequence build" , add_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase )
assert encoded_sentence == [0] + text + [1]
assert encoded_pair == [0] + text + [1] + text_a + [1] | 706 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
__A : str = logging.get_logger(__name__)
__A : Optional[Any] = {
'openai/imagegpt-small': '',
'openai/imagegpt-medium': '',
'openai/imagegpt-large': '',
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "imagegpt"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : List[str] , __lowerCamelCase : Any=512 + 1 , __lowerCamelCase : str=32 * 32 , __lowerCamelCase : Any=512 , __lowerCamelCase : Optional[int]=24 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]="quick_gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , **__lowerCamelCase : Union[str, Any] , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = n_positions
SCREAMING_SNAKE_CASE = n_embd
SCREAMING_SNAKE_CASE = n_layer
SCREAMING_SNAKE_CASE = n_head
SCREAMING_SNAKE_CASE = n_inner
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = resid_pdrop
SCREAMING_SNAKE_CASE = embd_pdrop
SCREAMING_SNAKE_CASE = attn_pdrop
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = scale_attn_weights
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx
SCREAMING_SNAKE_CASE = reorder_and_upcast_attn
SCREAMING_SNAKE_CASE = tie_word_embeddings
super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Optional[Any] ):
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
] )
def _snake_case ( self : Optional[int] , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ):
SCREAMING_SNAKE_CASE = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) )
return inputs | 698 | 0 |
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = tf.convert_to_tensor(
[
[
8.2_220_991, # 3rd highest value; idx. 0
-0.5_620_044,
5.23_229_752,
4.0_386_393,
-6.8_798_378,
-0.54_785_802,
-3.2_012_153,
2.92_777_176,
1.88_171_953,
7.35_341_276, # 5th highest value; idx. 9
8.43_207_833, # 2nd highest value; idx. 10
-9.85_711_836,
-5.96_209_236,
-1.13_039_161,
-7.1_115_294,
-0.8_369_633,
-5.3_186_408,
7.06_427_407,
0.81_369_344,
-0.82_023_817,
-5.9_179_796,
0.58_813_443,
-6.99_778_438,
4.71_551_189,
-0.18_771_637,
7.44_020_759, # 4th highest value; idx. 25
9.38_450_987, # 1st highest value; idx. 26
2.12_662_941,
-9.32_562_038,
2.35_652_522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58_425_518,
4.53_139_238,
-5.57_510_464,
-6.28_030_699,
-7.19_529_503,
-4.02_122_551,
1.39_337_037,
-6.06_707_057,
1.59_480_517,
-9.643_119,
0.03_907_799,
0.67_231_762,
-8.88_206_726,
6.27_115_922, # 4th highest value; idx. 13
2.28_520_723,
4.82_767_506,
4.30_421_368,
8.8_275_313, # 2nd highest value; idx. 17
5.44_029_958, # 5th highest value; idx. 18
-4.4_735_794,
7.38_579_536, # 3rd highest value; idx. 20
-2.91_051_663,
2.61_946_077,
-2.5_674_762,
-9.48_959_302,
-4.02_922_645,
-1.35_416_918,
9.67_702_323, # 1st highest value; idx. 27
-5.89_478_553,
1.85_370_467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
SCREAMING_SNAKE_CASE = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
SCREAMING_SNAKE_CASE = tf.convert_to_tensor(
[8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above
SCREAMING_SNAKE_CASE = tf_top_k_top_p_filtering(__lowerCamelCase , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
SCREAMING_SNAKE_CASE = output[output != -float("inf" )]
SCREAMING_SNAKE_CASE = tf.cast(
tf.where(tf.not_equal(__lowerCamelCase , tf.constant(-float("inf" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1e-12 )
tf.debugging.assert_equal(__lowerCamelCase , __lowerCamelCase )
@require_tf
class _SCREAMING_SNAKE_CASE ( unittest.TestCase , __snake_case ):
'''simple docstring'''
if is_tf_available():
lowerCamelCase__ = {
"AutoModelForCausalLM": TFAutoModelForCausalLM,
"AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq,
"AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM,
"AutoModelForVision2Seq": TFAutoModelForVisionaSeq,
"LogitsProcessorList": TFLogitsProcessorList,
"MinLengthLogitsProcessor": TFMinLengthLogitsProcessor,
"create_tensor_fn": tf.convert_to_tensor,
"floats_tensor": floats_tensor,
"return_tensors": "tf",
}
@slow
def _snake_case ( self : Any ):
# TF-only test: tf.saved_model export
SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = 2
SCREAMING_SNAKE_CASE = 2
class _SCREAMING_SNAKE_CASE ( tf.Module ):
'''simple docstring'''
def __init__( self : Any , __lowerCamelCase : List[str] ):
super(__lowerCamelCase , self ).__init__()
SCREAMING_SNAKE_CASE = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask" ),
) , jit_compile=__lowerCamelCase , )
def _snake_case ( self : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.model.generate(
input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase , max_new_tokens=__lowerCamelCase , return_dict_in_generate=__lowerCamelCase , )
return {"sequences": outputs["sequences"]}
SCREAMING_SNAKE_CASE = [[2, 0], [102, 103]]
SCREAMING_SNAKE_CASE = [[1, 0], [1, 1]]
SCREAMING_SNAKE_CASE = DummyModel(model=__lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__lowerCamelCase , __lowerCamelCase , signatures={"serving_default": dummy_model.serving} )
SCREAMING_SNAKE_CASE = tf.saved_model.load(__lowerCamelCase ).signatures["serving_default"]
for batch_size in range(1 , len(__lowerCamelCase ) + 1 ):
SCREAMING_SNAKE_CASE = {
"input_ids": tf.constant(dummy_input_ids[:batch_size] ),
"attention_mask": tf.constant(dummy_attention_masks[:batch_size] ),
}
SCREAMING_SNAKE_CASE = serving_func(**__lowerCamelCase )["sequences"]
SCREAMING_SNAKE_CASE = test_model.generate(**__lowerCamelCase , max_new_tokens=__lowerCamelCase )
tf.debugging.assert_equal(__lowerCamelCase , __lowerCamelCase )
@slow
def _snake_case ( self : List[str] ):
# TF-only test: tf.saved_model export
SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = 2
class _SCREAMING_SNAKE_CASE ( tf.Module ):
'''simple docstring'''
def __init__( self : Tuple , __lowerCamelCase : Tuple ):
super(__lowerCamelCase , self ).__init__()
SCREAMING_SNAKE_CASE = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask" ),
) , jit_compile=__lowerCamelCase , )
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = self.model.generate(
input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase , max_new_tokens=__lowerCamelCase , return_dict_in_generate=__lowerCamelCase , )
return {"sequences": outputs["sequences"]}
SCREAMING_SNAKE_CASE = [[2], [102, 103]]
SCREAMING_SNAKE_CASE = [[1], [1, 1]]
SCREAMING_SNAKE_CASE = DummyModel(model=__lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__lowerCamelCase , __lowerCamelCase , signatures={"serving_default": dummy_model.serving} )
SCREAMING_SNAKE_CASE = tf.saved_model.load(__lowerCamelCase ).signatures["serving_default"]
for input_row in range(len(__lowerCamelCase ) ):
SCREAMING_SNAKE_CASE = {
"input_ids": tf.constant([dummy_input_ids[input_row]] ),
"attention_mask": tf.constant([dummy_attention_masks[input_row]] ),
}
SCREAMING_SNAKE_CASE = serving_func(**__lowerCamelCase )["sequences"]
SCREAMING_SNAKE_CASE = test_model.generate(**__lowerCamelCase , max_new_tokens=__lowerCamelCase )
tf.debugging.assert_equal(__lowerCamelCase , __lowerCamelCase )
@slow
@require_tensorflow_text
def _snake_case ( self : int ):
# TF-only test: tf.saved_model export
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=__lowerCamelCase )
class _SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : int ):
super().__init__()
SCREAMING_SNAKE_CASE = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(__lowerCamelCase , "spiece.model" ) , "rb" ).read() )
SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5" )
def _snake_case ( self : int , __lowerCamelCase : Tuple , *__lowerCamelCase : int , **__lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = self.tokenizer.tokenize(__lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = text.pad_model_inputs(
__lowerCamelCase , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
SCREAMING_SNAKE_CASE = self.model.generate(input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase )
return self.tokenizer.detokenize(__lowerCamelCase )
SCREAMING_SNAKE_CASE = CompleteSentenceTransformer()
SCREAMING_SNAKE_CASE = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs" )
SCREAMING_SNAKE_CASE = complete_model(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tf.keras.Model(__lowerCamelCase , __lowerCamelCase )
keras_model.save(__lowerCamelCase )
def _snake_case ( self : Optional[Any] ):
# Has PT equivalent: this test relies on random sampling
SCREAMING_SNAKE_CASE = {
"do_sample": True,
"num_beams": 1,
"top_p": 0.7,
"top_k": 10,
"temperature": 0.7,
}
SCREAMING_SNAKE_CASE = 14
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = "Hello, my dog is cute and"
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="tf" )
SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = 638
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(":/CPU:0" ):
tf.random.set_seed(0 )
SCREAMING_SNAKE_CASE = model.generate(**__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
self.assertTrue(expectation == len(generated_tokens[0] ) )
SCREAMING_SNAKE_CASE = [638, 198]
with tf.device(":/CPU:0" ):
tf.random.set_seed(0 )
SCREAMING_SNAKE_CASE = model.generate(**__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def _snake_case ( self : int ):
# Has PT equivalent: ample use of framework-specific code
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart" )
SCREAMING_SNAKE_CASE = "Hugging Face is a technology company based in New York and Paris."
SCREAMING_SNAKE_CASE = bart_tokenizer(__lowerCamelCase , return_tensors="tf" ).input_ids
SCREAMING_SNAKE_CASE = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart" )
SCREAMING_SNAKE_CASE = bart_model.generate(__lowerCamelCase ).numpy()
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : int ):
return super().call(__lowerCamelCase , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart" )
SCREAMING_SNAKE_CASE = bart_model.generate(__lowerCamelCase , foo="bar" ).numpy()
self.assertTrue(np.array_equal(__lowerCamelCase , __lowerCamelCase ) )
class _SCREAMING_SNAKE_CASE ( bart_model.model.encoder.__class__ ):
'''simple docstring'''
def _snake_case ( self : List[str] , __lowerCamelCase : Tuple , **__lowerCamelCase : Union[str, Any] ):
return super().call(__lowerCamelCase , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = FakeEncoder(bart_model.config , bart_model.model.shared )
SCREAMING_SNAKE_CASE = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
SCREAMING_SNAKE_CASE = bart_model.generate(__lowerCamelCase ).numpy()
with self.assertRaises(__lowerCamelCase ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(__lowerCamelCase , foo="bar" ) | 707 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@slow
@require_torch
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" )
SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" )
SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size
SCREAMING_SNAKE_CASE = tokenizer.sep_token_id
SCREAMING_SNAKE_CASE = tokenizer.cls_token_id
SCREAMING_SNAKE_CASE = 128
SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" )
SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" )
SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) )
SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) )
SCREAMING_SNAKE_CASE = 4
def _map_to_encoder_decoder_inputs(__lowerCamelCase : str ):
# Tokenizer will automatically set [BOS] <text> [EOS]
SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=__lowerCamelCase , max_length=512 )
SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=__lowerCamelCase , max_length=128 )
SCREAMING_SNAKE_CASE = inputs.input_ids
SCREAMING_SNAKE_CASE = inputs.attention_mask
SCREAMING_SNAKE_CASE = outputs.input_ids
SCREAMING_SNAKE_CASE = outputs.input_ids.copy()
SCREAMING_SNAKE_CASE = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
]
SCREAMING_SNAKE_CASE = outputs.attention_mask
assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids )
assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(__lowerCamelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE = pred.label_ids
SCREAMING_SNAKE_CASE = pred.predictions
# all unnecessary tokens are removed
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase )
return {"accuracy": accuracy}
# map train dataset
SCREAMING_SNAKE_CASE = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , )
train_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
# same for validation dataset
SCREAMING_SNAKE_CASE = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , )
val_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments(
output_dir=__lowerCamelCase , per_device_train_batch_size=__lowerCamelCase , per_device_eval_batch_size=__lowerCamelCase , predict_with_generate=__lowerCamelCase , evaluation_strategy="steps" , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
SCREAMING_SNAKE_CASE = SeqaSeqTrainer(
model=__lowerCamelCase , args=__lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , tokenizer=__lowerCamelCase , )
# start training
trainer.train() | 698 | 0 |
import re
from filelock import FileLock
try:
import nltk
__A : List[str] = True
except (ImportError, ModuleNotFoundError):
__A : List[str] = False
if NLTK_AVAILABLE:
with FileLock('.lock') as lock:
nltk.download('punkt', quiet=True)
def __a ( A__ : str ):
re.sub("<n>" , "" , A__ ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(A__ ) ) | 708 |
import inspect
import unittest
import warnings
from math import ceil, floor
from transformers import LevitConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
LevitForImageClassification,
LevitForImageClassificationWithTeacher,
LevitModel,
)
from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) )
self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) )
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ):
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = kernel_size
SCREAMING_SNAKE_CASE = stride
SCREAMING_SNAKE_CASE = padding
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = key_dim
SCREAMING_SNAKE_CASE = drop_path_rate
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = attention_ratio
SCREAMING_SNAKE_CASE = mlp_ratio
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = [
["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = num_labels
SCREAMING_SNAKE_CASE = initializer_range
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels )
SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def _snake_case ( self : List[str] ):
return LevitConfig(
image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , )
def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE = model(__lowerCamelCase )
SCREAMING_SNAKE_CASE = (self.image_size, self.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , )
def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ):
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs
SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (
(LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher)
if is_torch_available()
else ()
)
lowerCamelCase__ = (
{
"feature-extraction": LevitModel,
"image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = LevitModelTester(self )
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def _snake_case ( self : Any ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _snake_case ( self : Any ):
return
@unittest.skip(reason="Levit does not use inputs_embeds" )
def _snake_case ( self : Union[str, Any] ):
pass
@unittest.skip(reason="Levit does not support input and output embeddings" )
def _snake_case ( self : Tuple ):
pass
@unittest.skip(reason="Levit does not output attentions" )
def _snake_case ( self : Tuple ):
pass
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _snake_case ( self : List[Any] ):
def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
SCREAMING_SNAKE_CASE = outputs.hidden_states
SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE = floor(
(
(height + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
SCREAMING_SNAKE_CASE = floor(
(
(width + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [
height * width,
self.model_tester.hidden_sizes[0],
] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def _snake_case ( self : int ):
pass
def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ):
SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
def _snake_case ( self : List[Any] ):
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
# LevitForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(__lowerCamelCase )
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
loss.backward()
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
# LevitForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
continue
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.gradient_checkpointing_enable()
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
loss.backward()
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(__lowerCamelCase ),
]
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ):
SCREAMING_SNAKE_CASE = problem_type["title"]
SCREAMING_SNAKE_CASE = problem_type["num_labels"]
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if problem_type["num_labels"] > 1:
SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] )
SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list:
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
f"Something is going wrong in the regression problem: intercepted {w.message}" )
loss.backward()
@slow
def _snake_case ( self : List[Any] ):
for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def __a ( ):
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _snake_case ( self : Dict ):
return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.default_image_processor
SCREAMING_SNAKE_CASE = prepare_img()
SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase )
# verify the logits
SCREAMING_SNAKE_CASE = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) | 698 | 0 |
from __future__ import annotations
from collections.abc import Generator
def __a ( ):
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = 2
while True:
SCREAMING_SNAKE_CASE = factor_map.pop(A__ , A__ )
if factor:
SCREAMING_SNAKE_CASE = factor + prime
while x in factor_map:
x += factor
SCREAMING_SNAKE_CASE = factor
else:
SCREAMING_SNAKE_CASE = prime
yield prime
prime += 1
def __a ( A__ : float = 1E1_0 ):
SCREAMING_SNAKE_CASE = sieve()
SCREAMING_SNAKE_CASE = 1
while True:
SCREAMING_SNAKE_CASE = next(A__ )
if (2 * prime * n) > limit:
return n
# Ignore the next prime as the reminder will be 2.
next(A__ )
n += 2
if __name__ == "__main__":
print(solution()) | 709 |
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ):
return None
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ):
return None
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = [
# (model_name, model_kwargs)
("bert-base-cased", {}),
("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def _snake_case ( self : List[Any] ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase )
@require_torch
@slow
def _snake_case ( self : List[Any] ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase )
@require_torch
@slow
def _snake_case ( self : Optional[int] ):
from transformers import BertModel
SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"]
with NamedTemporaryFile(mode="w+t" ) as vocab_file:
vocab_file.write("\n".join(__lowerCamelCase ) )
vocab_file.flush()
SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) )
model.save_pretrained(__lowerCamelCase )
self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase )
@require_tf
@slow
def _snake_case ( self : Any ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
@require_torch
@slow
def _snake_case ( self : Any ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ):
try:
# Compute path
with TemporaryDirectory() as tempdir:
SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
return path
except Exception as e:
self.fail(__lowerCamelCase )
@require_torch
@require_tokenizers
@slow
def _snake_case ( self : Dict ):
from transformers import BertModel
SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" )
@require_tf
@require_tokenizers
@slow
def _snake_case ( self : int ):
from transformers import TFBertModel
SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" )
def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase )
# Assert all variables are present
self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase )
self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} )
self.assertDictEqual(shapes["output_1"] , {0: "batch"} )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"]
SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]}
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__lowerCamelCase ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(len(__lowerCamelCase ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens["input_ids"] )
self.assertEqual(ordered_input_names[0] , "input_ids" )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" )
self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() ) | 698 | 0 |
import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
__A : int = logging.getLogger(__name__)
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "token-classification"
def __init__( self : Dict , __lowerCamelCase : List[Any] ):
if type(__lowerCamelCase ) == dict:
SCREAMING_SNAKE_CASE = Namespace(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = import_module("tasks" )
try:
SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , hparams.task_type )
SCREAMING_SNAKE_CASE = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f"Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. "
f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" )
SCREAMING_SNAKE_CASE = self.token_classification_task.get_labels(hparams.labels )
SCREAMING_SNAKE_CASE = CrossEntropyLoss().ignore_index
super().__init__(__lowerCamelCase , len(self.labels ) , self.mode )
def _snake_case ( self : List[Any] , **__lowerCamelCase : Any ):
return self.model(**__lowerCamelCase )
def _snake_case ( self : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
SCREAMING_SNAKE_CASE = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
SCREAMING_SNAKE_CASE = self(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = self.hparams
for mode in ["train", "dev", "test"]:
SCREAMING_SNAKE_CASE = self._feature_file(__lowerCamelCase )
if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache:
logger.info("Loading features from cached file %s" , __lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.load(__lowerCamelCase )
else:
logger.info("Creating features from dataset file at %s" , args.data_dir )
SCREAMING_SNAKE_CASE = self.token_classification_task.read_examples_from_file(args.data_dir , __lowerCamelCase )
SCREAMING_SNAKE_CASE = self.token_classification_task.convert_examples_to_features(
__lowerCamelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__lowerCamelCase , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info("Saving features into cached file %s" , __lowerCamelCase )
torch.save(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : bool = False ):
SCREAMING_SNAKE_CASE = self._feature_file(__lowerCamelCase )
logger.info("Loading features from cached file %s" , __lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.load(__lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
SCREAMING_SNAKE_CASE = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
SCREAMING_SNAKE_CASE = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
SCREAMING_SNAKE_CASE = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
SCREAMING_SNAKE_CASE = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , batch_size=__lowerCamelCase )
def _snake_case ( self : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Any ):
"""Compute validation""" ""
SCREAMING_SNAKE_CASE = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
SCREAMING_SNAKE_CASE = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
SCREAMING_SNAKE_CASE = self(**__lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = outputs[:2]
SCREAMING_SNAKE_CASE = logits.detach().cpu().numpy()
SCREAMING_SNAKE_CASE = inputs["labels"].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def _snake_case ( self : Dict , __lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = torch.stack([x["val_loss"] for x in outputs] ).mean()
SCREAMING_SNAKE_CASE = np.concatenate([x["pred"] for x in outputs] , axis=0 )
SCREAMING_SNAKE_CASE = np.argmax(__lowerCamelCase , axis=2 )
SCREAMING_SNAKE_CASE = np.concatenate([x["target"] for x in outputs] , axis=0 )
SCREAMING_SNAKE_CASE = dict(enumerate(self.labels ) )
SCREAMING_SNAKE_CASE = [[] for _ in range(out_label_ids.shape[0] )]
SCREAMING_SNAKE_CASE = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
SCREAMING_SNAKE_CASE = {
"val_loss": val_loss_mean,
"accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ),
"precision": precision_score(__lowerCamelCase , __lowerCamelCase ),
"recall": recall_score(__lowerCamelCase , __lowerCamelCase ),
"f1": fa_score(__lowerCamelCase , __lowerCamelCase ),
}
SCREAMING_SNAKE_CASE = dict(results.items() )
SCREAMING_SNAKE_CASE = results
return ret, preds_list, out_label_list
def _snake_case ( self : List[str] , __lowerCamelCase : int ):
# when stable
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._eval_end(__lowerCamelCase )
SCREAMING_SNAKE_CASE = ret["log"]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple ):
# updating to test_epoch_end instead of deprecated test_end
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._eval_end(__lowerCamelCase )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
SCREAMING_SNAKE_CASE = ret["log"]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def _snake_case ( __lowerCamelCase : List[str] , __lowerCamelCase : str ):
# Add NER specific options
BaseTransformer.add_model_specific_args(__lowerCamelCase , __lowerCamelCase )
parser.add_argument(
"--task_type" , default="NER" , type=__lowerCamelCase , help="Task type to fine tune in training (e.g. NER, POS, etc)" )
parser.add_argument(
"--max_seq_length" , default=128 , type=__lowerCamelCase , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--labels" , default="" , type=__lowerCamelCase , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , )
parser.add_argument(
"--gpus" , default=0 , type=__lowerCamelCase , help="The number of GPUs allocated for this, it is by default 0 meaning none" , )
parser.add_argument(
"--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" )
return parser
if __name__ == "__main__":
__A : Optional[Any] = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
__A : Union[str, Any] = NERTransformer.add_model_specific_args(parser, os.getcwd())
__A : Optional[Any] = parser.parse_args()
__A : Optional[int] = NERTransformer(args)
__A : int = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
__A : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True))
__A : Union[str, Any] = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
| 710 |
from manim import *
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 )
SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("CPU" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("GPU" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
gpu.move_to([-1, -1, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("Model" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
model.move_to([3, -1.0, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = []
for i, rect in enumerate(__lowerCamelCase ):
rect.set_stroke(__lowerCamelCase )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 )
self.add(__lowerCamelCase )
cpu_targs.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("Loaded Checkpoint" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
SCREAMING_SNAKE_CASE = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
SCREAMING_SNAKE_CASE = MarkupText(
f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = MarkupText(
f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , )
blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
SCREAMING_SNAKE_CASE = MarkupText(
f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) )
self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) )
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
for i, rect in enumerate(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 )
target.move_to(__lowerCamelCase )
first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) )
SCREAMING_SNAKE_CASE = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) )
self.play(*__lowerCamelCase )
self.play(*__lowerCamelCase )
self.wait() | 698 | 0 |
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
@staticmethod
def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ):
pass
def __a ( A__ : str ):
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
__A : Tuple = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
SCREAMING_SNAKE_CASE = "What is the placebo?"
SCREAMING_SNAKE_CASE = [
{
"image": load_image(__lowerCamelCase ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ):
SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 )
self.assertEqual(
__lowerCamelCase , [
[
{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )},
{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )},
]
]
* 3 , )
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "How many cats are there?"
SCREAMING_SNAKE_CASE = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40},
]
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(__lowerCamelCase , [] )
# We can optionnally pass directly the words and bounding boxes
SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png"
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 )
self.assertEqual(__lowerCamelCase , [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
],
]
* 2 , )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
]
]
* 2 , )
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
# This model should also work if `image` is set to None
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 , )
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
# This model should also work if `image` is set to None
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
] , )
@slow
@require_torch
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _snake_case ( self : List[Any] ):
pass | 711 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
@staticmethod
def _snake_case ( *__lowerCamelCase : Any , **__lowerCamelCase : Any ):
pass
@is_pipeline_test
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@require_torch
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(__lowerCamelCase ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
] , )
@require_tf
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
] , )
@slow
@require_torch
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , ) | 698 | 0 |
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__A : Tuple = logging.get_logger(__name__)
__A : Optional[Any] = '▁'
__A : Dict = {
'vocab_file': 'vocab.json',
'spm_file': 'sentencepiece.bpe.model',
}
__A : List[str] = {
'vocab_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'
),
},
'spm_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'
)
},
}
__A : Optional[Any] = {
'facebook/s2t-small-librispeech-asr': 1_0_2_4,
}
__A : str = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de']
__A : Optional[Any] = {'mustc': MUSTC_LANGS}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = MAX_MODEL_INPUT_SIZES
lowerCamelCase__ = ["input_ids", "attention_mask"]
lowerCamelCase__ = []
def __init__( self : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Optional[int]="<pad>" , __lowerCamelCase : List[Any]="<unk>" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Any=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Dict , ):
SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_upper_case=__lowerCamelCase , do_lower_case=__lowerCamelCase , tgt_lang=__lowerCamelCase , lang_codes=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , )
SCREAMING_SNAKE_CASE = do_upper_case
SCREAMING_SNAKE_CASE = do_lower_case
SCREAMING_SNAKE_CASE = load_json(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()}
SCREAMING_SNAKE_CASE = spm_file
SCREAMING_SNAKE_CASE = load_spm(__lowerCamelCase , self.sp_model_kwargs )
if lang_codes is not None:
SCREAMING_SNAKE_CASE = lang_codes
SCREAMING_SNAKE_CASE = LANGUAGES[lang_codes]
SCREAMING_SNAKE_CASE = [f"<lang:{lang}>" for lang in self.langs]
SCREAMING_SNAKE_CASE = {lang: self.sp_model.PieceToId(f"<lang:{lang}>" ) for lang in self.langs}
SCREAMING_SNAKE_CASE = self.lang_tokens
SCREAMING_SNAKE_CASE = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
SCREAMING_SNAKE_CASE = {}
@property
def _snake_case ( self : Union[str, Any] ):
return len(self.encoder )
@property
def _snake_case ( self : List[str] ):
return self._tgt_lang
@tgt_lang.setter
def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = new_tgt_lang
self.set_tgt_lang_special_tokens(__lowerCamelCase )
def _snake_case ( self : Any , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = self.lang_code_to_id[tgt_lang]
SCREAMING_SNAKE_CASE = [lang_code_id]
def _snake_case ( self : List[Any] , __lowerCamelCase : str ):
return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase )
def _snake_case ( self : Dict , __lowerCamelCase : Tuple ):
return self.encoder.get(__lowerCamelCase , self.encoder[self.unk_token] )
def _snake_case ( self : Dict , __lowerCamelCase : int ):
return self.decoder.get(__lowerCamelCase , self.unk_token )
def _snake_case ( self : Dict , __lowerCamelCase : List[str] ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
SCREAMING_SNAKE_CASE = self.sp_model.decode(__lowerCamelCase )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
SCREAMING_SNAKE_CASE = []
else:
current_sub_tokens.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.sp_model.decode(__lowerCamelCase )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def _snake_case ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict=None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def _snake_case ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = [1] * len(self.prefix_tokens )
SCREAMING_SNAKE_CASE = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(__lowerCamelCase )) + suffix_ones
return prefix_ones + ([0] * len(__lowerCamelCase )) + ([0] * len(__lowerCamelCase )) + suffix_ones
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.__dict__.copy()
SCREAMING_SNAKE_CASE = None
return state
def __setstate__( self : str , __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = load_spm(self.spm_file , self.sp_model_kwargs )
def _snake_case ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
SCREAMING_SNAKE_CASE = Path(__lowerCamelCase )
assert save_dir.is_dir(), f"{save_directory} should be a directory"
SCREAMING_SNAKE_CASE = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"]
)
SCREAMING_SNAKE_CASE = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"]
)
save_json(self.encoder , __lowerCamelCase )
if os.path.abspath(self.spm_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , __lowerCamelCase )
elif not os.path.isfile(self.spm_file ):
with open(__lowerCamelCase , "wb" ) as fi:
SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto()
fi.write(__lowerCamelCase )
return (str(__lowerCamelCase ), str(__lowerCamelCase ))
def __a ( A__ : str , A__ : Dict[str, Any] ):
SCREAMING_SNAKE_CASE = sentencepiece.SentencePieceProcessor(**A__ )
spm.Load(str(A__ ) )
return spm
def __a ( A__ : str ):
with open(A__ , "r" ) as f:
return json.load(A__ )
def __a ( A__ : Dict , A__ : str ):
with open(A__ , "w" ) as f:
json.dump(A__ , A__ , indent=2 )
| 712 |
__A : dict[str, float] = {
"joule": 1.0,
"kilojoule": 1_0_0_0,
"megajoule": 1_0_0_0_0_0_0,
"gigajoule": 1_0_0_0_0_0_0_0_0_0,
"wattsecond": 1.0,
"watthour": 3_6_0_0,
"kilowatthour": 3_6_0_0_0_0_0,
"newtonmeter": 1.0,
"calorie_nutr": 4_1_8_6.8,
"kilocalorie_nutr": 4_1_8_6_8_0_0.0_0,
"electronvolt": 1.6_0217_6634e-19,
"britishthermalunit_it": 1_0_5_5.0_5_5_8_5,
"footpound": 1.355_818,
}
def __a ( A__ : str , A__ : str , A__ : float ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
SCREAMING_SNAKE_CASE = (
F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
F"Valid values are: {', '.join(A__ )}"
)
raise ValueError(A__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 | 0 |
'''simple docstring'''
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : Dict , __lowerCamelCase : NestedDataStructureLike[PathLike] , __lowerCamelCase : Optional[NamedSplit] = None , __lowerCamelCase : Optional[Features] = None , __lowerCamelCase : str = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[int] = None , **__lowerCamelCase : Tuple , ):
super().__init__(
__lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , )
SCREAMING_SNAKE_CASE = field
SCREAMING_SNAKE_CASE = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths}
SCREAMING_SNAKE_CASE = Json(
cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , field=__lowerCamelCase , **__lowerCamelCase , )
def _snake_case ( self : Any ):
# Build iterable dataset
if self.streaming:
SCREAMING_SNAKE_CASE = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
self.builder.download_and_prepare(
download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , )
SCREAMING_SNAKE_CASE = self.builder.as_dataset(
split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory )
return dataset
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : List[str] , __lowerCamelCase : Dataset , __lowerCamelCase : Union[PathLike, BinaryIO] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , **__lowerCamelCase : int , ):
if num_proc is not None and num_proc <= 0:
raise ValueError(f"num_proc {num_proc} must be an integer > 0." )
SCREAMING_SNAKE_CASE = dataset
SCREAMING_SNAKE_CASE = path_or_buf
SCREAMING_SNAKE_CASE = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
SCREAMING_SNAKE_CASE = num_proc
SCREAMING_SNAKE_CASE = "utf-8"
SCREAMING_SNAKE_CASE = to_json_kwargs
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop("path_or_buf" , __lowerCamelCase )
SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop("orient" , "records" )
SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop("lines" , True if orient == "records" else False )
SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True )
SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop("compression" , __lowerCamelCase )
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(f"`datasets` currently does not support {compression} compression" )
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with fsspec.open(self.path_or_buf , "wb" , compression=__lowerCamelCase ) as buffer:
SCREAMING_SNAKE_CASE = self._write(file_obj=__lowerCamelCase , orient=__lowerCamelCase , lines=__lowerCamelCase , index=__lowerCamelCase , **self.to_json_kwargs )
else:
if compression:
raise NotImplementedError(
f"The compression parameter is not supported when writing to a buffer, but compression={compression}"
" was passed. Please provide a local path instead." )
SCREAMING_SNAKE_CASE = self._write(
file_obj=self.path_or_buf , orient=__lowerCamelCase , lines=__lowerCamelCase , index=__lowerCamelCase , **self.to_json_kwargs )
return written
def _snake_case ( self : str , __lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = args
SCREAMING_SNAKE_CASE = query_table(
table=self.dataset.data , key=slice(__lowerCamelCase , offset + self.batch_size ) , indices=self.dataset._indices , )
SCREAMING_SNAKE_CASE = batch.to_pandas().to_json(
path_or_buf=__lowerCamelCase , orient=__lowerCamelCase , lines=__lowerCamelCase , index=__lowerCamelCase , **__lowerCamelCase )
if not json_str.endswith("\n" ):
json_str += "\n"
return json_str.encode(self.encoding )
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : BinaryIO , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : int , **__lowerCamelCase : List[str] , ):
SCREAMING_SNAKE_CASE = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ):
SCREAMING_SNAKE_CASE = self._batch_json((offset, orient, lines, index, to_json_kwargs) )
written += file_obj.write(__lowerCamelCase )
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __lowerCamelCase , __lowerCamelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ):
written += file_obj.write(__lowerCamelCase )
return written | 713 |
from collections import deque
from .hash_table import HashTable
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ):
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = deque([] ) if self.values[key] is None else self.values[key]
self.values[key].appendleft(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.values[key]
def _snake_case ( self : Union[str, Any] ):
return (
sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values )
/ self.size_table
* self.charge_factor
)
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None ):
if not (
len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0
):
return key
return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase ) | 698 | 0 |
__A : Tuple = 'Tobias Carryer'
from time import time
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple=int(time() ) ): # noqa: B008
SCREAMING_SNAKE_CASE = multiplier
SCREAMING_SNAKE_CASE = increment
SCREAMING_SNAKE_CASE = modulo
SCREAMING_SNAKE_CASE = seed
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = (self.multiplier * self.seed + self.increment) % self.modulo
return self.seed
if __name__ == "__main__":
# Show the LCG in action.
__A : Any = LinearCongruentialGenerator(1_6_6_4_5_2_5, 1_0_1_3_9_0_4_2_2_3, 2 << 3_1)
while True:
print(lcg.next_number()) | 714 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
__A : Optional[int] = logging.get_logger(__name__)
__A : int = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "gpt_neo"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__( self : str , __lowerCamelCase : Dict=50257 , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : int=24 , __lowerCamelCase : int=[[["global", "local"], 12]] , __lowerCamelCase : int=16 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=50256 , __lowerCamelCase : Optional[int]=50256 , **__lowerCamelCase : Dict , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_layers
SCREAMING_SNAKE_CASE = num_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = window_size
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = resid_dropout
SCREAMING_SNAKE_CASE = embed_dropout
SCREAMING_SNAKE_CASE = attention_dropout
SCREAMING_SNAKE_CASE = classifier_dropout
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = bos_token_id
SCREAMING_SNAKE_CASE = eos_token_id
SCREAMING_SNAKE_CASE = attention_types
SCREAMING_SNAKE_CASE = self.expand_attention_types_params(__lowerCamelCase )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.attention_layers)` == `config.num_layers` "
f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, "
f"`config.num_layers = {self.num_layers}`. "
"`config.attention_layers` is prepared using `config.attention_types`. "
"Please verify the value of `config.attention_types` argument." )
super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
@staticmethod
def _snake_case ( __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def __a ( A__ : str , A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] ):
import torch
SCREAMING_SNAKE_CASE = input.size()
SCREAMING_SNAKE_CASE = len(A__ )
SCREAMING_SNAKE_CASE = shape[dimension]
SCREAMING_SNAKE_CASE = torch.arange(0 , A__ , A__ )
SCREAMING_SNAKE_CASE = torch.div(sizedim - size , A__ , rounding_mode="floor" ) + 1
SCREAMING_SNAKE_CASE = torch.arange(A__ ) + low_indices[:min_length][:, None]
SCREAMING_SNAKE_CASE = [slice(A__ )] * rank
SCREAMING_SNAKE_CASE = indices
SCREAMING_SNAKE_CASE = input[s]
SCREAMING_SNAKE_CASE = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(A__ )
def __a ( A__ : Union[str, Any] , A__ : Optional[int] ):
import torch
SCREAMING_SNAKE_CASE = torch.arange(1 , A__ )
SCREAMING_SNAKE_CASE = torch.remainder(A__ , A__ )
SCREAMING_SNAKE_CASE = remainders == 0
SCREAMING_SNAKE_CASE = candidates[divisor_indices]
SCREAMING_SNAKE_CASE = torch.max(A__ )
return largest_divisor, torch.div(A__ , A__ , rounding_mode="floor" )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} )
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"}
else:
SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"}
return common_inputs
@property
def _snake_case ( self : Optional[int] ):
return self._config.num_heads
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
SCREAMING_SNAKE_CASE = super(__lowerCamelCase , self ).generate_dummy_inputs(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
# We need to order the input in the way they appears in the forward()
SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
SCREAMING_SNAKE_CASE = seqlen + 2
SCREAMING_SNAKE_CASE = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
SCREAMING_SNAKE_CASE = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers )
]
SCREAMING_SNAKE_CASE = common_inputs["attention_mask"]
if self.use_past:
SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype
SCREAMING_SNAKE_CASE = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
return ordered_inputs
@property
def _snake_case ( self : Optional[int] ):
return 13 | 698 | 0 |
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-t5"
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer("This is me" , return_tensors="pt" )
SCREAMING_SNAKE_CASE = model.to_bettertransformer()
self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
SCREAMING_SNAKE_CASE = model.generate(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.reverse_bettertransformer()
self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase )
self.assertFalse(
any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
SCREAMING_SNAKE_CASE = model_reloaded.generate(**__lowerCamelCase )
self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase ) )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-t5"
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(__lowerCamelCase ):
model.save_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.reverse_bettertransformer()
model.save_pretrained(__lowerCamelCase )
| 715 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
__A : Any = {
'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = [
'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'LongT5EncoderModel',
'LongT5ForConditionalGeneration',
'LongT5Model',
'LongT5PreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'FlaxLongT5ForConditionalGeneration',
'FlaxLongT5Model',
'FlaxLongT5PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longta import (
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
LongTaEncoderModel,
LongTaForConditionalGeneration,
LongTaModel,
LongTaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_longta import (
FlaxLongTaForConditionalGeneration,
FlaxLongTaModel,
FlaxLongTaPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : Any = logging.get_logger(__name__)
__A : Union[str, Any] = {
'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json',
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "roc_bert"
def __init__( self : List[str] , __lowerCamelCase : Any=30522 , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : int=12 , __lowerCamelCase : int=12 , __lowerCamelCase : Any=3072 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Dict=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : int=1e-12 , __lowerCamelCase : str=True , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : str="absolute" , __lowerCamelCase : Dict=None , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : List[str]=768 , __lowerCamelCase : Any=910 , __lowerCamelCase : Union[str, Any]=512 , __lowerCamelCase : Dict=24858 , __lowerCamelCase : Tuple=True , **__lowerCamelCase : Any , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = type_vocab_size
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = enable_pronunciation
SCREAMING_SNAKE_CASE = enable_shape
SCREAMING_SNAKE_CASE = pronunciation_embed_dim
SCREAMING_SNAKE_CASE = pronunciation_vocab_size
SCREAMING_SNAKE_CASE = shape_embed_dim
SCREAMING_SNAKE_CASE = shape_vocab_size
SCREAMING_SNAKE_CASE = concat_input
SCREAMING_SNAKE_CASE = position_embedding_type
SCREAMING_SNAKE_CASE = classifier_dropout
super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) | 716 |
import cmath
import math
def __a ( A__ : float , A__ : float , A__ : float , A__ : float ):
SCREAMING_SNAKE_CASE = math.radians(A__ )
SCREAMING_SNAKE_CASE = math.radians(A__ )
# Convert voltage and current to rectangular form
SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ )
SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 | 0 |
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = 4_2
lowerCamelCase__ = 4_2
def __init__( self : List[Any] , __lowerCamelCase : UNetaDModel , __lowerCamelCase : ScoreSdeVeScheduler ):
super().__init__()
self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase )
@torch.no_grad()
def __call__( self : str , __lowerCamelCase : int = 1 , __lowerCamelCase : int = 2000 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , **__lowerCamelCase : List[Any] , ):
SCREAMING_SNAKE_CASE = self.unet.config.sample_size
SCREAMING_SNAKE_CASE = (batch_size, 3, img_size, img_size)
SCREAMING_SNAKE_CASE = self.unet
SCREAMING_SNAKE_CASE = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase ) * self.scheduler.init_noise_sigma
SCREAMING_SNAKE_CASE = sample.to(self.device )
self.scheduler.set_timesteps(__lowerCamelCase )
self.scheduler.set_sigmas(__lowerCamelCase )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
SCREAMING_SNAKE_CASE = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
SCREAMING_SNAKE_CASE = self.unet(__lowerCamelCase , __lowerCamelCase ).sample
SCREAMING_SNAKE_CASE = self.scheduler.step_correct(__lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample
# prediction step
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase ).sample
SCREAMING_SNAKE_CASE = self.scheduler.step_pred(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = output.prev_sample, output.prev_sample_mean
SCREAMING_SNAKE_CASE = sample_mean.clamp(0 , 1 )
SCREAMING_SNAKE_CASE = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
SCREAMING_SNAKE_CASE = self.numpy_to_pil(__lowerCamelCase )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=__lowerCamelCase ) | 717 |
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def __a ( A__ : List[str] ):
SCREAMING_SNAKE_CASE = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(A__ , A__ )
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ )
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
def __a ( A__ : Tuple , A__ : Union[str, Any]=None ):
SCREAMING_SNAKE_CASE = {}
for old_key in state_dict.keys():
SCREAMING_SNAKE_CASE = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" )
else:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts." , "ffn.experts.expert_" )
if "gate" in key:
SCREAMING_SNAKE_CASE = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" )
if "fc2" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc2." , ".ffn.fc2." )
if "fc1" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc1." , ".ffn.fc1." )
if ".encoder_attn." in key:
SCREAMING_SNAKE_CASE = key.replace(".encoder_attn." , ".cross_attention." )
if "encoder_attn_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" )
if "final_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("final_layer_norm" , "ff_layer_norm" )
SCREAMING_SNAKE_CASE = state_dict[old_key]
return new_dict
def __a ( A__ : List[str] , A__ : List[Any] , A__ : str , A__ : Union[str, Any] , A__ : str = WEIGHTS_NAME ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
os.makedirs(A__ , exist_ok=A__ )
for expert in range(A__ ):
SCREAMING_SNAKE_CASE = switch_checkpoint_path + F"-rank-{expert}.pt"
if os.path.isfile(A__ ):
SCREAMING_SNAKE_CASE = torch.load(A__ )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = os.path.join(
A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
torch.save(A__ , A__ )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(A__ )[0]].dtype )
# Add the last block
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + "-shared.pt" )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(A__ ) == 1:
SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ )
torch.save(A__ , A__ )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(A__ , A__ )
# Otherwise, let's build the index
SCREAMING_SNAKE_CASE = {}
for idx, shard in enumerate(A__ ):
SCREAMING_SNAKE_CASE = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" )
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) )
os.rename(A__ , os.path.join(A__ , A__ ) )
for key in shard:
SCREAMING_SNAKE_CASE = shard_file
# Add the metadata
SCREAMING_SNAKE_CASE = {"total_size": total_size}
SCREAMING_SNAKE_CASE = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(A__ , A__ ) , "w" , encoding="utf-8" ) as f:
SCREAMING_SNAKE_CASE = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n"
f.write(A__ )
return metadata, index
if __name__ == "__main__":
__A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--nllb_moe_checkpoint_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b',
type=str,
required=False,
help='Path to the output pytorch model.',
)
__A : Optional[int] = parser.parse_args()
__A , __A : Union[str, Any] = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_2_8,
args.dtype,
)
__A : Any = NllbMoeConfig.from_pretrained(
'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8
)
config.save_pretrained(args.pytorch_dump_folder_path)
__A : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('Done')
model.save_pretrained(args.pytorch_dump_folder_path) | 698 | 0 |
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
from torch import nn
from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel
from transformers.utils import ModelOutput
@dataclass
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = None
lowerCamelCase__ = None
lowerCamelCase__ = None
lowerCamelCase__ = None
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : List[Any] , __lowerCamelCase : List[str]=1 , __lowerCamelCase : Dict=0 , __lowerCamelCase : int=2 , __lowerCamelCase : Optional[int]=512 , __lowerCamelCase : Optional[Any]="cls" , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Tuple=True , **__lowerCamelCase : List[Any] , ):
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = project_dim
SCREAMING_SNAKE_CASE = pooler_fn
SCREAMING_SNAKE_CASE = learn_encoder
SCREAMING_SNAKE_CASE = use_attention_mask
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = [R"pooler", R"logit_scale"]
lowerCamelCase__ = [R"position_ids", R"predictions.decoder.bias"]
lowerCamelCase__ = "roberta"
lowerCamelCase__ = RobertaSeriesConfig
def __init__( self : Union[str, Any] , __lowerCamelCase : Tuple ):
super().__init__(__lowerCamelCase )
SCREAMING_SNAKE_CASE = XLMRobertaModel(__lowerCamelCase )
SCREAMING_SNAKE_CASE = nn.Linear(config.hidden_size , config.project_dim )
SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , "has_pre_transformation" , __lowerCamelCase )
if self.has_pre_transformation:
SCREAMING_SNAKE_CASE = nn.Linear(config.hidden_size , config.project_dim )
SCREAMING_SNAKE_CASE = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps )
self.post_init()
def _snake_case ( self : Any , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , ):
SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict
SCREAMING_SNAKE_CASE = self.base_model(
input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , position_ids=__lowerCamelCase , head_mask=__lowerCamelCase , inputs_embeds=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , output_attentions=__lowerCamelCase , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=__lowerCamelCase , )
if self.has_pre_transformation:
SCREAMING_SNAKE_CASE = outputs["hidden_states"][-2]
SCREAMING_SNAKE_CASE = self.pre_LN(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.transformation_pre(__lowerCamelCase )
return TransformationModelOutput(
projection_state=__lowerCamelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
else:
SCREAMING_SNAKE_CASE = self.transformation(outputs.last_hidden_state )
return TransformationModelOutput(
projection_state=__lowerCamelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) | 718 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = BlipImageProcessor()
SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
def _snake_case ( self : Dict , **__lowerCamelCase : Any ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer
def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor
def _snake_case ( self : Union[str, Any] ):
shutil.rmtree(self.tmpdirname )
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 )
SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowerCamelCase )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" )
SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(__lowerCamelCase ):
processor()
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) | 698 | 0 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / 'utils'))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
__A : Dict = get_tests_dir('fixtures')
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Dict ):
# A mock response for an HTTP head request to emulate server down
SCREAMING_SNAKE_CASE = mock.Mock()
SCREAMING_SNAKE_CASE = 500
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = HTTPError
SCREAMING_SNAKE_CASE = {}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request" , return_value=__lowerCamelCase ) as mock_head:
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# This check we did call the fake head request
mock_head.assert_called()
def _snake_case ( self : int ):
# This test is for deprecated behavior and can be removed in v5
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" )
@is_staging_test
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def _snake_case ( cls : Optional[int] ):
SCREAMING_SNAKE_CASE = TOKEN
HfFolder.save_token(__lowerCamelCase )
@classmethod
def _snake_case ( cls : List[str] ):
try:
delete_repo(token=cls._token , repo_id="test-feature-extractor" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" )
except HTTPError:
pass
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase )
feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token )
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id="test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
__lowerCamelCase , repo_id="test-feature-extractor" , push_to_hub=__lowerCamelCase , use_auth_token=self._token )
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase )
feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token )
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
__lowerCamelCase , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=__lowerCamelCase , use_auth_token=self._token )
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) )
def _snake_case ( self : Optional[Any] ):
CustomFeatureExtractor.register_for_auto_class()
SCREAMING_SNAKE_CASE = CustomFeatureExtractor.from_pretrained(__lowerCamelCase )
feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , )
SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained(
f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=__lowerCamelCase )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" ) | 719 |
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
@staticmethod
def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ):
pass
def __a ( A__ : str ):
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
__A : Tuple = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
SCREAMING_SNAKE_CASE = "What is the placebo?"
SCREAMING_SNAKE_CASE = [
{
"image": load_image(__lowerCamelCase ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ):
SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 )
self.assertEqual(
__lowerCamelCase , [
[
{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )},
{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )},
]
]
* 3 , )
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "How many cats are there?"
SCREAMING_SNAKE_CASE = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40},
]
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(__lowerCamelCase , [] )
# We can optionnally pass directly the words and bounding boxes
SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png"
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 )
self.assertEqual(__lowerCamelCase , [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
],
]
* 2 , )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
]
]
* 2 , )
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
# This model should also work if `image` is set to None
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 , )
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
# This model should also work if `image` is set to None
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
] , )
@slow
@require_torch
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _snake_case ( self : List[Any] ):
pass | 698 | 0 |
import importlib
import torch
import yaml
from omegaconf import OmegaConf
from taming.models.vqgan import VQModel
def __a ( A__ : List[str] , A__ : Dict=False ):
SCREAMING_SNAKE_CASE = OmegaConf.load(A__ )
if display:
print(yaml.dump(OmegaConf.to_container(A__ ) ) )
return config
def __a ( A__ : List[Any] , A__ : int=None , A__ : Dict=None ):
if conf_path is None:
SCREAMING_SNAKE_CASE = "./model_checkpoints/vqgan_only.yaml"
SCREAMING_SNAKE_CASE = load_config(A__ , display=A__ )
SCREAMING_SNAKE_CASE = VQModel(**config.model.params )
if ckpt_path is None:
SCREAMING_SNAKE_CASE = "./model_checkpoints/vqgan_only.pt"
SCREAMING_SNAKE_CASE = torch.load(A__ , map_location=A__ )
if ".ckpt" in ckpt_path:
SCREAMING_SNAKE_CASE = sd["state_dict"]
model.load_state_dict(A__ , strict=A__ )
model.to(A__ )
del sd
return model
def __a ( A__ : Dict , A__ : Optional[int] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.encode(A__ )
print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" )
SCREAMING_SNAKE_CASE = model.decode(A__ )
return xrec
def __a ( A__ : str , A__ : Optional[int]=False ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = string.rsplit("." , 1 )
if reload:
SCREAMING_SNAKE_CASE = importlib.import_module(A__ )
importlib.reload(A__ )
return getattr(importlib.import_module(A__ , package=A__ ) , cls )
def __a ( A__ : Dict ):
if "target" not in config:
raise KeyError("Expected key `target` to instantiate." )
return get_obj_from_str(config["target"] )(**config.get("params" , {} ) )
def __a ( A__ : Dict , A__ : List[str] , A__ : Dict=True , A__ : Optional[Any]=True ):
SCREAMING_SNAKE_CASE = instantiate_from_config(A__ )
if sd is not None:
model.load_state_dict(A__ )
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def __a ( A__ : List[Any] , A__ : Optional[int] , A__ : List[str] , A__ : Optional[int] ):
# load the specified checkpoint
if ckpt:
SCREAMING_SNAKE_CASE = torch.load(A__ , map_location="cpu" )
SCREAMING_SNAKE_CASE = pl_sd["global_step"]
print(F"loaded model from global step {global_step}." )
else:
SCREAMING_SNAKE_CASE = {"state_dict": None}
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=A__ , eval_mode=A__ )["model"]
return model, global_step | 720 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "facebook/bart-large-mnli"
lowerCamelCase__ = (
"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which "
"should be the text to classify, and `labels`, which should be the list of labels to use for classification. "
"It returns the most likely label in the list of provided `labels` for the input text."
)
lowerCamelCase__ = "text_classifier"
lowerCamelCase__ = AutoTokenizer
lowerCamelCase__ = AutoModelForSequenceClassification
lowerCamelCase__ = ["text", ["text"]]
lowerCamelCase__ = ["text"]
def _snake_case ( self : Optional[Any] ):
super().setup()
SCREAMING_SNAKE_CASE = self.model.config
SCREAMING_SNAKE_CASE = -1
for idx, label in config.idalabel.items():
if label.lower().startswith("entail" ):
SCREAMING_SNAKE_CASE = int(__lowerCamelCase )
if self.entailment_id == -1:
raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." )
def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ):
SCREAMING_SNAKE_CASE = labels
return self.pre_processor(
[text] * len(__lowerCamelCase ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , )
def _snake_case ( self : str , __lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = outputs.logits
SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id] | 698 | 0 |
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
__A : Optional[int] = logging.getLogger(__name__)
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Tuple=None ):
SCREAMING_SNAKE_CASE = self.layer[current_layer](__lowerCamelCase , __lowerCamelCase , head_mask[current_layer] )
SCREAMING_SNAKE_CASE = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __snake_case , )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : str , __lowerCamelCase : Any ):
super().__init__(__lowerCamelCase )
SCREAMING_SNAKE_CASE = BertEncoderWithPabee(__lowerCamelCase )
self.init_weights()
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
def _snake_case ( self : List[Any] , __lowerCamelCase : int ):
SCREAMING_SNAKE_CASE = threshold
def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = patience
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.inference_layers_num / self.inference_instances_num
SCREAMING_SNAKE_CASE = (
f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ="
f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***"
)
print(__lowerCamelCase )
@add_start_docstrings_to_model_forward(__lowerCamelCase )
def _snake_case ( self : List[str] , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : int=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=False , ):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" )
elif input_ids is not None:
SCREAMING_SNAKE_CASE = input_ids.size()
elif inputs_embeds is not None:
SCREAMING_SNAKE_CASE = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds" )
SCREAMING_SNAKE_CASE = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
SCREAMING_SNAKE_CASE = torch.ones(__lowerCamelCase , device=__lowerCamelCase )
if token_type_ids is None:
SCREAMING_SNAKE_CASE = torch.zeros(__lowerCamelCase , dtype=torch.long , device=__lowerCamelCase )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
SCREAMING_SNAKE_CASE = self.get_extended_attention_mask(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = encoder_hidden_states.size()
SCREAMING_SNAKE_CASE = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
SCREAMING_SNAKE_CASE = torch.ones(__lowerCamelCase , device=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.invert_attention_mask(__lowerCamelCase )
else:
SCREAMING_SNAKE_CASE = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
SCREAMING_SNAKE_CASE = self.get_head_mask(__lowerCamelCase , self.config.num_hidden_layers )
SCREAMING_SNAKE_CASE = self.embeddings(
input_ids=__lowerCamelCase , position_ids=__lowerCamelCase , token_type_ids=__lowerCamelCase , inputs_embeds=__lowerCamelCase )
SCREAMING_SNAKE_CASE = embedding_output
if self.training:
SCREAMING_SNAKE_CASE = []
for i in range(self.config.num_hidden_layers ):
SCREAMING_SNAKE_CASE = self.encoder.adaptive_forward(
__lowerCamelCase , current_layer=__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.pooler(__lowerCamelCase )
SCREAMING_SNAKE_CASE = output_layers[i](output_dropout(__lowerCamelCase ) )
res.append(__lowerCamelCase )
elif self.patience == 0: # Use all layers for inference
SCREAMING_SNAKE_CASE = self.encoder(
__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = self.pooler(encoder_outputs[0] )
SCREAMING_SNAKE_CASE = [output_layers[self.config.num_hidden_layers - 1](__lowerCamelCase )]
else:
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = 0
for i in range(self.config.num_hidden_layers ):
calculated_layer_num += 1
SCREAMING_SNAKE_CASE = self.encoder.adaptive_forward(
__lowerCamelCase , current_layer=__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.pooler(__lowerCamelCase )
SCREAMING_SNAKE_CASE = output_layers[i](__lowerCamelCase )
if regression:
SCREAMING_SNAKE_CASE = logits.detach()
if patient_result is not None:
SCREAMING_SNAKE_CASE = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold:
patient_counter += 1
else:
SCREAMING_SNAKE_CASE = 0
else:
SCREAMING_SNAKE_CASE = logits.detach().argmax(dim=1 )
if patient_result is not None:
SCREAMING_SNAKE_CASE = patient_result.detach().argmax(dim=1 )
if (patient_result is not None) and torch.all(labels.eq(__lowerCamelCase ) ):
patient_counter += 1
else:
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = logits
if patient_counter == self.patience:
break
SCREAMING_SNAKE_CASE = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __snake_case , )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : List[Any] , __lowerCamelCase : Any ):
super().__init__(__lowerCamelCase )
SCREAMING_SNAKE_CASE = config.num_labels
SCREAMING_SNAKE_CASE = BertModelWithPabee(__lowerCamelCase )
SCREAMING_SNAKE_CASE = nn.Dropout(config.hidden_dropout_prob )
SCREAMING_SNAKE_CASE = nn.ModuleList(
[nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] )
self.init_weights()
@add_start_docstrings_to_model_forward(__lowerCamelCase )
def _snake_case ( self : Any , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : int=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : str=None , ):
SCREAMING_SNAKE_CASE = self.bert(
input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , position_ids=__lowerCamelCase , head_mask=__lowerCamelCase , inputs_embeds=__lowerCamelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , )
SCREAMING_SNAKE_CASE = (logits[-1],)
if labels is not None:
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = 0
for ix, logits_item in enumerate(__lowerCamelCase ):
if self.num_labels == 1:
# We are doing regression
SCREAMING_SNAKE_CASE = MSELoss()
SCREAMING_SNAKE_CASE = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) )
else:
SCREAMING_SNAKE_CASE = CrossEntropyLoss()
SCREAMING_SNAKE_CASE = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) )
if total_loss is None:
SCREAMING_SNAKE_CASE = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
SCREAMING_SNAKE_CASE = (total_loss / total_weights,) + outputs
return outputs | 721 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __a ( A__ : str=None ):
if subparsers is not None:
SCREAMING_SNAKE_CASE = subparsers.add_parser("test" )
else:
SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" )
parser.add_argument(
"--config_file" , default=A__ , help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) , )
if subparsers is not None:
parser.set_defaults(func=A__ )
return parser
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] )
if args.config_file is None:
SCREAMING_SNAKE_CASE = script_name
else:
SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}"
SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split()
SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() )
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!" )
def __a ( ):
SCREAMING_SNAKE_CASE = test_command_parser()
SCREAMING_SNAKE_CASE = parser.parse_args()
test_command(A__ )
if __name__ == "__main__":
main() | 698 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : List[Any] = logging.get_logger(__name__)
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "timm_backbone"
def __init__( self : List[str] , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Any=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[str]=None , **__lowerCamelCase : Tuple , ):
super().__init__(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = backbone
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = features_only
SCREAMING_SNAKE_CASE = use_pretrained_backbone
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = out_indices if out_indices is not None else (-1,) | 700 |
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__A : Optional[int] = logging.get_logger(__name__)
__A : List[str] = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
__A : Tuple = {
'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'},
'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'},
'tokenizer_config_file': {
'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'
},
}
__A : Dict = {'facebook/blenderbot-3B': 1_2_8}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def __a ( ):
SCREAMING_SNAKE_CASE = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
SCREAMING_SNAKE_CASE = bs[:]
SCREAMING_SNAKE_CASE = 0
for b in range(2**8 ):
if b not in bs:
bs.append(A__ )
cs.append(2**8 + n )
n += 1
SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs]
return dict(zip(A__ , A__ ) )
def __a ( A__ : Optional[int] ):
SCREAMING_SNAKE_CASE = set()
SCREAMING_SNAKE_CASE = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
SCREAMING_SNAKE_CASE = char
return pairs
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = ["input_ids", "attention_mask"]
def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]="replace" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : List[Any]="<mask>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Tuple , ):
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()}
SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding
SCREAMING_SNAKE_CASE = bytes_to_unicode()
SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1]
SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges]
SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def _snake_case ( self : Dict ):
return len(self.encoder )
def _snake_case ( self : int ):
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : Tuple , __lowerCamelCase : List[str] ):
if token in self.cache:
return self.cache[token]
SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase )
SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
while i < len(__lowerCamelCase ):
try:
SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
SCREAMING_SNAKE_CASE = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase )
SCREAMING_SNAKE_CASE = new_word
if len(__lowerCamelCase ) == 1:
break
else:
SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase )
SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = word
return word
def _snake_case ( self : str , __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = []
for token in re.findall(self.pat , __lowerCamelCase ):
SCREAMING_SNAKE_CASE = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def _snake_case ( self : List[str] , __lowerCamelCase : str ):
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple ):
return self.decoder.get(__lowerCamelCase )
def _snake_case ( self : Tuple , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
SCREAMING_SNAKE_CASE = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
SCREAMING_SNAKE_CASE = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _snake_case ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE = [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
SCREAMING_SNAKE_CASE = " " + text
return (text, kwargs)
def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
return token_ids_a + [self.eos_token_id]
def _snake_case ( self : Tuple , __lowerCamelCase : "Conversation" ):
SCREAMING_SNAKE_CASE = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(" " + text )
else:
# Generated responses should contain them already.
inputs.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase )
if len(__lowerCamelCase ) > self.model_max_length:
SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :]
logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." )
return input_ids | 698 | 0 |
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__A : Union[str, Any] = logging.get_logger(__name__)
__A : List[str] = {
'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "detr"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self : Optional[Any] , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : int=100 , __lowerCamelCase : List[str]=6 , __lowerCamelCase : Dict=2048 , __lowerCamelCase : str=8 , __lowerCamelCase : int=6 , __lowerCamelCase : List[str]=2048 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : Any=0.0 , __lowerCamelCase : Optional[int]=0.0 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : List[Any]="relu" , __lowerCamelCase : List[str]=256 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : Optional[int]=0.0 , __lowerCamelCase : int=0.02 , __lowerCamelCase : List[Any]=1.0 , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : str="sine" , __lowerCamelCase : Union[str, Any]="resnet50" , __lowerCamelCase : Any=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : Union[str, Any]=5 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : Dict=1 , __lowerCamelCase : Tuple=1 , __lowerCamelCase : Tuple=5 , __lowerCamelCase : Any=2 , __lowerCamelCase : Optional[int]=0.1 , **__lowerCamelCase : Optional[int] , ):
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
SCREAMING_SNAKE_CASE = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(__lowerCamelCase , __lowerCamelCase ):
SCREAMING_SNAKE_CASE = backbone_config.get("model_type" )
SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type]
SCREAMING_SNAKE_CASE = config_class.from_dict(__lowerCamelCase )
# set timm attributes to None
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None, None, None
SCREAMING_SNAKE_CASE = use_timm_backbone
SCREAMING_SNAKE_CASE = backbone_config
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = num_queries
SCREAMING_SNAKE_CASE = d_model
SCREAMING_SNAKE_CASE = encoder_ffn_dim
SCREAMING_SNAKE_CASE = encoder_layers
SCREAMING_SNAKE_CASE = encoder_attention_heads
SCREAMING_SNAKE_CASE = decoder_ffn_dim
SCREAMING_SNAKE_CASE = decoder_layers
SCREAMING_SNAKE_CASE = decoder_attention_heads
SCREAMING_SNAKE_CASE = dropout
SCREAMING_SNAKE_CASE = attention_dropout
SCREAMING_SNAKE_CASE = activation_dropout
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = init_std
SCREAMING_SNAKE_CASE = init_xavier_std
SCREAMING_SNAKE_CASE = encoder_layerdrop
SCREAMING_SNAKE_CASE = decoder_layerdrop
SCREAMING_SNAKE_CASE = encoder_layers
SCREAMING_SNAKE_CASE = auxiliary_loss
SCREAMING_SNAKE_CASE = position_embedding_type
SCREAMING_SNAKE_CASE = backbone
SCREAMING_SNAKE_CASE = use_pretrained_backbone
SCREAMING_SNAKE_CASE = dilation
# Hungarian matcher
SCREAMING_SNAKE_CASE = class_cost
SCREAMING_SNAKE_CASE = bbox_cost
SCREAMING_SNAKE_CASE = giou_cost
# Loss coefficients
SCREAMING_SNAKE_CASE = mask_loss_coefficient
SCREAMING_SNAKE_CASE = dice_loss_coefficient
SCREAMING_SNAKE_CASE = bbox_loss_coefficient
SCREAMING_SNAKE_CASE = giou_loss_coefficient
SCREAMING_SNAKE_CASE = eos_coefficient
super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase )
@property
def _snake_case ( self : Any ):
return self.encoder_attention_heads
@property
def _snake_case ( self : Tuple ):
return self.d_model
@classmethod
def _snake_case ( cls : Tuple , __lowerCamelCase : PretrainedConfig , **__lowerCamelCase : Any ):
return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
SCREAMING_SNAKE_CASE = self.backbone_config.to_dict()
SCREAMING_SNAKE_CASE = self.__class__.model_type
return output
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = version.parse("1.11" )
@property
def _snake_case ( self : Any ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def _snake_case ( self : List[str] ):
return 1e-5
@property
def _snake_case ( self : Optional[int] ):
return 12 | 701 |
from __future__ import annotations
from cmath import sqrt
def __a ( A__ : int , A__ : int , A__ : int ):
if a == 0:
raise ValueError("Coefficient 'a' must not be zero." )
SCREAMING_SNAKE_CASE = b * b - 4 * a * c
SCREAMING_SNAKE_CASE = (-b + sqrt(A__ )) / (2 * a)
SCREAMING_SNAKE_CASE = (-b - sqrt(A__ )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def __a ( ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 )
print(F"The solutions are: {solutiona} and {solutiona}" )
if __name__ == "__main__":
main() | 698 | 0 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : Any = logging.get_logger(__name__)
__A : Union[str, Any] = {
'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json',
'Salesforce/blip-vqa-capfit-large': (
'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json'
),
'Salesforce/blip-image-captioning-base': (
'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json'
),
'Salesforce/blip-image-captioning-large': (
'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json'
),
'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json',
'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json',
'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json',
'Salesforce/blip-itm-large-flikr': (
'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json'
),
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "blip_text_model"
def __init__( self : str , __lowerCamelCase : int=30524 , __lowerCamelCase : Any=768 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Dict=3072 , __lowerCamelCase : Tuple=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Any=8 , __lowerCamelCase : Any=512 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Optional[Any]=1e-12 , __lowerCamelCase : Optional[int]=0.0 , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Optional[int]=30522 , __lowerCamelCase : Dict=2 , __lowerCamelCase : str=0 , __lowerCamelCase : List[Any]=102 , __lowerCamelCase : Dict=True , __lowerCamelCase : Tuple=True , **__lowerCamelCase : Optional[Any] , ):
super().__init__(
pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , sep_token_id=__lowerCamelCase , **__lowerCamelCase , )
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = encoder_hidden_size
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = projection_dim
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = is_decoder
SCREAMING_SNAKE_CASE = use_cache
@classmethod
def _snake_case ( cls : Tuple , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : Tuple ):
cls._set_token_in_kwargs(__lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase )
# get the text config dict if we are loading from BlipConfig
if config_dict.get("model_type" ) == "blip":
SCREAMING_SNAKE_CASE = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__lowerCamelCase , **__lowerCamelCase )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "blip_vision_model"
def __init__( self : Dict , __lowerCamelCase : Dict=768 , __lowerCamelCase : Optional[Any]=3072 , __lowerCamelCase : Dict=512 , __lowerCamelCase : List[str]=12 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : int=384 , __lowerCamelCase : Tuple=16 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Dict=1e-5 , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : Optional[int]=1e-10 , **__lowerCamelCase : List[str] , ):
super().__init__(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = projection_dim
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = attention_dropout
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = hidden_act
@classmethod
def _snake_case ( cls : str , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : Any ):
cls._set_token_in_kwargs(__lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase )
# get the vision config dict if we are loading from BlipConfig
if config_dict.get("model_type" ) == "blip":
SCREAMING_SNAKE_CASE = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__lowerCamelCase , **__lowerCamelCase )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "blip"
lowerCamelCase__ = True
def __init__( self : Optional[Any] , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Union[str, Any]=2.6_592 , __lowerCamelCase : Optional[Any]=256 , **__lowerCamelCase : Optional[Any] , ):
super().__init__(**__lowerCamelCase )
if text_config is None:
SCREAMING_SNAKE_CASE = {}
logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." )
if vision_config is None:
SCREAMING_SNAKE_CASE = {}
logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." )
SCREAMING_SNAKE_CASE = BlipTextConfig(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = BlipVisionConfig(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.vision_config.hidden_size
SCREAMING_SNAKE_CASE = projection_dim
SCREAMING_SNAKE_CASE = logit_scale_init_value
SCREAMING_SNAKE_CASE = 1.0
SCREAMING_SNAKE_CASE = 0.02
SCREAMING_SNAKE_CASE = image_text_hidden_size
@classmethod
def _snake_case ( cls : Dict , __lowerCamelCase : BlipTextConfig , __lowerCamelCase : BlipVisionConfig , **__lowerCamelCase : Any ):
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__lowerCamelCase )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE = self.text_config.to_dict()
SCREAMING_SNAKE_CASE = self.vision_config.to_dict()
SCREAMING_SNAKE_CASE = self.__class__.model_type
return output | 702 |
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :]
SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilgpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n"
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="pt" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text | 698 | 0 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
__A : str = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n'
__A : Dict = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n'
__A : Dict = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _SCREAMING_SNAKE_CASE ( datasets.Metric ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[
"https://arxiv.org/abs/2102.01454",
"https://github.com/krishnap25/mauve",
] , )
def _snake_case ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : str=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[int]="auto" , __lowerCamelCase : Union[str, Any]=-1 , __lowerCamelCase : Any=0.9 , __lowerCamelCase : int=5 , __lowerCamelCase : List[str]=500 , __lowerCamelCase : Optional[int]="gpt2-large" , __lowerCamelCase : Union[str, Any]=-1 , __lowerCamelCase : List[Any]=1024 , __lowerCamelCase : List[str]=25 , __lowerCamelCase : Tuple=5 , __lowerCamelCase : int=True , __lowerCamelCase : Dict=25 , ):
SCREAMING_SNAKE_CASE = compute_mauve(
p_text=__lowerCamelCase , q_text=__lowerCamelCase , p_features=__lowerCamelCase , q_features=__lowerCamelCase , p_tokens=__lowerCamelCase , q_tokens=__lowerCamelCase , num_buckets=__lowerCamelCase , pca_max_data=__lowerCamelCase , kmeans_explained_var=__lowerCamelCase , kmeans_num_redo=__lowerCamelCase , kmeans_max_iter=__lowerCamelCase , featurize_model_name=__lowerCamelCase , device_id=__lowerCamelCase , max_text_length=__lowerCamelCase , divergence_curve_discretization_size=__lowerCamelCase , mauve_scaling_factor=__lowerCamelCase , verbose=__lowerCamelCase , seed=__lowerCamelCase , )
return out | 703 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = ['FNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = ['FNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'FNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'FNetForMaskedLM',
'FNetForMultipleChoice',
'FNetForNextSentencePrediction',
'FNetForPreTraining',
'FNetForQuestionAnswering',
'FNetForSequenceClassification',
'FNetForTokenClassification',
'FNetLayer',
'FNetModel',
'FNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
__A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 | 0 |
from pathlib import Path
import numpy as np
from PIL import Image
def __a ( A__ : np.ndarray ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b
def __a ( A__ : np.ndarray ):
return (gray > 127) & (gray <= 255)
def __a ( A__ : np.ndarray , A__ : np.ndarray ):
SCREAMING_SNAKE_CASE = np.zeros_like(A__ )
SCREAMING_SNAKE_CASE = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
SCREAMING_SNAKE_CASE = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
SCREAMING_SNAKE_CASE = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
SCREAMING_SNAKE_CASE = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
__A : int = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg'
__A : List[str] = np.array(Image.open(lena_path))
# kernel to be applied
__A : Optional[Any] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
__A : str = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
__A : List[Any] = Image.fromarray(output).convert('RGB')
pil_img.save('result_dilation.png') | 704 |
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
__A : Optional[Any] = datasets.load_iris()
__A : Optional[Any] = np.array(data['data'])
__A : Optional[int] = np.array(data['target'])
__A : Union[str, Any] = data['target_names']
__A , __A , __A , __A : Optional[int] = train_test_split(X, y)
def __a ( A__ : Optional[int] , A__ : Dict ):
return np.linalg.norm(np.array(A__ ) - np.array(A__ ) )
def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ):
SCREAMING_SNAKE_CASE = zip(A__ , A__ )
# List of distances of all points from the point to be classified
SCREAMING_SNAKE_CASE = []
for data_point in data:
SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4])) | 698 | 0 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : List[Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = 3
SCREAMING_SNAKE_CASE = (32, 32)
SCREAMING_SNAKE_CASE = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCamelCase )
return image
@property
def _snake_case ( self : List[Any] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
return model
@property
def _snake_case ( self : Optional[Any] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
return model
@property
def _snake_case ( self : Union[str, Any] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(__lowerCamelCase )
@property
def _snake_case ( self : Any ):
def extract(*__lowerCamelCase : str , **__lowerCamelCase : Optional[Any] ):
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Optional[int] ):
SCREAMING_SNAKE_CASE = torch.ones([0] )
def _snake_case ( self : Any , __lowerCamelCase : Union[str, Any] ):
self.pixel_values.to(__lowerCamelCase )
return self
return Out()
return extract
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = "cpu" # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE = self.dummy_cond_unet
SCREAMING_SNAKE_CASE = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = self.dummy_vae
SCREAMING_SNAKE_CASE = self.dummy_text_encoder
SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# make sure here that pndm scheduler skips prk
SCREAMING_SNAKE_CASE = StableDiffusionPipeline(
unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , )
SCREAMING_SNAKE_CASE = sd_pipe.to(__lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "A painting of a squirrel eating a burger"
SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(0 )
SCREAMING_SNAKE_CASE = sd_pipe([prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" )
SCREAMING_SNAKE_CASE = output.images
SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(0 )
SCREAMING_SNAKE_CASE = sd_pipe(
[prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=__lowerCamelCase , )[0]
SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
SCREAMING_SNAKE_CASE = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = "cpu" # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE = self.dummy_cond_unet
SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.dummy_vae
SCREAMING_SNAKE_CASE = self.dummy_text_encoder
SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# make sure here that pndm scheduler skips prk
SCREAMING_SNAKE_CASE = StableDiffusionPipeline(
unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , )
SCREAMING_SNAKE_CASE = sd_pipe.to(__lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "A painting of a squirrel eating a burger"
SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(0 )
SCREAMING_SNAKE_CASE = sd_pipe([prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" )
SCREAMING_SNAKE_CASE = output.images
SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(0 )
SCREAMING_SNAKE_CASE = sd_pipe(
[prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=__lowerCamelCase , )[0]
SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
SCREAMING_SNAKE_CASE = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=__lowerCamelCase )
assert isinstance(__lowerCamelCase , __lowerCamelCase )
assert isinstance(pipe.scheduler , __lowerCamelCase )
assert pipe.safety_checker is None
SCREAMING_SNAKE_CASE = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained(__lowerCamelCase )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
SCREAMING_SNAKE_CASE = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = self.dummy_cond_unet
SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.dummy_vae
SCREAMING_SNAKE_CASE = self.dummy_text_encoder
SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# put models in fp16
SCREAMING_SNAKE_CASE = unet.half()
SCREAMING_SNAKE_CASE = vae.half()
SCREAMING_SNAKE_CASE = bert.half()
# make sure here that pndm scheduler skips prk
SCREAMING_SNAKE_CASE = StableDiffusionPipeline(
unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , )
SCREAMING_SNAKE_CASE = sd_pipe.to(__lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "A painting of a squirrel eating a burger"
SCREAMING_SNAKE_CASE = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : int ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=__lowerCamelCase )
SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
SCREAMING_SNAKE_CASE = sd_pipe.to(__lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCamelCase )
SCREAMING_SNAKE_CASE = (
"portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"
" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"
" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"
" children from bahnhof zoo, detailed "
)
SCREAMING_SNAKE_CASE = 4003660346
SCREAMING_SNAKE_CASE = 7
# without safety guidance (sld_guidance_scale = 0)
SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase )
SCREAMING_SNAKE_CASE = sd_pipe(
[prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , )
SCREAMING_SNAKE_CASE = output.images
SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
# without safety guidance (strong configuration)
SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase )
SCREAMING_SNAKE_CASE = sd_pipe(
[prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
SCREAMING_SNAKE_CASE = output.images
SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=__lowerCamelCase )
SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
SCREAMING_SNAKE_CASE = sd_pipe.to(__lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "padme amidala taking a bath artwork, safe for work, no nudity"
SCREAMING_SNAKE_CASE = 2734971755
SCREAMING_SNAKE_CASE = 7
SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase )
SCREAMING_SNAKE_CASE = sd_pipe(
[prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , )
SCREAMING_SNAKE_CASE = output.images
SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase )
SCREAMING_SNAKE_CASE = sd_pipe(
[prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
SCREAMING_SNAKE_CASE = output.images
SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" )
SCREAMING_SNAKE_CASE = sd_pipe.to(__lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCamelCase )
SCREAMING_SNAKE_CASE = (
"the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."
" leyendecker"
)
SCREAMING_SNAKE_CASE = 1044355234
SCREAMING_SNAKE_CASE = 12
SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase )
SCREAMING_SNAKE_CASE = sd_pipe(
[prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , )
SCREAMING_SNAKE_CASE = output.images
SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7
SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase )
SCREAMING_SNAKE_CASE = sd_pipe(
[prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
SCREAMING_SNAKE_CASE = output.images
SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 705 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__A : Union[str, Any] = logging.get_logger(__name__)
__A : Dict = {
'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json',
}
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "resnet"
lowerCamelCase__ = ["basic", "bottleneck"]
def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ):
super().__init__(**__lowerCamelCase )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = embedding_size
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = layer_type
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = downsample_in_first_stage
SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(
out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = version.parse("1.11" )
@property
def _snake_case ( self : Optional[int] ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self : Optional[int] ):
return 1e-3 | 698 | 0 |
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :]
SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilgpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n"
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="pt" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text | 706 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
__A : str = logging.get_logger(__name__)
__A : Optional[Any] = {
'openai/imagegpt-small': '',
'openai/imagegpt-medium': '',
'openai/imagegpt-large': '',
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "imagegpt"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : List[str] , __lowerCamelCase : Any=512 + 1 , __lowerCamelCase : str=32 * 32 , __lowerCamelCase : Any=512 , __lowerCamelCase : Optional[int]=24 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]="quick_gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , **__lowerCamelCase : Union[str, Any] , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = n_positions
SCREAMING_SNAKE_CASE = n_embd
SCREAMING_SNAKE_CASE = n_layer
SCREAMING_SNAKE_CASE = n_head
SCREAMING_SNAKE_CASE = n_inner
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = resid_pdrop
SCREAMING_SNAKE_CASE = embd_pdrop
SCREAMING_SNAKE_CASE = attn_pdrop
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = scale_attn_weights
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx
SCREAMING_SNAKE_CASE = reorder_and_upcast_attn
SCREAMING_SNAKE_CASE = tie_word_embeddings
super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Optional[Any] ):
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
] )
def _snake_case ( self : Optional[int] , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ):
SCREAMING_SNAKE_CASE = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) )
return inputs | 698 | 0 |
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
__A : Optional[int] = logging.get_logger(__name__)
def __a ( A__ : Any ):
SCREAMING_SNAKE_CASE = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
SCREAMING_SNAKE_CASE = 128
elif "12-12" in model_name:
SCREAMING_SNAKE_CASE = 12
SCREAMING_SNAKE_CASE = 12
elif "14-14" in model_name:
SCREAMING_SNAKE_CASE = 14
SCREAMING_SNAKE_CASE = 14
elif "16-16" in model_name:
SCREAMING_SNAKE_CASE = 16
SCREAMING_SNAKE_CASE = 16
else:
raise ValueError("Model not supported" )
SCREAMING_SNAKE_CASE = "huggingface/label-files"
if "speech-commands" in model_name:
SCREAMING_SNAKE_CASE = 35
SCREAMING_SNAKE_CASE = "speech-commands-v2-id2label.json"
else:
SCREAMING_SNAKE_CASE = 527
SCREAMING_SNAKE_CASE = "audioset-id2label.json"
SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(A__ , A__ , repo_type="dataset" ) , "r" ) )
SCREAMING_SNAKE_CASE = {int(A__ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE = idalabel
SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()}
return config
def __a ( A__ : Optional[Any] ):
if "module.v" in name:
SCREAMING_SNAKE_CASE = name.replace("module.v" , "audio_spectrogram_transformer" )
if "cls_token" in name:
SCREAMING_SNAKE_CASE = name.replace("cls_token" , "embeddings.cls_token" )
if "dist_token" in name:
SCREAMING_SNAKE_CASE = name.replace("dist_token" , "embeddings.distillation_token" )
if "pos_embed" in name:
SCREAMING_SNAKE_CASE = name.replace("pos_embed" , "embeddings.position_embeddings" )
if "patch_embed.proj" in name:
SCREAMING_SNAKE_CASE = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
# transformer blocks
if "blocks" in name:
SCREAMING_SNAKE_CASE = name.replace("blocks" , "encoder.layer" )
if "attn.proj" in name:
SCREAMING_SNAKE_CASE = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
SCREAMING_SNAKE_CASE = name.replace("attn" , "attention.self" )
if "norm1" in name:
SCREAMING_SNAKE_CASE = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
SCREAMING_SNAKE_CASE = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
SCREAMING_SNAKE_CASE = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
SCREAMING_SNAKE_CASE = name.replace("mlp.fc2" , "output.dense" )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
SCREAMING_SNAKE_CASE = name.replace("audio_spectrogram_transformer.norm" , "audio_spectrogram_transformer.layernorm" )
# classifier head
if "module.mlp_head.0" in name:
SCREAMING_SNAKE_CASE = name.replace("module.mlp_head.0" , "classifier.layernorm" )
if "module.mlp_head.1" in name:
SCREAMING_SNAKE_CASE = name.replace("module.mlp_head.1" , "classifier.dense" )
return name
def __a ( A__ : Optional[int] , A__ : Optional[int] ):
for key in orig_state_dict.copy().keys():
SCREAMING_SNAKE_CASE = orig_state_dict.pop(A__ )
if "qkv" in key:
SCREAMING_SNAKE_CASE = key.split("." )
SCREAMING_SNAKE_CASE = int(key_split[3] )
SCREAMING_SNAKE_CASE = config.hidden_size
if "weight" in key:
SCREAMING_SNAKE_CASE = val[:dim, :]
SCREAMING_SNAKE_CASE = val[dim : dim * 2, :]
SCREAMING_SNAKE_CASE = val[-dim:, :]
else:
SCREAMING_SNAKE_CASE = val[:dim]
SCREAMING_SNAKE_CASE = val[dim : dim * 2]
SCREAMING_SNAKE_CASE = val[-dim:]
else:
SCREAMING_SNAKE_CASE = val
return orig_state_dict
def __a ( A__ : int ):
SCREAMING_SNAKE_CASE = [
"module.v.head.weight",
"module.v.head.bias",
"module.v.head_dist.weight",
"module.v.head_dist.bias",
]
for k in ignore_keys:
state_dict.pop(A__ , A__ )
@torch.no_grad()
def __a ( A__ : Union[str, Any] , A__ : List[Any] , A__ : Optional[Any]=False ):
SCREAMING_SNAKE_CASE = get_audio_spectrogram_transformer_config(A__ )
SCREAMING_SNAKE_CASE = {
"ast-finetuned-audioset-10-10-0.4593": (
"https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1"
),
"ast-finetuned-audioset-10-10-0.450": (
"https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1"
),
"ast-finetuned-audioset-10-10-0.448": (
"https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1"
),
"ast-finetuned-audioset-10-10-0.448-v2": (
"https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1"
),
"ast-finetuned-audioset-12-12-0.447": (
"https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1"
),
"ast-finetuned-audioset-14-14-0.443": (
"https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1"
),
"ast-finetuned-audioset-16-16-0.442": (
"https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1"
),
"ast-finetuned-speech-commands-v2": (
"https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1"
),
}
# load original state_dict
SCREAMING_SNAKE_CASE = model_name_to_url[model_name]
SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(A__ , map_location="cpu" )
# remove some keys
remove_keys(A__ )
# rename some keys
SCREAMING_SNAKE_CASE = convert_state_dict(A__ , A__ )
# load 🤗 model
SCREAMING_SNAKE_CASE = ASTForAudioClassification(A__ )
model.eval()
model.load_state_dict(A__ )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
SCREAMING_SNAKE_CASE = -4.2_6_7_7_3_9_3 if "speech-commands" not in model_name else -6.8_4_5_9_7_8
SCREAMING_SNAKE_CASE = 4.5_6_8_9_9_7_4 if "speech-commands" not in model_name else 5.5_6_5_4_5_2_6
SCREAMING_SNAKE_CASE = 1024 if "speech-commands" not in model_name else 128
SCREAMING_SNAKE_CASE = ASTFeatureExtractor(mean=A__ , std=A__ , max_length=A__ )
if "speech-commands" in model_name:
SCREAMING_SNAKE_CASE = load_dataset("speech_commands" , "v0.02" , split="validation" )
SCREAMING_SNAKE_CASE = dataset[0]["audio"]["array"]
else:
SCREAMING_SNAKE_CASE = hf_hub_download(
repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torchaudio.load(A__ )
SCREAMING_SNAKE_CASE = waveform.squeeze().numpy()
SCREAMING_SNAKE_CASE = feature_extractor(A__ , sampling_rate=16000 , return_tensors="pt" )
# forward pass
SCREAMING_SNAKE_CASE = model(**A__ )
SCREAMING_SNAKE_CASE = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
SCREAMING_SNAKE_CASE = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
SCREAMING_SNAKE_CASE = torch.tensor([-1.1_9_8_6, -7.0_9_0_3, -8.2_7_1_8] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
SCREAMING_SNAKE_CASE = torch.tensor([-2.6_1_2_8, -8.0_0_8_0, -9.4_3_4_4] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
SCREAMING_SNAKE_CASE = torch.tensor([-1.5_0_8_0, -7.4_5_3_4, -8.8_9_1_7] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
SCREAMING_SNAKE_CASE = torch.tensor([-0.5_0_5_0, -6.5_8_3_3, -8.0_8_4_3] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
SCREAMING_SNAKE_CASE = torch.tensor([-0.3_8_2_6, -7.0_3_3_6, -8.2_4_1_3] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
SCREAMING_SNAKE_CASE = torch.tensor([-1.2_1_1_3, -6.9_1_0_1, -8.3_4_7_0] )
elif model_name == "ast-finetuned-speech-commands-v2":
SCREAMING_SNAKE_CASE = torch.tensor([6.1_5_8_9, -8.0_5_6_6, -8.7_9_8_4] )
else:
raise ValueError("Unknown model name" )
if not torch.allclose(logits[0, :3] , A__ , atol=1E-4 ):
raise ValueError("Logits don't match" )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
Path(A__ ).mkdir(exist_ok=A__ )
print(F"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(A__ )
print(F"Saving feature extractor to {pytorch_dump_folder_path}" )
feature_extractor.save_pretrained(A__ )
if push_to_hub:
print("Pushing model and feature extractor to the hub..." )
model.push_to_hub(F"MIT/{model_name}" )
feature_extractor.push_to_hub(F"MIT/{model_name}" )
if __name__ == "__main__":
__A : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='ast-finetuned-audioset-10-10-0.4593',
type=str,
help='Name of the Audio Spectrogram Transformer model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
__A : Tuple = parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) | 707 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@slow
@require_torch
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" )
SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" )
SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size
SCREAMING_SNAKE_CASE = tokenizer.sep_token_id
SCREAMING_SNAKE_CASE = tokenizer.cls_token_id
SCREAMING_SNAKE_CASE = 128
SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" )
SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" )
SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) )
SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) )
SCREAMING_SNAKE_CASE = 4
def _map_to_encoder_decoder_inputs(__lowerCamelCase : str ):
# Tokenizer will automatically set [BOS] <text> [EOS]
SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=__lowerCamelCase , max_length=512 )
SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=__lowerCamelCase , max_length=128 )
SCREAMING_SNAKE_CASE = inputs.input_ids
SCREAMING_SNAKE_CASE = inputs.attention_mask
SCREAMING_SNAKE_CASE = outputs.input_ids
SCREAMING_SNAKE_CASE = outputs.input_ids.copy()
SCREAMING_SNAKE_CASE = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
]
SCREAMING_SNAKE_CASE = outputs.attention_mask
assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids )
assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(__lowerCamelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE = pred.label_ids
SCREAMING_SNAKE_CASE = pred.predictions
# all unnecessary tokens are removed
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase )
return {"accuracy": accuracy}
# map train dataset
SCREAMING_SNAKE_CASE = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , )
train_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
# same for validation dataset
SCREAMING_SNAKE_CASE = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , )
val_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments(
output_dir=__lowerCamelCase , per_device_train_batch_size=__lowerCamelCase , per_device_eval_batch_size=__lowerCamelCase , predict_with_generate=__lowerCamelCase , evaluation_strategy="steps" , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
SCREAMING_SNAKE_CASE = SeqaSeqTrainer(
model=__lowerCamelCase , args=__lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , tokenizer=__lowerCamelCase , )
# start training
trainer.train() | 698 | 0 |
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__A : Union[str, Any] = logging.get_logger(__name__)
__A : int = 'https://openaipublic.azureedge.net/jukebox/models/'
__A : Optional[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def __a ( A__ : int ):
if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10:
SCREAMING_SNAKE_CASE = key.replace(".model.1.bias" , ".conv1d_1.bias" )
elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10:
SCREAMING_SNAKE_CASE = key.replace(".model.1.weight" , ".conv1d_1.weight" )
elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10:
SCREAMING_SNAKE_CASE = key.replace(".model.3.bias" , ".conv1d_2.bias" )
elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10:
SCREAMING_SNAKE_CASE = key.replace(".model.3.weight" , ".conv1d_2.weight" )
if "conditioner_blocks.0." in key:
SCREAMING_SNAKE_CASE = key.replace("conditioner_blocks.0" , "conditioner_blocks" )
if "prime_prior" in key:
SCREAMING_SNAKE_CASE = key.replace("prime_prior" , "encoder" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
SCREAMING_SNAKE_CASE = key.replace(".emb." , "." )
if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(".k" , ".codebook" )
if "y_emb." in key:
return key.replace("y_emb." , "metadata_embedding." )
if "x_emb.emb." in key:
SCREAMING_SNAKE_CASE = key.replace("0.x_emb.emb" , "embed_tokens" )
if "prime_state_ln" in key:
return key.replace("prime_state_ln" , "encoder.final_layer_norm" )
if ".ln" in key:
return key.replace(".ln" , ".layer_norm" )
if "_ln" in key:
return key.replace("_ln" , "_layer_norm" )
if "prime_state_proj" in key:
return key.replace("prime_state_proj" , "encoder.proj_in" )
if "prime_x_out" in key:
return key.replace("prime_x_out" , "encoder.lm_head" )
if "prior.x_out" in key:
return key.replace("x_out" , "fc_proj_out" )
if "x_emb" in key:
return key.replace("x_emb" , "embed_tokens" )
return key
def __a ( A__ : Optional[Any] , A__ : Dict , A__ : Tuple , A__ : Optional[Any] ):
SCREAMING_SNAKE_CASE = {}
import re
SCREAMING_SNAKE_CASE = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" )
SCREAMING_SNAKE_CASE = re.compile(
R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" )
SCREAMING_SNAKE_CASE = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" )
SCREAMING_SNAKE_CASE = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" )
SCREAMING_SNAKE_CASE = re.compile(
R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" )
SCREAMING_SNAKE_CASE = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" )
SCREAMING_SNAKE_CASE = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" )
SCREAMING_SNAKE_CASE = re.compile(
R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" )
SCREAMING_SNAKE_CASE = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(A__ ):
SCREAMING_SNAKE_CASE = re_encoder_block_conv_in.match(A__ )
SCREAMING_SNAKE_CASE = regex_match.groups()
SCREAMING_SNAKE_CASE = int(groups[2] ) * 2 + int(groups[3] )
SCREAMING_SNAKE_CASE = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"
SCREAMING_SNAKE_CASE = re_encoder_block_conv_in.sub(A__ , A__ )
elif re_encoder_block_resnet.fullmatch(A__ ):
SCREAMING_SNAKE_CASE = re_encoder_block_resnet.match(A__ )
SCREAMING_SNAKE_CASE = regex_match.groups()
SCREAMING_SNAKE_CASE = int(groups[2] ) * 2 + int(groups[3] )
SCREAMING_SNAKE_CASE = {"1": 1, "3": 2}[groups[-2]]
SCREAMING_SNAKE_CASE = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."
SCREAMING_SNAKE_CASE = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"
SCREAMING_SNAKE_CASE = prefix + resnet_block
SCREAMING_SNAKE_CASE = re_encoder_block_resnet.sub(A__ , A__ )
elif re_encoder_block_proj_out.fullmatch(A__ ):
SCREAMING_SNAKE_CASE = re_encoder_block_proj_out.match(A__ )
SCREAMING_SNAKE_CASE = regex_match.groups()
SCREAMING_SNAKE_CASE = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"
SCREAMING_SNAKE_CASE = re_encoder_block_proj_out.sub(A__ , A__ )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(A__ ):
SCREAMING_SNAKE_CASE = re_decoder_block_conv_out.match(A__ )
SCREAMING_SNAKE_CASE = regex_match.groups()
SCREAMING_SNAKE_CASE = int(groups[2] ) * 2 + int(groups[3] ) - 2
SCREAMING_SNAKE_CASE = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"
SCREAMING_SNAKE_CASE = re_decoder_block_conv_out.sub(A__ , A__ )
elif re_decoder_block_resnet.fullmatch(A__ ):
SCREAMING_SNAKE_CASE = re_decoder_block_resnet.match(A__ )
SCREAMING_SNAKE_CASE = regex_match.groups()
SCREAMING_SNAKE_CASE = int(groups[2] ) * 2 + int(groups[3] ) - 2
SCREAMING_SNAKE_CASE = {"1": 1, "3": 2}[groups[-2]]
SCREAMING_SNAKE_CASE = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."
SCREAMING_SNAKE_CASE = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"
SCREAMING_SNAKE_CASE = prefix + resnet_block
SCREAMING_SNAKE_CASE = re_decoder_block_resnet.sub(A__ , A__ )
elif re_decoder_block_proj_in.fullmatch(A__ ):
SCREAMING_SNAKE_CASE = re_decoder_block_proj_in.match(A__ )
SCREAMING_SNAKE_CASE = regex_match.groups()
SCREAMING_SNAKE_CASE = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"
SCREAMING_SNAKE_CASE = re_decoder_block_proj_in.sub(A__ , A__ )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(A__ ):
SCREAMING_SNAKE_CASE = re_prior_cond_conv_out.match(A__ )
SCREAMING_SNAKE_CASE = regex_match.groups()
SCREAMING_SNAKE_CASE = int(groups[1] ) * 2 + int(groups[2] ) - 2
SCREAMING_SNAKE_CASE = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"
SCREAMING_SNAKE_CASE = re_prior_cond_conv_out.sub(A__ , A__ )
elif re_prior_cond_resnet.fullmatch(A__ ):
SCREAMING_SNAKE_CASE = re_prior_cond_resnet.match(A__ )
SCREAMING_SNAKE_CASE = regex_match.groups()
SCREAMING_SNAKE_CASE = int(groups[1] ) * 2 + int(groups[2] ) - 2
SCREAMING_SNAKE_CASE = {"1": 1, "3": 2}[groups[-2]]
SCREAMING_SNAKE_CASE = F"conditioner_blocks.upsampler.upsample_block.{block_index}."
SCREAMING_SNAKE_CASE = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"
SCREAMING_SNAKE_CASE = prefix + resnet_block
SCREAMING_SNAKE_CASE = re_prior_cond_resnet.sub(A__ , A__ )
elif re_prior_cond_proj_in.fullmatch(A__ ):
SCREAMING_SNAKE_CASE = re_prior_cond_proj_in.match(A__ )
SCREAMING_SNAKE_CASE = regex_match.groups()
SCREAMING_SNAKE_CASE = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}"
SCREAMING_SNAKE_CASE = re_prior_cond_proj_in.sub(A__ , A__ )
# keep original key
else:
SCREAMING_SNAKE_CASE = original_key
SCREAMING_SNAKE_CASE = replace_key(A__ )
if F"{key_prefix}.{key}" not in model_state_dict or key is None:
print(F"failed converting {original_key} to {key}, does not match" )
# handle missmatched shape
elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape:
SCREAMING_SNAKE_CASE = model_state_dict[F"{key_prefix}.{key}"]
print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" )
SCREAMING_SNAKE_CASE = original_key
SCREAMING_SNAKE_CASE = original_key
SCREAMING_SNAKE_CASE = value
return new_dict
@torch.no_grad()
def __a ( A__ : Any=None , A__ : Optional[int]=None ):
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ):
SCREAMING_SNAKE_CASE = requests.get(F"{PREFIX}{file}" , allow_redirects=A__ )
os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=A__ )
open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content )
SCREAMING_SNAKE_CASE = MODEL_MAPPING[model_name.split("/" )[-1]]
SCREAMING_SNAKE_CASE = JukeboxConfig.from_pretrained(A__ )
SCREAMING_SNAKE_CASE = JukeboxModel(A__ )
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = {}
for i, dict_name in enumerate(A__ ):
SCREAMING_SNAKE_CASE = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"]
SCREAMING_SNAKE_CASE = {}
for k in old_dic.keys():
if k.endswith(".b" ):
SCREAMING_SNAKE_CASE = old_dic[k]
elif k.endswith(".w" ):
SCREAMING_SNAKE_CASE = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
SCREAMING_SNAKE_CASE = old_dic[k]
else:
SCREAMING_SNAKE_CASE = old_dic[k]
SCREAMING_SNAKE_CASE = "vqvae" if i == 0 else F"priors.{3 - i}"
SCREAMING_SNAKE_CASE = fix_jukebox_keys(A__ , model.state_dict() , A__ , A__ )
weight_dict.append(A__ )
SCREAMING_SNAKE_CASE = weight_dict.pop(0 )
model.vqvae.load_state_dict(A__ )
for i in range(len(A__ ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(A__ ).mkdir(exist_ok=A__ )
with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile:
json.dump(A__ , A__ )
print(F"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(A__ )
return weight_dict
if __name__ == "__main__":
__A : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__A : Dict = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path) | 708 |
import inspect
import unittest
import warnings
from math import ceil, floor
from transformers import LevitConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
LevitForImageClassification,
LevitForImageClassificationWithTeacher,
LevitModel,
)
from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) )
self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) )
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ):
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = kernel_size
SCREAMING_SNAKE_CASE = stride
SCREAMING_SNAKE_CASE = padding
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = key_dim
SCREAMING_SNAKE_CASE = drop_path_rate
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = attention_ratio
SCREAMING_SNAKE_CASE = mlp_ratio
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = [
["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = num_labels
SCREAMING_SNAKE_CASE = initializer_range
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels )
SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def _snake_case ( self : List[str] ):
return LevitConfig(
image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , )
def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE = model(__lowerCamelCase )
SCREAMING_SNAKE_CASE = (self.image_size, self.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , )
def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ):
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs
SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (
(LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher)
if is_torch_available()
else ()
)
lowerCamelCase__ = (
{
"feature-extraction": LevitModel,
"image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = LevitModelTester(self )
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def _snake_case ( self : Any ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _snake_case ( self : Any ):
return
@unittest.skip(reason="Levit does not use inputs_embeds" )
def _snake_case ( self : Union[str, Any] ):
pass
@unittest.skip(reason="Levit does not support input and output embeddings" )
def _snake_case ( self : Tuple ):
pass
@unittest.skip(reason="Levit does not output attentions" )
def _snake_case ( self : Tuple ):
pass
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _snake_case ( self : List[Any] ):
def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
SCREAMING_SNAKE_CASE = outputs.hidden_states
SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE = floor(
(
(height + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
SCREAMING_SNAKE_CASE = floor(
(
(width + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [
height * width,
self.model_tester.hidden_sizes[0],
] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def _snake_case ( self : int ):
pass
def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ):
SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
def _snake_case ( self : List[Any] ):
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
# LevitForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(__lowerCamelCase )
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
loss.backward()
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
# LevitForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
continue
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.gradient_checkpointing_enable()
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
loss.backward()
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(__lowerCamelCase ),
]
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ):
SCREAMING_SNAKE_CASE = problem_type["title"]
SCREAMING_SNAKE_CASE = problem_type["num_labels"]
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if problem_type["num_labels"] > 1:
SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] )
SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list:
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
f"Something is going wrong in the regression problem: intercepted {w.message}" )
loss.backward()
@slow
def _snake_case ( self : List[Any] ):
for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def __a ( ):
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _snake_case ( self : Dict ):
return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.default_image_processor
SCREAMING_SNAKE_CASE = prepare_img()
SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase )
# verify the logits
SCREAMING_SNAKE_CASE = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) | 698 | 0 |
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = (UnCLIPScheduler,)
def _snake_case ( self : Union[str, Any] , **__lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = {
"num_train_timesteps": 1000,
"variance_type": "fixed_small_log",
"clip_sample": True,
"clip_sample_range": 1.0,
"prediction_type": "epsilon",
}
config.update(**__lowerCamelCase )
return config
def _snake_case ( self : Any ):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=__lowerCamelCase )
def _snake_case ( self : List[str] ):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=__lowerCamelCase )
def _snake_case ( self : Optional[int] ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__lowerCamelCase )
def _snake_case ( self : str ):
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=__lowerCamelCase )
def _snake_case ( self : List[Any] ):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=__lowerCamelCase )
def _snake_case ( self : Union[str, Any] ):
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=__lowerCamelCase , prev_timestep=__lowerCamelCase )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE = self.get_scheduler_config(variance_type="fixed_small_log" )
SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE = self.get_scheduler_config(variance_type="learned_range" )
SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = 0.5
assert scheduler._get_variance(1 , predicted_variance=__lowerCamelCase ) - -10.1_712_790 < 1e-5
assert scheduler._get_variance(487 , predicted_variance=__lowerCamelCase ) - -5.7_998_052 < 1e-5
assert scheduler._get_variance(999 , predicted_variance=__lowerCamelCase ) - -0.0_010_011 < 1e-5
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE = self.get_scheduler_config()
SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = scheduler.timesteps
SCREAMING_SNAKE_CASE = self.dummy_model()
SCREAMING_SNAKE_CASE = self.dummy_sample_deter
SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
for i, t in enumerate(__lowerCamelCase ):
# 1. predict noise residual
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase )
# 2. predict previous mean of sample x_t-1
SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample
SCREAMING_SNAKE_CASE = pred_prev_sample
SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__lowerCamelCase ) )
SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2
assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE = self.get_scheduler_config()
SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase )
scheduler.set_timesteps(25 )
SCREAMING_SNAKE_CASE = scheduler.timesteps
SCREAMING_SNAKE_CASE = self.dummy_model()
SCREAMING_SNAKE_CASE = self.dummy_sample_deter
SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
for i, t in enumerate(__lowerCamelCase ):
# 1. predict noise residual
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase )
if i + 1 == timesteps.shape[0]:
SCREAMING_SNAKE_CASE = None
else:
SCREAMING_SNAKE_CASE = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
SCREAMING_SNAKE_CASE = scheduler.step(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , prev_timestep=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample
SCREAMING_SNAKE_CASE = pred_prev_sample
SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__lowerCamelCase ) )
SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2
assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3
def _snake_case ( self : Dict ):
pass
def _snake_case ( self : int ):
pass | 709 |
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ):
return None
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ):
return None
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = [
# (model_name, model_kwargs)
("bert-base-cased", {}),
("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def _snake_case ( self : List[Any] ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase )
@require_torch
@slow
def _snake_case ( self : List[Any] ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase )
@require_torch
@slow
def _snake_case ( self : Optional[int] ):
from transformers import BertModel
SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"]
with NamedTemporaryFile(mode="w+t" ) as vocab_file:
vocab_file.write("\n".join(__lowerCamelCase ) )
vocab_file.flush()
SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) )
model.save_pretrained(__lowerCamelCase )
self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase )
@require_tf
@slow
def _snake_case ( self : Any ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
@require_torch
@slow
def _snake_case ( self : Any ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ):
try:
# Compute path
with TemporaryDirectory() as tempdir:
SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
return path
except Exception as e:
self.fail(__lowerCamelCase )
@require_torch
@require_tokenizers
@slow
def _snake_case ( self : Dict ):
from transformers import BertModel
SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" )
@require_tf
@require_tokenizers
@slow
def _snake_case ( self : int ):
from transformers import TFBertModel
SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" )
def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase )
# Assert all variables are present
self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase )
self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} )
self.assertDictEqual(shapes["output_1"] , {0: "batch"} )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"]
SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]}
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__lowerCamelCase ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(len(__lowerCamelCase ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens["input_ids"] )
self.assertEqual(ordered_input_names[0] , "input_ids" )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" )
self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() ) | 698 | 0 |
from __future__ import annotations
from random import random
from typing import Generic, TypeVar
__A : int = TypeVar('KT')
__A : List[str] = TypeVar('VT')
class _SCREAMING_SNAKE_CASE ( Generic[KT, VT] ):
'''simple docstring'''
def __init__( self : Any , __lowerCamelCase : KT | str = "root" , __lowerCamelCase : VT | None = None ):
SCREAMING_SNAKE_CASE = key
SCREAMING_SNAKE_CASE = value
SCREAMING_SNAKE_CASE = []
def __repr__( self : Optional[Any] ):
return f"Node({self.key}: {self.value})"
@property
def _snake_case ( self : Optional[Any] ):
return len(self.forward )
class _SCREAMING_SNAKE_CASE ( Generic[KT, VT] ):
'''simple docstring'''
def __init__( self : Any , __lowerCamelCase : float = 0.5 , __lowerCamelCase : int = 16 ):
SCREAMING_SNAKE_CASE = Node[KT, VT]()
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = p
SCREAMING_SNAKE_CASE = max_level
def __str__( self : int ):
SCREAMING_SNAKE_CASE = list(self )
if len(__lowerCamelCase ) == 0:
return f"SkipList(level={self.level})"
SCREAMING_SNAKE_CASE = max((len(str(__lowerCamelCase ) ) for item in items) , default=4 )
SCREAMING_SNAKE_CASE = max(__lowerCamelCase , 4 ) + 4
SCREAMING_SNAKE_CASE = self.head
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = node.forward.copy()
lines.append(f"[{node.key}]".ljust(__lowerCamelCase , "-" ) + "* " * len(__lowerCamelCase ) )
lines.append(" " * label_size + "| " * len(__lowerCamelCase ) )
while len(node.forward ) != 0:
SCREAMING_SNAKE_CASE = node.forward[0]
lines.append(
f"[{node.key}]".ljust(__lowerCamelCase , "-" )
+ " ".join(str(n.key ) if n.key == node.key else "|" for n in forwards ) )
lines.append(" " * label_size + "| " * len(__lowerCamelCase ) )
SCREAMING_SNAKE_CASE = node.forward
lines.append("None".ljust(__lowerCamelCase ) + "* " * len(__lowerCamelCase ) )
return f"SkipList(level={self.level})\n" + "\n".join(__lowerCamelCase )
def __iter__( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.head
while len(node.forward ) != 0:
yield node.forward[0].key
SCREAMING_SNAKE_CASE = node.forward[0]
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = 1
while random() < self.p and level < self.max_level:
level += 1
return level
def _snake_case ( self : int , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = self.head
for i in reversed(range(self.level ) ):
# i < node.level - When node level is lesser than `i` decrement `i`.
# node.forward[i].key < key - Jumping to node with key value higher
# or equal to searched key would result
# in skipping searched key.
while i < node.level and node.forward[i].key < key:
SCREAMING_SNAKE_CASE = node.forward[i]
# Each leftmost node (relative to searched node) will potentially have to
# be updated.
update_vector.append(__lowerCamelCase )
update_vector.reverse() # Note that we were inserting values in reverse order.
# len(node.forward) != 0 - If current node doesn't contain any further
# references then searched key is not present.
# node.forward[0].key == key - Next node key should be equal to search key
# if key is present.
if len(node.forward ) != 0 and node.forward[0].key == key:
return node.forward[0], update_vector
else:
return None, update_vector
def _snake_case ( self : List[str] , __lowerCamelCase : KT ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._locate_node(__lowerCamelCase )
if node is not None:
for i, update_node in enumerate(__lowerCamelCase ):
# Remove or replace all references to removed node.
if update_node.level > i and update_node.forward[i].key == key:
if node.level > i:
SCREAMING_SNAKE_CASE = node.forward[i]
else:
SCREAMING_SNAKE_CASE = update_node.forward[:i]
def _snake_case ( self : Optional[int] , __lowerCamelCase : KT , __lowerCamelCase : VT ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._locate_node(__lowerCamelCase )
if node is not None:
SCREAMING_SNAKE_CASE = value
else:
SCREAMING_SNAKE_CASE = self.random_level()
if level > self.level:
# After level increase we have to add additional nodes to head.
for _ in range(self.level - 1 , __lowerCamelCase ):
update_vector.append(self.head )
SCREAMING_SNAKE_CASE = level
SCREAMING_SNAKE_CASE = Node(__lowerCamelCase , __lowerCamelCase )
for i, update_node in enumerate(update_vector[:level] ):
# Change references to pass through new node.
if update_node.level > i:
new_node.forward.append(update_node.forward[i] )
if update_node.level < i + 1:
update_node.forward.append(__lowerCamelCase )
else:
SCREAMING_SNAKE_CASE = new_node
def _snake_case ( self : int , __lowerCamelCase : VT ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._locate_node(__lowerCamelCase )
if node is not None:
return node.value
return None
def __a ( ):
SCREAMING_SNAKE_CASE = SkipList()
skip_list.insert("Key1" , 3 )
skip_list.insert("Key2" , 12 )
skip_list.insert("Key3" , 41 )
skip_list.insert("Key4" , -19 )
SCREAMING_SNAKE_CASE = skip_list.head
SCREAMING_SNAKE_CASE = {}
while node.level != 0:
SCREAMING_SNAKE_CASE = node.forward[0]
SCREAMING_SNAKE_CASE = node.value
assert len(A__ ) == 4
assert all_values["Key1"] == 3
assert all_values["Key2"] == 12
assert all_values["Key3"] == 41
assert all_values["Key4"] == -19
def __a ( ):
SCREAMING_SNAKE_CASE = SkipList()
skip_list.insert("Key1" , 10 )
skip_list.insert("Key1" , 12 )
skip_list.insert("Key5" , 7 )
skip_list.insert("Key7" , 10 )
skip_list.insert("Key10" , 5 )
skip_list.insert("Key7" , 7 )
skip_list.insert("Key5" , 5 )
skip_list.insert("Key10" , 10 )
SCREAMING_SNAKE_CASE = skip_list.head
SCREAMING_SNAKE_CASE = {}
while node.level != 0:
SCREAMING_SNAKE_CASE = node.forward[0]
SCREAMING_SNAKE_CASE = node.value
if len(A__ ) != 4:
print()
assert len(A__ ) == 4
assert all_values["Key1"] == 12
assert all_values["Key7"] == 7
assert all_values["Key5"] == 5
assert all_values["Key10"] == 10
def __a ( ):
SCREAMING_SNAKE_CASE = SkipList()
assert skip_list.find("Some key" ) is None
def __a ( ):
SCREAMING_SNAKE_CASE = SkipList()
skip_list.insert("Key2" , 20 )
assert skip_list.find("Key2" ) == 20
skip_list.insert("Some Key" , 10 )
skip_list.insert("Key2" , 8 )
skip_list.insert("V" , 13 )
assert skip_list.find("Y" ) is None
assert skip_list.find("Key2" ) == 8
assert skip_list.find("Some Key" ) == 10
assert skip_list.find("V" ) == 13
def __a ( ):
SCREAMING_SNAKE_CASE = SkipList()
skip_list.delete("Some key" )
assert len(skip_list.head.forward ) == 0
def __a ( ):
SCREAMING_SNAKE_CASE = SkipList()
skip_list.insert("Key1" , 12 )
skip_list.insert("V" , 13 )
skip_list.insert("X" , 14 )
skip_list.insert("Key2" , 15 )
skip_list.delete("V" )
skip_list.delete("Key2" )
assert skip_list.find("V" ) is None
assert skip_list.find("Key2" ) is None
def __a ( ):
SCREAMING_SNAKE_CASE = SkipList()
skip_list.insert("Key1" , 12 )
skip_list.insert("V" , 13 )
skip_list.insert("X" , 14 )
skip_list.insert("Key2" , 15 )
skip_list.delete("V" )
assert skip_list.find("V" ) is None
assert skip_list.find("X" ) == 14
assert skip_list.find("Key1" ) == 12
assert skip_list.find("Key2" ) == 15
skip_list.delete("X" )
assert skip_list.find("V" ) is None
assert skip_list.find("X" ) is None
assert skip_list.find("Key1" ) == 12
assert skip_list.find("Key2" ) == 15
skip_list.delete("Key1" )
assert skip_list.find("V" ) is None
assert skip_list.find("X" ) is None
assert skip_list.find("Key1" ) is None
assert skip_list.find("Key2" ) == 15
skip_list.delete("Key2" )
assert skip_list.find("V" ) is None
assert skip_list.find("X" ) is None
assert skip_list.find("Key1" ) is None
assert skip_list.find("Key2" ) is None
def __a ( ):
SCREAMING_SNAKE_CASE = SkipList()
skip_list.insert("Key1" , 12 )
skip_list.insert("V" , 13 )
skip_list.insert("X" , 142 )
skip_list.insert("Key2" , 15 )
skip_list.delete("X" )
def traverse_keys(A__ : Dict ):
yield node.key
for forward_node in node.forward:
yield from traverse_keys(A__ )
assert len(set(traverse_keys(skip_list.head ) ) ) == 4
def __a ( ):
def is_sorted(A__ : Dict ):
return all(next_item >= item for item, next_item in zip(A__ , lst[1:] ) )
SCREAMING_SNAKE_CASE = SkipList()
for i in range(10 ):
skip_list.insert(A__ , A__ )
assert is_sorted(list(A__ ) )
skip_list.delete(5 )
skip_list.delete(8 )
skip_list.delete(2 )
assert is_sorted(list(A__ ) )
skip_list.insert(-12 , -12 )
skip_list.insert(77 , 77 )
assert is_sorted(list(A__ ) )
def __a ( ):
for _ in range(100 ):
# Repeat test 100 times due to the probabilistic nature of skip list
# random values == random bugs
test_insert()
test_insert_overrides_existing_value()
test_searching_empty_list_returns_none()
test_search()
test_deleting_item_from_empty_list_do_nothing()
test_deleted_items_are_not_founded_by_find_method()
test_delete_removes_only_given_key()
test_delete_doesnt_leave_dead_nodes()
test_iter_always_yields_sorted_values()
def __a ( ):
SCREAMING_SNAKE_CASE = SkipList()
skip_list.insert(2 , "2" )
skip_list.insert(4 , "4" )
skip_list.insert(6 , "4" )
skip_list.insert(4 , "5" )
skip_list.insert(8 , "4" )
skip_list.insert(9 , "4" )
skip_list.delete(4 )
print(A__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 710 |
from manim import *
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 )
SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("CPU" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("GPU" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
gpu.move_to([-1, -1, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("Model" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
model.move_to([3, -1.0, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = []
for i, rect in enumerate(__lowerCamelCase ):
rect.set_stroke(__lowerCamelCase )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 )
self.add(__lowerCamelCase )
cpu_targs.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("Loaded Checkpoint" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
SCREAMING_SNAKE_CASE = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
SCREAMING_SNAKE_CASE = MarkupText(
f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = MarkupText(
f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , )
blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
SCREAMING_SNAKE_CASE = MarkupText(
f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) )
self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) )
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
for i, rect in enumerate(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 )
target.move_to(__lowerCamelCase )
first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) )
SCREAMING_SNAKE_CASE = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) )
self.play(*__lowerCamelCase )
self.play(*__lowerCamelCase )
self.wait() | 698 | 0 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = (DPMSolverSinglestepScheduler,)
lowerCamelCase__ = (("num_inference_steps", 2_5),)
def _snake_case ( self : str , **__lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE = {
"num_train_timesteps": 1000,
"beta_start": 0.0_001,
"beta_end": 0.02,
"beta_schedule": "linear",
"solver_order": 2,
"prediction_type": "epsilon",
"thresholding": False,
"sample_max_value": 1.0,
"algorithm_type": "dpmsolver++",
"solver_type": "midpoint",
"lambda_min_clipped": -float("inf" ),
"variance_type": None,
}
config.update(**__lowerCamelCase )
return config
def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any]=0 , **__lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs )
SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , __lowerCamelCase )
SCREAMING_SNAKE_CASE = self.dummy_sample
SCREAMING_SNAKE_CASE = 0.1 * sample
SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
SCREAMING_SNAKE_CASE = self.get_scheduler_config(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase )
scheduler.set_timesteps(__lowerCamelCase )
# copy over dummy past residuals
SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__lowerCamelCase )
SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(__lowerCamelCase )
new_scheduler.set_timesteps(__lowerCamelCase )
# copy over dummy past residuals
SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sample, sample
for t in range(__lowerCamelCase , time_step + scheduler.config.solver_order + 1 ):
SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample
SCREAMING_SNAKE_CASE = new_scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def _snake_case ( self : Any ):
pass
def _snake_case ( self : List[str] , __lowerCamelCase : str=0 , **__lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs )
SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , __lowerCamelCase )
SCREAMING_SNAKE_CASE = self.dummy_sample
SCREAMING_SNAKE_CASE = 0.1 * sample
SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
SCREAMING_SNAKE_CASE = self.get_scheduler_config()
SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase )
scheduler.set_timesteps(__lowerCamelCase )
# copy over dummy past residuals (must be after setting timesteps)
SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__lowerCamelCase )
SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(__lowerCamelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(__lowerCamelCase )
# copy over dummy past residual (must be after setting timesteps)
SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order]
SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample
SCREAMING_SNAKE_CASE = new_scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def _snake_case ( self : Dict , __lowerCamelCase : str=None , **__lowerCamelCase : Union[str, Any] ):
if scheduler is None:
SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE = self.get_scheduler_config(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE = self.get_scheduler_config(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = 10
SCREAMING_SNAKE_CASE = self.dummy_model()
SCREAMING_SNAKE_CASE = self.dummy_sample_deter
scheduler.set_timesteps(__lowerCamelCase )
for i, t in enumerate(scheduler.timesteps ):
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample
return sample
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
SCREAMING_SNAKE_CASE = 50
SCREAMING_SNAKE_CASE = self.dummy_model()
SCREAMING_SNAKE_CASE = self.dummy_sample_deter
scheduler.set_timesteps(__lowerCamelCase )
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:] ):
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample
SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_mean.item() - 0.2_574 ) < 1e-3
def _snake_case ( self : List[str] ):
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=__lowerCamelCase )
def _snake_case ( self : Any ):
# make sure that iterating over schedulers with same config names gives same results
# for defaults
SCREAMING_SNAKE_CASE = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
SCREAMING_SNAKE_CASE = self.full_loop(scheduler=__lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_mean.item() - 0.2_791 ) < 1e-3
SCREAMING_SNAKE_CASE = DEISMultistepScheduler.from_config(scheduler.config )
SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(scheduler.config )
SCREAMING_SNAKE_CASE = UniPCMultistepScheduler.from_config(scheduler.config )
SCREAMING_SNAKE_CASE = DPMSolverSinglestepScheduler.from_config(scheduler.config )
SCREAMING_SNAKE_CASE = self.full_loop(scheduler=__lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_mean.item() - 0.2_791 ) < 1e-3
def _snake_case ( self : Optional[Any] ):
self.check_over_configs(thresholding=__lowerCamelCase )
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , algorithm_type="dpmsolver++" , solver_order=__lowerCamelCase , solver_type=__lowerCamelCase , )
def _snake_case ( self : Tuple ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__lowerCamelCase )
def _snake_case ( self : Dict ):
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=__lowerCamelCase , solver_type=__lowerCamelCase , prediction_type=__lowerCamelCase , algorithm_type=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = self.full_loop(
solver_order=__lowerCamelCase , solver_type=__lowerCamelCase , prediction_type=__lowerCamelCase , algorithm_type=__lowerCamelCase , )
assert not torch.isnan(__lowerCamelCase ).any(), "Samples have nan numbers"
def _snake_case ( self : Optional[int] ):
self.check_over_configs(lower_order_final=__lowerCamelCase )
self.check_over_configs(lower_order_final=__lowerCamelCase )
def _snake_case ( self : Union[str, Any] ):
self.check_over_configs(lambda_min_clipped=-float("inf" ) )
self.check_over_configs(lambda_min_clipped=-5.1 )
def _snake_case ( self : Union[str, Any] ):
self.check_over_configs(variance_type=__lowerCamelCase )
self.check_over_configs(variance_type="learned_range" )
def _snake_case ( self : str ):
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=__lowerCamelCase , time_step=0 )
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = self.full_loop()
SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_mean.item() - 0.2_791 ) < 1e-3
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = self.full_loop(use_karras_sigmas=__lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_mean.item() - 0.2_248 ) < 1e-3
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = self.full_loop(prediction_type="v_prediction" )
SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_mean.item() - 0.1_453 ) < 1e-3
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=__lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_mean.item() - 0.0_649 ) < 1e-3
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE = self.get_scheduler_config(thresholding=__lowerCamelCase , dynamic_thresholding_ratio=0 )
SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = 10
SCREAMING_SNAKE_CASE = self.dummy_model()
SCREAMING_SNAKE_CASE = self.dummy_sample_deter.half()
scheduler.set_timesteps(__lowerCamelCase )
for i, t in enumerate(scheduler.timesteps ):
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample
assert sample.dtype == torch.floataa | 711 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
@staticmethod
def _snake_case ( *__lowerCamelCase : Any , **__lowerCamelCase : Any ):
pass
@is_pipeline_test
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@require_torch
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(__lowerCamelCase ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
] , )
@require_tf
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
] , )
@slow
@require_torch
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , ) | 698 | 0 |
import argparse
import shutil
from pathlib import Path
from tqdm import tqdm
from transformers import AutoTokenizer
def __a ( A__ : Any , A__ : Union[str, Any] , A__ : List[Any] , A__ : Optional[int]=1024 ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], []
SCREAMING_SNAKE_CASE = list(zip(A__ , A__ ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sorted_examples[0]
def is_too_big(A__ : int ):
return tok(A__ , return_tensors="pt" ).input_ids.shape[1] > max_tokens
for src, tgt in tqdm(sorted_examples[1:] ):
SCREAMING_SNAKE_CASE = new_src + " " + src
SCREAMING_SNAKE_CASE = new_tgt + " " + tgt
if is_too_big(A__ ) or is_too_big(A__ ): # cant fit, finalize example
finished_src.append(A__ )
finished_tgt.append(A__ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = src, tgt
else: # can fit, keep adding
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cand_src, cand_tgt
# cleanup
if new_src:
assert new_tgt
finished_src.append(A__ )
finished_tgt.append(A__ )
return finished_src, finished_tgt
def __a ( A__ : Union[str, Any] , A__ : Path , A__ : Tuple , A__ : str ):
SCREAMING_SNAKE_CASE = Path(A__ )
save_path.mkdir(exist_ok=A__ )
for split in ["train"]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = data_dir / F"{split}.source", data_dir / F"{split}.target"
SCREAMING_SNAKE_CASE = [x.rstrip() for x in Path(A__ ).open().readlines()]
SCREAMING_SNAKE_CASE = [x.rstrip() for x in Path(A__ ).open().readlines()]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = pack_examples(A__ , A__ , A__ , A__ )
print(F"packed {split} split from {len(A__ )} examples -> {len(A__ )}." )
Path(save_path / F"{split}.source" ).open("w" ).write("\n".join(A__ ) )
Path(save_path / F"{split}.target" ).open("w" ).write("\n".join(A__ ) )
for split in ["val", "test"]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = data_dir / F"{split}.source", data_dir / F"{split}.target"
shutil.copyfile(A__ , save_path / F"{split}.source" )
shutil.copyfile(A__ , save_path / F"{split}.target" )
def __a ( ):
SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument("--tok_name" , type=A__ , help="like facebook/bart-large-cnn,t5-base, etc." )
parser.add_argument("--max_seq_len" , type=A__ , default=128 )
parser.add_argument("--data_dir" , type=A__ )
parser.add_argument("--save_path" , type=A__ )
SCREAMING_SNAKE_CASE = parser.parse_args()
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.tok_name )
return pack_data_dir(A__ , Path(args.data_dir ) , args.max_seq_len , args.save_path )
if __name__ == "__main__":
packer_cli()
| 712 |
__A : dict[str, float] = {
"joule": 1.0,
"kilojoule": 1_0_0_0,
"megajoule": 1_0_0_0_0_0_0,
"gigajoule": 1_0_0_0_0_0_0_0_0_0,
"wattsecond": 1.0,
"watthour": 3_6_0_0,
"kilowatthour": 3_6_0_0_0_0_0,
"newtonmeter": 1.0,
"calorie_nutr": 4_1_8_6.8,
"kilocalorie_nutr": 4_1_8_6_8_0_0.0_0,
"electronvolt": 1.6_0217_6634e-19,
"britishthermalunit_it": 1_0_5_5.0_5_5_8_5,
"footpound": 1.355_818,
}
def __a ( A__ : str , A__ : str , A__ : float ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
SCREAMING_SNAKE_CASE = (
F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
F"Valid values are: {', '.join(A__ )}"
)
raise ValueError(A__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : str , __lowerCamelCase : str , __lowerCamelCase : str=13 , __lowerCamelCase : Optional[int]=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : str=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Dict=True , __lowerCamelCase : str=99 , __lowerCamelCase : Optional[int]=32 , __lowerCamelCase : Optional[int]=5 , __lowerCamelCase : Any=4 , __lowerCamelCase : List[str]=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Union[str, Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Any=4 , ):
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = seq_length
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_attention_mask
SCREAMING_SNAKE_CASE = use_token_type_ids
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = type_vocab_size
SCREAMING_SNAKE_CASE = type_sequence_label_size
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = num_choices
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE = None
if self.use_attention_mask:
SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = True
lowerCamelCase__ = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = FlaxRoFormerModelTester(self )
@slow
def _snake_case ( self : List[Any] ):
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) )
self.assertIsNotNone(__lowerCamelCase )
@require_flax
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@slow
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" )
SCREAMING_SNAKE_CASE = jnp.array([[0, 1, 2, 3, 4, 5]] )
SCREAMING_SNAKE_CASE = model(__lowerCamelCase )[0]
SCREAMING_SNAKE_CASE = 50000
SCREAMING_SNAKE_CASE = (1, 6, vocab_size)
self.assertEqual(output.shape , __lowerCamelCase )
SCREAMING_SNAKE_CASE = jnp.array(
[[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 ) ) | 713 |
from collections import deque
from .hash_table import HashTable
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ):
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = deque([] ) if self.values[key] is None else self.values[key]
self.values[key].appendleft(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.values[key]
def _snake_case ( self : Union[str, Any] ):
return (
sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values )
/ self.size_table
* self.charge_factor
)
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None ):
if not (
len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0
):
return key
return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase ) | 698 | 0 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[Any] ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ):
SCREAMING_SNAKE_CASE = model_result["result"][batch_size][sequence_length]
self.assertIsNotNone(__lowerCamelCase )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2"
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = "sgugger/tiny-distilbert-classification"
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2"
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , torchscript=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == "cpu" , "Cant do half precision" )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2"
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , fpaa=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2"
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase )
# set architectures equal to `None`
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase , configs=[config] )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2"
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == "cpu" , "Can't do half precision" )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2"
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__lowerCamelCase , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2"
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase , configs=[config] )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = "sshleifer/tinier_bart"
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase , configs=[config] )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2"
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase , configs=[config] )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = "sshleifer/tinier_bart"
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase , configs=[config] )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2"
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv" ) , train_memory_csv_file=os.path.join(__lowerCamelCase , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv" ) , train_time_csv_file=os.path.join(__lowerCamelCase , "train_time.csv" ) , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv" ) , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv" ) ).exists() )
self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_time.csv" ) ).exists() )
self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv" ) ).exists() )
self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_mem.csv" ) ).exists() )
self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv" ) ).exists() )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2"
def _check_summary_is_not_empty(__lowerCamelCase : str ):
self.assertTrue(hasattr(__lowerCamelCase , "sequential" ) )
self.assertTrue(hasattr(__lowerCamelCase , "cumulative" ) )
self.assertTrue(hasattr(__lowerCamelCase , "current" ) )
self.assertTrue(hasattr(__lowerCamelCase , "total" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt" ) , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase )
SCREAMING_SNAKE_CASE = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt" ) ).exists() ) | 714 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
__A : Optional[int] = logging.get_logger(__name__)
__A : int = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "gpt_neo"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__( self : str , __lowerCamelCase : Dict=50257 , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : int=24 , __lowerCamelCase : int=[[["global", "local"], 12]] , __lowerCamelCase : int=16 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=50256 , __lowerCamelCase : Optional[int]=50256 , **__lowerCamelCase : Dict , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_layers
SCREAMING_SNAKE_CASE = num_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = window_size
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = resid_dropout
SCREAMING_SNAKE_CASE = embed_dropout
SCREAMING_SNAKE_CASE = attention_dropout
SCREAMING_SNAKE_CASE = classifier_dropout
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = bos_token_id
SCREAMING_SNAKE_CASE = eos_token_id
SCREAMING_SNAKE_CASE = attention_types
SCREAMING_SNAKE_CASE = self.expand_attention_types_params(__lowerCamelCase )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.attention_layers)` == `config.num_layers` "
f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, "
f"`config.num_layers = {self.num_layers}`. "
"`config.attention_layers` is prepared using `config.attention_types`. "
"Please verify the value of `config.attention_types` argument." )
super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
@staticmethod
def _snake_case ( __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def __a ( A__ : str , A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] ):
import torch
SCREAMING_SNAKE_CASE = input.size()
SCREAMING_SNAKE_CASE = len(A__ )
SCREAMING_SNAKE_CASE = shape[dimension]
SCREAMING_SNAKE_CASE = torch.arange(0 , A__ , A__ )
SCREAMING_SNAKE_CASE = torch.div(sizedim - size , A__ , rounding_mode="floor" ) + 1
SCREAMING_SNAKE_CASE = torch.arange(A__ ) + low_indices[:min_length][:, None]
SCREAMING_SNAKE_CASE = [slice(A__ )] * rank
SCREAMING_SNAKE_CASE = indices
SCREAMING_SNAKE_CASE = input[s]
SCREAMING_SNAKE_CASE = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(A__ )
def __a ( A__ : Union[str, Any] , A__ : Optional[int] ):
import torch
SCREAMING_SNAKE_CASE = torch.arange(1 , A__ )
SCREAMING_SNAKE_CASE = torch.remainder(A__ , A__ )
SCREAMING_SNAKE_CASE = remainders == 0
SCREAMING_SNAKE_CASE = candidates[divisor_indices]
SCREAMING_SNAKE_CASE = torch.max(A__ )
return largest_divisor, torch.div(A__ , A__ , rounding_mode="floor" )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} )
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"}
else:
SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"}
return common_inputs
@property
def _snake_case ( self : Optional[int] ):
return self._config.num_heads
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
SCREAMING_SNAKE_CASE = super(__lowerCamelCase , self ).generate_dummy_inputs(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
# We need to order the input in the way they appears in the forward()
SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
SCREAMING_SNAKE_CASE = seqlen + 2
SCREAMING_SNAKE_CASE = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
SCREAMING_SNAKE_CASE = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers )
]
SCREAMING_SNAKE_CASE = common_inputs["attention_mask"]
if self.use_past:
SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype
SCREAMING_SNAKE_CASE = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
return ordered_inputs
@property
def _snake_case ( self : Optional[int] ):
return 13 | 698 | 0 |
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def __a ( A__ : Tuple , A__ : Union[str, Any] , A__ : Union[str, Any] , A__ : str , A__ : Any ):
# Load configuration defined in the metadata file
with open(A__ ) as metadata_file:
SCREAMING_SNAKE_CASE = json.load(A__ )
SCREAMING_SNAKE_CASE = LukeConfig(use_entity_aware_attention=A__ , **metadata["model_config"] )
# Load in the weights from the checkpoint_path
SCREAMING_SNAKE_CASE = torch.load(A__ , map_location="cpu" )["module"]
# Load the entity vocab file
SCREAMING_SNAKE_CASE = load_original_entity_vocab(A__ )
# add an entry for [MASK2]
SCREAMING_SNAKE_CASE = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] )
# Add special tokens to the token vocabulary for downstream tasks
SCREAMING_SNAKE_CASE = AddedToken("<ent>" , lstrip=A__ , rstrip=A__ )
SCREAMING_SNAKE_CASE = AddedToken("<ent2>" , lstrip=A__ , rstrip=A__ )
tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(F"Saving tokenizer to {pytorch_dump_folder_path}" )
tokenizer.save_pretrained(A__ )
with open(os.path.join(A__ , "tokenizer_config.json" ) , "r" ) as f:
SCREAMING_SNAKE_CASE = json.load(A__ )
SCREAMING_SNAKE_CASE = "MLukeTokenizer"
with open(os.path.join(A__ , "tokenizer_config.json" ) , "w" ) as f:
json.dump(A__ , A__ )
with open(os.path.join(A__ , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f:
json.dump(A__ , A__ )
SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(A__ )
# Initialize the embeddings of the special tokens
SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(["@"] )[0]
SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(["#"] )[0]
SCREAMING_SNAKE_CASE = state_dict["embeddings.word_embeddings.weight"]
SCREAMING_SNAKE_CASE = word_emb[ent_init_index].unsqueeze(0 )
SCREAMING_SNAKE_CASE = word_emb[enta_init_index].unsqueeze(0 )
SCREAMING_SNAKE_CASE = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
SCREAMING_SNAKE_CASE = state_dict[bias_name]
SCREAMING_SNAKE_CASE = decoder_bias[ent_init_index].unsqueeze(0 )
SCREAMING_SNAKE_CASE = decoder_bias[enta_init_index].unsqueeze(0 )
SCREAMING_SNAKE_CASE = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
SCREAMING_SNAKE_CASE = F"encoder.layer.{layer_index}.attention.self."
SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name]
SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name]
SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
SCREAMING_SNAKE_CASE = state_dict["entity_embeddings.entity_embeddings.weight"]
SCREAMING_SNAKE_CASE = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 )
SCREAMING_SNAKE_CASE = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
SCREAMING_SNAKE_CASE = state_dict["entity_predictions.bias"]
SCREAMING_SNAKE_CASE = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 )
SCREAMING_SNAKE_CASE = torch.cat([entity_prediction_bias, entity_mask_bias] )
SCREAMING_SNAKE_CASE = LukeForMaskedLM(config=A__ ).eval()
state_dict.pop("entity_predictions.decoder.weight" )
state_dict.pop("lm_head.decoder.weight" )
state_dict.pop("lm_head.decoder.bias" )
SCREAMING_SNAKE_CASE = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )):
SCREAMING_SNAKE_CASE = state_dict[key]
else:
SCREAMING_SNAKE_CASE = state_dict[key]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.load_state_dict(A__ , strict=A__ )
if set(A__ ) != {"luke.embeddings.position_ids"}:
raise ValueError(F"Unexpected unexpected_keys: {unexpected_keys}" )
if set(A__ ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(F"Unexpected missing_keys: {missing_keys}" )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(A__ , task="entity_classification" )
SCREAMING_SNAKE_CASE = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
SCREAMING_SNAKE_CASE = (0, 9)
SCREAMING_SNAKE_CASE = tokenizer(A__ , entity_spans=[span] , return_tensors="pt" )
SCREAMING_SNAKE_CASE = model(**A__ )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
SCREAMING_SNAKE_CASE = torch.Size((1, 33, 768) )
SCREAMING_SNAKE_CASE = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
F"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , A__ , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
SCREAMING_SNAKE_CASE = torch.Size((1, 1, 768) )
SCREAMING_SNAKE_CASE = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
F"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"
F" {expected_shape}" )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , A__ , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(A__ )
SCREAMING_SNAKE_CASE = "Tokyo is the capital of <mask>."
SCREAMING_SNAKE_CASE = (24, 30)
SCREAMING_SNAKE_CASE = tokenizer(A__ , entity_spans=[span] , return_tensors="pt" )
SCREAMING_SNAKE_CASE = model(**A__ )
SCREAMING_SNAKE_CASE = encoding["input_ids"][0].tolist()
SCREAMING_SNAKE_CASE = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) )
SCREAMING_SNAKE_CASE = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(A__ )
SCREAMING_SNAKE_CASE = outputs.entity_logits[0][0].argmax().item()
SCREAMING_SNAKE_CASE = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print("Saving PyTorch model to {}".format(A__ ) )
model.save_pretrained(A__ )
def __a ( A__ : List[str] ):
SCREAMING_SNAKE_CASE = ["[MASK]", "[PAD]", "[UNK]"]
SCREAMING_SNAKE_CASE = [json.loads(A__ ) for line in open(A__ )]
SCREAMING_SNAKE_CASE = {}
for entry in data:
SCREAMING_SNAKE_CASE = entry["id"]
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
SCREAMING_SNAKE_CASE = entity_id
break
SCREAMING_SNAKE_CASE = F"{language}:{entity_name}"
SCREAMING_SNAKE_CASE = entity_id
return new_mapping
if __name__ == "__main__":
__A : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.')
parser.add_argument(
'--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.'
)
parser.add_argument(
'--entity_vocab_path',
default=None,
type=str,
help='Path to an entity_vocab.tsv file, containing the entity vocabulary.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.'
)
parser.add_argument(
'--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.'
)
__A : List[str] = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 715 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
__A : Any = {
'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = [
'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'LongT5EncoderModel',
'LongT5ForConditionalGeneration',
'LongT5Model',
'LongT5PreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'FlaxLongT5ForConditionalGeneration',
'FlaxLongT5Model',
'FlaxLongT5PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longta import (
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
LongTaEncoderModel,
LongTaForConditionalGeneration,
LongTaModel,
LongTaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_longta import (
FlaxLongTaForConditionalGeneration,
FlaxLongTaModel,
FlaxLongTaPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 | 0 |
import json
import os
import unittest
from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast
from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = GPTaTokenizer
lowerCamelCase__ = GPTaTokenizerFast
lowerCamelCase__ = True
lowerCamelCase__ = {"add_prefix_space": True}
lowerCamelCase__ = False
def _snake_case ( self : Optional[Any] ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
"<|endoftext|>",
]
SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
SCREAMING_SNAKE_CASE = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
SCREAMING_SNAKE_CASE = {"unk_token": "<unk>"}
SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__lowerCamelCase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__lowerCamelCase ) )
def _snake_case ( self : List[str] , **__lowerCamelCase : List[str] ):
kwargs.update(self.special_tokens_map )
return GPTaTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase )
def _snake_case ( self : Tuple , **__lowerCamelCase : List[Any] ):
kwargs.update(self.special_tokens_map )
return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase )
def _snake_case ( self : Any , __lowerCamelCase : int ):
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = "lower newer"
return input_text, output_text
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"]
SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase , add_prefix_space=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token]
SCREAMING_SNAKE_CASE = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase )
def _snake_case ( self : Tuple ):
if not self.test_rust_tokenizer:
return
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
# Testing tokenization
SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
# Testing conversion to ids without special tokens
SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
# Testing conversion to ids with special tokens
SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
# Testing the unknown token
SCREAMING_SNAKE_CASE = tokens + [rust_tokenizer.unk_token]
SCREAMING_SNAKE_CASE = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase )
def _snake_case ( self : int , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Tuple ):
# It's very difficult to mix/test pretokenization with byte-level
# And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string)
pass
def _snake_case ( self : Any , __lowerCamelCase : Union[str, Any]=15 ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase )
# Simple input
SCREAMING_SNAKE_CASE = "This is a simple input"
SCREAMING_SNAKE_CASE = ["This is a simple input 1", "This is a simple input 2"]
SCREAMING_SNAKE_CASE = ("This is a simple input", "This is a pair")
SCREAMING_SNAKE_CASE = [
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
]
# Simple input tests
self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" )
# Simple input
self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" )
# Simple input
self.assertRaises(
__lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , )
# Pair input
self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" )
# Pair input
self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" )
# Pair input
self.assertRaises(
__lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , )
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" )
# Simple input
SCREAMING_SNAKE_CASE = "This is a simple input"
SCREAMING_SNAKE_CASE = ["This is a simple input looooooooong", "This is a simple input"]
SCREAMING_SNAKE_CASE = ("This is a simple input", "This is a pair")
SCREAMING_SNAKE_CASE = [
("This is a simple input loooooong", "This is a simple input"),
("This is a simple pair loooooong", "This is a simple pair"),
]
SCREAMING_SNAKE_CASE = tokenizer.pad_token_id
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , padding="max_length" , max_length=30 , return_tensors="np" )
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncate=__lowerCamelCase , return_tensors="np" )
SCREAMING_SNAKE_CASE = tokenizer(*__lowerCamelCase , padding="max_length" , max_length=60 , return_tensors="np" )
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncate=__lowerCamelCase , return_tensors="np" )
# s
# test single string max_length padding
self.assertEqual(out_s["input_ids"].shape[-1] , 30 )
self.assertTrue(pad_token_id in out_s["input_ids"] )
self.assertTrue(0 in out_s["attention_mask"] )
# s2
# test automatic padding
self.assertEqual(out_sa["input_ids"].shape[-1] , 33 )
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa["input_ids"][0] )
self.assertFalse(0 in out_sa["attention_mask"][0] )
# short slice does have padding
self.assertTrue(pad_token_id in out_sa["input_ids"][1] )
self.assertTrue(0 in out_sa["attention_mask"][1] )
# p
# test single pair max_length padding
self.assertEqual(out_p["input_ids"].shape[-1] , 60 )
self.assertTrue(pad_token_id in out_p["input_ids"] )
self.assertTrue(0 in out_p["attention_mask"] )
# p2
# test automatic padding pair
self.assertEqual(out_pa["input_ids"].shape[-1] , 52 )
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa["input_ids"][0] )
self.assertFalse(0 in out_pa["attention_mask"][0] )
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa["input_ids"][1] )
self.assertTrue(0 in out_pa["attention_mask"][1] )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = "$$$"
SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__lowerCamelCase , add_bos_token=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "This is a simple input"
SCREAMING_SNAKE_CASE = ["This is a simple input 1", "This is a simple input 2"]
SCREAMING_SNAKE_CASE = tokenizer.bos_token_id
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase )
self.assertEqual(out_s.input_ids[0] , __lowerCamelCase )
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) )
SCREAMING_SNAKE_CASE = tokenizer.decode(out_s.input_ids )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(out_sa.input_ids )
self.assertEqual(decode_s.split()[0] , __lowerCamelCase )
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) )
def _snake_case ( self : Optional[int] ):
pass
def _snake_case ( self : str ):
# TODO: change to self.get_tokenizers() when the fast version is implemented
SCREAMING_SNAKE_CASE = [self.get_tokenizer(do_lower_case=__lowerCamelCase , add_bos_token=__lowerCamelCase )]
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
SCREAMING_SNAKE_CASE = "Encode this."
SCREAMING_SNAKE_CASE = "This one too please."
SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
encoded_sequence += tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.encode_plus(
__lowerCamelCase , __lowerCamelCase , add_special_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = encoded_sequence_dict["input_ids"]
SCREAMING_SNAKE_CASE = encoded_sequence_dict["special_tokens_mask"]
self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) )
SCREAMING_SNAKE_CASE = [
(x if not special_tokens_mask[i] else None) for i, x in enumerate(__lowerCamelCase )
]
SCREAMING_SNAKE_CASE = [x for x in filtered_sequence if x is not None]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
@require_tokenizers
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
# More context:
# https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1
# https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519
# https://github.com/huggingface/transformers/pull/17088#discussion_r871246439
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "A photo of a cat"
SCREAMING_SNAKE_CASE = tokenizer.encode(
__lowerCamelCase , )
self.assertEqual(__lowerCamelCase , [2, 250, 1345, 9, 10, 4758] )
tokenizer.save_pretrained("test_opt" )
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("./test_opt" )
SCREAMING_SNAKE_CASE = tokenizer.encode(
__lowerCamelCase , )
self.assertEqual(__lowerCamelCase , [2, 250, 1345, 9, 10, 4758] )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "A photo of a cat"
SCREAMING_SNAKE_CASE = tokenizer.encode(
__lowerCamelCase , )
# Same as above
self.assertEqual(__lowerCamelCase , [2, 250, 1345, 9, 10, 4758] )
@unittest.skip("This test is failing because of a bug in the fast tokenizer" )
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "bos"
SCREAMING_SNAKE_CASE = tokenizer.get_vocab()["bos"]
SCREAMING_SNAKE_CASE = "A photo of a cat"
SCREAMING_SNAKE_CASE = tokenizer.encode(
__lowerCamelCase , )
# We changed the bos token
self.assertEqual(__lowerCamelCase , [31957, 250, 1345, 9, 10, 4758] )
tokenizer.save_pretrained("./tok" )
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("./tok" )
self.assertTrue(tokenizer.is_fast )
SCREAMING_SNAKE_CASE = tokenizer.encode(
__lowerCamelCase , )
self.assertEqual(__lowerCamelCase , [31957, 250, 1345, 9, 10, 4758] ) | 716 |
import cmath
import math
def __a ( A__ : float , A__ : float , A__ : float , A__ : float ):
SCREAMING_SNAKE_CASE = math.radians(A__ )
SCREAMING_SNAKE_CASE = math.radians(A__ )
# Convert voltage and current to rectangular form
SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ )
SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 | 0 |
import gc
import unittest
import numpy as np
import torch
from diffusers import (
AudioDiffusionPipeline,
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
DiffusionPipeline,
Mel,
UNetaDConditionModel,
UNetaDModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _snake_case ( self : int ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE = UNetaDModel(
sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , )
return model
@property
def _snake_case ( self : Optional[Any] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE = UNetaDConditionModel(
sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , )
return model
@property
def _snake_case ( self : List[Any] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE = AutoencoderKL(
sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , )
SCREAMING_SNAKE_CASE = UNetaDModel(
sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , )
return vqvae, unet
@slow
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = "cpu" # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE = Mel(
x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , )
SCREAMING_SNAKE_CASE = DDPMScheduler()
SCREAMING_SNAKE_CASE = AudioDiffusionPipeline(vqvae=__lowerCamelCase , unet=self.dummy_unet , mel=__lowerCamelCase , scheduler=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(42 )
SCREAMING_SNAKE_CASE = pipe(generator=__lowerCamelCase , steps=4 )
SCREAMING_SNAKE_CASE = output.audios[0]
SCREAMING_SNAKE_CASE = output.images[0]
SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(42 )
SCREAMING_SNAKE_CASE = pipe(generator=__lowerCamelCase , steps=4 , return_dict=__lowerCamelCase )
SCREAMING_SNAKE_CASE = output[0][0]
assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length)
assert (
image.height == self.dummy_unet.config.sample_size[0]
and image.width == self.dummy_unet.config.sample_size[1]
)
SCREAMING_SNAKE_CASE = np.frombuffer(image.tobytes() , dtype="uint8" )[:10]
SCREAMING_SNAKE_CASE = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10]
SCREAMING_SNAKE_CASE = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0
SCREAMING_SNAKE_CASE = Mel(
x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , )
SCREAMING_SNAKE_CASE = DDIMScheduler()
SCREAMING_SNAKE_CASE = self.dummy_vqvae_and_unet
SCREAMING_SNAKE_CASE = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__lowerCamelCase , scheduler=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
np.random.seed(0 )
SCREAMING_SNAKE_CASE = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) )
SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(42 )
SCREAMING_SNAKE_CASE = pipe(raw_audio=__lowerCamelCase , generator=__lowerCamelCase , start_step=5 , steps=10 )
SCREAMING_SNAKE_CASE = output.images[0]
assert (
image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0]
and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1]
)
SCREAMING_SNAKE_CASE = np.frombuffer(image.tobytes() , dtype="uint8" )[:10]
SCREAMING_SNAKE_CASE = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
SCREAMING_SNAKE_CASE = self.dummy_unet_condition
SCREAMING_SNAKE_CASE = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=__lowerCamelCase , mel=__lowerCamelCase , scheduler=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
np.random.seed(0 )
SCREAMING_SNAKE_CASE = torch.rand((1, 1, 10) )
SCREAMING_SNAKE_CASE = pipe(generator=__lowerCamelCase , encoding=__lowerCamelCase )
SCREAMING_SNAKE_CASE = output.images[0]
SCREAMING_SNAKE_CASE = np.frombuffer(image.tobytes() , dtype="uint8" )[:10]
SCREAMING_SNAKE_CASE = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
@slow
@require_torch_gpu
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Dict ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = torch_device
SCREAMING_SNAKE_CASE = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" )
SCREAMING_SNAKE_CASE = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(42 )
SCREAMING_SNAKE_CASE = pipe(generator=__lowerCamelCase )
SCREAMING_SNAKE_CASE = output.audios[0]
SCREAMING_SNAKE_CASE = output.images[0]
assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length)
assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1]
SCREAMING_SNAKE_CASE = np.frombuffer(image.tobytes() , dtype="uint8" )[:10]
SCREAMING_SNAKE_CASE = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 | 717 |
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def __a ( A__ : List[str] ):
SCREAMING_SNAKE_CASE = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(A__ , A__ )
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ )
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
def __a ( A__ : Tuple , A__ : Union[str, Any]=None ):
SCREAMING_SNAKE_CASE = {}
for old_key in state_dict.keys():
SCREAMING_SNAKE_CASE = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" )
else:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts." , "ffn.experts.expert_" )
if "gate" in key:
SCREAMING_SNAKE_CASE = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" )
if "fc2" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc2." , ".ffn.fc2." )
if "fc1" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc1." , ".ffn.fc1." )
if ".encoder_attn." in key:
SCREAMING_SNAKE_CASE = key.replace(".encoder_attn." , ".cross_attention." )
if "encoder_attn_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" )
if "final_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("final_layer_norm" , "ff_layer_norm" )
SCREAMING_SNAKE_CASE = state_dict[old_key]
return new_dict
def __a ( A__ : List[str] , A__ : List[Any] , A__ : str , A__ : Union[str, Any] , A__ : str = WEIGHTS_NAME ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
os.makedirs(A__ , exist_ok=A__ )
for expert in range(A__ ):
SCREAMING_SNAKE_CASE = switch_checkpoint_path + F"-rank-{expert}.pt"
if os.path.isfile(A__ ):
SCREAMING_SNAKE_CASE = torch.load(A__ )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = os.path.join(
A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
torch.save(A__ , A__ )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(A__ )[0]].dtype )
# Add the last block
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + "-shared.pt" )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(A__ ) == 1:
SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ )
torch.save(A__ , A__ )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(A__ , A__ )
# Otherwise, let's build the index
SCREAMING_SNAKE_CASE = {}
for idx, shard in enumerate(A__ ):
SCREAMING_SNAKE_CASE = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" )
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) )
os.rename(A__ , os.path.join(A__ , A__ ) )
for key in shard:
SCREAMING_SNAKE_CASE = shard_file
# Add the metadata
SCREAMING_SNAKE_CASE = {"total_size": total_size}
SCREAMING_SNAKE_CASE = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(A__ , A__ ) , "w" , encoding="utf-8" ) as f:
SCREAMING_SNAKE_CASE = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n"
f.write(A__ )
return metadata, index
if __name__ == "__main__":
__A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--nllb_moe_checkpoint_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b',
type=str,
required=False,
help='Path to the output pytorch model.',
)
__A : Optional[int] = parser.parse_args()
__A , __A : Union[str, Any] = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_2_8,
args.dtype,
)
__A : Any = NllbMoeConfig.from_pretrained(
'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8
)
config.save_pretrained(args.pytorch_dump_folder_path)
__A : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('Done')
model.save_pretrained(args.pytorch_dump_folder_path) | 698 | 0 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : int=13 , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=True , __lowerCamelCase : str=True , __lowerCamelCase : Optional[Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : int=2 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Optional[Any]=37 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : int=512 , __lowerCamelCase : Any=16 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Any=3 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : List[Any]=None , ):
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = 13
SCREAMING_SNAKE_CASE = 7
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = 99
SCREAMING_SNAKE_CASE = 384
SCREAMING_SNAKE_CASE = 2
SCREAMING_SNAKE_CASE = 4
SCREAMING_SNAKE_CASE = 37
SCREAMING_SNAKE_CASE = "gelu"
SCREAMING_SNAKE_CASE = 0.1
SCREAMING_SNAKE_CASE = 0.1
SCREAMING_SNAKE_CASE = 512
SCREAMING_SNAKE_CASE = 16
SCREAMING_SNAKE_CASE = 2
SCREAMING_SNAKE_CASE = 0.02
SCREAMING_SNAKE_CASE = 3
SCREAMING_SNAKE_CASE = 4
SCREAMING_SNAKE_CASE = 128
SCREAMING_SNAKE_CASE = 2
SCREAMING_SNAKE_CASE = 9
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = None
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices )
SCREAMING_SNAKE_CASE = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = TFConvBertModel(config=__lowerCamelCase )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
SCREAMING_SNAKE_CASE = [input_ids, input_mask]
SCREAMING_SNAKE_CASE = model(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE = TFConvBertForMaskedLM(config=__lowerCamelCase )
SCREAMING_SNAKE_CASE = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
SCREAMING_SNAKE_CASE = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self : str , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = TFConvBertForSequenceClassification(config=__lowerCamelCase )
SCREAMING_SNAKE_CASE = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
SCREAMING_SNAKE_CASE = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE = self.num_choices
SCREAMING_SNAKE_CASE = TFConvBertForMultipleChoice(config=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) )
SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) )
SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) )
SCREAMING_SNAKE_CASE = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
SCREAMING_SNAKE_CASE = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _snake_case ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = TFConvBertForTokenClassification(config=__lowerCamelCase )
SCREAMING_SNAKE_CASE = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
SCREAMING_SNAKE_CASE = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : int ):
SCREAMING_SNAKE_CASE = TFConvBertForQuestionAnswering(config=__lowerCamelCase )
SCREAMING_SNAKE_CASE = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
SCREAMING_SNAKE_CASE = model(__lowerCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) = config_and_inputs
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCamelCase__ = (
{
"feature-extraction": TFConvBertModel,
"fill-mask": TFConvBertForMaskedLM,
"question-answering": TFConvBertForQuestionAnswering,
"text-classification": TFConvBertForSequenceClassification,
"token-classification": TFConvBertForTokenClassification,
"zero-shot": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = TFConvBertModelTester(self )
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 )
def _snake_case ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase )
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase )
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase )
@slow
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = True
if hasattr(__lowerCamelCase , "use_cache" ):
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
SCREAMING_SNAKE_CASE = getattr(self.model_tester , "key_length" , __lowerCamelCase )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = len(model(__lowerCamelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__lowerCamelCase , saved_model=__lowerCamelCase )
SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , "saved_model" , "1" )
SCREAMING_SNAKE_CASE = tf.keras.models.load_model(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(__lowerCamelCase )
if self.is_encoder_decoder:
SCREAMING_SNAKE_CASE = outputs["encoder_hidden_states"]
SCREAMING_SNAKE_CASE = outputs["encoder_attentions"]
else:
SCREAMING_SNAKE_CASE = outputs["hidden_states"]
SCREAMING_SNAKE_CASE = outputs["attentions"]
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
self.assertIsNotNone(__lowerCamelCase )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length )
SCREAMING_SNAKE_CASE = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
SCREAMING_SNAKE_CASE = getattr(self.model_tester , "key_length" , __lowerCamelCase )
SCREAMING_SNAKE_CASE = getattr(self.model_tester , "key_length" , __lowerCamelCase )
def check_decoder_attentions_output(__lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = len(__lowerCamelCase )
self.assertEqual(out_len % 2 , 0 )
SCREAMING_SNAKE_CASE = outputs.decoder_attentions
self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(__lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
SCREAMING_SNAKE_CASE = len(__lowerCamelCase )
self.assertEqual(config.output_hidden_states , __lowerCamelCase )
check_encoder_attentions_output(__lowerCamelCase )
if self.is_encoder_decoder:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
self.assertEqual(config.output_hidden_states , __lowerCamelCase )
check_decoder_attentions_output(__lowerCamelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
self.assertEqual(config.output_hidden_states , __lowerCamelCase )
check_encoder_attentions_output(__lowerCamelCase )
# Check attention is always last and order is fine
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowerCamelCase ) )
self.assertEqual(model.config.output_hidden_states , __lowerCamelCase )
check_encoder_attentions_output(__lowerCamelCase )
@require_tf
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@slow
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 2, 3, 4, 5]] )
SCREAMING_SNAKE_CASE = model(__lowerCamelCase )[0]
SCREAMING_SNAKE_CASE = [1, 6, 768]
self.assertEqual(output.shape , __lowerCamelCase )
SCREAMING_SNAKE_CASE = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 ) | 718 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = BlipImageProcessor()
SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
def _snake_case ( self : Dict , **__lowerCamelCase : Any ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer
def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor
def _snake_case ( self : Union[str, Any] ):
shutil.rmtree(self.tmpdirname )
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 )
SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowerCamelCase )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" )
SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(__lowerCamelCase ):
processor()
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) | 698 | 0 |
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def __a ( A__ : List[str] ):
SCREAMING_SNAKE_CASE = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(A__ , A__ )
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ )
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
def __a ( A__ : Tuple , A__ : Union[str, Any]=None ):
SCREAMING_SNAKE_CASE = {}
for old_key in state_dict.keys():
SCREAMING_SNAKE_CASE = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" )
else:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts." , "ffn.experts.expert_" )
if "gate" in key:
SCREAMING_SNAKE_CASE = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" )
if "fc2" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc2." , ".ffn.fc2." )
if "fc1" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc1." , ".ffn.fc1." )
if ".encoder_attn." in key:
SCREAMING_SNAKE_CASE = key.replace(".encoder_attn." , ".cross_attention." )
if "encoder_attn_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" )
if "final_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("final_layer_norm" , "ff_layer_norm" )
SCREAMING_SNAKE_CASE = state_dict[old_key]
return new_dict
def __a ( A__ : List[str] , A__ : List[Any] , A__ : str , A__ : Union[str, Any] , A__ : str = WEIGHTS_NAME ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
os.makedirs(A__ , exist_ok=A__ )
for expert in range(A__ ):
SCREAMING_SNAKE_CASE = switch_checkpoint_path + F"-rank-{expert}.pt"
if os.path.isfile(A__ ):
SCREAMING_SNAKE_CASE = torch.load(A__ )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = os.path.join(
A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
torch.save(A__ , A__ )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(A__ )[0]].dtype )
# Add the last block
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + "-shared.pt" )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(A__ ) == 1:
SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ )
torch.save(A__ , A__ )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(A__ , A__ )
# Otherwise, let's build the index
SCREAMING_SNAKE_CASE = {}
for idx, shard in enumerate(A__ ):
SCREAMING_SNAKE_CASE = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" )
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) )
os.rename(A__ , os.path.join(A__ , A__ ) )
for key in shard:
SCREAMING_SNAKE_CASE = shard_file
# Add the metadata
SCREAMING_SNAKE_CASE = {"total_size": total_size}
SCREAMING_SNAKE_CASE = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(A__ , A__ ) , "w" , encoding="utf-8" ) as f:
SCREAMING_SNAKE_CASE = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n"
f.write(A__ )
return metadata, index
if __name__ == "__main__":
__A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--nllb_moe_checkpoint_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b',
type=str,
required=False,
help='Path to the output pytorch model.',
)
__A : Optional[int] = parser.parse_args()
__A : Union[str, Any] = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_2_8,
args.dtype,
)
__A : Any = NllbMoeConfig.from_pretrained(
'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8
)
config.save_pretrained(args.pytorch_dump_folder_path)
__A : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('Done')
model.save_pretrained(args.pytorch_dump_folder_path) | 719 |
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
@staticmethod
def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ):
pass
def __a ( A__ : str ):
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
__A : Tuple = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
SCREAMING_SNAKE_CASE = "What is the placebo?"
SCREAMING_SNAKE_CASE = [
{
"image": load_image(__lowerCamelCase ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ):
SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 )
self.assertEqual(
__lowerCamelCase , [
[
{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )},
{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )},
]
]
* 3 , )
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "How many cats are there?"
SCREAMING_SNAKE_CASE = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40},
]
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(__lowerCamelCase , [] )
# We can optionnally pass directly the words and bounding boxes
SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png"
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 )
self.assertEqual(__lowerCamelCase , [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
],
]
* 2 , )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
]
]
* 2 , )
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
# This model should also work if `image` is set to None
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 , )
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
# This model should also work if `image` is set to None
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
] , )
@slow
@require_torch
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _snake_case ( self : List[Any] ):
pass | 698 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : Optional[Any] = logging.get_logger(__name__)
__A : Optional[Any] = {
'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json',
'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json',
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "markuplm"
def __init__( self : str , __lowerCamelCase : Any=30522 , __lowerCamelCase : str=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : Dict=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : List[Any]=1e-12 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=0 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Dict=256 , __lowerCamelCase : List[Any]=1024 , __lowerCamelCase : Optional[Any]=216 , __lowerCamelCase : str=1001 , __lowerCamelCase : Any=32 , __lowerCamelCase : List[str]=50 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Dict=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Dict , ):
super().__init__(
pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase , )
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = type_vocab_size
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = position_embedding_type
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = classifier_dropout
# additional properties
SCREAMING_SNAKE_CASE = max_depth
SCREAMING_SNAKE_CASE = max_xpath_tag_unit_embeddings
SCREAMING_SNAKE_CASE = max_xpath_subs_unit_embeddings
SCREAMING_SNAKE_CASE = tag_pad_id
SCREAMING_SNAKE_CASE = subs_pad_id
SCREAMING_SNAKE_CASE = xpath_unit_hidden_size | 720 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "facebook/bart-large-mnli"
lowerCamelCase__ = (
"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which "
"should be the text to classify, and `labels`, which should be the list of labels to use for classification. "
"It returns the most likely label in the list of provided `labels` for the input text."
)
lowerCamelCase__ = "text_classifier"
lowerCamelCase__ = AutoTokenizer
lowerCamelCase__ = AutoModelForSequenceClassification
lowerCamelCase__ = ["text", ["text"]]
lowerCamelCase__ = ["text"]
def _snake_case ( self : Optional[Any] ):
super().setup()
SCREAMING_SNAKE_CASE = self.model.config
SCREAMING_SNAKE_CASE = -1
for idx, label in config.idalabel.items():
if label.lower().startswith("entail" ):
SCREAMING_SNAKE_CASE = int(__lowerCamelCase )
if self.entailment_id == -1:
raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." )
def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ):
SCREAMING_SNAKE_CASE = labels
return self.pre_processor(
[text] * len(__lowerCamelCase ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , )
def _snake_case ( self : str , __lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = outputs.logits
SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id] | 698 | 0 |
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
__A : Union[str, Any] = 'true'
def __a ( A__ : List[str] , A__ : Dict=82 , A__ : int=16 ):
'''simple docstring'''
set_seed(42 )
SCREAMING_SNAKE_CASE = RegressionModel()
SCREAMING_SNAKE_CASE = deepcopy(A__ )
SCREAMING_SNAKE_CASE = RegressionDataset(length=A__ )
SCREAMING_SNAKE_CASE = DataLoader(A__ , batch_size=A__ )
model.to(accelerator.device )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(A__ , A__ )
return model, ddp_model, dataloader
def __a ( A__ : Accelerator , A__ : Union[str, Any]=False ):
'''simple docstring'''
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" )
SCREAMING_SNAKE_CASE = load_dataset("glue" , "mrpc" , split="validation" )
def tokenize_function(A__ : List[Any] ):
SCREAMING_SNAKE_CASE = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A__ , max_length=A__ )
return outputs
with accelerator.main_process_first():
SCREAMING_SNAKE_CASE = dataset.map(
A__ , batched=A__ , remove_columns=["idx", "sentence1", "sentence2"] , )
SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(A__ : int ):
if use_longest:
return tokenizer.pad(A__ , padding="longest" , return_tensors="pt" )
return tokenizer.pad(A__ , padding="max_length" , max_length=128 , return_tensors="pt" )
return DataLoader(A__ , shuffle=A__ , collate_fn=A__ , batch_size=16 )
def __a ( A__ : Any , A__ : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE = Accelerator(dispatch_batches=A__ , split_batches=A__ )
SCREAMING_SNAKE_CASE = get_dataloader(A__ , not dispatch_batches )
SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained(
"hf-internal-testing/mrpc-bert-base-cased" , return_dict=A__ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(A__ , A__ )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def __a ( A__ : Optional[Any] , A__ : Union[str, Any] , A__ : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE = []
for batch in dataloader:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = batch.values()
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(A__ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], []
for logit, targ in logits_and_targets:
logits.append(A__ )
targs.append(A__ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torch.cat(A__ ), torch.cat(A__ )
return logits, targs
def __a ( A__ : Accelerator , A__ : List[Any]=82 , A__ : Tuple=False , A__ : Union[str, Any]=False , A__ : Any=16 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_basic_setup(A__ , A__ , A__ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = generate_predictions(A__ , A__ , A__ )
assert (
len(A__ ) == num_samples
), F"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(A__ )}"
def __a ( A__ : bool = False , A__ : bool = False ):
'''simple docstring'''
SCREAMING_SNAKE_CASE = evaluate.load("glue" , "mrpc" )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_mrpc_setup(A__ , A__ )
# First do baseline
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = setup["no"]
model.to(A__ )
model.eval()
for batch in dataloader:
batch.to(A__ )
with torch.inference_mode():
SCREAMING_SNAKE_CASE = model(**A__ )
SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=A__ , references=batch["labels"] )
SCREAMING_SNAKE_CASE = metric.compute()
# Then do distributed
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = setup["ddp"]
model.eval()
for batch in dataloader:
with torch.inference_mode():
SCREAMING_SNAKE_CASE = model(**A__ )
SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 )
SCREAMING_SNAKE_CASE = batch["labels"]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=A__ , references=A__ )
SCREAMING_SNAKE_CASE = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key] , distributed[key] ), F"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n"
def __a ( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE = Accelerator(split_batches=A__ , dispatch_batches=A__ )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print("**Testing gather_for_metrics**" )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(F"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" )
test_mrpc(A__ , A__ )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("**Test torch metrics**" )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
SCREAMING_SNAKE_CASE = Accelerator(split_batches=A__ , dispatch_batches=A__ )
if accelerator.is_local_main_process:
print(F"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" )
test_torch_metrics(A__ , 99 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("**Test last batch is not dropped when perfectly divisible**" )
SCREAMING_SNAKE_CASE = Accelerator()
test_torch_metrics(A__ , 512 )
accelerator.state._reset_state()
def __a ( A__ : List[str] ):
'''simple docstring'''
main()
if __name__ == "__main__":
main() | 721 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __a ( A__ : str=None ):
if subparsers is not None:
SCREAMING_SNAKE_CASE = subparsers.add_parser("test" )
else:
SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" )
parser.add_argument(
"--config_file" , default=A__ , help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) , )
if subparsers is not None:
parser.set_defaults(func=A__ )
return parser
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] )
if args.config_file is None:
SCREAMING_SNAKE_CASE = script_name
else:
SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}"
SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split()
SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() )
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!" )
def __a ( ):
SCREAMING_SNAKE_CASE = test_command_parser()
SCREAMING_SNAKE_CASE = parser.parse_args()
test_command(A__ )
if __name__ == "__main__":
main() | 698 | 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__A : Optional[Any] = logging.get_logger(__name__)
__A : int = '▁'
__A : Any = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'}
__A : List[str] = {
'vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model',
},
'monolingual_vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt',
},
}
__A : Optional[int] = {'vinai/bartpho-syllable': 1_0_2_4}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = ["input_ids", "attention_mask"]
def __init__( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any]="<s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : Tuple="</s>" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : Dict="<pad>" , __lowerCamelCase : Dict="<mask>" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : List[Any] , ):
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , )
SCREAMING_SNAKE_CASE = vocab_file
SCREAMING_SNAKE_CASE = monolingual_vocab_file
SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__lowerCamelCase ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = 0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(__lowerCamelCase ) not in self.fairseq_tokens_to_ids:
SCREAMING_SNAKE_CASE = cnt
cnt += 1
with open(__lowerCamelCase , "r" , encoding="utf-8" ) as f:
for line in f.readlines():
SCREAMING_SNAKE_CASE = line.strip().split()[0]
SCREAMING_SNAKE_CASE = len(self.fairseq_tokens_to_ids )
if str(__lowerCamelCase ) not in self.fairseq_tokens_to_ids:
SCREAMING_SNAKE_CASE = len(self.fairseq_tokens_to_ids )
SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : Tuple ):
SCREAMING_SNAKE_CASE = self.__dict__.copy()
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : Dict , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.cls_token_id]
SCREAMING_SNAKE_CASE = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def _snake_case ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE = [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _snake_case ( self : int ):
return len(self.fairseq_ids_to_tokens )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _snake_case ( self : Tuple , __lowerCamelCase : str ):
return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase )
def _snake_case ( self : int , __lowerCamelCase : int ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def _snake_case ( self : str , __lowerCamelCase : str ):
return self.fairseq_ids_to_tokens[index]
def _snake_case ( self : str , __lowerCamelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ).replace(__lowerCamelCase , " " ).strip()
return out_string
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __lowerCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__lowerCamelCase , "wb" ) as fi:
SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto()
fi.write(__lowerCamelCase )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
__lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , __lowerCamelCase )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f"{str(__lowerCamelCase )} \n" )
return out_vocab_file, out_monolingual_vocab_file | 700 |
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__A : Optional[int] = logging.get_logger(__name__)
__A : List[str] = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
__A : Tuple = {
'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'},
'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'},
'tokenizer_config_file': {
'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'
},
}
__A : Dict = {'facebook/blenderbot-3B': 1_2_8}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def __a ( ):
SCREAMING_SNAKE_CASE = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
SCREAMING_SNAKE_CASE = bs[:]
SCREAMING_SNAKE_CASE = 0
for b in range(2**8 ):
if b not in bs:
bs.append(A__ )
cs.append(2**8 + n )
n += 1
SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs]
return dict(zip(A__ , A__ ) )
def __a ( A__ : Optional[int] ):
SCREAMING_SNAKE_CASE = set()
SCREAMING_SNAKE_CASE = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
SCREAMING_SNAKE_CASE = char
return pairs
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = ["input_ids", "attention_mask"]
def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]="replace" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : List[Any]="<mask>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Tuple , ):
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()}
SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding
SCREAMING_SNAKE_CASE = bytes_to_unicode()
SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1]
SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges]
SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def _snake_case ( self : Dict ):
return len(self.encoder )
def _snake_case ( self : int ):
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : Tuple , __lowerCamelCase : List[str] ):
if token in self.cache:
return self.cache[token]
SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase )
SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
while i < len(__lowerCamelCase ):
try:
SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
SCREAMING_SNAKE_CASE = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase )
SCREAMING_SNAKE_CASE = new_word
if len(__lowerCamelCase ) == 1:
break
else:
SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase )
SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = word
return word
def _snake_case ( self : str , __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = []
for token in re.findall(self.pat , __lowerCamelCase ):
SCREAMING_SNAKE_CASE = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def _snake_case ( self : List[str] , __lowerCamelCase : str ):
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple ):
return self.decoder.get(__lowerCamelCase )
def _snake_case ( self : Tuple , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
SCREAMING_SNAKE_CASE = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
SCREAMING_SNAKE_CASE = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _snake_case ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE = [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
SCREAMING_SNAKE_CASE = " " + text
return (text, kwargs)
def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
return token_ids_a + [self.eos_token_id]
def _snake_case ( self : Tuple , __lowerCamelCase : "Conversation" ):
SCREAMING_SNAKE_CASE = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(" " + text )
else:
# Generated responses should contain them already.
inputs.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase )
if len(__lowerCamelCase ) > self.model_max_length:
SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :]
logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." )
return input_ids | 698 | 0 |
import functools
import logging
import os
import sys
import threading
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
import huggingface_hub.utils as hf_hub_utils
from tqdm import auto as tqdm_lib
__A : Dict = threading.Lock()
__A : Optional[logging.Handler] = None
__A : Any = {
'debug': logging.DEBUG,
'info': logging.INFO,
'warning': logging.WARNING,
'error': logging.ERROR,
'critical': logging.CRITICAL,
}
__A : int = logging.WARNING
__A : int = True
def __a ( ):
SCREAMING_SNAKE_CASE = os.getenv("TRANSFORMERS_VERBOSITY" , A__ )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
F"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, "
F"has to be one of: { ', '.join(log_levels.keys() ) }" )
return _default_log_level
def __a ( ):
return __name__.split("." )[0]
def __a ( ):
return logging.getLogger(_get_library_name() )
def __a ( ):
global _default_handler
with _lock:
if _default_handler:
# This library has already configured the library root logger.
return
SCREAMING_SNAKE_CASE = logging.StreamHandler() # Set sys.stderr as stream.
SCREAMING_SNAKE_CASE = sys.stderr.flush
# Apply our default configuration to the library root logger.
SCREAMING_SNAKE_CASE = _get_library_root_logger()
library_root_logger.addHandler(_default_handler )
library_root_logger.setLevel(_get_default_logging_level() )
SCREAMING_SNAKE_CASE = False
def __a ( ):
global _default_handler
with _lock:
if not _default_handler:
return
SCREAMING_SNAKE_CASE = _get_library_root_logger()
library_root_logger.removeHandler(_default_handler )
library_root_logger.setLevel(logging.NOTSET )
SCREAMING_SNAKE_CASE = None
def __a ( ):
return log_levels
def __a ( A__ : Optional[str] = None ):
if name is None:
SCREAMING_SNAKE_CASE = _get_library_name()
_configure_library_root_logger()
return logging.getLogger(A__ )
def __a ( ):
_configure_library_root_logger()
return _get_library_root_logger().getEffectiveLevel()
def __a ( A__ : int ):
_configure_library_root_logger()
_get_library_root_logger().setLevel(A__ )
def __a ( ):
return set_verbosity(A__ )
def __a ( ):
return set_verbosity(A__ )
def __a ( ):
return set_verbosity(A__ )
def __a ( ):
return set_verbosity(A__ )
def __a ( ):
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().removeHandler(_default_handler )
def __a ( ):
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().addHandler(_default_handler )
def __a ( A__ : logging.Handler ):
_configure_library_root_logger()
assert handler is not None
_get_library_root_logger().addHandler(A__ )
def __a ( A__ : logging.Handler ):
_configure_library_root_logger()
assert handler is not None and handler not in _get_library_root_logger().handlers
_get_library_root_logger().removeHandler(A__ )
def __a ( ):
_configure_library_root_logger()
SCREAMING_SNAKE_CASE = False
def __a ( ):
_configure_library_root_logger()
SCREAMING_SNAKE_CASE = True
def __a ( ):
SCREAMING_SNAKE_CASE = _get_library_root_logger().handlers
for handler in handlers:
SCREAMING_SNAKE_CASE = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" )
handler.setFormatter(A__ )
def __a ( ):
SCREAMING_SNAKE_CASE = _get_library_root_logger().handlers
for handler in handlers:
handler.setFormatter(A__ )
def __a ( self : List[Any] , *A__ : Union[str, Any] , **A__ : List[str] ):
SCREAMING_SNAKE_CASE = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , A__ )
if no_advisory_warnings:
return
self.warning(*A__ , **A__ )
__A : int = warning_advice
@functools.lru_cache(A__ )
def __a ( self : Dict , *A__ : Optional[int] , **A__ : Dict ):
self.warning(*A__ , **A__ )
__A : Tuple = warning_once
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Optional[Any] , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Union[str, Any] ): # pylint: disable=unused-argument
SCREAMING_SNAKE_CASE = args[0] if args else None
def __iter__( self : List[Any] ):
return iter(self._iterator )
def __getattr__( self : List[Any] , __lowerCamelCase : Tuple ):
def empty_fn(*__lowerCamelCase : Tuple , **__lowerCamelCase : List[str] ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self : Any ):
return self
def __exit__( self : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ):
return
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __call__( self : Optional[int] , *__lowerCamelCase : Dict , **__lowerCamelCase : List[Any] ):
if _tqdm_active:
return tqdm_lib.tqdm(*__lowerCamelCase , **__lowerCamelCase )
else:
return EmptyTqdm(*__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Tuple , *__lowerCamelCase : int , **__lowerCamelCase : List[Any] ):
SCREAMING_SNAKE_CASE = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : List[Any] ):
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
__A : List[str] = _tqdm_cls()
def __a ( ):
global _tqdm_active
return bool(_tqdm_active )
def __a ( ):
global _tqdm_active
SCREAMING_SNAKE_CASE = True
hf_hub_utils.enable_progress_bars()
def __a ( ):
global _tqdm_active
SCREAMING_SNAKE_CASE = False
hf_hub_utils.disable_progress_bars() | 701 |
from __future__ import annotations
from cmath import sqrt
def __a ( A__ : int , A__ : int , A__ : int ):
if a == 0:
raise ValueError("Coefficient 'a' must not be zero." )
SCREAMING_SNAKE_CASE = b * b - 4 * a * c
SCREAMING_SNAKE_CASE = (-b + sqrt(A__ )) / (2 * a)
SCREAMING_SNAKE_CASE = (-b - sqrt(A__ )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def __a ( ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 )
print(F"The solutions are: {solutiona} and {solutiona}" )
if __name__ == "__main__":
main() | 698 | 0 |
import importlib
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Union
import torch
from ..utils import BaseOutput
__A : str = 'scheduler_config.json'
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = 1
lowerCamelCase__ = 2
lowerCamelCase__ = 3
lowerCamelCase__ = 4
lowerCamelCase__ = 5
lowerCamelCase__ = 6
lowerCamelCase__ = 7
lowerCamelCase__ = 8
lowerCamelCase__ = 9
lowerCamelCase__ = 1_0
lowerCamelCase__ = 1_1
lowerCamelCase__ = 1_2
lowerCamelCase__ = 1_3
lowerCamelCase__ = 1_4
@dataclass
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = 4_2
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
lowerCamelCase__ = SCHEDULER_CONFIG_NAME
lowerCamelCase__ = []
lowerCamelCase__ = True
@classmethod
def _snake_case ( cls : str , __lowerCamelCase : Dict[str, Any] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : List[str]=False , **__lowerCamelCase : int , ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.load_config(
pretrained_model_name_or_path=__lowerCamelCase , subfolder=__lowerCamelCase , return_unused_kwargs=__lowerCamelCase , return_commit_hash=__lowerCamelCase , **__lowerCamelCase , )
return cls.from_config(__lowerCamelCase , return_unused_kwargs=__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Tuple , __lowerCamelCase : Union[str, os.PathLike] , __lowerCamelCase : bool = False , **__lowerCamelCase : Optional[Any] ):
self.save_config(save_directory=__lowerCamelCase , push_to_hub=__lowerCamelCase , **__lowerCamelCase )
@property
def _snake_case ( self : Optional[Any] ):
return self._get_compatibles()
@classmethod
def _snake_case ( cls : Optional[int] ):
SCREAMING_SNAKE_CASE = list(set([cls.__name__] + cls._compatibles ) )
SCREAMING_SNAKE_CASE = importlib.import_module(__name__.split("." )[0] )
SCREAMING_SNAKE_CASE = [
getattr(__lowerCamelCase , __lowerCamelCase ) for c in compatible_classes_str if hasattr(__lowerCamelCase , __lowerCamelCase )
]
return compatible_classes | 702 |
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :]
SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilgpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n"
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="pt" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text | 698 | 0 |
import inspect
import unittest
import warnings
from math import ceil, floor
from transformers import LevitConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
LevitForImageClassification,
LevitForImageClassificationWithTeacher,
LevitModel,
)
from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) )
self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) )
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ):
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = kernel_size
SCREAMING_SNAKE_CASE = stride
SCREAMING_SNAKE_CASE = padding
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = key_dim
SCREAMING_SNAKE_CASE = drop_path_rate
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = attention_ratio
SCREAMING_SNAKE_CASE = mlp_ratio
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = [
["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = num_labels
SCREAMING_SNAKE_CASE = initializer_range
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels )
SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def _snake_case ( self : List[str] ):
return LevitConfig(
image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , )
def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE = model(__lowerCamelCase )
SCREAMING_SNAKE_CASE = (self.image_size, self.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , )
def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ):
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs
SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (
(LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher)
if is_torch_available()
else ()
)
lowerCamelCase__ = (
{
"feature-extraction": LevitModel,
"image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = LevitModelTester(self )
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def _snake_case ( self : Any ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _snake_case ( self : Any ):
return
@unittest.skip(reason="Levit does not use inputs_embeds" )
def _snake_case ( self : Union[str, Any] ):
pass
@unittest.skip(reason="Levit does not support input and output embeddings" )
def _snake_case ( self : Tuple ):
pass
@unittest.skip(reason="Levit does not output attentions" )
def _snake_case ( self : Tuple ):
pass
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _snake_case ( self : List[Any] ):
def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
SCREAMING_SNAKE_CASE = outputs.hidden_states
SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE = floor(
(
(height + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
SCREAMING_SNAKE_CASE = floor(
(
(width + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [
height * width,
self.model_tester.hidden_sizes[0],
] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def _snake_case ( self : int ):
pass
def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ):
SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
def _snake_case ( self : List[Any] ):
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
# LevitForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(__lowerCamelCase )
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
loss.backward()
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
# LevitForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
continue
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.gradient_checkpointing_enable()
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
loss.backward()
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(__lowerCamelCase ),
]
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ):
SCREAMING_SNAKE_CASE = problem_type["title"]
SCREAMING_SNAKE_CASE = problem_type["num_labels"]
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if problem_type["num_labels"] > 1:
SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] )
SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list:
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
f"Something is going wrong in the regression problem: intercepted {w.message}" )
loss.backward()
@slow
def _snake_case ( self : List[Any] ):
for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def __a ( ):
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _snake_case ( self : Dict ):
return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.default_image_processor
SCREAMING_SNAKE_CASE = prepare_img()
SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase )
# verify the logits
SCREAMING_SNAKE_CASE = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) | 703 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = ['FNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = ['FNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'FNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'FNetForMaskedLM',
'FNetForMultipleChoice',
'FNetForNextSentencePrediction',
'FNetForPreTraining',
'FNetForQuestionAnswering',
'FNetForSequenceClassification',
'FNetForTokenClassification',
'FNetLayer',
'FNetModel',
'FNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
__A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 | 0 |
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
__A : int = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--original_config_file',
type=str,
required=True,
help='The YAML config file corresponding to the original architecture.',
)
parser.add_argument(
'--num_in_channels',
default=None,
type=int,
help='The number of input channels. If `None` number of input channels will be automatically inferred.',
)
parser.add_argument(
'--image_size',
default=5_1_2,
type=int,
help=(
'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'
' Base. Use 768 for Stable Diffusion v2.'
),
)
parser.add_argument(
'--extract_ema',
action='store_true',
help=(
'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'
' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'
' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'
),
)
parser.add_argument(
'--upcast_attention',
action='store_true',
help=(
'Whether the attention computation should always be upcasted. This is necessary when running stable'
' diffusion 2.1.'
),
)
parser.add_argument(
'--from_safetensors',
action='store_true',
help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.',
)
parser.add_argument(
'--to_safetensors',
action='store_true',
help='Whether to store pipeline in safetensors format or not.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
def __a ( A__ : List[Any] ):
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(F"could not parse string as bool {string}" )
parser.add_argument(
'--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool
)
parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int)
__A : Union[str, Any] = parser.parse_args()
__A : int = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | 704 |
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
__A : Optional[Any] = datasets.load_iris()
__A : Optional[Any] = np.array(data['data'])
__A : Optional[int] = np.array(data['target'])
__A : Union[str, Any] = data['target_names']
__A , __A , __A , __A : Optional[int] = train_test_split(X, y)
def __a ( A__ : Optional[int] , A__ : Dict ):
return np.linalg.norm(np.array(A__ ) - np.array(A__ ) )
def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ):
SCREAMING_SNAKE_CASE = zip(A__ , A__ )
# List of distances of all points from the point to be classified
SCREAMING_SNAKE_CASE = []
for data_point in data:
SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4])) | 698 | 0 |
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
__A : str = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model')
@require_sentencepiece
@require_tokenizers
class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = SpeechTaTokenizer
lowerCamelCase__ = False
lowerCamelCase__ = True
def _snake_case ( self : Optional[int] ):
super().setUp()
# We have a SentencePiece fixture for testing
SCREAMING_SNAKE_CASE = SpeechTaTokenizer(__lowerCamelCase )
SCREAMING_SNAKE_CASE = AddedToken("<mask>" , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase )
SCREAMING_SNAKE_CASE = mask_token
tokenizer.add_special_tokens({"mask_token": mask_token} )
tokenizer.add_tokens(["<ctc_blank>"] )
tokenizer.save_pretrained(self.tmpdirname )
def _snake_case ( self : str , __lowerCamelCase : List[str] ):
SCREAMING_SNAKE_CASE = "this is a test"
SCREAMING_SNAKE_CASE = "this is a test"
return input_text, output_text
def _snake_case ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : str=False , __lowerCamelCase : str=20 , __lowerCamelCase : str=5 ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_input_output_texts(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase )
return text, ids
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = "<pad>"
SCREAMING_SNAKE_CASE = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-4] , "œ" )
self.assertEqual(vocab_keys[-2] , "<mask>" )
self.assertEqual(vocab_keys[-1] , "<ctc_blank>" )
self.assertEqual(len(__lowerCamelCase ) , 81 )
def _snake_case ( self : List[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 79 )
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
SCREAMING_SNAKE_CASE = tokenizer.vocab_size
SCREAMING_SNAKE_CASE = len(__lowerCamelCase )
self.assertNotEqual(__lowerCamelCase , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
SCREAMING_SNAKE_CASE = ["aaaaa bbbbbb", "cccccccccdddddddd"]
SCREAMING_SNAKE_CASE = tokenizer.add_tokens(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.vocab_size
SCREAMING_SNAKE_CASE = len(__lowerCamelCase )
self.assertNotEqual(__lowerCamelCase , 0 )
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
self.assertEqual(__lowerCamelCase , len(__lowerCamelCase ) )
self.assertEqual(__lowerCamelCase , all_size + len(__lowerCamelCase ) )
SCREAMING_SNAKE_CASE = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=__lowerCamelCase )
self.assertGreaterEqual(len(__lowerCamelCase ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
SCREAMING_SNAKE_CASE = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
SCREAMING_SNAKE_CASE = tokenizer.add_special_tokens(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.vocab_size
SCREAMING_SNAKE_CASE = len(__lowerCamelCase )
self.assertNotEqual(__lowerCamelCase , 0 )
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
self.assertEqual(__lowerCamelCase , len(__lowerCamelCase ) )
self.assertEqual(__lowerCamelCase , all_size_a + len(__lowerCamelCase ) )
SCREAMING_SNAKE_CASE = tokenizer.encode(
">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=__lowerCamelCase )
self.assertGreaterEqual(len(__lowerCamelCase ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
def _snake_case ( self : str ):
pass
def _snake_case ( self : Any ):
pass
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = tokenizer.tokenize("This is a test" )
# fmt: off
self.assertListEqual(__lowerCamelCase , [SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , )
SCREAMING_SNAKE_CASE = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__lowerCamelCase , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] )
SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__lowerCamelCase )
# fmt: off
self.assertListEqual(__lowerCamelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(__lowerCamelCase )
self.assertListEqual(
__lowerCamelCase , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] )
@slow
def _snake_case ( self : int ):
# Use custom sequence because this tokenizer does not handle numbers.
SCREAMING_SNAKE_CASE = [
"Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides "
"general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural "
"Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained "
"models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.",
"BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly "
"conditioning on both left and right context in all layers.",
"The quick brown fox jumps over the lazy dog.",
]
# fmt: off
SCREAMING_SNAKE_CASE = {
"input_ids": [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
"attention_mask": [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__lowerCamelCase , model_name="microsoft/speecht5_asr" , revision="c5ef64c71905caeccde0e4462ef3f9077224c524" , sequences=__lowerCamelCase , )
| 705 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__A : Union[str, Any] = logging.get_logger(__name__)
__A : Dict = {
'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json',
}
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "resnet"
lowerCamelCase__ = ["basic", "bottleneck"]
def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ):
super().__init__(**__lowerCamelCase )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = embedding_size
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = layer_type
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = downsample_in_first_stage
SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(
out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = version.parse("1.11" )
@property
def _snake_case ( self : Optional[int] ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self : Optional[int] ):
return 1e-3 | 698 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A : Dict = {
'configuration_bigbird_pegasus': [
'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP',
'BigBirdPegasusConfig',
'BigBirdPegasusOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST',
'BigBirdPegasusForCausalLM',
'BigBirdPegasusForConditionalGeneration',
'BigBirdPegasusForQuestionAnswering',
'BigBirdPegasusForSequenceClassification',
'BigBirdPegasusModel',
'BigBirdPegasusPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
BigBirdPegasusConfig,
BigBirdPegasusOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST,
BigBirdPegasusForCausalLM,
BigBirdPegasusForConditionalGeneration,
BigBirdPegasusForQuestionAnswering,
BigBirdPegasusForSequenceClassification,
BigBirdPegasusModel,
BigBirdPegasusPreTrainedModel,
)
else:
import sys
__A : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 706 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
__A : str = logging.get_logger(__name__)
__A : Optional[Any] = {
'openai/imagegpt-small': '',
'openai/imagegpt-medium': '',
'openai/imagegpt-large': '',
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "imagegpt"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : List[str] , __lowerCamelCase : Any=512 + 1 , __lowerCamelCase : str=32 * 32 , __lowerCamelCase : Any=512 , __lowerCamelCase : Optional[int]=24 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]="quick_gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , **__lowerCamelCase : Union[str, Any] , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = n_positions
SCREAMING_SNAKE_CASE = n_embd
SCREAMING_SNAKE_CASE = n_layer
SCREAMING_SNAKE_CASE = n_head
SCREAMING_SNAKE_CASE = n_inner
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = resid_pdrop
SCREAMING_SNAKE_CASE = embd_pdrop
SCREAMING_SNAKE_CASE = attn_pdrop
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = scale_attn_weights
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx
SCREAMING_SNAKE_CASE = reorder_and_upcast_attn
SCREAMING_SNAKE_CASE = tie_word_embeddings
super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Optional[Any] ):
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
] )
def _snake_case ( self : Optional[int] , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ):
SCREAMING_SNAKE_CASE = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) )
return inputs | 698 | 0 |
from __future__ import annotations
import math
def __a ( A__ : float , A__ : int ):
SCREAMING_SNAKE_CASE = u
for i in range(1 , A__ ):
SCREAMING_SNAKE_CASE = temp * (u - i)
return temp
def __a ( ):
SCREAMING_SNAKE_CASE = int(input("enter the numbers of values: " ) )
SCREAMING_SNAKE_CASE = []
for _ in range(A__ ):
y.append([] )
for i in range(A__ ):
for j in range(A__ ):
y[i].append(A__ )
SCREAMING_SNAKE_CASE = 0
print("enter the values of parameters in a list: " )
SCREAMING_SNAKE_CASE = list(map(A__ , input().split() ) )
print("enter the values of corresponding parameters: " )
for i in range(A__ ):
SCREAMING_SNAKE_CASE = float(input() )
SCREAMING_SNAKE_CASE = int(input("enter the value to interpolate: " ) )
SCREAMING_SNAKE_CASE = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , A__ ):
for j in range(n - i ):
SCREAMING_SNAKE_CASE = y[j + 1][i - 1] - y[j][i - 1]
SCREAMING_SNAKE_CASE = y[0][0]
for i in range(1 , A__ ):
summ += (ucal(A__ , A__ ) * y[0][i]) / math.factorial(A__ )
print(F"the value at {value} is {summ}" )
if __name__ == "__main__":
main() | 707 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@slow
@require_torch
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" )
SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" )
SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size
SCREAMING_SNAKE_CASE = tokenizer.sep_token_id
SCREAMING_SNAKE_CASE = tokenizer.cls_token_id
SCREAMING_SNAKE_CASE = 128
SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" )
SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" )
SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) )
SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) )
SCREAMING_SNAKE_CASE = 4
def _map_to_encoder_decoder_inputs(__lowerCamelCase : str ):
# Tokenizer will automatically set [BOS] <text> [EOS]
SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=__lowerCamelCase , max_length=512 )
SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=__lowerCamelCase , max_length=128 )
SCREAMING_SNAKE_CASE = inputs.input_ids
SCREAMING_SNAKE_CASE = inputs.attention_mask
SCREAMING_SNAKE_CASE = outputs.input_ids
SCREAMING_SNAKE_CASE = outputs.input_ids.copy()
SCREAMING_SNAKE_CASE = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
]
SCREAMING_SNAKE_CASE = outputs.attention_mask
assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids )
assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(__lowerCamelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE = pred.label_ids
SCREAMING_SNAKE_CASE = pred.predictions
# all unnecessary tokens are removed
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase )
return {"accuracy": accuracy}
# map train dataset
SCREAMING_SNAKE_CASE = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , )
train_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
# same for validation dataset
SCREAMING_SNAKE_CASE = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , )
val_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments(
output_dir=__lowerCamelCase , per_device_train_batch_size=__lowerCamelCase , per_device_eval_batch_size=__lowerCamelCase , predict_with_generate=__lowerCamelCase , evaluation_strategy="steps" , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
SCREAMING_SNAKE_CASE = SeqaSeqTrainer(
model=__lowerCamelCase , args=__lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , tokenizer=__lowerCamelCase , )
# start training
trainer.train() | 698 | 0 |
from __future__ import annotations
import numpy as np
def __a ( A__ : np.ndarray ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = np.shape(A__ )
if rows != columns:
SCREAMING_SNAKE_CASE = (
"'table' has to be of square shaped array but got a "
F"{rows}x{columns} array:\n{table}"
)
raise ValueError(A__ )
SCREAMING_SNAKE_CASE = np.zeros((rows, columns) )
SCREAMING_SNAKE_CASE = np.zeros((rows, columns) )
for i in range(A__ ):
for j in range(A__ ):
SCREAMING_SNAKE_CASE = sum(lower[i][k] * upper[k][j] for k in range(A__ ) )
if upper[j][j] == 0:
raise ArithmeticError("No LU decomposition exists" )
SCREAMING_SNAKE_CASE = (table[i][j] - total) / upper[j][j]
SCREAMING_SNAKE_CASE = 1
for j in range(A__ , A__ ):
SCREAMING_SNAKE_CASE = sum(lower[i][k] * upper[k][j] for k in range(A__ ) )
SCREAMING_SNAKE_CASE = table[i][j] - total
return lower, upper
if __name__ == "__main__":
import doctest
doctest.testmod() | 708 |
import inspect
import unittest
import warnings
from math import ceil, floor
from transformers import LevitConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
LevitForImageClassification,
LevitForImageClassificationWithTeacher,
LevitModel,
)
from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) )
self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) )
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ):
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = kernel_size
SCREAMING_SNAKE_CASE = stride
SCREAMING_SNAKE_CASE = padding
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = key_dim
SCREAMING_SNAKE_CASE = drop_path_rate
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = attention_ratio
SCREAMING_SNAKE_CASE = mlp_ratio
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = [
["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = num_labels
SCREAMING_SNAKE_CASE = initializer_range
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels )
SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def _snake_case ( self : List[str] ):
return LevitConfig(
image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , )
def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE = model(__lowerCamelCase )
SCREAMING_SNAKE_CASE = (self.image_size, self.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , )
def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ):
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs
SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (
(LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher)
if is_torch_available()
else ()
)
lowerCamelCase__ = (
{
"feature-extraction": LevitModel,
"image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = LevitModelTester(self )
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def _snake_case ( self : Any ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _snake_case ( self : Any ):
return
@unittest.skip(reason="Levit does not use inputs_embeds" )
def _snake_case ( self : Union[str, Any] ):
pass
@unittest.skip(reason="Levit does not support input and output embeddings" )
def _snake_case ( self : Tuple ):
pass
@unittest.skip(reason="Levit does not output attentions" )
def _snake_case ( self : Tuple ):
pass
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _snake_case ( self : List[Any] ):
def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
SCREAMING_SNAKE_CASE = outputs.hidden_states
SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE = floor(
(
(height + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
SCREAMING_SNAKE_CASE = floor(
(
(width + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [
height * width,
self.model_tester.hidden_sizes[0],
] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def _snake_case ( self : int ):
pass
def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ):
SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
def _snake_case ( self : List[Any] ):
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
# LevitForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(__lowerCamelCase )
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
loss.backward()
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
# LevitForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
continue
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.gradient_checkpointing_enable()
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
loss.backward()
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(__lowerCamelCase ),
]
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ):
SCREAMING_SNAKE_CASE = problem_type["title"]
SCREAMING_SNAKE_CASE = problem_type["num_labels"]
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if problem_type["num_labels"] > 1:
SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] )
SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list:
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
f"Something is going wrong in the regression problem: intercepted {w.message}" )
loss.backward()
@slow
def _snake_case ( self : List[Any] ):
for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def __a ( ):
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _snake_case ( self : Dict ):
return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.default_image_processor
SCREAMING_SNAKE_CASE = prepare_img()
SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase )
# verify the logits
SCREAMING_SNAKE_CASE = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) | 698 | 0 |
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
__A : List[str] = pd.read_csv('sample_data.csv', header=None)
__A : List[Any] = df.shape[:1][0]
# If you're using some other dataset input the target column
__A : Tuple = df.iloc[:, 1:2]
__A : List[str] = actual_data.values.reshape(len_data, 1)
__A : Tuple = MinMaxScaler().fit_transform(actual_data)
__A : Any = 1_0
__A : Any = 5
__A : Union[str, Any] = 2_0
__A : str = len_data - periods * look_back
__A : Optional[Any] = actual_data[:division]
__A : str = actual_data[division - look_back :]
__A : Tuple = [], []
__A : List[str] = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
__A : Optional[Any] = np.array(train_x)
__A : Any = np.array(test_x)
__A : Optional[int] = np.array([list(i.ravel()) for i in train_y])
__A : Dict = np.array([list(i.ravel()) for i in test_y])
__A : Optional[Any] = Sequential()
model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(6_4, input_shape=(1_2_8, 1)))
model.add(Dense(forward_days))
model.compile(loss='mean_squared_error', optimizer='adam')
__A : Union[str, Any] = model.fit(
x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4
)
__A : str = model.predict(x_test) | 709 |
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ):
return None
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ):
return None
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = [
# (model_name, model_kwargs)
("bert-base-cased", {}),
("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def _snake_case ( self : List[Any] ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase )
@require_torch
@slow
def _snake_case ( self : List[Any] ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase )
@require_torch
@slow
def _snake_case ( self : Optional[int] ):
from transformers import BertModel
SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"]
with NamedTemporaryFile(mode="w+t" ) as vocab_file:
vocab_file.write("\n".join(__lowerCamelCase ) )
vocab_file.flush()
SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) )
model.save_pretrained(__lowerCamelCase )
self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase )
@require_tf
@slow
def _snake_case ( self : Any ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
@require_torch
@slow
def _snake_case ( self : Any ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ):
try:
# Compute path
with TemporaryDirectory() as tempdir:
SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
return path
except Exception as e:
self.fail(__lowerCamelCase )
@require_torch
@require_tokenizers
@slow
def _snake_case ( self : Dict ):
from transformers import BertModel
SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" )
@require_tf
@require_tokenizers
@slow
def _snake_case ( self : int ):
from transformers import TFBertModel
SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" )
def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase )
# Assert all variables are present
self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase )
self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} )
self.assertDictEqual(shapes["output_1"] , {0: "batch"} )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"]
SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]}
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__lowerCamelCase ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(len(__lowerCamelCase ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens["input_ids"] )
self.assertEqual(ordered_input_names[0] , "input_ids" )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" )
self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() ) | 698 | 0 |
def __a ( A__ : list[list] ):
SCREAMING_SNAKE_CASE = current_set.copy()
for row_index, row in enumerate(A__ ):
SCREAMING_SNAKE_CASE = row[0]
for column_index, column in enumerate(A__ ):
if magnitude == 0:
SCREAMING_SNAKE_CASE = column
continue
SCREAMING_SNAKE_CASE = column / magnitude
# Subtract to cancel term
SCREAMING_SNAKE_CASE = current_set[0]
SCREAMING_SNAKE_CASE = [first_row]
SCREAMING_SNAKE_CASE = current_set[1::]
for row in current_set:
SCREAMING_SNAKE_CASE = []
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(A__ )
continue
for column_index in range(len(A__ ) ):
temp_row.append(first_row[column_index] - row[column_index] )
final_set.append(A__ )
# Create next recursion iteration set
if len(final_set[0] ) != 3:
SCREAMING_SNAKE_CASE = final_set[0]
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
for row in final_set[1::]:
current_first_column.append(row[0] )
next_iteration.append(row[1::] )
SCREAMING_SNAKE_CASE = simplify(A__ )
for i in range(len(A__ ) ):
resultant[i].insert(0 , current_first_column[i] )
resultant.insert(0 , A__ )
SCREAMING_SNAKE_CASE = resultant
return final_set
def __a ( A__ : list[list] ):
if len(A__ ) == 0:
raise IndexError("solve_simultaneous() requires n lists of length n+1" )
SCREAMING_SNAKE_CASE = len(A__ ) + 1
if any(len(A__ ) != _length for item in equations ):
raise IndexError("solve_simultaneous() requires n lists of length n+1" )
for row in equations:
if any(not isinstance(A__ , (int, float) ) for column in row ):
raise ValueError("solve_simultaneous() requires lists of integers" )
if len(A__ ) == 1:
return [equations[0][-1] / equations[0][0]]
SCREAMING_SNAKE_CASE = equations.copy()
if any(0 in row for row in data_set ):
SCREAMING_SNAKE_CASE = data_set.copy()
SCREAMING_SNAKE_CASE = []
for row_index, row in enumerate(A__ ):
if 0 not in row:
SCREAMING_SNAKE_CASE = data_set.pop(A__ )
break
if not full_row:
raise ValueError("solve_simultaneous() requires at least 1 full equation" )
data_set.insert(0 , A__ )
SCREAMING_SNAKE_CASE = data_set.copy()
SCREAMING_SNAKE_CASE = simplify(A__ )
SCREAMING_SNAKE_CASE = simplified[::-1]
SCREAMING_SNAKE_CASE = []
for row in simplified:
SCREAMING_SNAKE_CASE = row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0 )
continue
solutions.append(current_solution / row[-2] )
continue
SCREAMING_SNAKE_CASE = row.copy()[: len(A__ ) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0 )
if len(A__ ) == 0:
solutions.append(0 )
continue
SCREAMING_SNAKE_CASE = temp_row[1::]
SCREAMING_SNAKE_CASE = temp_row[::-1]
for column_index, column in enumerate(A__ ):
current_solution -= column * solutions[column_index]
solutions.append(A__ )
SCREAMING_SNAKE_CASE = []
for item in solutions:
final.append(float(round(A__ , 5 ) ) )
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
__A : Union[str, Any] = [
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]]))
| 710 |
from manim import *
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 )
SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("CPU" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("GPU" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
gpu.move_to([-1, -1, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("Model" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
model.move_to([3, -1.0, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = []
for i, rect in enumerate(__lowerCamelCase ):
rect.set_stroke(__lowerCamelCase )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 )
self.add(__lowerCamelCase )
cpu_targs.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("Loaded Checkpoint" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
SCREAMING_SNAKE_CASE = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
SCREAMING_SNAKE_CASE = MarkupText(
f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = MarkupText(
f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , )
blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
SCREAMING_SNAKE_CASE = MarkupText(
f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) )
self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) )
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
for i, rect in enumerate(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 )
target.move_to(__lowerCamelCase )
first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) )
SCREAMING_SNAKE_CASE = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) )
self.play(*__lowerCamelCase )
self.play(*__lowerCamelCase )
self.wait() | 698 | 0 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __a ( A__ : str=None ):
if subparsers is not None:
SCREAMING_SNAKE_CASE = subparsers.add_parser("test" )
else:
SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" )
parser.add_argument(
"--config_file" , default=A__ , help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) , )
if subparsers is not None:
parser.set_defaults(func=A__ )
return parser
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] )
if args.config_file is None:
SCREAMING_SNAKE_CASE = script_name
else:
SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}"
SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split()
SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() )
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!" )
def __a ( ):
SCREAMING_SNAKE_CASE = test_command_parser()
SCREAMING_SNAKE_CASE = parser.parse_args()
test_command(A__ )
if __name__ == "__main__":
main() | 711 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
@staticmethod
def _snake_case ( *__lowerCamelCase : Any , **__lowerCamelCase : Any ):
pass
@is_pipeline_test
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@require_torch
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(__lowerCamelCase ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
] , )
@require_tf
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
] , )
@slow
@require_torch
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , ) | 698 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : List[str] = logging.get_logger(__name__)
__A : Optional[Any] = {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json'
),
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "dpr"
def __init__( self : List[str] , __lowerCamelCase : List[Any]=30522 , __lowerCamelCase : Optional[Any]=768 , __lowerCamelCase : Union[str, Any]=12 , __lowerCamelCase : int=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : int="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=512 , __lowerCamelCase : str=2 , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : Tuple=1e-12 , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]="absolute" , __lowerCamelCase : int = 0 , **__lowerCamelCase : Optional[Any] , ):
super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = type_vocab_size
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = projection_dim
SCREAMING_SNAKE_CASE = position_embedding_type
| 712 |
__A : dict[str, float] = {
"joule": 1.0,
"kilojoule": 1_0_0_0,
"megajoule": 1_0_0_0_0_0_0,
"gigajoule": 1_0_0_0_0_0_0_0_0_0,
"wattsecond": 1.0,
"watthour": 3_6_0_0,
"kilowatthour": 3_6_0_0_0_0_0,
"newtonmeter": 1.0,
"calorie_nutr": 4_1_8_6.8,
"kilocalorie_nutr": 4_1_8_6_8_0_0.0_0,
"electronvolt": 1.6_0217_6634e-19,
"britishthermalunit_it": 1_0_5_5.0_5_5_8_5,
"footpound": 1.355_818,
}
def __a ( A__ : str , A__ : str , A__ : float ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
SCREAMING_SNAKE_CASE = (
F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
F"Valid values are: {', '.join(A__ )}"
)
raise ValueError(A__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 | 0 |
'''simple docstring'''
__A : Optional[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []}
__A : Optional[Any] = ['a', 'b', 'c', 'd', 'e']
def __a ( A__ : Dict , A__ : List[Any] , A__ : Optional[Any] ):
SCREAMING_SNAKE_CASE = start
# add current to visited
visited.append(A__ )
SCREAMING_SNAKE_CASE = edges[current]
for neighbor in neighbors:
# if neighbor not in visited, visit
if neighbor not in visited:
SCREAMING_SNAKE_CASE = topological_sort(A__ , A__ , A__ )
# if all neighbors visited add current to sort
sort.append(A__ )
# if all vertices haven't been visited select a new one to visit
if len(A__ ) != len(A__ ):
for vertice in vertices:
if vertice not in visited:
SCREAMING_SNAKE_CASE = topological_sort(A__ , A__ , A__ )
# return sort
return sort
if __name__ == "__main__":
__A : Any = topological_sort('a', [], [])
print(sort) | 713 |
from collections import deque
from .hash_table import HashTable
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ):
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = deque([] ) if self.values[key] is None else self.values[key]
self.values[key].appendleft(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.values[key]
def _snake_case ( self : Union[str, Any] ):
return (
sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values )
/ self.size_table
* self.charge_factor
)
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None ):
if not (
len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0
):
return key
return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase ) | 698 | 0 |
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__A : str = abspath(join(dirname(__file__), 'src'))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='ignore', category=FutureWarning)
def __a ( A__ : Any ):
config.addinivalue_line(
"markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" )
config.addinivalue_line(
"markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" )
config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" )
config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" )
config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" )
config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" )
def __a ( A__ : Union[str, Any] ):
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(A__ )
def __a ( A__ : List[Any] ):
from transformers.testing_utils import pytest_terminal_summary_main
SCREAMING_SNAKE_CASE = terminalreporter.config.getoption("--make-reports" )
if make_reports:
pytest_terminal_summary_main(A__ , id=A__ )
def __a ( A__ : Dict , A__ : List[str] ):
# If no tests are collected, pytest exists with code 5, which makes the CI fail.
if exitstatus == 5:
SCREAMING_SNAKE_CASE = 0
# Doctest custom flag to ignore output.
__A : List[str] = doctest.register_optionflag('IGNORE_RESULT')
__A : Any = doctest.OutputChecker
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ):
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
__A : Tuple = CustomOutputChecker
__A : Union[str, Any] = HfDoctestModule
__A : Tuple = HfDocTestParser | 714 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
__A : Optional[int] = logging.get_logger(__name__)
__A : int = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "gpt_neo"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__( self : str , __lowerCamelCase : Dict=50257 , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : int=24 , __lowerCamelCase : int=[[["global", "local"], 12]] , __lowerCamelCase : int=16 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=50256 , __lowerCamelCase : Optional[int]=50256 , **__lowerCamelCase : Dict , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_layers
SCREAMING_SNAKE_CASE = num_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = window_size
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = resid_dropout
SCREAMING_SNAKE_CASE = embed_dropout
SCREAMING_SNAKE_CASE = attention_dropout
SCREAMING_SNAKE_CASE = classifier_dropout
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = bos_token_id
SCREAMING_SNAKE_CASE = eos_token_id
SCREAMING_SNAKE_CASE = attention_types
SCREAMING_SNAKE_CASE = self.expand_attention_types_params(__lowerCamelCase )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.attention_layers)` == `config.num_layers` "
f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, "
f"`config.num_layers = {self.num_layers}`. "
"`config.attention_layers` is prepared using `config.attention_types`. "
"Please verify the value of `config.attention_types` argument." )
super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
@staticmethod
def _snake_case ( __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def __a ( A__ : str , A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] ):
import torch
SCREAMING_SNAKE_CASE = input.size()
SCREAMING_SNAKE_CASE = len(A__ )
SCREAMING_SNAKE_CASE = shape[dimension]
SCREAMING_SNAKE_CASE = torch.arange(0 , A__ , A__ )
SCREAMING_SNAKE_CASE = torch.div(sizedim - size , A__ , rounding_mode="floor" ) + 1
SCREAMING_SNAKE_CASE = torch.arange(A__ ) + low_indices[:min_length][:, None]
SCREAMING_SNAKE_CASE = [slice(A__ )] * rank
SCREAMING_SNAKE_CASE = indices
SCREAMING_SNAKE_CASE = input[s]
SCREAMING_SNAKE_CASE = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(A__ )
def __a ( A__ : Union[str, Any] , A__ : Optional[int] ):
import torch
SCREAMING_SNAKE_CASE = torch.arange(1 , A__ )
SCREAMING_SNAKE_CASE = torch.remainder(A__ , A__ )
SCREAMING_SNAKE_CASE = remainders == 0
SCREAMING_SNAKE_CASE = candidates[divisor_indices]
SCREAMING_SNAKE_CASE = torch.max(A__ )
return largest_divisor, torch.div(A__ , A__ , rounding_mode="floor" )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} )
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"}
else:
SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"}
return common_inputs
@property
def _snake_case ( self : Optional[int] ):
return self._config.num_heads
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
SCREAMING_SNAKE_CASE = super(__lowerCamelCase , self ).generate_dummy_inputs(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
# We need to order the input in the way they appears in the forward()
SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
SCREAMING_SNAKE_CASE = seqlen + 2
SCREAMING_SNAKE_CASE = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
SCREAMING_SNAKE_CASE = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers )
]
SCREAMING_SNAKE_CASE = common_inputs["attention_mask"]
if self.use_past:
SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype
SCREAMING_SNAKE_CASE = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
return ordered_inputs
@property
def _snake_case ( self : Optional[int] ):
return 13 | 698 | 0 |
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Any , __lowerCamelCase : Dict=2 , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : Union[str, Any]=None ):
SCREAMING_SNAKE_CASE = np.random.default_rng(__lowerCamelCase )
SCREAMING_SNAKE_CASE = length
SCREAMING_SNAKE_CASE = rng.normal(size=(length,) ).astype(np.floataa )
SCREAMING_SNAKE_CASE = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self : Tuple ):
return self.length
def __getitem__( self : List[Any] , __lowerCamelCase : Optional[Any] ):
return {"x": self.x[i], "y": self.y[i]}
class _SCREAMING_SNAKE_CASE ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : List[str] , __lowerCamelCase : Dict=0 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : Union[str, Any]=False ):
super().__init__()
SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
SCREAMING_SNAKE_CASE = True
def _snake_case ( self : int , __lowerCamelCase : str=None ):
if self.first_batch:
print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" )
SCREAMING_SNAKE_CASE = False
return x * self.a[0] + self.b[0]
class _SCREAMING_SNAKE_CASE ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : str , __lowerCamelCase : Dict=0 , __lowerCamelCase : int=0 , __lowerCamelCase : Dict=False ):
super().__init__()
SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor(__lowerCamelCase ).float() )
SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor(__lowerCamelCase ).float() )
SCREAMING_SNAKE_CASE = True
def _snake_case ( self : List[Any] , __lowerCamelCase : Dict=None ):
if self.first_batch:
print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" )
SCREAMING_SNAKE_CASE = False
return x * self.a + self.b
def __a ( A__ : List[Any] , A__ : int = 16 ):
from datasets import load_dataset
from transformers import AutoTokenizer
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("bert-base-cased" )
SCREAMING_SNAKE_CASE = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"}
SCREAMING_SNAKE_CASE = load_dataset("csv" , data_files=A__ )
SCREAMING_SNAKE_CASE = datasets["train"].unique("label" )
SCREAMING_SNAKE_CASE = {v: i for i, v in enumerate(A__ )}
def tokenize_function(A__ : List[Any] ):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE = tokenizer(
examples["sentence1"] , examples["sentence2"] , truncation=A__ , max_length=A__ , padding="max_length" )
if "label" in examples:
SCREAMING_SNAKE_CASE = [label_to_id[l] for l in examples["label"]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
SCREAMING_SNAKE_CASE = datasets.map(
A__ , batched=A__ , remove_columns=["sentence1", "sentence2", "label"] , )
def collate_fn(A__ : Union[str, Any] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(A__ , padding="max_length" , max_length=128 , return_tensors="pt" )
return tokenizer.pad(A__ , padding="longest" , return_tensors="pt" )
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE = DataLoader(tokenized_datasets["train"] , shuffle=A__ , collate_fn=A__ , batch_size=2 )
SCREAMING_SNAKE_CASE = DataLoader(tokenized_datasets["validation"] , shuffle=A__ , collate_fn=A__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 715 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
__A : Any = {
'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = [
'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'LongT5EncoderModel',
'LongT5ForConditionalGeneration',
'LongT5Model',
'LongT5PreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'FlaxLongT5ForConditionalGeneration',
'FlaxLongT5Model',
'FlaxLongT5PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longta import (
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
LongTaEncoderModel,
LongTaForConditionalGeneration,
LongTaModel,
LongTaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_longta import (
FlaxLongTaForConditionalGeneration,
FlaxLongTaModel,
FlaxLongTaPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 | 0 |
from __future__ import annotations
from collections import Counter
from random import random
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : List[str] ):
SCREAMING_SNAKE_CASE = {}
def _snake_case ( self : str , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = {}
def _snake_case ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : float ):
if nodea not in self.connections:
self.add_node(__lowerCamelCase )
if nodea not in self.connections:
self.add_node(__lowerCamelCase )
SCREAMING_SNAKE_CASE = probability
def _snake_case ( self : Optional[Any] ):
return list(self.connections )
def _snake_case ( self : Tuple , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def __a ( A__ : str , A__ : list[tuple[str, str, float]] , A__ : int ):
SCREAMING_SNAKE_CASE = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(A__ , A__ , A__ )
SCREAMING_SNAKE_CASE = Counter(graph.get_nodes() )
SCREAMING_SNAKE_CASE = start
for _ in range(A__ ):
SCREAMING_SNAKE_CASE = graph.transition(A__ )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod() | 716 |
import cmath
import math
def __a ( A__ : float , A__ : float , A__ : float , A__ : float ):
SCREAMING_SNAKE_CASE = math.radians(A__ )
SCREAMING_SNAKE_CASE = math.radians(A__ )
# Convert voltage and current to rectangular form
SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ )
SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
__A : Any = {
'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = [
'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'LongT5EncoderModel',
'LongT5ForConditionalGeneration',
'LongT5Model',
'LongT5PreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'FlaxLongT5ForConditionalGeneration',
'FlaxLongT5Model',
'FlaxLongT5PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longta import (
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
LongTaEncoderModel,
LongTaForConditionalGeneration,
LongTaModel,
LongTaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_longta import (
FlaxLongTaForConditionalGeneration,
FlaxLongTaModel,
FlaxLongTaPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 717 |
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def __a ( A__ : List[str] ):
SCREAMING_SNAKE_CASE = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(A__ , A__ )
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ )
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
def __a ( A__ : Tuple , A__ : Union[str, Any]=None ):
SCREAMING_SNAKE_CASE = {}
for old_key in state_dict.keys():
SCREAMING_SNAKE_CASE = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" )
else:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts." , "ffn.experts.expert_" )
if "gate" in key:
SCREAMING_SNAKE_CASE = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" )
if "fc2" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc2." , ".ffn.fc2." )
if "fc1" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc1." , ".ffn.fc1." )
if ".encoder_attn." in key:
SCREAMING_SNAKE_CASE = key.replace(".encoder_attn." , ".cross_attention." )
if "encoder_attn_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" )
if "final_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("final_layer_norm" , "ff_layer_norm" )
SCREAMING_SNAKE_CASE = state_dict[old_key]
return new_dict
def __a ( A__ : List[str] , A__ : List[Any] , A__ : str , A__ : Union[str, Any] , A__ : str = WEIGHTS_NAME ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
os.makedirs(A__ , exist_ok=A__ )
for expert in range(A__ ):
SCREAMING_SNAKE_CASE = switch_checkpoint_path + F"-rank-{expert}.pt"
if os.path.isfile(A__ ):
SCREAMING_SNAKE_CASE = torch.load(A__ )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = os.path.join(
A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
torch.save(A__ , A__ )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(A__ )[0]].dtype )
# Add the last block
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + "-shared.pt" )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(A__ ) == 1:
SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ )
torch.save(A__ , A__ )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(A__ , A__ )
# Otherwise, let's build the index
SCREAMING_SNAKE_CASE = {}
for idx, shard in enumerate(A__ ):
SCREAMING_SNAKE_CASE = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" )
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) )
os.rename(A__ , os.path.join(A__ , A__ ) )
for key in shard:
SCREAMING_SNAKE_CASE = shard_file
# Add the metadata
SCREAMING_SNAKE_CASE = {"total_size": total_size}
SCREAMING_SNAKE_CASE = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(A__ , A__ ) , "w" , encoding="utf-8" ) as f:
SCREAMING_SNAKE_CASE = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n"
f.write(A__ )
return metadata, index
if __name__ == "__main__":
__A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--nllb_moe_checkpoint_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b',
type=str,
required=False,
help='Path to the output pytorch model.',
)
__A : Optional[int] = parser.parse_args()
__A , __A : Union[str, Any] = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_2_8,
args.dtype,
)
__A : Any = NllbMoeConfig.from_pretrained(
'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8
)
config.save_pretrained(args.pytorch_dump_folder_path)
__A : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('Done')
model.save_pretrained(args.pytorch_dump_folder_path) | 698 | 0 |
import json
import os
import tempfile
import datasets
from utils import generate_example_dataset, get_duration
__A : str = 5_0_0_0_0
__A : Optional[Any] = 5_0_0_0
__A : Union[str, Any] = os.path.split(__file__)
__A : int = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json'))
@get_duration
def __a ( A__ : datasets.Dataset , A__ : Union[str, Any] ):
for i in range(A__ ):
SCREAMING_SNAKE_CASE = dataset[i]
@get_duration
def __a ( A__ : datasets.Dataset , A__ : Optional[int] , A__ : Tuple ):
for i in range(0 , len(A__ ) , A__ ):
SCREAMING_SNAKE_CASE = dataset[i : i + batch_size]
@get_duration
def __a ( A__ : datasets.Dataset , A__ : List[Any] , A__ : str ):
with dataset.formatted_as(type=A__ ):
for i in range(A__ ):
SCREAMING_SNAKE_CASE = dataset[i]
@get_duration
def __a ( A__ : datasets.Dataset , A__ : Optional[Any] , A__ : Optional[Any] , A__ : Union[str, Any] ):
with dataset.formatted_as(type=A__ ):
for i in range(0 , A__ , A__ ):
SCREAMING_SNAKE_CASE = dataset[i : i + batch_size]
def __a ( ):
SCREAMING_SNAKE_CASE = {"num examples": SPEED_TEST_N_EXAMPLES}
SCREAMING_SNAKE_CASE = [
(read, {"length": SMALL_TEST}),
(read, {"length": SPEED_TEST_N_EXAMPLES}),
(read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}),
(read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}),
(read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}),
(read_formatted, {"type": "numpy", "length": SMALL_TEST}),
(read_formatted, {"type": "pandas", "length": SMALL_TEST}),
(read_formatted, {"type": "torch", "length": SMALL_TEST}),
(read_formatted, {"type": "tensorflow", "length": SMALL_TEST}),
(read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}),
(read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}),
]
SCREAMING_SNAKE_CASE = [
(read, {"length": SMALL_TEST}),
(read, {"length": SPEED_TEST_N_EXAMPLES}),
(read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}),
(read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}),
(read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}),
(read_formatted, {"type": "numpy", "length": SMALL_TEST}),
(read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}),
(read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}),
]
with tempfile.TemporaryDirectory() as tmp_dir:
print("generating dataset" )
SCREAMING_SNAKE_CASE = datasets.Features(
{"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} )
SCREAMING_SNAKE_CASE = generate_example_dataset(
os.path.join(A__ , "dataset.arrow" ) , A__ , num_examples=A__ , seq_shapes={"list": (100,)} , )
print("first set of iterations" )
for func, kwargs in functions:
print(func.__name__ , str(A__ ) )
SCREAMING_SNAKE_CASE = func(A__ , **A__ )
print("shuffling dataset" )
SCREAMING_SNAKE_CASE = dataset.shuffle()
print("Second set of iterations (after shuffling" )
for func, kwargs in functions_shuffled:
print("shuffled " , func.__name__ , str(A__ ) )
SCREAMING_SNAKE_CASE = func(
A__ , **A__ )
with open(A__ , "wb" ) as f:
f.write(json.dumps(A__ ).encode("utf-8" ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_iterating() | 718 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = BlipImageProcessor()
SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
def _snake_case ( self : Dict , **__lowerCamelCase : Any ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer
def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor
def _snake_case ( self : Union[str, Any] ):
shutil.rmtree(self.tmpdirname )
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 )
SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowerCamelCase )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" )
SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(__lowerCamelCase ):
processor()
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) | 698 | 0 |
Subsets and Splits