code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = "token-classification" def __init__( self , __UpperCamelCase ): '''simple docstring''' if type(__UpperCamelCase ) == dict: __a : int = Namespace(**__UpperCamelCase ) __a : Optional[Any] = import_module("""tasks""" ) try: __a : List[str] = getattr(__UpperCamelCase , hparams.task_type ) __a : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) __a : Union[str, Any] = self.token_classification_task.get_labels(hparams.labels ) __a : int = CrossEntropyLoss().ignore_index super().__init__(__UpperCamelCase , len(self.labels ) , self.mode ) def __lowerCamelCase ( self , **__UpperCamelCase ): '''simple docstring''' return self.model(**__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : int = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": __a : Any = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids __a : Optional[int] = self(**__UpperCamelCase ) __a : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = self.hparams for mode in ["train", "dev", "test"]: __a : Union[str, Any] = self._feature_file(__UpperCamelCase ) if os.path.exists(__UpperCamelCase ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , __UpperCamelCase ) __a : Any = torch.load(__UpperCamelCase ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) __a : Union[str, Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __UpperCamelCase ) __a : str = self.token_classification_task.convert_examples_to_features( __UpperCamelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__UpperCamelCase , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , __UpperCamelCase ) torch.save(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = False ): '''simple docstring''' __a : str = self._feature_file(__UpperCamelCase ) logger.info("""Loading features from cached file %s""" , __UpperCamelCase ) __a : str = torch.load(__UpperCamelCase ) __a : int = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __a : Union[str, Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: __a : List[Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: __a : str = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) __a : Union[str, Any] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , batch_size=__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' """Compute validation""" "" __a : Union[str, Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": __a : List[str] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids __a : Tuple = self(**__UpperCamelCase ) __a : Tuple = outputs[:2] __a : Tuple = logits.detach().cpu().numpy() __a : List[str] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : Optional[Any] = torch.stack([x["""val_loss"""] for x in outputs] ).mean() __a : Tuple = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) __a : int = np.argmax(__UpperCamelCase , axis=2 ) __a : Optional[Any] = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) __a : Optional[Any] = dict(enumerate(self.labels ) ) __a : Optional[Any] = [[] for _ in range(out_label_ids.shape[0] )] __a : List[str] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) __a : Tuple = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(__UpperCamelCase , __UpperCamelCase ), """precision""": precision_score(__UpperCamelCase , __UpperCamelCase ), """recall""": recall_score(__UpperCamelCase , __UpperCamelCase ), """f1""": fa_score(__UpperCamelCase , __UpperCamelCase ), } __a : Dict = dict(results.items() ) __a : Dict = results return ret, preds_list, out_label_list def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : Optional[int] = self._eval_end(__UpperCamelCase ) __a : List[str] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : Optional[Any] = self._eval_end(__UpperCamelCase ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __a : Tuple = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' BaseTransformer.add_model_specific_args(__UpperCamelCase , __UpperCamelCase ) parser.add_argument( """--task_type""" , default="""NER""" , type=__UpperCamelCase , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=__UpperCamelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=__UpperCamelCase , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=__UpperCamelCase , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __SCREAMING_SNAKE_CASE : Tuple = NERTransformer.add_model_specific_args(parser, os.getcwd()) __SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() __SCREAMING_SNAKE_CASE : int = NERTransformer(args) __SCREAMING_SNAKE_CASE : List[str] = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __SCREAMING_SNAKE_CASE : Dict = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __SCREAMING_SNAKE_CASE : Optional[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
703
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def __lowerCamelCase ( *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = MODEL_FOR_OBJECT_DETECTION_MAPPING def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Optional[Any] = ObjectDetectionPipeline(model=__UpperCamelCase , image_processor=__UpperCamelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : List[str] = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(__UpperCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __UpperCamelCase , { """score""": ANY(__UpperCamelCase ), """label""": ANY(__UpperCamelCase ), """box""": {"""xmin""": ANY(__UpperCamelCase ), """ymin""": ANY(__UpperCamelCase ), """xmax""": ANY(__UpperCamelCase ), """ymax""": ANY(__UpperCamelCase )}, } , ) import datasets __a : Optional[int] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) __a : Tuple = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] __a : Any = object_detector(__UpperCamelCase , threshold=0.0 ) self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for outputs in batch_outputs: self.assertGreater(len(__UpperCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __UpperCamelCase , { """score""": ANY(__UpperCamelCase ), """label""": ANY(__UpperCamelCase ), """box""": {"""xmin""": ANY(__UpperCamelCase ), """ymin""": ANY(__UpperCamelCase ), """xmax""": ANY(__UpperCamelCase ), """ymax""": ANY(__UpperCamelCase )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass @require_torch def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = """hf-internal-testing/tiny-detr-mobilenetsv3""" __a : Dict = AutoModelForObjectDetection.from_pretrained(__UpperCamelCase ) __a : Optional[Any] = AutoFeatureExtractor.from_pretrained(__UpperCamelCase ) __a : str = ObjectDetectionPipeline(model=__UpperCamelCase , feature_extractor=__UpperCamelCase ) __a : Optional[int] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ] , ) __a : Union[str, Any] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : str = """facebook/detr-resnet-50""" __a : Dict = AutoModelForObjectDetection.from_pretrained(__UpperCamelCase ) __a : int = AutoFeatureExtractor.from_pretrained(__UpperCamelCase ) __a : int = ObjectDetectionPipeline(model=__UpperCamelCase , feature_extractor=__UpperCamelCase ) __a : Any = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) __a : Optional[Any] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : int = """facebook/detr-resnet-50""" __a : Optional[int] = pipeline("""object-detection""" , model=__UpperCamelCase ) __a : Optional[int] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) __a : List[str] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = 0.9_9_8_5 __a : Union[str, Any] = """facebook/detr-resnet-50""" __a : Optional[int] = pipeline("""object-detection""" , model=__UpperCamelCase ) __a : Union[str, Any] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=__UpperCamelCase ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) @require_torch @require_pytesseract @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : str = """Narsil/layoutlmv3-finetuned-funsd""" __a : List[Any] = 0.9_9_9_3 __a : Dict = pipeline("""object-detection""" , model=__UpperCamelCase , threshold=__UpperCamelCase ) __a : List[str] = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_9_3, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, {"""score""": 0.9_9_9_3, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, ] , )
697
0
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str = {'vocab_file': 'spiece.model'} __SCREAMING_SNAKE_CASE : Dict = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } __SCREAMING_SNAKE_CASE : Tuple = { 'google/bigbird-roberta-base': 4_096, 'google/bigbird-roberta-large': 4_096, 'google/bigbird-base-trivia-itc': 4_096, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] lowercase__ = [] def __init__( self , __UpperCamelCase , __UpperCamelCase="<unk>" , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<pad>" , __UpperCamelCase="[SEP]" , __UpperCamelCase="[MASK]" , __UpperCamelCase="[CLS]" , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' __a : List[str] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else bos_token __a : Dict = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else eos_token __a : int = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else unk_token __a : Tuple = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else pad_token __a : Optional[int] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else cls_token __a : Optional[int] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __a : str = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token __a : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , sep_token=__UpperCamelCase , mask_token=__UpperCamelCase , cls_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) __a : Union[str, Any] = vocab_file __a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCamelCase ) @property def __lowerCamelCase ( self ): '''simple docstring''' return self.sp_model.get_piece_size() def __lowerCamelCase ( self ): '''simple docstring''' __a : str = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' __a : Tuple = self.__dict__.copy() __a : Any = None return state def __setstate__( self , __UpperCamelCase ): '''simple docstring''' __a : Optional[int] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __a : List[str] = {} __a : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' return self.sp_model.piece_to_id(__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : List[str] = self.sp_model.IdToPiece(__UpperCamelCase ) return token def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : List[Any] = [] __a : Union[str, Any] = """""" __a : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCamelCase ) + token __a : Tuple = True __a : str = [] else: current_sub_tokens.append(__UpperCamelCase ) __a : Tuple = False out_string += self.sp_model.decode(__UpperCamelCase ) return out_string.strip() def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = True , **__UpperCamelCase , ): '''simple docstring''' __a : Dict = kwargs.pop("""use_source_tokenizer""" , __UpperCamelCase ) __a : Tuple = self.convert_ids_to_tokens(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __a : str = [] __a : Optional[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCamelCase ) ) __a : Optional[Any] = [] sub_texts.append(__UpperCamelCase ) else: current_sub_text.append(__UpperCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __a : List[str] = re.sub(r""" (\[(MASK|SEP)\])""" , r"""\1""" , """ """.join(__UpperCamelCase ) ) else: __a : List[Any] = """""".join(__UpperCamelCase ) __a : List[Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __a : Optional[int] = self.clean_up_tokenization(__UpperCamelCase ) return clean_text else: return text def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ): '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __a : Dict = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , """wb""" ) as fi: __a : List[Any] = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __a : int = [self.cls_token_id] __a : Any = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) + [1] def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ): '''simple docstring''' __a : Optional[Any] = [self.sep_token_id] __a : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : List[str] = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
697
0
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self ): '''simple docstring''' super().__init__() __a : Union[str, Any] = nn.Linear(3 , 4 ) __a : Optional[int] = nn.BatchNormad(4 ) __a : List[Any] = nn.Linear(4 , 5 ) def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__UpperCamelCase ) ) ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __lowerCamelCase ( self , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' return output + 1 class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = ModelForTest() __a : Any = ModelHook() add_hook_to_module(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(test_model._hf_hook , __UpperCamelCase ) self.assertTrue(hasattr(__UpperCamelCase , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__UpperCamelCase ) self.assertFalse(hasattr(__UpperCamelCase , """_hf_hook""" ) ) self.assertFalse(hasattr(__UpperCamelCase , """_old_forward""" ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = ModelForTest() __a : Any = ModelHook() add_hook_to_module(__UpperCamelCase , __UpperCamelCase ) add_hook_to_module(__UpperCamelCase , __UpperCamelCase , append=__UpperCamelCase ) self.assertEqual(isinstance(test_model._hf_hook , __UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__UpperCamelCase , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__UpperCamelCase ) self.assertFalse(hasattr(__UpperCamelCase , """_hf_hook""" ) ) self.assertFalse(hasattr(__UpperCamelCase , """_old_forward""" ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = ModelForTest() __a : Optional[Any] = torch.randn(2 , 3 ) __a : Tuple = test_model(x + 1 ) __a : Optional[int] = test_model(x + 2 ) __a : Tuple = PreForwardHook() add_hook_to_module(__UpperCamelCase , __UpperCamelCase ) __a : Optional[Any] = test_model(__UpperCamelCase ) self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __a : str = PreForwardHook() add_hook_to_module(__UpperCamelCase , __UpperCamelCase ) __a : Optional[int] = test_model(__UpperCamelCase ) self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __a : Dict = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__UpperCamelCase , __UpperCamelCase ) __a : Optional[int] = test_model(__UpperCamelCase ) assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = ModelForTest() __a : int = torch.randn(2 , 3 ) __a : Tuple = test_model(__UpperCamelCase ) __a : Union[str, Any] = PostForwardHook() add_hook_to_module(__UpperCamelCase , __UpperCamelCase ) __a : str = test_model(__UpperCamelCase ) self.assertTrue(torch.allclose(__UpperCamelCase , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __a : Any = PostForwardHook() add_hook_to_module(__UpperCamelCase , __UpperCamelCase ) __a : Union[str, Any] = test_model(__UpperCamelCase ) self.assertTrue(torch.allclose(__UpperCamelCase , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __a : Any = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__UpperCamelCase , __UpperCamelCase ) __a : int = test_model(__UpperCamelCase ) assert torch.allclose(__UpperCamelCase , output + 2 , atol=1E-5 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = ModelForTest() __a : List[str] = torch.randn(2 , 3 ) __a : Union[str, Any] = test_model(__UpperCamelCase ) __a : Any = PostForwardHook() add_hook_to_module(__UpperCamelCase , __UpperCamelCase ) __a : str = test_model(__UpperCamelCase ) self.assertTrue(torch.allclose(__UpperCamelCase , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __a : List[Any] = True __a : Union[str, Any] = test_model(__UpperCamelCase ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __a : str = torch.randn(2 , 3 ) __a : str = model(__UpperCamelCase ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__UpperCamelCase , AlignDevicesHook(io_same_device=__UpperCamelCase ) ) __a : List[Any] = torch.randn(2 , 3 ).to(0 ) __a : Optional[Any] = model(__UpperCamelCase ) self.assertEqual(output.device , torch.device(0 ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __a : Optional[Any] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__UpperCamelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__UpperCamelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__UpperCamelCase ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __a : Union[str, Any] = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __UpperCamelCase ) __a : List[str] = torch.randn(2 , 3 ) __a : List[Any] = model(__UpperCamelCase ) self.assertEqual(output.device , __UpperCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __a : Any = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__UpperCamelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__UpperCamelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__UpperCamelCase ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __a : Optional[Any] = torch.randn(2 , 3 ) __a : Optional[int] = model(__UpperCamelCase ) self.assertEqual(output.device , __UpperCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __a : Union[str, Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__UpperCamelCase , execution_device=__UpperCamelCase , offload=__UpperCamelCase ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __a : str = torch.device(__UpperCamelCase ) self.assertEqual(model.batchnorm.running_mean.device , __UpperCamelCase ) __a : Any = torch.randn(2 , 3 ) __a : List[Any] = model(__UpperCamelCase ) self.assertEqual(output.device , __UpperCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__UpperCamelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__UpperCamelCase , execution_device=__UpperCamelCase , offload=__UpperCamelCase , offload_buffers=__UpperCamelCase ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __a : Tuple = torch.randn(2 , 3 ) __a : Union[str, Any] = model(__UpperCamelCase ) self.assertEqual(output.device , __UpperCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__UpperCamelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __a : List[Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __UpperCamelCase , execution_device=__UpperCamelCase , offload=__UpperCamelCase , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __a : str = torch.device(__UpperCamelCase ) self.assertEqual(model.batchnorm.running_mean.device , __UpperCamelCase ) __a : List[str] = torch.randn(2 , 3 ) __a : Tuple = model(__UpperCamelCase ) self.assertEqual(output.device , __UpperCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__UpperCamelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __UpperCamelCase , execution_device=__UpperCamelCase , offload=__UpperCamelCase , weights_map=model.state_dict() , offload_buffers=__UpperCamelCase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __a : Union[str, Any] = torch.randn(2 , 3 ) __a : Tuple = model(__UpperCamelCase ) self.assertEqual(output.device , __UpperCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__UpperCamelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
705
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Any = params __a : Optional[Any] = np.array(__UpperCamelCase ) __a : Union[str, Any] = np.array([len(__UpperCamelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , __UpperCamelCase ): '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ): '''simple docstring''' return len(self.lengths ) def __lowerCamelCase ( self ): '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = self.params.max_model_input_size __a : Union[str, Any] = self.lengths > max_len logger.info(f"""Splitting {sum(__UpperCamelCase )} too long sequences.""" ) def divide_chunks(__UpperCamelCase , __UpperCamelCase ): return [l[i : i + n] for i in range(0 , len(__UpperCamelCase ) , __UpperCamelCase )] __a : int = [] __a : Union[str, Any] = [] if self.params.mlm: __a , __a : Any = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: __a , __a : str = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __a : Any = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __a : int = np.insert(__UpperCamelCase , 0 , __UpperCamelCase ) if sub_s[-1] != sep_id: __a : str = np.insert(__UpperCamelCase , len(__UpperCamelCase ) , __UpperCamelCase ) assert len(__UpperCamelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__UpperCamelCase ) new_tok_ids.extend(__UpperCamelCase ) new_lengths.extend([len(__UpperCamelCase ) for l in sub_seqs] ) __a : Dict = np.array(__UpperCamelCase ) __a : Tuple = np.array(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = len(self ) __a : List[str] = self.lengths > 11 __a : int = self.token_ids[indices] __a : Union[str, Any] = self.lengths[indices] __a : Any = len(self ) logger.info(f"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def __lowerCamelCase ( self ): '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: __a : List[str] = self.params.special_tok_ids["""unk_token"""] __a : str = len(self ) __a : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __a : Optional[Any] = (unk_occs / self.lengths) < 0.5 __a : List[str] = self.token_ids[indices] __a : Optional[int] = self.lengths[indices] __a : Any = len(self ) logger.info(f"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def __lowerCamelCase ( self ): '''simple docstring''' if not self.params.is_master: return logger.info(f"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : List[str] = [t[0] for t in batch] __a : str = [t[1] for t in batch] assert len(__UpperCamelCase ) == len(__UpperCamelCase ) # Max for paddings __a : Optional[int] = max(__UpperCamelCase ) # Pad token ids if self.params.mlm: __a : int = self.params.special_tok_ids["""pad_token"""] else: __a : Tuple = self.params.special_tok_ids["""unk_token"""] __a : Any = [list(t.astype(__UpperCamelCase ) ) + [pad_idx] * (max_seq_len_ - len(__UpperCamelCase )) for t in token_ids] assert len(tk_ ) == len(__UpperCamelCase ) assert all(len(__UpperCamelCase ) == max_seq_len_ for t in tk_ ) __a : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) __a : Optional[Any] = torch.tensor(__UpperCamelCase ) # (bs) return tk_t, lg_t
697
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
706
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = "" lowercase__ = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' super().__init__(self , **__UpperCamelCase ) __a : int = repo_info __a : int = token __a : Any = None def __lowerCamelCase ( self ): '''simple docstring''' if self.dir_cache is None: __a : Union[str, Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __a : List[str] = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(__UpperCamelCase ): {"""name""": str(__UpperCamelCase ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = "rb" , **__UpperCamelCase , ): '''simple docstring''' if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) __a : Any = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def __lowerCamelCase ( self , __UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' self._get_dirs() __a : str = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase ): '''simple docstring''' self._get_dirs() __a : int = PurePosixPath(path.strip("""/""" ) ) __a : List[str] = {} for p, f in self.dir_cache.items(): __a : str = PurePosixPath(p.strip("""/""" ) ) __a : Optional[int] = p.parent if root == path: __a : List[str] = f __a : str = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
697
0
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) __SCREAMING_SNAKE_CASE : Optional[int] = logging.getLogger() __SCREAMING_SNAKE_CASE : Dict = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) __a : int = {"""source""": """What is love ?""", """target""": """life"""} __a : Tuple = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __a : Union[str, Any] = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(__UpperCamelCase , f"""{split}.{field}""" ) , """w""" ) as f: f.write(__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = "pytorch" ): '''simple docstring''' __a : Optional[Any] = self.get_auto_remove_tmp_dir() __a : Tuple = os.path.join(__UpperCamelCase , """output""" ) __a : List[str] = os.path.join(__UpperCamelCase , """data""" ) self._create_dummy_data(data_dir=__UpperCamelCase ) __a : str = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) __a : List[str] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__UpperCamelCase , env=self.get_env() ) __a : Optional[Any] = os.path.join(__UpperCamelCase , """metrics.json""" ) with open(__UpperCamelCase ) as f: __a : Union[str, Any] = json.load(__UpperCamelCase ) return result @require_torch_gpu def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
707
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , __UpperCamelCase , __UpperCamelCase=2 , __UpperCamelCase=32 , __UpperCamelCase=16 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=4 , __UpperCamelCase=[0, 1, 2, 3] , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0_2 , __UpperCamelCase=3 , __UpperCamelCase=[1, 384, 24, 24] , __UpperCamelCase=True , __UpperCamelCase=None , ): '''simple docstring''' __a : List[str] = parent __a : Tuple = batch_size __a : str = image_size __a : int = patch_size __a : Dict = num_channels __a : int = is_training __a : Dict = use_labels __a : Union[str, Any] = hidden_size __a : Dict = num_hidden_layers __a : Dict = backbone_out_indices __a : Optional[int] = num_attention_heads __a : List[str] = intermediate_size __a : Optional[Any] = hidden_act __a : Dict = hidden_dropout_prob __a : Tuple = attention_probs_dropout_prob __a : Any = initializer_range __a : Any = num_labels __a : Optional[Any] = backbone_featmap_shape __a : List[Any] = scope __a : List[str] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __a : Union[str, Any] = (image_size // patch_size) ** 2 __a : List[str] = num_patches + 1 def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Union[str, Any] = None if self.use_labels: __a : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a : Tuple = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 192, 384, 768], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Optional[Any] = DPTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : List[str] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : List[str] = self.num_labels __a : Union[str, Any] = DPTForDepthEstimation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Dict = self.num_labels __a : Tuple = DPTForSemanticSegmentation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : str = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.prepare_config_and_inputs() __a , __a , __a : Tuple = config_and_inputs __a : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): lowercase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowercase__ = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = DPTModelTester(self ) __a : List[Any] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : str = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Any = model_class(__UpperCamelCase ) __a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : int = [*signature.parameters.keys()] __a : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() __a : List[Any] = True if model_class in get_values(__UpperCamelCase ): continue __a : str = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() __a : Union[str, Any] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) __a : List[Any] = model(**__UpperCamelCase ).loss loss.backward() def __lowerCamelCase ( self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __a , __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __a : Any = False __a : Dict = True if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing: continue __a : Any = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.gradient_checkpointing_enable() model.train() __a : List[str] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) __a : Dict = model(**__UpperCamelCase ).loss loss.backward() def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() __a : Any = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: __a : Any = model_class(config=__UpperCamelCase ) # Skip the check for the backbone __a : Optional[Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __a : Optional[int] = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __a : int = DPTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : int = self.model_tester.prepare_config_and_inputs_for_common() __a : Optional[int] = """add""" with self.assertRaises(__UpperCamelCase ): __a : int = DPTForDepthEstimation(__UpperCamelCase ) def _snake_case ( ) -> Any: __a : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' __a : int = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) __a : int = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__UpperCamelCase ) __a : Union[str, Any] = prepare_img() __a : Any = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): __a : Optional[Any] = model(**__UpperCamelCase ) __a : int = outputs.predicted_depth # verify the predicted depth __a : Any = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __UpperCamelCase ) __a : int = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __UpperCamelCase , atol=1E-4 ) )
697
0
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __SCREAMING_SNAKE_CASE : int = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=False , ) -> int: output_path.parent.mkdir(parents=lowercase , exist_ok=lowercase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowercase , lowercase , f=output_path.as_posix() , input_names=lowercase , output_names=lowercase , dynamic_axes=lowercase , do_constant_folding=lowercase , use_external_data_format=lowercase , enable_onnx_checker=lowercase , opset_version=lowercase , ) else: export( lowercase , lowercase , f=output_path.as_posix() , input_names=lowercase , output_names=lowercase , dynamic_axes=lowercase , do_constant_folding=lowercase , opset_version=lowercase , ) @torch.no_grad() def _snake_case ( lowercase , lowercase , lowercase , lowercase = False ) -> int: __a : List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __a : List[Any] = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: __a : int = """cpu""" __a : int = Path(lowercase ) # VAE DECODER __a : List[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" ) __a : int = vae_decoder.config.latent_channels # forward only through the decoder part __a : Optional[int] = vae_decoder.decode onnx_export( lowercase , model_args=( torch.randn(1 , lowercase , 2_5 , 2_5 ).to(device=lowercase , dtype=lowercase ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=lowercase , ) del vae_decoder if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') __SCREAMING_SNAKE_CASE : Dict = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
708
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) __a : Optional[int] = Vector() def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(__UpperCamelCase ) , """(0,0,0,0,0,1)""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = Vector([1, 2, 3, 4] ) self.assertEqual(len(__UpperCamelCase ) , 4 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = Vector([1, 2] ) __a : List[str] = Vector([1, 2, 3, 4, 5] ) __a : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __a : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Vector([1, 2, 3] ) __a : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = Vector([1, 2, 3] ) __a : Any = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = Vector([1, 2, 3] ) __a : Optional[Any] = Vector([2, -1, 4] ) # for test of dot product __a : Union[str, Any] = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Vector([1, 2, 3] ) __a : Optional[int] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , __UpperCamelCase , __UpperCamelCase ) ) , """(3,4,7)""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : int = Vector([1, 0, 0, 0, 0, 0] ) __a : Any = x.copy() self.assertEqual(str(__UpperCamelCase ) , str(__UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(__UpperCamelCase ) , """(0,1,0)""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(__UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __a : List[Any] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __a : Any = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) __a : List[Any] = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(__UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __a : Union[str, Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __a : List[str] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
697
0
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) __SCREAMING_SNAKE_CASE : int = logging.getLogger(__name__) def _snake_case ( ) -> Dict: __a : List[Any] = argparse.ArgumentParser( description="""Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).""" ) parser.add_argument("""--file_path""" , type=lowercase , default="""data/dump.txt""" , help="""The path to the data.""" ) parser.add_argument("""--tokenizer_type""" , type=lowercase , default="""bert""" , choices=["""bert""", """roberta""", """gpt2"""] ) parser.add_argument("""--tokenizer_name""" , type=lowercase , default="""bert-base-uncased""" , help="""The tokenizer to use.""" ) parser.add_argument("""--dump_file""" , type=lowercase , default="""data/dump""" , help="""The dump file prefix.""" ) __a : int = parser.parse_args() logger.info(F"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": __a : List[Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) __a : Tuple = tokenizer.special_tokens_map["""cls_token"""] # `[CLS]` __a : Optional[Any] = tokenizer.special_tokens_map["""sep_token"""] # `[SEP]` elif args.tokenizer_type == "roberta": __a : Any = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __a : Any = tokenizer.special_tokens_map["""cls_token"""] # `<s>` __a : int = tokenizer.special_tokens_map["""sep_token"""] # `</s>` elif args.tokenizer_type == "gpt2": __a : str = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __a : str = tokenizer.special_tokens_map["""bos_token"""] # `<|endoftext|>` __a : List[Any] = tokenizer.special_tokens_map["""eos_token"""] # `<|endoftext|>` logger.info(F"""Loading text from {args.file_path}""" ) with open(args.file_path , """r""" , encoding="""utf8""" ) as fp: __a : Dict = fp.readlines() logger.info("""Start encoding""" ) logger.info(F"""{len(lowercase )} examples to process.""" ) __a : Optional[Any] = [] __a : Tuple = 0 __a : int = 1_0_0_0_0 __a : str = time.time() for text in data: __a : Tuple = F"""{bos} {text.strip()} {sep}""" __a : List[str] = tokenizer.encode(lowercase , add_special_tokens=lowercase ) rslt.append(lowercase ) iter += 1 if iter % interval == 0: __a : List[str] = time.time() logger.info(F"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) __a : Optional[int] = time.time() logger.info("""Finished binarization""" ) logger.info(F"""{len(lowercase )} examples processed.""" ) __a : Optional[int] = F"""{args.dump_file}.{args.tokenizer_name}.pickle""" __a : Any = tokenizer.vocab_size if vocab_size < (1 << 1_6): __a : Optional[Any] = [np.uintaa(lowercase ) for d in rslt] else: __a : Optional[Any] = [np.intaa(lowercase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"""Dump to {dp_file}""" ) with open(lowercase , """wb""" ) as handle: pickle.dump(rslt_ , lowercase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
709
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __SCREAMING_SNAKE_CASE : List[str] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) __SCREAMING_SNAKE_CASE : Optional[Any] = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) __SCREAMING_SNAKE_CASE : Tuple = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) __SCREAMING_SNAKE_CASE : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) __SCREAMING_SNAKE_CASE : Optional[int] = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) __SCREAMING_SNAKE_CASE : int = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) __SCREAMING_SNAKE_CASE : int = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _snake_case ( ) -> List[str]: __a , __a : List[Any] = randrange(len(lowercase ) ), randrange(len(lowercase ) ) __a : int = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] __a , __a : int = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _snake_case ( lowercase = 1_0_0 ) -> Any: return (generate_random_hand() for _ in range(lowercase )) @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> int: assert PokerHand(lowercase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Any: assert PokerHand(lowercase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , lowercase ) def _snake_case ( lowercase , lowercase , lowercase ) -> List[str]: __a : Union[str, Any] = PokerHand(lowercase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Optional[int]: assert PokerHand(lowercase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Union[str, Any]: assert PokerHand(lowercase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , lowercase ) def _snake_case ( lowercase , lowercase , lowercase ) -> Optional[int]: assert PokerHand(lowercase ).compare_with(PokerHand(lowercase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def _snake_case ( lowercase , lowercase , lowercase ) -> int: assert PokerHand(lowercase ).compare_with(PokerHand(lowercase ) ) == expected def _snake_case ( ) -> Union[str, Any]: __a : Tuple = [PokerHand(lowercase ) for hand in SORTED_HANDS] __a : Optional[int] = poker_hands.copy() shuffle(lowercase ) __a : List[str] = chain(sorted(lowercase ) ) for index, hand in enumerate(lowercase ): assert hand == poker_hands[index] def _snake_case ( ) -> List[str]: # Test that five high straights are compared correctly. __a : Optional[int] = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=lowercase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _snake_case ( ) -> List[str]: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. __a : Dict = PokerHand("""2C 4S AS 3D 5C""" ) __a : Dict = True __a : Optional[int] = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _snake_case ( ) -> Dict: # Problem number 54 from Project Euler # Testing from poker_hands.txt file __a : Tuple = 0 __a : int = os.path.abspath(os.path.dirname(lowercase ) ) __a : Union[str, Any] = os.path.join(lowercase , """poker_hands.txt""" ) with open(lowercase ) as file_hand: for line in file_hand: __a : Union[str, Any] = line[:1_4].strip() __a : Optional[Any] = line[1_5:].strip() __a , __a : List[str] = PokerHand(lowercase ), PokerHand(lowercase ) __a : str = player.compare_with(lowercase ) if output == "Win": answer += 1 assert answer == 3_7_6
697
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = 42 lowercase__ = None lowercase__ = None def _snake_case ( ) -> Node | None: __a : Tuple = Node(1 ) __a : Union[str, Any] = Node(2 ) __a : List[Any] = Node(3 ) __a : Dict = Node(4 ) __a : Dict = Node(5 ) return tree def _snake_case ( lowercase ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _snake_case ( lowercase ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _snake_case ( lowercase ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _snake_case ( lowercase ) -> int: return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _snake_case ( lowercase ) -> Sequence[Node | None]: __a : list[Any] = [] if root is None: return output __a : Optional[Any] = deque([root] ) while process_queue: __a : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _snake_case ( lowercase , lowercase ) -> Sequence[Node | None]: __a : list[Any] = [] def populate_output(lowercase , lowercase ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowercase , lowercase ) return output def _snake_case ( lowercase , lowercase ) -> Sequence[Node | None]: __a : list[Any] = [] def populate_output(lowercase , lowercase ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowercase , lowercase ) return output def _snake_case ( lowercase ) -> Sequence[Node | None] | list[Any]: if root is None: return [] __a : list[Sequence[Node | None]] = [] __a : str = 0 __a : Union[str, Any] = height(lowercase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowercase , lowercase ) ) __a : Union[str, Any] = 1 else: output.append(get_nodes_from_right_to_left(lowercase , lowercase ) ) __a : str = 0 return output def _snake_case ( ) -> None: # Main function for testing. __a : List[Any] = make_tree() print(F"""In-order Traversal: {inorder(lowercase )}""" ) print(F"""Pre-order Traversal: {preorder(lowercase )}""" ) print(F"""Post-order Traversal: {postorder(lowercase )}""" , """\n""" ) print(F"""Height of Tree: {height(lowercase )}""" , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(lowercase ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(lowercase ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(lowercase , level=lowercase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
710
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
697
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Dict = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
711
'''simple docstring''' from __future__ import annotations import bisect def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> int: if hi < 0: __a : Union[str, Any] = len(lowercase ) while lo < hi: __a : List[str] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __a : int = mid + 1 else: __a : int = mid return lo def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> int: if hi < 0: __a : Any = len(lowercase ) while lo < hi: __a : Any = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __a : List[str] = mid + 1 else: __a : Any = mid return lo def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> None: sorted_collection.insert(bisect_left(lowercase , lowercase , lowercase , lowercase ) , lowercase ) def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> None: sorted_collection.insert(bisect_right(lowercase , lowercase , lowercase , lowercase ) , lowercase ) def _snake_case ( lowercase , lowercase ) -> int | None: __a : Dict = 0 __a : Any = len(lowercase ) - 1 while left <= right: __a : str = left + (right - left) // 2 __a : List[Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __a : Optional[Any] = midpoint - 1 else: __a : Optional[int] = midpoint + 1 return None def _snake_case ( lowercase , lowercase ) -> int | None: __a : Optional[int] = bisect.bisect_left(lowercase , lowercase ) if index != len(lowercase ) and sorted_collection[index] == item: return index return None def _snake_case ( lowercase , lowercase , lowercase , lowercase ) -> int | None: if right < left: return None __a : Any = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowercase , lowercase , lowercase , midpoint - 1 ) else: return binary_search_by_recursion(lowercase , lowercase , midpoint + 1 , lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = input('Enter numbers separated by comma:\n').strip() __SCREAMING_SNAKE_CASE : Optional[Any] = sorted(int(item) for item in user_input.split(',')) __SCREAMING_SNAKE_CASE : List[str] = int(input('Enter a single number to be found in the list:\n')) __SCREAMING_SNAKE_CASE : Optional[int] = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
697
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __SCREAMING_SNAKE_CASE : Tuple = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : int = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : int = ['LayoutLMv3FeatureExtractor'] __SCREAMING_SNAKE_CASE : Optional[Any] = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys __SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
712
'''simple docstring''' from itertools import product def _snake_case ( lowercase , lowercase ) -> list[int]: __a : Optional[int] = sides_number __a : Union[str, Any] = max_face_number * dice_number __a : Optional[Any] = [0] * (max_total + 1) __a : Dict = 1 __a : str = range(lowercase , max_face_number + 1 ) for dice_numbers in product(lowercase , repeat=lowercase ): __a : int = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def _snake_case ( ) -> float: __a : Tuple = total_frequency_distribution( sides_number=4 , dice_number=9 ) __a : Union[str, Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) __a : str = 0 __a : Dict = 9 __a : str = 4 * 9 __a : Any = 6 for peter_total in range(lowercase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __a : str = (4**9) * (6**6) __a : List[Any] = peter_wins_count / total_games_number __a : List[Any] = round(lowercase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'''{solution() = }''')
697
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
713
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): '''simple docstring''' super().__init__() self.register_modules( vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , ) def __lowerCamelCase ( self , __UpperCamelCase = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' self.enable_attention_slicing(__UpperCamelCase ) @torch.no_grad() def __call__( self , __UpperCamelCase , __UpperCamelCase = 512 , __UpperCamelCase = 512 , __UpperCamelCase = 50 , __UpperCamelCase = 7.5 , __UpperCamelCase = None , __UpperCamelCase = 1 , __UpperCamelCase = 0.0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = "pil" , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = 1 , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ): __a : Union[str, Any] = 1 elif isinstance(__UpperCamelCase , __UpperCamelCase ): __a : Tuple = len(__UpperCamelCase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(__UpperCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCamelCase , __UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__UpperCamelCase )}.""" ) # get prompt text embeddings __a : Tuple = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __a : Union[str, Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __a : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __a : Optional[int] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __a : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __a , __a , __a : Union[str, Any] = text_embeddings.shape __a : Optional[Any] = text_embeddings.repeat(1 , __UpperCamelCase , 1 ) __a : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , __UpperCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __a : Any = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __a : List[str] if negative_prompt is None: __a : Optional[Any] = [""""""] elif type(__UpperCamelCase ) is not type(__UpperCamelCase ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCamelCase )} !=""" f""" {type(__UpperCamelCase )}.""" ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): __a : Any = [negative_prompt] elif batch_size != len(__UpperCamelCase ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(__UpperCamelCase )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: __a : Tuple = negative_prompt __a : Any = text_input_ids.shape[-1] __a : List[str] = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="""pt""" , ) __a : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __a : List[str] = uncond_embeddings.shape[1] __a : List[Any] = uncond_embeddings.repeat(__UpperCamelCase , __UpperCamelCase , 1 ) __a : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __a : List[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __a : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __a : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __a : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __a : Any = torch.randn( __UpperCamelCase , generator=__UpperCamelCase , device="""cpu""" , dtype=__UpperCamelCase ).to(self.device ) __a : Optional[Any] = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device="""cpu""" , dtype=__UpperCamelCase ).to( self.device ) else: __a : Optional[int] = torch.randn( __UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) __a : str = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __a : Optional[Any] = latents_reference.to(self.device ) __a : str = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __a : List[str] = (latents_shape[3] - latents_shape_reference[3]) // 2 __a : int = (latents_shape[2] - latents_shape_reference[2]) // 2 __a : int = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __a : Tuple = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __a : Optional[Any] = 0 if dx < 0 else dx __a : Optional[Any] = 0 if dy < 0 else dy __a : Optional[int] = max(-dx , 0 ) __a : Optional[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() __a : Optional[int] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(__UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __a : Dict = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __a : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a : List[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a : Optional[Any] = {} if accepts_eta: __a : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance __a : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __a : Tuple = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual __a : Union[str, Any] = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample # perform guidance if do_classifier_free_guidance: __a , __a : List[str] = noise_pred.chunk(2 ) __a : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __a : List[Any] = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __a : Optional[Any] = 1 / 0.1_8_2_1_5 * latents __a : Optional[int] = self.vae.decode(__UpperCamelCase ).sample __a : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __a : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __a : List[str] = self.feature_extractor(self.numpy_to_pil(__UpperCamelCase ) , return_tensors="""pt""" ).to( self.device ) __a , __a : int = self.safety_checker( images=__UpperCamelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __a : Optional[int] = None if output_type == "pil": __a : str = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=__UpperCamelCase , nsfw_content_detected=__UpperCamelCase )
697
0
'''simple docstring''' import numpy as np from PIL import Image def _snake_case ( lowercase , lowercase , lowercase ) -> np.ndarray: __a : Any = np.array(lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) __a : Union[str, Any] = 0 __a : Dict = 0 __a : Optional[Any] = 0 __a : Tuple = 0 # compute the shape of the output matrix __a : Optional[int] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __a : int = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __a : Optional[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __a : Optional[Any] = 0 __a : str = 0 return updated_arr def _snake_case ( lowercase , lowercase , lowercase ) -> np.ndarray: __a : int = np.array(lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) __a : int = 0 __a : Optional[Any] = 0 __a : str = 0 __a : List[Any] = 0 # compute the shape of the output matrix __a : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __a : Optional[int] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __a : Any = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __a : str = 0 __a : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image __SCREAMING_SNAKE_CASE : str = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
714
'''simple docstring''' import numpy as np from PIL import Image def _snake_case ( lowercase , lowercase , lowercase ) -> np.ndarray: __a : Any = np.array(lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) __a : Union[str, Any] = 0 __a : Dict = 0 __a : Optional[Any] = 0 __a : Tuple = 0 # compute the shape of the output matrix __a : Optional[int] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __a : int = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __a : Optional[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __a : Optional[Any] = 0 __a : str = 0 return updated_arr def _snake_case ( lowercase , lowercase , lowercase ) -> np.ndarray: __a : int = np.array(lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) __a : int = 0 __a : Optional[Any] = 0 __a : str = 0 __a : List[Any] = 0 # compute the shape of the output matrix __a : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __a : Optional[int] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __a : Any = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __a : str = 0 __a : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image __SCREAMING_SNAKE_CASE : str = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
697
0
'''simple docstring''' from collections.abc import Generator def _snake_case ( ) -> Generator[int, None, None]: __a : Optional[Any] = 0, 1 while True: __a : List[str] = b, a + b yield b def _snake_case ( lowercase = 1_0_0_0 ) -> int: __a : Dict = 1 __a : Union[str, Any] = fibonacci_generator() while len(str(next(lowercase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
715
'''simple docstring''' import qiskit def _snake_case ( lowercase , lowercase ) -> qiskit.result.counts.Counts: __a : Any = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register __a : str = qiskit.QuantumCircuit(lowercase , lowercase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __a : Any = qiskit.execute(lowercase , lowercase , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
697
0
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __SCREAMING_SNAKE_CASE : Any = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None ): '''simple docstring''' __a : Tuple = None __a : Any = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) __a : int = os.path.abspath("""examples""" ) for item in os.listdir(__UpperCamelCase ): if item not in EXCLUDE_EXAMPLES: __a : Optional[Any] = os.path.join(__UpperCamelCase , __UpperCamelCase ) if os.path.isfile(__UpperCamelCase ) and ".py" in item_path: with self.subTest( tested_script=__UpperCamelCase , feature_script=__UpperCamelCase , tested_section="""main()""" if parser_only else """training_function()""" , ): __a : Any = compare_against_test( os.path.join(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __a : Dict = """\n""".join(__UpperCamelCase ) if special_strings is not None: for string in special_strings: __a : Optional[Any] = diff.replace(__UpperCamelCase , """""" ) self.assertEqual(__UpperCamelCase , """""" ) def __lowerCamelCase ( self ): '''simple docstring''' self.one_complete_example("""complete_nlp_example.py""" , __UpperCamelCase ) self.one_complete_example("""complete_nlp_example.py""" , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) __a : Dict = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) self.one_complete_example("""complete_cv_example.py""" , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = False @classmethod def __lowerCamelCase ( cls ): '''simple docstring''' super().setUpClass() __a : Union[str, Any] = tempfile.mkdtemp() __a : List[Any] = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) __a : Any = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def __lowerCamelCase ( cls ): '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : str = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() __a : Optional[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} """.split() __a : Union[str, Any] = run_command(self._launch_args + testargs , return_stdout=__UpperCamelCase ) self.assertNotIn("""epoch 0:""" , __UpperCamelCase ) self.assertIn("""epoch 1:""" , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} """.split() __a : Optional[int] = run_command(self._launch_args + testargs , return_stdout=__UpperCamelCase ) if torch.cuda.is_available(): __a : Any = torch.cuda.device_count() else: __a : Union[str, Any] = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , __UpperCamelCase ) self.assertIn("""epoch 1:""" , __UpperCamelCase ) else: self.assertIn("""epoch 0:""" , __UpperCamelCase ) self.assertIn("""epoch 1:""" , __UpperCamelCase ) @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): __a : Any = run_command(self._launch_args + testargs , return_stdout=__UpperCamelCase ) __a : List[str] = re.findall("""({.+})""" , __UpperCamelCase ) __a : Optional[int] = [r for r in results if """accuracy""" in r][-1] __a : Tuple = ast.literal_eval(__UpperCamelCase ) self.assertGreaterEqual(results["""accuracy"""] , 0.7_5 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __lowerCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: __a : int = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , """tracking""" ) ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
716
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: for attribute in key.split(""".""" ): __a : str = getattr(lowercase , lowercase ) if weight_type is not None: __a : Dict = getattr(lowercase , lowercase ).shape else: __a : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __a : Any = value elif weight_type == "weight_g": __a : int = value elif weight_type == "weight_v": __a : int = value elif weight_type == "bias": __a : List[Any] = value elif weight_type == "running_mean": __a : Union[str, Any] = value elif weight_type == "running_var": __a : Tuple = value elif weight_type == "num_batches_tracked": __a : Optional[int] = value elif weight_type == "inv_freq": __a : List[str] = value else: __a : List[str] = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _snake_case ( lowercase , lowercase , lowercase ) -> Dict: __a : Dict = [] __a : Dict = fairseq_model.state_dict() __a : Tuple = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __a : int = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __a : List[Any] = True else: for key, mapped_key in MAPPING.items(): __a : Optional[int] = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __a : str = True if "*" in mapped_key: __a : Optional[int] = name.split(lowercase )[0].split(""".""" )[-2] __a : List[Any] = mapped_key.replace("""*""" , lowercase ) if "pos_bias_u" in name: __a : Union[str, Any] = None elif "pos_bias_v" in name: __a : List[Any] = None elif "weight_g" in name: __a : List[Any] = """weight_g""" elif "weight_v" in name: __a : List[Any] = """weight_v""" elif "bias" in name: __a : Optional[int] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __a : str = """weight""" elif "running_mean" in name: __a : List[str] = """running_mean""" elif "inv_freq" in name: __a : Dict = """inv_freq""" elif "running_var" in name: __a : Union[str, Any] = """running_var""" elif "num_batches_tracked" in name: __a : int = """num_batches_tracked""" else: __a : Optional[int] = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[str]: __a : Optional[Any] = full_name.split("""conv_layers.""" )[-1] __a : Union[str, Any] = name.split(""".""" ) __a : Optional[Any] = int(items[0] ) __a : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __a : Dict = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __a : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __a : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __a : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase ) @torch.no_grad() def _snake_case ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Optional[Any]: if config_path is not None: __a : Any = WavaVecaConformerConfig.from_pretrained(lowercase , hidden_act="""swish""" ) else: __a : Optional[int] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __a : Optional[Any] = """rotary""" if is_finetuned: if dict_path: __a : List[Any] = Dictionary.load(lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __a : int = target_dict.pad_index __a : List[str] = target_dict.bos_index __a : str = target_dict.eos_index __a : Dict = len(target_dict.symbols ) __a : Any = os.path.join(lowercase , """vocab.json""" ) if not os.path.isdir(lowercase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowercase ) ) return os.makedirs(lowercase , exist_ok=lowercase ) __a : Dict = target_dict.indices # fairseq has the <pad> and <s> switched __a : Optional[Any] = 0 __a : List[Any] = 1 with open(lowercase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowercase , lowercase ) __a : int = WavaVecaCTCTokenizer( lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowercase , ) __a : Optional[int] = True if config.feat_extract_norm == """layer""" else False __a : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , ) __a : str = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase ) processor.save_pretrained(lowercase ) __a : List[str] = WavaVecaConformerForCTC(lowercase ) else: __a : Optional[int] = WavaVecaConformerForPreTraining(lowercase ) if is_finetuned: __a , __a , __a : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __a : Optional[int] = argparse.Namespace(task="""audio_pretraining""" ) __a : Tuple = fairseq.tasks.setup_task(lowercase ) __a , __a , __a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase ) __a : Any = model[0].eval() recursively_load_weights(lowercase , lowercase , not is_finetuned ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
697
0
'''simple docstring''' def _snake_case ( lowercase , lowercase ) -> str: if not isinstance(lowercase , lowercase ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(lowercase , lowercase ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) __a : List[str] = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(lowercase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' import warnings from functools import wraps from typing import Callable def _snake_case ( lowercase ) -> Callable: @wraps(lowercase ) def _inner_fn(*lowercase , **lowercase ): warnings.warn( (F"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") , lowercase , ) return fn(*lowercase , **lowercase ) return _inner_fn
697
0
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Dict = 'T5Config' class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = "mt5" lowercase__ = MTaConfig class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = "mt5" lowercase__ = MTaConfig class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = "mt5" lowercase__ = MTaConfig
718
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = ["input_features", "attention_mask"] def __init__( self , __UpperCamelCase=80 , __UpperCamelCase=1_6000 , __UpperCamelCase=0.0 , __UpperCamelCase=10 , __UpperCamelCase=25 , __UpperCamelCase="hamming_window" , __UpperCamelCase=3_2_7_6_8.0 , __UpperCamelCase=0.9_7 , __UpperCamelCase=1.0 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=False , **__UpperCamelCase , ): '''simple docstring''' super().__init__(feature_size=__UpperCamelCase , sampling_rate=__UpperCamelCase , padding_value=__UpperCamelCase , **__UpperCamelCase ) __a : List[str] = feature_size __a : List[str] = sampling_rate __a : int = padding_value __a : Any = hop_length __a : int = win_length __a : Tuple = frame_signal_scale __a : Union[str, Any] = preemphasis_coeff __a : List[str] = mel_floor __a : Union[str, Any] = normalize_means __a : Optional[Any] = normalize_vars __a : Optional[Any] = win_function __a : Union[str, Any] = return_attention_mask __a : List[Any] = win_length * sampling_rate // 1000 __a : List[Any] = hop_length * sampling_rate // 1000 __a : Optional[Any] = optimal_fft_length(self.sample_size ) __a : Any = (self.n_fft // 2) + 1 def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' if self.win_function == "hamming_window": __a : str = window_function(window_length=self.sample_size , name=self.win_function , periodic=__UpperCamelCase ) else: __a : Dict = window_function(window_length=self.sample_size , name=self.win_function ) __a : Optional[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) __a : Any = spectrogram( one_waveform * self.frame_signal_scale , window=__UpperCamelCase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=__UpperCamelCase , preemphasis=self.preemphasis_coeff , mel_filters=__UpperCamelCase , mel_floor=self.mel_floor , log_mel="""log""" , ) return msfc_features.T def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if self.normalize_means: __a : int = x[:input_length].mean(axis=0 ) __a : str = np.subtract(__UpperCamelCase , __UpperCamelCase ) if self.normalize_vars: __a : Dict = x[:input_length].std(axis=0 ) __a : Dict = np.divide(__UpperCamelCase , __UpperCamelCase ) if input_length < x.shape[0]: __a : Union[str, Any] = padding_value # make sure array is in float32 __a : Any = x.astype(np.floataa ) return x def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ): '''simple docstring''' __a : Tuple = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__UpperCamelCase , __UpperCamelCase , self.padding_value ) for x, n in zip(__UpperCamelCase , __UpperCamelCase )] def __call__( self , __UpperCamelCase , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __a : Tuple = isinstance(__UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __a : Tuple = is_batched_numpy or ( isinstance(__UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __a : Tuple = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__UpperCamelCase , np.ndarray ): __a : List[str] = np.asarray(__UpperCamelCase , dtype=np.floataa ) elif isinstance(__UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __a : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __a : Any = [raw_speech] # extract fbank features __a : str = [self._extract_mfsc_features(__UpperCamelCase ) for one_waveform in raw_speech] # convert into correct format for padding __a : Optional[Any] = BatchFeature({"""input_features""": features} ) __a : Any = self.pad( __UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , truncation=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) # make sure list is in array format __a : int = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , __UpperCamelCase ): __a : Union[str, Any] = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for feature in input_features] __a : List[str] = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: __a : Optional[int] = [np.asarray(__UpperCamelCase , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: __a : Optional[Any] = ( np.array(__UpperCamelCase , dtype=np.intaa ) if self._get_padding_strategies(__UpperCamelCase , max_length=__UpperCamelCase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) __a : int = self.normalize( padded_inputs["""input_features"""] , attention_mask=__UpperCamelCase ) if return_tensors is not None: __a : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
697
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] __SCREAMING_SNAKE_CASE : Any = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] __SCREAMING_SNAKE_CASE : Dict = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): __SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
719
'''simple docstring''' __SCREAMING_SNAKE_CASE : int = 9.80_665 def _snake_case ( lowercase , lowercase , lowercase = g ) -> float: if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
697
0
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case ( lowercase , lowercase , lowercase=None , lowercase=None ) -> List[str]: if attention_mask is None: __a : List[str] = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class SCREAMING_SNAKE_CASE__ : lowercase__ = OPTConfig lowercase__ = {} lowercase__ = "gelu" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=99 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=4 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=20 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=16 , __UpperCamelCase=16 , ): '''simple docstring''' __a : List[str] = parent __a : int = batch_size __a : Optional[int] = seq_length __a : List[Any] = is_training __a : List[str] = use_labels __a : Any = vocab_size __a : Union[str, Any] = hidden_size __a : Union[str, Any] = num_hidden_layers __a : int = num_attention_heads __a : Optional[Any] = intermediate_size __a : Tuple = hidden_act __a : List[str] = hidden_dropout_prob __a : Optional[int] = attention_probs_dropout_prob __a : Union[str, Any] = max_position_embeddings __a : str = eos_token_id __a : List[Any] = pad_token_id __a : List[Any] = bos_token_id __a : str = embed_dim __a : Dict = word_embed_proj_dim __a : List[Any] = False def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __a : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __a : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) __a : Optional[int] = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__UpperCamelCase , **self.config_updates , ) __a : Optional[int] = prepare_opt_inputs_dict(__UpperCamelCase , __UpperCamelCase ) return config, inputs_dict def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Any = TFOPTModel(config=__UpperCamelCase ) __a : Tuple = inputs_dict["""input_ids"""] __a : str = input_ids[:1, :] __a : List[Any] = inputs_dict["""attention_mask"""][:1, :] __a : Tuple = 1 # first forward pass __a : Dict = model(__UpperCamelCase , attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase ) __a : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __a : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __a : List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __a : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) __a : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __a : str = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] __a : List[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __a : Optional[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __a : Any = output_from_no_past[:, -3:, random_slice_idx] __a : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , rtol=1E-3 ) @require_tf class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): lowercase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowercase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowercase__ = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = 10 def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = TFOPTModelTester(self ) __a : List[str] = ConfigTester(self , config_class=__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' __a : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__UpperCamelCase , __UpperCamelCase ): if hasattr(__UpperCamelCase , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__UpperCamelCase , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings __a : Any = model_class(config=__UpperCamelCase ) __a : Dict = _get_word_embedding_weight(__UpperCamelCase , model.get_input_embeddings() ) __a : Optional[int] = _get_word_embedding_weight(__UpperCamelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__UpperCamelCase ) __a : Union[str, Any] = _get_word_embedding_weight(__UpperCamelCase , model.get_input_embeddings() ) __a : Tuple = _get_word_embedding_weight(__UpperCamelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __a : str = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __UpperCamelCase ) # check that weights remain the same after resizing __a : Any = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __a : List[str] = False self.assertTrue(__UpperCamelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __UpperCamelCase ) __a : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __a : Any = False self.assertTrue(__UpperCamelCase ) def _snake_case ( lowercase ) -> Optional[int]: return tf.constant(lowercase , dtype=tf.intaa ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = 99 def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = tf.ones((4, 1) , dtype=tf.intaa ) * 2 __a : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) __a : str = input_ids.shape[0] __a : Optional[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = TFOPTModel.from_pretrained("""facebook/opt-350m""" ) __a : Optional[int] = _long_tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) __a : Union[str, Any] = tf.not_equal(__UpperCamelCase , model.config.pad_token_id ) with tf.GradientTape(): __a : str = model(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase ).last_hidden_state __a : List[str] = (1, 11, 512) self.assertEqual(output.shape , __UpperCamelCase ) __a : Tuple = tf.constant( [[-0.2_8_7_3, -1.9_2_1_8, -0.3_0_3_3], [-1.2_7_1_0, -0.1_3_3_8, -0.1_9_0_2], [0.4_0_9_5, 0.1_2_1_4, -1.3_1_2_1]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __UpperCamelCase , atol=4E-3 ) ) __a : Any = tf.function(__UpperCamelCase , jit_compile=__UpperCamelCase ) __a : Tuple = xla_generate(__UpperCamelCase , __UpperCamelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __UpperCamelCase , atol=4E-2 ) ) @require_tf @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() __a : str = """facebook/opt-350m""" def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = TFOPTForCausalLM.from_pretrained(self.path_model ) __a : Union[str, Any] = GPTaTokenizer.from_pretrained(self.path_model ) __a : Dict = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __a : Tuple = tokenizer(__UpperCamelCase , return_tensors="""tf""" , padding=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) __a : str = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) __a : Optional[int] = tf.constant( [ [1.3_8_5_1, -13.8923, -10.5229, -10.7533, -0.2_3_0_9, -10.2384, -0.5_3_6_5, -9.0_9_4_7, -5.1_6_7_0], [-4.7_0_7_3, -10.6276, -3.9_4_1_5, -21.5242, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2], [0.6_2_4_7, -3.4_2_2_9, -8.9_1_7_9, -1.4_2_9_7, -14.1650, 1.4_1_4_6, -9.0_2_1_8, -0.2_7_0_3, -0.2_7_0_3], [6.4_7_8_3, -1.9_9_1_3, -10.7926, -2.3_3_3_6, 1.5_0_9_2, -0.9_9_7_4, -6.8_2_1_3, 1.3_4_7_7, 1.3_4_7_7], ] ) self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-4 ) ) __a : List[str] = tf.function(__UpperCamelCase , jit_compile=__UpperCamelCase ) __a : str = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-4 ) ) @require_tf @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def __lowerCamelCase ( self ): '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = """facebook/opt-125m""" __a : Tuple = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] __a : Tuple = [] __a : int = GPTaTokenizer.from_pretrained(__UpperCamelCase ) __a : Optional[int] = TFOPTForCausalLM.from_pretrained(__UpperCamelCase ) for prompt in self.prompts: __a : List[Any] = tokenizer(__UpperCamelCase , return_tensors="""tf""" ).input_ids __a : Optional[Any] = model.generate(__UpperCamelCase , max_length=10 ) __a : Dict = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) predicted_outputs += generated_string self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = """facebook/opt-350m""" __a : str = GPTaTokenizer.from_pretrained(__UpperCamelCase ) __a : Any = TFOPTForCausalLM.from_pretrained(__UpperCamelCase ) __a : Tuple = """left""" # use different length sentences to test batching __a : Optional[Any] = [ """Hello, my dog is a little""", """Today, I""", ] __a : Dict = tokenizer(__UpperCamelCase , return_tensors="""tf""" , padding=__UpperCamelCase ) __a : List[Any] = inputs["""input_ids"""] __a : Optional[int] = model.generate(input_ids=__UpperCamelCase , attention_mask=inputs["""attention_mask"""] ) __a : List[Any] = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids __a : List[Any] = model.generate(input_ids=__UpperCamelCase ) __a : Optional[Any] = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) __a : Union[str, Any] = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids __a : Tuple = model.generate(input_ids=__UpperCamelCase , max_length=model.config.max_length - num_paddings ) __a : Any = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) __a : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCamelCase ) __a : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCamelCase ) __a : int = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual(__UpperCamelCase , [non_padded_sentence, padded_sentence] ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = """facebook/opt-350m""" __a : str = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] __a : int = [] __a : int = GPTaTokenizer.from_pretrained(__UpperCamelCase ) __a : Tuple = TFOPTForCausalLM.from_pretrained(__UpperCamelCase ) for prompt in self.prompts: __a : List[Any] = tokenizer(__UpperCamelCase , return_tensors="""tf""" ).input_ids __a : str = model.generate(__UpperCamelCase , max_length=10 ) __a : Tuple = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) predicted_outputs += generated_string self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
720
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=30 , __UpperCamelCase=400 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=1 / 255 , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=True , ): '''simple docstring''' __a : List[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __a : Dict = parent __a : Union[str, Any] = batch_size __a : Optional[int] = num_channels __a : Dict = min_resolution __a : List[Any] = max_resolution __a : int = do_resize __a : str = size __a : Optional[Any] = do_rescale __a : Optional[Any] = rescale_factor __a : str = do_normalize __a : Any = image_mean __a : Optional[Any] = image_std __a : Dict = do_pad def __lowerCamelCase ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=False ): '''simple docstring''' if not batched: __a : Union[str, Any] = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): __a , __a : Tuple = image.size else: __a , __a : Tuple = image.shape[1], image.shape[2] if w < h: __a : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) __a : Tuple = self.size["""shortest_edge"""] elif w > h: __a : Optional[Any] = self.size["""shortest_edge"""] __a : Any = int(self.size["""shortest_edge"""] * w / h ) else: __a : Any = self.size["""shortest_edge"""] __a : Optional[int] = self.size["""shortest_edge"""] else: __a : Any = [] for image in image_inputs: __a , __a : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __a : List[Any] = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[0] )[0] __a : Optional[Any] = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): lowercase__ = DetrImageProcessor if is_vision_available() else None def __lowerCamelCase ( self ): '''simple docstring''' __a : str = DetrImageProcessingTester(self ) @property def __lowerCamelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_rescale""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """rescale_factor""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """size""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_pad""" ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) __a : List[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __a , __a : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a , __a : Optional[int] = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) __a : Any = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input __a : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __a , __a : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a : List[str] = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values __a , __a : str = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input __a : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __a , __a : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a : List[str] = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values __a , __a : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __a : Dict = json.loads(f.read() ) __a : Optional[int] = {"""image_id""": 3_9769, """annotations""": target} # encode them __a : List[str] = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) __a : Tuple = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values __a : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) __a : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1E-4 ) ) # verify area __a : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes __a : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) __a : Any = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1E-3 ) ) # verify image_id __a : Union[str, Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd __a : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels __a : Any = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify orig_size __a : Any = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size __a : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) ) @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __a : Tuple = json.loads(f.read() ) __a : str = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __a : int = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __a : List[str] = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) __a : Tuple = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , masks_path=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values __a : List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) __a : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1E-4 ) ) # verify area __a : Optional[Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes __a : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) __a : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1E-3 ) ) # verify image_id __a : List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd __a : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels __a : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify masks __a : Union[str, Any] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __UpperCamelCase ) # verify orig_size __a : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size __a : List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) )
697
0
'''simple docstring''' from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any = { 'nielsr/canine-s': 2_048, } # Unicode defines 1,114,112 total “codepoints” __SCREAMING_SNAKE_CASE : int = 1_114_112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : Dict = 0Xe_0_0_0 __SCREAMING_SNAKE_CASE : Any = 0Xe_0_0_1 __SCREAMING_SNAKE_CASE : Union[str, Any] = 0Xe_0_0_2 __SCREAMING_SNAKE_CASE : Optional[Any] = 0Xe_0_0_3 __SCREAMING_SNAKE_CASE : Optional[Any] = 0Xe_0_0_4 # Maps special codepoints to human-readable names. __SCREAMING_SNAKE_CASE : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. __SCREAMING_SNAKE_CASE : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __UpperCamelCase=chr(__UpperCamelCase ) , __UpperCamelCase=chr(__UpperCamelCase ) , __UpperCamelCase=chr(__UpperCamelCase ) , __UpperCamelCase=chr(__UpperCamelCase ) , __UpperCamelCase=chr(__UpperCamelCase ) , __UpperCamelCase=chr(__UpperCamelCase ) , __UpperCamelCase=False , __UpperCamelCase=2048 , **__UpperCamelCase , ): '''simple docstring''' __a : Tuple = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else bos_token __a : Optional[Any] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else eos_token __a : str = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else sep_token __a : Union[str, Any] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else cls_token __a : List[Any] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __a : Union[str, Any] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , model_max_length=__UpperCamelCase , **__UpperCamelCase , ) # Creates a mapping for looking up the IDs of special symbols. __a : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): __a : List[str] = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. __a : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } __a : Tuple = UNICODE_VOCAB_SIZE __a : Optional[Any] = len(self._special_codepoints ) @property def __lowerCamelCase ( self ): '''simple docstring''' return self._unicode_vocab_size def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' return list(__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' try: return ord(__UpperCamelCase ) except TypeError: raise ValueError(f"""invalid token: '{token}'""" ) def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__UpperCamelCase ) except TypeError: raise ValueError(f"""invalid id: {index}""" ) def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' return "".join(__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ): '''simple docstring''' __a : int = [self.sep_token_id] __a : List[str] = [self.cls_token_id] __a : List[Any] = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) __a : List[Any] = [1] + ([0] * len(__UpperCamelCase )) + [1] if token_ids_a is not None: result += ([0] * len(__UpperCamelCase )) + [1] return result def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ): '''simple docstring''' __a : List[str] = [self.sep_token_id] __a : int = [self.cls_token_id] __a : Union[str, Any] = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ): '''simple docstring''' return ()
721
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __SCREAMING_SNAKE_CASE : Optional[int] = trt.Logger(trt.Logger.WARNING) __SCREAMING_SNAKE_CASE : Tuple = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) __SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) __SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if args.tokenizer_name: __SCREAMING_SNAKE_CASE : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) __SCREAMING_SNAKE_CASE : List[Any] = args.per_device_eval_batch_size __SCREAMING_SNAKE_CASE : int = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __SCREAMING_SNAKE_CASE : Optional[Any] = True __SCREAMING_SNAKE_CASE : Tuple = 'temp_engine/bert-fp32.engine' if args.fpaa: __SCREAMING_SNAKE_CASE : Dict = 'temp_engine/bert-fp16.engine' if args.inta: __SCREAMING_SNAKE_CASE : Tuple = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') __SCREAMING_SNAKE_CASE : Optional[Any] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __SCREAMING_SNAKE_CASE : List[Any] = [network.get_input(i) for i in range(network.num_inputs)] __SCREAMING_SNAKE_CASE : List[Any] = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __SCREAMING_SNAKE_CASE : Tuple = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __SCREAMING_SNAKE_CASE : Dict = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __SCREAMING_SNAKE_CASE : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: __a : Dict = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __a : List[Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __a : str = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowercase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowercase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowercase ) # start time __a : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowercase ) for d_inp in d_inputs] + [int(lowercase ), int(lowercase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowercase , lowercase , lowercase ) cuda.memcpy_dtoh_async(lowercase , lowercase , lowercase ) # Synchronize the stream and take time stream.synchronize() # end time __a : str = time.time() __a : Any = end_time - start_time __a : Optional[int] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __SCREAMING_SNAKE_CASE : Optional[Any] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __SCREAMING_SNAKE_CASE : List[str] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __SCREAMING_SNAKE_CASE : int = raw_datasets['validation'].column_names __SCREAMING_SNAKE_CASE : Tuple = 'question' if 'question' in column_names else column_names[0] __SCREAMING_SNAKE_CASE : List[Any] = 'context' if 'context' in column_names else column_names[1] __SCREAMING_SNAKE_CASE : Tuple = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __SCREAMING_SNAKE_CASE : Tuple = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) __SCREAMING_SNAKE_CASE : Dict = min(args.max_seq_length, tokenizer.model_max_length) def _snake_case ( lowercase ) -> Tuple: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __a : Optional[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __a : Optional[int] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowercase , stride=args.doc_stride , return_overflowing_tokens=lowercase , return_offsets_mapping=lowercase , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __a : Optional[Any] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __a : Optional[Any] = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __a : Dict = tokenized_examples.sequence_ids(lowercase ) __a : Optional[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __a : Union[str, Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __a : int = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples __SCREAMING_SNAKE_CASE : int = raw_datasets['validation'] # Validation Feature Creation __SCREAMING_SNAKE_CASE : Union[str, Any] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) __SCREAMING_SNAKE_CASE : List[Any] = default_data_collator __SCREAMING_SNAKE_CASE : Union[str, Any] = eval_dataset.remove_columns(['example_id', 'offset_mapping']) __SCREAMING_SNAKE_CASE : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _snake_case ( lowercase , lowercase , lowercase , lowercase="eval" ) -> Any: # Post-processing: we match the start logits and end logits to answers in the original context. __a : List[str] = postprocess_qa_predictions( examples=lowercase , features=lowercase , predictions=lowercase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowercase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __a : List[str] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __a : List[str] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __a : Optional[Any] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowercase , label_ids=lowercase ) __SCREAMING_SNAKE_CASE : List[Any] = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _snake_case ( lowercase ) -> Optional[int]: return trt.volume(engine.get_binding_shape(lowercase ) ) * engine.get_binding_dtype(lowercase ).itemsize # Allocate device memory for inputs and outputs. __SCREAMING_SNAKE_CASE : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __SCREAMING_SNAKE_CASE : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __SCREAMING_SNAKE_CASE : Union[str, Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __SCREAMING_SNAKE_CASE : str = cuda.mem_alloc(h_outputa.nbytes) __SCREAMING_SNAKE_CASE : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __SCREAMING_SNAKE_CASE : Tuple = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') __SCREAMING_SNAKE_CASE : Union[str, Any] = 0.0 __SCREAMING_SNAKE_CASE : str = 0 __SCREAMING_SNAKE_CASE : str = timeit.default_timer() __SCREAMING_SNAKE_CASE : Dict = None for step, batch in enumerate(eval_dataloader): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = outputs __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(start_logits) __SCREAMING_SNAKE_CASE : Tuple = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __SCREAMING_SNAKE_CASE : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __SCREAMING_SNAKE_CASE : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __SCREAMING_SNAKE_CASE : List[str] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __SCREAMING_SNAKE_CASE : List[str] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __SCREAMING_SNAKE_CASE : Tuple = nested_truncate(all_preds, len(eval_dataset)) __SCREAMING_SNAKE_CASE : str = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000)) logger.info('Total Number of Inference = %d', niter) __SCREAMING_SNAKE_CASE : Optional[int] = post_processing_function(eval_examples, eval_dataset, all_preds) __SCREAMING_SNAKE_CASE : List[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
697
0
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): lowercase__ = PegasusTokenizer lowercase__ = PegasusTokenizerFast lowercase__ = True lowercase__ = True def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a : Optional[Any] = PegasusTokenizer(__UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def __lowerCamelCase ( self , **__UpperCamelCase ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' return ("This is a test", "This is a test") def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = """</s>""" __a : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(__UpperCamelCase ) , 1103 ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __a : Tuple = self.tokenizer_class.from_pretrained(self.tmpdirname ) __a : Any = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) __a : List[str] = rust_tokenizer([raw_input_str] , return_tensors=__UpperCamelCase , add_special_tokens=__UpperCamelCase ).input_ids[0] __a : str = py_tokenizer([raw_input_str] , return_tensors=__UpperCamelCase , add_special_tokens=__UpperCamelCase ).input_ids[0] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __a : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" __a : Optional[int] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] __a : str = tokenizer([raw_input_str] , return_tensors=__UpperCamelCase ).input_ids[0] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 __a : Optional[Any] = """To ensure a smooth flow of bank resolutions.""" __a : Dict = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] __a : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=__UpperCamelCase ).input_ids[0] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = ["""This is going to be way too long.""" * 150, """short example"""] __a : Dict = ["""not super long but more than 5 tokens""", """tiny"""] __a : str = self._large_tokenizer(__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="""pt""" ) __a : Dict = self._large_tokenizer( text_target=__UpperCamelCase , max_length=5 , padding=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(__UpperCamelCase ) == 2 # input_ids, attention_mask. @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): lowercase__ = PegasusTokenizer lowercase__ = PegasusTokenizerFast lowercase__ = True lowercase__ = True def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a : str = PegasusTokenizer(__UpperCamelCase , offset=0 , mask_token_sent=__UpperCamelCase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def __lowerCamelCase ( self , **__UpperCamelCase ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' return ("This is a test", "This is a test") def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __a : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) __a : Dict = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) __a : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=__UpperCamelCase , add_special_tokens=__UpperCamelCase ).input_ids[0] __a : Tuple = py_tokenizer([raw_input_str] , return_tensors=__UpperCamelCase , add_special_tokens=__UpperCamelCase ).input_ids[0] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) @require_torch def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = ["""This is going to be way too long.""" * 1000, """short example"""] __a : Union[str, Any] = ["""not super long but more than 5 tokens""", """tiny"""] __a : List[str] = self._large_tokenizer(__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="""pt""" ) __a : List[Any] = self._large_tokenizer( text_target=__UpperCamelCase , max_length=5 , padding=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(__UpperCamelCase ) == 2 # input_ids, attention_mask. def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) __a : Optional[int] = self._large_tokenizer(__UpperCamelCase ).input_ids self.assertListEqual( __UpperCamelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
700
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = 42 lowercase__ = 42 def __init__( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) @torch.no_grad() def __call__( self , __UpperCamelCase = 1 , __UpperCamelCase = 50 , __UpperCamelCase = None , __UpperCamelCase = "pil" , __UpperCamelCase = True , **__UpperCamelCase , ): '''simple docstring''' __a : int = self.unet.config.sample_size __a : Optional[int] = (batch_size, 3, img_size, img_size) __a : Union[str, Any] = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) __a : Dict = randn_tensor(__UpperCamelCase , generator=__UpperCamelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper __a : Dict = self.scheduler.schedule[t] __a : Any = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat __a , __a : Tuple = self.scheduler.add_noise_to_input(__UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. __a : List[Any] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev __a : str = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. __a : Union[str, Any] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample __a : Tuple = self.scheduler.step_correct( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , step_output.prev_sample , step_output["""derivative"""] , ) __a : Tuple = step_output.prev_sample __a : Optional[Any] = (sample / 2 + 0.5).clamp(0 , 1 ) __a : Dict = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a : List[Any] = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase )
697
0
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __SCREAMING_SNAKE_CASE : Tuple = HUGGINGFACE_HUB_CACHE __SCREAMING_SNAKE_CASE : Dict = 'config.json' __SCREAMING_SNAKE_CASE : str = 'diffusion_pytorch_model.bin' __SCREAMING_SNAKE_CASE : Optional[Any] = 'diffusion_flax_model.msgpack' __SCREAMING_SNAKE_CASE : int = 'model.onnx' __SCREAMING_SNAKE_CASE : Tuple = 'diffusion_pytorch_model.safetensors' __SCREAMING_SNAKE_CASE : Dict = 'weights.pb' __SCREAMING_SNAKE_CASE : List[str] = 'https://huggingface.co' __SCREAMING_SNAKE_CASE : str = default_cache_path __SCREAMING_SNAKE_CASE : List[str] = 'diffusers_modules' __SCREAMING_SNAKE_CASE : Tuple = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) __SCREAMING_SNAKE_CASE : List[Any] = ['fp16', 'non-ema'] __SCREAMING_SNAKE_CASE : Union[str, Any] = '.self_attn'
701
'''simple docstring''' def _snake_case ( lowercase ) -> bool: if not isinstance(lowercase , lowercase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __a : str = str(lowercase ) __a : Any = """""".join(sorted(lowercase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _snake_case ( lowercase = 9_9 ) -> int: if not 0 < percent < 1_0_0: raise ValueError("""solution() only accepts values from 0 to 100""" ) __a : List[str] = 0 __a : Union[str, Any] = 1 while True: if check_bouncy(lowercase ): bouncy_num += 1 if (bouncy_num / num) * 1_0_0 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
697
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class SCREAMING_SNAKE_CASE__ : def __init__( self , __UpperCamelCase ): '''simple docstring''' __a : str = value __a : Node | None = None __a : Node | None = None class SCREAMING_SNAKE_CASE__ : def __init__( self , __UpperCamelCase ): '''simple docstring''' __a : List[Any] = tree def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ): '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _snake_case ( lowercase , lowercase , lowercase ) -> Any: # Construct model if gpta_config_file == "": __a : Dict = GPTaConfig() else: __a : Optional[Any] = GPTaConfig.from_json_file(lowercase ) __a : Union[str, Any] = GPTaModel(lowercase ) # Load weights from numpy load_tf_weights_in_gpta(lowercase , lowercase , lowercase ) # Save pytorch-model __a : Optional[int] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME __a : Dict = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , lowercase ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) __SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
697
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __SCREAMING_SNAKE_CASE : Optional[Any] = 16 __SCREAMING_SNAKE_CASE : Union[str, Any] = 32 def _snake_case ( lowercase , lowercase = 1_6 ) -> Optional[int]: '''simple docstring''' __a : List[str] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __a : Tuple = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) __a : Any = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __a : Optional[Any] = datasets.map( lowercase , batched=lowercase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a : int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. __a : List[Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __a : Union[str, Any] = 1_6 elif accelerator.mixed_precision != "no": __a : str = 8 else: __a : Union[str, Any] = None return tokenizer.pad( lowercase , padding="""longest""" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="""pt""" , ) # Instantiate dataloaders. __a : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) __a : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __SCREAMING_SNAKE_CASE : int = mocked_dataloaders # noqa: F811 def _snake_case ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowercase ) == "1": __a : Any = 2 # New Code # __a : List[Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator __a : Optional[int] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a : Union[str, Any] = config["""lr"""] __a : List[str] = int(config["""num_epochs"""] ) __a : Dict = int(config["""seed"""] ) __a : Optional[int] = int(config["""batch_size"""] ) __a : int = evaluate.load("""glue""" , """mrpc""" ) set_seed(lowercase ) __a : str = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a : Any = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __a : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer __a : Union[str, Any] = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler __a : List[str] = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=1_0_0 , num_training_steps=(len(lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a : Dict = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase ): __a : Union[str, Any] = model(**lowercase ) __a : Tuple = output.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a : Union[str, Any] = model(**lowercase ) __a : List[str] = outputs.logits.argmax(dim=-1 ) __a : Dict = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowercase , references=lowercase , ) __a : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowercase ) def _snake_case ( ) -> Optional[Any]: '''simple docstring''' __a : Union[str, Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowercase , default=lowercase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=lowercase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __a : int = parser.parse_args() __a : Union[str, Any] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
703
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def __lowerCamelCase ( *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = MODEL_FOR_OBJECT_DETECTION_MAPPING def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Optional[Any] = ObjectDetectionPipeline(model=__UpperCamelCase , image_processor=__UpperCamelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : List[str] = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(__UpperCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __UpperCamelCase , { """score""": ANY(__UpperCamelCase ), """label""": ANY(__UpperCamelCase ), """box""": {"""xmin""": ANY(__UpperCamelCase ), """ymin""": ANY(__UpperCamelCase ), """xmax""": ANY(__UpperCamelCase ), """ymax""": ANY(__UpperCamelCase )}, } , ) import datasets __a : Optional[int] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) __a : Tuple = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] __a : Any = object_detector(__UpperCamelCase , threshold=0.0 ) self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for outputs in batch_outputs: self.assertGreater(len(__UpperCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __UpperCamelCase , { """score""": ANY(__UpperCamelCase ), """label""": ANY(__UpperCamelCase ), """box""": {"""xmin""": ANY(__UpperCamelCase ), """ymin""": ANY(__UpperCamelCase ), """xmax""": ANY(__UpperCamelCase ), """ymax""": ANY(__UpperCamelCase )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass @require_torch def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = """hf-internal-testing/tiny-detr-mobilenetsv3""" __a : Dict = AutoModelForObjectDetection.from_pretrained(__UpperCamelCase ) __a : Optional[Any] = AutoFeatureExtractor.from_pretrained(__UpperCamelCase ) __a : str = ObjectDetectionPipeline(model=__UpperCamelCase , feature_extractor=__UpperCamelCase ) __a : Optional[int] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ] , ) __a : Union[str, Any] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : str = """facebook/detr-resnet-50""" __a : Dict = AutoModelForObjectDetection.from_pretrained(__UpperCamelCase ) __a : int = AutoFeatureExtractor.from_pretrained(__UpperCamelCase ) __a : int = ObjectDetectionPipeline(model=__UpperCamelCase , feature_extractor=__UpperCamelCase ) __a : Any = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) __a : Optional[Any] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : int = """facebook/detr-resnet-50""" __a : Optional[int] = pipeline("""object-detection""" , model=__UpperCamelCase ) __a : Optional[int] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) __a : List[str] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = 0.9_9_8_5 __a : Union[str, Any] = """facebook/detr-resnet-50""" __a : Optional[int] = pipeline("""object-detection""" , model=__UpperCamelCase ) __a : Union[str, Any] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=__UpperCamelCase ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) @require_torch @require_pytesseract @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : str = """Narsil/layoutlmv3-finetuned-funsd""" __a : List[Any] = 0.9_9_9_3 __a : Dict = pipeline("""object-detection""" , model=__UpperCamelCase , threshold=__UpperCamelCase ) __a : List[str] = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_9_3, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, {"""score""": 0.9_9_9_3, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, ] , )
697
0
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ): '''simple docstring''' super().__init__( __UpperCamelCase , question_encoder_tokenizer=__UpperCamelCase , generator_tokenizer=__UpperCamelCase , index=__UpperCamelCase , init_retrieval=__UpperCamelCase , ) __a : int = None def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __a : Any = self._infer_socket_ifname() # avoid clash with the NCCL port __a : Any = str(distributed_port + 1 ) __a : Optional[int] = dist.new_group(ranks=__UpperCamelCase , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def __lowerCamelCase ( self ): '''simple docstring''' return dist.get_rank(group=self.process_group ) == 0 def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=torch.floataa ): '''simple docstring''' __a : Tuple = torch.empty(__UpperCamelCase , dtype=__UpperCamelCase ) dist.scatter(__UpperCamelCase , src=0 , scatter_list=__UpperCamelCase , group=self.process_group ) return target_tensor def __lowerCamelCase ( self ): '''simple docstring''' __a : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __a : int = next((addr for addr in addrs if addr.startswith("""e""" )) , __UpperCamelCase ) return ifname def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if not dist.is_initialized(): __a : List[Any] = self._main_retrieve(__UpperCamelCase , __UpperCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__UpperCamelCase ) # distributed training __a : List[Any] = dist.get_world_size(group=self.process_group ) # gather logic __a : str = None if self._is_main(): __a : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__UpperCamelCase )] dist.gather(torch.tensor(__UpperCamelCase ) , dst=0 , gather_list=__UpperCamelCase , group=self.process_group ) # scatter logic __a : Optional[Any] = question_hidden_states.shape[0] __a : List[str] = [] __a : List[Any] = [] if self._is_main(): assert len(__UpperCamelCase ) == world_size __a : Tuple = self._main_retrieve(torch.cat(__UpperCamelCase ).numpy() , __UpperCamelCase ) __a : Optional[Any] = torch.tensor(__UpperCamelCase ), torch.tensor(__UpperCamelCase ) __a : str = self._chunk_tensor(__UpperCamelCase , __UpperCamelCase ) __a : Any = self._chunk_tensor(__UpperCamelCase , __UpperCamelCase ) __a : Union[str, Any] = self._scattered(__UpperCamelCase , [n_queries, n_docs] , target_type=torch.intaa ) __a : Any = self._scattered(__UpperCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__UpperCamelCase )
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : List[str] = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
697
0
from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self , __UpperCamelCase ): '''simple docstring''' __a : List[Any] = data __a : str = None def __repr__( self ): '''simple docstring''' return f"""Node({self.data})""" class SCREAMING_SNAKE_CASE__ : def __init__( self ): '''simple docstring''' __a : List[Any] = None def __iter__( self ): '''simple docstring''' __a : List[Any] = self.head while node: yield node.data __a : Tuple = node.next def __len__( self ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self ): '''simple docstring''' return "->".join([str(__UpperCamelCase ) for item in self] ) def __getitem__( self , __UpperCamelCase ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) __a : Union[str, Any] = self.head for _ in range(__UpperCamelCase ): __a : Optional[Any] = current.next __a : List[str] = data def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' self.insert_nth(len(self ) , __UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' self.insert_nth(0 , __UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError("""list index out of range""" ) __a : List[Any] = Node(__UpperCamelCase ) if self.head is None: __a : Dict = new_node elif index == 0: __a : Dict = self.head # link new_node to head __a : str = new_node else: __a : str = self.head for _ in range(index - 1 ): __a : Tuple = temp.next __a : Tuple = temp.next __a : Any = new_node def __lowerCamelCase ( self ): # print every node data '''simple docstring''' print(self ) def __lowerCamelCase ( self ): '''simple docstring''' return self.delete_nth(0 ) def __lowerCamelCase ( self ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def __lowerCamelCase ( self , __UpperCamelCase = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("""List index out of range.""" ) __a : Union[str, Any] = self.head # default first node if index == 0: __a : Optional[int] = self.head.next else: __a : str = self.head for _ in range(index - 1 ): __a : str = temp.next __a : List[str] = temp.next __a : str = temp.next.next return delete_node.data def __lowerCamelCase ( self ): '''simple docstring''' return self.head is None def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = None __a : Tuple = self.head while current: # Store the current node's next node. __a : Any = current.next # Make the current node's next point backwards __a : Union[str, Any] = prev # Make the previous node be the current node __a : List[str] = current # Make the current node the next node (to progress iteration) __a : Optional[Any] = next_node # Return prev in order to put the head at the end __a : Dict = prev def _snake_case ( ) -> None: __a : Any = LinkedList() assert linked_list.is_empty() is True assert str(lowercase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(lowercase ) == i linked_list.insert_nth(lowercase , i + 1 ) assert str(lowercase ) == "->".join(str(lowercase ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(lowercase ) == "->".join(str(lowercase ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(lowercase ) == 9 assert str(lowercase ) == "->".join(str(lowercase ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __a : List[str] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(lowercase ) == "->".join(str(lowercase ) for i in range(-8 , 1 ) ) def _snake_case ( ) -> None: __a : Tuple = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), """dlrow olleH""", 7, 5_5_5_5, 0, -1_9_2.5_5_5_5_5, """Hello, world!""", 7_7.9, Node(1_0 ), None, None, 1_2.2_0, ] __a : Any = LinkedList() for i in test_input: linked_list.insert_tail(lowercase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __a : Optional[int] = linked_list.delete_head() assert result == -9 assert ( str(lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __a : Any = linked_list.delete_tail() assert result == 1_2.2 assert ( str(lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __a : Optional[int] = linked_list.delete_nth(1_0 ) assert result is None assert ( str(lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("""Hello again, world!""" ) ) assert ( str(lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(lowercase ) assert ( str(lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(lowercase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _snake_case ( ) -> List[str]: from doctest import testmod testmod() __a : Optional[Any] = LinkedList() linked_list.insert_head(input("""Inserting 1st at head """ ).strip() ) linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() ) linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() print("""\nDelete head""" ) linked_list.delete_head() print("""Delete tail""" ) linked_list.delete_tail() print("""\nPrint list:""" ) linked_list.print_list() print("""\nReverse linked list""" ) linked_list.reverse() print("""\nPrint list:""" ) linked_list.print_list() print("""\nString representation of linked list:""" ) print(lowercase ) print("""\nReading/changing Node data using indexing:""" ) print(F"""Element at Position 1: {linked_list[1]}""" ) __a : List[Any] = input("""Enter New Value: """ ).strip() print("""New list:""" ) print(lowercase ) print(F"""length of linked_list is : {len(lowercase )}""" ) if __name__ == "__main__": main()
705
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Any = params __a : Optional[Any] = np.array(__UpperCamelCase ) __a : Union[str, Any] = np.array([len(__UpperCamelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , __UpperCamelCase ): '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ): '''simple docstring''' return len(self.lengths ) def __lowerCamelCase ( self ): '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = self.params.max_model_input_size __a : Union[str, Any] = self.lengths > max_len logger.info(f"""Splitting {sum(__UpperCamelCase )} too long sequences.""" ) def divide_chunks(__UpperCamelCase , __UpperCamelCase ): return [l[i : i + n] for i in range(0 , len(__UpperCamelCase ) , __UpperCamelCase )] __a : int = [] __a : Union[str, Any] = [] if self.params.mlm: __a , __a : Any = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: __a , __a : str = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __a : Any = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __a : int = np.insert(__UpperCamelCase , 0 , __UpperCamelCase ) if sub_s[-1] != sep_id: __a : str = np.insert(__UpperCamelCase , len(__UpperCamelCase ) , __UpperCamelCase ) assert len(__UpperCamelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__UpperCamelCase ) new_tok_ids.extend(__UpperCamelCase ) new_lengths.extend([len(__UpperCamelCase ) for l in sub_seqs] ) __a : Dict = np.array(__UpperCamelCase ) __a : Tuple = np.array(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = len(self ) __a : List[str] = self.lengths > 11 __a : int = self.token_ids[indices] __a : Union[str, Any] = self.lengths[indices] __a : Any = len(self ) logger.info(f"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def __lowerCamelCase ( self ): '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: __a : List[str] = self.params.special_tok_ids["""unk_token"""] __a : str = len(self ) __a : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __a : Optional[Any] = (unk_occs / self.lengths) < 0.5 __a : List[str] = self.token_ids[indices] __a : Optional[int] = self.lengths[indices] __a : Any = len(self ) logger.info(f"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def __lowerCamelCase ( self ): '''simple docstring''' if not self.params.is_master: return logger.info(f"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : List[str] = [t[0] for t in batch] __a : str = [t[1] for t in batch] assert len(__UpperCamelCase ) == len(__UpperCamelCase ) # Max for paddings __a : Optional[int] = max(__UpperCamelCase ) # Pad token ids if self.params.mlm: __a : int = self.params.special_tok_ids["""pad_token"""] else: __a : Tuple = self.params.special_tok_ids["""unk_token"""] __a : Any = [list(t.astype(__UpperCamelCase ) ) + [pad_idx] * (max_seq_len_ - len(__UpperCamelCase )) for t in token_ids] assert len(tk_ ) == len(__UpperCamelCase ) assert all(len(__UpperCamelCase ) == max_seq_len_ for t in tk_ ) __a : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) __a : Optional[Any] = torch.tensor(__UpperCamelCase ) # (bs) return tk_t, lg_t
697
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = "layoutlmv3" def __init__( self , __UpperCamelCase=5_0265 , __UpperCamelCase=768 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=3072 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=2 , __UpperCamelCase=0.0_2 , __UpperCamelCase=1E-5 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase=1024 , __UpperCamelCase=128 , __UpperCamelCase=128 , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=128 , __UpperCamelCase=64 , __UpperCamelCase=256 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=224 , __UpperCamelCase=3 , __UpperCamelCase=16 , __UpperCamelCase=None , **__UpperCamelCase , ): '''simple docstring''' super().__init__( vocab_size=__UpperCamelCase , hidden_size=__UpperCamelCase , num_hidden_layers=__UpperCamelCase , num_attention_heads=__UpperCamelCase , intermediate_size=__UpperCamelCase , hidden_act=__UpperCamelCase , hidden_dropout_prob=__UpperCamelCase , attention_probs_dropout_prob=__UpperCamelCase , max_position_embeddings=__UpperCamelCase , type_vocab_size=__UpperCamelCase , initializer_range=__UpperCamelCase , layer_norm_eps=__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase , ) __a : Optional[int] = max_ad_position_embeddings __a : Optional[int] = coordinate_size __a : Optional[int] = shape_size __a : List[Any] = has_relative_attention_bias __a : List[Any] = rel_pos_bins __a : Union[str, Any] = max_rel_pos __a : List[str] = has_spatial_attention_bias __a : List[str] = rel_ad_pos_bins __a : Any = max_rel_ad_pos __a : Tuple = text_embed __a : Dict = visual_embed __a : Dict = input_size __a : Dict = num_channels __a : Union[str, Any] = patch_size __a : Optional[int] = classifier_dropout class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = version.parse("1.12" ) @property def __lowerCamelCase ( self ): '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def __lowerCamelCase ( self ): '''simple docstring''' return 1E-5 @property def __lowerCamelCase ( self ): '''simple docstring''' return 12 def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = 3 , __UpperCamelCase = 40 , __UpperCamelCase = 40 , ): '''simple docstring''' setattr(processor.image_processor , """apply_ocr""" , __UpperCamelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __a : str = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __a : int = processor.tokenizer.num_special_tokens_to_add(__UpperCamelCase ) __a : Any = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCamelCase ) # Generate dummy inputs according to compute batch and sequence __a : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __a : Optional[Any] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __a : int = self._generate_dummy_images(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __a : Tuple = dict( processor( __UpperCamelCase , text=__UpperCamelCase , boxes=__UpperCamelCase , return_tensors=__UpperCamelCase , ) ) return inputs
706
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = "" lowercase__ = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' super().__init__(self , **__UpperCamelCase ) __a : int = repo_info __a : int = token __a : Any = None def __lowerCamelCase ( self ): '''simple docstring''' if self.dir_cache is None: __a : Union[str, Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __a : List[str] = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(__UpperCamelCase ): {"""name""": str(__UpperCamelCase ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = "rb" , **__UpperCamelCase , ): '''simple docstring''' if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) __a : Any = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def __lowerCamelCase ( self , __UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' self._get_dirs() __a : str = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase ): '''simple docstring''' self._get_dirs() __a : int = PurePosixPath(path.strip("""/""" ) ) __a : List[str] = {} for p, f in self.dir_cache.items(): __a : str = PurePosixPath(p.strip("""/""" ) ) __a : Optional[int] = p.parent if root == path: __a : List[str] = f __a : str = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
697
0
'''simple docstring''' def _snake_case ( lowercase ) -> list: if len(lowercase ) < 2: return collection def circle_sort_util(lowercase , lowercase , lowercase ) -> bool: __a : Optional[int] = False if low == high: return swapped __a : List[Any] = low __a : List[str] = high while left < right: if collection[left] > collection[right]: __a : Optional[Any] = ( collection[right], collection[left], ) __a : Dict = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __a : Optional[int] = ( collection[right + 1], collection[left], ) __a : List[str] = True __a : Any = low + int((high - low) / 2 ) __a : int = circle_sort_util(lowercase , lowercase , lowercase ) __a : Tuple = circle_sort_util(lowercase , mid + 1 , lowercase ) return swapped or left_swap or right_swap __a : int = True while is_not_sorted is True: __a : Any = circle_sort_util(lowercase , 0 , len(lowercase ) - 1 ) return collection if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[str] = input('Enter numbers separated by a comma:\n').strip() __SCREAMING_SNAKE_CASE : Dict = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
707
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , __UpperCamelCase , __UpperCamelCase=2 , __UpperCamelCase=32 , __UpperCamelCase=16 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=4 , __UpperCamelCase=[0, 1, 2, 3] , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0_2 , __UpperCamelCase=3 , __UpperCamelCase=[1, 384, 24, 24] , __UpperCamelCase=True , __UpperCamelCase=None , ): '''simple docstring''' __a : List[str] = parent __a : Tuple = batch_size __a : str = image_size __a : int = patch_size __a : Dict = num_channels __a : int = is_training __a : Dict = use_labels __a : Union[str, Any] = hidden_size __a : Dict = num_hidden_layers __a : Dict = backbone_out_indices __a : Optional[int] = num_attention_heads __a : List[str] = intermediate_size __a : Optional[Any] = hidden_act __a : Dict = hidden_dropout_prob __a : Tuple = attention_probs_dropout_prob __a : Any = initializer_range __a : Any = num_labels __a : Optional[Any] = backbone_featmap_shape __a : List[Any] = scope __a : List[str] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __a : Union[str, Any] = (image_size // patch_size) ** 2 __a : List[str] = num_patches + 1 def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Union[str, Any] = None if self.use_labels: __a : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a : Tuple = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 192, 384, 768], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Optional[Any] = DPTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : List[str] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : List[str] = self.num_labels __a : Union[str, Any] = DPTForDepthEstimation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Dict = self.num_labels __a : Tuple = DPTForSemanticSegmentation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : str = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.prepare_config_and_inputs() __a , __a , __a : Tuple = config_and_inputs __a : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): lowercase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowercase__ = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = DPTModelTester(self ) __a : List[Any] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : str = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Any = model_class(__UpperCamelCase ) __a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : int = [*signature.parameters.keys()] __a : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() __a : List[Any] = True if model_class in get_values(__UpperCamelCase ): continue __a : str = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() __a : Union[str, Any] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) __a : List[Any] = model(**__UpperCamelCase ).loss loss.backward() def __lowerCamelCase ( self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __a , __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __a : Any = False __a : Dict = True if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing: continue __a : Any = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.gradient_checkpointing_enable() model.train() __a : List[str] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) __a : Dict = model(**__UpperCamelCase ).loss loss.backward() def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() __a : Any = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: __a : Any = model_class(config=__UpperCamelCase ) # Skip the check for the backbone __a : Optional[Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __a : Optional[int] = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __a : int = DPTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : int = self.model_tester.prepare_config_and_inputs_for_common() __a : Optional[int] = """add""" with self.assertRaises(__UpperCamelCase ): __a : int = DPTForDepthEstimation(__UpperCamelCase ) def _snake_case ( ) -> Any: __a : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' __a : int = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) __a : int = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__UpperCamelCase ) __a : Union[str, Any] = prepare_img() __a : Any = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): __a : Optional[Any] = model(**__UpperCamelCase ) __a : int = outputs.predicted_depth # verify the predicted depth __a : Any = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __UpperCamelCase ) __a : int = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __UpperCamelCase , atol=1E-4 ) )
697
0
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=224 , __UpperCamelCase=1000 , __UpperCamelCase=[3, 3, 6, 4] , __UpperCamelCase=[48, 56, 112, 220] , ): '''simple docstring''' __a : str = parent __a : Union[str, Any] = batch_size __a : Any = num_channels __a : List[str] = is_training __a : str = use_labels __a : str = hidden_dropout_prob __a : List[Any] = attention_probs_dropout_prob __a : Dict = num_labels __a : Optional[int] = image_size __a : List[str] = layer_depths __a : int = embed_dims def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Dict = None if self.use_labels: __a : str = ids_tensor([self.batch_size] , self.num_labels ) __a : Optional[int] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__UpperCamelCase , layer_scale_init_value=1E-5 , ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Any = SwiftFormerModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : List[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Any = self.num_labels __a : int = SwiftFormerForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : str = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __a : Any = SwiftFormerForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Optional[int] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' (__a) : Optional[Any] = self.prepare_config_and_inputs() __a : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): lowercase__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowercase__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = SwiftFormerModelTester(self ) __a : Dict = ConfigTester( self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Union[str, Any] = model_class(__UpperCamelCase ) __a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Dict = model_class(__UpperCamelCase ) __a : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Union[str, Any] = [*signature.parameters.keys()] __a : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Any = SwiftFormerModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __a : Any = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): __a : Union[str, Any] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) __a : List[Any] = outputs.hidden_states __a : List[str] = 8 self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__UpperCamelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Optional[int] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a : Optional[int] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' def _config_zero_init(__UpperCamelCase ): __a : Optional[Any] = copy.deepcopy(__UpperCamelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__UpperCamelCase , __UpperCamelCase , 1E-10 ) if isinstance(getattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ): __a : Optional[Any] = _config_zero_init(getattr(__UpperCamelCase , __UpperCamelCase ) ) setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return configs_no_init __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __a : Any = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: __a : Any = model_class(config=__UpperCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass def _snake_case ( ) -> Optional[Any]: __a : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : str = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(__UpperCamelCase ) __a : int = self.default_image_processor __a : List[str] = prepare_img() __a : Any = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): __a : Union[str, Any] = model(**__UpperCamelCase ) # verify the logits __a : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) __a : List[Any] = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) )
708
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) __a : Optional[int] = Vector() def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(__UpperCamelCase ) , """(0,0,0,0,0,1)""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = Vector([1, 2, 3, 4] ) self.assertEqual(len(__UpperCamelCase ) , 4 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = Vector([1, 2] ) __a : List[str] = Vector([1, 2, 3, 4, 5] ) __a : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __a : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Vector([1, 2, 3] ) __a : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = Vector([1, 2, 3] ) __a : Any = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = Vector([1, 2, 3] ) __a : Optional[Any] = Vector([2, -1, 4] ) # for test of dot product __a : Union[str, Any] = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Vector([1, 2, 3] ) __a : Optional[int] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , __UpperCamelCase , __UpperCamelCase ) ) , """(3,4,7)""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : int = Vector([1, 0, 0, 0, 0, 0] ) __a : Any = x.copy() self.assertEqual(str(__UpperCamelCase ) , str(__UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(__UpperCamelCase ) , """(0,1,0)""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(__UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __a : List[Any] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __a : Any = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) __a : List[Any] = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(__UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __a : Union[str, Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __a : List[str] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
697
0
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = ["image_processor", "tokenizer"] lowercase__ = "BridgeTowerImageProcessor" lowercase__ = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' super().__init__(__UpperCamelCase , __UpperCamelCase ) def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = 0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = True , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' __a : str = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) # add pixel_values + pixel_mask __a : Optional[int] = self.image_processor( __UpperCamelCase , return_tensors=__UpperCamelCase , do_normalize=__UpperCamelCase , do_center_crop=__UpperCamelCase , **__UpperCamelCase ) encoding.update(__UpperCamelCase ) return encoding def __lowerCamelCase ( self , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def __lowerCamelCase ( self , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = self.tokenizer.model_input_names __a : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
709
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __SCREAMING_SNAKE_CASE : List[str] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) __SCREAMING_SNAKE_CASE : Optional[Any] = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) __SCREAMING_SNAKE_CASE : Tuple = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) __SCREAMING_SNAKE_CASE : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) __SCREAMING_SNAKE_CASE : Optional[int] = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) __SCREAMING_SNAKE_CASE : int = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) __SCREAMING_SNAKE_CASE : int = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _snake_case ( ) -> List[str]: __a , __a : List[Any] = randrange(len(lowercase ) ), randrange(len(lowercase ) ) __a : int = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] __a , __a : int = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _snake_case ( lowercase = 1_0_0 ) -> Any: return (generate_random_hand() for _ in range(lowercase )) @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> int: assert PokerHand(lowercase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Any: assert PokerHand(lowercase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , lowercase ) def _snake_case ( lowercase , lowercase , lowercase ) -> List[str]: __a : Union[str, Any] = PokerHand(lowercase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Optional[int]: assert PokerHand(lowercase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Union[str, Any]: assert PokerHand(lowercase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , lowercase ) def _snake_case ( lowercase , lowercase , lowercase ) -> Optional[int]: assert PokerHand(lowercase ).compare_with(PokerHand(lowercase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def _snake_case ( lowercase , lowercase , lowercase ) -> int: assert PokerHand(lowercase ).compare_with(PokerHand(lowercase ) ) == expected def _snake_case ( ) -> Union[str, Any]: __a : Tuple = [PokerHand(lowercase ) for hand in SORTED_HANDS] __a : Optional[int] = poker_hands.copy() shuffle(lowercase ) __a : List[str] = chain(sorted(lowercase ) ) for index, hand in enumerate(lowercase ): assert hand == poker_hands[index] def _snake_case ( ) -> List[str]: # Test that five high straights are compared correctly. __a : Optional[int] = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=lowercase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _snake_case ( ) -> List[str]: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. __a : Dict = PokerHand("""2C 4S AS 3D 5C""" ) __a : Dict = True __a : Optional[int] = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _snake_case ( ) -> Dict: # Problem number 54 from Project Euler # Testing from poker_hands.txt file __a : Tuple = 0 __a : int = os.path.abspath(os.path.dirname(lowercase ) ) __a : Union[str, Any] = os.path.join(lowercase , """poker_hands.txt""" ) with open(lowercase ) as file_hand: for line in file_hand: __a : Union[str, Any] = line[:1_4].strip() __a : Optional[Any] = line[1_5:].strip() __a , __a : List[str] = PokerHand(lowercase ), PokerHand(lowercase ) __a : str = player.compare_with(lowercase ) if output == "Win": answer += 1 assert answer == 3_7_6
697
0
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : Dict = 3 __a : Dict = 250 __a : str = ids_tensor((batch_size, length) , __UpperCamelCase ) __a : int = torch.ones((batch_size, length) , device=__UpperCamelCase , dtype=torch.float ) / length return input_ids, scores def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = self._get_tensors(5 ) __a : Optional[int] = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(__UpperCamelCase , __UpperCamelCase ) ) __a : Optional[Any] = self._get_tensors(9 ) self.assertFalse(criteria(__UpperCamelCase , __UpperCamelCase ) ) __a : Tuple = self._get_tensors(10 ) self.assertTrue(criteria(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = MaxLengthCriteria(max_length=10 ) __a : Any = self._get_tensors(5 ) self.assertFalse(criteria(__UpperCamelCase , __UpperCamelCase ) ) __a : List[Any] = self._get_tensors(9 ) self.assertFalse(criteria(__UpperCamelCase , __UpperCamelCase ) ) __a : List[str] = self._get_tensors(10 ) self.assertTrue(criteria(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __a : str = self._get_tensors(5 ) self.assertFalse(criteria(__UpperCamelCase , __UpperCamelCase ) ) __a : Dict = self._get_tensors(9 ) self.assertFalse(criteria(__UpperCamelCase , __UpperCamelCase ) ) __a : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(__UpperCamelCase , __UpperCamelCase ) ) __a : List[str] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = self._get_tensors(5 ) __a : int = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(__UpperCamelCase , __UpperCamelCase ) ) __a : List[Any] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(__UpperCamelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __a : List[str] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(__UpperCamelCase ) , 1 )
710
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
697
0
'''simple docstring''' from __future__ import annotations import math def _snake_case ( lowercase , lowercase ) -> float: __a : Optional[Any] = u for i in range(1 , lowercase ): __a : Any = temp * (u - i) return temp def _snake_case ( ) -> None: __a : Union[str, Any] = int(input("""enter the numbers of values: """ ) ) __a : list[list[float]] = [] for _ in range(lowercase ): y.append([] ) for i in range(lowercase ): for j in range(lowercase ): y[i].append(lowercase ) __a : Tuple = 0 print("""enter the values of parameters in a list: """ ) __a : List[str] = list(map(lowercase , input().split() ) ) print("""enter the values of corresponding parameters: """ ) for i in range(lowercase ): __a : Optional[Any] = float(input() ) __a : str = int(input("""enter the value to interpolate: """ ) ) __a : str = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , lowercase ): for j in range(n - i ): __a : List[Any] = y[j + 1][i - 1] - y[j][i - 1] __a : Optional[Any] = y[0][0] for i in range(1 , lowercase ): summ += (ucal(lowercase , lowercase ) * y[0][i]) / math.factorial(lowercase ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
711
'''simple docstring''' from __future__ import annotations import bisect def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> int: if hi < 0: __a : Union[str, Any] = len(lowercase ) while lo < hi: __a : List[str] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __a : int = mid + 1 else: __a : int = mid return lo def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> int: if hi < 0: __a : Any = len(lowercase ) while lo < hi: __a : Any = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __a : List[str] = mid + 1 else: __a : Any = mid return lo def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> None: sorted_collection.insert(bisect_left(lowercase , lowercase , lowercase , lowercase ) , lowercase ) def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> None: sorted_collection.insert(bisect_right(lowercase , lowercase , lowercase , lowercase ) , lowercase ) def _snake_case ( lowercase , lowercase ) -> int | None: __a : Dict = 0 __a : Any = len(lowercase ) - 1 while left <= right: __a : str = left + (right - left) // 2 __a : List[Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __a : Optional[Any] = midpoint - 1 else: __a : Optional[int] = midpoint + 1 return None def _snake_case ( lowercase , lowercase ) -> int | None: __a : Optional[int] = bisect.bisect_left(lowercase , lowercase ) if index != len(lowercase ) and sorted_collection[index] == item: return index return None def _snake_case ( lowercase , lowercase , lowercase , lowercase ) -> int | None: if right < left: return None __a : Any = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowercase , lowercase , lowercase , midpoint - 1 ) else: return binary_search_by_recursion(lowercase , lowercase , midpoint + 1 , lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = input('Enter numbers separated by comma:\n').strip() __SCREAMING_SNAKE_CASE : Optional[Any] = sorted(int(item) for item in user_input.split(',')) __SCREAMING_SNAKE_CASE : List[str] = int(input('Enter a single number to be found in the list:\n')) __SCREAMING_SNAKE_CASE : Optional[int] = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
697
0
import qiskit def _snake_case ( lowercase , lowercase ) -> qiskit.result.counts.Counts: __a : Any = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register __a : str = qiskit.QuantumCircuit(lowercase , lowercase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __a : Any = qiskit.execute(lowercase , lowercase , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
712
'''simple docstring''' from itertools import product def _snake_case ( lowercase , lowercase ) -> list[int]: __a : Optional[int] = sides_number __a : Union[str, Any] = max_face_number * dice_number __a : Optional[Any] = [0] * (max_total + 1) __a : Dict = 1 __a : str = range(lowercase , max_face_number + 1 ) for dice_numbers in product(lowercase , repeat=lowercase ): __a : int = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def _snake_case ( ) -> float: __a : Tuple = total_frequency_distribution( sides_number=4 , dice_number=9 ) __a : Union[str, Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) __a : str = 0 __a : Dict = 9 __a : str = 4 * 9 __a : Any = 6 for peter_total in range(lowercase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __a : str = (4**9) * (6**6) __a : List[Any] = peter_wins_count / total_games_number __a : List[Any] = round(lowercase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'''{solution() = }''')
697
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __SCREAMING_SNAKE_CASE : str = 'pt' elif is_tf_available(): __SCREAMING_SNAKE_CASE : str = 'tf' else: __SCREAMING_SNAKE_CASE : Union[str, Any] = 'jax' class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): lowercase__ = PerceiverTokenizer lowercase__ = False def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() __a : int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" ) def __lowerCamelCase ( self , **__UpperCamelCase ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=20 , __UpperCamelCase=5 ): '''simple docstring''' __a : Union[str, Any] = [] for i in range(len(__UpperCamelCase ) ): try: __a : str = tokenizer.decode([i] , clean_up_tokenization_spaces=__UpperCamelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __a : str = list(filter(lambda __UpperCamelCase : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , __UpperCamelCase ) ) __a : Tuple = list(filter(lambda __UpperCamelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__UpperCamelCase ) , __UpperCamelCase ) ) if max_length is not None and len(__UpperCamelCase ) > max_length: __a : List[Any] = toks[:max_length] if min_length is not None and len(__UpperCamelCase ) < min_length and len(__UpperCamelCase ) > 0: while len(__UpperCamelCase ) < min_length: __a : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] __a : int = [t[0] for t in toks] # Ensure consistency __a : Tuple = tokenizer.decode(__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase ) if " " not in output_txt and len(__UpperCamelCase ) > 1: __a : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__UpperCamelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__UpperCamelCase ) ) if with_prefix_space: __a : List[Any] = """ """ + output_txt __a : Any = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) return output_txt, output_ids def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = self.perceiver_tokenizer __a : Optional[Any] = """Unicode €.""" __a : List[str] = tokenizer(__UpperCamelCase ) __a : str = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["""input_ids"""] , __UpperCamelCase ) # decoding __a : Tuple = tokenizer.decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , """[CLS]Unicode €.[SEP]""" ) __a : str = tokenizer("""e è é ê ë""" ) __a : Tuple = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["""input_ids"""] , __UpperCamelCase ) # decoding __a : Tuple = tokenizer.decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , """[CLS]e è é ê ë[SEP]""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = self.perceiver_tokenizer __a : int = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off __a : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __a : List[str] = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors=__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) if FRAMEWORK != "jax": __a : Union[str, Any] = list(batch.input_ids.numpy()[0] ) else: __a : Tuple = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = self.perceiver_tokenizer __a : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __a : Tuple = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors=__UpperCamelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , __UpperCamelCase ) self.assertIn("""attention_mask""" , __UpperCamelCase ) self.assertNotIn("""decoder_input_ids""" , __UpperCamelCase ) self.assertNotIn("""decoder_attention_mask""" , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = self.perceiver_tokenizer __a : str = [ """Summary of the text.""", """Another summary.""", ] __a : List[Any] = tokenizer( text_target=__UpperCamelCase , max_length=32 , padding="""max_length""" , truncation=__UpperCamelCase , return_tensors=__UpperCamelCase ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __a : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __a : Union[str, Any] = tempfile.mkdtemp() __a : Optional[int] = """ He is very happy, UNwant\u00E9d,running""" __a : Any = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) __a : str = tokenizer.__class__.from_pretrained(__UpperCamelCase ) __a : Any = after_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) shutil.rmtree(__UpperCamelCase ) __a : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __a : Optional[Any] = tempfile.mkdtemp() __a : int = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) __a : Optional[Any] = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __a : Any = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) __a : List[Any] = tokenizer.__class__.from_pretrained(__UpperCamelCase ) __a : str = after_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __a : Tuple = tokenizer.__class__.from_pretrained(__UpperCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__UpperCamelCase ) with open(os.path.join(__UpperCamelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __a : Any = json.load(__UpperCamelCase ) with open(os.path.join(__UpperCamelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __a : Dict = json.load(__UpperCamelCase ) __a : Union[str, Any] = [f"""<extra_id_{i}>""" for i in range(125 )] __a : List[Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] __a : Union[str, Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(__UpperCamelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__UpperCamelCase , __UpperCamelCase ) with open(os.path.join(__UpperCamelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__UpperCamelCase , __UpperCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __a : int = tokenizer_class.from_pretrained( __UpperCamelCase , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __a : Optional[Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=__UpperCamelCase )] __a : str = tokenizer_class.from_pretrained( __UpperCamelCase , additional_special_tokens=__UpperCamelCase , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , """�""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = self.get_tokenizers(fast=__UpperCamelCase , do_lower_case=__UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __a : Tuple = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""] __a : Optional[Any] = tokenizer.convert_tokens_to_string(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase )
713
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): '''simple docstring''' super().__init__() self.register_modules( vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , ) def __lowerCamelCase ( self , __UpperCamelCase = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' self.enable_attention_slicing(__UpperCamelCase ) @torch.no_grad() def __call__( self , __UpperCamelCase , __UpperCamelCase = 512 , __UpperCamelCase = 512 , __UpperCamelCase = 50 , __UpperCamelCase = 7.5 , __UpperCamelCase = None , __UpperCamelCase = 1 , __UpperCamelCase = 0.0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = "pil" , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = 1 , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ): __a : Union[str, Any] = 1 elif isinstance(__UpperCamelCase , __UpperCamelCase ): __a : Tuple = len(__UpperCamelCase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(__UpperCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCamelCase , __UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__UpperCamelCase )}.""" ) # get prompt text embeddings __a : Tuple = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __a : Union[str, Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __a : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __a : Optional[int] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __a : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __a , __a , __a : Union[str, Any] = text_embeddings.shape __a : Optional[Any] = text_embeddings.repeat(1 , __UpperCamelCase , 1 ) __a : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , __UpperCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __a : Any = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __a : List[str] if negative_prompt is None: __a : Optional[Any] = [""""""] elif type(__UpperCamelCase ) is not type(__UpperCamelCase ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCamelCase )} !=""" f""" {type(__UpperCamelCase )}.""" ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): __a : Any = [negative_prompt] elif batch_size != len(__UpperCamelCase ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(__UpperCamelCase )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: __a : Tuple = negative_prompt __a : Any = text_input_ids.shape[-1] __a : List[str] = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="""pt""" , ) __a : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __a : List[str] = uncond_embeddings.shape[1] __a : List[Any] = uncond_embeddings.repeat(__UpperCamelCase , __UpperCamelCase , 1 ) __a : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __a : List[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __a : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __a : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __a : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __a : Any = torch.randn( __UpperCamelCase , generator=__UpperCamelCase , device="""cpu""" , dtype=__UpperCamelCase ).to(self.device ) __a : Optional[Any] = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device="""cpu""" , dtype=__UpperCamelCase ).to( self.device ) else: __a : Optional[int] = torch.randn( __UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) __a : str = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __a : Optional[Any] = latents_reference.to(self.device ) __a : str = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __a : List[str] = (latents_shape[3] - latents_shape_reference[3]) // 2 __a : int = (latents_shape[2] - latents_shape_reference[2]) // 2 __a : int = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __a : Tuple = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __a : Optional[Any] = 0 if dx < 0 else dx __a : Optional[Any] = 0 if dy < 0 else dy __a : Optional[int] = max(-dx , 0 ) __a : Optional[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() __a : Optional[int] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(__UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __a : Dict = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __a : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a : List[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a : Optional[Any] = {} if accepts_eta: __a : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance __a : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __a : Tuple = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual __a : Union[str, Any] = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample # perform guidance if do_classifier_free_guidance: __a , __a : List[str] = noise_pred.chunk(2 ) __a : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __a : List[Any] = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __a : Optional[Any] = 1 / 0.1_8_2_1_5 * latents __a : Optional[int] = self.vae.decode(__UpperCamelCase ).sample __a : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __a : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __a : List[str] = self.feature_extractor(self.numpy_to_pil(__UpperCamelCase ) , return_tensors="""pt""" ).to( self.device ) __a , __a : int = self.safety_checker( images=__UpperCamelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __a : Optional[int] = None if output_type == "pil": __a : str = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=__UpperCamelCase , nsfw_content_detected=__UpperCamelCase )
697
0
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _snake_case ( lowercase , lowercase ) -> Union[str, Any]: assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _snake_case ( lowercase , lowercase , lowercase ) -> Dict: __a : Optional[int] = tmp_path / """cache""" __a : Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __a : List[str] = JsonDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_json_dataset(lowercase , lowercase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _snake_case ( lowercase , lowercase , lowercase ) -> Any: __a : int = tmp_path / """cache""" __a : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __a : Union[str, Any] = features.copy() if features else default_expected_features __a : Optional[Any] = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) __a : List[Any] = JsonDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_json_dataset(lowercase , lowercase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def _snake_case ( lowercase , lowercase , lowercase ) -> Any: __a : Tuple = tmp_path / """cache""" __a : Union[str, Any] = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} __a : Tuple = features.copy() if features else default_expected_features __a : List[Any] = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) __a : str = JsonDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _snake_case ( lowercase , lowercase ) -> str: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} __a : int = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} __a : List[str] = features.copy() __a : str = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) __a : Tuple = tmp_path / """cache""" __a : Any = JsonDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _snake_case ( lowercase , lowercase , lowercase ) -> str: __a : List[Any] = tmp_path / """cache""" __a : List[str] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __a : List[str] = JsonDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_json_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def _snake_case ( lowercase , lowercase , lowercase ) -> List[Any]: if issubclass(lowercase , lowercase ): __a : str = jsonl_path elif issubclass(lowercase , lowercase ): __a : Tuple = [jsonl_path] __a : Any = tmp_path / """cache""" __a : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __a : Optional[int] = JsonDatasetReader(lowercase , cache_dir=lowercase ).read() _check_json_dataset(lowercase , lowercase ) def _snake_case ( lowercase , lowercase , lowercase=("train",) ) -> Optional[int]: assert isinstance(lowercase , lowercase ) for split in splits: __a : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _snake_case ( lowercase , lowercase , lowercase ) -> List[Any]: __a : Optional[int] = tmp_path / """cache""" __a : List[str] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __a : int = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_json_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _snake_case ( lowercase , lowercase , lowercase ) -> Any: __a : str = tmp_path / """cache""" __a : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __a : str = features.copy() if features else default_expected_features __a : List[str] = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) __a : List[str] = JsonDatasetReader({"""train""": jsonl_path} , features=lowercase , cache_dir=lowercase ).read() _check_json_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _snake_case ( lowercase , lowercase , lowercase ) -> Dict: if split: __a : str = {split: jsonl_path} else: __a : Dict = """train""" __a : Optional[int] = {"""train""": jsonl_path, """test""": jsonl_path} __a : int = tmp_path / """cache""" __a : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __a : Optional[int] = JsonDatasetReader(lowercase , cache_dir=lowercase ).read() _check_json_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _snake_case ( lowercase ) -> Any: return json.load(lowercase ) def _snake_case ( lowercase ) -> Union[str, Any]: return [json.loads(lowercase ) for line in buffer] class SCREAMING_SNAKE_CASE__ : @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , lines=__UpperCamelCase ).write() buffer.seek(0 ) __a : List[str] = load_json_function(__UpperCamelCase ) assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert isinstance(exported_content[0] , __UpperCamelCase ) assert len(__UpperCamelCase ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , lines=__UpperCamelCase , orient=__UpperCamelCase ).write() buffer.seek(0 ) __a : List[str] = load_json(__UpperCamelCase ) assert isinstance(__UpperCamelCase , __UpperCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__UpperCamelCase , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__UpperCamelCase ) == 10 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , lines=__UpperCamelCase , num_proc=2 ).write() buffer.seek(0 ) __a : List[str] = load_json_function(__UpperCamelCase ) assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert isinstance(exported_content[0] , __UpperCamelCase ) assert len(__UpperCamelCase ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , lines=__UpperCamelCase , orient=__UpperCamelCase , num_proc=2 ).write() buffer.seek(0 ) __a : Any = load_json(__UpperCamelCase ) assert isinstance(__UpperCamelCase , __UpperCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__UpperCamelCase , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__UpperCamelCase ) == 10 def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' with pytest.raises(__UpperCamelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Tuple = tmp_path_factory.mktemp("""data""" ) / f"""test.json.{extension}""" __a : Optional[Any] = str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , compression=__UpperCamelCase ).write() with fsspec.open(__UpperCamelCase , """rb""" , compression="""infer""" ) as f: __a : Optional[int] = f.read() with fsspec.open(__UpperCamelCase , """rb""" , compression="""infer""" ) as f: __a : Dict = f.read() assert exported_content == original_content
714
'''simple docstring''' import numpy as np from PIL import Image def _snake_case ( lowercase , lowercase , lowercase ) -> np.ndarray: __a : Any = np.array(lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) __a : Union[str, Any] = 0 __a : Dict = 0 __a : Optional[Any] = 0 __a : Tuple = 0 # compute the shape of the output matrix __a : Optional[int] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __a : int = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __a : Optional[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __a : Optional[Any] = 0 __a : str = 0 return updated_arr def _snake_case ( lowercase , lowercase , lowercase ) -> np.ndarray: __a : int = np.array(lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) __a : int = 0 __a : Optional[Any] = 0 __a : str = 0 __a : List[Any] = 0 # compute the shape of the output matrix __a : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __a : Optional[int] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __a : Any = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __a : str = 0 __a : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image __SCREAMING_SNAKE_CASE : str = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
697
0
'''simple docstring''' def _snake_case ( lowercase ) -> Dict: for i in range(0 , lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def _snake_case ( lowercase ) -> int: for i in range(lowercase , 0 , -1 ): for _ in range(lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def _snake_case ( lowercase ) -> Optional[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(lowercase ) # upper half reverse_floyd(lowercase ) # lower half if __name__ == "__main__": print(r'| /\ | |- | |- |--| |\ /| |-') print(r'|/ \| |- |_ |_ |__| | \/ | |_') __SCREAMING_SNAKE_CASE : Dict = 1 while K: __SCREAMING_SNAKE_CASE : Optional[Any] = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) __SCREAMING_SNAKE_CASE : List[Any] = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
715
'''simple docstring''' import qiskit def _snake_case ( lowercase , lowercase ) -> qiskit.result.counts.Counts: __a : Any = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register __a : str = qiskit.QuantumCircuit(lowercase , lowercase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __a : Any = qiskit.execute(lowercase , lowercase , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
697
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): @staticmethod @abstractmethod def __lowerCamelCase ( __UpperCamelCase ): '''simple docstring''' raise NotImplementedError() @abstractmethod def __lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError()
716
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: for attribute in key.split(""".""" ): __a : str = getattr(lowercase , lowercase ) if weight_type is not None: __a : Dict = getattr(lowercase , lowercase ).shape else: __a : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __a : Any = value elif weight_type == "weight_g": __a : int = value elif weight_type == "weight_v": __a : int = value elif weight_type == "bias": __a : List[Any] = value elif weight_type == "running_mean": __a : Union[str, Any] = value elif weight_type == "running_var": __a : Tuple = value elif weight_type == "num_batches_tracked": __a : Optional[int] = value elif weight_type == "inv_freq": __a : List[str] = value else: __a : List[str] = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _snake_case ( lowercase , lowercase , lowercase ) -> Dict: __a : Dict = [] __a : Dict = fairseq_model.state_dict() __a : Tuple = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __a : int = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __a : List[Any] = True else: for key, mapped_key in MAPPING.items(): __a : Optional[int] = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __a : str = True if "*" in mapped_key: __a : Optional[int] = name.split(lowercase )[0].split(""".""" )[-2] __a : List[Any] = mapped_key.replace("""*""" , lowercase ) if "pos_bias_u" in name: __a : Union[str, Any] = None elif "pos_bias_v" in name: __a : List[Any] = None elif "weight_g" in name: __a : List[Any] = """weight_g""" elif "weight_v" in name: __a : List[Any] = """weight_v""" elif "bias" in name: __a : Optional[int] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __a : str = """weight""" elif "running_mean" in name: __a : List[str] = """running_mean""" elif "inv_freq" in name: __a : Dict = """inv_freq""" elif "running_var" in name: __a : Union[str, Any] = """running_var""" elif "num_batches_tracked" in name: __a : int = """num_batches_tracked""" else: __a : Optional[int] = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[str]: __a : Optional[Any] = full_name.split("""conv_layers.""" )[-1] __a : Union[str, Any] = name.split(""".""" ) __a : Optional[Any] = int(items[0] ) __a : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __a : Dict = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __a : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __a : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __a : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase ) @torch.no_grad() def _snake_case ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Optional[Any]: if config_path is not None: __a : Any = WavaVecaConformerConfig.from_pretrained(lowercase , hidden_act="""swish""" ) else: __a : Optional[int] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __a : Optional[Any] = """rotary""" if is_finetuned: if dict_path: __a : List[Any] = Dictionary.load(lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __a : int = target_dict.pad_index __a : List[str] = target_dict.bos_index __a : str = target_dict.eos_index __a : Dict = len(target_dict.symbols ) __a : Any = os.path.join(lowercase , """vocab.json""" ) if not os.path.isdir(lowercase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowercase ) ) return os.makedirs(lowercase , exist_ok=lowercase ) __a : Dict = target_dict.indices # fairseq has the <pad> and <s> switched __a : Optional[Any] = 0 __a : List[Any] = 1 with open(lowercase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowercase , lowercase ) __a : int = WavaVecaCTCTokenizer( lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowercase , ) __a : Optional[int] = True if config.feat_extract_norm == """layer""" else False __a : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , ) __a : str = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase ) processor.save_pretrained(lowercase ) __a : List[str] = WavaVecaConformerForCTC(lowercase ) else: __a : Optional[int] = WavaVecaConformerForPreTraining(lowercase ) if is_finetuned: __a , __a , __a : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __a : Optional[int] = argparse.Namespace(task="""audio_pretraining""" ) __a : Tuple = fairseq.tasks.setup_task(lowercase ) __a , __a , __a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase ) __a : Any = model[0].eval() recursively_load_weights(lowercase , lowercase , not is_finetuned ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
697
0
'''simple docstring''' def _snake_case ( lowercase , lowercase , lowercase=False ) -> int: if isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ): __a : int = len(set_a.intersection(lowercase ) ) if alternative_union: __a : str = len(lowercase ) + len(lowercase ) else: __a : int = len(set_a.union(lowercase ) ) return intersection / union if isinstance(lowercase , (list, tuple) ) and isinstance(lowercase , (list, tuple) ): __a : int = [element for element in set_a if element in set_b] if alternative_union: __a : Union[str, Any] = len(lowercase ) + len(lowercase ) return len(lowercase ) / union else: __a : Optional[int] = set_a + [element for element in set_b if element not in set_a] return len(lowercase ) / len(lowercase ) return len(lowercase ) / len(lowercase ) return None if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Any = {'a', 'b', 'c', 'd', 'e'} __SCREAMING_SNAKE_CASE : List[Any] = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
717
'''simple docstring''' import warnings from functools import wraps from typing import Callable def _snake_case ( lowercase ) -> Callable: @wraps(lowercase ) def _inner_fn(*lowercase , **lowercase ): warnings.warn( (F"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") , lowercase , ) return fn(*lowercase , **lowercase ) return _inner_fn
697
0
'''simple docstring''' def _snake_case ( lowercase ) -> bool: if not isinstance(lowercase , lowercase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __a : str = str(lowercase ) __a : Any = """""".join(sorted(lowercase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _snake_case ( lowercase = 9_9 ) -> int: if not 0 < percent < 1_0_0: raise ValueError("""solution() only accepts values from 0 to 100""" ) __a : List[str] = 0 __a : Union[str, Any] = 1 while True: if check_bouncy(lowercase ): bouncy_num += 1 if (bouncy_num / num) * 1_0_0 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
718
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = ["input_features", "attention_mask"] def __init__( self , __UpperCamelCase=80 , __UpperCamelCase=1_6000 , __UpperCamelCase=0.0 , __UpperCamelCase=10 , __UpperCamelCase=25 , __UpperCamelCase="hamming_window" , __UpperCamelCase=3_2_7_6_8.0 , __UpperCamelCase=0.9_7 , __UpperCamelCase=1.0 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=False , **__UpperCamelCase , ): '''simple docstring''' super().__init__(feature_size=__UpperCamelCase , sampling_rate=__UpperCamelCase , padding_value=__UpperCamelCase , **__UpperCamelCase ) __a : List[str] = feature_size __a : List[str] = sampling_rate __a : int = padding_value __a : Any = hop_length __a : int = win_length __a : Tuple = frame_signal_scale __a : Union[str, Any] = preemphasis_coeff __a : List[str] = mel_floor __a : Union[str, Any] = normalize_means __a : Optional[Any] = normalize_vars __a : Optional[Any] = win_function __a : Union[str, Any] = return_attention_mask __a : List[Any] = win_length * sampling_rate // 1000 __a : List[Any] = hop_length * sampling_rate // 1000 __a : Optional[Any] = optimal_fft_length(self.sample_size ) __a : Any = (self.n_fft // 2) + 1 def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' if self.win_function == "hamming_window": __a : str = window_function(window_length=self.sample_size , name=self.win_function , periodic=__UpperCamelCase ) else: __a : Dict = window_function(window_length=self.sample_size , name=self.win_function ) __a : Optional[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) __a : Any = spectrogram( one_waveform * self.frame_signal_scale , window=__UpperCamelCase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=__UpperCamelCase , preemphasis=self.preemphasis_coeff , mel_filters=__UpperCamelCase , mel_floor=self.mel_floor , log_mel="""log""" , ) return msfc_features.T def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if self.normalize_means: __a : int = x[:input_length].mean(axis=0 ) __a : str = np.subtract(__UpperCamelCase , __UpperCamelCase ) if self.normalize_vars: __a : Dict = x[:input_length].std(axis=0 ) __a : Dict = np.divide(__UpperCamelCase , __UpperCamelCase ) if input_length < x.shape[0]: __a : Union[str, Any] = padding_value # make sure array is in float32 __a : Any = x.astype(np.floataa ) return x def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ): '''simple docstring''' __a : Tuple = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__UpperCamelCase , __UpperCamelCase , self.padding_value ) for x, n in zip(__UpperCamelCase , __UpperCamelCase )] def __call__( self , __UpperCamelCase , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __a : Tuple = isinstance(__UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __a : Tuple = is_batched_numpy or ( isinstance(__UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __a : Tuple = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__UpperCamelCase , np.ndarray ): __a : List[str] = np.asarray(__UpperCamelCase , dtype=np.floataa ) elif isinstance(__UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __a : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __a : Any = [raw_speech] # extract fbank features __a : str = [self._extract_mfsc_features(__UpperCamelCase ) for one_waveform in raw_speech] # convert into correct format for padding __a : Optional[Any] = BatchFeature({"""input_features""": features} ) __a : Any = self.pad( __UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , truncation=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) # make sure list is in array format __a : int = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , __UpperCamelCase ): __a : Union[str, Any] = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for feature in input_features] __a : List[str] = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: __a : Optional[int] = [np.asarray(__UpperCamelCase , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: __a : Optional[Any] = ( np.array(__UpperCamelCase , dtype=np.intaa ) if self._get_padding_strategies(__UpperCamelCase , max_length=__UpperCamelCase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) __a : int = self.normalize( padded_inputs["""input_features"""] , attention_mask=__UpperCamelCase ) if return_tensors is not None: __a : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
697
0
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __SCREAMING_SNAKE_CASE : int = Lock() def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowercase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __a : Optional[int] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __a : int = min(lowercase , lowercase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowercase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __a : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __a : List[str] = max(lowercase , lowercase ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowercase ) def _snake_case ( lowercase ) -> Optional[int]: __a : List[Any] = [] __a : List[Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __a : Optional[int] = Pipe() __a : Optional[Any] = Pipe() process_array_.append( Process( target=lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __a : str = temp_rs __a : Tuple = temp_rr for i in range(1 , len(lowercase ) - 1 ): __a : Dict = Pipe() __a : Dict = Pipe() process_array_.append( Process( target=lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __a : Optional[Any] = temp_rs __a : Optional[Any] = temp_rr process_array_.append( Process( target=lowercase , args=( len(lowercase ) - 1, arr[len(lowercase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowercase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowercase ) ): __a : List[str] = result_pipe[p][0].recv() process_array_[p].join() return arr def _snake_case ( ) -> List[str]: __a : Dict = list(range(1_0 , 0 , -1 ) ) print("""Initial List""" ) print(*lowercase ) __a : Optional[int] = odd_even_transposition(lowercase ) print("""Sorted List\n""" ) print(*lowercase ) if __name__ == "__main__": main()
719
'''simple docstring''' __SCREAMING_SNAKE_CASE : int = 9.80_665 def _snake_case ( lowercase , lowercase , lowercase = g ) -> float: if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
697
0
def _snake_case ( lowercase , lowercase ) -> bool: __a : int = len(lowercase ) + 1 __a : Any = len(lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __a : Any = [[0 for i in range(lowercase )] for j in range(lowercase )] # since string of zero length match pattern of zero length __a : Any = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , lowercase ): __a : Optional[int] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , lowercase ): __a : Any = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , lowercase ): for j in range(1 , lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __a : Dict = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __a : Any = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __a : Optional[Any] = dp[i - 1][j] else: __a : List[str] = 0 else: __a : Optional[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __SCREAMING_SNAKE_CASE : List[Any] = 'aab' __SCREAMING_SNAKE_CASE : int = 'c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
720
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=30 , __UpperCamelCase=400 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=1 / 255 , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=True , ): '''simple docstring''' __a : List[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __a : Dict = parent __a : Union[str, Any] = batch_size __a : Optional[int] = num_channels __a : Dict = min_resolution __a : List[Any] = max_resolution __a : int = do_resize __a : str = size __a : Optional[Any] = do_rescale __a : Optional[Any] = rescale_factor __a : str = do_normalize __a : Any = image_mean __a : Optional[Any] = image_std __a : Dict = do_pad def __lowerCamelCase ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=False ): '''simple docstring''' if not batched: __a : Union[str, Any] = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): __a , __a : Tuple = image.size else: __a , __a : Tuple = image.shape[1], image.shape[2] if w < h: __a : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) __a : Tuple = self.size["""shortest_edge"""] elif w > h: __a : Optional[Any] = self.size["""shortest_edge"""] __a : Any = int(self.size["""shortest_edge"""] * w / h ) else: __a : Any = self.size["""shortest_edge"""] __a : Optional[int] = self.size["""shortest_edge"""] else: __a : Any = [] for image in image_inputs: __a , __a : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __a : List[Any] = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[0] )[0] __a : Optional[Any] = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): lowercase__ = DetrImageProcessor if is_vision_available() else None def __lowerCamelCase ( self ): '''simple docstring''' __a : str = DetrImageProcessingTester(self ) @property def __lowerCamelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_rescale""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """rescale_factor""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """size""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_pad""" ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) __a : List[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __a , __a : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a , __a : Optional[int] = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) __a : Any = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input __a : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __a , __a : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a : List[str] = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values __a , __a : str = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input __a : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __a , __a : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a : List[str] = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values __a , __a : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __a : Dict = json.loads(f.read() ) __a : Optional[int] = {"""image_id""": 3_9769, """annotations""": target} # encode them __a : List[str] = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) __a : Tuple = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values __a : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) __a : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1E-4 ) ) # verify area __a : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes __a : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) __a : Any = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1E-3 ) ) # verify image_id __a : Union[str, Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd __a : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels __a : Any = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify orig_size __a : Any = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size __a : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) ) @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __a : Tuple = json.loads(f.read() ) __a : str = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __a : int = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __a : List[str] = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) __a : Tuple = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , masks_path=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values __a : List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) __a : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1E-4 ) ) # verify area __a : Optional[Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes __a : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) __a : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1E-3 ) ) # verify image_id __a : List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd __a : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels __a : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify masks __a : Union[str, Any] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __UpperCamelCase ) # verify orig_size __a : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size __a : List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) )
697
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Dict = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = "canine" def __init__( self , __UpperCamelCase=768 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=3072 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=1_6384 , __UpperCamelCase=16 , __UpperCamelCase=0.0_2 , __UpperCamelCase=1E-12 , __UpperCamelCase=0 , __UpperCamelCase=0XE0_00 , __UpperCamelCase=0XE0_01 , __UpperCamelCase=4 , __UpperCamelCase=4 , __UpperCamelCase=8 , __UpperCamelCase=1_6384 , __UpperCamelCase=128 , **__UpperCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) __a : List[str] = max_position_embeddings __a : int = hidden_size __a : Optional[Any] = num_hidden_layers __a : Optional[int] = num_attention_heads __a : int = intermediate_size __a : Dict = hidden_act __a : Dict = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : str = initializer_range __a : Optional[Any] = type_vocab_size __a : Optional[Any] = layer_norm_eps # Character config: __a : str = downsampling_rate __a : List[str] = upsampling_kernel_size __a : List[Any] = num_hash_functions __a : Any = num_hash_buckets __a : int = local_transformer_stride
721
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __SCREAMING_SNAKE_CASE : Optional[int] = trt.Logger(trt.Logger.WARNING) __SCREAMING_SNAKE_CASE : Tuple = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) __SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) __SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if args.tokenizer_name: __SCREAMING_SNAKE_CASE : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) __SCREAMING_SNAKE_CASE : List[Any] = args.per_device_eval_batch_size __SCREAMING_SNAKE_CASE : int = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __SCREAMING_SNAKE_CASE : Optional[Any] = True __SCREAMING_SNAKE_CASE : Tuple = 'temp_engine/bert-fp32.engine' if args.fpaa: __SCREAMING_SNAKE_CASE : Dict = 'temp_engine/bert-fp16.engine' if args.inta: __SCREAMING_SNAKE_CASE : Tuple = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') __SCREAMING_SNAKE_CASE : Optional[Any] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __SCREAMING_SNAKE_CASE : List[Any] = [network.get_input(i) for i in range(network.num_inputs)] __SCREAMING_SNAKE_CASE : List[Any] = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __SCREAMING_SNAKE_CASE : Tuple = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __SCREAMING_SNAKE_CASE : Dict = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __SCREAMING_SNAKE_CASE : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: __a : Dict = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __a : List[Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __a : str = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowercase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowercase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowercase ) # start time __a : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowercase ) for d_inp in d_inputs] + [int(lowercase ), int(lowercase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowercase , lowercase , lowercase ) cuda.memcpy_dtoh_async(lowercase , lowercase , lowercase ) # Synchronize the stream and take time stream.synchronize() # end time __a : str = time.time() __a : Any = end_time - start_time __a : Optional[int] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __SCREAMING_SNAKE_CASE : Optional[Any] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __SCREAMING_SNAKE_CASE : List[str] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __SCREAMING_SNAKE_CASE : int = raw_datasets['validation'].column_names __SCREAMING_SNAKE_CASE : Tuple = 'question' if 'question' in column_names else column_names[0] __SCREAMING_SNAKE_CASE : List[Any] = 'context' if 'context' in column_names else column_names[1] __SCREAMING_SNAKE_CASE : Tuple = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __SCREAMING_SNAKE_CASE : Tuple = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) __SCREAMING_SNAKE_CASE : Dict = min(args.max_seq_length, tokenizer.model_max_length) def _snake_case ( lowercase ) -> Tuple: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __a : Optional[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __a : Optional[int] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowercase , stride=args.doc_stride , return_overflowing_tokens=lowercase , return_offsets_mapping=lowercase , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __a : Optional[Any] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __a : Optional[Any] = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __a : Dict = tokenized_examples.sequence_ids(lowercase ) __a : Optional[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __a : Union[str, Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __a : int = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples __SCREAMING_SNAKE_CASE : int = raw_datasets['validation'] # Validation Feature Creation __SCREAMING_SNAKE_CASE : Union[str, Any] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) __SCREAMING_SNAKE_CASE : List[Any] = default_data_collator __SCREAMING_SNAKE_CASE : Union[str, Any] = eval_dataset.remove_columns(['example_id', 'offset_mapping']) __SCREAMING_SNAKE_CASE : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _snake_case ( lowercase , lowercase , lowercase , lowercase="eval" ) -> Any: # Post-processing: we match the start logits and end logits to answers in the original context. __a : List[str] = postprocess_qa_predictions( examples=lowercase , features=lowercase , predictions=lowercase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowercase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __a : List[str] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __a : List[str] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __a : Optional[Any] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowercase , label_ids=lowercase ) __SCREAMING_SNAKE_CASE : List[Any] = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _snake_case ( lowercase ) -> Optional[int]: return trt.volume(engine.get_binding_shape(lowercase ) ) * engine.get_binding_dtype(lowercase ).itemsize # Allocate device memory for inputs and outputs. __SCREAMING_SNAKE_CASE : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __SCREAMING_SNAKE_CASE : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __SCREAMING_SNAKE_CASE : Union[str, Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __SCREAMING_SNAKE_CASE : str = cuda.mem_alloc(h_outputa.nbytes) __SCREAMING_SNAKE_CASE : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __SCREAMING_SNAKE_CASE : Tuple = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') __SCREAMING_SNAKE_CASE : Union[str, Any] = 0.0 __SCREAMING_SNAKE_CASE : str = 0 __SCREAMING_SNAKE_CASE : str = timeit.default_timer() __SCREAMING_SNAKE_CASE : Dict = None for step, batch in enumerate(eval_dataloader): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = outputs __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(start_logits) __SCREAMING_SNAKE_CASE : Tuple = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __SCREAMING_SNAKE_CASE : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __SCREAMING_SNAKE_CASE : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __SCREAMING_SNAKE_CASE : List[str] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __SCREAMING_SNAKE_CASE : List[str] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __SCREAMING_SNAKE_CASE : Tuple = nested_truncate(all_preds, len(eval_dataset)) __SCREAMING_SNAKE_CASE : str = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000)) logger.info('Total Number of Inference = %d', niter) __SCREAMING_SNAKE_CASE : Optional[int] = post_processing_function(eval_examples, eval_dataset, all_preds) __SCREAMING_SNAKE_CASE : List[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
697
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: for attribute in key.split(""".""" ): __a : Tuple = getattr(lowercase , lowercase ) if weight_type is not None: __a : Tuple = getattr(lowercase , lowercase ).shape else: __a : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __a : Optional[Any] = value elif weight_type == "weight_g": __a : List[Any] = value elif weight_type == "weight_v": __a : Optional[Any] = value elif weight_type == "bias": __a : Any = value else: __a : Tuple = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _snake_case ( lowercase , lowercase , lowercase ) -> int: __a : Union[str, Any] = [] __a : List[str] = fairseq_model.state_dict() __a : Any = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __a : Dict = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __a : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __a : int = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): __a : str = True if "*" in mapped_key: __a : int = name.split(lowercase )[0].split(""".""" )[-2] __a : Union[str, Any] = mapped_key.replace("""*""" , lowercase ) if "weight_g" in name: __a : Any = """weight_g""" elif "weight_v" in name: __a : Tuple = """weight_v""" elif "weight" in name: __a : Optional[Any] = """weight""" elif "bias" in name: __a : Optional[int] = """bias""" else: __a : List[str] = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __a : Any = full_name.split("""conv_layers.""" )[-1] __a : Union[str, Any] = name.split(""".""" ) __a : Any = int(items[0] ) __a : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __a : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __a : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __a : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __a : int = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase ) @torch.no_grad() def _snake_case ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Union[str, Any]: if config_path is not None: __a : int = HubertConfig.from_pretrained(lowercase ) else: __a : Any = HubertConfig() if is_finetuned: if dict_path: __a : Optional[Any] = Dictionary.load(lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __a : Tuple = target_dict.pad_index __a : Dict = target_dict.bos_index __a : Dict = target_dict.eos_index __a : Union[str, Any] = len(target_dict.symbols ) __a : List[str] = os.path.join(lowercase , """vocab.json""" ) if not os.path.isdir(lowercase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowercase ) ) return os.makedirs(lowercase , exist_ok=lowercase ) with open(lowercase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , lowercase ) __a : str = WavaVecaCTCTokenizer( lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowercase , ) __a : Union[str, Any] = True if config.feat_extract_norm == """layer""" else False __a : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , ) __a : List[Any] = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase ) processor.save_pretrained(lowercase ) __a : Union[str, Any] = HubertForCTC(lowercase ) else: __a : Optional[Any] = HubertModel(lowercase ) if is_finetuned: __a : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __a : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __a : Dict = model[0].eval() recursively_load_weights(lowercase , lowercase , lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
700
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = 42 lowercase__ = 42 def __init__( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) @torch.no_grad() def __call__( self , __UpperCamelCase = 1 , __UpperCamelCase = 50 , __UpperCamelCase = None , __UpperCamelCase = "pil" , __UpperCamelCase = True , **__UpperCamelCase , ): '''simple docstring''' __a : int = self.unet.config.sample_size __a : Optional[int] = (batch_size, 3, img_size, img_size) __a : Union[str, Any] = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) __a : Dict = randn_tensor(__UpperCamelCase , generator=__UpperCamelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper __a : Dict = self.scheduler.schedule[t] __a : Any = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat __a , __a : Tuple = self.scheduler.add_noise_to_input(__UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. __a : List[Any] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev __a : str = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. __a : Union[str, Any] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample __a : Tuple = self.scheduler.step_correct( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , step_output.prev_sample , step_output["""derivative"""] , ) __a : Tuple = step_output.prev_sample __a : Optional[Any] = (sample / 2 + 0.5).clamp(0 , 1 ) __a : Dict = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a : List[Any] = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase )
697
0
'''simple docstring''' import os from math import logaa def _snake_case ( lowercase = "base_exp.txt" ) -> int: __a : float = 0 __a : Optional[int] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowercase ) , lowercase ) ) ): __a : str = list(map(lowercase , line.split(""",""" ) ) ) if x * logaa(lowercase ) > largest: __a : Dict = x * logaa(lowercase ) __a : Any = i + 1 return result if __name__ == "__main__": print(solution())
701
'''simple docstring''' def _snake_case ( lowercase ) -> bool: if not isinstance(lowercase , lowercase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __a : str = str(lowercase ) __a : Any = """""".join(sorted(lowercase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _snake_case ( lowercase = 9_9 ) -> int: if not 0 < percent < 1_0_0: raise ValueError("""solution() only accepts values from 0 to 100""" ) __a : List[str] = 0 __a : Union[str, Any] = 1 while True: if check_bouncy(lowercase ): bouncy_num += 1 if (bouncy_num / num) * 1_0_0 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
697
0
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): lowercase__ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def __lowerCamelCase ( self , __UpperCamelCase=0 ): '''simple docstring''' __a : Tuple = np.random.RandomState(__UpperCamelCase ) __a : int = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __a : Tuple = self.get_dummy_inputs() __a : Union[str, Any] = pipe(**__UpperCamelCase ).images __a : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Dict = np.array([0.6_5_0_7_2, 0.5_8_4_9_2, 0.4_8_2_1_9, 0.5_5_5_2_1, 0.5_3_1_8_0, 0.5_5_9_3_9, 0.5_0_6_9_7, 0.3_9_8_0_0, 0.4_6_4_5_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' __a : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __a : Union[str, Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __a : Union[str, Any] = self.get_dummy_inputs() __a : Optional[int] = pipe(**__UpperCamelCase ).images __a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : List[str] = np.array([0.6_5_8_6_3, 0.5_9_4_2_5, 0.4_9_3_2_6, 0.5_6_3_1_3, 0.5_3_8_7_5, 0.5_6_6_2_7, 0.5_1_0_6_5, 0.3_9_7_7_7, 0.4_6_3_3_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __a : int = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __a : Dict = self.get_dummy_inputs() __a : Dict = pipe(**__UpperCamelCase ).images __a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : str = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __a : int = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __a : Tuple = self.get_dummy_inputs() __a : List[Any] = pipe(**__UpperCamelCase ).images __a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[Any] = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __a : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __a : int = self.get_dummy_inputs() __a : List[str] = pipe(**__UpperCamelCase ).images __a : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : int = np.array([0.5_3_8_1_7, 0.6_0_8_1_2, 0.4_7_3_8_4, 0.4_9_5_3_0, 0.5_1_8_9_4, 0.4_9_8_1_4, 0.4_7_9_8_4, 0.3_8_9_5_8, 0.4_4_2_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __a : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __a : int = self.get_dummy_inputs() __a : Optional[int] = pipe(**__UpperCamelCase ).images __a : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Dict = np.array([0.5_3_8_9_5, 0.6_0_8_0_8, 0.4_7_9_3_3, 0.4_9_6_0_8, 0.5_1_8_8_6, 0.4_9_9_5_0, 0.4_8_0_5_3, 0.3_8_9_5_7, 0.4_4_2_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __a : Tuple = self.get_dummy_inputs() __a : Optional[int] = 3 * [inputs["""prompt"""]] # forward __a : Union[str, Any] = pipe(**__UpperCamelCase ) __a : Optional[Any] = output.images[0, -3:, -3:, -1] __a : Dict = self.get_dummy_inputs() __a : int = 3 * [inputs.pop("""prompt""" )] __a : Union[str, Any] = pipe.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=__UpperCamelCase , return_tensors="""np""" , ) __a : Tuple = text_inputs["""input_ids"""] __a : int = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __a : Union[str, Any] = prompt_embeds # forward __a : Union[str, Any] = pipe(**__UpperCamelCase ) __a : Optional[Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def __lowerCamelCase ( self ): '''simple docstring''' __a : int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __a : str = self.get_dummy_inputs() __a : Dict = 3 * ["""this is a negative prompt"""] __a : int = negative_prompt __a : str = 3 * [inputs["""prompt"""]] # forward __a : Tuple = pipe(**__UpperCamelCase ) __a : Optional[Any] = output.images[0, -3:, -3:, -1] __a : Any = self.get_dummy_inputs() __a : str = 3 * [inputs.pop("""prompt""" )] __a : int = [] for p in [prompt, negative_prompt]: __a : str = pipe.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=__UpperCamelCase , return_tensors="""np""" , ) __a : Optional[int] = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __a : str = embeds # forward __a : List[Any] = pipe(**__UpperCamelCase ) __a : str = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def __lowerCamelCase ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = ort.SessionOptions() __a : int = False return options def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) __a : Any = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __a : List[Any] = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __a : Any = output.images __a : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __a : Dict = np.array([0.0_4_5_2, 0.0_3_9_0, 0.0_0_8_7, 0.0_3_5_0, 0.0_6_1_7, 0.0_3_6_4, 0.0_5_4_4, 0.0_5_2_3, 0.0_7_2_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __a : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) __a : Optional[Any] = """open neural network exchange""" __a : Union[str, Any] = np.random.RandomState(0 ) __a : List[Any] = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=__UpperCamelCase , output_type="""np""" ) __a : Union[str, Any] = output.images __a : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __a : Optional[Any] = np.array([0.2_8_6_7, 0.1_9_7_4, 0.1_4_8_1, 0.7_2_9_4, 0.7_2_5_1, 0.6_6_6_7, 0.4_1_9_4, 0.5_6_4_2, 0.6_4_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __a : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) __a : str = """open neural network exchange""" __a : str = np.random.RandomState(0 ) __a : Tuple = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=__UpperCamelCase , output_type="""np""" ) __a : str = output.images __a : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __a : List[Any] = np.array([0.2_3_0_6, 0.1_9_5_9, 0.1_5_9_3, 0.6_5_4_9, 0.6_3_9_4, 0.5_4_0_8, 0.5_0_6_5, 0.6_0_1_0, 0.6_1_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = 0 def test_callback_fn(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> None: __a : int = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __a : List[str] = latents[0, -3:, -3:, -1] __a : str = np.array( [-0.6_7_7_2, -0.3_8_3_5, -1.2_4_5_6, 0.1_9_0_5, -1.0_9_7_4, 0.6_9_6_7, -1.9_3_5_3, 0.0_1_7_8, 1.0_1_6_7] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __a : Optional[int] = latents[0, -3:, -3:, -1] __a : Any = np.array( [-0.3_3_5_1, 0.2_2_4_1, -0.1_8_3_7, -0.2_3_2_5, -0.6_5_7_7, 0.3_3_9_3, -0.0_2_4_1, 0.5_8_9_9, 1.3_8_7_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 __a : Any = False __a : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __a : int = """Andromeda galaxy in a bottle""" __a : List[Any] = np.random.RandomState(0 ) pipe( prompt=__UpperCamelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=__UpperCamelCase , callback=__UpperCamelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert pipe.safety_checker is None __a : Tuple = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__UpperCamelCase ) __a : Tuple = OnnxStableDiffusionPipeline.from_pretrained(__UpperCamelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __a : Tuple = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
702
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _snake_case ( lowercase , lowercase , lowercase ) -> Any: # Construct model if gpta_config_file == "": __a : Dict = GPTaConfig() else: __a : Optional[Any] = GPTaConfig.from_json_file(lowercase ) __a : Union[str, Any] = GPTaModel(lowercase ) # Load weights from numpy load_tf_weights_in_gpta(lowercase , lowercase , lowercase ) # Save pytorch-model __a : Optional[int] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME __a : Dict = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , lowercase ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) __SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
697
0
'''simple docstring''' from math import factorial, radians def _snake_case ( lowercase , lowercase = 1_8 , lowercase = 1_0 ) -> float: '''simple docstring''' __a : Union[str, Any] = angle_in_degrees - ((angle_in_degrees // 3_6_0.0) * 3_6_0.0) # Converting from degrees to radians __a : Optional[Any] = radians(lowercase ) __a : Union[str, Any] = angle_in_radians __a : Optional[int] = 3 __a : Optional[int] = -1 for _ in range(lowercase ): result += (b * (angle_in_radians**a)) / factorial(lowercase ) __a : Tuple = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowercase , lowercase ) if __name__ == "__main__": __import__('doctest').testmod()
703
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def __lowerCamelCase ( *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = MODEL_FOR_OBJECT_DETECTION_MAPPING def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Optional[Any] = ObjectDetectionPipeline(model=__UpperCamelCase , image_processor=__UpperCamelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : List[str] = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(__UpperCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __UpperCamelCase , { """score""": ANY(__UpperCamelCase ), """label""": ANY(__UpperCamelCase ), """box""": {"""xmin""": ANY(__UpperCamelCase ), """ymin""": ANY(__UpperCamelCase ), """xmax""": ANY(__UpperCamelCase ), """ymax""": ANY(__UpperCamelCase )}, } , ) import datasets __a : Optional[int] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) __a : Tuple = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] __a : Any = object_detector(__UpperCamelCase , threshold=0.0 ) self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for outputs in batch_outputs: self.assertGreater(len(__UpperCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __UpperCamelCase , { """score""": ANY(__UpperCamelCase ), """label""": ANY(__UpperCamelCase ), """box""": {"""xmin""": ANY(__UpperCamelCase ), """ymin""": ANY(__UpperCamelCase ), """xmax""": ANY(__UpperCamelCase ), """ymax""": ANY(__UpperCamelCase )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass @require_torch def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = """hf-internal-testing/tiny-detr-mobilenetsv3""" __a : Dict = AutoModelForObjectDetection.from_pretrained(__UpperCamelCase ) __a : Optional[Any] = AutoFeatureExtractor.from_pretrained(__UpperCamelCase ) __a : str = ObjectDetectionPipeline(model=__UpperCamelCase , feature_extractor=__UpperCamelCase ) __a : Optional[int] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ] , ) __a : Union[str, Any] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : str = """facebook/detr-resnet-50""" __a : Dict = AutoModelForObjectDetection.from_pretrained(__UpperCamelCase ) __a : int = AutoFeatureExtractor.from_pretrained(__UpperCamelCase ) __a : int = ObjectDetectionPipeline(model=__UpperCamelCase , feature_extractor=__UpperCamelCase ) __a : Any = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) __a : Optional[Any] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : int = """facebook/detr-resnet-50""" __a : Optional[int] = pipeline("""object-detection""" , model=__UpperCamelCase ) __a : Optional[int] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) __a : List[str] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = 0.9_9_8_5 __a : Union[str, Any] = """facebook/detr-resnet-50""" __a : Optional[int] = pipeline("""object-detection""" , model=__UpperCamelCase ) __a : Union[str, Any] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=__UpperCamelCase ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) @require_torch @require_pytesseract @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : str = """Narsil/layoutlmv3-finetuned-funsd""" __a : List[Any] = 0.9_9_9_3 __a : Dict = pipeline("""object-detection""" , model=__UpperCamelCase , threshold=__UpperCamelCase ) __a : List[str] = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_9_3, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, {"""score""": 0.9_9_9_3, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, ] , )
697
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] = '▁' __SCREAMING_SNAKE_CASE : str = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE : Optional[Any] = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } __SCREAMING_SNAKE_CASE : Optional[Any] = { 'google/pegasus-xsum': 512, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PegasusTokenizer lowercase__ = ["input_ids", "attention_mask"] def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="<pad>" , __UpperCamelCase="</s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<mask_2>" , __UpperCamelCase="<mask_1>" , __UpperCamelCase=None , __UpperCamelCase=103 , **__UpperCamelCase , ): '''simple docstring''' __a : Tuple = offset if additional_special_tokens is not None: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError( f"""additional_special_tokens should be of type {type(__UpperCamelCase )}, but is""" f""" {type(__UpperCamelCase )}""" ) __a : int = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(__UpperCamelCase ) , self.offset - 1 ) ] if len(set(__UpperCamelCase ) ) != len(__UpperCamelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) __a : Optional[Any] = additional_special_tokens_extended else: __a : Optional[Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , pad_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , mask_token=__UpperCamelCase , mask_token_sent=__UpperCamelCase , offset=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , **__UpperCamelCase , ) __a : int = vocab_file __a : Union[str, Any] = False if not self.vocab_file else True def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : Any = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(__UpperCamelCase ) elif token_ids_a is None: return self._special_token_mask(__UpperCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__UpperCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __a : List[str] = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file , __UpperCamelCase ) return (out_vocab_file,)
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : List[str] = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
697
0
__SCREAMING_SNAKE_CASE : int = 9.80_665 def _snake_case ( lowercase , lowercase , lowercase = g ) -> float: if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
705
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Any = params __a : Optional[Any] = np.array(__UpperCamelCase ) __a : Union[str, Any] = np.array([len(__UpperCamelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , __UpperCamelCase ): '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ): '''simple docstring''' return len(self.lengths ) def __lowerCamelCase ( self ): '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = self.params.max_model_input_size __a : Union[str, Any] = self.lengths > max_len logger.info(f"""Splitting {sum(__UpperCamelCase )} too long sequences.""" ) def divide_chunks(__UpperCamelCase , __UpperCamelCase ): return [l[i : i + n] for i in range(0 , len(__UpperCamelCase ) , __UpperCamelCase )] __a : int = [] __a : Union[str, Any] = [] if self.params.mlm: __a , __a : Any = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: __a , __a : str = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __a : Any = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __a : int = np.insert(__UpperCamelCase , 0 , __UpperCamelCase ) if sub_s[-1] != sep_id: __a : str = np.insert(__UpperCamelCase , len(__UpperCamelCase ) , __UpperCamelCase ) assert len(__UpperCamelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__UpperCamelCase ) new_tok_ids.extend(__UpperCamelCase ) new_lengths.extend([len(__UpperCamelCase ) for l in sub_seqs] ) __a : Dict = np.array(__UpperCamelCase ) __a : Tuple = np.array(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = len(self ) __a : List[str] = self.lengths > 11 __a : int = self.token_ids[indices] __a : Union[str, Any] = self.lengths[indices] __a : Any = len(self ) logger.info(f"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def __lowerCamelCase ( self ): '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: __a : List[str] = self.params.special_tok_ids["""unk_token"""] __a : str = len(self ) __a : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __a : Optional[Any] = (unk_occs / self.lengths) < 0.5 __a : List[str] = self.token_ids[indices] __a : Optional[int] = self.lengths[indices] __a : Any = len(self ) logger.info(f"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def __lowerCamelCase ( self ): '''simple docstring''' if not self.params.is_master: return logger.info(f"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : List[str] = [t[0] for t in batch] __a : str = [t[1] for t in batch] assert len(__UpperCamelCase ) == len(__UpperCamelCase ) # Max for paddings __a : Optional[int] = max(__UpperCamelCase ) # Pad token ids if self.params.mlm: __a : int = self.params.special_tok_ids["""pad_token"""] else: __a : Tuple = self.params.special_tok_ids["""unk_token"""] __a : Any = [list(t.astype(__UpperCamelCase ) ) + [pad_idx] * (max_seq_len_ - len(__UpperCamelCase )) for t in token_ids] assert len(tk_ ) == len(__UpperCamelCase ) assert all(len(__UpperCamelCase ) == max_seq_len_ for t in tk_ ) __a : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) __a : Optional[Any] = torch.tensor(__UpperCamelCase ) # (bs) return tk_t, lg_t
697
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): lowercase__ = None class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): lowercase__ = PandasConfig def __lowerCamelCase ( self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __a : Any = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__UpperCamelCase , (str, list, tuple) ): __a : str = data_files if isinstance(__UpperCamelCase , __UpperCamelCase ): __a : str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __a : Tuple = [dl_manager.iter_files(__UpperCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __a : Any = [] for split_name, files in data_files.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): __a : str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __a : Any = [dl_manager.iter_files(__UpperCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__UpperCamelCase , gen_kwargs={"""files""": files} ) ) return splits def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __a : str = table_cast(__UpperCamelCase , self.config.features.arrow_schema ) return pa_table def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(__UpperCamelCase ) ): with open(__UpperCamelCase , """rb""" ) as f: __a : Any = pa.Table.from_pandas(pd.read_pickle(__UpperCamelCase ) ) yield i, self._cast_table(__UpperCamelCase )
706
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = "" lowercase__ = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' super().__init__(self , **__UpperCamelCase ) __a : int = repo_info __a : int = token __a : Any = None def __lowerCamelCase ( self ): '''simple docstring''' if self.dir_cache is None: __a : Union[str, Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __a : List[str] = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(__UpperCamelCase ): {"""name""": str(__UpperCamelCase ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = "rb" , **__UpperCamelCase , ): '''simple docstring''' if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) __a : Any = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def __lowerCamelCase ( self , __UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' self._get_dirs() __a : str = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase ): '''simple docstring''' self._get_dirs() __a : int = PurePosixPath(path.strip("""/""" ) ) __a : List[str] = {} for p, f in self.dir_cache.items(): __a : str = PurePosixPath(p.strip("""/""" ) ) __a : Optional[int] = p.parent if root == path: __a : List[str] = f __a : str = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
697
0
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self , __UpperCamelCase , __UpperCamelCase=14 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=0.0_2 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=None , ): '''simple docstring''' __a : Any = parent __a : List[str] = batch_size __a : str = seq_length __a : Tuple = is_training __a : Any = use_token_type_ids __a : str = use_input_mask __a : Dict = use_labels __a : List[str] = use_mc_token_ids __a : List[Any] = vocab_size __a : List[Any] = hidden_size __a : List[Any] = num_hidden_layers __a : Dict = num_attention_heads __a : List[Any] = intermediate_size __a : Tuple = hidden_act __a : Optional[int] = hidden_dropout_prob __a : Dict = attention_probs_dropout_prob __a : str = max_position_embeddings __a : int = type_vocab_size __a : Dict = type_sequence_label_size __a : List[str] = initializer_range __a : str = num_labels __a : Any = num_choices __a : Dict = scope __a : Any = self.vocab_size - 1 def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : int = None if self.use_input_mask: __a : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __a : Any = None if self.use_token_type_ids: __a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Optional[int] = None if self.use_mc_token_ids: __a : Tuple = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) __a : int = None __a : Tuple = None __a : Optional[int] = None if self.use_labels: __a : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a : Dict = ids_tensor([self.batch_size] , self.num_choices ) __a : List[str] = self.get_config() __a : int = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def __lowerCamelCase ( self ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , *__UpperCamelCase ): '''simple docstring''' __a : Optional[int] = CTRLModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() model(__UpperCamelCase , token_type_ids=__UpperCamelCase , head_mask=__UpperCamelCase ) model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) __a : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , *__UpperCamelCase ): '''simple docstring''' __a : str = CTRLLMHeadModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : Tuple = model(__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = self.prepare_config_and_inputs() ( __a ) : List[Any] = config_and_inputs __a : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , *__UpperCamelCase ): '''simple docstring''' __a : str = self.num_labels __a : Any = CTRLForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Dict = model(__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): lowercase__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowercase__ = (CTRLLMHeadModel,) if is_torch_available() else () lowercase__ = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = CTRLModelTester(self ) __a : int = ConfigTester(self , config_class=__UpperCamelCase , n_embd=37 ) def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__UpperCamelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Dict = CTRLModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def __lowerCamelCase ( self ): '''simple docstring''' pass @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(__UpperCamelCase ) __a : Union[str, Any] = torch.tensor( [[1_1859, 0, 1611, 8]] , dtype=torch.long , device=__UpperCamelCase ) # Legal the president is __a : Dict = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __a : Dict = model.generate(__UpperCamelCase , do_sample=__UpperCamelCase ) self.assertListEqual(output_ids[0].tolist() , __UpperCamelCase )
707
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , __UpperCamelCase , __UpperCamelCase=2 , __UpperCamelCase=32 , __UpperCamelCase=16 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=4 , __UpperCamelCase=[0, 1, 2, 3] , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0_2 , __UpperCamelCase=3 , __UpperCamelCase=[1, 384, 24, 24] , __UpperCamelCase=True , __UpperCamelCase=None , ): '''simple docstring''' __a : List[str] = parent __a : Tuple = batch_size __a : str = image_size __a : int = patch_size __a : Dict = num_channels __a : int = is_training __a : Dict = use_labels __a : Union[str, Any] = hidden_size __a : Dict = num_hidden_layers __a : Dict = backbone_out_indices __a : Optional[int] = num_attention_heads __a : List[str] = intermediate_size __a : Optional[Any] = hidden_act __a : Dict = hidden_dropout_prob __a : Tuple = attention_probs_dropout_prob __a : Any = initializer_range __a : Any = num_labels __a : Optional[Any] = backbone_featmap_shape __a : List[Any] = scope __a : List[str] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __a : Union[str, Any] = (image_size // patch_size) ** 2 __a : List[str] = num_patches + 1 def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Union[str, Any] = None if self.use_labels: __a : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a : Tuple = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 192, 384, 768], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Optional[Any] = DPTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : List[str] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : List[str] = self.num_labels __a : Union[str, Any] = DPTForDepthEstimation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Dict = self.num_labels __a : Tuple = DPTForSemanticSegmentation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : str = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.prepare_config_and_inputs() __a , __a , __a : Tuple = config_and_inputs __a : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): lowercase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowercase__ = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = DPTModelTester(self ) __a : List[Any] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : str = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Any = model_class(__UpperCamelCase ) __a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : int = [*signature.parameters.keys()] __a : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() __a : List[Any] = True if model_class in get_values(__UpperCamelCase ): continue __a : str = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() __a : Union[str, Any] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) __a : List[Any] = model(**__UpperCamelCase ).loss loss.backward() def __lowerCamelCase ( self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __a , __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __a : Any = False __a : Dict = True if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing: continue __a : Any = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.gradient_checkpointing_enable() model.train() __a : List[str] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) __a : Dict = model(**__UpperCamelCase ).loss loss.backward() def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() __a : Any = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: __a : Any = model_class(config=__UpperCamelCase ) # Skip the check for the backbone __a : Optional[Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __a : Optional[int] = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __a : int = DPTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : int = self.model_tester.prepare_config_and_inputs_for_common() __a : Optional[int] = """add""" with self.assertRaises(__UpperCamelCase ): __a : int = DPTForDepthEstimation(__UpperCamelCase ) def _snake_case ( ) -> Any: __a : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' __a : int = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) __a : int = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__UpperCamelCase ) __a : Union[str, Any] = prepare_img() __a : Any = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): __a : Optional[Any] = model(**__UpperCamelCase ) __a : int = outputs.predicted_depth # verify the predicted depth __a : Any = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __UpperCamelCase ) __a : int = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __UpperCamelCase , atol=1E-4 ) )
697
0
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __SCREAMING_SNAKE_CASE : List[str] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) __SCREAMING_SNAKE_CASE : Optional[Any] = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) __SCREAMING_SNAKE_CASE : Tuple = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) __SCREAMING_SNAKE_CASE : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) __SCREAMING_SNAKE_CASE : Optional[int] = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) __SCREAMING_SNAKE_CASE : int = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) __SCREAMING_SNAKE_CASE : int = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _snake_case ( ) -> List[str]: __a : List[Any] = randrange(len(lowercase ) ), randrange(len(lowercase ) ) __a : int = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] __a : int = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _snake_case ( lowercase = 1_0_0 ) -> Any: return (generate_random_hand() for _ in range(lowercase )) @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> int: assert PokerHand(lowercase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Any: assert PokerHand(lowercase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , lowercase ) def _snake_case ( lowercase , lowercase , lowercase ) -> List[str]: __a : Union[str, Any] = PokerHand(lowercase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Optional[int]: assert PokerHand(lowercase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Union[str, Any]: assert PokerHand(lowercase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , lowercase ) def _snake_case ( lowercase , lowercase , lowercase ) -> Optional[int]: assert PokerHand(lowercase ).compare_with(PokerHand(lowercase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def _snake_case ( lowercase , lowercase , lowercase ) -> int: assert PokerHand(lowercase ).compare_with(PokerHand(lowercase ) ) == expected def _snake_case ( ) -> Union[str, Any]: __a : Tuple = [PokerHand(lowercase ) for hand in SORTED_HANDS] __a : Optional[int] = poker_hands.copy() shuffle(lowercase ) __a : List[str] = chain(sorted(lowercase ) ) for index, hand in enumerate(lowercase ): assert hand == poker_hands[index] def _snake_case ( ) -> List[str]: # Test that five high straights are compared correctly. __a : Optional[int] = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=lowercase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _snake_case ( ) -> List[str]: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. __a : Dict = PokerHand("""2C 4S AS 3D 5C""" ) __a : Dict = True __a : Optional[int] = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _snake_case ( ) -> Dict: # Problem number 54 from Project Euler # Testing from poker_hands.txt file __a : Tuple = 0 __a : int = os.path.abspath(os.path.dirname(lowercase ) ) __a : Union[str, Any] = os.path.join(lowercase , """poker_hands.txt""" ) with open(lowercase ) as file_hand: for line in file_hand: __a : Union[str, Any] = line[:1_4].strip() __a : Optional[Any] = line[1_5:].strip() __a : List[str] = PokerHand(lowercase ), PokerHand(lowercase ) __a : str = player.compare_with(lowercase ) if output == "Win": answer += 1 assert answer == 3_7_6
708
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) __a : Optional[int] = Vector() def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(__UpperCamelCase ) , """(0,0,0,0,0,1)""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = Vector([1, 2, 3, 4] ) self.assertEqual(len(__UpperCamelCase ) , 4 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = Vector([1, 2] ) __a : List[str] = Vector([1, 2, 3, 4, 5] ) __a : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __a : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Vector([1, 2, 3] ) __a : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = Vector([1, 2, 3] ) __a : Any = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = Vector([1, 2, 3] ) __a : Optional[Any] = Vector([2, -1, 4] ) # for test of dot product __a : Union[str, Any] = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Vector([1, 2, 3] ) __a : Optional[int] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , __UpperCamelCase , __UpperCamelCase ) ) , """(3,4,7)""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : int = Vector([1, 0, 0, 0, 0, 0] ) __a : Any = x.copy() self.assertEqual(str(__UpperCamelCase ) , str(__UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(__UpperCamelCase ) , """(0,1,0)""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(__UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __a : List[Any] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __a : Any = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) __a : List[Any] = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(__UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __a : Union[str, Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __a : List[str] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
697
0
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _snake_case ( lowercase , lowercase , lowercase ) -> Union[str, Any]: # Construct model if openai_config_file == "": __a : str = OpenAIGPTConfig() else: __a : Optional[Any] = OpenAIGPTConfig.from_json_file(lowercase ) __a : Tuple = OpenAIGPTModel(lowercase ) # Load weights from numpy load_tf_weights_in_openai_gpt(lowercase , lowercase , lowercase ) # Save pytorch-model __a : int = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME __a : Tuple = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , lowercase ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--openai_checkpoint_folder_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--openai_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) __SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
709
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __SCREAMING_SNAKE_CASE : List[str] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) __SCREAMING_SNAKE_CASE : Optional[Any] = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) __SCREAMING_SNAKE_CASE : Tuple = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) __SCREAMING_SNAKE_CASE : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) __SCREAMING_SNAKE_CASE : Optional[int] = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) __SCREAMING_SNAKE_CASE : int = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) __SCREAMING_SNAKE_CASE : int = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _snake_case ( ) -> List[str]: __a , __a : List[Any] = randrange(len(lowercase ) ), randrange(len(lowercase ) ) __a : int = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] __a , __a : int = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _snake_case ( lowercase = 1_0_0 ) -> Any: return (generate_random_hand() for _ in range(lowercase )) @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> int: assert PokerHand(lowercase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Any: assert PokerHand(lowercase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , lowercase ) def _snake_case ( lowercase , lowercase , lowercase ) -> List[str]: __a : Union[str, Any] = PokerHand(lowercase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Optional[int]: assert PokerHand(lowercase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Union[str, Any]: assert PokerHand(lowercase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , lowercase ) def _snake_case ( lowercase , lowercase , lowercase ) -> Optional[int]: assert PokerHand(lowercase ).compare_with(PokerHand(lowercase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def _snake_case ( lowercase , lowercase , lowercase ) -> int: assert PokerHand(lowercase ).compare_with(PokerHand(lowercase ) ) == expected def _snake_case ( ) -> Union[str, Any]: __a : Tuple = [PokerHand(lowercase ) for hand in SORTED_HANDS] __a : Optional[int] = poker_hands.copy() shuffle(lowercase ) __a : List[str] = chain(sorted(lowercase ) ) for index, hand in enumerate(lowercase ): assert hand == poker_hands[index] def _snake_case ( ) -> List[str]: # Test that five high straights are compared correctly. __a : Optional[int] = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=lowercase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _snake_case ( ) -> List[str]: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. __a : Dict = PokerHand("""2C 4S AS 3D 5C""" ) __a : Dict = True __a : Optional[int] = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _snake_case ( ) -> Dict: # Problem number 54 from Project Euler # Testing from poker_hands.txt file __a : Tuple = 0 __a : int = os.path.abspath(os.path.dirname(lowercase ) ) __a : Union[str, Any] = os.path.join(lowercase , """poker_hands.txt""" ) with open(lowercase ) as file_hand: for line in file_hand: __a : Union[str, Any] = line[:1_4].strip() __a : Optional[Any] = line[1_5:].strip() __a , __a : List[str] = PokerHand(lowercase ), PokerHand(lowercase ) __a : str = player.compare_with(lowercase ) if output == "Win": answer += 1 assert answer == 3_7_6
697
0
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __SCREAMING_SNAKE_CASE : Optional[int] = object() # For specifying empty leaf dict `{}` __SCREAMING_SNAKE_CASE : int = object() def _snake_case ( lowercase , lowercase ) -> Tuple: __a : Any = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(lowercase ) - len(lowercase ) + 1 ): __a : Dict = [x.match(lowercase ) for x, y in zip(lowercase , ks[i:] )] if matches and all(lowercase ): return True return False def _snake_case ( lowercase ) -> int: def replace(lowercase , lowercase ): for rule, replacement in rules: if _match(lowercase , lowercase ): return replacement return val return replace def _snake_case ( ) -> Optional[int]: return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""" , lowercase )), (("transformer", "wte", "embedding"), P("""mp""" , lowercase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(lowercase , """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""" , lowercase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(lowercase , """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""" , lowercase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _snake_case ( lowercase ) -> Optional[int]: __a : List[str] = _get_partition_rules() __a : Tuple = _replacement_rules(lowercase ) __a : Any = {k: _unmatched for k in flatten_dict(lowercase )} __a : Optional[Any] = {k: replace(lowercase , lowercase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(lowercase ) )
710
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
697
0
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __SCREAMING_SNAKE_CASE : Dict = 'http://www.mocksite.com/file1.txt' __SCREAMING_SNAKE_CASE : Optional[int] = '"text": ["foo", "foo"]' __SCREAMING_SNAKE_CASE : Optional[Any] = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class SCREAMING_SNAKE_CASE__ : lowercase__ = 2_00 lowercase__ = {"Content-Length": "100"} lowercase__ = {} def __lowerCamelCase ( self , **__UpperCamelCase ): '''simple docstring''' return [bytes(__UpperCamelCase , """utf-8""" )] def _snake_case ( *lowercase , **lowercase ) -> Any: return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def _snake_case ( lowercase , lowercase , lowercase ) -> str: import requests monkeypatch.setattr(lowercase , """request""" , lowercase ) __a : Tuple = URL if issubclass(lowercase , lowercase ): __a : str = url elif issubclass(lowercase , lowercase ): __a : List[str] = [url] elif issubclass(lowercase , lowercase ): __a : str = {"""train""": url} __a : List[Any] = """dummy""" __a : int = """downloads""" __a : Optional[int] = tmp_path __a : Optional[int] = DownloadConfig( cache_dir=os.path.join(lowercase , lowercase ) , use_etag=lowercase , ) __a : int = DownloadManager(dataset_name=lowercase , download_config=lowercase ) __a : Optional[int] = dl_manager.download(lowercase ) __a : Optional[int] = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowercase , lowercase ): __a : Tuple = [downloaded_paths] __a : str = [urls] elif isinstance(lowercase , lowercase ): assert "train" in downloaded_paths.keys() __a : List[str] = downloaded_paths.values() __a : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowercase , lowercase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __a : Union[str, Any] = Path(lowercase ) __a : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __a : List[str] = downloaded_path.read_text() assert content == CONTENT __a : Union[str, Any] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() __a : Union[str, Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def _snake_case ( lowercase , lowercase , lowercase ) -> Tuple: __a : str = str(lowercase ) if issubclass(lowercase , lowercase ): __a : str = filename elif issubclass(lowercase , lowercase ): __a : Any = [filename] elif issubclass(lowercase , lowercase ): __a : Dict = {"""train""": filename} __a : Union[str, Any] = """dummy""" __a : List[str] = xz_file.parent __a : int = """extracted""" __a : Optional[int] = DownloadConfig( cache_dir=lowercase , use_etag=lowercase , ) __a : Tuple = DownloadManager(dataset_name=lowercase , download_config=lowercase ) __a : Tuple = dl_manager.extract(lowercase ) __a : Any = paths for extracted_paths in [extracted_paths]: if isinstance(lowercase , lowercase ): __a : Dict = [extracted_paths] __a : Any = [paths] elif isinstance(lowercase , lowercase ): assert "train" in extracted_paths.keys() __a : List[Any] = extracted_paths.values() __a : Tuple = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowercase , lowercase ): assert extracted_path == dl_manager.extracted_paths[input_path] __a : List[str] = Path(lowercase ) __a : Any = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowercase , etag=lowercase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __a : Optional[Any] = extracted_path.read_text() __a : Any = text_file.read_text() assert extracted_file_content == expected_file_content def _snake_case ( lowercase , lowercase ) -> List[Any]: assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(lowercase , start=1 ): __a : Tuple = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def _snake_case ( lowercase , lowercase ) -> Optional[int]: __a : str = request.getfixturevalue(lowercase ) __a : Optional[int] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowercase ) , start=1 ): _test_jsonl(lowercase , lowercase ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def _snake_case ( lowercase , lowercase ) -> List[Any]: __a : List[str] = request.getfixturevalue(lowercase ) __a : Optional[Any] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowercase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowercase ) , start=1 ): _test_jsonl(lowercase , lowercase ) assert num_tar == 1 assert num_jsonl == 2 def _snake_case ( lowercase ) -> List[str]: __a : Any = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowercase ) , start=1 ): assert os.path.basename(lowercase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
711
'''simple docstring''' from __future__ import annotations import bisect def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> int: if hi < 0: __a : Union[str, Any] = len(lowercase ) while lo < hi: __a : List[str] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __a : int = mid + 1 else: __a : int = mid return lo def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> int: if hi < 0: __a : Any = len(lowercase ) while lo < hi: __a : Any = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __a : List[str] = mid + 1 else: __a : Any = mid return lo def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> None: sorted_collection.insert(bisect_left(lowercase , lowercase , lowercase , lowercase ) , lowercase ) def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> None: sorted_collection.insert(bisect_right(lowercase , lowercase , lowercase , lowercase ) , lowercase ) def _snake_case ( lowercase , lowercase ) -> int | None: __a : Dict = 0 __a : Any = len(lowercase ) - 1 while left <= right: __a : str = left + (right - left) // 2 __a : List[Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __a : Optional[Any] = midpoint - 1 else: __a : Optional[int] = midpoint + 1 return None def _snake_case ( lowercase , lowercase ) -> int | None: __a : Optional[int] = bisect.bisect_left(lowercase , lowercase ) if index != len(lowercase ) and sorted_collection[index] == item: return index return None def _snake_case ( lowercase , lowercase , lowercase , lowercase ) -> int | None: if right < left: return None __a : Any = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowercase , lowercase , lowercase , midpoint - 1 ) else: return binary_search_by_recursion(lowercase , lowercase , midpoint + 1 , lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = input('Enter numbers separated by comma:\n').strip() __SCREAMING_SNAKE_CASE : Optional[Any] = sorted(int(item) for item in user_input.split(',')) __SCREAMING_SNAKE_CASE : List[str] = int(input('Enter a single number to be found in the list:\n')) __SCREAMING_SNAKE_CASE : Optional[int] = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
697
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __SCREAMING_SNAKE_CASE : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
712
'''simple docstring''' from itertools import product def _snake_case ( lowercase , lowercase ) -> list[int]: __a : Optional[int] = sides_number __a : Union[str, Any] = max_face_number * dice_number __a : Optional[Any] = [0] * (max_total + 1) __a : Dict = 1 __a : str = range(lowercase , max_face_number + 1 ) for dice_numbers in product(lowercase , repeat=lowercase ): __a : int = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def _snake_case ( ) -> float: __a : Tuple = total_frequency_distribution( sides_number=4 , dice_number=9 ) __a : Union[str, Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) __a : str = 0 __a : Dict = 9 __a : str = 4 * 9 __a : Any = 6 for peter_total in range(lowercase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __a : str = (4**9) * (6**6) __a : List[Any] = peter_wins_count / total_games_number __a : List[Any] = round(lowercase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'''{solution() = }''')
697
0
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): @register_to_config def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = False , ): '''simple docstring''' super().__init__() __a : Any = nn.Embedding(__UpperCamelCase , __UpperCamelCase ) __a : Tuple = nn.Embedding(__UpperCamelCase , __UpperCamelCase ) __a : str = False __a : str = nn.Dropout(p=__UpperCamelCase ) __a : Dict = TaConfig( vocab_size=__UpperCamelCase , d_model=__UpperCamelCase , num_heads=__UpperCamelCase , d_kv=__UpperCamelCase , d_ff=__UpperCamelCase , dropout_rate=__UpperCamelCase , feed_forward_proj=__UpperCamelCase , is_decoder=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , ) __a : Optional[Any] = nn.ModuleList() for lyr_num in range(__UpperCamelCase ): __a : Dict = TaBlock(__UpperCamelCase ) self.encoders.append(__UpperCamelCase ) __a : Optional[Any] = TaLayerNorm(__UpperCamelCase ) __a : Optional[Any] = nn.Dropout(p=__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : int = self.token_embedder(__UpperCamelCase ) __a : List[Any] = encoder_input_tokens.shape[1] __a : Optional[int] = torch.arange(__UpperCamelCase , device=encoder_input_tokens.device ) x += self.position_encoding(__UpperCamelCase ) __a : Union[str, Any] = self.dropout_pre(__UpperCamelCase ) # inverted the attention mask __a : List[str] = encoder_input_tokens.size() __a : List[str] = self.get_extended_attention_mask(__UpperCamelCase , __UpperCamelCase ) for lyr in self.encoders: __a : List[Any] = lyr(__UpperCamelCase , __UpperCamelCase )[0] __a : Optional[Any] = self.layer_norm(__UpperCamelCase ) return self.dropout_post(__UpperCamelCase ), encoder_inputs_mask
713
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): '''simple docstring''' super().__init__() self.register_modules( vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , ) def __lowerCamelCase ( self , __UpperCamelCase = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' self.enable_attention_slicing(__UpperCamelCase ) @torch.no_grad() def __call__( self , __UpperCamelCase , __UpperCamelCase = 512 , __UpperCamelCase = 512 , __UpperCamelCase = 50 , __UpperCamelCase = 7.5 , __UpperCamelCase = None , __UpperCamelCase = 1 , __UpperCamelCase = 0.0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = "pil" , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = 1 , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ): __a : Union[str, Any] = 1 elif isinstance(__UpperCamelCase , __UpperCamelCase ): __a : Tuple = len(__UpperCamelCase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(__UpperCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCamelCase , __UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__UpperCamelCase )}.""" ) # get prompt text embeddings __a : Tuple = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __a : Union[str, Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __a : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __a : Optional[int] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __a : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __a , __a , __a : Union[str, Any] = text_embeddings.shape __a : Optional[Any] = text_embeddings.repeat(1 , __UpperCamelCase , 1 ) __a : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , __UpperCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __a : Any = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __a : List[str] if negative_prompt is None: __a : Optional[Any] = [""""""] elif type(__UpperCamelCase ) is not type(__UpperCamelCase ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCamelCase )} !=""" f""" {type(__UpperCamelCase )}.""" ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): __a : Any = [negative_prompt] elif batch_size != len(__UpperCamelCase ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(__UpperCamelCase )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: __a : Tuple = negative_prompt __a : Any = text_input_ids.shape[-1] __a : List[str] = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="""pt""" , ) __a : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __a : List[str] = uncond_embeddings.shape[1] __a : List[Any] = uncond_embeddings.repeat(__UpperCamelCase , __UpperCamelCase , 1 ) __a : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __a : List[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __a : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __a : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __a : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __a : Any = torch.randn( __UpperCamelCase , generator=__UpperCamelCase , device="""cpu""" , dtype=__UpperCamelCase ).to(self.device ) __a : Optional[Any] = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device="""cpu""" , dtype=__UpperCamelCase ).to( self.device ) else: __a : Optional[int] = torch.randn( __UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) __a : str = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __a : Optional[Any] = latents_reference.to(self.device ) __a : str = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __a : List[str] = (latents_shape[3] - latents_shape_reference[3]) // 2 __a : int = (latents_shape[2] - latents_shape_reference[2]) // 2 __a : int = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __a : Tuple = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __a : Optional[Any] = 0 if dx < 0 else dx __a : Optional[Any] = 0 if dy < 0 else dy __a : Optional[int] = max(-dx , 0 ) __a : Optional[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() __a : Optional[int] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(__UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __a : Dict = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __a : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a : List[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a : Optional[Any] = {} if accepts_eta: __a : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance __a : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __a : Tuple = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual __a : Union[str, Any] = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample # perform guidance if do_classifier_free_guidance: __a , __a : List[str] = noise_pred.chunk(2 ) __a : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __a : List[Any] = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __a : Optional[Any] = 1 / 0.1_8_2_1_5 * latents __a : Optional[int] = self.vae.decode(__UpperCamelCase ).sample __a : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __a : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __a : List[str] = self.feature_extractor(self.numpy_to_pil(__UpperCamelCase ) , return_tensors="""pt""" ).to( self.device ) __a , __a : int = self.safety_checker( images=__UpperCamelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __a : Optional[int] = None if output_type == "pil": __a : str = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=__UpperCamelCase , nsfw_content_detected=__UpperCamelCase )
697
0
'''simple docstring''' def _snake_case ( lowercase , lowercase , lowercase ) -> Optional[Any]: if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(lowercase , n - 1 , lowercase ) * a) % mod else: __a : Union[str, Any] = binary_exponentiation(lowercase , n / 2 , lowercase ) return (b * b) % mod # a prime number __SCREAMING_SNAKE_CASE : int = 701 __SCREAMING_SNAKE_CASE : str = 1_000_000_000 __SCREAMING_SNAKE_CASE : Tuple = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
714
'''simple docstring''' import numpy as np from PIL import Image def _snake_case ( lowercase , lowercase , lowercase ) -> np.ndarray: __a : Any = np.array(lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) __a : Union[str, Any] = 0 __a : Dict = 0 __a : Optional[Any] = 0 __a : Tuple = 0 # compute the shape of the output matrix __a : Optional[int] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __a : int = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __a : Optional[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __a : Optional[Any] = 0 __a : str = 0 return updated_arr def _snake_case ( lowercase , lowercase , lowercase ) -> np.ndarray: __a : int = np.array(lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) __a : int = 0 __a : Optional[Any] = 0 __a : str = 0 __a : List[Any] = 0 # compute the shape of the output matrix __a : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __a : Optional[int] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __a : Any = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __a : str = 0 __a : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image __SCREAMING_SNAKE_CASE : str = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
697
0
'''simple docstring''' def _snake_case ( lowercase ) -> str: return "".join(chr(ord(lowercase ) - 3_2 ) if """a""" <= char <= """z""" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
715
'''simple docstring''' import qiskit def _snake_case ( lowercase , lowercase ) -> qiskit.result.counts.Counts: __a : Any = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register __a : str = qiskit.QuantumCircuit(lowercase , lowercase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __a : Any = qiskit.execute(lowercase , lowercase , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
697
0
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[Any] = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = "encodec" def __init__( self , __UpperCamelCase=[1.5, 3.0, 6.0, 12.0, 24.0] , __UpperCamelCase=2_4000 , __UpperCamelCase=1 , __UpperCamelCase=False , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=128 , __UpperCamelCase=32 , __UpperCamelCase=1 , __UpperCamelCase=[8, 5, 4, 2] , __UpperCamelCase="weight_norm" , __UpperCamelCase=7 , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=2 , __UpperCamelCase=True , __UpperCamelCase="reflect" , __UpperCamelCase=2 , __UpperCamelCase=2 , __UpperCamelCase=1.0 , __UpperCamelCase=1024 , __UpperCamelCase=None , __UpperCamelCase=True , **__UpperCamelCase , ): '''simple docstring''' __a : Dict = target_bandwidths __a : str = sampling_rate __a : Tuple = audio_channels __a : List[Any] = normalize __a : Tuple = chunk_length_s __a : Optional[Any] = overlap __a : Dict = hidden_size __a : Optional[int] = num_filters __a : Optional[Any] = num_residual_layers __a : int = upsampling_ratios __a : Union[str, Any] = norm_type __a : Union[str, Any] = kernel_size __a : Union[str, Any] = last_kernel_size __a : List[Any] = residual_kernel_size __a : int = dilation_growth_rate __a : Union[str, Any] = use_causal_conv __a : int = pad_mode __a : str = compress __a : Tuple = num_lstm_layers __a : str = trim_right_ratio __a : List[Any] = codebook_size __a : Tuple = codebook_dim if codebook_dim is not None else hidden_size __a : Dict = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**__UpperCamelCase ) @property def __lowerCamelCase ( self ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __lowerCamelCase ( self ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __lowerCamelCase ( self ): '''simple docstring''' return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
716
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: for attribute in key.split(""".""" ): __a : str = getattr(lowercase , lowercase ) if weight_type is not None: __a : Dict = getattr(lowercase , lowercase ).shape else: __a : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __a : Any = value elif weight_type == "weight_g": __a : int = value elif weight_type == "weight_v": __a : int = value elif weight_type == "bias": __a : List[Any] = value elif weight_type == "running_mean": __a : Union[str, Any] = value elif weight_type == "running_var": __a : Tuple = value elif weight_type == "num_batches_tracked": __a : Optional[int] = value elif weight_type == "inv_freq": __a : List[str] = value else: __a : List[str] = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _snake_case ( lowercase , lowercase , lowercase ) -> Dict: __a : Dict = [] __a : Dict = fairseq_model.state_dict() __a : Tuple = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __a : int = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __a : List[Any] = True else: for key, mapped_key in MAPPING.items(): __a : Optional[int] = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __a : str = True if "*" in mapped_key: __a : Optional[int] = name.split(lowercase )[0].split(""".""" )[-2] __a : List[Any] = mapped_key.replace("""*""" , lowercase ) if "pos_bias_u" in name: __a : Union[str, Any] = None elif "pos_bias_v" in name: __a : List[Any] = None elif "weight_g" in name: __a : List[Any] = """weight_g""" elif "weight_v" in name: __a : List[Any] = """weight_v""" elif "bias" in name: __a : Optional[int] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __a : str = """weight""" elif "running_mean" in name: __a : List[str] = """running_mean""" elif "inv_freq" in name: __a : Dict = """inv_freq""" elif "running_var" in name: __a : Union[str, Any] = """running_var""" elif "num_batches_tracked" in name: __a : int = """num_batches_tracked""" else: __a : Optional[int] = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[str]: __a : Optional[Any] = full_name.split("""conv_layers.""" )[-1] __a : Union[str, Any] = name.split(""".""" ) __a : Optional[Any] = int(items[0] ) __a : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __a : Dict = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __a : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __a : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __a : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase ) @torch.no_grad() def _snake_case ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Optional[Any]: if config_path is not None: __a : Any = WavaVecaConformerConfig.from_pretrained(lowercase , hidden_act="""swish""" ) else: __a : Optional[int] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __a : Optional[Any] = """rotary""" if is_finetuned: if dict_path: __a : List[Any] = Dictionary.load(lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __a : int = target_dict.pad_index __a : List[str] = target_dict.bos_index __a : str = target_dict.eos_index __a : Dict = len(target_dict.symbols ) __a : Any = os.path.join(lowercase , """vocab.json""" ) if not os.path.isdir(lowercase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowercase ) ) return os.makedirs(lowercase , exist_ok=lowercase ) __a : Dict = target_dict.indices # fairseq has the <pad> and <s> switched __a : Optional[Any] = 0 __a : List[Any] = 1 with open(lowercase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowercase , lowercase ) __a : int = WavaVecaCTCTokenizer( lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowercase , ) __a : Optional[int] = True if config.feat_extract_norm == """layer""" else False __a : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , ) __a : str = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase ) processor.save_pretrained(lowercase ) __a : List[str] = WavaVecaConformerForCTC(lowercase ) else: __a : Optional[int] = WavaVecaConformerForPreTraining(lowercase ) if is_finetuned: __a , __a , __a : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __a : Optional[int] = argparse.Namespace(task="""audio_pretraining""" ) __a : Tuple = fairseq.tasks.setup_task(lowercase ) __a , __a , __a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase ) __a : Any = model[0].eval() recursively_load_weights(lowercase , lowercase , not is_finetuned ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
697
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): lowercase__ = RobertaTokenizer lowercase__ = RobertaTokenizerFast lowercase__ = True lowercase__ = {"cls_token": "<s>"} def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a : int = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __a : Tuple = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) __a : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __a : int = {"""unk_token""": """<unk>"""} __a : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__UpperCamelCase ) ) def __lowerCamelCase ( self , **__UpperCamelCase ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __lowerCamelCase ( self , **__UpperCamelCase ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : str = """lower newer""" __a : Any = """lower newer""" return input_text, output_text def __lowerCamelCase ( self ): '''simple docstring''' __a : int = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a : Any = """lower newer""" __a : List[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __a : Tuple = tokenizer.tokenize(__UpperCamelCase ) # , add_prefix_space=True) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) __a : Dict = tokens + [tokenizer.unk_token] __a : List[str] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : str = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__UpperCamelCase ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__UpperCamelCase ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.tokenizer_class.from_pretrained("""roberta-base""" ) __a : Union[str, Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__UpperCamelCase ) __a : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__UpperCamelCase ) __a : List[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) __a : Tuple = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) __a : Any = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase ) __a : str = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase , __UpperCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = self.get_tokenizer() __a : List[str] = """Encode this sequence.""" __a : Dict = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __a : Dict = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) __a : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) __a : Tuple = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) __a : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __a : List[str] = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) __a : str = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) # Testing spaces after special tokens __a : Dict = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase )} ) # mask token has a left space __a : List[Any] = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) __a : Union[str, Any] = """Encode <mask> sequence""" __a : str = """Encode <mask>sequence""" __a : int = tokenizer.encode(__UpperCamelCase ) __a : str = encoded.index(__UpperCamelCase ) __a : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) __a : List[str] = tokenizer.encode(__UpperCamelCase ) __a : Any = encoded.index(__UpperCamelCase ) __a : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a : List[str] = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) __a : Any = self.tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) __a : Union[str, Any] = """A, <mask> AllenNLP sentence.""" __a : Union[str, Any] = tokenizer_r.encode_plus(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_token_type_ids=__UpperCamelCase ) __a : Dict = tokenizer_p.encode_plus(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_token_type_ids=__UpperCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __a : Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __a : int = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def __lowerCamelCase ( self ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __a : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) __a : int = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __a : Dict = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __UpperCamelCase ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __UpperCamelCase ) self.assertEqual(post_processor_state["""trim_offsets"""] , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a : Tuple = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __a : str = f"""{text_of_1_token} {text_of_1_token}""" __a : str = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) __a : Dict = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCamelCase ) + 1, len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) __a : Any = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) __a : Tuple = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCamelCase ) + 1, len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) __a : str = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) __a : str = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCamelCase ), len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) __a : List[Any] = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) __a : str = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCamelCase ), len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) __a : int = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __a : Tuple = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) __a : Union[str, Any] = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCamelCase ) + 1, 1 + len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) __a : Any = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) __a : List[str] = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCamelCase ), 1 + len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) __a : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) __a : int = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCamelCase ), 1 + len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , )
717
'''simple docstring''' import warnings from functools import wraps from typing import Callable def _snake_case ( lowercase ) -> Callable: @wraps(lowercase ) def _inner_fn(*lowercase , **lowercase ): warnings.warn( (F"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") , lowercase , ) return fn(*lowercase , **lowercase ) return _inner_fn
697
0
'''simple docstring''' import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _snake_case ( lowercase , lowercase , lowercase ) -> List[Any]: # Initialise PyTorch model __a : int = AlbertConfig.from_json_file(lowercase ) print(F"""Building PyTorch model from configuration: {config}""" ) __a : Optional[Any] = AlbertForPreTraining(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_albert(lowercase , lowercase , lowercase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
718
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = ["input_features", "attention_mask"] def __init__( self , __UpperCamelCase=80 , __UpperCamelCase=1_6000 , __UpperCamelCase=0.0 , __UpperCamelCase=10 , __UpperCamelCase=25 , __UpperCamelCase="hamming_window" , __UpperCamelCase=3_2_7_6_8.0 , __UpperCamelCase=0.9_7 , __UpperCamelCase=1.0 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=False , **__UpperCamelCase , ): '''simple docstring''' super().__init__(feature_size=__UpperCamelCase , sampling_rate=__UpperCamelCase , padding_value=__UpperCamelCase , **__UpperCamelCase ) __a : List[str] = feature_size __a : List[str] = sampling_rate __a : int = padding_value __a : Any = hop_length __a : int = win_length __a : Tuple = frame_signal_scale __a : Union[str, Any] = preemphasis_coeff __a : List[str] = mel_floor __a : Union[str, Any] = normalize_means __a : Optional[Any] = normalize_vars __a : Optional[Any] = win_function __a : Union[str, Any] = return_attention_mask __a : List[Any] = win_length * sampling_rate // 1000 __a : List[Any] = hop_length * sampling_rate // 1000 __a : Optional[Any] = optimal_fft_length(self.sample_size ) __a : Any = (self.n_fft // 2) + 1 def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' if self.win_function == "hamming_window": __a : str = window_function(window_length=self.sample_size , name=self.win_function , periodic=__UpperCamelCase ) else: __a : Dict = window_function(window_length=self.sample_size , name=self.win_function ) __a : Optional[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) __a : Any = spectrogram( one_waveform * self.frame_signal_scale , window=__UpperCamelCase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=__UpperCamelCase , preemphasis=self.preemphasis_coeff , mel_filters=__UpperCamelCase , mel_floor=self.mel_floor , log_mel="""log""" , ) return msfc_features.T def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if self.normalize_means: __a : int = x[:input_length].mean(axis=0 ) __a : str = np.subtract(__UpperCamelCase , __UpperCamelCase ) if self.normalize_vars: __a : Dict = x[:input_length].std(axis=0 ) __a : Dict = np.divide(__UpperCamelCase , __UpperCamelCase ) if input_length < x.shape[0]: __a : Union[str, Any] = padding_value # make sure array is in float32 __a : Any = x.astype(np.floataa ) return x def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ): '''simple docstring''' __a : Tuple = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__UpperCamelCase , __UpperCamelCase , self.padding_value ) for x, n in zip(__UpperCamelCase , __UpperCamelCase )] def __call__( self , __UpperCamelCase , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __a : Tuple = isinstance(__UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __a : Tuple = is_batched_numpy or ( isinstance(__UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __a : Tuple = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__UpperCamelCase , np.ndarray ): __a : List[str] = np.asarray(__UpperCamelCase , dtype=np.floataa ) elif isinstance(__UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __a : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __a : Any = [raw_speech] # extract fbank features __a : str = [self._extract_mfsc_features(__UpperCamelCase ) for one_waveform in raw_speech] # convert into correct format for padding __a : Optional[Any] = BatchFeature({"""input_features""": features} ) __a : Any = self.pad( __UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , truncation=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) # make sure list is in array format __a : int = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , __UpperCamelCase ): __a : Union[str, Any] = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for feature in input_features] __a : List[str] = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: __a : Optional[int] = [np.asarray(__UpperCamelCase , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: __a : Optional[Any] = ( np.array(__UpperCamelCase , dtype=np.intaa ) if self._get_padding_strategies(__UpperCamelCase , max_length=__UpperCamelCase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) __a : int = self.normalize( padded_inputs["""input_features"""] , attention_mask=__UpperCamelCase ) if return_tensors is not None: __a : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
697
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __SCREAMING_SNAKE_CASE : List[Any] = 16 __SCREAMING_SNAKE_CASE : List[str] = 32 def _snake_case ( lowercase , lowercase = 1_6 ) -> List[Any]: __a : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __a : Tuple = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) __a : Optional[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __a : Union[str, Any] = datasets.map( lowercase , batched=lowercase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a : Any = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. __a : Dict = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __a : Union[str, Any] = 1_6 elif accelerator.mixed_precision != "no": __a : Optional[Any] = 8 else: __a : int = None return tokenizer.pad( lowercase , padding="""longest""" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="""pt""" , ) # Instantiate dataloaders. __a : str = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) __a : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __SCREAMING_SNAKE_CASE : Union[str, Any] = mocked_dataloaders # noqa: F811 def _snake_case ( lowercase , lowercase ) -> Optional[Any]: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowercase ) == "1": __a : List[Any] = 2 # Initialize accelerator __a : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a : Union[str, Any] = config["""lr"""] __a : Any = int(config["""num_epochs"""] ) __a : Optional[int] = int(config["""seed"""] ) __a : Any = int(config["""batch_size"""] ) __a : Tuple = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation __a : Dict = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __a : List[Any] = batch_size // MAX_GPU_BATCH_SIZE __a : List[Any] = MAX_GPU_BATCH_SIZE set_seed(lowercase ) __a : List[str] = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a : Dict = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __a : str = model.to(accelerator.device ) # Instantiate optimizer __a : Union[str, Any] = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler __a : Optional[int] = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=1_0_0 , num_training_steps=(len(lowercase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a : Tuple = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __a : str = model(**lowercase ) __a : Dict = outputs.loss __a : Any = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __a : Optional[Any] = 0 for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a : Optional[int] = model(**lowercase ) __a : Tuple = outputs.logits.argmax(dim=-1 ) __a : Any = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowercase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __a : Optional[Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] __a : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowercase , references=lowercase , ) __a : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowercase ) def _snake_case ( ) -> List[str]: __a : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowercase , default=lowercase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __a : Optional[Any] = parser.parse_args() __a : Union[str, Any] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
719
'''simple docstring''' __SCREAMING_SNAKE_CASE : int = 9.80_665 def _snake_case ( lowercase , lowercase , lowercase = g ) -> float: if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
697
0
import argparse import struct import unittest class SCREAMING_SNAKE_CASE__ : def __init__( self , __UpperCamelCase ): '''simple docstring''' __a : Tuple = data # Initialize hash values __a : Any = [ 0X6A_09_E6_67, 0XBB_67_AE_85, 0X3C_6E_F3_72, 0XA5_4F_F5_3A, 0X51_0E_52_7F, 0X9B_05_68_8C, 0X1F_83_D9_AB, 0X5B_E0_CD_19, ] # Initialize round constants __a : Optional[int] = [ 0X42_8A_2F_98, 0X71_37_44_91, 0XB5_C0_FB_CF, 0XE9_B5_DB_A5, 0X39_56_C2_5B, 0X59_F1_11_F1, 0X92_3F_82_A4, 0XAB_1C_5E_D5, 0XD8_07_AA_98, 0X12_83_5B_01, 0X24_31_85_BE, 0X55_0C_7D_C3, 0X72_BE_5D_74, 0X80_DE_B1_FE, 0X9B_DC_06_A7, 0XC1_9B_F1_74, 0XE4_9B_69_C1, 0XEF_BE_47_86, 0X0F_C1_9D_C6, 0X24_0C_A1_CC, 0X2D_E9_2C_6F, 0X4A_74_84_AA, 0X5C_B0_A9_DC, 0X76_F9_88_DA, 0X98_3E_51_52, 0XA8_31_C6_6D, 0XB0_03_27_C8, 0XBF_59_7F_C7, 0XC6_E0_0B_F3, 0XD5_A7_91_47, 0X06_CA_63_51, 0X14_29_29_67, 0X27_B7_0A_85, 0X2E_1B_21_38, 0X4D_2C_6D_FC, 0X53_38_0D_13, 0X65_0A_73_54, 0X76_6A_0A_BB, 0X81_C2_C9_2E, 0X92_72_2C_85, 0XA2_BF_E8_A1, 0XA8_1A_66_4B, 0XC2_4B_8B_70, 0XC7_6C_51_A3, 0XD1_92_E8_19, 0XD6_99_06_24, 0XF4_0E_35_85, 0X10_6A_A0_70, 0X19_A4_C1_16, 0X1E_37_6C_08, 0X27_48_77_4C, 0X34_B0_BC_B5, 0X39_1C_0C_B3, 0X4E_D8_AA_4A, 0X5B_9C_CA_4F, 0X68_2E_6F_F3, 0X74_8F_82_EE, 0X78_A5_63_6F, 0X84_C8_78_14, 0X8C_C7_02_08, 0X90_BE_FF_FA, 0XA4_50_6C_EB, 0XBE_F9_A3_F7, 0XC6_71_78_F2, ] __a : Dict = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( __UpperCamelCase ): '''simple docstring''' __a : str = b"""\x80""" + (b"""\x00""" * (63 - (len(__UpperCamelCase ) + 8) % 64)) __a : List[Any] = struct.pack(""">Q""" , (len(__UpperCamelCase ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __a : Optional[Any] = list(struct.unpack(""">16L""" , __UpperCamelCase ) ) # add 48 0-ed integers words += [0] * 48 __a : Optional[Any] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __a : Optional[Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __a : Any = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __a : Union[str, Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_00_00_00_00 # Compression __a : List[str] = self.ror(__UpperCamelCase , 6 ) ^ self.ror(__UpperCamelCase , 11 ) ^ self.ror(__UpperCamelCase , 25 ) __a : str = (e & f) ^ ((~e & 0XFF_FF_FF_FF) & g) __a : Optional[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_00_00_00_00 __a : List[Any] = self.ror(__UpperCamelCase , 2 ) ^ self.ror(__UpperCamelCase , 13 ) ^ self.ror(__UpperCamelCase , 22 ) __a : List[str] = (a & b) ^ (a & c) ^ (b & c) __a : Optional[Any] = (sa + maj) % 0X1_00_00_00_00 __a : Optional[int] = ( g, f, e, ((d + tempa) % 0X1_00_00_00_00), c, b, a, ((tempa + tempa) % 0X1_00_00_00_00), ) __a : Any = [a, b, c, d, e, f, g, h] # Modify final values __a : Tuple = [ ((element + mutated_hash_values[index]) % 0X1_00_00_00_00) for index, element in enumerate(self.hashes ) ] __a : int = """""".join([hex(__UpperCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' return 0XFF_FF_FF_FF & (value << (32 - rotations)) | (value >> rotations) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib __a : Dict = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(__UpperCamelCase ).hash , hashlib.shaaaa(__UpperCamelCase ).hexdigest() ) def _snake_case ( ) -> None: import doctest doctest.testmod() __a : str = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) __a : Optional[int] = parser.parse_args() __a : Tuple = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: __a : List[Any] = f.read() else: __a : Union[str, Any] = bytes(lowercase , """utf-8""" ) print(SHAaaa(lowercase ).hash ) if __name__ == "__main__": main()
720
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=30 , __UpperCamelCase=400 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=1 / 255 , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=True , ): '''simple docstring''' __a : List[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __a : Dict = parent __a : Union[str, Any] = batch_size __a : Optional[int] = num_channels __a : Dict = min_resolution __a : List[Any] = max_resolution __a : int = do_resize __a : str = size __a : Optional[Any] = do_rescale __a : Optional[Any] = rescale_factor __a : str = do_normalize __a : Any = image_mean __a : Optional[Any] = image_std __a : Dict = do_pad def __lowerCamelCase ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=False ): '''simple docstring''' if not batched: __a : Union[str, Any] = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): __a , __a : Tuple = image.size else: __a , __a : Tuple = image.shape[1], image.shape[2] if w < h: __a : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) __a : Tuple = self.size["""shortest_edge"""] elif w > h: __a : Optional[Any] = self.size["""shortest_edge"""] __a : Any = int(self.size["""shortest_edge"""] * w / h ) else: __a : Any = self.size["""shortest_edge"""] __a : Optional[int] = self.size["""shortest_edge"""] else: __a : Any = [] for image in image_inputs: __a , __a : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __a : List[Any] = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[0] )[0] __a : Optional[Any] = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): lowercase__ = DetrImageProcessor if is_vision_available() else None def __lowerCamelCase ( self ): '''simple docstring''' __a : str = DetrImageProcessingTester(self ) @property def __lowerCamelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_rescale""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """rescale_factor""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """size""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_pad""" ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) __a : List[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __a , __a : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a , __a : Optional[int] = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) __a : Any = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input __a : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __a , __a : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a : List[str] = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values __a , __a : str = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input __a : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __a , __a : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a : List[str] = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values __a , __a : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __a : Dict = json.loads(f.read() ) __a : Optional[int] = {"""image_id""": 3_9769, """annotations""": target} # encode them __a : List[str] = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) __a : Tuple = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values __a : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) __a : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1E-4 ) ) # verify area __a : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes __a : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) __a : Any = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1E-3 ) ) # verify image_id __a : Union[str, Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd __a : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels __a : Any = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify orig_size __a : Any = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size __a : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) ) @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __a : Tuple = json.loads(f.read() ) __a : str = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __a : int = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __a : List[str] = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) __a : Tuple = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , masks_path=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values __a : List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) __a : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1E-4 ) ) # verify area __a : Optional[Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes __a : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) __a : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1E-3 ) ) # verify image_id __a : List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd __a : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels __a : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify masks __a : Union[str, Any] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __UpperCamelCase ) # verify orig_size __a : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size __a : List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) )
697
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE : Optional[int] = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } __SCREAMING_SNAKE_CASE : Optional[int] = { 'roberta-base': 512, 'roberta-large': 512, 'roberta-large-mnli': 512, 'distilroberta-base': 512, 'roberta-base-openai-detector': 512, 'roberta-large-openai-detector': 512, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] lowercase__ = RobertaTokenizer def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="replace" , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase="<mask>" , __UpperCamelCase=False , __UpperCamelCase=True , **__UpperCamelCase , ): '''simple docstring''' super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , errors=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase , **__UpperCamelCase , ) __a : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __UpperCamelCase ) != add_prefix_space: __a : List[Any] = getattr(__UpperCamelCase , pre_tok_state.pop("""type""" ) ) __a : Union[str, Any] = add_prefix_space __a : Optional[Any] = pre_tok_class(**__UpperCamelCase ) __a : Optional[int] = add_prefix_space __a : List[Any] = """post_processor""" __a : str = getattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) if tokenizer_component_instance: __a : List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __a : Any = tuple(state["""sep"""] ) if "cls" in state: __a : List[Any] = tuple(state["""cls"""] ) __a : List[Any] = False if state.get("""add_prefix_space""" , __UpperCamelCase ) != add_prefix_space: __a : Union[str, Any] = add_prefix_space __a : Optional[Any] = True if state.get("""trim_offsets""" , __UpperCamelCase ) != trim_offsets: __a : str = trim_offsets __a : Union[str, Any] = True if changes_to_apply: __a : Optional[int] = getattr(__UpperCamelCase , state.pop("""type""" ) ) __a : Dict = component_class(**__UpperCamelCase ) setattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) @property def __lowerCamelCase ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : Any = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else value __a : str = value def __lowerCamelCase ( self , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' __a : List[str] = kwargs.get("""is_split_into_words""" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def __lowerCamelCase ( self , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' __a : Tuple = kwargs.get("""is_split_into_words""" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ): '''simple docstring''' __a : Union[str, Any] = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=None ): '''simple docstring''' __a : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ): '''simple docstring''' __a : Union[str, Any] = [self.sep_token_id] __a : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
721
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __SCREAMING_SNAKE_CASE : Optional[int] = trt.Logger(trt.Logger.WARNING) __SCREAMING_SNAKE_CASE : Tuple = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) __SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) __SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if args.tokenizer_name: __SCREAMING_SNAKE_CASE : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) __SCREAMING_SNAKE_CASE : List[Any] = args.per_device_eval_batch_size __SCREAMING_SNAKE_CASE : int = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __SCREAMING_SNAKE_CASE : Optional[Any] = True __SCREAMING_SNAKE_CASE : Tuple = 'temp_engine/bert-fp32.engine' if args.fpaa: __SCREAMING_SNAKE_CASE : Dict = 'temp_engine/bert-fp16.engine' if args.inta: __SCREAMING_SNAKE_CASE : Tuple = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') __SCREAMING_SNAKE_CASE : Optional[Any] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __SCREAMING_SNAKE_CASE : List[Any] = [network.get_input(i) for i in range(network.num_inputs)] __SCREAMING_SNAKE_CASE : List[Any] = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __SCREAMING_SNAKE_CASE : Tuple = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __SCREAMING_SNAKE_CASE : Dict = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __SCREAMING_SNAKE_CASE : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: __a : Dict = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __a : List[Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __a : str = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowercase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowercase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowercase ) # start time __a : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowercase ) for d_inp in d_inputs] + [int(lowercase ), int(lowercase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowercase , lowercase , lowercase ) cuda.memcpy_dtoh_async(lowercase , lowercase , lowercase ) # Synchronize the stream and take time stream.synchronize() # end time __a : str = time.time() __a : Any = end_time - start_time __a : Optional[int] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __SCREAMING_SNAKE_CASE : Optional[Any] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __SCREAMING_SNAKE_CASE : List[str] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __SCREAMING_SNAKE_CASE : int = raw_datasets['validation'].column_names __SCREAMING_SNAKE_CASE : Tuple = 'question' if 'question' in column_names else column_names[0] __SCREAMING_SNAKE_CASE : List[Any] = 'context' if 'context' in column_names else column_names[1] __SCREAMING_SNAKE_CASE : Tuple = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __SCREAMING_SNAKE_CASE : Tuple = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) __SCREAMING_SNAKE_CASE : Dict = min(args.max_seq_length, tokenizer.model_max_length) def _snake_case ( lowercase ) -> Tuple: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __a : Optional[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __a : Optional[int] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowercase , stride=args.doc_stride , return_overflowing_tokens=lowercase , return_offsets_mapping=lowercase , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __a : Optional[Any] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __a : Optional[Any] = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __a : Dict = tokenized_examples.sequence_ids(lowercase ) __a : Optional[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __a : Union[str, Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __a : int = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples __SCREAMING_SNAKE_CASE : int = raw_datasets['validation'] # Validation Feature Creation __SCREAMING_SNAKE_CASE : Union[str, Any] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) __SCREAMING_SNAKE_CASE : List[Any] = default_data_collator __SCREAMING_SNAKE_CASE : Union[str, Any] = eval_dataset.remove_columns(['example_id', 'offset_mapping']) __SCREAMING_SNAKE_CASE : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _snake_case ( lowercase , lowercase , lowercase , lowercase="eval" ) -> Any: # Post-processing: we match the start logits and end logits to answers in the original context. __a : List[str] = postprocess_qa_predictions( examples=lowercase , features=lowercase , predictions=lowercase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowercase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __a : List[str] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __a : List[str] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __a : Optional[Any] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowercase , label_ids=lowercase ) __SCREAMING_SNAKE_CASE : List[Any] = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _snake_case ( lowercase ) -> Optional[int]: return trt.volume(engine.get_binding_shape(lowercase ) ) * engine.get_binding_dtype(lowercase ).itemsize # Allocate device memory for inputs and outputs. __SCREAMING_SNAKE_CASE : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __SCREAMING_SNAKE_CASE : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __SCREAMING_SNAKE_CASE : Union[str, Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __SCREAMING_SNAKE_CASE : str = cuda.mem_alloc(h_outputa.nbytes) __SCREAMING_SNAKE_CASE : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __SCREAMING_SNAKE_CASE : Tuple = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') __SCREAMING_SNAKE_CASE : Union[str, Any] = 0.0 __SCREAMING_SNAKE_CASE : str = 0 __SCREAMING_SNAKE_CASE : str = timeit.default_timer() __SCREAMING_SNAKE_CASE : Dict = None for step, batch in enumerate(eval_dataloader): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = outputs __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(start_logits) __SCREAMING_SNAKE_CASE : Tuple = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __SCREAMING_SNAKE_CASE : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __SCREAMING_SNAKE_CASE : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __SCREAMING_SNAKE_CASE : List[str] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __SCREAMING_SNAKE_CASE : List[str] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __SCREAMING_SNAKE_CASE : Tuple = nested_truncate(all_preds, len(eval_dataset)) __SCREAMING_SNAKE_CASE : str = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000)) logger.info('Total Number of Inference = %d', niter) __SCREAMING_SNAKE_CASE : Optional[int] = post_processing_function(eval_examples, eval_dataset, all_preds) __SCREAMING_SNAKE_CASE : List[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
697
0
'''simple docstring''' from math import sqrt def _snake_case ( lowercase ) -> bool: assert isinstance(lowercase , lowercase ) and ( number >= 0 ), "'number' must been an int and positive" __a : Union[str, Any] = True # 0 and 1 are none primes. if number <= 1: __a : Union[str, Any] = False for divisor in range(2 , int(round(sqrt(lowercase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __a : str = False break # precondition assert isinstance(lowercase , lowercase ), "'status' must been from type bool" return status def _snake_case ( lowercase ) -> int: assert isinstance(lowercase , lowercase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __a : List[str] = list(range(2 , n + 1 ) ) __a : int = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowercase ) ): for j in range(i + 1 , len(lowercase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __a : Optional[int] = 0 # filters actual prime numbers. __a : Tuple = [x for x in begin_list if x != 0] # precondition assert isinstance(lowercase , lowercase ), "'ans' must been from type list" return ans def _snake_case ( lowercase ) -> Optional[Any]: assert isinstance(lowercase , lowercase ) and (n > 2), "'N' must been an int and > 2" __a : Optional[Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowercase ): ans.append(lowercase ) # precondition assert isinstance(lowercase , lowercase ), "'ans' must been from type list" return ans def _snake_case ( lowercase ) -> Optional[Any]: assert isinstance(lowercase , lowercase ) and number >= 0, "'number' must been an int and >= 0" __a : List[Any] = [] # this list will be returns of the function. # potential prime number factors. __a : str = 2 __a : int = number if number == 0 or number == 1: ans.append(lowercase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowercase ): while quotient != 1: if is_prime(lowercase ) and (quotient % factor == 0): ans.append(lowercase ) quotient /= factor else: factor += 1 else: ans.append(lowercase ) # precondition assert isinstance(lowercase , lowercase ), "'ans' must been from type list" return ans def _snake_case ( lowercase ) -> int: assert isinstance(lowercase , lowercase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __a : Tuple = 0 # prime factorization of 'number' __a : int = prime_factorization(lowercase ) __a : List[Any] = max(lowercase ) # precondition assert isinstance(lowercase , lowercase ), "'ans' must been from type int" return ans def _snake_case ( lowercase ) -> Optional[int]: assert isinstance(lowercase , lowercase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __a : Optional[Any] = 0 # prime factorization of 'number' __a : List[Any] = prime_factorization(lowercase ) __a : Optional[int] = min(lowercase ) # precondition assert isinstance(lowercase , lowercase ), "'ans' must been from type int" return ans def _snake_case ( lowercase ) -> List[str]: assert isinstance(lowercase , lowercase ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowercase ), "compare bust been from type bool" return number % 2 == 0 def _snake_case ( lowercase ) -> List[Any]: assert isinstance(lowercase , lowercase ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowercase ), "compare bust been from type bool" return number % 2 != 0 def _snake_case ( lowercase ) -> int: assert ( isinstance(lowercase , lowercase ) and (number > 2) and is_even(lowercase ) ), "'number' must been an int, even and > 2" __a : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __a : List[Any] = get_prime_numbers(lowercase ) __a : List[Any] = len(lowercase ) # run variable for while-loops. __a : Union[str, Any] = 0 __a : Optional[Any] = None # exit variable. for break up the loops __a : Optional[Any] = True while i < len_pn and loop: __a : Optional[int] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __a : int = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowercase , lowercase ) and (len(lowercase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case ( lowercase , lowercase ) -> str: assert ( isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __a : Optional[int] = 0 while numbera != 0: __a : Union[str, Any] = numbera % numbera __a : List[str] = numbera __a : List[Any] = rest # precondition assert isinstance(lowercase , lowercase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case ( lowercase , lowercase ) -> List[Any]: assert ( isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __a : Dict = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __a : Optional[Any] = prime_factorization(lowercase ) __a : List[str] = prime_factorization(lowercase ) elif numbera == 1 or numbera == 1: __a : Optional[int] = [] __a : List[str] = [] __a : Union[str, Any] = max(lowercase , lowercase ) __a : str = 0 __a : int = 0 __a : List[str] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __a : List[Any] = prime_fac_a.count(lowercase ) __a : List[str] = prime_fac_a.count(lowercase ) for _ in range(max(lowercase , lowercase ) ): ans *= n else: __a : int = prime_fac_a.count(lowercase ) for _ in range(lowercase ): ans *= n done.append(lowercase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __a : Tuple = prime_fac_a.count(lowercase ) for _ in range(lowercase ): ans *= n done.append(lowercase ) # precondition assert isinstance(lowercase , lowercase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case ( lowercase ) -> int: assert isinstance(lowercase , lowercase ) and (n >= 0), "'number' must been a positive int" __a : Optional[Any] = 0 __a : Union[str, Any] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowercase ): ans += 1 # precondition assert isinstance(lowercase , lowercase ) and is_prime( lowercase ), "'ans' must been a prime number and from type int" return ans def _snake_case ( lowercase , lowercase ) -> List[str]: assert ( is_prime(lowercase ) and is_prime(lowercase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __a : List[Any] = p_number_a + 1 # jump to the next number __a : Dict = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowercase ): number += 1 while number < p_number_a: ans.append(lowercase ) number += 1 # fetch the next prime number. while not is_prime(lowercase ): number += 1 # precondition assert ( isinstance(lowercase , lowercase ) and ans[0] != p_number_a and ans[len(lowercase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case ( lowercase ) -> Any: assert isinstance(lowercase , lowercase ) and (n >= 1), "'n' must been int and >= 1" __a : Any = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowercase ) # precondition assert ans[0] == 1 and ans[len(lowercase ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case ( lowercase ) -> str: assert isinstance(lowercase , lowercase ) and ( number > 1 ), "'number' must been an int and >= 1" __a : Optional[Any] = get_divisors(lowercase ) # precondition assert ( isinstance(lowercase , lowercase ) and (divisors[0] == 1) and (divisors[len(lowercase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case ( lowercase , lowercase ) -> str: assert ( isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __a : List[str] = gcd(abs(lowercase ) , abs(lowercase ) ) # precondition assert ( isinstance(lowercase , lowercase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case ( lowercase ) -> Any: assert isinstance(lowercase , lowercase ) and (n >= 0), "'n' must been a int and >= 0" __a : Dict = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case ( lowercase ) -> Dict: assert isinstance(lowercase , lowercase ) and (n >= 0), "'n' must been an int and >= 0" __a : Any = 0 __a : Union[str, Any] = 1 __a : Optional[int] = 1 # this will be return for _ in range(n - 1 ): __a : int = ans ans += fiba __a : Tuple = tmp return ans
700
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = 42 lowercase__ = 42 def __init__( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) @torch.no_grad() def __call__( self , __UpperCamelCase = 1 , __UpperCamelCase = 50 , __UpperCamelCase = None , __UpperCamelCase = "pil" , __UpperCamelCase = True , **__UpperCamelCase , ): '''simple docstring''' __a : int = self.unet.config.sample_size __a : Optional[int] = (batch_size, 3, img_size, img_size) __a : Union[str, Any] = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) __a : Dict = randn_tensor(__UpperCamelCase , generator=__UpperCamelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper __a : Dict = self.scheduler.schedule[t] __a : Any = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat __a , __a : Tuple = self.scheduler.add_noise_to_input(__UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. __a : List[Any] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev __a : str = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. __a : Union[str, Any] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample __a : Tuple = self.scheduler.step_correct( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , step_output.prev_sample , step_output["""derivative"""] , ) __a : Tuple = step_output.prev_sample __a : Optional[Any] = (sample / 2 + 0.5).clamp(0 , 1 ) __a : Dict = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a : List[Any] = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase )
697
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCamelCase ): lowercase__ = ["flax", "transformers"] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def __lowerCamelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def __lowerCamelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCamelCase ): lowercase__ = ["flax", "transformers"] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def __lowerCamelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def __lowerCamelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCamelCase ): lowercase__ = ["flax", "transformers"] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def __lowerCamelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def __lowerCamelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCamelCase ): lowercase__ = ["flax", "transformers"] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def __lowerCamelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def __lowerCamelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] )
701
'''simple docstring''' def _snake_case ( lowercase ) -> bool: if not isinstance(lowercase , lowercase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __a : str = str(lowercase ) __a : Any = """""".join(sorted(lowercase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _snake_case ( lowercase = 9_9 ) -> int: if not 0 < percent < 1_0_0: raise ValueError("""solution() only accepts values from 0 to 100""" ) __a : List[str] = 0 __a : Union[str, Any] = 1 while True: if check_bouncy(lowercase ): bouncy_num += 1 if (bouncy_num / num) * 1_0_0 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
697
0
'''simple docstring''' import os def _snake_case ( ) -> Tuple: with open(os.path.dirname(lowercase ) + """/p022_names.txt""" ) as file: __a : Tuple = str(file.readlines()[0] ) __a : List[str] = names.replace("""\"""" , """""" ).split(""",""" ) names.sort() __a : Union[str, Any] = 0 __a : List[str] = 0 for i, name in enumerate(lowercase ): for letter in name: name_score += ord(lowercase ) - 6_4 total_score += (i + 1) * name_score __a : List[str] = 0 return total_score if __name__ == "__main__": print(solution())
702
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _snake_case ( lowercase , lowercase , lowercase ) -> Any: # Construct model if gpta_config_file == "": __a : Dict = GPTaConfig() else: __a : Optional[Any] = GPTaConfig.from_json_file(lowercase ) __a : Union[str, Any] = GPTaModel(lowercase ) # Load weights from numpy load_tf_weights_in_gpta(lowercase , lowercase , lowercase ) # Save pytorch-model __a : Optional[int] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME __a : Dict = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , lowercase ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) __SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
697
0
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = "" lowercase__ = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' super().__init__(self , **__UpperCamelCase ) __a : int = repo_info __a : int = token __a : Any = None def __lowerCamelCase ( self ): '''simple docstring''' if self.dir_cache is None: __a : Union[str, Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __a : List[str] = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(__UpperCamelCase ): {"""name""": str(__UpperCamelCase ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = "rb" , **__UpperCamelCase , ): '''simple docstring''' if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) __a : Any = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def __lowerCamelCase ( self , __UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' self._get_dirs() __a : str = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase ): '''simple docstring''' self._get_dirs() __a : int = PurePosixPath(path.strip("""/""" ) ) __a : List[str] = {} for p, f in self.dir_cache.items(): __a : str = PurePosixPath(p.strip("""/""" ) ) __a : Optional[int] = p.parent if root == path: __a : List[str] = f __a : str = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
703
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def __lowerCamelCase ( *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = MODEL_FOR_OBJECT_DETECTION_MAPPING def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Optional[Any] = ObjectDetectionPipeline(model=__UpperCamelCase , image_processor=__UpperCamelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : List[str] = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(__UpperCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __UpperCamelCase , { """score""": ANY(__UpperCamelCase ), """label""": ANY(__UpperCamelCase ), """box""": {"""xmin""": ANY(__UpperCamelCase ), """ymin""": ANY(__UpperCamelCase ), """xmax""": ANY(__UpperCamelCase ), """ymax""": ANY(__UpperCamelCase )}, } , ) import datasets __a : Optional[int] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) __a : Tuple = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] __a : Any = object_detector(__UpperCamelCase , threshold=0.0 ) self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for outputs in batch_outputs: self.assertGreater(len(__UpperCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __UpperCamelCase , { """score""": ANY(__UpperCamelCase ), """label""": ANY(__UpperCamelCase ), """box""": {"""xmin""": ANY(__UpperCamelCase ), """ymin""": ANY(__UpperCamelCase ), """xmax""": ANY(__UpperCamelCase ), """ymax""": ANY(__UpperCamelCase )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass @require_torch def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = """hf-internal-testing/tiny-detr-mobilenetsv3""" __a : Dict = AutoModelForObjectDetection.from_pretrained(__UpperCamelCase ) __a : Optional[Any] = AutoFeatureExtractor.from_pretrained(__UpperCamelCase ) __a : str = ObjectDetectionPipeline(model=__UpperCamelCase , feature_extractor=__UpperCamelCase ) __a : Optional[int] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ] , ) __a : Union[str, Any] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : str = """facebook/detr-resnet-50""" __a : Dict = AutoModelForObjectDetection.from_pretrained(__UpperCamelCase ) __a : int = AutoFeatureExtractor.from_pretrained(__UpperCamelCase ) __a : int = ObjectDetectionPipeline(model=__UpperCamelCase , feature_extractor=__UpperCamelCase ) __a : Any = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) __a : Optional[Any] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : int = """facebook/detr-resnet-50""" __a : Optional[int] = pipeline("""object-detection""" , model=__UpperCamelCase ) __a : Optional[int] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) __a : List[str] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = 0.9_9_8_5 __a : Union[str, Any] = """facebook/detr-resnet-50""" __a : Optional[int] = pipeline("""object-detection""" , model=__UpperCamelCase ) __a : Union[str, Any] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=__UpperCamelCase ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) @require_torch @require_pytesseract @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : str = """Narsil/layoutlmv3-finetuned-funsd""" __a : List[Any] = 0.9_9_9_3 __a : Dict = pipeline("""object-detection""" , model=__UpperCamelCase , threshold=__UpperCamelCase ) __a : List[str] = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_9_3, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, {"""score""": 0.9_9_9_3, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, ] , )
697
0
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _snake_case ( lowercase , lowercase , lowercase ) -> int: if isinstance(lowercase , torch.Tensor ): return image elif isinstance(lowercase , PIL.Image.Image ): __a : Any = [image] if isinstance(image[0] , PIL.Image.Image ): __a : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] __a : List[Any] = np.concatenate(lowercase , axis=0 ) __a : Any = np.array(lowercase ).astype(np.floataa ) / 2_5_5.0 __a : str = image.transpose(0 , 3 , 1 , 2 ) __a : Dict = 2.0 * image - 1.0 __a : str = torch.from_numpy(lowercase ) elif isinstance(image[0] , torch.Tensor ): __a : Union[str, Any] = torch.cat(lowercase , dim=0 ) return image def _snake_case ( lowercase , lowercase , lowercase , lowercase=0.9_9_9_5 ) -> Tuple: if not isinstance(lowercase , np.ndarray ): __a : str = True __a : Optional[int] = va.device __a : int = va.cpu().numpy() __a : Optional[int] = va.cpu().numpy() __a : str = np.sum(va * va / (np.linalg.norm(lowercase ) * np.linalg.norm(lowercase )) ) if np.abs(lowercase ) > DOT_THRESHOLD: __a : List[str] = (1 - t) * va + t * va else: __a : List[str] = np.arccos(lowercase ) __a : List[str] = np.sin(lowercase ) __a : Optional[Any] = theta_a * t __a : List[Any] = np.sin(lowercase ) __a : str = np.sin(theta_a - theta_t ) / sin_theta_a __a : Optional[int] = sin_theta_t / sin_theta_a __a : str = sa * va + sa * va if inputs_are_torch: __a : Tuple = torch.from_numpy(lowercase ).to(lowercase ) return va def _snake_case ( lowercase , lowercase ) -> Dict: __a : str = F.normalize(lowercase , dim=-1 ) __a : str = F.normalize(lowercase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def _snake_case ( lowercase , lowercase ) -> Optional[Any]: for param in model.parameters(): __a : Optional[int] = value class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , ): '''simple docstring''' super().__init__() self.register_modules( vae=__UpperCamelCase , text_encoder=__UpperCamelCase , clip_model=__UpperCamelCase , tokenizer=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase , feature_extractor=__UpperCamelCase , coca_model=__UpperCamelCase , coca_tokenizer=__UpperCamelCase , coca_transform=__UpperCamelCase , ) __a : List[str] = ( feature_extractor.size if isinstance(feature_extractor.size , __UpperCamelCase ) else feature_extractor.size["""shortest_edge"""] ) __a : str = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __UpperCamelCase ) set_requires_grad(self.clip_model , __UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' self.enable_attention_slicing(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' set_requires_grad(self.vae , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' set_requires_grad(self.vae , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' set_requires_grad(self.unet , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' set_requires_grad(self.unet , __UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : int = min(int(num_inference_steps * strength ) , __UpperCamelCase ) __a : Union[str, Any] = max(num_inference_steps - init_timestep , 0 ) __a : Optional[int] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ): '''simple docstring''' if not isinstance(__UpperCamelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(__UpperCamelCase )}""" ) __a : str = image.to(device=__UpperCamelCase , dtype=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ): __a : Optional[int] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__UpperCamelCase ) ] __a : Optional[Any] = torch.cat(__UpperCamelCase , dim=0 ) else: __a : int = self.vae.encode(__UpperCamelCase ).latent_dist.sample(__UpperCamelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __a : Any = 0.1_8_2_1_5 * init_latents __a : List[str] = init_latents.repeat_interleave(__UpperCamelCase , dim=0 ) __a : str = randn_tensor(init_latents.shape , generator=__UpperCamelCase , device=__UpperCamelCase , dtype=__UpperCamelCase ) # get latents __a : Tuple = self.scheduler.add_noise(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __a : List[str] = init_latents return latents def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : List[Any] = self.coca_transform(__UpperCamelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __a : int = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) __a : Dict = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Any = self.feature_extractor.preprocess(__UpperCamelCase ) __a : Optional[int] = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() __a : List[str] = self.clip_model.get_image_features(__UpperCamelCase ) __a : List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__UpperCamelCase ) __a : List[Any] = image_embeddings_clip.repeat_interleave(__UpperCamelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): '''simple docstring''' __a : Union[str, Any] = latents.detach().requires_grad_() __a : Any = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual __a : Any = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __a : Any = self.scheduler.alphas_cumprod[timestep] __a : List[str] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __a : List[str] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __a : Optional[int] = torch.sqrt(__UpperCamelCase ) __a : Dict = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __UpperCamelCase ): __a : Optional[int] = self.scheduler.sigmas[index] __a : Union[str, Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __a : int = 1 / 0.1_8_2_1_5 * sample __a : List[Any] = self.vae.decode(__UpperCamelCase ).sample __a : int = (image / 2 + 0.5).clamp(0 , 1 ) __a : str = transforms.Resize(self.feature_extractor_size )(__UpperCamelCase ) __a : Any = self.normalize(__UpperCamelCase ).to(latents.dtype ) __a : List[str] = self.clip_model.get_image_features(__UpperCamelCase ) __a : Optional[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__UpperCamelCase ) __a : Union[str, Any] = spherical_dist_loss(__UpperCamelCase , __UpperCamelCase ).mean() * clip_guidance_scale __a : Dict = -torch.autograd.grad(__UpperCamelCase , __UpperCamelCase )[0] if isinstance(self.scheduler , __UpperCamelCase ): __a : List[Any] = latents.detach() + grads * (sigma**2) __a : List[str] = noise_pred_original else: __a : Union[str, Any] = noise_pred_original - torch.sqrt(__UpperCamelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = 512 , __UpperCamelCase = 512 , __UpperCamelCase = 0.6 , __UpperCamelCase = 50 , __UpperCamelCase = 7.5 , __UpperCamelCase = 1 , __UpperCamelCase = 0.0 , __UpperCamelCase = 100 , __UpperCamelCase = None , __UpperCamelCase = "pil" , __UpperCamelCase = True , __UpperCamelCase = 0.8 , __UpperCamelCase = 0.1 , __UpperCamelCase = 0.1 , ): '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(__UpperCamelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(__UpperCamelCase , torch.Generator ) and batch_size > 1: __a : Any = [generator] + [None] * (batch_size - 1) __a : List[str] = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] __a : Tuple = [x[0] for x in coca_is_none if x[1]] __a : Any = """, """.join(__UpperCamelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__UpperCamelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __a : Any = self.get_image_description(__UpperCamelCase ) if style_prompt is None: if len(__UpperCamelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __a : List[str] = self.get_image_description(__UpperCamelCase ) # get prompt text embeddings for content and style __a : Optional[Any] = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=__UpperCamelCase , return_tensors="""pt""" , ) __a : Union[str, Any] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __a : Optional[Any] = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=__UpperCamelCase , return_tensors="""pt""" , ) __a : Any = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __a : List[str] = slerp(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # duplicate text embeddings for each generation per prompt __a : str = text_embeddings.repeat_interleave(__UpperCamelCase , dim=0 ) # set timesteps __a : Optional[int] = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __a : Optional[int] = {} if accepts_offset: __a : Any = 1 self.scheduler.set_timesteps(__UpperCamelCase , **__UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __a : int = self.get_timesteps(__UpperCamelCase , __UpperCamelCase , self.device ) __a : int = timesteps[:1].repeat(__UpperCamelCase ) # Preprocess image __a : List[Any] = preprocess(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __a : List[Any] = self.prepare_latents( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , text_embeddings.dtype , self.device , __UpperCamelCase ) __a : Union[str, Any] = preprocess(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __a : int = self.prepare_latents( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , text_embeddings.dtype , self.device , __UpperCamelCase ) __a : Optional[Any] = slerp(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if clip_guidance_scale > 0: __a : Optional[Any] = self.get_clip_image_embeddings(__UpperCamelCase , __UpperCamelCase ) __a : int = self.get_clip_image_embeddings(__UpperCamelCase , __UpperCamelCase ) __a : str = slerp( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __a : str = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __a : str = content_text_input.input_ids.shape[-1] __a : Optional[Any] = self.tokenizer([""""""] , padding="""max_length""" , max_length=__UpperCamelCase , return_tensors="""pt""" ) __a : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __a : Any = uncond_embeddings.repeat_interleave(__UpperCamelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __a : Union[str, Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __a : str = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __a : str = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __a : Optional[int] = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device="""cpu""" , dtype=__UpperCamelCase ).to( self.device ) else: __a : int = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __a : Optional[Any] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __a : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a : List[str] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a : Dict = {} if accepts_eta: __a : Union[str, Any] = eta # check if the scheduler accepts generator __a : int = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __a : Union[str, Any] = generator with self.progress_bar(total=__UpperCamelCase ): for i, t in enumerate(__UpperCamelCase ): # expand the latents if we are doing classifier free guidance __a : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __a : Any = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual __a : Optional[int] = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: __a : Tuple = noise_pred.chunk(2 ) __a : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __a : Any = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __a : Any = self.cond_fn( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) # compute the previous noisy sample x_t -> x_t-1 __a : str = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __a : int = 1 / 0.1_8_2_1_5 * latents __a : Tuple = self.vae.decode(__UpperCamelCase ).sample __a : str = (image / 2 + 0.5).clamp(0 , 1 ) __a : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a : Any = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__UpperCamelCase , nsfw_content_detected=__UpperCamelCase )
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : List[str] = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
697
0
def _snake_case ( lowercase = 1_0_0_0 ) -> int: __a : str = 2**power __a : List[Any] = 0 while n: __a : Any = r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
705
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Any = params __a : Optional[Any] = np.array(__UpperCamelCase ) __a : Union[str, Any] = np.array([len(__UpperCamelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , __UpperCamelCase ): '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ): '''simple docstring''' return len(self.lengths ) def __lowerCamelCase ( self ): '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = self.params.max_model_input_size __a : Union[str, Any] = self.lengths > max_len logger.info(f"""Splitting {sum(__UpperCamelCase )} too long sequences.""" ) def divide_chunks(__UpperCamelCase , __UpperCamelCase ): return [l[i : i + n] for i in range(0 , len(__UpperCamelCase ) , __UpperCamelCase )] __a : int = [] __a : Union[str, Any] = [] if self.params.mlm: __a , __a : Any = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: __a , __a : str = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __a : Any = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __a : int = np.insert(__UpperCamelCase , 0 , __UpperCamelCase ) if sub_s[-1] != sep_id: __a : str = np.insert(__UpperCamelCase , len(__UpperCamelCase ) , __UpperCamelCase ) assert len(__UpperCamelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__UpperCamelCase ) new_tok_ids.extend(__UpperCamelCase ) new_lengths.extend([len(__UpperCamelCase ) for l in sub_seqs] ) __a : Dict = np.array(__UpperCamelCase ) __a : Tuple = np.array(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = len(self ) __a : List[str] = self.lengths > 11 __a : int = self.token_ids[indices] __a : Union[str, Any] = self.lengths[indices] __a : Any = len(self ) logger.info(f"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def __lowerCamelCase ( self ): '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: __a : List[str] = self.params.special_tok_ids["""unk_token"""] __a : str = len(self ) __a : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __a : Optional[Any] = (unk_occs / self.lengths) < 0.5 __a : List[str] = self.token_ids[indices] __a : Optional[int] = self.lengths[indices] __a : Any = len(self ) logger.info(f"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def __lowerCamelCase ( self ): '''simple docstring''' if not self.params.is_master: return logger.info(f"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : List[str] = [t[0] for t in batch] __a : str = [t[1] for t in batch] assert len(__UpperCamelCase ) == len(__UpperCamelCase ) # Max for paddings __a : Optional[int] = max(__UpperCamelCase ) # Pad token ids if self.params.mlm: __a : int = self.params.special_tok_ids["""pad_token"""] else: __a : Tuple = self.params.special_tok_ids["""unk_token"""] __a : Any = [list(t.astype(__UpperCamelCase ) ) + [pad_idx] * (max_seq_len_ - len(__UpperCamelCase )) for t in token_ids] assert len(tk_ ) == len(__UpperCamelCase ) assert all(len(__UpperCamelCase ) == max_seq_len_ for t in tk_ ) __a : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) __a : Optional[Any] = torch.tensor(__UpperCamelCase ) # (bs) return tk_t, lg_t
697
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str = { 'SCUT-DLVCLab/lilt-roberta-en-base': ( 'https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = "lilt" def __init__( self , __UpperCamelCase=3_0522 , __UpperCamelCase=768 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=3072 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=2 , __UpperCamelCase=0.0_2 , __UpperCamelCase=1E-12 , __UpperCamelCase=0 , __UpperCamelCase="absolute" , __UpperCamelCase=None , __UpperCamelCase=4 , __UpperCamelCase=1024 , **__UpperCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , **__UpperCamelCase ) __a : Optional[Any] = vocab_size __a : Union[str, Any] = hidden_size __a : Optional[int] = num_hidden_layers __a : Tuple = num_attention_heads __a : int = hidden_act __a : int = intermediate_size __a : Optional[int] = hidden_dropout_prob __a : int = attention_probs_dropout_prob __a : str = max_position_embeddings __a : Optional[int] = type_vocab_size __a : Union[str, Any] = initializer_range __a : str = layer_norm_eps __a : List[Any] = position_embedding_type __a : str = classifier_dropout __a : Optional[Any] = channel_shrink_ratio __a : List[str] = max_ad_position_embeddings
706
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = "" lowercase__ = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' super().__init__(self , **__UpperCamelCase ) __a : int = repo_info __a : int = token __a : Any = None def __lowerCamelCase ( self ): '''simple docstring''' if self.dir_cache is None: __a : Union[str, Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __a : List[str] = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(__UpperCamelCase ): {"""name""": str(__UpperCamelCase ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = "rb" , **__UpperCamelCase , ): '''simple docstring''' if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) __a : Any = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def __lowerCamelCase ( self , __UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' self._get_dirs() __a : str = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase ): '''simple docstring''' self._get_dirs() __a : int = PurePosixPath(path.strip("""/""" ) ) __a : List[str] = {} for p, f in self.dir_cache.items(): __a : str = PurePosixPath(p.strip("""/""" ) ) __a : Optional[int] = p.parent if root == path: __a : List[str] = f __a : str = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
697
0
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self ): '''simple docstring''' __a : List[str] = 0 __a : Tuple = 0 __a : List[str] = {} def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' if vertex not in self.adjacency: __a : Optional[Any] = {} self.num_vertices += 1 def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' self.add_vertex(__UpperCamelCase ) self.add_vertex(__UpperCamelCase ) if head == tail: return __a : int = weight __a : Tuple = weight def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = self.get_edges() for edge in edges: __a : str = edge edges.remove((tail, head, weight) ) for i in range(len(__UpperCamelCase ) ): __a : Optional[int] = list(edges[i] ) edges.sort(key=lambda __UpperCamelCase : e[2] ) for i in range(len(__UpperCamelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __a : List[Any] = edges[i][2] + 1 for edge in edges: __a : int = edge __a : Any = weight __a : List[Any] = weight def __str__( self ): '''simple docstring''' __a : Union[str, Any] = """""" for tail in self.adjacency: for head in self.adjacency[tail]: __a : Optional[int] = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip("""\n""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowerCamelCase ( self ): '''simple docstring''' return self.adjacency.keys() @staticmethod def __lowerCamelCase ( __UpperCamelCase=None , __UpperCamelCase=None ): '''simple docstring''' __a : Tuple = Graph() if vertices is None: __a : Tuple = [] if edges is None: __a : int = [] for vertex in vertices: g.add_vertex(__UpperCamelCase ) for edge in edges: g.add_edge(*__UpperCamelCase ) return g class SCREAMING_SNAKE_CASE__ : def __init__( self ): '''simple docstring''' __a : int = {} __a : Optional[Any] = {} def __len__( self ): '''simple docstring''' return len(self.parent ) def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' if item in self.parent: return self.find(__UpperCamelCase ) __a : Any = item __a : Optional[Any] = 0 return item def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' if item not in self.parent: return self.make_set(__UpperCamelCase ) if item != self.parent[item]: __a : str = self.find(self.parent[item] ) return self.parent[item] def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : List[Any] = self.find(__UpperCamelCase ) __a : Dict = self.find(__UpperCamelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __a : Dict = roota return roota if self.rank[roota] < self.rank[roota]: __a : Optional[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __a : List[Any] = roota return roota return None @staticmethod def __lowerCamelCase ( __UpperCamelCase ): '''simple docstring''' __a : str = graph.num_vertices __a : int = Graph.UnionFind() __a : str = [] while num_components > 1: __a : Optional[int] = {} for vertex in graph.get_vertices(): __a : Optional[int] = -1 __a : List[str] = graph.get_edges() for edge in edges: __a : str = edge edges.remove((tail, head, weight) ) for edge in edges: __a : Union[str, Any] = edge __a : str = union_find.find(__UpperCamelCase ) __a : List[str] = union_find.find(__UpperCamelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __a : str = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __a : List[str] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __a : Tuple = cheap_edge[vertex] if union_find.find(__UpperCamelCase ) != union_find.find(__UpperCamelCase ): union_find.union(__UpperCamelCase , __UpperCamelCase ) mst_edges.append(cheap_edge[vertex] ) __a : Optional[int] = num_components - 1 __a : str = Graph.build(edges=__UpperCamelCase ) return mst
707
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , __UpperCamelCase , __UpperCamelCase=2 , __UpperCamelCase=32 , __UpperCamelCase=16 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=4 , __UpperCamelCase=[0, 1, 2, 3] , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0_2 , __UpperCamelCase=3 , __UpperCamelCase=[1, 384, 24, 24] , __UpperCamelCase=True , __UpperCamelCase=None , ): '''simple docstring''' __a : List[str] = parent __a : Tuple = batch_size __a : str = image_size __a : int = patch_size __a : Dict = num_channels __a : int = is_training __a : Dict = use_labels __a : Union[str, Any] = hidden_size __a : Dict = num_hidden_layers __a : Dict = backbone_out_indices __a : Optional[int] = num_attention_heads __a : List[str] = intermediate_size __a : Optional[Any] = hidden_act __a : Dict = hidden_dropout_prob __a : Tuple = attention_probs_dropout_prob __a : Any = initializer_range __a : Any = num_labels __a : Optional[Any] = backbone_featmap_shape __a : List[Any] = scope __a : List[str] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __a : Union[str, Any] = (image_size // patch_size) ** 2 __a : List[str] = num_patches + 1 def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Union[str, Any] = None if self.use_labels: __a : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a : Tuple = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 192, 384, 768], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Optional[Any] = DPTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : List[str] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : List[str] = self.num_labels __a : Union[str, Any] = DPTForDepthEstimation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Dict = self.num_labels __a : Tuple = DPTForSemanticSegmentation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : str = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.prepare_config_and_inputs() __a , __a , __a : Tuple = config_and_inputs __a : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): lowercase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowercase__ = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = DPTModelTester(self ) __a : List[Any] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : str = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Any = model_class(__UpperCamelCase ) __a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : int = [*signature.parameters.keys()] __a : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() __a : List[Any] = True if model_class in get_values(__UpperCamelCase ): continue __a : str = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() __a : Union[str, Any] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) __a : List[Any] = model(**__UpperCamelCase ).loss loss.backward() def __lowerCamelCase ( self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __a , __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __a : Any = False __a : Dict = True if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing: continue __a : Any = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.gradient_checkpointing_enable() model.train() __a : List[str] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) __a : Dict = model(**__UpperCamelCase ).loss loss.backward() def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() __a : Any = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: __a : Any = model_class(config=__UpperCamelCase ) # Skip the check for the backbone __a : Optional[Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __a : Optional[int] = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __a : int = DPTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : int = self.model_tester.prepare_config_and_inputs_for_common() __a : Optional[int] = """add""" with self.assertRaises(__UpperCamelCase ): __a : int = DPTForDepthEstimation(__UpperCamelCase ) def _snake_case ( ) -> Any: __a : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' __a : int = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) __a : int = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__UpperCamelCase ) __a : Union[str, Any] = prepare_img() __a : Any = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): __a : Optional[Any] = model(**__UpperCamelCase ) __a : int = outputs.predicted_depth # verify the predicted depth __a : Any = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __UpperCamelCase ) __a : int = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __UpperCamelCase , atol=1E-4 ) )
697
0
'''simple docstring''' def _snake_case ( lowercase , lowercase ) -> float: def get_matched_characters(lowercase , lowercase ) -> str: __a : Dict = [] __a : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a : Optional[Any] = int(max(0 , i - limit ) ) __a : Tuple = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowercase ) __a : List[Any] = F"""{_stra[0:_stra.index(lowercase )]} {_stra[_stra.index(lowercase ) + 1:]}""" return "".join(lowercase ) # matching characters __a : int = get_matched_characters(lowercase , lowercase ) __a : Optional[Any] = get_matched_characters(lowercase , lowercase ) __a : Optional[Any] = len(lowercase ) # transposition __a : Dict = ( len([(ca, ca) for ca, ca in zip(lowercase , lowercase ) if ca != ca] ) // 2 ) if not match_count: __a : List[str] = 0.0 else: __a : List[str] = ( 1 / 3 * ( match_count / len(lowercase ) + match_count / len(lowercase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a : Any = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
708
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) __a : Optional[int] = Vector() def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(__UpperCamelCase ) , """(0,0,0,0,0,1)""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = Vector([1, 2, 3, 4] ) self.assertEqual(len(__UpperCamelCase ) , 4 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = Vector([1, 2] ) __a : List[str] = Vector([1, 2, 3, 4, 5] ) __a : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __a : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Vector([1, 2, 3] ) __a : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = Vector([1, 2, 3] ) __a : Any = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = Vector([1, 2, 3] ) __a : Optional[Any] = Vector([2, -1, 4] ) # for test of dot product __a : Union[str, Any] = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Vector([1, 2, 3] ) __a : Optional[int] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , __UpperCamelCase , __UpperCamelCase ) ) , """(3,4,7)""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : int = Vector([1, 0, 0, 0, 0, 0] ) __a : Any = x.copy() self.assertEqual(str(__UpperCamelCase ) , str(__UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(__UpperCamelCase ) , """(0,1,0)""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(__UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __a : List[Any] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __a : Any = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) __a : List[Any] = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(__UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __a : Union[str, Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __a : List[str] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
697
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = "levit" def __init__( self , __UpperCamelCase=224 , __UpperCamelCase=3 , __UpperCamelCase=3 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=16 , __UpperCamelCase=[128, 256, 384] , __UpperCamelCase=[4, 8, 12] , __UpperCamelCase=[4, 4, 4] , __UpperCamelCase=[16, 16, 16] , __UpperCamelCase=0 , __UpperCamelCase=[2, 2, 2] , __UpperCamelCase=[2, 2, 2] , __UpperCamelCase=0.0_2 , **__UpperCamelCase , ): '''simple docstring''' super().__init__(**__UpperCamelCase ) __a : int = image_size __a : str = num_channels __a : str = kernel_size __a : Tuple = stride __a : List[Any] = padding __a : Optional[Any] = hidden_sizes __a : str = num_attention_heads __a : Optional[Any] = depths __a : Union[str, Any] = key_dim __a : List[str] = drop_path_rate __a : Union[str, Any] = patch_size __a : Optional[Any] = attention_ratio __a : List[str] = mlp_ratio __a : Union[str, Any] = initializer_range __a : Optional[int] = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = version.parse("1.11" ) @property def __lowerCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __lowerCamelCase ( self ): '''simple docstring''' return 1E-4
709
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __SCREAMING_SNAKE_CASE : List[str] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) __SCREAMING_SNAKE_CASE : Optional[Any] = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) __SCREAMING_SNAKE_CASE : Tuple = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) __SCREAMING_SNAKE_CASE : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) __SCREAMING_SNAKE_CASE : Optional[int] = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) __SCREAMING_SNAKE_CASE : int = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) __SCREAMING_SNAKE_CASE : int = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _snake_case ( ) -> List[str]: __a , __a : List[Any] = randrange(len(lowercase ) ), randrange(len(lowercase ) ) __a : int = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] __a , __a : int = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _snake_case ( lowercase = 1_0_0 ) -> Any: return (generate_random_hand() for _ in range(lowercase )) @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> int: assert PokerHand(lowercase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Any: assert PokerHand(lowercase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , lowercase ) def _snake_case ( lowercase , lowercase , lowercase ) -> List[str]: __a : Union[str, Any] = PokerHand(lowercase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Optional[int]: assert PokerHand(lowercase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Union[str, Any]: assert PokerHand(lowercase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , lowercase ) def _snake_case ( lowercase , lowercase , lowercase ) -> Optional[int]: assert PokerHand(lowercase ).compare_with(PokerHand(lowercase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def _snake_case ( lowercase , lowercase , lowercase ) -> int: assert PokerHand(lowercase ).compare_with(PokerHand(lowercase ) ) == expected def _snake_case ( ) -> Union[str, Any]: __a : Tuple = [PokerHand(lowercase ) for hand in SORTED_HANDS] __a : Optional[int] = poker_hands.copy() shuffle(lowercase ) __a : List[str] = chain(sorted(lowercase ) ) for index, hand in enumerate(lowercase ): assert hand == poker_hands[index] def _snake_case ( ) -> List[str]: # Test that five high straights are compared correctly. __a : Optional[int] = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=lowercase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _snake_case ( ) -> List[str]: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. __a : Dict = PokerHand("""2C 4S AS 3D 5C""" ) __a : Dict = True __a : Optional[int] = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _snake_case ( ) -> Dict: # Problem number 54 from Project Euler # Testing from poker_hands.txt file __a : Tuple = 0 __a : int = os.path.abspath(os.path.dirname(lowercase ) ) __a : Union[str, Any] = os.path.join(lowercase , """poker_hands.txt""" ) with open(lowercase ) as file_hand: for line in file_hand: __a : Union[str, Any] = line[:1_4].strip() __a : Optional[Any] = line[1_5:].strip() __a , __a : List[str] = PokerHand(lowercase ), PokerHand(lowercase ) __a : str = player.compare_with(lowercase ) if output == "Win": answer += 1 assert answer == 3_7_6
697
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : Any = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
697
0
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _snake_case ( lowercase = 8 ) -> str: __a : str = ascii_letters + digits + punctuation return "".join(secrets.choice(lowercase ) for _ in range(lowercase ) ) def _snake_case ( lowercase , lowercase ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(lowercase ) __a : Dict = i // 3 __a : Optional[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) __a : Union[str, Any] = ( chars_incl + random(lowercase , quotient + remainder ) + random(lowercase , lowercase ) + random(lowercase , lowercase ) ) __a : List[Any] = list(lowercase ) shuffle(lowercase ) return "".join(lowercase ) # random is a generalised function for letters, characters and numbers def _snake_case ( lowercase , lowercase ) -> str: return "".join(secrets.choice(lowercase ) for _ in range(lowercase ) ) def _snake_case ( lowercase , lowercase ) -> Optional[int]: pass # Put your code here... def _snake_case ( lowercase , lowercase ) -> Tuple: pass # Put your code here... def _snake_case ( lowercase , lowercase ) -> str: pass # Put your code here... def _snake_case ( lowercase , lowercase = 8 ) -> bool: if len(lowercase ) < min_length: # Your Password must be at least 8 characters long return False __a : List[str] = any(char in ascii_uppercase for char in password ) __a : Dict = any(char in ascii_lowercase for char in password ) __a : Optional[Any] = any(char in digits for char in password ) __a : Dict = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _snake_case ( ) -> List[Any]: __a : Any = int(input("""Please indicate the max length of your password: """ ).strip() ) __a : Tuple = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(lowercase ) ) print( """Alternative Password generated:""" , alternative_password_generator(lowercase , lowercase ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
711
'''simple docstring''' from __future__ import annotations import bisect def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> int: if hi < 0: __a : Union[str, Any] = len(lowercase ) while lo < hi: __a : List[str] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __a : int = mid + 1 else: __a : int = mid return lo def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> int: if hi < 0: __a : Any = len(lowercase ) while lo < hi: __a : Any = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __a : List[str] = mid + 1 else: __a : Any = mid return lo def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> None: sorted_collection.insert(bisect_left(lowercase , lowercase , lowercase , lowercase ) , lowercase ) def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> None: sorted_collection.insert(bisect_right(lowercase , lowercase , lowercase , lowercase ) , lowercase ) def _snake_case ( lowercase , lowercase ) -> int | None: __a : Dict = 0 __a : Any = len(lowercase ) - 1 while left <= right: __a : str = left + (right - left) // 2 __a : List[Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __a : Optional[Any] = midpoint - 1 else: __a : Optional[int] = midpoint + 1 return None def _snake_case ( lowercase , lowercase ) -> int | None: __a : Optional[int] = bisect.bisect_left(lowercase , lowercase ) if index != len(lowercase ) and sorted_collection[index] == item: return index return None def _snake_case ( lowercase , lowercase , lowercase , lowercase ) -> int | None: if right < left: return None __a : Any = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowercase , lowercase , lowercase , midpoint - 1 ) else: return binary_search_by_recursion(lowercase , lowercase , midpoint + 1 , lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = input('Enter numbers separated by comma:\n').strip() __SCREAMING_SNAKE_CASE : Optional[Any] = sorted(int(item) for item in user_input.split(',')) __SCREAMING_SNAKE_CASE : List[str] = int(input('Enter a single number to be found in the list:\n')) __SCREAMING_SNAKE_CASE : Optional[int] = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
697
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): '''simple docstring''' super().__init__() self.register_modules( vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , ) def __lowerCamelCase ( self , __UpperCamelCase = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' self.enable_attention_slicing(__UpperCamelCase ) @torch.no_grad() def __call__( self , __UpperCamelCase , __UpperCamelCase = 512 , __UpperCamelCase = 512 , __UpperCamelCase = 50 , __UpperCamelCase = 7.5 , __UpperCamelCase = None , __UpperCamelCase = 1 , __UpperCamelCase = 0.0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = "pil" , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = 1 , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ): __a : Union[str, Any] = 1 elif isinstance(__UpperCamelCase , __UpperCamelCase ): __a : Tuple = len(__UpperCamelCase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(__UpperCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCamelCase , __UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__UpperCamelCase )}.""" ) # get prompt text embeddings __a : Tuple = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __a : Union[str, Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __a : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __a : Optional[int] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __a : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __a : Union[str, Any] = text_embeddings.shape __a : Optional[Any] = text_embeddings.repeat(1 , __UpperCamelCase , 1 ) __a : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , __UpperCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __a : Any = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __a : List[str] if negative_prompt is None: __a : Optional[Any] = [""""""] elif type(__UpperCamelCase ) is not type(__UpperCamelCase ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCamelCase )} !=""" f""" {type(__UpperCamelCase )}.""" ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): __a : Any = [negative_prompt] elif batch_size != len(__UpperCamelCase ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(__UpperCamelCase )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: __a : Tuple = negative_prompt __a : Any = text_input_ids.shape[-1] __a : List[str] = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="""pt""" , ) __a : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __a : List[str] = uncond_embeddings.shape[1] __a : List[Any] = uncond_embeddings.repeat(__UpperCamelCase , __UpperCamelCase , 1 ) __a : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __a : List[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __a : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __a : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __a : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __a : Any = torch.randn( __UpperCamelCase , generator=__UpperCamelCase , device="""cpu""" , dtype=__UpperCamelCase ).to(self.device ) __a : Optional[Any] = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device="""cpu""" , dtype=__UpperCamelCase ).to( self.device ) else: __a : Optional[int] = torch.randn( __UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) __a : str = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __a : Optional[Any] = latents_reference.to(self.device ) __a : str = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __a : List[str] = (latents_shape[3] - latents_shape_reference[3]) // 2 __a : int = (latents_shape[2] - latents_shape_reference[2]) // 2 __a : int = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __a : Tuple = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __a : Optional[Any] = 0 if dx < 0 else dx __a : Optional[Any] = 0 if dy < 0 else dy __a : Optional[int] = max(-dx , 0 ) __a : Optional[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() __a : Optional[int] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(__UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __a : Dict = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __a : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a : List[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a : Optional[Any] = {} if accepts_eta: __a : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance __a : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __a : Tuple = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual __a : Union[str, Any] = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample # perform guidance if do_classifier_free_guidance: __a : List[str] = noise_pred.chunk(2 ) __a : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __a : List[Any] = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __a : Optional[Any] = 1 / 0.1_8_2_1_5 * latents __a : Optional[int] = self.vae.decode(__UpperCamelCase ).sample __a : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __a : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __a : List[str] = self.feature_extractor(self.numpy_to_pil(__UpperCamelCase ) , return_tensors="""pt""" ).to( self.device ) __a : int = self.safety_checker( images=__UpperCamelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __a : Optional[int] = None if output_type == "pil": __a : str = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=__UpperCamelCase , nsfw_content_detected=__UpperCamelCase )
712
'''simple docstring''' from itertools import product def _snake_case ( lowercase , lowercase ) -> list[int]: __a : Optional[int] = sides_number __a : Union[str, Any] = max_face_number * dice_number __a : Optional[Any] = [0] * (max_total + 1) __a : Dict = 1 __a : str = range(lowercase , max_face_number + 1 ) for dice_numbers in product(lowercase , repeat=lowercase ): __a : int = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def _snake_case ( ) -> float: __a : Tuple = total_frequency_distribution( sides_number=4 , dice_number=9 ) __a : Union[str, Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) __a : str = 0 __a : Dict = 9 __a : str = 4 * 9 __a : Any = 6 for peter_total in range(lowercase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __a : str = (4**9) * (6**6) __a : List[Any] = peter_wins_count / total_games_number __a : List[Any] = round(lowercase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'''{solution() = }''')
697
0
'''simple docstring''' def _snake_case ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: __a : List[Any] = mf_knapsack(i - 1 , lowercase , lowercase , lowercase ) else: __a : Any = max( mf_knapsack(i - 1 , lowercase , lowercase , lowercase ) , mf_knapsack(i - 1 , lowercase , lowercase , j - wt[i - 1] ) + val[i - 1] , ) __a : Optional[int] = val return f[i][j] def _snake_case ( lowercase , lowercase , lowercase , lowercase ) -> int: __a : int = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: __a : Any = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: __a : List[Any] = dp[i - 1][w_] return dp[n][w_], dp def _snake_case ( lowercase , lowercase , lowercase ) -> Any: if not (isinstance(lowercase , (list, tuple) ) and isinstance(lowercase , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) __a : Tuple = len(lowercase ) if num_items != len(lowercase ): __a : Optional[int] = ( """The number of weights must be the same as the number of values.\n""" F"""But got {num_items} weights and {len(lowercase )} values""" ) raise ValueError(lowercase ) for i in range(lowercase ): if not isinstance(wt[i] , lowercase ): __a : Tuple = ( """All weights must be integers but got weight of """ F"""type {type(wt[i] )} at index {i}""" ) raise TypeError(lowercase ) __a : Dict = knapsack(lowercase , lowercase , lowercase , lowercase ) __a : set = set() _construct_solution(lowercase , lowercase , lowercase , lowercase , lowercase ) return optimal_val, example_optional_set def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowercase , lowercase , i - 1 , lowercase , lowercase ) else: optimal_set.add(lowercase ) _construct_solution(lowercase , lowercase , i - 1 , j - wt[i - 1] , lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Tuple = [3, 2, 4, 4] __SCREAMING_SNAKE_CASE : Union[str, Any] = [4, 3, 2, 3] __SCREAMING_SNAKE_CASE : Any = 4 __SCREAMING_SNAKE_CASE : List[Any] = 6 __SCREAMING_SNAKE_CASE : Tuple = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] __SCREAMING_SNAKE_CASE : Optional[Any] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 __SCREAMING_SNAKE_CASE : Optional[Any] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
713
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): '''simple docstring''' super().__init__() self.register_modules( vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , ) def __lowerCamelCase ( self , __UpperCamelCase = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' self.enable_attention_slicing(__UpperCamelCase ) @torch.no_grad() def __call__( self , __UpperCamelCase , __UpperCamelCase = 512 , __UpperCamelCase = 512 , __UpperCamelCase = 50 , __UpperCamelCase = 7.5 , __UpperCamelCase = None , __UpperCamelCase = 1 , __UpperCamelCase = 0.0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = "pil" , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = 1 , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ): __a : Union[str, Any] = 1 elif isinstance(__UpperCamelCase , __UpperCamelCase ): __a : Tuple = len(__UpperCamelCase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(__UpperCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCamelCase , __UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__UpperCamelCase )}.""" ) # get prompt text embeddings __a : Tuple = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __a : Union[str, Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __a : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __a : Optional[int] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __a : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __a , __a , __a : Union[str, Any] = text_embeddings.shape __a : Optional[Any] = text_embeddings.repeat(1 , __UpperCamelCase , 1 ) __a : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , __UpperCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __a : Any = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __a : List[str] if negative_prompt is None: __a : Optional[Any] = [""""""] elif type(__UpperCamelCase ) is not type(__UpperCamelCase ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCamelCase )} !=""" f""" {type(__UpperCamelCase )}.""" ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): __a : Any = [negative_prompt] elif batch_size != len(__UpperCamelCase ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(__UpperCamelCase )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: __a : Tuple = negative_prompt __a : Any = text_input_ids.shape[-1] __a : List[str] = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="""pt""" , ) __a : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __a : List[str] = uncond_embeddings.shape[1] __a : List[Any] = uncond_embeddings.repeat(__UpperCamelCase , __UpperCamelCase , 1 ) __a : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __a : List[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __a : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __a : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __a : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __a : Any = torch.randn( __UpperCamelCase , generator=__UpperCamelCase , device="""cpu""" , dtype=__UpperCamelCase ).to(self.device ) __a : Optional[Any] = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device="""cpu""" , dtype=__UpperCamelCase ).to( self.device ) else: __a : Optional[int] = torch.randn( __UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) __a : str = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __a : Optional[Any] = latents_reference.to(self.device ) __a : str = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __a : List[str] = (latents_shape[3] - latents_shape_reference[3]) // 2 __a : int = (latents_shape[2] - latents_shape_reference[2]) // 2 __a : int = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __a : Tuple = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __a : Optional[Any] = 0 if dx < 0 else dx __a : Optional[Any] = 0 if dy < 0 else dy __a : Optional[int] = max(-dx , 0 ) __a : Optional[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() __a : Optional[int] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(__UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __a : Dict = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __a : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a : List[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a : Optional[Any] = {} if accepts_eta: __a : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance __a : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __a : Tuple = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual __a : Union[str, Any] = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample # perform guidance if do_classifier_free_guidance: __a , __a : List[str] = noise_pred.chunk(2 ) __a : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __a : List[Any] = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __a : Optional[Any] = 1 / 0.1_8_2_1_5 * latents __a : Optional[int] = self.vae.decode(__UpperCamelCase ).sample __a : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __a : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __a : List[str] = self.feature_extractor(self.numpy_to_pil(__UpperCamelCase ) , return_tensors="""pt""" ).to( self.device ) __a , __a : int = self.safety_checker( images=__UpperCamelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __a : Optional[int] = None if output_type == "pil": __a : str = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=__UpperCamelCase , nsfw_content_detected=__UpperCamelCase )
697
0
'''simple docstring''' from __future__ import annotations import bisect def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> int: if hi < 0: __a : Union[str, Any] = len(lowercase ) while lo < hi: __a : List[str] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __a : int = mid + 1 else: __a : int = mid return lo def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> int: if hi < 0: __a : Any = len(lowercase ) while lo < hi: __a : Any = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __a : List[str] = mid + 1 else: __a : Any = mid return lo def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> None: sorted_collection.insert(bisect_left(lowercase , lowercase , lowercase , lowercase ) , lowercase ) def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> None: sorted_collection.insert(bisect_right(lowercase , lowercase , lowercase , lowercase ) , lowercase ) def _snake_case ( lowercase , lowercase ) -> int | None: __a : Dict = 0 __a : Any = len(lowercase ) - 1 while left <= right: __a : str = left + (right - left) // 2 __a : List[Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __a : Optional[Any] = midpoint - 1 else: __a : Optional[int] = midpoint + 1 return None def _snake_case ( lowercase , lowercase ) -> int | None: __a : Optional[int] = bisect.bisect_left(lowercase , lowercase ) if index != len(lowercase ) and sorted_collection[index] == item: return index return None def _snake_case ( lowercase , lowercase , lowercase , lowercase ) -> int | None: if right < left: return None __a : Any = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowercase , lowercase , lowercase , midpoint - 1 ) else: return binary_search_by_recursion(lowercase , lowercase , midpoint + 1 , lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = input('Enter numbers separated by comma:\n').strip() __SCREAMING_SNAKE_CASE : Optional[Any] = sorted(int(item) for item in user_input.split(',')) __SCREAMING_SNAKE_CASE : List[str] = int(input('Enter a single number to be found in the list:\n')) __SCREAMING_SNAKE_CASE : Optional[int] = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
714
'''simple docstring''' import numpy as np from PIL import Image def _snake_case ( lowercase , lowercase , lowercase ) -> np.ndarray: __a : Any = np.array(lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) __a : Union[str, Any] = 0 __a : Dict = 0 __a : Optional[Any] = 0 __a : Tuple = 0 # compute the shape of the output matrix __a : Optional[int] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __a : int = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __a : Optional[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __a : Optional[Any] = 0 __a : str = 0 return updated_arr def _snake_case ( lowercase , lowercase , lowercase ) -> np.ndarray: __a : int = np.array(lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) __a : int = 0 __a : Optional[Any] = 0 __a : str = 0 __a : List[Any] = 0 # compute the shape of the output matrix __a : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __a : Optional[int] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __a : Any = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __a : str = 0 __a : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image __SCREAMING_SNAKE_CASE : str = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
697
0
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE : Optional[int] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): lowercase__ = AlbertTokenizer lowercase__ = AlbertTokenizerFast lowercase__ = True lowercase__ = True lowercase__ = True def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a : Optional[int] = AlbertTokenizer(__UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : Optional[Any] = """this is a test""" __a : Optional[int] = """this is a test""" return input_text, output_text def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = """<pad>""" __a : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(__UpperCamelCase ) , 3_0000 ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def __lowerCamelCase ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return __a : int = self.get_tokenizer() __a : Any = self.get_rust_tokenizer() __a : Optional[Any] = """I was born in 92000, and this is falsé.""" __a : Any = tokenizer.tokenize(__UpperCamelCase ) __a : List[Any] = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) __a : Optional[int] = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) __a : Any = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) __a : Union[str, Any] = self.get_rust_tokenizer() __a : Union[str, Any] = tokenizer.encode(__UpperCamelCase ) __a : List[str] = rust_tokenizer.encode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : str = AlbertTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) __a : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__UpperCamelCase , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [48, 25, 21, 1289] ) __a : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __UpperCamelCase , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) __a : Tuple = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) __a : Any = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = AlbertTokenizer(__UpperCamelCase ) __a : Any = tokenizer.encode("""sequence builders""" ) __a : str = tokenizer.encode("""multi-sequence build""" ) __a : List[str] = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase ) __a : Optional[int] = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase , __UpperCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
715
'''simple docstring''' import qiskit def _snake_case ( lowercase , lowercase ) -> qiskit.result.counts.Counts: __a : Any = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register __a : str = qiskit.QuantumCircuit(lowercase , lowercase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __a : Any = qiskit.execute(lowercase , lowercase , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
697
0
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _snake_case ( lowercase ) -> List[Any]: # A local function to see if a dot lands in the circle. def is_in_circle(lowercase , lowercase ) -> bool: __a : int = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __a : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowercase ) ) # The ratio of the area for circle to square is pi/4. __a : Optional[int] = proportion * 4 print(F"""The estimated value of pi is {pi_estimate}""" ) print(F"""The numpy value of pi is {pi}""" ) print(F"""The total error is {abs(pi - pi_estimate )}""" ) def _snake_case ( lowercase , lowercase , lowercase = 0.0 , lowercase = 1.0 , ) -> float: return mean( function_to_integrate(uniform(lowercase , lowercase ) ) for _ in range(lowercase ) ) * (max_value - min_value) def _snake_case ( lowercase , lowercase = 0.0 , lowercase = 1.0 ) -> None: def identity_function(lowercase ) -> float: return x __a : Tuple = area_under_curve_estimator( lowercase , lowercase , lowercase , lowercase ) __a : Tuple = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {expected_value}""" ) print(F"""Total error is {abs(estimated_value - expected_value )}""" ) print("""******************""" ) def _snake_case ( lowercase ) -> None: def function_to_integrate(lowercase ) -> float: return sqrt(4.0 - x * x ) __a : str = area_under_curve_estimator( lowercase , lowercase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {pi}""" ) print(F"""Total error is {abs(estimated_value - pi )}""" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: for attribute in key.split(""".""" ): __a : str = getattr(lowercase , lowercase ) if weight_type is not None: __a : Dict = getattr(lowercase , lowercase ).shape else: __a : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __a : Any = value elif weight_type == "weight_g": __a : int = value elif weight_type == "weight_v": __a : int = value elif weight_type == "bias": __a : List[Any] = value elif weight_type == "running_mean": __a : Union[str, Any] = value elif weight_type == "running_var": __a : Tuple = value elif weight_type == "num_batches_tracked": __a : Optional[int] = value elif weight_type == "inv_freq": __a : List[str] = value else: __a : List[str] = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _snake_case ( lowercase , lowercase , lowercase ) -> Dict: __a : Dict = [] __a : Dict = fairseq_model.state_dict() __a : Tuple = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __a : int = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __a : List[Any] = True else: for key, mapped_key in MAPPING.items(): __a : Optional[int] = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __a : str = True if "*" in mapped_key: __a : Optional[int] = name.split(lowercase )[0].split(""".""" )[-2] __a : List[Any] = mapped_key.replace("""*""" , lowercase ) if "pos_bias_u" in name: __a : Union[str, Any] = None elif "pos_bias_v" in name: __a : List[Any] = None elif "weight_g" in name: __a : List[Any] = """weight_g""" elif "weight_v" in name: __a : List[Any] = """weight_v""" elif "bias" in name: __a : Optional[int] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __a : str = """weight""" elif "running_mean" in name: __a : List[str] = """running_mean""" elif "inv_freq" in name: __a : Dict = """inv_freq""" elif "running_var" in name: __a : Union[str, Any] = """running_var""" elif "num_batches_tracked" in name: __a : int = """num_batches_tracked""" else: __a : Optional[int] = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[str]: __a : Optional[Any] = full_name.split("""conv_layers.""" )[-1] __a : Union[str, Any] = name.split(""".""" ) __a : Optional[Any] = int(items[0] ) __a : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __a : Dict = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __a : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __a : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __a : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase ) @torch.no_grad() def _snake_case ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Optional[Any]: if config_path is not None: __a : Any = WavaVecaConformerConfig.from_pretrained(lowercase , hidden_act="""swish""" ) else: __a : Optional[int] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __a : Optional[Any] = """rotary""" if is_finetuned: if dict_path: __a : List[Any] = Dictionary.load(lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __a : int = target_dict.pad_index __a : List[str] = target_dict.bos_index __a : str = target_dict.eos_index __a : Dict = len(target_dict.symbols ) __a : Any = os.path.join(lowercase , """vocab.json""" ) if not os.path.isdir(lowercase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowercase ) ) return os.makedirs(lowercase , exist_ok=lowercase ) __a : Dict = target_dict.indices # fairseq has the <pad> and <s> switched __a : Optional[Any] = 0 __a : List[Any] = 1 with open(lowercase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowercase , lowercase ) __a : int = WavaVecaCTCTokenizer( lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowercase , ) __a : Optional[int] = True if config.feat_extract_norm == """layer""" else False __a : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , ) __a : str = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase ) processor.save_pretrained(lowercase ) __a : List[str] = WavaVecaConformerForCTC(lowercase ) else: __a : Optional[int] = WavaVecaConformerForPreTraining(lowercase ) if is_finetuned: __a , __a , __a : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __a : Optional[int] = argparse.Namespace(task="""audio_pretraining""" ) __a : Tuple = fairseq.tasks.setup_task(lowercase ) __a , __a , __a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase ) __a : Any = model[0].eval() recursively_load_weights(lowercase , lowercase , not is_finetuned ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
697
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor __SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , __UpperCamelCase , ) super().__init__(*__UpperCamelCase , **__UpperCamelCase )
717
'''simple docstring''' import warnings from functools import wraps from typing import Callable def _snake_case ( lowercase ) -> Callable: @wraps(lowercase ) def _inner_fn(*lowercase , **lowercase ): warnings.warn( (F"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") , lowercase , ) return fn(*lowercase , **lowercase ) return _inner_fn
697
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __SCREAMING_SNAKE_CASE : Optional[Any] = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
718
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = ["input_features", "attention_mask"] def __init__( self , __UpperCamelCase=80 , __UpperCamelCase=1_6000 , __UpperCamelCase=0.0 , __UpperCamelCase=10 , __UpperCamelCase=25 , __UpperCamelCase="hamming_window" , __UpperCamelCase=3_2_7_6_8.0 , __UpperCamelCase=0.9_7 , __UpperCamelCase=1.0 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=False , **__UpperCamelCase , ): '''simple docstring''' super().__init__(feature_size=__UpperCamelCase , sampling_rate=__UpperCamelCase , padding_value=__UpperCamelCase , **__UpperCamelCase ) __a : List[str] = feature_size __a : List[str] = sampling_rate __a : int = padding_value __a : Any = hop_length __a : int = win_length __a : Tuple = frame_signal_scale __a : Union[str, Any] = preemphasis_coeff __a : List[str] = mel_floor __a : Union[str, Any] = normalize_means __a : Optional[Any] = normalize_vars __a : Optional[Any] = win_function __a : Union[str, Any] = return_attention_mask __a : List[Any] = win_length * sampling_rate // 1000 __a : List[Any] = hop_length * sampling_rate // 1000 __a : Optional[Any] = optimal_fft_length(self.sample_size ) __a : Any = (self.n_fft // 2) + 1 def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' if self.win_function == "hamming_window": __a : str = window_function(window_length=self.sample_size , name=self.win_function , periodic=__UpperCamelCase ) else: __a : Dict = window_function(window_length=self.sample_size , name=self.win_function ) __a : Optional[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) __a : Any = spectrogram( one_waveform * self.frame_signal_scale , window=__UpperCamelCase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=__UpperCamelCase , preemphasis=self.preemphasis_coeff , mel_filters=__UpperCamelCase , mel_floor=self.mel_floor , log_mel="""log""" , ) return msfc_features.T def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if self.normalize_means: __a : int = x[:input_length].mean(axis=0 ) __a : str = np.subtract(__UpperCamelCase , __UpperCamelCase ) if self.normalize_vars: __a : Dict = x[:input_length].std(axis=0 ) __a : Dict = np.divide(__UpperCamelCase , __UpperCamelCase ) if input_length < x.shape[0]: __a : Union[str, Any] = padding_value # make sure array is in float32 __a : Any = x.astype(np.floataa ) return x def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ): '''simple docstring''' __a : Tuple = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__UpperCamelCase , __UpperCamelCase , self.padding_value ) for x, n in zip(__UpperCamelCase , __UpperCamelCase )] def __call__( self , __UpperCamelCase , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __a : Tuple = isinstance(__UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __a : Tuple = is_batched_numpy or ( isinstance(__UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __a : Tuple = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__UpperCamelCase , np.ndarray ): __a : List[str] = np.asarray(__UpperCamelCase , dtype=np.floataa ) elif isinstance(__UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __a : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __a : Any = [raw_speech] # extract fbank features __a : str = [self._extract_mfsc_features(__UpperCamelCase ) for one_waveform in raw_speech] # convert into correct format for padding __a : Optional[Any] = BatchFeature({"""input_features""": features} ) __a : Any = self.pad( __UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , truncation=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) # make sure list is in array format __a : int = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , __UpperCamelCase ): __a : Union[str, Any] = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for feature in input_features] __a : List[str] = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: __a : Optional[int] = [np.asarray(__UpperCamelCase , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: __a : Optional[Any] = ( np.array(__UpperCamelCase , dtype=np.intaa ) if self._get_padding_strategies(__UpperCamelCase , max_length=__UpperCamelCase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) __a : int = self.normalize( padded_inputs["""input_features"""] , attention_mask=__UpperCamelCase ) if return_tensors is not None: __a : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
697
0
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) def _snake_case ( lowercase , lowercase ) -> Optional[int]: __a : int = nn.functional.normalize(lowercase ) __a : Any = nn.functional.normalize(lowercase ) return torch.mm(lowercase , normalized_text_embeds.t() ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = CLIPConfig lowercase__ = ["CLIPEncoderLayer"] def __init__( self , __UpperCamelCase ): '''simple docstring''' super().__init__(__UpperCamelCase ) __a : Optional[int] = CLIPVisionModel(config.vision_config ) __a : str = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__UpperCamelCase ) __a : int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__UpperCamelCase ) __a : Union[str, Any] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__UpperCamelCase ) __a : Union[str, Any] = nn.Parameter(torch.ones(17 ) , requires_grad=__UpperCamelCase ) __a : Union[str, Any] = nn.Parameter(torch.ones(3 ) , requires_grad=__UpperCamelCase ) @torch.no_grad() def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Optional[int] = self.vision_model(__UpperCamelCase )[1] # pooled_output __a : str = self.visual_projection(__UpperCamelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __a : Optional[Any] = cosine_distance(__UpperCamelCase , self.special_care_embeds ).cpu().float().numpy() __a : Optional[Any] = cosine_distance(__UpperCamelCase , self.concept_embeds ).cpu().float().numpy() __a : Optional[int] = [] __a : Tuple = image_embeds.shape[0] for i in range(__UpperCamelCase ): __a : Optional[Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images __a : str = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): __a : Dict = special_cos_dist[i][concept_idx] __a : List[str] = self.special_care_embeds_weights[concept_idx].item() __a : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) __a : Tuple = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): __a : List[str] = cos_dist[i][concept_idx] __a : Optional[Any] = self.concept_embeds_weights[concept_idx].item() __a : Union[str, Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__UpperCamelCase ) result.append(__UpperCamelCase ) __a : Dict = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : List[Any] = self.vision_model(__UpperCamelCase )[1] # pooled_output __a : Tuple = self.visual_projection(__UpperCamelCase ) __a : int = cosine_distance(__UpperCamelCase , self.special_care_embeds ) __a : int = cosine_distance(__UpperCamelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images __a : Dict = 0.0 __a : Tuple = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) __a : Any = torch.any(special_scores > 0 , dim=1 ) __a : List[str] = special_care * 0.0_1 __a : List[Any] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) __a : Union[str, Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) __a : Any = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
719
'''simple docstring''' __SCREAMING_SNAKE_CASE : int = 9.80_665 def _snake_case ( lowercase , lowercase , lowercase = g ) -> float: if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
697
0
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=__UpperCamelCase ): lowercase__ = ["transformers", "torch", "note_seq"] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' requires_backends(self , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def __lowerCamelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def __lowerCamelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
720
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=30 , __UpperCamelCase=400 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=1 / 255 , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=True , ): '''simple docstring''' __a : List[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __a : Dict = parent __a : Union[str, Any] = batch_size __a : Optional[int] = num_channels __a : Dict = min_resolution __a : List[Any] = max_resolution __a : int = do_resize __a : str = size __a : Optional[Any] = do_rescale __a : Optional[Any] = rescale_factor __a : str = do_normalize __a : Any = image_mean __a : Optional[Any] = image_std __a : Dict = do_pad def __lowerCamelCase ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=False ): '''simple docstring''' if not batched: __a : Union[str, Any] = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): __a , __a : Tuple = image.size else: __a , __a : Tuple = image.shape[1], image.shape[2] if w < h: __a : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) __a : Tuple = self.size["""shortest_edge"""] elif w > h: __a : Optional[Any] = self.size["""shortest_edge"""] __a : Any = int(self.size["""shortest_edge"""] * w / h ) else: __a : Any = self.size["""shortest_edge"""] __a : Optional[int] = self.size["""shortest_edge"""] else: __a : Any = [] for image in image_inputs: __a , __a : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __a : List[Any] = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[0] )[0] __a : Optional[Any] = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): lowercase__ = DetrImageProcessor if is_vision_available() else None def __lowerCamelCase ( self ): '''simple docstring''' __a : str = DetrImageProcessingTester(self ) @property def __lowerCamelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_rescale""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """rescale_factor""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """size""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_pad""" ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) __a : List[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __a , __a : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a , __a : Optional[int] = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) __a : Any = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input __a : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __a , __a : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a : List[str] = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values __a , __a : str = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input __a : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __a , __a : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a : List[str] = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values __a , __a : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __a : Dict = json.loads(f.read() ) __a : Optional[int] = {"""image_id""": 3_9769, """annotations""": target} # encode them __a : List[str] = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) __a : Tuple = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values __a : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) __a : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1E-4 ) ) # verify area __a : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes __a : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) __a : Any = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1E-3 ) ) # verify image_id __a : Union[str, Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd __a : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels __a : Any = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify orig_size __a : Any = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size __a : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) ) @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __a : Tuple = json.loads(f.read() ) __a : str = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __a : int = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __a : List[str] = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) __a : Tuple = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , masks_path=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values __a : List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) __a : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1E-4 ) ) # verify area __a : Optional[Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes __a : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) __a : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1E-3 ) ) # verify image_id __a : List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd __a : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels __a : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify masks __a : Union[str, Any] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __UpperCamelCase ) # verify orig_size __a : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size __a : List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) )
697
0
'''simple docstring''' def _snake_case ( lowercase ) -> bool: if not isinstance(lowercase , lowercase ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(lowercase ) == 0: raise ValueError("""Input list must be a non empty list""" ) if len(lowercase ) == 1: return True __a : str = series[1] - series[0] for index in range(len(lowercase ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _snake_case ( lowercase ) -> float: if not isinstance(lowercase , lowercase ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(lowercase ) == 0: raise ValueError("""Input list must be a non empty list""" ) __a : Union[str, Any] = 0 for val in series: answer += val return answer / len(lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __SCREAMING_SNAKE_CASE : Optional[int] = trt.Logger(trt.Logger.WARNING) __SCREAMING_SNAKE_CASE : Tuple = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) __SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) __SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if args.tokenizer_name: __SCREAMING_SNAKE_CASE : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) __SCREAMING_SNAKE_CASE : List[Any] = args.per_device_eval_batch_size __SCREAMING_SNAKE_CASE : int = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __SCREAMING_SNAKE_CASE : Optional[Any] = True __SCREAMING_SNAKE_CASE : Tuple = 'temp_engine/bert-fp32.engine' if args.fpaa: __SCREAMING_SNAKE_CASE : Dict = 'temp_engine/bert-fp16.engine' if args.inta: __SCREAMING_SNAKE_CASE : Tuple = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') __SCREAMING_SNAKE_CASE : Optional[Any] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __SCREAMING_SNAKE_CASE : List[Any] = [network.get_input(i) for i in range(network.num_inputs)] __SCREAMING_SNAKE_CASE : List[Any] = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __SCREAMING_SNAKE_CASE : Tuple = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __SCREAMING_SNAKE_CASE : Dict = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __SCREAMING_SNAKE_CASE : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: __a : Dict = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __a : List[Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __a : str = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowercase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowercase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowercase ) # start time __a : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowercase ) for d_inp in d_inputs] + [int(lowercase ), int(lowercase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowercase , lowercase , lowercase ) cuda.memcpy_dtoh_async(lowercase , lowercase , lowercase ) # Synchronize the stream and take time stream.synchronize() # end time __a : str = time.time() __a : Any = end_time - start_time __a : Optional[int] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __SCREAMING_SNAKE_CASE : Optional[Any] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __SCREAMING_SNAKE_CASE : List[str] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __SCREAMING_SNAKE_CASE : int = raw_datasets['validation'].column_names __SCREAMING_SNAKE_CASE : Tuple = 'question' if 'question' in column_names else column_names[0] __SCREAMING_SNAKE_CASE : List[Any] = 'context' if 'context' in column_names else column_names[1] __SCREAMING_SNAKE_CASE : Tuple = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __SCREAMING_SNAKE_CASE : Tuple = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) __SCREAMING_SNAKE_CASE : Dict = min(args.max_seq_length, tokenizer.model_max_length) def _snake_case ( lowercase ) -> Tuple: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __a : Optional[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __a : Optional[int] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowercase , stride=args.doc_stride , return_overflowing_tokens=lowercase , return_offsets_mapping=lowercase , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __a : Optional[Any] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __a : Optional[Any] = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __a : Dict = tokenized_examples.sequence_ids(lowercase ) __a : Optional[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __a : Union[str, Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __a : int = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples __SCREAMING_SNAKE_CASE : int = raw_datasets['validation'] # Validation Feature Creation __SCREAMING_SNAKE_CASE : Union[str, Any] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) __SCREAMING_SNAKE_CASE : List[Any] = default_data_collator __SCREAMING_SNAKE_CASE : Union[str, Any] = eval_dataset.remove_columns(['example_id', 'offset_mapping']) __SCREAMING_SNAKE_CASE : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _snake_case ( lowercase , lowercase , lowercase , lowercase="eval" ) -> Any: # Post-processing: we match the start logits and end logits to answers in the original context. __a : List[str] = postprocess_qa_predictions( examples=lowercase , features=lowercase , predictions=lowercase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowercase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __a : List[str] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __a : List[str] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __a : Optional[Any] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowercase , label_ids=lowercase ) __SCREAMING_SNAKE_CASE : List[Any] = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _snake_case ( lowercase ) -> Optional[int]: return trt.volume(engine.get_binding_shape(lowercase ) ) * engine.get_binding_dtype(lowercase ).itemsize # Allocate device memory for inputs and outputs. __SCREAMING_SNAKE_CASE : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __SCREAMING_SNAKE_CASE : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __SCREAMING_SNAKE_CASE : Union[str, Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __SCREAMING_SNAKE_CASE : str = cuda.mem_alloc(h_outputa.nbytes) __SCREAMING_SNAKE_CASE : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __SCREAMING_SNAKE_CASE : Tuple = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') __SCREAMING_SNAKE_CASE : Union[str, Any] = 0.0 __SCREAMING_SNAKE_CASE : str = 0 __SCREAMING_SNAKE_CASE : str = timeit.default_timer() __SCREAMING_SNAKE_CASE : Dict = None for step, batch in enumerate(eval_dataloader): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = outputs __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(start_logits) __SCREAMING_SNAKE_CASE : Tuple = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __SCREAMING_SNAKE_CASE : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __SCREAMING_SNAKE_CASE : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __SCREAMING_SNAKE_CASE : List[str] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __SCREAMING_SNAKE_CASE : List[str] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __SCREAMING_SNAKE_CASE : Tuple = nested_truncate(all_preds, len(eval_dataset)) __SCREAMING_SNAKE_CASE : str = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000)) logger.info('Total Number of Inference = %d', niter) __SCREAMING_SNAKE_CASE : Optional[int] = post_processing_function(eval_examples, eval_dataset, all_preds) __SCREAMING_SNAKE_CASE : List[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
697
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , __UpperCamelCase , ) super().__init__(*__UpperCamelCase , **__UpperCamelCase )
700
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = 42 lowercase__ = 42 def __init__( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) @torch.no_grad() def __call__( self , __UpperCamelCase = 1 , __UpperCamelCase = 50 , __UpperCamelCase = None , __UpperCamelCase = "pil" , __UpperCamelCase = True , **__UpperCamelCase , ): '''simple docstring''' __a : int = self.unet.config.sample_size __a : Optional[int] = (batch_size, 3, img_size, img_size) __a : Union[str, Any] = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) __a : Dict = randn_tensor(__UpperCamelCase , generator=__UpperCamelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper __a : Dict = self.scheduler.schedule[t] __a : Any = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat __a , __a : Tuple = self.scheduler.add_noise_to_input(__UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. __a : List[Any] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev __a : str = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. __a : Union[str, Any] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample __a : Tuple = self.scheduler.step_correct( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , step_output.prev_sample , step_output["""derivative"""] , ) __a : Tuple = step_output.prev_sample __a : Optional[Any] = (sample / 2 + 0.5).clamp(0 , 1 ) __a : Dict = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a : List[Any] = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase )
697
0
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): lowercase__ = BioGptTokenizer lowercase__ = False def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a : Optional[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] __a : Optional[Any] = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) __a : Union[str, Any] = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] __a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __a : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__UpperCamelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__UpperCamelCase ) ) def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : List[str] = """lower newer""" __a : int = """lower newer""" return input_text, output_text def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = BioGptTokenizer(self.vocab_file , self.merges_file ) __a : Optional[int] = """lower""" __a : Dict = ["""low""", """er</w>"""] __a : str = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) __a : str = tokens + ["""<unk>"""] __a : Optional[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase ) @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) __a : Optional[int] = tokenizer.encode("""sequence builders""" , add_special_tokens=__UpperCamelCase ) __a : List[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__UpperCamelCase ) __a : Dict = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase ) __a : List[Any] = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase , __UpperCamelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
701
'''simple docstring''' def _snake_case ( lowercase ) -> bool: if not isinstance(lowercase , lowercase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __a : str = str(lowercase ) __a : Any = """""".join(sorted(lowercase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _snake_case ( lowercase = 9_9 ) -> int: if not 0 < percent < 1_0_0: raise ValueError("""solution() only accepts values from 0 to 100""" ) __a : List[str] = 0 __a : Union[str, Any] = 1 while True: if check_bouncy(lowercase ): bouncy_num += 1 if (bouncy_num / num) * 1_0_0 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
697
0
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' super().__init__( features=__UpperCamelCase , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase , streaming=__UpperCamelCase , num_proc=__UpperCamelCase , **__UpperCamelCase , ) __a : Optional[Any] = Generator( cache_dir=__UpperCamelCase , features=__UpperCamelCase , generator=__UpperCamelCase , gen_kwargs=__UpperCamelCase , **__UpperCamelCase , ) def __lowerCamelCase ( self ): '''simple docstring''' if self.streaming: __a : Tuple = self.builder.as_streaming_dataset(split="""train""" ) # Build regular (map-style) dataset else: __a : str = None __a : Dict = None __a : Union[str, Any] = None __a : Optional[int] = None self.builder.download_and_prepare( download_config=__UpperCamelCase , download_mode=__UpperCamelCase , verification_mode=__UpperCamelCase , base_path=__UpperCamelCase , num_proc=self.num_proc , ) __a : List[str] = self.builder.as_dataset( split="""train""" , verification_mode=__UpperCamelCase , in_memory=self.keep_in_memory ) return dataset
702
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _snake_case ( lowercase , lowercase , lowercase ) -> Any: # Construct model if gpta_config_file == "": __a : Dict = GPTaConfig() else: __a : Optional[Any] = GPTaConfig.from_json_file(lowercase ) __a : Union[str, Any] = GPTaModel(lowercase ) # Load weights from numpy load_tf_weights_in_gpta(lowercase , lowercase , lowercase ) # Save pytorch-model __a : Optional[int] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME __a : Dict = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , lowercase ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) __SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
697
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = tempfile.mkdtemp() # fmt: off __a : Optional[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on __a : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __a : Any = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } __a : Tuple = os.path.join(self.tmpdirname , __UpperCamelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self , **__UpperCamelCase ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __lowerCamelCase ( self , **__UpperCamelCase ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __a : Union[str, Any] = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.get_tokenizer() __a : Optional[int] = self.get_image_processor() __a : Tuple = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) __a : List[str] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __a : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __a : Tuple = self.get_image_processor(do_normalize=__UpperCamelCase , padding_value=1.0 ) __a : str = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.get_image_processor() __a : Dict = self.get_tokenizer() __a : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __a : List[str] = self.prepare_image_inputs() __a : Optional[int] = image_processor(__UpperCamelCase , return_tensors="""np""" ) __a : Union[str, Any] = processor(images=__UpperCamelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = self.get_image_processor() __a : Tuple = self.get_tokenizer() __a : Dict = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __a : List[str] = """lower newer""" __a : Tuple = processor(text=__UpperCamelCase ) __a : Union[str, Any] = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCamelCase ( self ): '''simple docstring''' __a : str = self.get_image_processor() __a : Tuple = self.get_tokenizer() __a : int = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __a : Any = """lower newer""" __a : Dict = self.prepare_image_inputs() __a : List[str] = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(__UpperCamelCase ): processor() def __lowerCamelCase ( self ): '''simple docstring''' __a : int = self.get_image_processor() __a : List[Any] = self.get_tokenizer() __a : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __a : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __a : Any = processor.batch_decode(__UpperCamelCase ) __a : List[str] = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.get_image_processor() __a : str = self.get_tokenizer() __a : List[Any] = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __a : List[Any] = """lower newer""" __a : str = self.prepare_image_inputs() __a : Union[str, Any] = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
703
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def __lowerCamelCase ( *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = MODEL_FOR_OBJECT_DETECTION_MAPPING def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Optional[Any] = ObjectDetectionPipeline(model=__UpperCamelCase , image_processor=__UpperCamelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : List[str] = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(__UpperCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __UpperCamelCase , { """score""": ANY(__UpperCamelCase ), """label""": ANY(__UpperCamelCase ), """box""": {"""xmin""": ANY(__UpperCamelCase ), """ymin""": ANY(__UpperCamelCase ), """xmax""": ANY(__UpperCamelCase ), """ymax""": ANY(__UpperCamelCase )}, } , ) import datasets __a : Optional[int] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) __a : Tuple = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] __a : Any = object_detector(__UpperCamelCase , threshold=0.0 ) self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for outputs in batch_outputs: self.assertGreater(len(__UpperCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __UpperCamelCase , { """score""": ANY(__UpperCamelCase ), """label""": ANY(__UpperCamelCase ), """box""": {"""xmin""": ANY(__UpperCamelCase ), """ymin""": ANY(__UpperCamelCase ), """xmax""": ANY(__UpperCamelCase ), """ymax""": ANY(__UpperCamelCase )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass @require_torch def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = """hf-internal-testing/tiny-detr-mobilenetsv3""" __a : Dict = AutoModelForObjectDetection.from_pretrained(__UpperCamelCase ) __a : Optional[Any] = AutoFeatureExtractor.from_pretrained(__UpperCamelCase ) __a : str = ObjectDetectionPipeline(model=__UpperCamelCase , feature_extractor=__UpperCamelCase ) __a : Optional[int] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ] , ) __a : Union[str, Any] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : str = """facebook/detr-resnet-50""" __a : Dict = AutoModelForObjectDetection.from_pretrained(__UpperCamelCase ) __a : int = AutoFeatureExtractor.from_pretrained(__UpperCamelCase ) __a : int = ObjectDetectionPipeline(model=__UpperCamelCase , feature_extractor=__UpperCamelCase ) __a : Any = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) __a : Optional[Any] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : int = """facebook/detr-resnet-50""" __a : Optional[int] = pipeline("""object-detection""" , model=__UpperCamelCase ) __a : Optional[int] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) __a : List[str] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = 0.9_9_8_5 __a : Union[str, Any] = """facebook/detr-resnet-50""" __a : Optional[int] = pipeline("""object-detection""" , model=__UpperCamelCase ) __a : Union[str, Any] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=__UpperCamelCase ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) @require_torch @require_pytesseract @slow def __lowerCamelCase ( self ): '''simple docstring''' __a : str = """Narsil/layoutlmv3-finetuned-funsd""" __a : List[Any] = 0.9_9_9_3 __a : Dict = pipeline("""object-detection""" , model=__UpperCamelCase , threshold=__UpperCamelCase ) __a : List[str] = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_9_3, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, {"""score""": 0.9_9_9_3, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, ] , )
697
0
'''simple docstring''' import re from filelock import FileLock try: import nltk __SCREAMING_SNAKE_CASE : Optional[int] = True except (ImportError, ModuleNotFoundError): __SCREAMING_SNAKE_CASE : str = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def _snake_case ( lowercase ) -> str: re.sub("""<n>""" , """""" , lowercase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowercase ) )
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : List[str] = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
697
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
705
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Any = params __a : Optional[Any] = np.array(__UpperCamelCase ) __a : Union[str, Any] = np.array([len(__UpperCamelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , __UpperCamelCase ): '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ): '''simple docstring''' return len(self.lengths ) def __lowerCamelCase ( self ): '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = self.params.max_model_input_size __a : Union[str, Any] = self.lengths > max_len logger.info(f"""Splitting {sum(__UpperCamelCase )} too long sequences.""" ) def divide_chunks(__UpperCamelCase , __UpperCamelCase ): return [l[i : i + n] for i in range(0 , len(__UpperCamelCase ) , __UpperCamelCase )] __a : int = [] __a : Union[str, Any] = [] if self.params.mlm: __a , __a : Any = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: __a , __a : str = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __a : Any = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __a : int = np.insert(__UpperCamelCase , 0 , __UpperCamelCase ) if sub_s[-1] != sep_id: __a : str = np.insert(__UpperCamelCase , len(__UpperCamelCase ) , __UpperCamelCase ) assert len(__UpperCamelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__UpperCamelCase ) new_tok_ids.extend(__UpperCamelCase ) new_lengths.extend([len(__UpperCamelCase ) for l in sub_seqs] ) __a : Dict = np.array(__UpperCamelCase ) __a : Tuple = np.array(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = len(self ) __a : List[str] = self.lengths > 11 __a : int = self.token_ids[indices] __a : Union[str, Any] = self.lengths[indices] __a : Any = len(self ) logger.info(f"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def __lowerCamelCase ( self ): '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: __a : List[str] = self.params.special_tok_ids["""unk_token"""] __a : str = len(self ) __a : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __a : Optional[Any] = (unk_occs / self.lengths) < 0.5 __a : List[str] = self.token_ids[indices] __a : Optional[int] = self.lengths[indices] __a : Any = len(self ) logger.info(f"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def __lowerCamelCase ( self ): '''simple docstring''' if not self.params.is_master: return logger.info(f"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : List[str] = [t[0] for t in batch] __a : str = [t[1] for t in batch] assert len(__UpperCamelCase ) == len(__UpperCamelCase ) # Max for paddings __a : Optional[int] = max(__UpperCamelCase ) # Pad token ids if self.params.mlm: __a : int = self.params.special_tok_ids["""pad_token"""] else: __a : Tuple = self.params.special_tok_ids["""unk_token"""] __a : Any = [list(t.astype(__UpperCamelCase ) ) + [pad_idx] * (max_seq_len_ - len(__UpperCamelCase )) for t in token_ids] assert len(tk_ ) == len(__UpperCamelCase ) assert all(len(__UpperCamelCase ) == max_seq_len_ for t in tk_ ) __a : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) __a : Optional[Any] = torch.tensor(__UpperCamelCase ) # (bs) return tk_t, lg_t
697
0
'''simple docstring''' def _snake_case ( lowercase ) -> None: __a : Optional[Any] = generate_pascal_triangle(lowercase ) for row_idx in range(lowercase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def _snake_case ( lowercase ) -> list[list[int]]: if not isinstance(lowercase , lowercase ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) __a : list[list[int]] = [] for current_row_idx in range(lowercase ): __a : Any = populate_current_row(lowercase , lowercase ) triangle.append(lowercase ) return triangle def _snake_case ( lowercase , lowercase ) -> list[int]: __a : str = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __a : int = 1, 1 for current_col_idx in range(1 , lowercase ): calculate_current_element( lowercase , lowercase , lowercase , lowercase ) return current_row def _snake_case ( lowercase , lowercase , lowercase , lowercase , ) -> None: __a : Any = triangle[current_row_idx - 1][current_col_idx - 1] __a : Tuple = triangle[current_row_idx - 1][current_col_idx] __a : Union[str, Any] = above_to_left_elt + above_to_right_elt def _snake_case ( lowercase ) -> list[list[int]]: if not isinstance(lowercase , lowercase ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) __a : list[list[int]] = [[1]] for row_index in range(1 , lowercase ): __a : Any = [0] + result[-1] + [0] __a : Any = row_index + 1 # Calculate the number of distinct elements in a row __a : str = sum(divmod(lowercase , 2 ) ) __a : List[str] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __a : Union[str, Any] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __a : List[str] = row_first_half + row_second_half result.append(lowercase ) return result def _snake_case ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase , lowercase ) -> None: __a : Dict = F"""{func.__name__}({value})""" __a : Tuple = timeit(F"""__main__.{call}""" , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"""{call:38} -- {timing:.4f} seconds""" ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowercase , lowercase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
706
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = "" lowercase__ = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' super().__init__(self , **__UpperCamelCase ) __a : int = repo_info __a : int = token __a : Any = None def __lowerCamelCase ( self ): '''simple docstring''' if self.dir_cache is None: __a : Union[str, Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __a : List[str] = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(__UpperCamelCase ): {"""name""": str(__UpperCamelCase ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = "rb" , **__UpperCamelCase , ): '''simple docstring''' if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) __a : Any = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def __lowerCamelCase ( self , __UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' self._get_dirs() __a : str = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase ): '''simple docstring''' self._get_dirs() __a : int = PurePosixPath(path.strip("""/""" ) ) __a : List[str] = {} for p, f in self.dir_cache.items(): __a : str = PurePosixPath(p.strip("""/""" ) ) __a : Optional[int] = p.parent if root == path: __a : List[str] = f __a : str = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
697
0
'''simple docstring''' import os from pathlib import Path def _snake_case ( ) -> str: from torch.utils.cpp_extension import load __a : Union[str, Any] = Path(lowercase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" __a : Any = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , lowercase , with_cuda=lowercase , extra_include_paths=[str(lowercase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
707
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , __UpperCamelCase , __UpperCamelCase=2 , __UpperCamelCase=32 , __UpperCamelCase=16 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=4 , __UpperCamelCase=[0, 1, 2, 3] , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0_2 , __UpperCamelCase=3 , __UpperCamelCase=[1, 384, 24, 24] , __UpperCamelCase=True , __UpperCamelCase=None , ): '''simple docstring''' __a : List[str] = parent __a : Tuple = batch_size __a : str = image_size __a : int = patch_size __a : Dict = num_channels __a : int = is_training __a : Dict = use_labels __a : Union[str, Any] = hidden_size __a : Dict = num_hidden_layers __a : Dict = backbone_out_indices __a : Optional[int] = num_attention_heads __a : List[str] = intermediate_size __a : Optional[Any] = hidden_act __a : Dict = hidden_dropout_prob __a : Tuple = attention_probs_dropout_prob __a : Any = initializer_range __a : Any = num_labels __a : Optional[Any] = backbone_featmap_shape __a : List[Any] = scope __a : List[str] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __a : Union[str, Any] = (image_size // patch_size) ** 2 __a : List[str] = num_patches + 1 def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Union[str, Any] = None if self.use_labels: __a : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a : Tuple = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 192, 384, 768], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Optional[Any] = DPTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : List[str] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : List[str] = self.num_labels __a : Union[str, Any] = DPTForDepthEstimation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Dict = self.num_labels __a : Tuple = DPTForSemanticSegmentation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : str = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.prepare_config_and_inputs() __a , __a , __a : Tuple = config_and_inputs __a : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): lowercase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowercase__ = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = DPTModelTester(self ) __a : List[Any] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : str = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Any = model_class(__UpperCamelCase ) __a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : int = [*signature.parameters.keys()] __a : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() __a : List[Any] = True if model_class in get_values(__UpperCamelCase ): continue __a : str = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() __a : Union[str, Any] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) __a : List[Any] = model(**__UpperCamelCase ).loss loss.backward() def __lowerCamelCase ( self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __a , __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __a : Any = False __a : Dict = True if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing: continue __a : Any = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.gradient_checkpointing_enable() model.train() __a : List[str] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) __a : Dict = model(**__UpperCamelCase ).loss loss.backward() def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() __a : Any = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: __a : Any = model_class(config=__UpperCamelCase ) # Skip the check for the backbone __a : Optional[Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __a : Optional[int] = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __a : int = DPTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : int = self.model_tester.prepare_config_and_inputs_for_common() __a : Optional[int] = """add""" with self.assertRaises(__UpperCamelCase ): __a : int = DPTForDepthEstimation(__UpperCamelCase ) def _snake_case ( ) -> Any: __a : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' __a : int = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) __a : int = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__UpperCamelCase ) __a : Union[str, Any] = prepare_img() __a : Any = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): __a : Optional[Any] = model(**__UpperCamelCase ) __a : int = outputs.predicted_depth # verify the predicted depth __a : Any = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __UpperCamelCase ) __a : int = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __UpperCamelCase , atol=1E-4 ) )
697
0
'''simple docstring''' def _snake_case ( lowercase , lowercase ) -> list: __a : Dict = len(lowercase ) __a : Optional[int] = [] for i in range(len(lowercase ) - pat_len + 1 ): __a : Tuple = True for j in range(lowercase ): if s[i + j] != pattern[j]: __a : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
708
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) __a : Optional[int] = Vector() def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(__UpperCamelCase ) , """(0,0,0,0,0,1)""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = Vector([1, 2, 3, 4] ) self.assertEqual(len(__UpperCamelCase ) , 4 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = Vector([1, 2] ) __a : List[str] = Vector([1, 2, 3, 4, 5] ) __a : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __a : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Vector([1, 2, 3] ) __a : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = Vector([1, 2, 3] ) __a : Any = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = Vector([1, 2, 3] ) __a : Optional[Any] = Vector([2, -1, 4] ) # for test of dot product __a : Union[str, Any] = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Vector([1, 2, 3] ) __a : Optional[int] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , __UpperCamelCase , __UpperCamelCase ) ) , """(3,4,7)""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : int = Vector([1, 0, 0, 0, 0, 0] ) __a : Any = x.copy() self.assertEqual(str(__UpperCamelCase ) , str(__UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(__UpperCamelCase ) , """(0,1,0)""" ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(__UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __a : List[Any] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __a : Any = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) __a : List[Any] = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(__UpperCamelCase ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __a : Union[str, Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __a : List[str] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
697
0
'''simple docstring''' import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __SCREAMING_SNAKE_CASE : List[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Union[str, Any]: for attribute in key.split(""".""" ): __a : Union[str, Any] = getattr(lowercase , lowercase ) if weight_type is not None: __a : Union[str, Any] = getattr(lowercase , lowercase ).shape else: __a : Dict = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __a : List[str] = value elif weight_type == "weight_g": __a : Optional[Any] = value elif weight_type == "weight_v": __a : Optional[Any] = value elif weight_type == "bias": __a : Optional[int] = value else: __a : int = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _snake_case ( lowercase , lowercase ) -> Union[str, Any]: __a : Tuple = [] __a : List[Any] = fairseq_model.state_dict() __a : Optional[Any] = hf_model.feature_extractor __a : Optional[Any] = hf_model.adapter for name, value in fairseq_dict.items(): __a : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __a : Optional[Any] = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(lowercase , lowercase , lowercase , lowercase ) __a : Optional[int] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __a : List[Any] = True if "*" in mapped_key: __a : Union[str, Any] = name.split(lowercase )[0].split(""".""" )[-2] __a : Tuple = mapped_key.replace("""*""" , lowercase ) if "weight_g" in name: __a : List[Any] = """weight_g""" elif "weight_v" in name: __a : Tuple = """weight_v""" elif "bias" in name: __a : Union[str, Any] = """bias""" elif "weight" in name: __a : Optional[Any] = """weight""" else: __a : Dict = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict: __a : str = full_name.split("""conv_layers.""" )[-1] __a : Dict = name.split(""".""" ) __a : List[Any] = int(items[0] ) __a : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __a : List[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __a : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __a : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __a : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase ) def _snake_case ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __a : Tuple = full_name.split("""adaptor.""" )[-1] __a : Tuple = name.split(""".""" ) if items[1].isdigit(): __a : Union[str, Any] = int(items[1] ) else: __a : Optional[Any] = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" __a : Optional[int] = value logger.info(F"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" __a : str = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" __a : int = value logger.info(F"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" __a : List[Any] = value logger.info(F"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(lowercase , lowercase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" __a : int = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" __a : List[Any] = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(lowercase ) def _snake_case ( lowercase ) -> Union[str, Any]: __a : List[Any] = emb.weight.shape __a : Optional[Any] = nn.Linear(lowercase , lowercase , bias=lowercase ) __a : Tuple = emb.weight.data return lin_layer @torch.no_grad() def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Any: __a : Optional[Any] = WavaVecaConfig.from_pretrained( lowercase , add_adapter=lowercase , adapter_stride=lowercase , adapter_kernel_size=lowercase , use_auth_token=lowercase , output_hidden_size=lowercase , ) __a : Tuple = MBartConfig.from_pretrained(lowercase ) # load model __a : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) __a : Optional[Any] = model[0].eval() # load feature extractor __a : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(lowercase , use_auth_token=lowercase ) # set weights for wav2vec2 encoder __a : Union[str, Any] = WavaVecaModel(lowercase ) recursively_load_weights_wavaveca(model.encoder , lowercase ) # load decoder weights __a : Tuple = MBartForCausalLM(lowercase ) __a : Union[str, Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowercase ) logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __a : str = SpeechEncoderDecoderModel(encoder=lowercase , decoder=lowercase ) __a : Optional[int] = False __a : Optional[int] = MBartaaTokenizer(lowercase ) tokenizer.save_pretrained(lowercase ) __a : str = hf_wavavec.config.to_dict() __a : Optional[int] = tokenizer.pad_token_id __a : Any = tokenizer.bos_token_id __a : List[Any] = tokenizer.eos_token_id __a : List[str] = """mbart50""" __a : Tuple = """wav2vec2""" __a : Tuple = tokenizer.eos_token_id __a : int = 2_5_0_0_0_4 __a : Any = tokenizer.eos_token_id __a : int = SpeechEncoderDecoderConfig.from_dict(lowercase ) hf_wavavec.save_pretrained(lowercase ) feature_extractor.save_pretrained(lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=1_024, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=250_004, type=int, help='`decoder_start_token_id` of model config') __SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
709
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __SCREAMING_SNAKE_CASE : List[str] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) __SCREAMING_SNAKE_CASE : Optional[Any] = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) __SCREAMING_SNAKE_CASE : Tuple = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) __SCREAMING_SNAKE_CASE : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) __SCREAMING_SNAKE_CASE : Optional[int] = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) __SCREAMING_SNAKE_CASE : int = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) __SCREAMING_SNAKE_CASE : int = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _snake_case ( ) -> List[str]: __a , __a : List[Any] = randrange(len(lowercase ) ), randrange(len(lowercase ) ) __a : int = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] __a , __a : int = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _snake_case ( lowercase = 1_0_0 ) -> Any: return (generate_random_hand() for _ in range(lowercase )) @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> int: assert PokerHand(lowercase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Any: assert PokerHand(lowercase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , lowercase ) def _snake_case ( lowercase , lowercase , lowercase ) -> List[str]: __a : Union[str, Any] = PokerHand(lowercase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Optional[int]: assert PokerHand(lowercase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , lowercase ) def _snake_case ( lowercase , lowercase ) -> Union[str, Any]: assert PokerHand(lowercase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , lowercase ) def _snake_case ( lowercase , lowercase , lowercase ) -> Optional[int]: assert PokerHand(lowercase ).compare_with(PokerHand(lowercase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def _snake_case ( lowercase , lowercase , lowercase ) -> int: assert PokerHand(lowercase ).compare_with(PokerHand(lowercase ) ) == expected def _snake_case ( ) -> Union[str, Any]: __a : Tuple = [PokerHand(lowercase ) for hand in SORTED_HANDS] __a : Optional[int] = poker_hands.copy() shuffle(lowercase ) __a : List[str] = chain(sorted(lowercase ) ) for index, hand in enumerate(lowercase ): assert hand == poker_hands[index] def _snake_case ( ) -> List[str]: # Test that five high straights are compared correctly. __a : Optional[int] = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=lowercase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _snake_case ( ) -> List[str]: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. __a : Dict = PokerHand("""2C 4S AS 3D 5C""" ) __a : Dict = True __a : Optional[int] = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _snake_case ( ) -> Dict: # Problem number 54 from Project Euler # Testing from poker_hands.txt file __a : Tuple = 0 __a : int = os.path.abspath(os.path.dirname(lowercase ) ) __a : Union[str, Any] = os.path.join(lowercase , """poker_hands.txt""" ) with open(lowercase ) as file_hand: for line in file_hand: __a : Union[str, Any] = line[:1_4].strip() __a : Optional[Any] = line[1_5:].strip() __a , __a : List[str] = PokerHand(lowercase ), PokerHand(lowercase ) __a : str = player.compare_with(lowercase ) if output == "Win": answer += 1 assert answer == 3_7_6
697
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run __SCREAMING_SNAKE_CASE : Optional[int] = True except (ImportError, AttributeError): __SCREAMING_SNAKE_CASE : Tuple = object def _snake_case ( *lowercase , **lowercase ) -> Tuple: pass __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger('transformers-cli/serving') def _snake_case ( lowercase ) -> Dict: __a : Optional[Any] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(lowercase , args.host , args.port , args.workers ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = 42 class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = 42 lowercase__ = 42 class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = 42 class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = 42 class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): @staticmethod def __lowerCamelCase ( __UpperCamelCase ): '''simple docstring''' __a : Tuple = parser.add_parser( """serve""" , help="""CLI tool to run inference requests through REST and GraphQL endpoints.""" ) serve_parser.add_argument( """--task""" , type=__UpperCamelCase , choices=get_supported_tasks() , help="""The task to run the pipeline on""" , ) serve_parser.add_argument("""--host""" , type=__UpperCamelCase , default="""localhost""" , help="""Interface the server will listen on.""" ) serve_parser.add_argument("""--port""" , type=__UpperCamelCase , default=8888 , help="""Port the serving will listen to.""" ) serve_parser.add_argument("""--workers""" , type=__UpperCamelCase , default=1 , help="""Number of http workers""" ) serve_parser.add_argument("""--model""" , type=__UpperCamelCase , help="""Model's name or path to stored model.""" ) serve_parser.add_argument("""--config""" , type=__UpperCamelCase , help="""Model's config name or path to stored model.""" ) serve_parser.add_argument("""--tokenizer""" , type=__UpperCamelCase , help="""Tokenizer name to use.""" ) serve_parser.add_argument( """--device""" , type=__UpperCamelCase , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) serve_parser.set_defaults(func=__UpperCamelCase ) def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Any = pipeline __a : List[str] = host __a : Optional[Any] = port __a : Dict = workers if not _serve_dependencies_installed: raise RuntimeError( """Using serve command requires FastAPI and uvicorn. """ """Please install transformers with [serving]: pip install \"transformers[serving]\".""" """Or install FastAPI and uvicorn separately.""" ) else: logger.info(f"""Serving model over {host}:{port}""" ) __a : Tuple = FastAPI( routes=[ APIRoute( """/""" , self.model_info , response_model=__UpperCamelCase , response_class=__UpperCamelCase , methods=["""GET"""] , ), APIRoute( """/tokenize""" , self.tokenize , response_model=__UpperCamelCase , response_class=__UpperCamelCase , methods=["""POST"""] , ), APIRoute( """/detokenize""" , self.detokenize , response_model=__UpperCamelCase , response_class=__UpperCamelCase , methods=["""POST"""] , ), APIRoute( """/forward""" , self.forward , response_model=__UpperCamelCase , response_class=__UpperCamelCase , methods=["""POST"""] , ), ] , timeout=600 , ) def __lowerCamelCase ( self ): '''simple docstring''' run(self._app , host=self.host , port=self.port , workers=self.workers ) def __lowerCamelCase ( self ): '''simple docstring''' return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def __lowerCamelCase ( self , __UpperCamelCase = Body(__UpperCamelCase , embed=__UpperCamelCase ) , __UpperCamelCase = Body(__UpperCamelCase , embed=__UpperCamelCase ) ): '''simple docstring''' try: __a : Optional[Any] = self._pipeline.tokenizer.tokenize(__UpperCamelCase ) if return_ids: __a : List[str] = self._pipeline.tokenizer.convert_tokens_to_ids(__UpperCamelCase ) return ServeTokenizeResult(tokens=__UpperCamelCase , tokens_ids=__UpperCamelCase ) else: return ServeTokenizeResult(tokens=__UpperCamelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={"""model""": """""", """error""": str(__UpperCamelCase )} ) def __lowerCamelCase ( self , __UpperCamelCase = Body(__UpperCamelCase , embed=__UpperCamelCase ) , __UpperCamelCase = Body(__UpperCamelCase , embed=__UpperCamelCase ) , __UpperCamelCase = Body(__UpperCamelCase , embed=__UpperCamelCase ) , ): '''simple docstring''' try: __a : str = self._pipeline.tokenizer.decode(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return ServeDeTokenizeResult(model="""""" , text=__UpperCamelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={"""model""": """""", """error""": str(__UpperCamelCase )} ) async def __lowerCamelCase ( self , __UpperCamelCase=Body(__UpperCamelCase , embed=__UpperCamelCase ) ): '''simple docstring''' if len(__UpperCamelCase ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __a : Dict = self._pipeline(__UpperCamelCase ) return ServeForwardResult(output=__UpperCamelCase ) except Exception as e: raise HTTPException(500 , {"""error""": str(__UpperCamelCase )} )
710
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
697
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=18 , __UpperCamelCase=30 , __UpperCamelCase=400 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , ): '''simple docstring''' __a : Dict = size if size is not None else {"""height""": 18, """width""": 18} __a : Any = parent __a : Union[str, Any] = batch_size __a : Tuple = num_channels __a : Optional[int] = image_size __a : Tuple = min_resolution __a : str = max_resolution __a : List[Any] = do_resize __a : List[Any] = size __a : List[str] = apply_ocr def __lowerCamelCase ( self ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): lowercase__ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = LayoutLMvaImageProcessingTester(self ) @property def __lowerCamelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """size""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """apply_ocr""" ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __a : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input __a : int = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __UpperCamelCase ) self.assertIsInstance(encoding.boxes , __UpperCamelCase ) # Test batched __a : str = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input __a : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __a : int = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input __a : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __a : int = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = LayoutLMvaImageProcessor() from datasets import load_dataset __a : List[str] = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) __a : Optional[int] = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) __a : int = image_processing(__UpperCamelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __a : List[str] = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 __a : str = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __UpperCamelCase ) self.assertListEqual(encoding.boxes , __UpperCamelCase ) # with apply_OCR = False __a : Union[str, Any] = LayoutLMvaImageProcessor(apply_ocr=__UpperCamelCase ) __a : str = image_processing(__UpperCamelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
711
'''simple docstring''' from __future__ import annotations import bisect def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> int: if hi < 0: __a : Union[str, Any] = len(lowercase ) while lo < hi: __a : List[str] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __a : int = mid + 1 else: __a : int = mid return lo def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> int: if hi < 0: __a : Any = len(lowercase ) while lo < hi: __a : Any = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __a : List[str] = mid + 1 else: __a : Any = mid return lo def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> None: sorted_collection.insert(bisect_left(lowercase , lowercase , lowercase , lowercase ) , lowercase ) def _snake_case ( lowercase , lowercase , lowercase = 0 , lowercase = -1 ) -> None: sorted_collection.insert(bisect_right(lowercase , lowercase , lowercase , lowercase ) , lowercase ) def _snake_case ( lowercase , lowercase ) -> int | None: __a : Dict = 0 __a : Any = len(lowercase ) - 1 while left <= right: __a : str = left + (right - left) // 2 __a : List[Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __a : Optional[Any] = midpoint - 1 else: __a : Optional[int] = midpoint + 1 return None def _snake_case ( lowercase , lowercase ) -> int | None: __a : Optional[int] = bisect.bisect_left(lowercase , lowercase ) if index != len(lowercase ) and sorted_collection[index] == item: return index return None def _snake_case ( lowercase , lowercase , lowercase , lowercase ) -> int | None: if right < left: return None __a : Any = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowercase , lowercase , lowercase , midpoint - 1 ) else: return binary_search_by_recursion(lowercase , lowercase , midpoint + 1 , lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = input('Enter numbers separated by comma:\n').strip() __SCREAMING_SNAKE_CASE : Optional[Any] = sorted(int(item) for item in user_input.split(',')) __SCREAMING_SNAKE_CASE : List[str] = int(input('Enter a single number to be found in the list:\n')) __SCREAMING_SNAKE_CASE : Optional[int] = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
697
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = ["image_processor", "tokenizer"] lowercase__ = "AutoImageProcessor" lowercase__ = "AutoTokenizer" def __init__( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' super().__init__(__UpperCamelCase , __UpperCamelCase ) __a : Tuple = self.image_processor def __call__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase ): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __a : List[Any] = self.tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if images is not None: __a : str = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if text is not None and images is not None: __a : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase ) def __lowerCamelCase ( self , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def __lowerCamelCase ( self , *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def __lowerCamelCase ( self ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
712
'''simple docstring''' from itertools import product def _snake_case ( lowercase , lowercase ) -> list[int]: __a : Optional[int] = sides_number __a : Union[str, Any] = max_face_number * dice_number __a : Optional[Any] = [0] * (max_total + 1) __a : Dict = 1 __a : str = range(lowercase , max_face_number + 1 ) for dice_numbers in product(lowercase , repeat=lowercase ): __a : int = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def _snake_case ( ) -> float: __a : Tuple = total_frequency_distribution( sides_number=4 , dice_number=9 ) __a : Union[str, Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) __a : str = 0 __a : Dict = 9 __a : str = 4 * 9 __a : Any = 6 for peter_total in range(lowercase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __a : str = (4**9) * (6**6) __a : List[Any] = peter_wins_count / total_games_number __a : List[Any] = round(lowercase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'''{solution() = }''')
697
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: for attribute in key.split(""".""" ): __a : str = getattr(lowercase , lowercase ) if weight_type is not None: __a : Dict = getattr(lowercase , lowercase ).shape else: __a : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __a : Any = value elif weight_type == "weight_g": __a : int = value elif weight_type == "weight_v": __a : int = value elif weight_type == "bias": __a : List[Any] = value elif weight_type == "running_mean": __a : Union[str, Any] = value elif weight_type == "running_var": __a : Tuple = value elif weight_type == "num_batches_tracked": __a : Optional[int] = value elif weight_type == "inv_freq": __a : List[str] = value else: __a : List[str] = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _snake_case ( lowercase , lowercase , lowercase ) -> Dict: __a : Dict = [] __a : Dict = fairseq_model.state_dict() __a : Tuple = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __a : int = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __a : List[Any] = True else: for key, mapped_key in MAPPING.items(): __a : Optional[int] = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __a : str = True if "*" in mapped_key: __a : Optional[int] = name.split(lowercase )[0].split(""".""" )[-2] __a : List[Any] = mapped_key.replace("""*""" , lowercase ) if "pos_bias_u" in name: __a : Union[str, Any] = None elif "pos_bias_v" in name: __a : List[Any] = None elif "weight_g" in name: __a : List[Any] = """weight_g""" elif "weight_v" in name: __a : List[Any] = """weight_v""" elif "bias" in name: __a : Optional[int] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __a : str = """weight""" elif "running_mean" in name: __a : List[str] = """running_mean""" elif "inv_freq" in name: __a : Dict = """inv_freq""" elif "running_var" in name: __a : Union[str, Any] = """running_var""" elif "num_batches_tracked" in name: __a : int = """num_batches_tracked""" else: __a : Optional[int] = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[str]: __a : Optional[Any] = full_name.split("""conv_layers.""" )[-1] __a : Union[str, Any] = name.split(""".""" ) __a : Optional[Any] = int(items[0] ) __a : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __a : Dict = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __a : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __a : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __a : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase ) @torch.no_grad() def _snake_case ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Optional[Any]: if config_path is not None: __a : Any = WavaVecaConformerConfig.from_pretrained(lowercase , hidden_act="""swish""" ) else: __a : Optional[int] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __a : Optional[Any] = """rotary""" if is_finetuned: if dict_path: __a : List[Any] = Dictionary.load(lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __a : int = target_dict.pad_index __a : List[str] = target_dict.bos_index __a : str = target_dict.eos_index __a : Dict = len(target_dict.symbols ) __a : Any = os.path.join(lowercase , """vocab.json""" ) if not os.path.isdir(lowercase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowercase ) ) return os.makedirs(lowercase , exist_ok=lowercase ) __a : Dict = target_dict.indices # fairseq has the <pad> and <s> switched __a : Optional[Any] = 0 __a : List[Any] = 1 with open(lowercase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowercase , lowercase ) __a : int = WavaVecaCTCTokenizer( lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowercase , ) __a : Optional[int] = True if config.feat_extract_norm == """layer""" else False __a : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , ) __a : str = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase ) processor.save_pretrained(lowercase ) __a : List[str] = WavaVecaConformerForCTC(lowercase ) else: __a : Optional[int] = WavaVecaConformerForPreTraining(lowercase ) if is_finetuned: __a : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __a : Optional[int] = argparse.Namespace(task="""audio_pretraining""" ) __a : Tuple = fairseq.tasks.setup_task(lowercase ) __a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase ) __a : Any = model[0].eval() recursively_load_weights(lowercase , lowercase , not is_finetuned ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
713
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): '''simple docstring''' super().__init__() self.register_modules( vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , ) def __lowerCamelCase ( self , __UpperCamelCase = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' self.enable_attention_slicing(__UpperCamelCase ) @torch.no_grad() def __call__( self , __UpperCamelCase , __UpperCamelCase = 512 , __UpperCamelCase = 512 , __UpperCamelCase = 50 , __UpperCamelCase = 7.5 , __UpperCamelCase = None , __UpperCamelCase = 1 , __UpperCamelCase = 0.0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = "pil" , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = 1 , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ): __a : Union[str, Any] = 1 elif isinstance(__UpperCamelCase , __UpperCamelCase ): __a : Tuple = len(__UpperCamelCase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(__UpperCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCamelCase , __UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__UpperCamelCase )}.""" ) # get prompt text embeddings __a : Tuple = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __a : Union[str, Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __a : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __a : Optional[int] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __a : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __a , __a , __a : Union[str, Any] = text_embeddings.shape __a : Optional[Any] = text_embeddings.repeat(1 , __UpperCamelCase , 1 ) __a : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , __UpperCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __a : Any = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __a : List[str] if negative_prompt is None: __a : Optional[Any] = [""""""] elif type(__UpperCamelCase ) is not type(__UpperCamelCase ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCamelCase )} !=""" f""" {type(__UpperCamelCase )}.""" ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): __a : Any = [negative_prompt] elif batch_size != len(__UpperCamelCase ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(__UpperCamelCase )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: __a : Tuple = negative_prompt __a : Any = text_input_ids.shape[-1] __a : List[str] = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="""pt""" , ) __a : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __a : List[str] = uncond_embeddings.shape[1] __a : List[Any] = uncond_embeddings.repeat(__UpperCamelCase , __UpperCamelCase , 1 ) __a : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __a : List[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __a : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __a : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __a : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __a : Any = torch.randn( __UpperCamelCase , generator=__UpperCamelCase , device="""cpu""" , dtype=__UpperCamelCase ).to(self.device ) __a : Optional[Any] = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device="""cpu""" , dtype=__UpperCamelCase ).to( self.device ) else: __a : Optional[int] = torch.randn( __UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) __a : str = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __a : Optional[Any] = latents_reference.to(self.device ) __a : str = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __a : List[str] = (latents_shape[3] - latents_shape_reference[3]) // 2 __a : int = (latents_shape[2] - latents_shape_reference[2]) // 2 __a : int = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __a : Tuple = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __a : Optional[Any] = 0 if dx < 0 else dx __a : Optional[Any] = 0 if dy < 0 else dy __a : Optional[int] = max(-dx , 0 ) __a : Optional[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() __a : Optional[int] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(__UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __a : Dict = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __a : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a : List[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a : Optional[Any] = {} if accepts_eta: __a : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance __a : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __a : Tuple = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual __a : Union[str, Any] = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample # perform guidance if do_classifier_free_guidance: __a , __a : List[str] = noise_pred.chunk(2 ) __a : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __a : List[Any] = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __a : Optional[Any] = 1 / 0.1_8_2_1_5 * latents __a : Optional[int] = self.vae.decode(__UpperCamelCase ).sample __a : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __a : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __a : List[str] = self.feature_extractor(self.numpy_to_pil(__UpperCamelCase ) , return_tensors="""pt""" ).to( self.device ) __a , __a : int = self.safety_checker( images=__UpperCamelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __a : Optional[int] = None if output_type == "pil": __a : str = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=__UpperCamelCase , nsfw_content_detected=__UpperCamelCase )
697
0
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = tempfile.mkdtemp() __a : int = 5 # Realm tok __a : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """test""", """question""", """this""", """is""", """the""", """first""", """second""", """third""", """fourth""", """fifth""", """record""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __a : Any = os.path.join(self.tmpdirname , """realm_tokenizer""" ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) __a : Tuple = os.path.join(__UpperCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __a : int = os.path.join(self.tmpdirname , """realm_block_records""" ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , """realm_tokenizer""" ) ) def __lowerCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = RealmConfig(num_block_records=self.num_block_records ) return config def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = Dataset.from_dict( { """id""": ["""0""", """1"""], """question""": ["""foo""", """bar"""], """answers""": [["""Foo""", """Bar"""], ["""Bar"""]], } ) return dataset def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = np.array( [ b"""This is the first record""", b"""This is the second record""", b"""This is the third record""", b"""This is the fourth record""", b"""This is the fifth record""", b"""This is a longer longer longer record""", ] , dtype=__UpperCamelCase , ) return block_records def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = self.get_config() __a : Union[str, Any] = self.get_dummy_retriever() __a : str = retriever.tokenizer __a : List[str] = np.array([0, 3] , dtype="""long""" ) __a : List[Any] = tokenizer(["""Test question"""] ).input_ids __a : Dict = tokenizer( ["""the fourth"""] , add_special_tokens=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ).input_ids __a : Union[str, Any] = config.reader_seq_len __a : List[Any] = retriever( __UpperCamelCase , __UpperCamelCase , answer_ids=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors="""np""" ) self.assertEqual(len(__UpperCamelCase ) , 2 ) self.assertEqual(len(__UpperCamelCase ) , 2 ) self.assertEqual(len(__UpperCamelCase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] , ) def __lowerCamelCase ( self ): '''simple docstring''' __a : str = self.get_config() __a : Union[str, Any] = self.get_dummy_retriever() __a : Any = retriever.tokenizer __a : str = np.array([0, 3, 5] , dtype="""long""" ) __a : Optional[Any] = tokenizer(["""Test question"""] ).input_ids __a : List[str] = tokenizer( ["""the fourth""", """longer longer"""] , add_special_tokens=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ).input_ids __a : Optional[Any] = config.reader_seq_len __a : int = retriever( __UpperCamelCase , __UpperCamelCase , answer_ids=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors="""np""" ) self.assertEqual([False, True, True] , __UpperCamelCase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __UpperCamelCase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) # Test local path __a : List[Any] = retriever.from_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) self.assertEqual(retriever.block_records[0] , b"""This is the first record""" ) # Test mocked remote path with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download: __a : str = os.path.join( os.path.join(self.tmpdirname , """realm_block_records""" ) , _REALM_BLOCK_RECORDS_FILENAME ) __a : int = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" ) self.assertEqual(retriever.block_records[0] , b"""This is the first record""" )
714
'''simple docstring''' import numpy as np from PIL import Image def _snake_case ( lowercase , lowercase , lowercase ) -> np.ndarray: __a : Any = np.array(lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) __a : Union[str, Any] = 0 __a : Dict = 0 __a : Optional[Any] = 0 __a : Tuple = 0 # compute the shape of the output matrix __a : Optional[int] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __a : int = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __a : Optional[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __a : Optional[Any] = 0 __a : str = 0 return updated_arr def _snake_case ( lowercase , lowercase , lowercase ) -> np.ndarray: __a : int = np.array(lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) __a : int = 0 __a : Optional[Any] = 0 __a : str = 0 __a : List[Any] = 0 # compute the shape of the output matrix __a : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __a : Optional[int] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __a : Any = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __a : str = 0 __a : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image __SCREAMING_SNAKE_CASE : str = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
697
0