code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import TYPE_CHECKING from ....utils import _LazyModule __lowerCAmelCase : Union[str, Any] ={'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys __lowerCAmelCase : int =_LazyModule(__name__, globals()['__file__'], _import_structure)
9
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = parent def __magic_name__( self :List[Any] ) -> Tuple: return {} def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[Any] = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' __SCREAMING_SNAKE_CASE : str = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = MarkupLMFeatureExtractor if is_bsa_available() else None def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = MarkupLMFeatureExtractionTester(self ) @property def __magic_name__( self :Any ) -> Optional[Any]: return self.feature_extract_tester.prepare_feat_extract_dict() def __magic_name__( self :Optional[int] ) -> Any: # Initialize feature_extractor __SCREAMING_SNAKE_CASE : int = self.feature_extraction_class() # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = get_html_strings()[0] __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ ) # fmt: off __SCREAMING_SNAKE_CASE : str = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] __SCREAMING_SNAKE_CASE : List[str] = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ ) # Test batched __SCREAMING_SNAKE_CASE : Tuple = get_html_strings() __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ ) # fmt: off __SCREAMING_SNAKE_CASE : int = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] __SCREAMING_SNAKE_CASE : str = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ )
9
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> list[int]: return [ord(lowerCamelCase__ ) - 9_6 for elem in plain] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def SCREAMING_SNAKE_CASE__ ( ) -> None: __lowerCamelCase : Dict = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , lowerCamelCase__ ) print('Decoded:' , decode(lowerCamelCase__ ) ) if __name__ == "__main__": main()
113
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[Any]: # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase__ , lowerCamelCase__ ) -> bool: __lowerCamelCase : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __lowerCamelCase : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase__ ) ) # The ratio of the area for circle to square is pi/4. __lowerCamelCase : Any = proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 1.0 , ) -> float: return mean( function_to_integrate(uniform(lowerCamelCase__ , lowerCamelCase__ ) ) for _ in range(lowerCamelCase__ ) ) * (max_value - min_value) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 1.0 ) -> None: def identity_function(lowerCamelCase__ ) -> float: return x __lowerCamelCase : str = area_under_curve_estimator( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : int = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print('******************' ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> None: def function_to_integrate(lowerCamelCase__ ) -> float: return sqrt(4.0 - x * x ) __lowerCamelCase : Any = area_under_curve_estimator( lowerCamelCase__ , lowerCamelCase__ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
113
1
from __future__ import annotations from collections import namedtuple def A_ ( a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
253
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowerCAmelCase : List[str] = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } lowerCAmelCase : Tuple = { '169M': 7_68, '430M': 10_24, '1B5': 20_48, '3B': 25_60, '7B': 40_96, '14B': 51_20, } def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = list(state_dict.keys() ) for name in state_dict_keys: SCREAMING_SNAKE_CASE_ : Optional[int] = state_dict.pop(a ) # emb -> embedding if name.startswith('emb.' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention SCREAMING_SNAKE_CASE_ : Optional[Any] = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , a ) # ffn -> feed_forward SCREAMING_SNAKE_CASE_ : Any = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , a ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): SCREAMING_SNAKE_CASE_ : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): SCREAMING_SNAKE_CASE_ : List[str] = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": SCREAMING_SNAKE_CASE_ : Any = 'rwkv.' + name SCREAMING_SNAKE_CASE_ : Dict = weight return state_dict def A_ ( a , a , a , a=None , a=None , a=False , a=None ): """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 5_0_2_7_7 SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = PreTrainedTokenizerFast(tokenizer_file=a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = len(a ) tokenizer.save_pretrained(a ) # 2. Build the config SCREAMING_SNAKE_CASE_ : List[Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: SCREAMING_SNAKE_CASE_ : str = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"`size` should be one of {possible_sizes}, got {size}." ) SCREAMING_SNAKE_CASE_ : str = RwkvConfig( vocab_size=a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(a ) # 3. Download model file then convert state_dict SCREAMING_SNAKE_CASE_ : List[Any] = hf_hub_download(a , a ) SCREAMING_SNAKE_CASE_ : int = torch.load(a , map_location='cpu' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = convert_state_dict(a ) # 4. Split in shards and save SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = shard_checkpoint(a ) for shard_file, shard in shards.items(): torch.save(a , os.path.join(a , a ) ) if index is not None: SCREAMING_SNAKE_CASE_ : Any = os.path.join(a , a ) # Save the index as well with open(a , 'w' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : int = json.dumps(a , indent=2 , sort_keys=a ) + '\n' f.write(a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) SCREAMING_SNAKE_CASE_ : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: SCREAMING_SNAKE_CASE_ : List[str] = torch.load(os.path.join(a , a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(a , a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(a ) model.push_to_hub(a , max_shard_size='2GB' ) tokenizer.push_to_hub(a ) if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) lowerCAmelCase : Optional[int] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
253
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib lowerCamelCase__ = get_logger() lowerCamelCase__ = None class A__ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self : int , a : int=None , a : int=None , **a : Optional[int] ): '''simple docstring''' super().__init__(features=__UpperCAmelCase ) import jax from jaxlib.xla_client import Device if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError( f'''Expected {device} to be a `str` not {type(__UpperCAmelCase )}, as `jaxlib.xla_extension.Device` ''' 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) lowerCAmelCase__ : Union[str, Any] = device if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCAmelCase__ : List[Any] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) lowerCAmelCase__ : Optional[Any] = str(jax.devices()[0] ) lowerCAmelCase__ : List[str] = jnp_array_kwargs @staticmethod def _lowerCamelCase ( ): '''simple docstring''' import jax return {str(__UpperCAmelCase ): device for device in jax.devices()} def _lowerCamelCase ( self : List[Any] , a : Union[str, Any] ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and column: if all( isinstance(__UpperCAmelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__UpperCAmelCase , axis=0 ) return column def _lowerCamelCase ( self : Dict , a : Optional[int] ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(__UpperCAmelCase , (str, bytes, type(__UpperCAmelCase )) ): return value elif isinstance(__UpperCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCAmelCase__ : List[Any] = {} if isinstance(__UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowerCAmelCase__ : int = {'dtype': jnp.intaa} else: lowerCAmelCase__ : str = {'dtype': jnp.intaa} elif isinstance(__UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCAmelCase__ : Optional[Any] = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__UpperCAmelCase , PIL.Image.Image ): lowerCAmelCase__ : str = np.asarray(__UpperCAmelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCAmelCase__ : Union[str, Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__UpperCAmelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowerCamelCase ( self : Optional[int] , a : Optional[Any] ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__UpperCAmelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__UpperCAmelCase , '__array__' ) and not isinstance(__UpperCAmelCase , jax.Array ): lowerCAmelCase__ : List[str] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__UpperCAmelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__UpperCAmelCase ) for substruct in data_struct] ) elif isinstance(__UpperCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__UpperCAmelCase ) for substruct in data_struct] ) return self._tensorize(__UpperCAmelCase ) def _lowerCamelCase ( self : Optional[int] , a : dict ): '''simple docstring''' return map_nested(self._recursive_tensorize , __UpperCAmelCase , map_list=__UpperCAmelCase ) def _lowerCamelCase ( self : str , a : pa.Table ): '''simple docstring''' lowerCAmelCase__ : Any = self.numpy_arrow_extractor().extract_row(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = self.python_features_decoder.decode_row(__UpperCAmelCase ) return self.recursive_tensorize(__UpperCAmelCase ) def _lowerCamelCase ( self : int , a : pa.Table ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.numpy_arrow_extractor().extract_column(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = self.python_features_decoder.decode_column(__UpperCAmelCase , pa_table.column_names[0] ) lowerCAmelCase__ : Optional[int] = self.recursive_tensorize(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = self._consolidate(__UpperCAmelCase ) return column def _lowerCamelCase ( self : Union[str, Any] , a : pa.Table ): '''simple docstring''' lowerCAmelCase__ : int = self.numpy_arrow_extractor().extract_batch(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = self.python_features_decoder.decode_batch(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = self.recursive_tensorize(__UpperCAmelCase ) for column_name in batch: lowerCAmelCase__ : Any = self._consolidate(batch[column_name] ) return batch
354
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.999 , SCREAMING_SNAKE_CASE_="cosine" , ) -> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCAmelCase__ : Tuple = [] for i in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = i / num_diffusion_timesteps lowerCAmelCase__ : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) class A__ ( __magic_name__ , __magic_name__ ): lowercase = [e.name for e in KarrasDiffusionSchedulers] lowercase = 2 @register_to_config def __init__( self : Union[str, Any] , a : int = 1_000 , a : float = 0.0_0_0_8_5 , a : float = 0.0_1_2 , a : str = "linear" , a : Optional[Union[np.ndarray, List[float]]] = None , a : str = "epsilon" , a : Optional[bool] = False , a : Optional[bool] = False , a : float = 1.0 , a : str = "linspace" , a : int = 0 , ): '''simple docstring''' if trained_betas is not None: lowerCAmelCase__ : List[str] = torch.tensor(a , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCAmelCase__ : List[str] = torch.linspace(a , a , a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ : Union[str, Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ : int = betas_for_alpha_bar(a , alpha_transform_type='cosine' ) elif beta_schedule == "exp": lowerCAmelCase__ : List[str] = betas_for_alpha_bar(a , alpha_transform_type='exp' ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowerCAmelCase__ : int = 1.0 - self.betas lowerCAmelCase__ : Tuple = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(a , a , a ) lowerCAmelCase__ : Optional[Any] = use_karras_sigmas def _lowerCamelCase ( self : str , a : List[Any] , a : str=None ): '''simple docstring''' if schedule_timesteps is None: lowerCAmelCase__ : List[str] = self.timesteps lowerCAmelCase__ : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCAmelCase__ : List[str] = 1 if len(a ) > 1 else 0 else: lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep lowerCAmelCase__ : Tuple = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Union[float, torch.FloatTensor] , ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.index_for_timestep(a ) lowerCAmelCase__ : Any = self.sigmas[step_index] lowerCAmelCase__ : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCamelCase ( self : List[str] , a : int , a : Union[str, torch.device] = None , a : Optional[int] = None , ): '''simple docstring''' lowerCAmelCase__ : Any = num_inference_steps lowerCAmelCase__ : Union[str, Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCAmelCase__ : Union[str, Any] = np.linspace(0 , num_train_timesteps - 1 , a , dtype=a )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCAmelCase__ : List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : Dict = (np.arange(0 , a ) * step_ratio).round()[::-1].copy().astype(a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCAmelCase__ : Tuple = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : int = (np.arange(a , 0 , -step_ratio )).round().copy().astype(a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) lowerCAmelCase__ : str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCAmelCase__ : List[Any] = np.log(a ) lowerCAmelCase__ : Optional[int] = np.interp(a , np.arange(0 , len(a ) ) , a ) if self.config.use_karras_sigmas: lowerCAmelCase__ : str = self._convert_to_karras(in_sigmas=a , num_inference_steps=self.num_inference_steps ) lowerCAmelCase__ : Union[str, Any] = np.array([self._sigma_to_t(a , a ) for sigma in sigmas] ) lowerCAmelCase__ : Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCAmelCase__ : Dict = torch.from_numpy(a ).to(device=a ) lowerCAmelCase__ : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowerCAmelCase__ : Tuple = torch.from_numpy(a ) lowerCAmelCase__ : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(a ).startswith('mps' ): # mps does not support float64 lowerCAmelCase__ : Optional[Any] = timesteps.to(a , dtype=torch.floataa ) else: lowerCAmelCase__ : Any = timesteps.to(device=a ) # empty dt and derivative lowerCAmelCase__ : str = None lowerCAmelCase__ : Optional[int] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCAmelCase__ : Optional[Any] = defaultdict(a ) def _lowerCamelCase ( self : Any , a : Dict , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.log(a ) # get distribution lowerCAmelCase__ : Tuple = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowerCAmelCase__ : Optional[int] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowerCAmelCase__ : List[str] = low_idx + 1 lowerCAmelCase__ : List[str] = log_sigmas[low_idx] lowerCAmelCase__ : Any = log_sigmas[high_idx] # interpolate sigmas lowerCAmelCase__ : Union[str, Any] = (low - log_sigma) / (low - high) lowerCAmelCase__ : List[Any] = np.clip(a , 0 , 1 ) # transform interpolation to time range lowerCAmelCase__ : List[Any] = (1 - w) * low_idx + w * high_idx lowerCAmelCase__ : Any = t.reshape(sigma.shape ) return t def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Any ): '''simple docstring''' lowerCAmelCase__ : float = in_sigmas[-1].item() lowerCAmelCase__ : float = in_sigmas[0].item() lowerCAmelCase__ : Tuple = 7.0 # 7.0 is the value used in the paper lowerCAmelCase__ : Tuple = np.linspace(0 , 1 , a ) lowerCAmelCase__ : Any = sigma_min ** (1 / rho) lowerCAmelCase__ : Optional[Any] = sigma_max ** (1 / rho) lowerCAmelCase__ : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return self.dt is None def _lowerCamelCase ( self : List[str] , a : Union[torch.FloatTensor, np.ndarray] , a : Union[float, torch.FloatTensor] , a : Union[torch.FloatTensor, np.ndarray] , a : bool = True , ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.index_for_timestep(a ) # advance index counter by 1 lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index] lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowerCAmelCase__ : int = self.sigmas[step_index - 1] lowerCAmelCase__ : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Union[str, Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCAmelCase__ : int = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : Any = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase__ : Dict = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowerCAmelCase__ : int = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: lowerCAmelCase__ : str = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCAmelCase__ : Dict = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCAmelCase__ : Optional[int] = sigma_next - sigma_hat # store for 2nd order step lowerCAmelCase__ : List[Any] = derivative lowerCAmelCase__ : str = dt lowerCAmelCase__ : Dict = sample else: # 2. 2nd order / Heun's method lowerCAmelCase__ : Union[str, Any] = (sample - pred_original_sample) / sigma_next lowerCAmelCase__ : Union[str, Any] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowerCAmelCase__ : Dict = self.dt lowerCAmelCase__ : Optional[int] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : str = None lowerCAmelCase__ : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a ) def _lowerCamelCase ( self : int , a : torch.FloatTensor , a : torch.FloatTensor , a : torch.FloatTensor , ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a ): # mps does not support float64 lowerCAmelCase__ : Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowerCAmelCase__ : int = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowerCAmelCase__ : Union[str, Any] = self.timesteps.to(original_samples.device ) lowerCAmelCase__ : Optional[Any] = timesteps.to(original_samples.device ) lowerCAmelCase__ : List[Any] = [self.index_for_timestep(a , a ) for t in timesteps] lowerCAmelCase__ : List[str] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCAmelCase__ : Any = sigma.unsqueeze(-1 ) lowerCAmelCase__ : List[str] = original_samples + noise * sigma return noisy_samples def __len__( self : int ): '''simple docstring''' return self.config.num_train_timesteps
307
0
# flake8: noqa # Lint as: python3 UpperCAmelCase__ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
5
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : Union[str, Any] = tmp_path / """cache""" lowercase : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase : Any = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : Union[str, Any] = tmp_path / """cache""" lowercase : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase : str = features.copy() if features else default_expected_features lowercase : Optional[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase : Optional[int] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE__ ) ) as con: lowercase : Optional[int] = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : Any = tmp_path / """cache""" lowercase : int = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() lowercase : List[str] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : Dict = tmp_path / """cache""" lowercase : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() lowercase : Optional[int] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : str = tmp_path / """cache""" lowercase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : Optional[Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() with pytest.raises(SCREAMING_SNAKE_CASE__ ): SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
20
0
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example snake_case__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case__ ( lowerCamelCase__ : list[list[int]] ) -> list[list[int]]: A_ : str = [] for i in range(len(lowerCamelCase__ ) ): A_ : Optional[Any] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours A_ : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCamelCase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCamelCase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCamelCase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. A_ : List[str] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCamelCase__ ) return next_generation def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[Image.Image]: A_ : List[Any] = [] for _ in range(lowerCamelCase__ ): # Create output image A_ : Optional[int] = Image.new('''RGB''' , (len(cells[0] ), len(lowerCamelCase__ )) ) A_ : int = img.load() # Save cells to image for x in range(len(lowerCamelCase__ ) ): for y in range(len(cells[0] ) ): A_ : Optional[Any] = 2_5_5 - cells[y][x] * 2_5_5 A_ : str = (colour, colour, colour) # Save image images.append(lowerCamelCase__ ) A_ : Optional[int] = new_generation(lowerCamelCase__ ) return images if __name__ == "__main__": snake_case__ = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
4
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'table-transformer' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Any , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Dict=None , _lowerCamelCase : int=3 , _lowerCamelCase : Any=100 , _lowerCamelCase : List[Any]=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : Any=8 , _lowerCamelCase : Dict=6 , _lowerCamelCase : Tuple=2048 , _lowerCamelCase : int=8 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Optional[int]="relu" , _lowerCamelCase : Union[str, Any]=256 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : str=0.02 , _lowerCamelCase : Tuple=1.0 , _lowerCamelCase : Dict=False , _lowerCamelCase : str="sine" , _lowerCamelCase : str="resnet50" , _lowerCamelCase : Any=True , _lowerCamelCase : List[str]=False , _lowerCamelCase : Any=1 , _lowerCamelCase : int=5 , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Optional[int]=1 , _lowerCamelCase : Any=1 , _lowerCamelCase : Dict=5 , _lowerCamelCase : str=2 , _lowerCamelCase : Union[str, Any]=0.1 , **_lowerCamelCase : int , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A_ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : str = backbone_config.get('''model_type''' ) A_ : Optional[int] = CONFIG_MAPPING[backbone_model_type] A_ : List[str] = config_class.from_dict(_lowerCamelCase ) # set timm attributes to None A_ ,A_ ,A_ : Union[str, Any] = None, None, None A_ : Optional[Any] = use_timm_backbone A_ : Optional[int] = backbone_config A_ : Optional[Any] = num_channels A_ : Dict = num_queries A_ : str = d_model A_ : List[str] = encoder_ffn_dim A_ : int = encoder_layers A_ : Optional[Any] = encoder_attention_heads A_ : List[str] = decoder_ffn_dim A_ : Any = decoder_layers A_ : List[str] = decoder_attention_heads A_ : Tuple = dropout A_ : Optional[Any] = attention_dropout A_ : Any = activation_dropout A_ : List[Any] = activation_function A_ : Dict = init_std A_ : Any = init_xavier_std A_ : List[Any] = encoder_layerdrop A_ : int = decoder_layerdrop A_ : Any = encoder_layers A_ : List[str] = auxiliary_loss A_ : List[Any] = position_embedding_type A_ : Optional[Any] = backbone A_ : Tuple = use_pretrained_backbone A_ : List[Any] = dilation # Hungarian matcher A_ : List[str] = class_cost A_ : str = bbox_cost A_ : Union[str, Any] = giou_cost # Loss coefficients A_ : Any = mask_loss_coefficient A_ : Optional[int] = dice_loss_coefficient A_ : Dict = bbox_loss_coefficient A_ : int = giou_loss_coefficient A_ : int = eos_coefficient super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def _a ( self : List[Any] ): """simple docstring""" return self.encoder_attention_heads @property def _a ( self : Any ): """simple docstring""" return self.d_model class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : Tuple ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _a ( self : Optional[int] ): """simple docstring""" return 1E-5 @property def _a ( self : str ): """simple docstring""" return 12
4
1
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('''socket.socket''' ) @patch('''builtins.open''' ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: """simple docstring""" snake_case__ : Union[str, Any] = Mock() snake_case__ : List[Any] = conn, Mock() snake_case__ : Optional[Any] = iter([1, None] ) snake_case__ : str = lambda __lowerCAmelCase : next(__lowerCAmelCase ) # ===== invoke ===== send_file(filename='''mytext.txt''' , testing=__lowerCAmelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
230
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCAmelCase__ : Any = logging.get_logger(__name__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : List[Any] = ['''pixel_values'''] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : int = 8 , **lowerCAmelCase_ : Tuple , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _A: List[str] = do_rescale _A: Any = rescale_factor _A: List[Any] = do_pad _A: Tuple = pad_size def __magic_name__ ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Any ): """simple docstring""" return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None ): """simple docstring""" _A , _A: Optional[int] = get_image_size(lowerCAmelCase_ ) _A: Union[str, Any] = (old_height // size + 1) * size - old_height _A: Optional[Any] = (old_width // size + 1) * size - old_width return pad(lowerCAmelCase_ , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : int , ): """simple docstring""" _A: List[str] = do_rescale if do_rescale is not None else self.do_rescale _A: int = rescale_factor if rescale_factor is not None else self.rescale_factor _A: str = do_pad if do_pad is not None else self.do_pad _A: Union[str, Any] = pad_size if pad_size is not None else self.pad_size _A: List[Any] = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _A: Union[str, Any] = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_rescale: _A: str = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_pad: _A: str = [self.pad(lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] _A: Optional[Any] = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] _A: List[Any] = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
121
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): __a : int = int(number**0.5 ) return number == sq * sq def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): __a : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den __a : int = x_den * y_den * z_den __a : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowerCamelCase (_SCREAMING_SNAKE_CASE : int = 35 ): __a : set = set() __a : int __a : Fraction = Fraction(0 ) __a : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 __a : str = x_num * y_den + x_den * y_num __a : List[str] = x_den * y_den __a : Tuple = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : List[Any] = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 __a : Optional[int] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) __a : Optional[int] = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): __a : int = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : Any = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : List[str] = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : Union[str, Any] = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 __a : Optional[int] = x_num * y_num __a : int = x_den * y_num + x_num * y_den __a : Optional[int] = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : List[str] = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 __a : int = x_num * x_num * y_num * y_num __a : Any = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): __a : List[Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : Any = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : Union[str, Any] = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
367
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __lowercase : int = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __lowercase : Any = [0, 25, 50] __lowercase : int = [25, 50, 75] __lowercase : List[str] = fuzz.membership.trimf(X, abca) __lowercase : Any = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __lowercase : List[Any] = np.ones(75) __lowercase : Any = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __lowercase : int = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __lowercase : int = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __lowercase : str = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __lowercase : List[Any] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __lowercase : Optional[Any] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __lowercase : str = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __lowercase : Optional[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __lowercase : Union[str, Any] = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
294
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
113
"""simple docstring""" import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __UpperCamelCase = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 48000, '''sample_size''': 65536, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 48000, '''sample_size''': 65536, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 48000, '''sample_size''': 131072, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 16000, '''sample_size''': 65536, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 16000, '''sample_size''': 65536, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 16000, '''sample_size''': 65536, }, } def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: return torch.atana(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) / math.pi * 2 def lowercase (SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: SCREAMING_SNAKE_CASE = torch.sin(t * math.pi / 2 ) ** 2 SCREAMING_SNAKE_CASE = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' pass class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase__ ) -> int: super().__init__() SCREAMING_SNAKE_CASE = DiffusionAttnUnetaD(lowerCAmelCase__ , n_attn_layers=4 ) SCREAMING_SNAKE_CASE = deepcopy(self.diffusion ) SCREAMING_SNAKE_CASE = torch.quasirandom.SobolEngine(1 , scramble=lowerCAmelCase__ ) def lowercase (SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]['url'] os.system(F'wget {url} ./' ) return F'./{model_name}.ckpt' __UpperCamelCase = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } __UpperCamelCase = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } __UpperCamelCase = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } __UpperCamelCase = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } __UpperCamelCase = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } __UpperCamelCase = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def lowercase (SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[Any]: if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(F'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def lowercase (SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE_ ) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif name.startswith(SCREAMING_SNAKE_CASE_ ): return [name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for v in value] raise ValueError(F'Attn error with {name}' ) def lowercase (SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=13 ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) SCREAMING_SNAKE_CASE = 0 if string.startswith('net.3.' ): depth += 1 SCREAMING_SNAKE_CASE = string[6:] elif string.startswith('net.' ): SCREAMING_SNAKE_CASE = string[4:] while string.startswith('main.7.' ): depth += 1 SCREAMING_SNAKE_CASE = string[7:] if string.startswith('main.' ): SCREAMING_SNAKE_CASE = string[5:] # mid block if string[:2].isdigit(): SCREAMING_SNAKE_CASE = string[:2] SCREAMING_SNAKE_CASE = string[2:] else: SCREAMING_SNAKE_CASE = string[0] SCREAMING_SNAKE_CASE = string[1:] if depth == max_depth: SCREAMING_SNAKE_CASE = MID_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE = 'mid_block' elif depth > 0 and int(SCREAMING_SNAKE_CASE_ ) < 7: SCREAMING_SNAKE_CASE = DOWN_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE = F'down_blocks.{depth}' elif depth > 0 and int(SCREAMING_SNAKE_CASE_ ) > 7: SCREAMING_SNAKE_CASE = UP_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE = F'up_blocks.{max_depth - depth - 1}' elif depth == 0: SCREAMING_SNAKE_CASE = DEPTH_0_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE = F'up_blocks.{max_depth - 1}' if int(SCREAMING_SNAKE_CASE_ ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(F'Naming error with {input_string} and string_left: {string_left}.' ) SCREAMING_SNAKE_CASE = string_left[1:] if "resnets" in new_layer: SCREAMING_SNAKE_CASE = convert_resconv_naming(SCREAMING_SNAKE_CASE_ ) elif "attentions" in new_layer: SCREAMING_SNAKE_CASE = convert_attn_naming(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = new_string_left if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = prefix + '.' + new_layer + '.' + string_left else: SCREAMING_SNAKE_CASE = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def lowercase (SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue SCREAMING_SNAKE_CASE = rename(SCREAMING_SNAKE_CASE_ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = transform_conv_attns(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: SCREAMING_SNAKE_CASE = v return new_state_dict def lowercase (SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> str: if len(SCREAMING_SNAKE_CASE_ ) == 1: if len(v.shape ) == 3: # weight SCREAMING_SNAKE_CASE = v[:, :, 0] else: # bias SCREAMING_SNAKE_CASE = v else: # qkv matrices SCREAMING_SNAKE_CASE = v.shape[0] SCREAMING_SNAKE_CASE = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: SCREAMING_SNAKE_CASE = v[i * single_shape : (i + 1) * single_shape, :, 0] else: SCREAMING_SNAKE_CASE = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def lowercase (SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) SCREAMING_SNAKE_CASE = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'Make sure to provide one of the official model names {MODELS_MAP.keys()}' SCREAMING_SNAKE_CASE = download(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]['sample_rate'] SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]['sample_size'] SCREAMING_SNAKE_CASE = Object() SCREAMING_SNAKE_CASE = sample_size SCREAMING_SNAKE_CASE = sample_rate SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE_ , sample_rate=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = diffusers_model.state_dict() SCREAMING_SNAKE_CASE = DiffusionUncond(SCREAMING_SNAKE_CASE_ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE_ )['state_dict'] ) SCREAMING_SNAKE_CASE = orig_model.diffusion_ema.eval() SCREAMING_SNAKE_CASE = orig_model.state_dict() SCREAMING_SNAKE_CASE = rename_orig_weights(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) SCREAMING_SNAKE_CASE = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE_ ) == 0, F'Problem with {renamed_minus_diffusers}' assert all(k.endswith('kernel' ) for k in list(SCREAMING_SNAKE_CASE_ ) ), F'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": SCREAMING_SNAKE_CASE = value.squeeze() SCREAMING_SNAKE_CASE = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = 1_00 SCREAMING_SNAKE_CASE = 33 SCREAMING_SNAKE_CASE = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE_ )[:-1] SCREAMING_SNAKE_CASE = get_crash_schedule(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE = pipe(num_inference_steps=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).audios SCREAMING_SNAKE_CASE = sampling.iplms_sample(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {} ) SCREAMING_SNAKE_CASE = generated.clamp(-1 , 1 ) SCREAMING_SNAKE_CASE = (generated - audio).abs().sum() SCREAMING_SNAKE_CASE = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , SCREAMING_SNAKE_CASE_ ) print('Diff max' , SCREAMING_SNAKE_CASE_ ) assert diff_max < 1E-3, F'Diff max: {diff_max} is too much :-/' print(F'Conversion for {model_name} successful!' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') __UpperCamelCase = parser.parse_args() main(args)
113
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any]=None , lowercase__ : Optional[Any]=None ) -> str: '''simple docstring''' return field(default_factory=lambda: default , metadata=lowercase__ ) @dataclass class __a : __snake_case : List[str] = list_field( default=[] ,metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } ,) __snake_case : List[int] = list_field( default=[8] ,metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) __snake_case : List[int] = list_field( default=[8, 32, 128, 512] ,metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} ,) __snake_case : bool = field( default=__UpperCamelCase ,metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} ,) __snake_case : bool = field( default=__UpperCamelCase ,metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} ,) __snake_case : bool = field( default=__UpperCamelCase ,metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) __snake_case : bool = field(default=__UpperCamelCase ,metadata={"""help""": """Use FP16 to accelerate inference."""} ) __snake_case : bool = field(default=__UpperCamelCase ,metadata={"""help""": """Benchmark training of model"""} ) __snake_case : bool = field(default=__UpperCamelCase ,metadata={"""help""": """Verbose memory tracing"""} ) __snake_case : bool = field( default=__UpperCamelCase ,metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} ,) __snake_case : bool = field( default=__UpperCamelCase ,metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } ,) __snake_case : bool = field(default=__UpperCamelCase ,metadata={"""help""": """Trace memory line by line"""} ) __snake_case : bool = field(default=__UpperCamelCase ,metadata={"""help""": """Save result to a CSV file"""} ) __snake_case : bool = field(default=__UpperCamelCase ,metadata={"""help""": """Save all print statements in a log file"""} ) __snake_case : bool = field(default=__UpperCamelCase ,metadata={"""help""": """Whether to print environment information"""} ) __snake_case : bool = field( default=__UpperCamelCase ,metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } ,) __snake_case : str = field( default=f'inference_time_{round(time() )}.csv' ,metadata={"""help""": """CSV filename used if saving time results to csv."""} ,) __snake_case : str = field( default=f'inference_memory_{round(time() )}.csv' ,metadata={"""help""": """CSV filename used if saving memory results to csv."""} ,) __snake_case : str = field( default=f'train_time_{round(time() )}.csv' ,metadata={"""help""": """CSV filename used if saving time results to csv for training."""} ,) __snake_case : str = field( default=f'train_memory_{round(time() )}.csv' ,metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} ,) __snake_case : str = field( default=f'env_info_{round(time() )}.csv' ,metadata={"""help""": """CSV filename used if saving environment information."""} ,) __snake_case : str = field( default=f'log_{round(time() )}.csv' ,metadata={"""help""": """Log filename used if print statements are saved in log."""} ,) __snake_case : int = field(default=3 ,metadata={"""help""": """Times an experiment will be run."""} ) __snake_case : bool = field( default=__UpperCamelCase ,metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } ,) def A ( self : Any ): warnings.warn( F'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , UpperCAmelCase , ) def A ( self : Dict ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def A ( self : Union[str, Any] ): if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def A ( self : Union[str, Any] ): if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
28
from math import factorial, pi def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowerCAmelCase_ : Optional[int] = float(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowerCAmelCase_ : int = float(lowercase__ ) lowerCAmelCase_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
1
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): lowerCAmelCase__ = DanceDiffusionPipeline lowerCAmelCase__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowerCAmelCase__ = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } lowerCAmelCase__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: torch.manual_seed(0 ) lowerCamelCase_ = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=lowercase , use_timestep_embedding=lowercase , time_embedding_type="fourier" , mid_block_type="UNetMidBlock1D" , down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , ) lowerCamelCase_ = IPNDMScheduler() lowerCamelCase_ = { "unet": unet, "scheduler": scheduler, } return components def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=0 ) -> Tuple: if str(lowercase ).startswith("mps" ): lowerCamelCase_ = torch.manual_seed(lowercase ) else: lowerCamelCase_ = torch.Generator(device=lowercase ).manual_seed(lowercase ) lowerCamelCase_ = { "batch_size": 1, "generator": generator, "num_inference_steps": 4, } return inputs def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = DanceDiffusionPipeline(**lowercase ) lowerCamelCase_ = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) lowerCamelCase_ = self.get_dummy_inputs(lowercase ) lowerCamelCase_ = pipe(**lowercase ) lowerCamelCase_ = output.audios lowerCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCamelCase_ = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def SCREAMING_SNAKE_CASE_( self ) -> Dict: return super().test_save_load_local() @skip_mps def SCREAMING_SNAKE_CASE_( self ) -> int: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: return super().test_save_load_optional_components() @skip_mps def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: return super().test_attention_slicing_forward_pass() def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = torch_device lowerCamelCase_ = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" ) lowerCamelCase_ = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pipe(generator=lowercase , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCamelCase_ = output.audios lowerCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCamelCase_ = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = torch_device lowerCamelCase_ = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" , torch_dtype=torch.floataa ) lowerCamelCase_ = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pipe(generator=lowercase , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCamelCase_ = output.audios lowerCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCamelCase_ = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
19
from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCamelCase : Tuple = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : str = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): _UpperCamelCase:Union[str, Any] = "markuplm" def __init__( self , _SCREAMING_SNAKE_CASE=3_0522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=216 , _SCREAMING_SNAKE_CASE=1001 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=50 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , )-> Tuple: super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =hidden_act lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =position_embedding_type lowerCamelCase_ =use_cache lowerCamelCase_ =classifier_dropout # additional properties lowerCamelCase_ =max_depth lowerCamelCase_ =max_xpath_tag_unit_embeddings lowerCamelCase_ =max_xpath_subs_unit_embeddings lowerCamelCase_ =tag_pad_id lowerCamelCase_ =subs_pad_id lowerCamelCase_ =xpath_unit_hidden_size
49
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A : Any = '▁' __A : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Any = BertGenerationTokenizer _UpperCamelCase:List[str] = False _UpperCamelCase:List[Any] = True def _snake_case ( self )-> Optional[int]: super().setUp() lowerCamelCase_ =BertGenerationTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self )-> Any: lowerCamelCase_ ="""<s>""" lowerCamelCase_ =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1002 ) def _snake_case ( self )-> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _snake_case ( self )-> Any: lowerCamelCase_ =BertGenerationTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [285, 46, 10, 170, 382] , ) lowerCamelCase_ =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCamelCase_ =tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase_ =tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def _snake_case ( self )-> str: return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def _snake_case ( self )-> Optional[int]: lowerCamelCase_ ="""Hello World!""" lowerCamelCase_ =[1_8536, 2260, 101] self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @slow def _snake_case ( self )-> List[str]: lowerCamelCase_ =( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) lowerCamelCase_ =[ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @require_torch @slow def _snake_case ( self )-> Any: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase_ =list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase_ =""" """.join(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.big_tokenizer.encode_plus(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , return_token_type_ids=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =BertGenerationConfig() lowerCamelCase_ =BertGenerationEncoder(_SCREAMING_SNAKE_CASE ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_SCREAMING_SNAKE_CASE ) model(**_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )-> int: # fmt: off lowerCamelCase_ ={"""input_ids""": [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
49
1
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example __snake_case =[ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example __snake_case =[[0, 1, 0], [0, 1, 0], [0, 1, 0]] def a_ ( lowerCamelCase : list[list[int]] ): lowerCAmelCase = [] for i in range(len(lowerCamelCase ) ): lowerCAmelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowerCAmelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCamelCase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCamelCase ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCamelCase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowerCAmelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCamelCase ) return next_generation def a_ ( lowerCamelCase : list[list[int]] , lowerCamelCase : int ): lowerCAmelCase = [] for _ in range(lowerCamelCase ): # Create output image lowerCAmelCase = Image.new('RGB' , (len(cells[0] ), len(lowerCamelCase )) ) lowerCAmelCase = img.load() # Save cells to image for x in range(len(lowerCamelCase ) ): for y in range(len(cells[0] ) ): lowerCAmelCase = 255 - cells[y][x] * 255 lowerCAmelCase = (colour, colour, colour) # Save image images.append(lowerCamelCase ) lowerCAmelCase = new_generation(lowerCamelCase ) return images if __name__ == "__main__": __snake_case =generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
4
'''simple docstring''' def a_ ( lowerCamelCase : Optional[Any] ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def a_ ( lowerCamelCase : dict[int, list[int]] ): lowerCAmelCase = 0 lowerCAmelCase = len(lowerCamelCase ) # No of vertices in graph lowerCAmelCase = [0] * n lowerCAmelCase = [False] * n def dfs(lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : str ): lowerCAmelCase = True lowerCAmelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowerCamelCase , lowerCamelCase , lowerCamelCase , id_ ) lowerCAmelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowerCAmelCase = min(low[at] , low[to] ) lowerCAmelCase = [] for i in range(lowerCamelCase ): if not visited[i]: dfs(lowerCamelCase , -1 , lowerCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
4
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() snake_case_ : Dict = logging.get_logger(__name__) def A (__A : Optional[int] , __A : Dict=False , __A : str=False ) -> Tuple: """simple docstring""" UpperCAmelCase_ = '''backbone.''' if is_semantic else '''''' UpperCAmelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""{prefix}blocks.{i}.norm1.weight""", F"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""{prefix}blocks.{i}.norm1.bias""", F"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""{prefix}blocks.{i}.attn.proj.weight""", F"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""{prefix}blocks.{i}.attn.proj.bias""", F"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""{prefix}blocks.{i}.norm2.weight""", F"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""{prefix}blocks.{i}.norm2.bias""", F"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc1.weight""", F"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc1.bias""", F"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc2.weight""", F"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc2.bias""", F"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (F"""{prefix}cls_token""", '''beit.embeddings.cls_token'''), (F"""{prefix}patch_embed.proj.weight""", '''beit.embeddings.patch_embeddings.projection.weight'''), (F"""{prefix}patch_embed.proj.bias""", '''beit.embeddings.patch_embeddings.projection.bias'''), (F"""{prefix}pos_embed""", '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def A (__A : Dict , __A : Union[str, Any] , __A : List[str]=False , __A : Optional[int]=False ) -> int: """simple docstring""" for i in range(config.num_hidden_layers ): UpperCAmelCase_ = '''backbone.''' if is_semantic else '''''' # queries, keys and values UpperCAmelCase_ = state_dict.pop(F"""{prefix}blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(F"""{prefix}blocks.{i}.attn.q_bias""" ) UpperCAmelCase_ = state_dict.pop(F"""{prefix}blocks.{i}.attn.v_bias""" ) UpperCAmelCase_ = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ = q_bias UpperCAmelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCAmelCase_ = state_dict.pop(F"""{prefix}blocks.{i}.gamma_1""" ) UpperCAmelCase_ = state_dict.pop(F"""{prefix}blocks.{i}.gamma_2""" ) UpperCAmelCase_ = gamma_a UpperCAmelCase_ = gamma_a def A (__A : Optional[Any] , __A : List[str] , __A : Any ) -> Tuple: """simple docstring""" UpperCAmelCase_ = dct.pop(__A ) UpperCAmelCase_ = val def A () -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def A (__A : str , __A : List[str] , __A : Dict=False ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = False if '''rvlcdip''' in checkpoint_url else True UpperCAmelCase_ = BeitConfig(use_absolute_position_embeddings=__A , use_mask_token=__A ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCAmelCase_ = 1024 UpperCAmelCase_ = 4096 UpperCAmelCase_ = 24 UpperCAmelCase_ = 16 # labels if "rvlcdip" in checkpoint_url: UpperCAmelCase_ = 16 UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = '''rvlcdip-id2label.json''' UpperCAmelCase_ = json.load(open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__A ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCAmelCase_ = torch.hub.load_state_dict_from_url(__A , map_location='''cpu''' )['''model'''] UpperCAmelCase_ = create_rename_keys(__A , has_lm_head=__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_q_k_v(__A , __A , has_lm_head=__A ) # load HuggingFace model UpperCAmelCase_ = BeitForMaskedImageModeling(__A ) if has_lm_head else BeitForImageClassification(__A ) model.eval() model.load_state_dict(__A ) # Check outputs on an image UpperCAmelCase_ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__A ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=__A , return_tensors='''pt''' ) UpperCAmelCase_ = encoding['''pixel_values'''] UpperCAmelCase_ = model(__A ) UpperCAmelCase_ = outputs.logits # verify logits UpperCAmelCase_ = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(__A ), "Shape of logits not as expected" Path(__A ).mkdir(exist_ok=__A ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__A ) if push_to_hub: if has_lm_head: UpperCAmelCase_ = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: UpperCAmelCase_ = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(__A , __A ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=__A , ) model.push_to_hub( repo_path_or_name=Path(__A , __A ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=__A , ) if __name__ == "__main__": snake_case_ : int = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) snake_case_ : List[Any] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
7
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A (__A : BertModel , __A : str , __A : str ) -> int: """simple docstring""" UpperCAmelCase_ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') UpperCAmelCase_ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(__A ): os.makedirs(__A ) UpperCAmelCase_ = model.state_dict() def to_tf_var_name(__A : str ): for patt, repl in iter(__A ): UpperCAmelCase_ = name.replace(__A , __A ) return F"""bert/{name}""" def create_tf_var(__A : np.ndarray , __A : str , __A : tf.Session ): UpperCAmelCase_ = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase_ = tf.get_variable(dtype=__A , shape=tensor.shape , name=__A , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__A ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase_ = to_tf_var_name(__A ) UpperCAmelCase_ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase_ = torch_tensor.T UpperCAmelCase_ = create_tf_var(tensor=__A , name=__A , session=__A ) tf.keras.backend.set_value(__A , __A ) UpperCAmelCase_ = session.run(__A ) print(F"""Successfully created {tf_name}: {np.allclose(__A , __A )}""" ) UpperCAmelCase_ = tf.train.Saver(tf.trainable_variables() ) saver.save(__A , os.path.join(__A , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def A (__A : Any=None ) -> str: """simple docstring""" UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__A , required=__A , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=__A , default=__A , required=__A , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=__A , required=__A , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=__A , required=__A , help='''Directory in which to save tensorflow model''' ) UpperCAmelCase_ = parser.parse_args(__A ) UpperCAmelCase_ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
7
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" snake_case_ = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case_ = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(UpperCAmelCase__ ) , torch_builtin(UpperCAmelCase__ ) ) ) self.assertFalse(torch.allclose(gelu_python(UpperCAmelCase__ ) , gelu_new(UpperCAmelCase__ ) ) ) def lowerCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" snake_case_ = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case_ = get_activation("gelu" ) snake_case_ = get_activation("gelu_10" ) snake_case_ = torch_builtin(UpperCAmelCase__ ) snake_case_ = geluaa(UpperCAmelCase__ ) snake_case_ = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(UpperCAmelCase__ ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def lowerCAmelCase__ ( self : int ) -> Optional[Any]: """simple docstring""" get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(UpperCAmelCase__ ): get_activation("bogus" ) with self.assertRaises(UpperCAmelCase__ ): get_activation(UpperCAmelCase__ ) def lowerCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" snake_case_ = get_activation("gelu" ) snake_case_ = 1 snake_case_ = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(UpperCAmelCase__ ): snake_case_ = acta.a
159
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class UpperCamelCase ( snake_case_ ): UpperCamelCase : int = '''mvp''' UpperCamelCase : Union[str, Any] = ['''past_key_values'''] UpperCamelCase : Any = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[str] , UpperCAmelCase__ : List[str]=50267 , UpperCAmelCase__ : Optional[Any]=1024 , UpperCAmelCase__ : Tuple=12 , UpperCAmelCase__ : Optional[Any]=4096 , UpperCAmelCase__ : int=16 , UpperCAmelCase__ : Tuple=12 , UpperCAmelCase__ : int=4096 , UpperCAmelCase__ : List[Any]=16 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : Tuple="gelu" , UpperCAmelCase__ : Union[str, Any]=1024 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Dict=0.0 , UpperCAmelCase__ : Tuple=0.0_2 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Tuple=1 , UpperCAmelCase__ : Dict=0 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Tuple=2 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : Dict=100 , UpperCAmelCase__ : Union[str, Any]=800 , **UpperCAmelCase__ : Dict , ) -> List[Any]: _a : Any = vocab_size _a : Any = max_position_embeddings _a : Union[str, Any] = d_model _a : List[str] = encoder_ffn_dim _a : List[Any] = encoder_layers _a : Dict = encoder_attention_heads _a : Tuple = decoder_ffn_dim _a : List[Any] = decoder_layers _a : Optional[Any] = decoder_attention_heads _a : Optional[Any] = dropout _a : str = attention_dropout _a : Dict = activation_dropout _a : Any = activation_function _a : Tuple = init_std _a : Dict = encoder_layerdrop _a : Optional[int] = decoder_layerdrop _a : Optional[Any] = classifier_dropout _a : List[Any] = use_cache _a : Dict = encoder_layers _a : str = scale_embedding # scale factor will be sqrt(d_model) if True _a : int = use_prompt _a : Dict = prompt_length _a : Dict = prompt_mid_dim super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , is_encoder_decoder=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , forced_eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , UpperCAmelCase__ ): _a : List[str] = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ """The config can simply be saved and uploaded again to be fixed.""" )
294
0
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase__( __A ): lowerCAmelCase__ : Any = ['pixel_values'] def __init__( self ,__UpperCAmelCase = True ,__UpperCAmelCase = 1 / 2_55 ,__UpperCAmelCase = True ,__UpperCAmelCase = 8 ,**__UpperCAmelCase ,) -> None: super().__init__(**__UpperCAmelCase ) A__ = do_rescale A__ = rescale_factor A__ = do_pad A__ = pad_size def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ,**__UpperCAmelCase ) -> np.ndarray: return rescale(__UpperCAmelCase ,scale=__UpperCAmelCase ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> str: A__ , A__ = get_image_size(__UpperCAmelCase ) A__ = (old_height // size + 1) * size - old_height A__ = (old_width // size + 1) * size - old_width return pad(__UpperCAmelCase ,((0, pad_height), (0, pad_width)) ,mode='symmetric' ,data_format=__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = ChannelDimension.FIRST ,**__UpperCAmelCase ,) -> Optional[int]: A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_pad if do_pad is not None else self.do_pad A__ = pad_size if pad_size is not None else self.pad_size A__ = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. A__ = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_rescale: A__ = [self.rescale(image=__UpperCAmelCase ,scale=__UpperCAmelCase ) for image in images] if do_pad: A__ = [self.pad(__UpperCAmelCase ,size=__UpperCAmelCase ) for image in images] A__ = [to_channel_dimension_format(__UpperCAmelCase ,__UpperCAmelCase ) for image in images] A__ = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase ,tensor_type=__UpperCAmelCase )
356
"""simple docstring""" import os import jsonlines import numpy as np from tqdm import tqdm __lowerCamelCase = 20_48 __lowerCamelCase = 40_96 __lowerCamelCase = 42 __lowerCamelCase = os.environ.pop("PROCESS_TRAIN", "false") __lowerCamelCase = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" def choose_first(UpperCamelCase__ , UpperCamelCase__=False ): assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) if len(UpperCamelCase__ ) == 1: A__ = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: A__ = {k: [a[k]] for k in a} if len(a['start_token'] ) > 0: break return a A__ = {'id': example['id']} A__ = example['annotations'] A__ = annotation['yes_no_answer'] if 0 in yes_no_answer or 1 in yes_no_answer: A__ = ['yes'] if 1 in yes_no_answer else ['no'] A__ = A__ = [] A__ = A__ = [] A__ = ['<cls>'] else: A__ = ['short'] A__ = choose_first(annotation['short_answers'] ) if len(out['start_token'] ) == 0: # answer will be long if short is not available A__ = ['long'] A__ = choose_first(annotation['long_answer'] , is_long_answer=UpperCamelCase__ ) A__ = [] answer.update(UpperCamelCase__ ) # disregard some samples if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]: A__ = True else: A__ = False A__ = ['start_token', 'end_token', 'start_byte', 'end_byte', 'text'] if not all(isinstance(answer[k] , UpperCamelCase__ ) for k in cols ): raise ValueError('Issue in ID' , example['id'] ) return answer def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__=False ): """simple docstring""" A__ = _get_single_answer(UpperCamelCase__ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element A__ = example['document']['tokens'] A__ = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) return { "context": " ".join(UpperCamelCase__ ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples A__ = ['start_token', 'end_token'] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 A__ = example['document']['tokens'] A__ = answer['start_token'] A__ = answer['end_token'] A__ = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 A__ = ' '.join(context[start_token:end_token] ) # checking above code if assertion: A__ = doc['is_html'][answer['start_token'] : answer['end_token']] A__ = doc['token'][answer['start_token'] : answer['end_token']] A__ = ' '.join([old[i] for i in range(len(UpperCamelCase__ ) ) if not is_html[i]] ) if new != old: print('ID:' , example['id'] ) print('New:' , UpperCamelCase__ , end='\n' ) print('Old:' , UpperCamelCase__ , end='\n\n' ) return { "context": " ".join(UpperCamelCase__ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=2_048 , UpperCamelCase__=4_096 , UpperCamelCase__=True ): """simple docstring""" A__ = get_context_and_ans(UpperCamelCase__ , assertion=UpperCamelCase__ ) A__ = out['answer'] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } A__ = tokenizer(example['question']['text'] , out['context'] ).input_ids A__ = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element A__ = [] A__ = [] A__ = input_ids[:q_len] A__ = range(UpperCamelCase__ , len(UpperCamelCase__ ) , max_length - doc_stride ) for i in doc_start_indices: A__ = i + max_length - q_len A__ = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['category'][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(UpperCamelCase__ ), "end_token": [-100] * len(UpperCamelCase__ ), "category": category, }, } A__ = out['context'].split() A__ = splitted_context[answer['end_token']] A__ = len( tokenizer( ' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=UpperCamelCase__ , ).input_ids ) A__ = len( tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=UpperCamelCase__ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token A__ = len(tokenizer(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 A__ = input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive A__ = answer['start_token'] A__ = answer['end_token'] if assertion: A__ = tokenizer.decode(UpperCamelCase__ ) if answer["span"] != new: print('ISSUE IN TOKENIZATION' ) print('OLD:' , answer['span'] ) print('NEW:' , UpperCamelCase__ , end='\n\n' ) if len(UpperCamelCase__ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } A__ = input_ids[:q_len] A__ = range(UpperCamelCase__ , len(UpperCamelCase__ ) , max_length - doc_stride ) A__ = [] A__ = [] A__ = [] A__ = [] # null, yes, no, long, short for i in doc_start_indices: A__ = i + max_length - q_len A__ = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: A__ = start_token - i + q_len A__ = end_token - i + q_len answers_category.append(answer['category'][0] ) # ["short"] -> "short" else: A__ = -100 A__ = -100 answers_category.append('null' ) A__ = inputs[-1][start_token : end_token + 1] answers_start_token.append(UpperCamelCase__ ) answers_end_token.append(UpperCamelCase__ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('ISSUE in strided for ID:' , example['id'] ) print('New:' , tokenizer.decode(UpperCamelCase__ ) ) print('Old:' , tokenizer.decode(UpperCamelCase__ ) , end='\n\n' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=2_048 , UpperCamelCase__=4_096 , UpperCamelCase__=False ): """simple docstring""" A__ = get_strided_contexts_and_ans( UpperCamelCase__ , UpperCamelCase__ , doc_stride=UpperCamelCase__ , max_length=UpperCamelCase__ , assertion=UpperCamelCase__ , ) return example def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" with jsonlines.open(UpperCamelCase__ , 'a' ) as writer: for example in tqdm(UpperCamelCase__ , total=len(UpperCamelCase__ ) , desc='Saving samples ... ' ): A__ = example['labels'] for ids, start, end, cat in zip( example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { 'input_ids': ids, 'start_token': start, 'end_token': end, 'category': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __lowerCamelCase = load_dataset("natural_questions") __lowerCamelCase = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") __lowerCamelCase = data["train" if PROCESS_TRAIN == "true" else "validation"] __lowerCamelCase = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } __lowerCamelCase = data.map(prepare_inputs, fn_kwargs=fn_kwargs) __lowerCamelCase = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) __lowerCamelCase = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
154
0
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration _lowerCamelCase : List[str] = 5_0000 _lowerCamelCase : Optional[int] = 5000 _lowerCamelCase ,_lowerCamelCase : int = os.path.split(__file__) _lowerCamelCase : str = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" for i in range(A__ ): UpperCamelCase = dataset[i] @get_duration def __lowerCamelCase ( A__ , A__ , A__ ) -> int: """simple docstring""" for i in range(0 , len(A__ ) , A__ ): UpperCamelCase = dataset[i : i + batch_size] @get_duration def __lowerCamelCase ( A__ , A__ , A__ ) -> List[Any]: """simple docstring""" with dataset.formatted_as(type=A__ ): for i in range(A__ ): UpperCamelCase = dataset[i] @get_duration def __lowerCamelCase ( A__ , A__ , A__ , A__ ) -> int: """simple docstring""" with dataset.formatted_as(type=A__ ): for i in range(0 , A__ , A__ ): UpperCamelCase = dataset[i : i + batch_size] def __lowerCamelCase ( ) -> List[str]: """simple docstring""" UpperCamelCase = {'num examples': SPEED_TEST_N_EXAMPLES} UpperCamelCase = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_000}), ] UpperCamelCase = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) UpperCamelCase = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) UpperCamelCase = generate_example_dataset( os.path.join(A__ , 'dataset.arrow' ) , A__ , num_examples=A__ , seq_shapes={'list': (100,)} , ) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ , str(A__ ) ) UpperCamelCase = func(A__ , **A__ ) print('shuffling dataset' ) UpperCamelCase = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' , func.__name__ , str(A__ ) ) UpperCamelCase = func( A__ , **A__ ) with open(A__ , 'wb' ) as f: f.write(json.dumps(A__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
28
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _lowerCamelCase : Optional[int] = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) _lowerCamelCase : Union[str, Any] = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) _lowerCamelCase : Dict = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) _lowerCamelCase : Dict = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) _lowerCamelCase : Optional[Any] = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) _lowerCamelCase : List[Any] = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) _lowerCamelCase : List[str] = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = randrange(len(A__ ) ), randrange(len(A__ ) ) UpperCamelCase = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] UpperCamelCase , UpperCamelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowerCamelCase ( A__ = 100 ) -> Optional[Any]: """simple docstring""" return (generate_random_hand() for _ in range(A__ )) @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" assert PokerHand(A__ )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" assert PokerHand(A__ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , A__ ) def __lowerCamelCase ( A__ , A__ , A__ ) -> str: """simple docstring""" UpperCamelCase = PokerHand(A__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> Dict: """simple docstring""" assert PokerHand(A__ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> str: """simple docstring""" assert PokerHand(A__ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , A__ ) def __lowerCamelCase ( A__ , A__ , A__ ) -> Tuple: """simple docstring""" assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowerCamelCase ( A__ , A__ , A__ ) -> List[str]: """simple docstring""" assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected def __lowerCamelCase ( ) -> str: """simple docstring""" UpperCamelCase = [PokerHand(A__ ) for hand in SORTED_HANDS] UpperCamelCase = poker_hands.copy() shuffle(A__ ) UpperCamelCase = chain(sorted(A__ ) ) for index, hand in enumerate(A__ ): assert hand == poker_hands[index] def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" # Test that five high straights are compared correctly. UpperCamelCase = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=A__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowerCamelCase ( ) -> str: """simple docstring""" # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. UpperCamelCase = PokerHand('2C 4S AS 3D 5C' ) UpperCamelCase = True UpperCamelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowerCamelCase ( ) -> List[str]: """simple docstring""" # Problem number 54 from Project Euler # Testing from poker_hands.txt file UpperCamelCase = 0 UpperCamelCase = os.path.abspath(os.path.dirname(A__ ) ) UpperCamelCase = os.path.join(A__ , 'poker_hands.txt' ) with open(A__ ) as file_hand: for line in file_hand: UpperCamelCase = line[:14].strip() UpperCamelCase = line[15:].strip() UpperCamelCase , UpperCamelCase = PokerHand(A__ ), PokerHand(A__ ) UpperCamelCase = player.compare_with(A__ ) if output == "Win": answer += 1 assert answer == 376
28
1
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {} UpperCAmelCase_ = {} UpperCAmelCase_ = {} def lowerCamelCase__ ( A__ : type , A__ : Optional[str] , A__ : Optional[List[str]] = None , ): '''simple docstring''' __lowerCamelCase = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) __lowerCamelCase = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) __lowerCamelCase = format_type def lowerCamelCase__ ( A__ : Exception , A__ : Optional[str] , A__ : Optional[List[str]] = None ): '''simple docstring''' __lowerCamelCase = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): __lowerCamelCase = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: UpperCAmelCase_ = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: UpperCAmelCase_ = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: UpperCAmelCase_ = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def lowerCamelCase__ ( A__ : Optional[str] ): '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def lowerCamelCase__ ( A__ : Optional[str] , **A__ : Dict ): '''simple docstring''' __lowerCamelCase = get_format_type_from_alias(A__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**A__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
368
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder UpperCAmelCase_ = datasets.utils.logging.get_logger(__name__) class lowerCamelCase__( folder_based_builder.FolderBasedBuilderConfig): UpperCAmelCase__ : bool = None UpperCAmelCase__ : bool = None class lowerCamelCase__( folder_based_builder.FolderBasedBuilder): UpperCAmelCase__ : List[Any] = datasets.Audio() UpperCAmelCase__ : str = 'audio' UpperCAmelCase__ : Union[str, Any] = AudioFolderConfig UpperCAmelCase__ : List[str] # definition at the bottom of the script UpperCAmelCase__ : Optional[int] = AudioClassification(audio_column='audio' , label_column='label') UpperCAmelCase_ = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] UpperCAmelCase_ = AUDIO_EXTENSIONS
29
0
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING __snake_case :Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase ) class _A ( __UpperCAmelCase ): def __init__( self : List[Any] , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) self.check_model_type(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a , __a = {}, {} if padding is not None: __a = padding if truncation is not None: __a = truncation if top_k is not None: __a = top_k return preprocess_params, {}, postprocess_params def __call__( self : str , __SCREAMING_SNAKE_CASE : Union["Image.Image", str] , __SCREAMING_SNAKE_CASE : str = None , **__SCREAMING_SNAKE_CASE : Any): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE , (Image.Image, str)) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = {'''image''': image, '''question''': question} else: __a = image __a = super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) return results def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Any=False): '''simple docstring''' __a = load_image(inputs['''image''']) __a = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE) __a = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework) model_inputs.update(__SCREAMING_SNAKE_CASE) return model_inputs def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' __a = self.model(**__SCREAMING_SNAKE_CASE) return model_outputs def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str]=5): '''simple docstring''' if top_k > self.model.config.num_labels: __a = self.model.config.num_labels if self.framework == "pt": __a = model_outputs.logits.sigmoid()[0] __a , __a = probs.topk(__SCREAMING_SNAKE_CASE) else: raise ValueError(F'Unsupported framework: {self.framework}') __a = scores.tolist() __a = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)]
49
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Initialise PyTorch model __a = LxmertConfig.from_json_file(_UpperCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) __a = LxmertForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , _UpperCAmelCase ) if __name__ == "__main__": __snake_case :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case :Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
49
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _UpperCAmelCase = { """configuration_encodec""": [ """ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EncodecConfig""", ], """feature_extraction_encodec""": ["""EncodecFeatureExtractor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""", """EncodecModel""", """EncodecPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
361
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict _UpperCAmelCase = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def UpperCamelCase ( __lowercase : Any ,__lowercase : str ): '''simple docstring''' return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def UpperCamelCase ( __lowercase : Dict ): '''simple docstring''' A_ : Optional[Any] = _TestCommandArgs(dataset=__lowercase ,all_configs=__lowercase ,save_infos=__lowercase ) A_ : List[Any] = TestCommand(*__lowercase ) test_command.run() A_ : Any = os.path.join(__lowercase ,'README.md' ) assert os.path.exists(__lowercase ) A_ : Tuple = DatasetInfosDict.from_directory(__lowercase ) A_ : Any = DatasetInfosDict( { 'default': DatasetInfo( features=Features( { 'tokens': Sequence(Value('string' ) ), 'ner_tags': Sequence( ClassLabel(names=['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] ) ), 'langs': Sequence(Value('string' ) ), 'spans': Sequence(Value('string' ) ), } ) ,splits=[ { 'name': 'train', 'num_bytes': 2_35_15_63, 'num_examples': 1_00_00, }, { 'name': 'validation', 'num_bytes': 23_84_18, 'num_examples': 10_00, }, ] ,download_size=3_94_06_80 ,dataset_size=2_58_99_81 ,) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: A_ , A_ : Union[str, Any] = getattr(dataset_infos['default'] ,__lowercase ), getattr(expected_dataset_infos['default'] ,__lowercase ) if key == "num_bytes": assert is_apercent_close(__lowercase ,__lowercase ) elif key == "splits": assert list(__lowercase ) == list(__lowercase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes ) else: result == expected
192
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> str: '''simple docstring''' A__ = 'backbone.' if is_semantic else '' A__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'{prefix}blocks.{i}.norm1.weight', f'beit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm1.bias', f'beit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.weight', f'beit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.bias', f'beit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.weight', f'beit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.bias', f'beit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.weight', f'beit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.bias', f'beit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.weight', f'beit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.bias', f'beit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ (f'{prefix}cls_token', 'beit.embeddings.cls_token'), (f'{prefix}patch_embed.proj.weight', 'beit.embeddings.patch_embeddings.projection.weight'), (f'{prefix}patch_embed.proj.bias', 'beit.embeddings.patch_embeddings.projection.bias'), (f'{prefix}pos_embed', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=False ) -> List[str]: '''simple docstring''' for i in range(config.num_hidden_layers ): A__ = 'backbone.' if is_semantic else '' # queries, keys and values A__ = state_dict.pop(f'{prefix}blocks.{i}.attn.qkv.weight' ) A__ = state_dict.pop(f'{prefix}blocks.{i}.attn.q_bias' ) A__ = state_dict.pop(f'{prefix}blocks.{i}.attn.v_bias' ) A__ = in_proj_weight[ : config.hidden_size, : ] A__ = q_bias A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained A__ = state_dict.pop(f'{prefix}blocks.{i}.gamma_1' ) A__ = state_dict.pop(f'{prefix}blocks.{i}.gamma_2' ) A__ = gamma_a A__ = gamma_a def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Dict: '''simple docstring''' A__ = dct.pop(SCREAMING_SNAKE_CASE__ ) A__ = val def _snake_case( ) -> str: '''simple docstring''' A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' A__ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=False ) -> str: '''simple docstring''' A__ = False if 'rvlcdip' in checkpoint_url else True A__ = BeitConfig(use_absolute_position_embeddings=SCREAMING_SNAKE_CASE__ , use_mask_token=SCREAMING_SNAKE_CASE__ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: A__ = 1024 A__ = 4096 A__ = 24 A__ = 16 # labels if "rvlcdip" in checkpoint_url: A__ = 16 A__ = 'huggingface/label-files' A__ = 'rvlcdip-id2label.json' A__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) A__ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys A__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='cpu' )['model'] A__ = create_rename_keys(SCREAMING_SNAKE_CASE__ , has_lm_head=SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) read_in_q_k_v(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , has_lm_head=SCREAMING_SNAKE_CASE__ ) # load HuggingFace model A__ = BeitForMaskedImageModeling(SCREAMING_SNAKE_CASE__ ) if has_lm_head else BeitForImageClassification(SCREAMING_SNAKE_CASE__ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # Check outputs on an image A__ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE__ ) A__ = prepare_img() A__ = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) A__ = encoding['pixel_values'] A__ = model(SCREAMING_SNAKE_CASE__ ) A__ = outputs.logits # verify logits A__ = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(SCREAMING_SNAKE_CASE__ ), "Shape of logits not as expected" Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: if has_lm_head: A__ = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: A__ = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=SCREAMING_SNAKE_CASE__ , ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=SCREAMING_SNAKE_CASE__ , ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) lowercase_ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
7
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: '''simple docstring''' A__ = 0 A__ = len(SCREAMING_SNAKE_CASE__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None A__ = sorted_collection[point] if current_item == item: return point else: if point < left: A__ = left A__ = point elif point > right: A__ = right A__ = point else: if item < current_item: A__ = point - 1 else: A__ = point + 1 return None def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif point > right: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point - 1 ) else: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point + 1 , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: '''simple docstring''' if collection != sorted(SCREAMING_SNAKE_CASE__ ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys lowercase_ = 0 if debug == 1: lowercase_ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") lowercase_ = 67 lowercase_ = interpolation_search(collection, target) if result is not None: print(f"""{target} found at positions: {result}""") else: print("Not found")
7
1
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def UpperCamelCase ( ): print("Making key files..." ) make_key_files("rsa" , 10_24 ) print("Key files generation successful." ) def UpperCamelCase ( _lowerCamelCase : int ): print("Generating prime p..." ) A__ = rabinMiller.generate_large_prime(_lowerCamelCase ) print("Generating prime q..." ) A__ = rabinMiller.generate_large_prime(_lowerCamelCase ) A__ = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: A__ = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) A__ = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) ) A__ = (n, e) A__ = (n, d) return (public_key, private_key) def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : int ): if os.path.exists(F"{name}_pubkey.txt" ) or os.path.exists(F"{name}_privkey.txt" ): print("\nWARNING:" ) print( F"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" "Use a different name or delete these files and re-run this program." ) sys.exit() A__, A__ = generate_key(_lowerCamelCase ) print(F"\nWriting public key to file {name}_pubkey.txt..." ) with open(F"{name}_pubkey.txt" , "w" ) as out_file: out_file.write(F"{key_size},{public_key[0]},{public_key[1]}" ) print(F"Writing private key to file {name}_privkey.txt..." ) with open(F"{name}_privkey.txt" , "w" ) as out_file: out_file.write(F"{key_size},{private_key[0]},{private_key[1]}" ) if __name__ == "__main__": main()
123
'''simple docstring''' from __future__ import annotations from math import gcd def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : int = 2 , _lowerCamelCase : int = 1 , _lowerCamelCase : int = 3 , ): # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError("The input value cannot be less than 2" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(_lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ) -> int: return (pow(_lowerCamelCase , 2 ) + step) % modulus for _ in range(_lowerCamelCase ): # These track the position within the cycle detection logic. A__ = seed A__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. A__ = rand_fn(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = rand_fn(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = rand_fn(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. A__ = gcd(hare - tortoise , _lowerCamelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. A__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __lowerCAmelCase : Optional[int] =argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) __lowerCAmelCase : Optional[int] =parser.parse_args() __lowerCAmelCase : Dict =pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"""{args.num} is probably prime""") else: __lowerCAmelCase : Optional[Any] =args.num // divisor print(f"""{args.num} = {divisor} * {quotient}""")
123
1
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint a__ : Optional[Any] = { '169M': 1_2, '430M': 2_4, '1B5': 2_4, '3B': 3_2, '7B': 3_2, '14B': 4_0, } a__ : str = { '169M': 7_6_8, '430M': 1_0_2_4, '1B5': 2_0_4_8, '3B': 2_5_6_0, '7B': 4_0_9_6, '14B': 5_1_2_0, } def snake_case ( UpperCAmelCase )-> Dict: """simple docstring""" __A = list(state_dict.keys() ) for name in state_dict_keys: __A = state_dict.pop(_A ) # emb -> embedding if name.startswith('emb.' ): __A = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): __A = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention __A = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , _A ) # ffn -> feed_forward __A = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , _A ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): __A = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): __A = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): __A = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": __A = 'rwkv.' + name __A = weight return state_dict def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=None )-> Any: """simple docstring""" # 1. If possible, build the tokenizer. if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) __A = 5_0_2_7_7 __A = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: __A = PreTrainedTokenizerFast(tokenizer_file=_A ) __A = len(_A ) tokenizer.save_pretrained(_A ) # 2. Build the config __A = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: __A = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f'`size` should be one of {possible_sizes}, got {size}.' ) __A = RwkvConfig( vocab_size=_A , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_A ) # 3. Download model file then convert state_dict __A = hf_hub_download(_A , _A ) __A = torch.load(_A , map_location='cpu' ) __A = convert_state_dict(_A ) # 4. Split in shards and save __A , __A = shard_checkpoint(_A ) for shard_file, shard in shards.items(): torch.save(_A , os.path.join(_A , _A ) ) if index is not None: __A = os.path.join(_A , _A ) # Save the index as well with open(_A , 'w' , encoding='utf-8' ) as f: __A = json.dumps(_A , indent=2 , sort_keys=_A ) + '\n' f.write(_A ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) __A = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: __A = torch.load(os.path.join(_A , _A ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_A , _A ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) __A = AutoModelForCausalLM.from_pretrained(_A ) model.push_to_hub(_A , max_shard_size='2GB' ) tokenizer.push_to_hub(_A ) if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--repo_id", default=None, type=str, required=True, help="Repo ID from which to pull the checkpoint." ) parser.add_argument( "--checkpoint_file", default=None, type=str, required=True, help="Name of the checkpoint file in the repo." ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="Where to save the converted model." ) parser.add_argument( "--tokenizer_file", default=None, type=str, help="Path to the tokenizer file to use (if not provided, only the model is converted).", ) parser.add_argument( "--size", default=None, type=str, help="Size of the model. Will be inferred from the `checkpoint_file` if not passed.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Push to the Hub the converted model.", ) parser.add_argument( "--model_name", default=None, type=str, help="Name of the pushed model on the Hub, including the username / organization.", ) a__ : List[Any] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
161
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def __UpperCamelCase ( _A : Dict=None ) ->Dict: """simple docstring""" if subparsers is not None: lowerCamelCase_ =subparsers.add_parser("""tpu-config""" , description=_description ) else: lowerCamelCase_ =argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments lowerCamelCase_ =parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=_A , default=_A , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=_A , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=_A , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) lowerCamelCase_ =parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=_A , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=_A ) return parser def __UpperCamelCase ( _A : Tuple ) ->Optional[Any]: """simple docstring""" lowerCamelCase_ =None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_A ): lowerCamelCase_ =load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: lowerCamelCase_ =defaults.command_file if not args.command and defaults.commands is not None: lowerCamelCase_ =defaults.commands if not args.tpu_name: lowerCamelCase_ =defaults.tpu_name if not args.tpu_zone: lowerCamelCase_ =defaults.tpu_zone if args.accelerate_version == "dev": lowerCamelCase_ ="""git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": lowerCamelCase_ ="""accelerate -U""" elif isinstance(parse(args.accelerate_version ) , _A ): lowerCamelCase_ =f'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: lowerCamelCase_ =[f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _A ): lowerCamelCase_ =[line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate lowerCamelCase_ =["""cd /usr/share"""] if args.install_accelerate: new_cmd += [f'pip install {args.accelerate_version}'] new_cmd += args.command lowerCamelCase_ ="""; """.join(_A ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess lowerCamelCase_ =["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'Running {" ".join(_A )}' ) return subprocess.run(_A ) print("""Successfully setup pod.""" ) def __UpperCamelCase ( ) ->Optional[Any]: """simple docstring""" lowerCamelCase_ =tpu_command_parser() lowerCamelCase_ =parser.parse_args() tpu_command_launcher(_A )
154
0
from __future__ import annotations from random import random class __magic_name__ : def __init__( self : Optional[Any] , snake_case__ : int | None = None ): '''simple docstring''' lowercase :List[str] = value lowercase :Optional[int] = random() lowercase :Node | None = None lowercase :Node | None = None def __repr__( self : List[str] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : str ): '''simple docstring''' lowercase :Dict = str(self.value ) + ''' ''' lowercase :Any = str(self.left or '''''' ) lowercase :Tuple = str(self.right or '''''' ) return value + left + right def lowerCamelCase (a_ :Node | None , a_ :int) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowercase :Dict = split(root.left , a_) return left, root else: lowercase :str = split(root.right , a_) return root, right def lowerCamelCase (a_ :Node | None , a_ :Node | None) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowercase :Union[str, Any] = merge(left.right , a_) return left else: lowercase :int = merge(a_ , right.left) return right def lowerCamelCase (a_ :Node | None , a_ :int) -> Node | None: lowercase :Any = Node(a_) lowercase :List[str] = split(a_ , a_) return merge(merge(a_ , a_) , a_) def lowerCamelCase (a_ :Node | None , a_ :int) -> Node | None: lowercase :Tuple = split(a_ , value - 1) lowercase :Union[str, Any] = split(a_ , a_) return merge(a_ , a_) def lowerCamelCase (a_ :Node | None) -> None: if not root: # None return else: inorder(root.left) print(root.value , end=''',''') inorder(root.right) def lowerCamelCase (a_ :Node | None , a_ :str) -> Node | None: for arg in args.split(): if arg[0] == "+": lowercase :int = insert(a_ , int(arg[1:])) elif arg[0] == "-": lowercase :Optional[int] = erase(a_ , int(arg[1:])) else: print('''Unknown command''') return root def lowerCamelCase () -> None: lowercase :Optional[Any] = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''') lowercase :Optional[Any] = input() while args != "q": lowercase :List[Any] = interact_treap(a_ , a_) print(a_) lowercase :str = input() print('''good by!''') if __name__ == "__main__": import doctest doctest.testmod() main()
351
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) def lowerCamelCase (a_ :str) -> YolosConfig: lowercase :Union[str, Any] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowercase :List[str] = 192 lowercase :List[str] = 768 lowercase :int = 12 lowercase :str = 3 lowercase :List[Any] = [800, 1333] lowercase :Any = False elif yolos_name == "yolos_s_dWr": lowercase :List[str] = 330 lowercase :List[Any] = 14 lowercase :int = 6 lowercase :List[Any] = 1320 elif "yolos_s" in yolos_name: lowercase :int = 384 lowercase :Union[str, Any] = 1536 lowercase :int = 12 lowercase :str = 6 elif "yolos_b" in yolos_name: lowercase :Dict = [800, 1344] lowercase :List[str] = 91 lowercase :List[Any] = '''huggingface/label-files''' lowercase :Union[str, Any] = '''coco-detection-id2label.json''' lowercase :int = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowercase :List[Any] = {int(a_): v for k, v in idalabel.items()} lowercase :Dict = idalabel lowercase :Tuple = {v: k for k, v in idalabel.items()} return config def lowerCamelCase (a_ :dict , a_ :YolosConfig , a_ :bool = False) -> Optional[int]: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase :Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""") lowercase :List[Any] = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""") # next, add query, keys and values (in that order) to the state dict lowercase :int = in_proj_weight[: config.hidden_size, :] lowercase :List[str] = in_proj_bias[: config.hidden_size] lowercase :Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase :int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase :Any = in_proj_weight[-config.hidden_size :, :] lowercase :Union[str, Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase (a_ :str) -> str: if "backbone" in name: lowercase :Optional[int] = name.replace('''backbone''' , '''vit''') if "cls_token" in name: lowercase :List[Any] = name.replace('''cls_token''' , '''embeddings.cls_token''') if "det_token" in name: lowercase :int = name.replace('''det_token''' , '''embeddings.detection_tokens''') if "mid_pos_embed" in name: lowercase :List[Any] = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''') if "pos_embed" in name: lowercase :List[str] = name.replace('''pos_embed''' , '''embeddings.position_embeddings''') if "patch_embed.proj" in name: lowercase :Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''') if "blocks" in name: lowercase :Any = name.replace('''blocks''' , '''encoder.layer''') if "attn.proj" in name: lowercase :Dict = name.replace('''attn.proj''' , '''attention.output.dense''') if "attn" in name: lowercase :Tuple = name.replace('''attn''' , '''attention.self''') if "norm1" in name: lowercase :List[Any] = name.replace('''norm1''' , '''layernorm_before''') if "norm2" in name: lowercase :List[Any] = name.replace('''norm2''' , '''layernorm_after''') if "mlp.fc1" in name: lowercase :Union[str, Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''') if "mlp.fc2" in name: lowercase :Dict = name.replace('''mlp.fc2''' , '''output.dense''') if "class_embed" in name: lowercase :Dict = name.replace('''class_embed''' , '''class_labels_classifier''') if "bbox_embed" in name: lowercase :Dict = name.replace('''bbox_embed''' , '''bbox_predictor''') if "vit.norm" in name: lowercase :Dict = name.replace('''vit.norm''' , '''vit.layernorm''') return name def lowerCamelCase (a_ :dict , a_ :YolosForObjectDetection) -> dict: for key in orig_state_dict.copy().keys(): lowercase :List[Any] = orig_state_dict.pop(a_) if "qkv" in key: lowercase :str = key.split('''.''') lowercase :List[str] = int(key_split[2]) lowercase :List[str] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowercase :List[Any] = val[:dim, :] lowercase :Optional[int] = val[ dim : dim * 2, : ] lowercase :Any = val[-dim:, :] else: lowercase :List[str] = val[:dim] lowercase :Union[str, Any] = val[dim : dim * 2] lowercase :List[Any] = val[-dim:] else: lowercase :List[str] = val return orig_state_dict def lowerCamelCase () -> torch.Tensor: lowercase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase :Dict = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def lowerCamelCase (a_ :str , a_ :str , a_ :str , a_ :bool = False) -> List[Any]: lowercase :Union[str, Any] = get_yolos_config(a_) # load original state_dict lowercase :List[str] = torch.load(a_ , map_location='''cpu''')['''model'''] # load 🤗 model lowercase :Tuple = YolosForObjectDetection(a_) model.eval() lowercase :Dict = convert_state_dict(a_ , a_) model.load_state_dict(a_) # Check outputs on an image, prepared by YolosImageProcessor lowercase :Tuple = 800 if yolos_name != '''yolos_ti''' else 512 lowercase :Dict = YolosImageProcessor(format='''coco_detection''' , size=a_) lowercase :Optional[int] = image_processor(images=prepare_img() , return_tensors='''pt''') lowercase :List[Any] = model(**a_) lowercase , lowercase :Dict = outputs.logits, outputs.pred_boxes lowercase , lowercase :int = None, None if yolos_name == "yolos_ti": lowercase :Dict = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]]) lowercase :Dict = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]]) elif yolos_name == "yolos_s_200_pre": lowercase :Union[str, Any] = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]]) lowercase :List[str] = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]]) elif yolos_name == "yolos_s_300_pre": lowercase :int = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]]) lowercase :Optional[Any] = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]]) elif yolos_name == "yolos_s_dWr": lowercase :int = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]]) lowercase :Dict = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]]) elif yolos_name == "yolos_base": lowercase :Dict = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]]) lowercase :Tuple = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]]) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""") assert torch.allclose(logits[0, :3, :3] , a_ , atol=1E-4) assert torch.allclose(pred_boxes[0, :3, :3] , a_ , atol=1E-4) Path(a_).mkdir(exist_ok=a_) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""") model.save_pretrained(a_) print(F"""Saving image processor to {pytorch_dump_folder_path}""") image_processor.save_pretrained(a_) if push_to_hub: lowercase :Optional[int] = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''') lowercase :Optional[Any] = model_mapping[yolos_name] image_processor.push_to_hub(a_ , organization='''hustvl''') model.push_to_hub(a_ , organization='''hustvl''') if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
172
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A : Any = logging.get_logger(__name__) def _a ( UpperCAmelCase ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : List[Any] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase__ : Tuple = 192 lowerCamelCase__ : str = 768 lowerCamelCase__ : List[Any] = 12 lowerCamelCase__ : Optional[int] = 3 lowerCamelCase__ : Optional[Any] = [800, 1333] lowerCamelCase__ : Dict = False elif yolos_name == "yolos_s_dWr": lowerCamelCase__ : Tuple = 330 lowerCamelCase__ : List[str] = 14 lowerCamelCase__ : Tuple = 6 lowerCamelCase__ : List[str] = 1320 elif "yolos_s" in yolos_name: lowerCamelCase__ : Any = 384 lowerCamelCase__ : Union[str, Any] = 1536 lowerCamelCase__ : List[str] = 12 lowerCamelCase__ : Any = 6 elif "yolos_b" in yolos_name: lowerCamelCase__ : Optional[int] = [800, 1344] lowerCamelCase__ : str = 91 lowerCamelCase__ : Optional[Any] = 'huggingface/label-files' lowerCamelCase__ : Any = 'coco-detection-id2label.json' lowerCamelCase__ : Tuple = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase__ : Optional[Any] = {int(__snake_case ): v for k, v in idalabel.items()} lowerCamelCase__ : Optional[Any] = idalabel lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} return config def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False ) -> Optional[int]: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ : Optional[Any] = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) lowerCamelCase__ : Tuple = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Tuple = in_proj_weight[: config.hidden_size, :] lowerCamelCase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowerCamelCase__ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ : List[str] = in_proj_weight[-config.hidden_size :, :] lowerCamelCase__ : str = in_proj_bias[-config.hidden_size :] def _a ( UpperCAmelCase ) -> List[str]: """simple docstring""" if "backbone" in name: lowerCamelCase__ : List[str] = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: lowerCamelCase__ : List[Any] = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: lowerCamelCase__ : Dict = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: lowerCamelCase__ : Optional[int] = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: lowerCamelCase__ : List[str] = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: lowerCamelCase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: lowerCamelCase__ : List[str] = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: lowerCamelCase__ : List[str] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCamelCase__ : Dict = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCamelCase__ : List[Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCamelCase__ : List[Any] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCamelCase__ : List[Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCamelCase__ : str = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: lowerCamelCase__ : Any = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: lowerCamelCase__ : Dict = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: lowerCamelCase__ : Any = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def _a ( UpperCAmelCase , UpperCAmelCase ) -> int: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__ : List[str] = orig_state_dict.pop(__snake_case ) if "qkv" in key: lowerCamelCase__ : Any = key.split('''.''' ) lowerCamelCase__ : Optional[int] = int(key_split[2] ) lowerCamelCase__ : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase__ : str = val[:dim, :] lowerCamelCase__ : str = val[ dim : dim * 2, : ] lowerCamelCase__ : int = val[-dim:, :] else: lowerCamelCase__ : List[Any] = val[:dim] lowerCamelCase__ : Optional[Any] = val[dim : dim * 2] lowerCamelCase__ : List[str] = val[-dim:] else: lowerCamelCase__ : List[str] = val return orig_state_dict def _a ( ) -> str: """simple docstring""" lowerCamelCase__ : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : Any = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : str = get_yolos_config(__snake_case ) # load original state_dict lowerCamelCase__ : Tuple = torch.load(__snake_case , map_location='''cpu''' )['model'] # load 🤗 model lowerCamelCase__ : Optional[Any] = YolosForObjectDetection(__snake_case ) model.eval() lowerCamelCase__ : List[str] = convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase__ : int = 800 if yolos_name != 'yolos_ti' else 512 lowerCamelCase__ : str = YolosImageProcessor(format='''coco_detection''' , size=__snake_case ) lowerCamelCase__ : Optional[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCamelCase__ : Optional[Any] = model(**__snake_case ) lowerCamelCase__ : int = outputs.logits, outputs.pred_boxes lowerCamelCase__ : Optional[Any] = None, None if yolos_name == "yolos_ti": lowerCamelCase__ : Optional[Any] = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase__ : Any = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) lowerCamelCase__ : Dict = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase__ : str = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) lowerCamelCase__ : Optional[Any] = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase__ : int = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": lowerCamelCase__ : Optional[int] = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) lowerCamelCase__ : str = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(f"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , __snake_case , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __snake_case , atol=1E-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: lowerCamelCase__ : List[str] = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('''Pushing to the hub...''' ) lowerCamelCase__ : str = model_mapping[yolos_name] image_processor.push_to_hub(__snake_case , organization='''hustvl''' ) model.push_to_hub(__snake_case , organization='''hustvl''' ) if __name__ == "__main__": _A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _A : Union[str, Any] = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
142
def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : list[list[int]] = [[0 for _ in range(__snake_case )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase_ : Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , __snake_case ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __UpperCAmelCase = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: __UpperCAmelCase = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
0
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE_ = 1_6 SCREAMING_SNAKE_CASE_ = 3_2 def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 16 ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""bert-base-cased""" ) SCREAMING_SNAKE_CASE = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE = 8 else: SCREAMING_SNAKE_CASE = None return tokenizer.pad( _SCREAMING_SNAKE_CASE , padding="""longest""" , max_length=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["""train"""] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["""validation"""] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders SCREAMING_SNAKE_CASE_ = mocked_dataloaders # noqa: F811 def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _SCREAMING_SNAKE_CASE ) == "1": SCREAMING_SNAKE_CASE = 2 # Initialize accelerator SCREAMING_SNAKE_CASE = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE = config["""lr"""] SCREAMING_SNAKE_CASE = int(config["""num_epochs"""] ) SCREAMING_SNAKE_CASE = int(config["""seed"""] ) SCREAMING_SNAKE_CASE = int(config["""batch_size"""] ) SCREAMING_SNAKE_CASE = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_SCREAMING_SNAKE_CASE ) def inner_training_loop(_SCREAMING_SNAKE_CASE ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE = AdamW(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Instantiate scheduler SCREAMING_SNAKE_CASE = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=1_00 , num_training_steps=(len(_SCREAMING_SNAKE_CASE ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(_SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE = model(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = outputs.loss accelerator.backward(_SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , _SCREAMING_SNAKE_CASE ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __lowercase ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) SCREAMING_SNAKE_CASE = parser.parse_args() SCREAMING_SNAKE_CASE = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
358
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any]=7 ,lowerCamelCase__ : Optional[Any]=3 ,lowerCamelCase__ : Union[str, Any]=18 ,lowerCamelCase__ : Optional[int]=30 ,lowerCamelCase__ : int=400 ,lowerCamelCase__ : List[str]=True ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : Optional[int]=[0.5, 0.5, 0.5] ,lowerCamelCase__ : Any=[0.5, 0.5, 0.5] ,) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 18, """width""": 18} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Tuple = DPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = DPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""size""" ) ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 18, """width""": 18} ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{"""height""": 42, """width""": 42} ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase__ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ,numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase__ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ,torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase__ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,)
193
0
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase ( self : Dict): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def lowerCamelCase ( self : Optional[int]): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def lowerCamelCase ( self : Any): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) UpperCAmelCase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = AudioDiffusionPipeline(vqvae=_snake_case , unet=self.dummy_unet , mel=_snake_case , scheduler=_snake_case) UpperCAmelCase_ = pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = torch.Generator(device=_snake_case).manual_seed(42) UpperCAmelCase_ = pipe(generator=_snake_case , steps=4) UpperCAmelCase_ = output.audios[0] UpperCAmelCase_ = output.images[0] UpperCAmelCase_ = torch.Generator(device=_snake_case).manual_seed(42) UpperCAmelCase_ = pipe(generator=_snake_case , steps=4 , return_dict=_snake_case) UpperCAmelCase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) UpperCAmelCase_ = np.frombuffer(image.tobytes() , dtype='''uint8''')[:10] UpperCAmelCase_ = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''')[:10] UpperCAmelCase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127]) assert np.abs(image_slice.flatten() - expected_slice).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() == 0 UpperCAmelCase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) UpperCAmelCase_ = DDIMScheduler() UpperCAmelCase_ = self.dummy_vqvae_and_unet UpperCAmelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_snake_case , scheduler=_snake_case) UpperCAmelCase_ = pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) np.random.seed(0) UpperCAmelCase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,)) UpperCAmelCase_ = torch.Generator(device=_snake_case).manual_seed(42) UpperCAmelCase_ = pipe(raw_audio=_snake_case , generator=_snake_case , start_step=5 , steps=10) UpperCAmelCase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) UpperCAmelCase_ = np.frombuffer(image.tobytes() , dtype='''uint8''')[:10] UpperCAmelCase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121]) assert np.abs(image_slice.flatten() - expected_slice).max() == 0 UpperCAmelCase_ = self.dummy_unet_condition UpperCAmelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=_snake_case , mel=_snake_case , scheduler=_snake_case) UpperCAmelCase_ = pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) np.random.seed(0) UpperCAmelCase_ = torch.rand((1, 1, 10)) UpperCAmelCase_ = pipe(generator=_snake_case , encoding=_snake_case) UpperCAmelCase_ = output.images[0] UpperCAmelCase_ = np.frombuffer(image.tobytes() , dtype='''uint8''')[:10] UpperCAmelCase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111]) assert np.abs(image_slice.flatten() - expected_slice).max() == 0 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = torch_device UpperCAmelCase_ = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''') UpperCAmelCase_ = pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = torch.Generator(device=_snake_case).manual_seed(42) UpperCAmelCase_ = pipe(generator=_snake_case) UpperCAmelCase_ = output.audios[0] UpperCAmelCase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] UpperCAmelCase_ = np.frombuffer(image.tobytes() , dtype='''uint8''')[:10] UpperCAmelCase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26]) assert np.abs(image_slice.flatten() - expected_slice).max() == 0
51
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : Optional[Any] = '▁' A_ : int = {'vocab_file': 'sentencepiece.bpe.model'} A_ : int = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } A_ : Optional[int] = { 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off A_ : Tuple = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__: Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__: str = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__: List[int] = [] UpperCAmelCase__: List[int] = [] def __init__( self , A__ , A__="<s>" , A__="</s>" , A__="</s>" , A__="<s>" , A__="<unk>" , A__="<pad>" , A__="<mask>" , A__=None , A__=None , A__=None , A__ = None , A__=None , A__=False , **A__ , ): # Mask token behave like a normal word, i.e. include the space before it A__ : Any = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else mask_token A__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs A__ : List[str] = legacy_behaviour super().__init__( bos_token=A__ , eos_token=A__ , unk_token=A__ , sep_token=A__ , cls_token=A__ , pad_token=A__ , mask_token=A__ , tokenizer_file=A__ , src_lang=A__ , tgt_lang=A__ , additional_special_tokens=A__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=A__ , **A__ , ) A__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A__ ) ) A__ : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token A__ : str = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A__ : str = 1 A__ : Optional[int] = len(self.sp_model ) A__ : List[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(A__ ) } A__ : Tuple = {v: k for k, v in self.lang_code_to_id.items()} A__ : Dict = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) A__ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} A__ : int = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) A__ : int = src_lang if src_lang is not None else """eng_Latn""" A__ : str = self.lang_code_to_id[self._src_lang] A__ : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): A__ : Tuple = self.__dict__.copy() A__ : List[Any] = None A__ : Tuple = self.sp_model.serialized_model_proto() return state def __setstate__( self , A__ ): A__ : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ : Any = {} A__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __A ( self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __A ( self ): return self._src_lang @src_lang.setter def __A ( self , A__ ): A__ : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __A ( self , A__ , A__ = None , A__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) A__ : Dict = [1] * len(self.prefix_tokens ) A__ : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A__ )) + suffix_ones return prefix_ones + ([0] * len(A__ )) + ([0] * len(A__ )) + suffix_ones def __A ( self , A__ , A__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __A ( self , A__ , A__ = None ): A__ : Dict = [self.sep_token_id] A__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , A__ , A__ , A__ , A__ , **A__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) A__ : Optional[int] = src_lang A__ : List[Any] = self(A__ , add_special_tokens=A__ , return_tensors=A__ , **A__ ) A__ : Optional[int] = self.convert_tokens_to_ids(A__ ) A__ : Optional[int] = tgt_lang_id return inputs def __A ( self ): A__ : List[str] = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __A ( self , A__ ): return self.sp_model.encode(A__ , out_type=A__ ) def __A ( self , A__ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A__ : List[str] = self.sp_model.PieceToId(A__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __A ( self , A__ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __A ( self , A__ ): A__ : Optional[Any] = """""".join(A__ ).replace(A__ , """ """ ).strip() return out_string def __A ( self , A__ , A__ = None ): if not os.path.isdir(A__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ : Any = os.path.join( A__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , """wb""" ) as fi: A__ : str = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,) def __A ( self , A__ , A__ = "eng_Latn" , A__ = None , A__ = "fra_Latn" , **A__ , ): A__ : Any = src_lang A__ : List[Any] = tgt_lang return super().prepare_seqaseq_batch(A__ , A__ , **A__ ) def __A ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __A ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __A ( self , A__ ): A__ : List[str] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: A__ : Dict = [] A__ : str = [self.eos_token_id, self.cur_lang_code] else: A__ : List[str] = [self.cur_lang_code] A__ : Optional[Any] = [self.eos_token_id] def __A ( self , A__ ): A__ : Union[str, Any] = self.lang_code_to_id[lang] if self.legacy_behaviour: A__ : Union[str, Any] = [] A__ : int = [self.eos_token_id, self.cur_lang_code] else: A__ : Dict = [self.cur_lang_code] A__ : str = [self.eos_token_id]
192
0
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__( lowerCamelCase__ , unittest.TestCase ): lowercase__ = CodeGenTokenizer lowercase__ = CodeGenTokenizerFast lowercase__ = True lowercase__ = {"""add_prefix_space""": True} lowercase__ = False def lowercase_ ( self : Optional[int] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a : Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] a : Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) a : int = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] a : Tuple = {'unk_token': '<unk>'} a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def lowercase_ ( self : str , **__snake_case : str ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def lowercase_ ( self : List[Any] , **__snake_case : str ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def lowercase_ ( self : Dict , __snake_case : List[str] ): a : Any = 'lower newer' a : Any = 'lower newer' return input_text, output_text def lowercase_ ( self : Tuple ): a : Optional[int] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a : str = 'lower newer' a : Optional[int] = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] a : str = tokenizer.tokenize(__snake_case , add_prefix_space=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) a : Optional[int] = tokens + [tokenizer.unk_token] a : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def lowercase_ ( self : Dict ): if not self.test_rust_tokenizer: return a : int = self.get_tokenizer() a : Optional[int] = self.get_rust_tokenizer(add_prefix_space=__snake_case ) a : List[Any] = 'lower newer' # Testing tokenization a : List[Any] = tokenizer.tokenize(__snake_case , add_prefix_space=__snake_case ) a : Union[str, Any] = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Testing conversion to ids without special tokens a : List[str] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) a : Dict = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Testing conversion to ids with special tokens a : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__snake_case ) a : str = tokenizer.encode(__snake_case , add_prefix_space=__snake_case ) a : int = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Testing the unknown token a : Optional[int] = tokens + [rust_tokenizer.unk_token] a : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def lowercase_ ( self : int , *__snake_case : Dict , **__snake_case : List[str] ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowercase_ ( self : Optional[Any] , __snake_case : Union[str, Any]=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a : str = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) # Simple input a : int = 'This is a simple input' a : Dict = ['This is a simple input 1', 'This is a simple input 2'] a : Optional[Any] = ('This is a simple input', 'This is a pair') a : List[Any] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(__snake_case , tokenizer_r.encode , __snake_case , max_length=__snake_case , padding='max_length' ) # Simple input self.assertRaises(__snake_case , tokenizer_r.encode_plus , __snake_case , max_length=__snake_case , padding='max_length' ) # Simple input self.assertRaises( __snake_case , tokenizer_r.batch_encode_plus , __snake_case , max_length=__snake_case , padding='max_length' , ) # Pair input self.assertRaises(__snake_case , tokenizer_r.encode , __snake_case , max_length=__snake_case , padding='max_length' ) # Pair input self.assertRaises(__snake_case , tokenizer_r.encode_plus , __snake_case , max_length=__snake_case , padding='max_length' ) # Pair input self.assertRaises( __snake_case , tokenizer_r.batch_encode_plus , __snake_case , max_length=__snake_case , padding='max_length' , ) def lowercase_ ( self : int ): a : List[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input a : Dict = 'This is a simple input' a : Optional[Any] = ['This is a simple input looooooooong', 'This is a simple input'] a : Dict = ('This is a simple input', 'This is a pair') a : Optional[Any] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] a : Union[str, Any] = tokenizer.pad_token_id a : Dict = tokenizer(__snake_case , padding='max_length' , max_length=30 , return_tensors='np' ) a : int = tokenizer(__snake_case , padding=__snake_case , truncate=__snake_case , return_tensors='np' ) a : Dict = tokenizer(*__snake_case , padding='max_length' , max_length=60 , return_tensors='np' ) a : List[Any] = tokenizer(__snake_case , padding=__snake_case , truncate=__snake_case , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def lowercase_ ( self : int ): a : int = '$$$' a : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__snake_case , add_bos_token=__snake_case ) a : Optional[int] = 'This is a simple input' a : Optional[Any] = ['This is a simple input 1', 'This is a simple input 2'] a : Tuple = tokenizer.bos_token_id a : int = tokenizer(__snake_case ) a : Any = tokenizer(__snake_case ) self.assertEqual(out_s.input_ids[0] , __snake_case ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) a : Optional[Any] = tokenizer.decode(out_s.input_ids ) a : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __snake_case ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowercase_ ( self : Union[str, Any] ): a : Optional[Any] = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) a : str = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' a : Optional[int] = '\nif len_a > len_b: result = a\nelse: result = b' a : Dict = tokenizer.encode(__snake_case ) a : Optional[int] = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n'] a : Any = tokenizer.decode(__snake_case , truncate_before_pattern=__snake_case ) self.assertEqual(__snake_case , __snake_case ) def lowercase_ ( self : List[str] ): pass
361
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = CycleDiffusionPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } lowercase__ = PipelineTesterMixin.required_optional_params - {"""latents"""} lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self : Any ): torch.manual_seed(0 ) a : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) a : str = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , num_train_timesteps=10_00 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) a : List[str] = CLIPTextModel(__snake_case ) a : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a : Tuple = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase_ ( self : Optional[int] , __snake_case : Dict , __snake_case : Any=0 ): a : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) a : Optional[Any] = image / 2 + 0.5 if str(__snake_case ).startswith('mps' ): a : List[str] = torch.manual_seed(__snake_case ) else: a : Union[str, Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a : List[Any] = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def lowercase_ ( self : Optional[int] ): a : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator a : int = self.get_dummy_components() a : str = CycleDiffusionPipeline(**__snake_case ) a : List[str] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a : Dict = self.get_dummy_inputs(__snake_case ) a : Union[str, Any] = pipe(**__snake_case ) a : List[Any] = output.images a : Optional[Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) a : Tuple = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowercase_ ( self : int ): a : List[Any] = self.get_dummy_components() for name, module in components.items(): if hasattr(__snake_case , 'half' ): a : Any = module.half() a : Tuple = CycleDiffusionPipeline(**__snake_case ) a : Any = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a : str = self.get_dummy_inputs(__snake_case ) a : int = pipe(**__snake_case ) a : Optional[int] = output.images a : Tuple = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) a : int = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowercase_ ( self : List[Any] ): return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def lowercase_ ( self : Dict ): return super().test_inference_batch_single_identical() @skip_mps def lowercase_ ( self : int ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowercase_ ( self : Dict ): return super().test_save_load_optional_components() @skip_mps def lowercase_ ( self : List[Any] ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class a__( unittest.TestCase ): def lowercase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[int] ): a : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) a : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) a : List[str] = init_image.resize((5_12, 5_12) ) a : Dict = 'CompVis/stable-diffusion-v1-4' a : List[str] = DDIMScheduler.from_pretrained(__snake_case , subfolder='scheduler' ) a : Any = CycleDiffusionPipeline.from_pretrained( __snake_case , scheduler=__snake_case , safety_checker=__snake_case , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() a : Union[str, Any] = 'A black colored car' a : Optional[Any] = 'A blue colored car' a : int = torch.manual_seed(0 ) a : Optional[Any] = pipe( prompt=__snake_case , source_prompt=__snake_case , image=__snake_case , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__snake_case , output_type='np' , ) a : Dict = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def lowercase_ ( self : int ): a : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) a : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) a : str = init_image.resize((5_12, 5_12) ) a : Optional[int] = 'CompVis/stable-diffusion-v1-4' a : Union[str, Any] = DDIMScheduler.from_pretrained(__snake_case , subfolder='scheduler' ) a : str = CycleDiffusionPipeline.from_pretrained(__snake_case , scheduler=__snake_case , safety_checker=__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() a : Tuple = 'A black colored car' a : Tuple = 'A blue colored car' a : List[str] = torch.manual_seed(0 ) a : str = pipe( prompt=__snake_case , source_prompt=__snake_case , image=__snake_case , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__snake_case , output_type='np' , ) a : Tuple = output.images assert np.abs(image - expected_image ).max() < 2e-2
96
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : str = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } UpperCAmelCase : List[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = {} with open(a__ , """r""" ) as file: for line_number, line in enumerate(a__ ): __UpperCAmelCase : List[Any] = line.strip() if line: __UpperCAmelCase : Dict = line.split() __UpperCAmelCase : List[Any] = line_number __UpperCAmelCase : int = words[0] __UpperCAmelCase : str = value return result def lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> int: '''simple docstring''' for attribute in key.split(""".""" ): __UpperCAmelCase : Optional[int] = getattr(a__ , a__ ) __UpperCAmelCase : Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(a__ ): __UpperCAmelCase : Optional[int] = PARAM_MAPPING[full_name.split(""".""" )[-1]] __UpperCAmelCase : Union[str, Any] = """param""" if weight_type is not None and weight_type != "param": __UpperCAmelCase : Tuple = getattr(a__ , a__ ).shape elif weight_type is not None and weight_type == "param": __UpperCAmelCase : Optional[Any] = hf_pointer for attribute in hf_param_name.split(""".""" ): __UpperCAmelCase : Optional[Any] = getattr(a__ , a__ ) __UpperCAmelCase : Any = shape_pointer.shape # let's reduce dimension __UpperCAmelCase : Optional[Any] = value[0] else: __UpperCAmelCase : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCAmelCase : Union[str, Any] = value elif weight_type == "weight_g": __UpperCAmelCase : Any = value elif weight_type == "weight_v": __UpperCAmelCase : List[str] = value elif weight_type == "bias": __UpperCAmelCase : Optional[int] = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __UpperCAmelCase : str = getattr(a__ , a__ ) __UpperCAmelCase : int = value else: __UpperCAmelCase : Dict = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCamelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(a__ ): __UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split(""".""" )[-1]] __UpperCAmelCase : Union[str, Any] = """param""" if weight_type is not None and weight_type != "param": __UpperCAmelCase : List[str] = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __UpperCAmelCase : str = """.""".join([key, hf_param_name] ) else: __UpperCAmelCase : List[Any] = key __UpperCAmelCase : str = value if """lm_head""" in full_key else value[0] UpperCAmelCase : List[Any] = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def lowerCamelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Any=None , _UpperCamelCase : List[str]=None ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = False for key, mapped_key in MAPPING.items(): __UpperCAmelCase : Optional[Any] = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __UpperCAmelCase : Any = True if "*" in mapped_key: __UpperCAmelCase : int = name.split(a__ )[0].split(""".""" )[-2] __UpperCAmelCase : Tuple = mapped_key.replace("""*""" , a__ ) if "weight_g" in name: __UpperCAmelCase : Any = """weight_g""" elif "weight_v" in name: __UpperCAmelCase : Any = """weight_v""" elif "bias" in name: __UpperCAmelCase : Optional[Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCAmelCase : str = """weight""" else: __UpperCAmelCase : Any = None if hf_dict is not None: rename_dict(a__ , a__ , a__ , a__ , a__ ) else: set_recursively(a__ , a__ , a__ , a__ , a__ ) return is_used return is_used def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Tuple , _UpperCamelCase : Tuple ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Optional[Any] = fairseq_model.state_dict() __UpperCAmelCase : Optional[int] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __UpperCAmelCase : Tuple = False if "conv_layers" in name: load_conv_layer( a__ , a__ , a__ , a__ , hf_model.config.feat_extract_norm == """group""" , ) __UpperCAmelCase : List[str] = True else: __UpperCAmelCase : int = load_wavaveca_layer(a__ , a__ , a__ ) if not is_used: unused_weights.append(a__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = full_name.split("""conv_layers.""" )[-1] __UpperCAmelCase : str = name.split(""".""" ) __UpperCAmelCase : Any = int(items[0] ) __UpperCAmelCase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCAmelCase : List[str] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCAmelCase : List[str] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __UpperCAmelCase : Optional[Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCAmelCase : List[Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(a__ ) @torch.no_grad() def lowerCamelCase ( _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Tuple=None , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Dict=True , _UpperCamelCase : int=False ) -> Optional[Any]: '''simple docstring''' if config_path is not None: __UpperCAmelCase : Dict = WavaVecaConfig.from_pretrained(a__ ) else: __UpperCAmelCase : Tuple = WavaVecaConfig() if is_seq_class: __UpperCAmelCase : List[Any] = read_txt_into_dict(a__ ) __UpperCAmelCase : List[Any] = idalabel __UpperCAmelCase : int = WavaVecaForSequenceClassification(a__ ) __UpperCAmelCase : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=a__ , return_attention_mask=a__ , ) feature_extractor.save_pretrained(a__ ) elif is_finetuned: if dict_path: __UpperCAmelCase : str = Dictionary.load(a__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCAmelCase : Tuple = target_dict.pad_index __UpperCAmelCase : str = target_dict.bos_index __UpperCAmelCase : List[str] = target_dict.eos_index __UpperCAmelCase : Tuple = len(target_dict.symbols ) __UpperCAmelCase : List[Any] = os.path.join(a__ , """vocab.json""" ) if not os.path.isdir(a__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(a__ ) ) return os.makedirs(a__ , exist_ok=a__ ) __UpperCAmelCase : Any = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[str] = 1 with open(a__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(a__ , a__ ) __UpperCAmelCase : Tuple = WavaVecaCTCTokenizer( a__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=a__ , ) __UpperCAmelCase : Optional[int] = True if config.feat_extract_norm == """layer""" else False __UpperCAmelCase : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=a__ , return_attention_mask=a__ , ) __UpperCAmelCase : List[str] = WavaVecaProcessor(feature_extractor=a__ , tokenizer=a__ ) processor.save_pretrained(a__ ) __UpperCAmelCase : int = WavaVecaForCTC(a__ ) else: __UpperCAmelCase : Union[str, Any] = WavaVecaForPreTraining(a__ ) if is_finetuned or is_seq_class: __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __UpperCAmelCase : List[str] = argparse.Namespace(task="""audio_pretraining""" ) __UpperCAmelCase : Union[str, Any] = fairseq.tasks.setup_task(a__ ) __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=a__ ) __UpperCAmelCase : Union[str, Any] = model[0].eval() recursively_load_weights(a__ , a__ , not is_finetuned ) hf_wavavec.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) UpperCAmelCase : Optional[Any] = parser.parse_args() UpperCAmelCase : Union[str, Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
115
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _A = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
122
0
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class lowerCamelCase_: '''simple docstring''' def snake_case__ ( self , lowerCamelCase__ ): raise NotImplementedError() def snake_case__ ( self ): raise NotImplementedError() class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ = False , **lowerCamelCase__ ): _lowerCamelCase = tokenizer _lowerCamelCase = skip_prompt _lowerCamelCase = decode_kwargs # variables used in the streaming process _lowerCamelCase = [] _lowerCamelCase = 0 _lowerCamelCase = True def snake_case__ ( self , lowerCamelCase__ ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: _lowerCamelCase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: _lowerCamelCase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _lowerCamelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): _lowerCamelCase = text[self.print_len :] _lowerCamelCase = [] _lowerCamelCase = 0 # If the last token is a CJK character, we print the characters. elif len(lowerCamelCase__ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _lowerCamelCase = text[self.print_len :] self.print_len += len(lowerCamelCase__ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _lowerCamelCase = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(lowerCamelCase__ ) self.on_finalized_text(lowerCamelCase__ ) def snake_case__ ( self ): # Flush the cache, if it exists if len(self.token_cache ) > 0: _lowerCamelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) _lowerCamelCase = text[self.print_len :] _lowerCamelCase = [] _lowerCamelCase = 0 else: _lowerCamelCase = '''''' _lowerCamelCase = True self.on_finalized_text(lowerCamelCase__ , stream_end=lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = False ): print(lowerCamelCase__ , flush=lowerCamelCase__ , end='''''' if not stream_end else None ) def snake_case__ ( self , lowerCamelCase__ ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ = False , lowerCamelCase__ = None , **lowerCamelCase__ ): super().__init__(lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) _lowerCamelCase = Queue() _lowerCamelCase = None _lowerCamelCase = timeout def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = False ): self.text_queue.put(lowerCamelCase__ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ): return self def snake_case__ ( self ): _lowerCamelCase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
366
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=3 , lowerCamelCase__=3_2 , lowerCamelCase__=3 , lowerCamelCase__=1_0 , lowerCamelCase__=[1_0, 2_0, 3_0, 4_0] , lowerCamelCase__=[1, 1, 2, 1] , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="relu" , lowerCamelCase__=3 , lowerCamelCase__=None , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = image_size _lowerCamelCase = num_channels _lowerCamelCase = embeddings_size _lowerCamelCase = hidden_sizes _lowerCamelCase = depths _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = hidden_act _lowerCamelCase = num_labels _lowerCamelCase = scope _lowerCamelCase = len(lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = self.get_config() return config, pixel_values def snake_case__ ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = FlaxRegNetModel(config=lowerCamelCase__ ) _lowerCamelCase = model(lowerCamelCase__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = self.num_labels _lowerCamelCase = FlaxRegNetForImageClassification(config=lowerCamelCase__ ) _lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self ): _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class lowerCamelCase_( A__, unittest.TestCase ): '''simple docstring''' lowercase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowercase__ : List[Any] = False lowercase__ : Tuple = False lowercase__ : Union[str, Any] = False def snake_case__ ( self ): _lowerCamelCase = FlaxRegNetModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def snake_case__ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self ): return def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def snake_case__ ( self ): pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def snake_case__ ( self ): pass def snake_case__ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(lowerCamelCase__ ) _lowerCamelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def snake_case__ ( self ): def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = model_class(lowerCamelCase__ ) _lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) _lowerCamelCase = model_class(lowerCamelCase__ ) @jax.jit def model_jitted(lowerCamelCase__ , **lowerCamelCase__ ): return model(pixel_values=lowerCamelCase__ , **lowerCamelCase__ ) with self.subTest('''JIT Enabled''' ): _lowerCamelCase = model_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _lowerCamelCase = model_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase_( ) -> Optional[Any]: _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__ ( self ): return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def snake_case__ ( self ): _lowerCamelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='''np''' ) _lowerCamelCase = model(**lowerCamelCase__ ) # verify the logits _lowerCamelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) _lowerCamelCase = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) )
73
0
"""simple docstring""" import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = tempfile.mkdtemp() lowerCAmelCase : Optional[int] = 8 # DPR tok lowerCAmelCase : Dict = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) lowerCAmelCase : Dict = os.path.join(snake_case__ , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok lowerCAmelCase : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowerCAmelCase : Optional[int] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase : List[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase : str = {"unk_token": "<unk>"} lowerCAmelCase : int = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) lowerCAmelCase : int = os.path.join(snake_case__ , BART_VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase : Dict = os.path.join(snake_case__ , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def lowercase__ ( self ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def lowercase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) @require_tokenizers def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = os.path.join(self.tmpdirname , "rag_tokenizer" ) lowerCAmelCase : List[Any] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) lowerCAmelCase : Optional[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(snake_case__ ) rag_tokenizer.save_pretrained(snake_case__ ) lowerCAmelCase : List[str] = RagTokenizer.from_pretrained(snake_case__ , config=snake_case__ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , snake_case__ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , snake_case__ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = RagTokenizer.from_pretrained("facebook/rag-token-nq" ) lowerCAmelCase : Dict = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] lowerCAmelCase : Union[str, Any] = tokenizer(snake_case__ ) self.assertIsNotNone(snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = RagTokenizer.from_pretrained("facebook/rag-sequence-nq" ) lowerCAmelCase : List[str] = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] lowerCAmelCase : str = tokenizer(snake_case__ ) self.assertIsNotNone(snake_case__ )
108
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters _a : Optional[int]= False _a : int= False def __UpperCAmelCase ( UpperCAmelCase_ : Namespace ) -> Optional[Any]: '''simple docstring''' return TrainCommand(UpperCAmelCase_ ) class UpperCamelCase ( lowercase ): @staticmethod def _lowercase (_A : ArgumentParser) -> Any: __snake_case : Any = parser.add_parser('train' , help='CLI tool to train a model on a task.') train_parser.add_argument( '--train_data' , type=_A , required=_A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=_A , default=0 , help='Column of the dataset csv file with example labels.') train_parser.add_argument( '--column_text' , type=_A , default=1 , help='Column of the dataset csv file with example texts.') train_parser.add_argument( '--column_id' , type=_A , default=2 , help='Column of the dataset csv file with example ids.') train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).') train_parser.add_argument('--validation_data' , type=_A , default='' , help='path to validation dataset.') train_parser.add_argument( '--validation_split' , type=_A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=_A , default='./' , help='path to saved the trained model.') train_parser.add_argument( '--task' , type=_A , default='text_classification' , help='Task to train the model on.') train_parser.add_argument( '--model' , type=_A , default='bert-base-uncased' , help='Model\'s name or path to stored model.') train_parser.add_argument('--train_batch_size' , type=_A , default=32 , help='Batch size for training.') train_parser.add_argument('--valid_batch_size' , type=_A , default=64 , help='Batch size for validation.') train_parser.add_argument('--learning_rate' , type=_A , default=3E-5 , help='Learning rate.') train_parser.add_argument('--adam_epsilon' , type=_A , default=1E-08 , help='Epsilon for Adam optimizer.') train_parser.set_defaults(func=_A) def __init__(self : int , _A : Namespace) -> Tuple: __snake_case : Optional[int] = logging.get_logger('transformers-cli/training') __snake_case : Optional[int] = 'tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=_A) __snake_case : List[Any] = args.output __snake_case : Any = args.column_label __snake_case : str = args.column_text __snake_case : Any = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": __snake_case : List[str] = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") __snake_case : List[Any] = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case : List[str] = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") __snake_case : Dict = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case : List[str] = args.validation_split __snake_case : str = args.train_batch_size __snake_case : Any = args.valid_batch_size __snake_case : Union[str, Any] = args.learning_rate __snake_case : str = args.adam_epsilon def _lowercase (self : List[str]) -> str: if self.framework == "tf": return self.run_tf() return self.run_torch() def _lowercase (self : str) -> int: raise NotImplementedError def _lowercase (self : Union[str, Any]) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
172
0
from __future__ import annotations def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = get_failure_array(__lowerCamelCase ) # 2) Step through text searching for pattern _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = 0, 0 # index into text, pattern while i < len(__lowerCamelCase ): if pattern[j] == text[i]: if j == (len(__lowerCamelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _SCREAMING_SNAKE_CASE : Union[str, Any] = failure[j - 1] continue i += 1 return False def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = [0] _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 _SCREAMING_SNAKE_CASE : int = 1 while j < len(__lowerCamelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _SCREAMING_SNAKE_CASE : str = failure[i - 1] continue j += 1 failure.append(__lowerCamelCase ) return failure if __name__ == "__main__": # Test 1) UpperCamelCase__ ='abc1abc12' UpperCamelCase__ ='alskfjaldsabc1abc1abc12k23adsfabcabc' UpperCamelCase__ ='alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCamelCase__ ='ABABX' UpperCamelCase__ ='ABABZABABYABABX' assert kmp(pattern, text) # Test 3) UpperCamelCase__ ='AAAB' UpperCamelCase__ ='ABAAAAAB' assert kmp(pattern, text) # Test 4) UpperCamelCase__ ='abcdabcy' UpperCamelCase__ ='abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) UpperCamelCase__ ='aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
325
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowerCAmelCase__( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , __lowerCamelCase = 1_2_8 , __lowerCamelCase = 2_5_6 , __lowerCamelCase = 2000.0 , __lowerCamelCase = 7_6_8 , __lowerCamelCase = 1_2 , __lowerCamelCase = 1_2 , __lowerCamelCase = 6_4 , __lowerCamelCase = 2_0_4_8 , __lowerCamelCase = 0.1 , ) -> int: super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.Sequential( nn.Linear(__lowerCamelCase , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , ) _SCREAMING_SNAKE_CASE : str = nn.Embedding(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(p=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList() for lyr_num in range(__lowerCamelCase ): # FiLM conditional T5 decoder _SCREAMING_SNAKE_CASE : Optional[int] = DecoderLayer(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) self.decoders.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = TaLayerNorm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = nn.Dropout(p=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _SCREAMING_SNAKE_CASE : Tuple = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _SCREAMING_SNAKE_CASE : str = self.conditioning_emb(__lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _SCREAMING_SNAKE_CASE : Tuple = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _SCREAMING_SNAKE_CASE : Optional[int] = torch.broadcast_to( torch.arange(__lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.position_encoding(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.continuous_inputs_projection(__lowerCamelCase ) inputs += position_encodings _SCREAMING_SNAKE_CASE : Any = self.dropout(__lowerCamelCase ) # decoder: No padding present. _SCREAMING_SNAKE_CASE : Any = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _SCREAMING_SNAKE_CASE : List[str] = [(x, self.encoder_decoder_mask(__lowerCamelCase , __lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings _SCREAMING_SNAKE_CASE : Tuple = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _SCREAMING_SNAKE_CASE : Optional[Any] = lyr( __lowerCamelCase , conditioning_emb=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , )[0] _SCREAMING_SNAKE_CASE : int = self.decoder_norm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self.post_dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = self.spec_out(__lowerCamelCase ) return spec_out class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> Dict: super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase ) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = self.layer[0]( __lowerCamelCase , conditioning_emb=__lowerCamelCase , attention_mask=__lowerCamelCase , ) if encoder_hidden_states is not None: _SCREAMING_SNAKE_CASE : str = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _SCREAMING_SNAKE_CASE : Tuple = self.layer[1]( __lowerCamelCase , key_value_states=__lowerCamelCase , attention_mask=__lowerCamelCase , ) # Apply Film Conditional Feed Forward layer _SCREAMING_SNAKE_CASE : Optional[Any] = self.layer[-1](__lowerCamelCase , __lowerCamelCase ) return (hidden_states,) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]: # pre_self_attention_layer_norm _SCREAMING_SNAKE_CASE : int = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: _SCREAMING_SNAKE_CASE : Any = self.FiLMLayer(__lowerCamelCase , __lowerCamelCase ) # Self-attention block _SCREAMING_SNAKE_CASE : Optional[int] = self.attention(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: super().__init__() _SCREAMING_SNAKE_CASE : Optional[Any] = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> List[Any]: _SCREAMING_SNAKE_CASE : Tuple = self.layer_norm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.attention( __lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + self.dropout(__lowerCamelCase ) return layer_output class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Tuple = TaDenseGatedActDense(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.film(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = self.DenseReluDense(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = NewGELUActivation() def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : Dict = self.act(self.wi_a(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Dict = self.wi_a(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = hidden_gelu * hidden_linear _SCREAMING_SNAKE_CASE : Optional[int] = self.dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = self.wo(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> int: super().__init__() _SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : str = eps def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[Any]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _SCREAMING_SNAKE_CASE : Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _SCREAMING_SNAKE_CASE : str = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def UpperCamelCase_ ( self , __lowerCamelCase ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(__lowerCamelCase , 3.0 )) )) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Any = nn.Linear(__lowerCamelCase , out_features * 2 , bias=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : List[Any] = self.scale_bias(__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = torch.chunk(__lowerCamelCase , 2 , -1 ) _SCREAMING_SNAKE_CASE : Optional[int] = x * (1 + scale) + shift return x
325
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase: int = logging.get_logger(__name__) _UpperCamelCase: Dict = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class a__ ( UpperCamelCase__ ): _lowerCamelCase = 'gpt_neox_japanese' def __init__( self : str, lowerCAmelCase : List[Any]=32000, lowerCAmelCase : List[Any]=2560, lowerCAmelCase : str=32, lowerCAmelCase : List[Any]=32, lowerCAmelCase : List[str]=4, lowerCAmelCase : Dict="gelu", lowerCAmelCase : Dict=1.00, lowerCAmelCase : Optional[int]=10000, lowerCAmelCase : Dict=2048, lowerCAmelCase : List[str]=0.02, lowerCAmelCase : List[str]=1e-5, lowerCAmelCase : List[str]=True, lowerCAmelCase : List[str]=31996, lowerCAmelCase : Tuple=31999, lowerCAmelCase : List[Any]=0.1, lowerCAmelCase : int=0.0, **lowerCAmelCase : str, ) -> Union[str, Any]: super().__init__(bos_token_id=__lowerCamelCase, eos_token_id=__lowerCamelCase, **__lowerCamelCase ) lowercase : Optional[Any] = vocab_size lowercase : List[str] = max_position_embeddings lowercase : Dict = hidden_size lowercase : List[Any] = num_hidden_layers lowercase : Optional[Any] = num_attention_heads lowercase : Union[str, Any] = intermediate_multiple_size lowercase : str = hidden_act lowercase : Optional[int] = rotary_pct lowercase : Optional[Any] = rotary_emb_base lowercase : Optional[int] = initializer_range lowercase : int = layer_norm_eps lowercase : Dict = use_cache lowercase : str = attention_dropout lowercase : Optional[int] = hidden_dropout
255
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = hf_hub_download( repo_id='''nateraw/video-demo''',filename='''archery.mp4''',repo_type='''dataset''' ) A__ = VideoClassificationPipeline(model=__lowerCamelCase,image_processor=__lowerCamelCase,top_k=2 ) A__ = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): for example in examples: A__ = video_classifier(__lowerCamelCase ) self.assertEqual( __lowerCamelCase,[ {'''score''': ANY(__lowerCamelCase ), '''label''': ANY(__lowerCamelCase )}, {'''score''': ANY(__lowerCamelCase ), '''label''': ANY(__lowerCamelCase )}, ],) @require_torch def UpperCamelCase ( self ): A__ = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' A__ = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10},crop_size={'''height''': 10, '''width''': 10} ) A__ = pipeline( '''video-classification''',model=__lowerCamelCase,feature_extractor=__lowerCamelCase,frame_sampling_rate=4 ) A__ = hf_hub_download(repo_id='''nateraw/video-demo''',filename='''archery.mp4''',repo_type='''dataset''' ) A__ = video_classifier(__lowerCamelCase,top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase,decimals=4 ),[{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}],) A__ = video_classifier( [ video_file_path, video_file_path, ],top_k=2,) self.assertEqual( nested_simplify(__lowerCamelCase,decimals=4 ),[ [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], ],) @require_tf def UpperCamelCase ( self ): pass
193
0
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =CustomTokenizer pass
257
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =42 class UpperCamelCase__ ( nn.Module ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =(16, 32, 96, 256) UpperCAmelCase_ =jnp.floataa def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) SCREAMING_SNAKE_CASE_ = [] for i in range(len(self.block_out_channels ) - 1 ): SCREAMING_SNAKE_CASE_ = self.block_out_channels[i] SCREAMING_SNAKE_CASE_ = self.block_out_channels[i + 1] SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_A ) SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_A ) SCREAMING_SNAKE_CASE_ = blocks SCREAMING_SNAKE_CASE_ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.conv_in(_A ) SCREAMING_SNAKE_CASE_ = nn.silu(_A ) for block in self.blocks: SCREAMING_SNAKE_CASE_ = block(_A ) SCREAMING_SNAKE_CASE_ = nn.silu(_A ) SCREAMING_SNAKE_CASE_ = self.conv_out(_A ) return embedding @flax_register_to_config class UpperCamelCase__ ( nn.Module , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =32 UpperCAmelCase_ =4 UpperCAmelCase_ =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCAmelCase_ =False UpperCAmelCase_ =(320, 640, 1_280, 1_280) UpperCAmelCase_ =2 UpperCAmelCase_ =8 UpperCAmelCase_ =None UpperCAmelCase_ =1_280 UpperCAmelCase_ =0.0 UpperCAmelCase_ =False UpperCAmelCase_ =jnp.floataa UpperCAmelCase_ =True UpperCAmelCase_ =0 UpperCAmelCase_ ="rgb" UpperCAmelCase_ =(16, 32, 96, 256) def _UpperCamelCase ( self , _A ) -> FrozenDict: # init input tensors SCREAMING_SNAKE_CASE_ = (1, self.in_channels, self.sample_size, self.sample_size) SCREAMING_SNAKE_CASE_ = jnp.zeros(_A , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ = jnp.ones((1,) , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ = (1, 3, self.sample_size * 8, self.sample_size * 8) SCREAMING_SNAKE_CASE_ = jnp.zeros(_A , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = jax.random.split(_A ) SCREAMING_SNAKE_CASE_ = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_A , _A , _A , _A , _A )["params"] def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.block_out_channels SCREAMING_SNAKE_CASE_ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. SCREAMING_SNAKE_CASE_ = self.num_attention_heads or self.attention_head_dim # input SCREAMING_SNAKE_CASE_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time SCREAMING_SNAKE_CASE_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) SCREAMING_SNAKE_CASE_ = FlaxTimestepEmbedding(_A , dtype=self.dtype ) SCREAMING_SNAKE_CASE_ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) SCREAMING_SNAKE_CASE_ = self.only_cross_attention if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = (num_attention_heads,) * len(self.down_block_types ) # down SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = block_out_channels[0] SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) for i, down_block_type in enumerate(self.down_block_types ): SCREAMING_SNAKE_CASE_ = output_channel SCREAMING_SNAKE_CASE_ = block_out_channels[i] SCREAMING_SNAKE_CASE_ = i == len(_A ) - 1 if down_block_type == "CrossAttnDownBlock2D": SCREAMING_SNAKE_CASE_ = FlaxCrossAttnDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE_ = FlaxDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_A ) for _ in range(self.layers_per_block ): SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) if not is_final_block: SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) SCREAMING_SNAKE_CASE_ = down_blocks SCREAMING_SNAKE_CASE_ = controlnet_down_blocks # mid SCREAMING_SNAKE_CASE_ = block_out_channels[-1] SCREAMING_SNAKE_CASE_ = FlaxUNetMidBlockaDCrossAttn( in_channels=_A , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _A , _A , _A , _A , _A = 1.0 , _A = True , _A = False , ) -> Union[FlaxControlNetOutput, Tuple]: SCREAMING_SNAKE_CASE_ = self.controlnet_conditioning_channel_order if channel_order == "bgr": SCREAMING_SNAKE_CASE_ = jnp.flip(_A , axis=1 ) # 1. time if not isinstance(_A , jnp.ndarray ): SCREAMING_SNAKE_CASE_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_A , jnp.ndarray ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE_ = timesteps.astype(dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ = jnp.expand_dims(_A , 0 ) SCREAMING_SNAKE_CASE_ = self.time_proj(_A ) SCREAMING_SNAKE_CASE_ = self.time_embedding(_A ) # 2. pre-process SCREAMING_SNAKE_CASE_ = jnp.transpose(_A , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE_ = self.conv_in(_A ) SCREAMING_SNAKE_CASE_ = jnp.transpose(_A , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE_ = self.controlnet_cond_embedding(_A ) sample += controlnet_cond # 3. down SCREAMING_SNAKE_CASE_ = (sample,) for down_block in self.down_blocks: if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = down_block(_A , _A , _A , deterministic=not train ) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = down_block(_A , _A , deterministic=not train ) down_block_res_samples += res_samples # 4. mid SCREAMING_SNAKE_CASE_ = self.mid_block(_A , _A , _A , deterministic=not train ) # 5. contronet blocks SCREAMING_SNAKE_CASE_ = () for down_block_res_sample, controlnet_block in zip(_A , self.controlnet_down_blocks ): SCREAMING_SNAKE_CASE_ = controlnet_block(_A ) controlnet_down_block_res_samples += (down_block_res_sample,) SCREAMING_SNAKE_CASE_ = controlnet_down_block_res_samples SCREAMING_SNAKE_CASE_ = self.controlnet_mid_block(_A ) # 6. scaling SCREAMING_SNAKE_CASE_ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_A , mid_block_res_sample=_A )
257
1
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowerCamelCase ) , "Tatoeba directory does not exist." ) class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : Dict = tempfile.mkdtemp() return TatoebaConverter(save_dir=__magic_name__ ) @slow def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Dict = self.resolver.write_model_card('''opus-mt-he-en''', dry_run=__magic_name__ ) assert mmeta["long_pair"] == "heb-eng"
201
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowercase__ = logging.getLogger() def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = {} _lowerCamelCase : List[Any] = os.path.join(lowercase__ , 'all_results.json' ) if os.path.exists(lowercase__ ): with open(lowercase__ , 'r' ) as f: _lowerCamelCase : List[Any] = json.load(lowercase__ ) else: raise ValueError(f'''can\'t find {path}''' ) return results lowercase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def A_ ( self ): import xla_spawn _lowerCamelCase : List[Any] = self.get_auto_remove_tmp_dir() _lowerCamelCase : List[Any] = F''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(lowercase , 'argv' , lowercase ): _lowerCamelCase : Dict = time() xla_spawn.main() _lowerCamelCase : Any = time() _lowerCamelCase : Optional[int] = get_results(lowercase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def A_ ( self ): import xla_spawn _lowerCamelCase : Tuple = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(lowercase , 'argv' , lowercase ): xla_spawn.main()
96
0
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __snake_case ( SCREAMING_SNAKE_CASE__ : int ) -> str: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = SwinConfig() _UpperCAmelCase : Dict = swin_name.split("_" ) _UpperCAmelCase : Tuple = name_split[1] _UpperCAmelCase : Any = int(name_split[4] ) _UpperCAmelCase : Optional[int] = int(name_split[3][-1] ) if model_size == "tiny": _UpperCAmelCase : Optional[int] = 96 _UpperCAmelCase : Dict = (2, 2, 6, 2) _UpperCAmelCase : Optional[Any] = (3, 6, 12, 24) elif model_size == "small": _UpperCAmelCase : Any = 96 _UpperCAmelCase : List[str] = (2, 2, 18, 2) _UpperCAmelCase : Any = (3, 6, 12, 24) elif model_size == "base": _UpperCAmelCase : Tuple = 128 _UpperCAmelCase : List[Any] = (2, 2, 18, 2) _UpperCAmelCase : Tuple = (4, 8, 16, 32) else: _UpperCAmelCase : Any = 192 _UpperCAmelCase : Tuple = (2, 2, 18, 2) _UpperCAmelCase : List[Any] = (6, 12, 24, 48) if "in22k" in swin_name: _UpperCAmelCase : str = 21_841 else: _UpperCAmelCase : List[str] = 1_000 _UpperCAmelCase : List[str] = "huggingface/label-files" _UpperCAmelCase : Union[str, Any] = "imagenet-1k-id2label.json" _UpperCAmelCase : str = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase : List[Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} _UpperCAmelCase : Tuple = idalabel _UpperCAmelCase : int = {v: k for k, v in idalabel.items()} _UpperCAmelCase : str = img_size _UpperCAmelCase : str = num_classes _UpperCAmelCase : Optional[int] = embed_dim _UpperCAmelCase : Union[str, Any] = depths _UpperCAmelCase : int = num_heads _UpperCAmelCase : Optional[int] = window_size return config def __snake_case ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Union[str, Any]: '''simple docstring''' if "patch_embed.proj" in name: _UpperCAmelCase : Tuple = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: _UpperCAmelCase : Optional[Any] = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: _UpperCAmelCase : List[Any] = "encoder." + name if "attn.proj" in name: _UpperCAmelCase : Union[str, Any] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _UpperCAmelCase : Dict = name.replace("attn" , "attention.self" ) if "norm1" in name: _UpperCAmelCase : Dict = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _UpperCAmelCase : Dict = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _UpperCAmelCase : List[Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _UpperCAmelCase : str = name.replace("mlp.fc2" , "output.dense" ) if name == "norm.weight": _UpperCAmelCase : str = "layernorm.weight" if name == "norm.bias": _UpperCAmelCase : Optional[int] = "layernorm.bias" if "head" in name: _UpperCAmelCase : Tuple = name.replace("head" , "classifier" ) else: _UpperCAmelCase : List[Any] = "swin." + name return name def __snake_case ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): _UpperCAmelCase : Optional[int] = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "mask" in key: continue elif "qkv" in key: _UpperCAmelCase : Optional[Any] = key.split("." ) _UpperCAmelCase : Dict = int(key_split[1] ) _UpperCAmelCase : List[Any] = int(key_split[3] ) _UpperCAmelCase : Union[str, Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _UpperCAmelCase : List[str] = val[:dim, :] _UpperCAmelCase : Tuple = val[ dim : dim * 2, : ] _UpperCAmelCase : int = val[-dim:, :] else: _UpperCAmelCase : int = val[ :dim ] _UpperCAmelCase : str = val[ dim : dim * 2 ] _UpperCAmelCase : Optional[int] = val[ -dim: ] else: _UpperCAmelCase : List[str] = val return orig_state_dict def __snake_case ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = timm.create_model(SCREAMING_SNAKE_CASE__ , pretrained=SCREAMING_SNAKE_CASE__ ) timm_model.eval() _UpperCAmelCase : List[str] = get_swin_config(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : int = SwinForImageClassification(SCREAMING_SNAKE_CASE__ ) model.eval() _UpperCAmelCase : Optional[Any] = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("microsoft/{}".format(swin_name.replace("_" , "-" ) ) ) _UpperCAmelCase : Any = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) _UpperCAmelCase : int = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="pt" ) _UpperCAmelCase : Tuple = timm_model(inputs["pixel_values"] ) _UpperCAmelCase : int = model(**SCREAMING_SNAKE_CASE__ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) print(f'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _lowerCAmelCase : Dict = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
202
"""simple docstring""" import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available _lowerCAmelCase : Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : __SCREAMING_SNAKE_CASE : str __SCREAMING_SNAKE_CASE : List[str] __SCREAMING_SNAKE_CASE : Optional[List[str]] @dataclass class UpperCAmelCase_ : __SCREAMING_SNAKE_CASE : List[int] __SCREAMING_SNAKE_CASE : List[int] __SCREAMING_SNAKE_CASE : Optional[List[int]] = None __SCREAMING_SNAKE_CASE : Optional[List[int]] = None class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = 'train' __SCREAMING_SNAKE_CASE : Tuple = 'dev' __SCREAMING_SNAKE_CASE : Optional[int] = 'test' class UpperCAmelCase_ : @staticmethod def snake_case_ ( A : Union[str, Any] , A : Union[Split, str] ): raise NotImplementedError @staticmethod def snake_case_ ( A : str ): raise NotImplementedError @staticmethod def snake_case_ ( A : List[InputExample] , A : List[str] , A : int , A : PreTrainedTokenizer , A : Optional[int]=False , A : List[str]="[CLS]" , A : List[Any]=1 , A : str="[SEP]" , A : int=False , A : int=False , A : Any=0 , A : List[str]=0 , A : Dict=-1_0_0 , A : str=0 , A : Optional[Any]=True , ): _UpperCAmelCase : Dict = {label: i for i, label in enumerate(A )} _UpperCAmelCase : str = [] for ex_index, example in enumerate(A ): if ex_index % 1_0_0_0_0 == 0: logger.info("Writing example %d of %d" , A , len(A ) ) _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = [] for word, label in zip(example.words , example.labels ): _UpperCAmelCase : str = tokenizer.tokenize(A ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(A ) > 0: tokens.extend(A ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(A ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. _UpperCAmelCase : List[str] = tokenizer.num_special_tokens_to_add() if len(A ) > max_seq_length - special_tokens_count: _UpperCAmelCase : List[Any] = tokens[: (max_seq_length - special_tokens_count)] _UpperCAmelCase : List[Any] = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] _UpperCAmelCase : Dict = [sequence_a_segment_id] * len(A ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: _UpperCAmelCase : str = [cls_token] + tokens _UpperCAmelCase : Dict = [pad_token_label_id] + label_ids _UpperCAmelCase : Any = [cls_token_segment_id] + segment_ids _UpperCAmelCase : int = tokenizer.convert_tokens_to_ids(A ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. _UpperCAmelCase : List[Any] = [1 if mask_padding_with_zero else 0] * len(A ) # Zero-pad up to the sequence length. _UpperCAmelCase : List[str] = max_seq_length - len(A ) if pad_on_left: _UpperCAmelCase : str = ([pad_token] * padding_length) + input_ids _UpperCAmelCase : str = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask _UpperCAmelCase : Any = ([pad_token_segment_id] * padding_length) + segment_ids _UpperCAmelCase : Dict = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(A ) == max_seq_length assert len(A ) == max_seq_length assert len(A ) == max_seq_length assert len(A ) == max_seq_length if ex_index < 5: logger.info("*** Example ***" ) logger.info("guid: %s" , example.guid ) logger.info("tokens: %s" , " ".join([str(A ) for x in tokens] ) ) logger.info("input_ids: %s" , " ".join([str(A ) for x in input_ids] ) ) logger.info("input_mask: %s" , " ".join([str(A ) for x in input_mask] ) ) logger.info("segment_ids: %s" , " ".join([str(A ) for x in segment_ids] ) ) logger.info("label_ids: %s" , " ".join([str(A ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: _UpperCAmelCase : Dict = None features.append( InputFeatures( input_ids=A , attention_mask=A , token_type_ids=A , label_ids=A ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : List[InputFeatures] __SCREAMING_SNAKE_CASE : int = nn.CrossEntropyLoss().ignore_index def __init__( self : Dict , A : TokenClassificationTask , A : str , A : PreTrainedTokenizer , A : List[str] , A : str , A : Optional[int] = None , A : List[str]=False , A : Split = Split.train , ): # Load data features from cache or dataset file _UpperCAmelCase : int = os.path.join( A , "cached_{}_{}_{}".format(mode.value , tokenizer.__class__.__name__ , str(A ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _UpperCAmelCase : List[str] = cached_features_file + ".lock" with FileLock(A ): if os.path.exists(A ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) _UpperCAmelCase : Tuple = torch.load(A ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) _UpperCAmelCase : List[str] = token_classification_task.read_examples_from_file(A , A ) # TODO clean up all this to leverage built-in features of tokenizers _UpperCAmelCase : List[Any] = token_classification_task.convert_examples_to_features( A , A , A , A , cls_token_at_end=bool(model_type in ["xlnet"] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["xlnet"] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=A , pad_on_left=bool(tokenizer.padding_side == "left" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f'Saving features into cached file {cached_features_file}' ) torch.save(self.features , A ) def __len__( self : Dict ): return len(self.features ) def __getitem__( self : List[str] , A : Optional[Any] ): return self.features[i] if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ : __SCREAMING_SNAKE_CASE : List[InputFeatures] __SCREAMING_SNAKE_CASE : int = -1_0_0 def __init__( self : Tuple , A : TokenClassificationTask , A : str , A : PreTrainedTokenizer , A : List[str] , A : str , A : Optional[int] = None , A : Optional[Any]=False , A : Split = Split.train , ): _UpperCAmelCase : Union[str, Any] = token_classification_task.read_examples_from_file(A , A ) # TODO clean up all this to leverage built-in features of tokenizers _UpperCAmelCase : List[str] = token_classification_task.convert_examples_to_features( A , A , A , A , cls_token_at_end=bool(model_type in ["xlnet"] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["xlnet"] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=A , pad_on_left=bool(tokenizer.padding_side == "left" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: _UpperCAmelCase : List[str] = tf.data.Dataset.from_generator( A , ({"input_ids": tf.intaa, "attention_mask": tf.intaa}, tf.intaa) , ( {"input_ids": tf.TensorShape([None] ), "attention_mask": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: _UpperCAmelCase : List[Any] = tf.data.Dataset.from_generator( A , ({"input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa}, tf.intaa) , ( { "input_ids": tf.TensorShape([None] ), "attention_mask": tf.TensorShape([None] ), "token_type_ids": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def snake_case_ ( self : str ): _UpperCAmelCase : Dict = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : List[Any] ): return len(self.features ) def __getitem__( self : int , A : int ): return self.features[i]
202
1
def __UpperCamelCase ( _A : int ) ->"list[int]": """simple docstring""" if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) lowerCamelCase_ =[0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 lowerCamelCase_ =1 if upper_limit > 0: lowerCamelCase_ =1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowerCamelCase__ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: __A : List[str] = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
154
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None ) -> str: if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __lowerCamelCase : int = quote(lowerCamelCase__ ) return hfh.hf_hub_url(lowerCamelCase__ , lowerCamelCase__ , repo_type='dataset' , revision=lowerCamelCase__ )
73
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=A_ ) class lowerCAmelCase__ ( A_ ): '''simple docstring''' lowerCAmelCase : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) lowerCAmelCase : ClassVar[Features] = Features({"text": Value("string" )} ) lowerCAmelCase : ClassVar[Features] = Features({"labels": ClassLabel} ) lowerCAmelCase : str = "text" lowerCAmelCase : str = "labels" def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ) -> Optional[int]: """simple docstring""" if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] ,_snake_case ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) lowercase__ : int = copy.deepcopy(self ) lowercase__ : Any = self.label_schema.copy() lowercase__ : Any = features[self.label_column] lowercase__ : int = label_schema return task_template @property def UpperCAmelCase ( self : Dict ) -> Dict[str, str]: """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
368
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase_ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = "maskformer" lowerCAmelCase : Any = {"hidden_size": "mask_feature_size"} lowerCAmelCase : Optional[int] = ["resnet", "swin"] lowerCAmelCase : str = ["detr"] def __init__( self : int ,_snake_case : int = 256 ,_snake_case : int = 256 ,_snake_case : float = 0.1 ,_snake_case : bool = False ,_snake_case : Optional[Dict] = None ,_snake_case : Optional[Dict] = None ,_snake_case : float = 0.02 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 20.0 ,_snake_case : Optional[bool] = None ,**_snake_case : Optional[Any] ,) -> Dict: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__ : Any = SwinConfig( image_size=384 ,in_channels=3 ,patch_size=4 ,embed_dim=128 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,) if isinstance(_snake_case ,_snake_case ): lowercase__ : List[str] = backbone_config.pop('''model_type''' ) lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : str = config_class.from_dict(_snake_case ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__ : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported lowercase__ : Tuple = ( decoder_config.pop('''model_type''' ) if isinstance(_snake_case ,_snake_case ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(_snake_case ,_snake_case ): lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type] lowercase__ : Optional[Any] = config_class.from_dict(_snake_case ) lowercase__ : List[Any] = backbone_config lowercase__ : List[Any] = decoder_config # main feature dimension for the model lowercase__ : List[str] = fpn_feature_size lowercase__ : int = mask_feature_size # initializer lowercase__ : str = init_std lowercase__ : str = init_xavier_std # Hungarian matcher && loss lowercase__ : Optional[int] = cross_entropy_weight lowercase__ : List[Any] = dice_weight lowercase__ : List[str] = mask_weight lowercase__ : str = use_auxiliary_loss lowercase__ : Optional[int] = no_object_weight lowercase__ : Optional[Any] = output_auxiliary_logits lowercase__ : Optional[Any] = self.decoder_config.encoder_attention_heads lowercase__ : Optional[Any] = self.decoder_config.num_hidden_layers super().__init__(**_snake_case ) @classmethod def UpperCAmelCase ( cls : Any ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" return cls( backbone_config=_snake_case ,decoder_config=_snake_case ,**_snake_case ,) def UpperCAmelCase ( self : str ) -> Dict[str, any]: """simple docstring""" lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : int = self.backbone_config.to_dict() lowercase__ : List[Any] = self.decoder_config.to_dict() lowercase__ : List[str] = self.__class__.model_type return output
302
0
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> Dict: __lowercase = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE ) __lowercase = flatten_dict(SCREAMING_SNAKE_CASE ) return flax_params def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Any: __lowercase = {} __lowercase = { 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } __lowercase = { 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __lowercase = '.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __lowercase = new_key.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __lowercase = new_key.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __lowercase = re.sub(R'layers_(\d+)' , R'layer.\1' , SCREAMING_SNAKE_CASE ) __lowercase = new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __lowercase = re.sub(R'layers_(\d+)' , R'layer.\1' , SCREAMING_SNAKE_CASE ) __lowercase = flax_dict[key] __lowercase = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __lowercase = torch.from_numpy(converted_dict[key].T ) else: __lowercase = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple=False , SCREAMING_SNAKE_CASE : Tuple=False ) -> Dict: __lowercase = get_flax_param(SCREAMING_SNAKE_CASE ) if not use_large: __lowercase = PixaStructVisionConfig() __lowercase = PixaStructTextConfig() else: __lowercase = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) __lowercase = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) __lowercase = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE ) __lowercase = PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE ) __lowercase = rename_and_convert_flax_params(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) __lowercase = AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) __lowercase = PixaStructImageProcessor() __lowercase = PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) if use_large: __lowercase = 4096 __lowercase = True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) print('Model saved in {}'.format(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""") parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
325
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = ["vqvae"] def __init__( self : int , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Mel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , mel=_UpperCAmelCase , vqvae=_UpperCAmelCase ) def a__ ( self : Tuple ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , _UpperCAmelCase ) else 10_00 @torch.no_grad() def __call__( self : str , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = None , _UpperCAmelCase : np.ndarray = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = None , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : str=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" __lowercase = steps or self.get_default_steps() self.scheduler.set_timesteps(_UpperCAmelCase ) __lowercase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __lowercase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __lowercase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_UpperCAmelCase , device=self.device , ) __lowercase = noise __lowercase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = self.mel.audio_slice_to_image(_UpperCAmelCase ) __lowercase = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) __lowercase = (input_image / 2_55) * 2 - 1 __lowercase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __lowercase = self.vqvae.encode(torch.unsqueeze(_UpperCAmelCase , 0 ) ).latent_dist.sample( generator=_UpperCAmelCase )[0] __lowercase = self.vqvae.config.scaling_factor * input_images if start_step > 0: __lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , self.scheduler.timesteps[start_step - 1] ) __lowercase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __lowercase = int(mask_start_secs * pixels_per_second ) __lowercase = int(mask_end_secs * pixels_per_second ) __lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _UpperCAmelCase ): __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )['sample'] else: __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample'] if isinstance(self.scheduler , _UpperCAmelCase ): __lowercase = self.scheduler.step( model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample'] else: __lowercase = self.scheduler.step( model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample'] if mask is not None: if mask_start > 0: __lowercase = mask[:, step, :, :mask_start] if mask_end > 0: __lowercase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __lowercase = 1 / self.vqvae.config.scaling_factor * images __lowercase = self.vqvae.decode(_UpperCAmelCase )['sample'] __lowercase = (images / 2 + 0.5).clamp(0 , 1 ) __lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __lowercase = (images * 2_55).round().astype('uint8' ) __lowercase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_UpperCAmelCase , mode='RGB' ).convert('L' ) for _ in images) ) __lowercase = [self.mel.image_to_audio(_UpperCAmelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_UpperCAmelCase ) ) @torch.no_grad() def a__ ( self : Any , _UpperCAmelCase : List[Image.Image] , _UpperCAmelCase : int = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , _UpperCAmelCase ) self.scheduler.set_timesteps(_UpperCAmelCase ) __lowercase = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) __lowercase = (sample / 2_55) * 2 - 1 __lowercase = torch.Tensor(_UpperCAmelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __lowercase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __lowercase = self.scheduler.alphas_cumprod[t] __lowercase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __lowercase = 1 - alpha_prod_t __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample'] __lowercase = (1 - alpha_prod_t_prev) ** 0.5 * model_output __lowercase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __lowercase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def a__ ( _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : float ) -> torch.Tensor: """simple docstring""" __lowercase = acos(torch.dot(torch.flatten(_UpperCAmelCase ) , torch.flatten(_UpperCAmelCase ) ) / torch.norm(_UpperCAmelCase ) / torch.norm(_UpperCAmelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(_UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(_UpperCAmelCase )
325
1
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCamelCase_ = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 13_10_72, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, } def __magic_name__ ( __a : int , __a : Tuple ): '''simple docstring''' return torch.atana(__a , __a ) / math.pi * 2 def __magic_name__ ( __a : int ): '''simple docstring''' UpperCamelCase__ = torch.sin(t * math.pi / 2 ) ** 2 UpperCamelCase__ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(__a , __a ) class __A( __lowerCamelCase ): """simple docstring""" pass class __A( nn.Module ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ ): super().__init__() UpperCamelCase__ = DiffusionAttnUnetaD(SCREAMING_SNAKE_CASE_ , n_attn_layers=4 ) UpperCamelCase__ = deepcopy(self.diffusion ) UpperCamelCase__ = torch.quasirandom.SobolEngine(1 , scramble=SCREAMING_SNAKE_CASE_ ) def __magic_name__ ( __a : Dict ): '''simple docstring''' UpperCamelCase__ = MODELS_MAP[model_name]["""url"""] os.system(f"wget {url} ./" ) return f"./{model_name}.ckpt" lowerCamelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCamelCase_ = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCamelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCamelCase_ = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCamelCase_ = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCamelCase_ = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def __magic_name__ ( __a : Tuple ): '''simple docstring''' if name.startswith("""skip""" ): return name.replace("""skip""" , RES_CONV_MAP["""skip"""] ) # name has to be of format main.{digit} if not name.startswith("""main.""" ): raise ValueError(f"ResConvBlock error with {name}" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __magic_name__ ( __a : List[str] ): '''simple docstring''' for key, value in ATTN_MAP.items(): if name.startswith(__a ) and not isinstance(__a , __a ): return name.replace(__a , __a ) elif name.startswith(__a ): return [name.replace(__a , __a ) for v in value] raise ValueError(f"Attn error with {name}" ) def __magic_name__ ( __a : Any , __a : Union[str, Any]=13 ): '''simple docstring''' UpperCamelCase__ = input_string if string.split(""".""" )[0] == "timestep_embed": return string.replace("""timestep_embed""" , """time_proj""" ) UpperCamelCase__ = 0 if string.startswith("""net.3.""" ): depth += 1 UpperCamelCase__ = string[6:] elif string.startswith("""net.""" ): UpperCamelCase__ = string[4:] while string.startswith("""main.7.""" ): depth += 1 UpperCamelCase__ = string[7:] if string.startswith("""main.""" ): UpperCamelCase__ = string[5:] # mid block if string[:2].isdigit(): UpperCamelCase__ = string[:2] UpperCamelCase__ = string[2:] else: UpperCamelCase__ = string[0] UpperCamelCase__ = string[1:] if depth == max_depth: UpperCamelCase__ = MID_NUM_TO_LAYER[layer_num] UpperCamelCase__ = """mid_block""" elif depth > 0 and int(__a ) < 7: UpperCamelCase__ = DOWN_NUM_TO_LAYER[layer_num] UpperCamelCase__ = f"down_blocks.{depth}" elif depth > 0 and int(__a ) > 7: UpperCamelCase__ = UP_NUM_TO_LAYER[layer_num] UpperCamelCase__ = f"up_blocks.{max_depth - depth - 1}" elif depth == 0: UpperCamelCase__ = DEPTH_0_TO_LAYER[layer_num] UpperCamelCase__ = f"up_blocks.{max_depth - 1}" if int(__a ) > 3 else """down_blocks.0""" if not string_left.startswith(""".""" ): raise ValueError(f"Naming error with {input_string} and string_left: {string_left}." ) UpperCamelCase__ = string_left[1:] if "resnets" in new_layer: UpperCamelCase__ = convert_resconv_naming(__a ) elif "attentions" in new_layer: UpperCamelCase__ = convert_attn_naming(__a ) UpperCamelCase__ = new_string_left if not isinstance(__a , __a ): UpperCamelCase__ = prefix + """.""" + new_layer + """.""" + string_left else: UpperCamelCase__ = [prefix + """.""" + new_layer + """.""" + s for s in string_left] return new_string def __magic_name__ ( __a : int ): '''simple docstring''' UpperCamelCase__ = {} for k, v in state_dict.items(): if k.endswith("""kernel""" ): # up- and downsample layers, don't have trainable weights continue UpperCamelCase__ = rename(__a ) # check if we need to transform from Conv => Linear for attention if isinstance(__a , __a ): UpperCamelCase__ = transform_conv_attns(__a , __a , __a ) else: UpperCamelCase__ = v return new_state_dict def __magic_name__ ( __a : Union[str, Any] , __a : Optional[Any] , __a : List[str] ): '''simple docstring''' if len(__a ) == 1: if len(v.shape ) == 3: # weight UpperCamelCase__ = v[:, :, 0] else: # bias UpperCamelCase__ = v else: # qkv matrices UpperCamelCase__ = v.shape[0] UpperCamelCase__ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: UpperCamelCase__ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: UpperCamelCase__ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __magic_name__ ( __a : List[str] ): '''simple docstring''' UpperCamelCase__ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) UpperCamelCase__ = args.model_path.split("""/""" )[-1].split(""".""" )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f"Make sure to provide one of the official model names {MODELS_MAP.keys()}" UpperCamelCase__ = download(__a ) UpperCamelCase__ = MODELS_MAP[model_name]["""sample_rate"""] UpperCamelCase__ = MODELS_MAP[model_name]["""sample_size"""] UpperCamelCase__ = Object() UpperCamelCase__ = sample_size UpperCamelCase__ = sample_rate UpperCamelCase__ = 0 UpperCamelCase__ = UNetaDModel(sample_size=__a , sample_rate=__a ) UpperCamelCase__ = diffusers_model.state_dict() UpperCamelCase__ = DiffusionUncond(__a ) orig_model.load_state_dict(torch.load(args.model_path , map_location=__a )["""state_dict"""] ) UpperCamelCase__ = orig_model.diffusion_ema.eval() UpperCamelCase__ = orig_model.state_dict() UpperCamelCase__ = rename_orig_weights(__a ) UpperCamelCase__ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) UpperCamelCase__ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(__a ) == 0, f"Problem with {renamed_minus_diffusers}" assert all(k.endswith("""kernel""" ) for k in list(__a ) ), f"Problem with {diffusers_minus_renamed}" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f"Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}" if key == "time_proj.weight": UpperCamelCase__ = value.squeeze() UpperCamelCase__ = value diffusers_model.load_state_dict(__a ) UpperCamelCase__ = 100 UpperCamelCase__ = 33 UpperCamelCase__ = IPNDMScheduler(num_train_timesteps=__a ) UpperCamelCase__ = torch.manual_seed(__a ) UpperCamelCase__ = torch.randn([1, 2, config.sample_size] , generator=__a ).to(__a ) UpperCamelCase__ = torch.linspace(1 , 0 , steps + 1 , device=__a )[:-1] UpperCamelCase__ = get_crash_schedule(__a ) UpperCamelCase__ = DanceDiffusionPipeline(unet=__a , scheduler=__a ) UpperCamelCase__ = torch.manual_seed(33 ) UpperCamelCase__ = pipe(num_inference_steps=__a , generator=__a ).audios UpperCamelCase__ = sampling.iplms_sample(__a , __a , __a , {} ) UpperCamelCase__ = generated.clamp(-1 , 1 ) UpperCamelCase__ = (generated - audio).abs().sum() UpperCamelCase__ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("""Diff sum""" , __a ) print("""Diff max""" , __a ) assert diff_max < 1E-3, f"Diff max: {diff_max} is too much :-/" print(f"Conversion for {model_name} successful!" ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCamelCase_ = parser.parse_args() main(args)
178
def __magic_name__ ( __a : int , __a : int ): '''simple docstring''' while a != 0: UpperCamelCase__ , UpperCamelCase__ = b % a, a return b def __magic_name__ ( __a : int , __a : int ): '''simple docstring''' if gcd(__a , __a ) != 1: UpperCamelCase__ = f"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(__a ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1, 0, a UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0, 1, m while va != 0: UpperCamelCase__ = ua // va UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
178
1
from __future__ import annotations lowerCAmelCase__ : List[Any] =10 def __lowercase ( a__ ) -> list[int]: __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = max(a__ ) while placement <= max_digit: # declare and initialize empty buckets __SCREAMING_SNAKE_CASE = [[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: __SCREAMING_SNAKE_CASE = int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints __SCREAMING_SNAKE_CASE = 0 for b in range(a__ ): for i in buckets[b]: __SCREAMING_SNAKE_CASE = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
257
def __lowercase ( a__=2_81_23 ) -> List[str]: __SCREAMING_SNAKE_CASE = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i __SCREAMING_SNAKE_CASE = set() __SCREAMING_SNAKE_CASE = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(a__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
257
1
"""simple docstring""" def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int ): return int((input_a, input_a).count(1 ) != 0 ) def lowerCamelCase_ (): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
68
"""simple docstring""" import qiskit def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int ): _UpperCAmelCase : List[str] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase : Union[str, Any] = qiskit.QuantumCircuit(UpperCamelCase__ , UpperCamelCase__ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase : Tuple = qiskit.execute(UpperCamelCase__ , UpperCamelCase__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCamelCase__ ) if __name__ == "__main__": _lowerCAmelCase :str = single_qubit_measure(2, 2) print(f"Total count for various states are: {counts}")
68
1
"""simple docstring""" import math from numpy import inf from scipy.integrate import quad def __magic_name__ ( __snake_case : float ) -> float: if num <= 0: raise ValueError("math domain error" ) return quad(__snake_case , 0 , __snake_case , args=(__snake_case) )[0] def __magic_name__ ( __snake_case : float , __snake_case : float ) -> float: return math.pow(__snake_case , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
202
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def __magic_name__ ( __snake_case : Dict , __snake_case : Optional[Any]=False ) -> Tuple: lowercase : Union[str, Any] = OmegaConf.load(__snake_case ) if display: print(yaml.dump(OmegaConf.to_container(__snake_case ) ) ) return config def __magic_name__ ( __snake_case : Dict , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]=None ) -> Tuple: if conf_path is None: lowercase : List[Any] = "./model_checkpoints/vqgan_only.yaml" lowercase : Tuple = load_config(__snake_case , display=__snake_case ) lowercase : List[Any] = VQModel(**config.model.params ) if ckpt_path is None: lowercase : List[str] = "./model_checkpoints/vqgan_only.pt" lowercase : Optional[int] = torch.load(__snake_case , map_location=__snake_case ) if ".ckpt" in ckpt_path: lowercase : str = sd["state_dict"] model.load_state_dict(__snake_case , strict=__snake_case ) model.to(__snake_case ) del sd return model def __magic_name__ ( __snake_case : Tuple , __snake_case : Union[str, Any] ) -> int: lowercase , lowercase , lowercase : List[Any] = model.encode(__snake_case ) print(f"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) lowercase : str = model.decode(__snake_case ) return xrec def __magic_name__ ( __snake_case : Dict , __snake_case : Optional[int]=False ) -> int: lowercase , lowercase : Union[str, Any] = string.rsplit("." , 1 ) if reload: lowercase : Any = importlib.import_module(__snake_case ) importlib.reload(__snake_case ) return getattr(importlib.import_module(__snake_case , package=__snake_case ) , cls ) def __magic_name__ ( __snake_case : str ) -> List[str]: if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def __magic_name__ ( __snake_case : Any , __snake_case : int , __snake_case : List[Any]=True , __snake_case : Dict=True ) -> str: lowercase : Optional[int] = instantiate_from_config(__snake_case ) if sd is not None: model.load_state_dict(__snake_case ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def __magic_name__ ( __snake_case : Optional[int] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : List[str] ) -> Any: # load the specified checkpoint if ckpt: lowercase : Dict = torch.load(__snake_case , map_location="cpu" ) lowercase : List[Any] = pl_sd["global_step"] print(f"""loaded model from global step {global_step}.""" ) else: lowercase : int = {"state_dict": None} lowercase : Optional[Any] = None lowercase : List[Any] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=__snake_case , eval_mode=__snake_case )["model"] return model, global_step
202
1
import qiskit def __magic_name__ ( __a : int = 2 ): '''simple docstring''' UpperCamelCase__ = qubits # Using Aer's simulator UpperCamelCase__ = qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register UpperCamelCase__ = qiskit.QuantumCircuit(__a , __a ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , __a ): # Adding CX (CNOT) gate circuit.cx(i - 1 , __a ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(__a ) ) , list(range(__a ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator UpperCamelCase__ = qiskit.execute(__a , __a , shots=1_000 ) return job.result().get_counts(__a ) if __name__ == "__main__": print(f'Total count for various states are: {quantum_entanglement(3)}')
178
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ (self ): UpperCamelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCamelCase__ = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = -1 UpperCamelCase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: UpperCamelCase__ = TextStreamer(SCREAMING_SNAKE_CASE_ ) model.generate(SCREAMING_SNAKE_CASE_ , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE_ , streamer=SCREAMING_SNAKE_CASE_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCamelCase__ = cs.out[:-1] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCamelCase__ = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = -1 UpperCamelCase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.decode(greedy_ids[0] ) UpperCamelCase__ = TextIteratorStreamer(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} UpperCamelCase__ = Thread(target=model.generate , kwargs=SCREAMING_SNAKE_CASE_ ) thread.start() UpperCamelCase__ = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCamelCase__ = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = -1 UpperCamelCase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = greedy_ids[:, input_ids.shape[1] :] UpperCamelCase__ = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: UpperCamelCase__ = TextStreamer(SCREAMING_SNAKE_CASE_ , skip_prompt=SCREAMING_SNAKE_CASE_ ) model.generate(SCREAMING_SNAKE_CASE_ , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE_ , streamer=SCREAMING_SNAKE_CASE_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCamelCase__ = cs.out[:-1] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them UpperCamelCase__ = AutoTokenizer.from_pretrained("""distilgpt2""" ) UpperCamelCase__ = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = -1 UpperCamelCase__ = torch.ones((1, 5) , device=SCREAMING_SNAKE_CASE_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: UpperCamelCase__ = TextStreamer(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) model.generate(SCREAMING_SNAKE_CASE_ , max_new_tokens=1 , do_sample=SCREAMING_SNAKE_CASE_ , streamer=SCREAMING_SNAKE_CASE_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token UpperCamelCase__ = cs.out[:-1] # Remove the final "\n" UpperCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCamelCase__ = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = -1 UpperCamelCase__ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = TextIteratorStreamer(SCREAMING_SNAKE_CASE_ , timeout=0.001 ) UpperCamelCase__ = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} UpperCamelCase__ = Thread(target=model.generate , kwargs=SCREAMING_SNAKE_CASE_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = """""" for new_text in streamer: streamer_text += new_text
178
1
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class snake_case__ ( lowerCamelCase__ ): lowercase__ : Dict = '' lowercase__ : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowercase__ : str = None # compression type in fsspec. ex: "gzip" lowercase__ : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , lowerCAmelCase__ = "" , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ ) -> Optional[int]: super().__init__(self , **__lowercase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode __magic_name__ : Union[str, Any] = fsspec.open( __lowercase , mode="""rb""" , protocol=__lowercase , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) __magic_name__ : Union[str, Any] = os.path.basename(self.file.path.split("""::""" )[0] ) __magic_name__ : Optional[Any] = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) __magic_name__ : Optional[Any] = None @classmethod def __magic_name__ ( cls , lowerCAmelCase__ ) -> Dict: return super()._strip_protocol(__lowercase ).lstrip("""/""" ) def __magic_name__ ( self ) -> List[str]: if self.dir_cache is None: __magic_name__ : str = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} __magic_name__ : Union[str, Any] = {f["""name"""]: f} def __magic_name__ ( self , lowerCAmelCase__ ) -> List[Any]: return self.file.open().read() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "rb" , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Optional[Any]: __magic_name__ : Dict = self._strip_protocol(__lowercase ) if mode != "rb": raise ValueError(F'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class snake_case__ ( lowerCamelCase__ ): lowercase__ : str = 'bz2' lowercase__ : Any = 'bz2' lowercase__ : List[str] = '.bz2' class snake_case__ ( lowerCamelCase__ ): lowercase__ : List[Any] = 'gzip' lowercase__ : Optional[Any] = 'gzip' lowercase__ : List[Any] = '.gz' class snake_case__ ( lowerCamelCase__ ): lowercase__ : List[str] = 'lz4' lowercase__ : Optional[Any] = 'lz4' lowercase__ : Dict = '.lz4' class snake_case__ ( lowerCamelCase__ ): lowercase__ : str = 'xz' lowercase__ : Optional[Any] = 'xz' lowercase__ : Dict = '.xz' class snake_case__ ( lowerCamelCase__ ): lowercase__ : List[Any] = 'zstd' lowercase__ : str = 'zstd' lowercase__ : List[Any] = '.zst' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = "rb" , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = DEFAULT_BLOCK_SIZE , **lowerCAmelCase__ , ) -> Optional[Any]: super().__init__( fo=__lowercase , mode=__lowercase , target_protocol=__lowercase , target_options=__lowercase , block_size=__lowercase , **__lowercase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 __magic_name__ : int = self.file.__enter__ class snake_case__ : def __init__( self , lowerCAmelCase__ ) -> List[Any]: __magic_name__ : Tuple = file_ def __enter__( self ) -> int: self._file.__enter__() return self def __exit__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: self._file.__exit__(*__lowercase , **__lowercase ) def __iter__( self ) -> str: return iter(self._file ) def __magic_name__ ( self ) -> Optional[Any]: return next(self._file ) def __getattr__( self , lowerCAmelCase__ ) -> Tuple: return getattr(self._file , __lowercase ) def fixed_enter(*lowerCAmelCase__ , **lowerCAmelCase__ ): return WrappedFile(_enter(*__lowercase , **__lowercase ) ) __magic_name__ : List[str] = fixed_enter
342
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : torch.FloatTensor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self : Dict , __lowercase : int = 32 , __lowercase : int = 64 , __lowercase : int = 20 , __lowercase : int = 768 , __lowercase : Any=77 , __lowercase : Optional[int]=4 , __lowercase : float = 0.0 , __lowercase : str = "silu" , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Optional[str] = "linear" , __lowercase : Optional[str] = "prd" , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , ): '''simple docstring''' super().__init__() __a = num_attention_heads __a = attention_head_dim __a = num_attention_heads * attention_head_dim __a = additional_embeddings __a = time_embed_dim or inner_dim __a = embedding_proj_dim or embedding_dim __a = clip_embed_dim or embedding_dim __a = Timesteps(__lowercase , __lowercase , 0 ) __a = TimestepEmbedding(__lowercase , __lowercase , out_dim=__lowercase , act_fn=__lowercase ) __a = nn.Linear(__lowercase , __lowercase ) if embedding_proj_norm_type is None: __a = None elif embedding_proj_norm_type == "layer": __a = nn.LayerNorm(__lowercase ) else: raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" ) __a = nn.Linear(__lowercase , __lowercase ) if encoder_hid_proj_type is None: __a = None elif encoder_hid_proj_type == "linear": __a = nn.Linear(__lowercase , __lowercase ) else: raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" ) __a = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __lowercase ) ) if added_emb_type == "prd": __a = nn.Parameter(torch.zeros(1 , 1 , __lowercase ) ) elif added_emb_type is None: __a = None else: raise ValueError( F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." ) __a = nn.ModuleList( [ BasicTransformerBlock( __lowercase , __lowercase , __lowercase , dropout=__lowercase , activation_fn="""gelu""" , attention_bias=__lowercase , ) for d in range(__lowercase ) ] ) if norm_in_type == "layer": __a = nn.LayerNorm(__lowercase ) elif norm_in_type is None: __a = None else: raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." ) __a = nn.LayerNorm(__lowercase ) __a = nn.Linear(__lowercase , __lowercase ) __a = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) __a = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , __lowercase , persistent=__lowercase ) __a = nn.Parameter(torch.zeros(1 , __lowercase ) ) __a = nn.Parameter(torch.zeros(1 , __lowercase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = {} def fn_recursive_add_processors(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict[str, AttentionProcessor] ): if hasattr(__lowercase , """set_processor""" ): __a = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , __lowercase , __lowercase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowercase , __lowercase , __lowercase ) return processors def UpperCamelCase_ ( self : List[str] , __lowercase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' __a = len(self.attn_processors.keys() ) if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(__lowercase )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict ): if hasattr(__lowercase , """set_processor""" ): if not isinstance(__lowercase , __lowercase ): module.set_processor(__lowercase ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , __lowercase , __lowercase ) for name, module in self.named_children(): fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Union[torch.Tensor, float, int] , __lowercase : torch.FloatTensor , __lowercase : Optional[torch.FloatTensor] = None , __lowercase : Optional[torch.BoolTensor] = None , __lowercase : bool = True , ): '''simple docstring''' __a = hidden_states.shape[0] __a = timestep if not torch.is_tensor(__lowercase ): __a = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__lowercase ) and len(timesteps.shape ) == 0: __a = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __a = timesteps * torch.ones(__lowercase , dtype=timesteps.dtype , device=timesteps.device ) __a = self.time_proj(__lowercase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __a = timesteps_projected.to(dtype=self.dtype ) __a = self.time_embedding(__lowercase ) if self.embedding_proj_norm is not None: __a = self.embedding_proj_norm(__lowercase ) __a = self.embedding_proj(__lowercase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __a = self.encoder_hidden_states_proj(__lowercase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) __a = self.proj_in(__lowercase ) __a = self.positional_embedding.to(hidden_states.dtype ) __a = [] __a = 0 if encoder_hidden_states is not None: additional_embeds.append(__lowercase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __a = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __a = hidden_states[:, None, :] __a = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __a = self.prd_embedding.to(hidden_states.dtype ).expand(__lowercase , -1 , -1 ) additional_embeds.append(__lowercase ) __a = torch.cat( __lowercase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __a = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __a = F.pad( __lowercase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __a = hidden_states + positional_embeddings if attention_mask is not None: __a = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 __a = F.pad(__lowercase , (0, self.additional_embeddings) , value=0.0 ) __a = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __a = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __a = self.norm_in(__lowercase ) for block in self.transformer_blocks: __a = block(__lowercase , attention_mask=__lowercase ) __a = self.norm_out(__lowercase ) if self.prd_embedding is not None: __a = hidden_states[:, -1] else: __a = hidden_states[:, additional_embeddings_len:] __a = self.proj_to_clip_embeddings(__lowercase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : Tuple ): '''simple docstring''' __a = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
302
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowercase : """simple docstring""" @staticmethod def UpperCAmelCase_ ( *UpperCamelCase__ : List[str] , **UpperCamelCase__ : List[str] ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class _lowercase ( unittest.TestCase ): """simple docstring""" lowercase__ = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def UpperCAmelCase_ ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase =pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) __UpperCamelCase =[ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def UpperCAmelCase_ ( self : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =object_detector(examples[0] , threshold=0.0 ) __UpperCamelCase =len(UpperCamelCase__ ) self.assertGreater(UpperCamelCase__ , 0 ) self.assertEqual( UpperCamelCase__ , [ { '''score''': ANY(UpperCamelCase__ ), '''label''': ANY(UpperCamelCase__ ), '''box''': {'''xmin''': ANY(UpperCamelCase__ ), '''ymin''': ANY(UpperCamelCase__ ), '''xmax''': ANY(UpperCamelCase__ ), '''ymax''': ANY(UpperCamelCase__ )}, } for i in range(UpperCamelCase__ ) ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' pass @require_torch def UpperCAmelCase_ ( self : Tuple ) -> Tuple: '''simple docstring''' __UpperCamelCase =pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) __UpperCamelCase =object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.72_35, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.72_18, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.71_84, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.67_48, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.66_56, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.66_14, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.64_56, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.6_42, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.64_19, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] , ) __UpperCamelCase =object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {'''score''': 0.72_35, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.72_18, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.71_84, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.67_48, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.66_56, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.66_14, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.64_56, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.6_42, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.64_19, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] ] , ) @require_torch @slow def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' __UpperCamelCase =pipeline('''zero-shot-object-detection''' ) __UpperCamelCase =object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ] , ) __UpperCamelCase =object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ] , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def UpperCAmelCase_ ( self : str ) -> Dict: '''simple docstring''' pass @require_torch @slow def UpperCAmelCase_ ( self : int ) -> Tuple: '''simple docstring''' __UpperCamelCase =0.2 __UpperCamelCase =pipeline('''zero-shot-object-detection''' ) __UpperCamelCase =object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=UpperCamelCase__ , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, ] , ) @require_torch @slow def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' __UpperCamelCase =2 __UpperCamelCase =pipeline('''zero-shot-object-detection''' ) __UpperCamelCase =object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=UpperCamelCase__ , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, ] , )
369
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase (__UpperCamelCase : Tuple ): """simple docstring""" __UpperCamelCase =SwinConfig() __UpperCamelCase =swin_name.split('''_''' ) __UpperCamelCase =name_split[1] __UpperCamelCase =int(name_split[4] ) __UpperCamelCase =int(name_split[3][-1] ) if model_size == "tiny": __UpperCamelCase =9_6 __UpperCamelCase =(2, 2, 6, 2) __UpperCamelCase =(3, 6, 1_2, 2_4) elif model_size == "small": __UpperCamelCase =9_6 __UpperCamelCase =(2, 2, 1_8, 2) __UpperCamelCase =(3, 6, 1_2, 2_4) elif model_size == "base": __UpperCamelCase =1_2_8 __UpperCamelCase =(2, 2, 1_8, 2) __UpperCamelCase =(4, 8, 1_6, 3_2) else: __UpperCamelCase =1_9_2 __UpperCamelCase =(2, 2, 1_8, 2) __UpperCamelCase =(6, 1_2, 2_4, 4_8) if "in22k" in swin_name: __UpperCamelCase =2_1_8_4_1 else: __UpperCamelCase =1_0_0_0 __UpperCamelCase ='''huggingface/label-files''' __UpperCamelCase ='''imagenet-1k-id2label.json''' __UpperCamelCase =json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __UpperCamelCase ={int(__UpperCamelCase ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} __UpperCamelCase =img_size __UpperCamelCase =num_classes __UpperCamelCase =embed_dim __UpperCamelCase =depths __UpperCamelCase =num_heads __UpperCamelCase =window_size return config def lowerCAmelCase (__UpperCamelCase : Optional[int] ): """simple docstring""" if "patch_embed.proj" in name: __UpperCamelCase =name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __UpperCamelCase =name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: __UpperCamelCase ='''encoder.''' + name if "attn.proj" in name: __UpperCamelCase =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __UpperCamelCase =name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __UpperCamelCase =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __UpperCamelCase =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __UpperCamelCase =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __UpperCamelCase =name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "norm.weight": __UpperCamelCase ='''layernorm.weight''' if name == "norm.bias": __UpperCamelCase ='''layernorm.bias''' if "head" in name: __UpperCamelCase =name.replace('''head''' , '''classifier''' ) else: __UpperCamelCase ='''swin.''' + name return name def lowerCAmelCase (__UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): """simple docstring""" for key in orig_state_dict.copy().keys(): __UpperCamelCase =orig_state_dict.pop(__UpperCamelCase ) if "mask" in key: continue elif "qkv" in key: __UpperCamelCase =key.split('''.''' ) __UpperCamelCase =int(key_split[1] ) __UpperCamelCase =int(key_split[3] ) __UpperCamelCase =model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __UpperCamelCase =val[:dim, :] __UpperCamelCase =val[ dim : dim * 2, : ] __UpperCamelCase =val[-dim:, :] else: __UpperCamelCase =val[ :dim ] __UpperCamelCase =val[ dim : dim * 2 ] __UpperCamelCase =val[ -dim: ] else: __UpperCamelCase =val return orig_state_dict def lowerCAmelCase (__UpperCamelCase : int , __UpperCamelCase : Any ): """simple docstring""" __UpperCamelCase =timm.create_model(__UpperCamelCase , pretrained=__UpperCamelCase ) timm_model.eval() __UpperCamelCase =get_swin_config(__UpperCamelCase ) __UpperCamelCase =SwinForImageClassification(__UpperCamelCase ) model.eval() __UpperCamelCase =convert_state_dict(timm_model.state_dict() , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) __UpperCamelCase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCamelCase =AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) ) __UpperCamelCase =Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) __UpperCamelCase =image_processor(images=__UpperCamelCase , return_tensors='''pt''' ) __UpperCamelCase =timm_model(inputs['''pixel_values'''] ) __UpperCamelCase =model(**__UpperCamelCase ).logits assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowercase = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
85
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCamelCase_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase = TextToVideoSDPipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowerCAmelCase = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def _UpperCamelCase ( self ) -> str: torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) snake_case_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=a , set_alpha_to_one=a , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) snake_case_ = CLIPTextModel(a ) snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def _UpperCamelCase ( self , a , a=0 ) -> Tuple: if str(a ).startswith('mps' ): snake_case_ = torch.manual_seed(a ) else: snake_case_ = torch.Generator(device=a ).manual_seed(a ) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def _UpperCamelCase ( self ) -> List[str]: snake_case_ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = TextToVideoSDPipeline(**a ) snake_case_ = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) snake_case_ = self.get_dummy_inputs(a ) snake_case_ = 'np' snake_case_ = sd_pipe(**a ).frames snake_case_ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) snake_case_ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCamelCase ( self ) -> List[str]: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=a , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _UpperCamelCase ( self ) -> Any: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=a , expected_max_diff=1E-2 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def _UpperCamelCase ( self ) -> Tuple: pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def _UpperCamelCase ( self ) -> Union[str, Any]: pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def _UpperCamelCase ( self ) -> Optional[int]: pass def _UpperCamelCase ( self ) -> List[Any]: return super().test_progress_bar() @slow @skip_mps class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> str: snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' ) snake_case_ = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) snake_case_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) snake_case_ = pipe.to('cuda' ) snake_case_ = 'Spiderman is surfing' snake_case_ = torch.Generator(device='cpu' ).manual_seed(0 ) snake_case_ = pipe(a , generator=a , num_inference_steps=25 , output_type='pt' ).frames snake_case_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def _UpperCamelCase ( self ) -> Optional[Any]: snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' ) snake_case_ = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) snake_case_ = pipe.to('cuda' ) snake_case_ = 'Spiderman is surfing' snake_case_ = torch.Generator(device='cpu' ).manual_seed(0 ) snake_case_ = pipe(a , generator=a , num_inference_steps=2 , output_type='pt' ).frames snake_case_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
178
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def __UpperCAmelCase ( a_ , a_ , a_ , a_ , a_): snake_case_ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(a_)]) snake_case_ = np.array(a_) snake_case_ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , a_)) , x.transpose()) , a_) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2]) def __UpperCAmelCase ( a_ , a_ , a_): snake_case_ = (1, 2, 1) snake_case_ = (1, 1, 0, 7) snake_case_ = SARIMAX( a_ , exog=a_ , order=a_ , seasonal_order=a_) snake_case_ = model.fit(disp=a_ , maxiter=6_00 , method='nm') snake_case_ = model_fit.predict(1 , len(a_) , exog=[test_match]) return result[0] def __UpperCAmelCase ( a_ , a_ , a_): snake_case_ = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1) regressor.fit(a_ , a_) snake_case_ = regressor.predict(a_) return y_pred[0] def __UpperCAmelCase ( a_): train_user.sort() snake_case_ = np.percentile(a_ , 25) snake_case_ = np.percentile(a_ , 75) snake_case_ = qa - qa snake_case_ = qa - (iqr * 0.1) return low_lim def __UpperCAmelCase ( a_ , a_): snake_case_ = 0 snake_case_ = 0 for i in list_vote: if i > actual_result: snake_case_ = not_safe + 1 else: if abs(abs(a_) - abs(a_)) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) lowercase = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] lowercase = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) lowercase = Normalizer().fit_transform(data_input_df.values) # split data lowercase = normalize_df[:, 2].tolist() lowercase = normalize_df[:, 0].tolist() lowercase = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) lowercase = normalize_df[:, [1, 2]].tolist() lowercase = x[: len(x) - 1] lowercase = x[len(x) - 1 :] # for linear regression & sarimax lowercase = total_date[: len(total_date) - 1] lowercase = total_user[: len(total_user) - 1] lowercase = total_match[: len(total_match) - 1] lowercase = total_date[len(total_date) - 1 :] lowercase = total_user[len(total_user) - 1 :] lowercase = total_match[len(total_match) - 1 :] # voting system with forecasting lowercase = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data lowercase = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
178
1
from statistics import mean, stdev def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase = 3): SCREAMING_SNAKE_CASE = min(_UpperCAmelCase) SCREAMING_SNAKE_CASE = max(_UpperCAmelCase) # normalize data return [round((x - x_min) / (x_max - x_min) , _UpperCAmelCase) for x in data] def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase = 3): SCREAMING_SNAKE_CASE = mean(_UpperCAmelCase) SCREAMING_SNAKE_CASE = stdev(_UpperCAmelCase) # standardize data return [round((x - mu) / (sigma) , _UpperCAmelCase) for x in data]
364
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights SCREAMING_SNAKE_CASE = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=a , cache_dir=a) SCREAMING_SNAKE_CASE = [t[-1] for t in os.walk(os.path.join(a , os.listdir(a)[0] , 'snapshots'))] SCREAMING_SNAKE_CASE = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin') for f in files) @slow @require_flax class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=a) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.1_51_47_45) < 1E-3 assert np.abs(np.abs(a , dtype=np.floataa).sum() - 4_99_47.8_75) < 5E-1 SCREAMING_SNAKE_CASE = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(a) == num_samples def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=a) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.05_65_24_01)) < 1E-3 assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_38_38_08.2)) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3 assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3 assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=a , steps_offset=1 , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=a , safety_checker=a , ) SCREAMING_SNAKE_CASE = scheduler.create_state() SCREAMING_SNAKE_CASE = scheduler_state SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0_45_04_39_45)) < 1E-3 assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_34_76_93.5)) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = jax.random.split(jax.random.PRNGKey(0) , a) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a , ) SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1] # With memory efficient attention SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a , use_memory_efficient_attention=a , ) SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , jit=a).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1E-2
327
0
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a__ ( snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = TransfoXLTokenizer __lowerCamelCase = False __lowerCamelCase = False def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() A__ = [ "<unk>", "[CLS]", "[SEP]", "want", "unwanted", "wa", "un", "running", ",", "low", "l", ] A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase ( self , **lowercase ) -> Union[str, Any]: '''simple docstring''' A__ = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **lowercase ) def UpperCamelCase ( self , lowercase ) -> List[Any]: '''simple docstring''' A__ = "<unk> UNwanted , running" A__ = "<unk> unwanted, running" return input_text, output_text def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=lowercase ) A__ = tokenizer.tokenize("<unk> UNwanted , running" ) self.assertListEqual(lowercase , ["<unk>", "unwanted", ",", "running"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [0, 4, 8, 7] ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = TransfoXLTokenizer(lower_case=lowercase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) , ["hello", "!", "how", "are", "you", "?"] ) def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = TransfoXLTokenizer(lower_case=lowercase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = TransfoXLTokenizer(lower_case=lowercase ) A__ = "Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?" A__ = [ "Hello", "(", "bracket", ")", "and", "side", "@-@", "scrolled", "[", "and", "]", "Henry", "'s", "$", "5", "@,@", "000", "with", "3", "@.@", "34", "m", ".", "What", "'s", "up", "!", "?", ] self.assertListEqual(tokenizer.tokenize(lowercase ) , lowercase ) self.assertEqual(tokenizer.convert_tokens_to_string(lowercase ) , lowercase ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = self.get_tokenizer() A__ = len(lowercase ) tokenizer.add_tokens(["new1", "new2"] ) tokenizer.move_added_token("new1" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowercase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("new1" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , "new1" )
68
import random class a__ : """simple docstring""" @staticmethod def UpperCamelCase ( lowercase ) -> tuple[list[int], list[int]]: '''simple docstring''' A__ = [ord(lowercase ) for i in text] A__ = [] A__ = [] for i in plain: A__ = random.randint(1 , 300 ) A__ = (i + k) * k cipher.append(lowercase ) key.append(lowercase ) return cipher, key @staticmethod def UpperCamelCase ( lowercase , lowercase ) -> str: '''simple docstring''' A__ = [] for i in range(len(lowercase ) ): A__ = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowercase ) ) return "".join(lowercase ) if __name__ == "__main__": lowerCAmelCase__ , lowerCAmelCase__ = Onepad().encrypt("""Hello""") print(c, k) print(Onepad().decrypt(c, k))
68
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Any = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _lowerCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
231
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Union[str, Any] = """▁""" _lowerCamelCase : Optional[Any] = {"""vocab_file""": """spiece.model"""} _lowerCamelCase : str = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""} } _lowerCamelCase : List[str] = { """google/pegasus-xsum""": 512, } _lowerCamelCase : int = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str="<pad>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<unk>" , UpperCAmelCase__ : Union[str, Any]="<mask_2>" , UpperCAmelCase__ : List[str]="<mask_1>" , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[Any]=103 , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : Dict , ) ->None: '''simple docstring''' A__ = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__): raise TypeError( f"""additional_special_tokens should be of type {type(UpperCAmelCase__)}, but is""" f""" {type(UpperCAmelCase__)}""") A__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(UpperCAmelCase__) , self.offset - 1) ] if len(set(UpperCAmelCase__)) != len(UpperCAmelCase__): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""") A__ = additional_special_tokens_extended else: A__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset)] A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token_sent=UpperCAmelCase__ , offset=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) A__ = mask_token_sent A__ = vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCAmelCase__) # add special tokens to encoder dict A__ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, }) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1)}) A__ = {v: k for k, v in self.encoder.items()} @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' return len(self.sp_model) + self.offset def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict[str, int]: '''simple docstring''' A__ = {self.convert_ids_to_tokens(UpperCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Any) ->Union[str, Any]: '''simple docstring''' A__ = self.__dict__.copy() A__ = None return state def __setstate__( self : int , UpperCAmelCase__ : Optional[int]) ->Optional[int]: '''simple docstring''' A__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : str) ->List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str) ->int: '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] A__ = self.sp_model.piece_to_id(UpperCAmelCase__) return sp_id + self.offset def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : int) ->str: '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: A__ = self.sp_model.IdToPiece(index - self.offset) return token def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : int) ->Optional[int]: '''simple docstring''' A__ = [] A__ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase__) + token A__ = [] else: current_sub_tokens.append(UpperCAmelCase__) out_string += self.sp_model.decode(UpperCAmelCase__) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Optional[int]=False) ->Union[str, Any]: '''simple docstring''' return 1 def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Union[str, Any]) ->Optional[Any]: '''simple docstring''' A__ = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : List , UpperCAmelCase__ : Optional[List] = None , UpperCAmelCase__ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase__) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase__) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str]=None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase__): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return A__ = os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase__ , '''wb''') as fi: A__ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__) return (out_vocab_file,)
231
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
178
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ) -> int: snake_case_ = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) snake_case_ = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(a ) from datasets import load_dataset snake_case_ = load_dataset('nielsr/rvlcdip-demo' ) snake_case_ = dataset['train'][0]['image'].convert('RGB' ) snake_case_ = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): snake_case_ = model(**a ) snake_case_ = outputs.logits snake_case_ = torch.Size((1, 16) ) self.assertEqual(logits.shape , a ) snake_case_ = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1E-4 ) )
178
1
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Optional[int] = 0 # if input_string is "aba" than new_input_string become "a|b|a" __lowerCAmelCase : Union[str, Any] = '' __lowerCAmelCase : Tuple = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_UpperCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring __lowerCAmelCase : List[str] = 0, 0 # length[i] shows the length of palindromic substring with center i __lowerCAmelCase : List[Any] = [1 for i in range(len(_UpperCamelCase ) )] # for each character in new_string find corresponding palindromic string __lowerCAmelCase : Optional[int] = 0 for j in range(len(_UpperCamelCase ) ): __lowerCAmelCase : int = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_UpperCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 __lowerCAmelCase : List[str] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: __lowerCAmelCase : str = j - k + 1 # noqa: E741 __lowerCAmelCase : Optional[int] = j + k - 1 # update max_length and start position if max_length < length[j]: __lowerCAmelCase : Optional[Any] = length[j] __lowerCAmelCase : List[Any] = j # create that string __lowerCAmelCase : Optional[Any] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
362
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class A__ ( _lowerCamelCase): A_ : str = 'nllb-moe' A_ : Optional[Any] = ['past_key_values'] A_ : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _SCREAMING_SNAKE_CASE=12_81_12 , _SCREAMING_SNAKE_CASE=10_24 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=40_96 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=40_96 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=10_24 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="float32" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1_28 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.001 , _SCREAMING_SNAKE_CASE=0.001 , _SCREAMING_SNAKE_CASE="all" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=0.2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : int = vocab_size __lowerCAmelCase : str = max_position_embeddings __lowerCAmelCase : Dict = d_model __lowerCAmelCase : Tuple = encoder_ffn_dim __lowerCAmelCase : Optional[Any] = encoder_layers __lowerCAmelCase : Any = encoder_attention_heads __lowerCAmelCase : Tuple = decoder_ffn_dim __lowerCAmelCase : Dict = decoder_layers __lowerCAmelCase : str = decoder_attention_heads __lowerCAmelCase : str = dropout __lowerCAmelCase : List[str] = attention_dropout __lowerCAmelCase : Optional[int] = activation_dropout __lowerCAmelCase : List[Any] = activation_function __lowerCAmelCase : List[str] = init_std __lowerCAmelCase : Union[str, Any] = encoder_layerdrop __lowerCAmelCase : List[Any] = decoder_layerdrop __lowerCAmelCase : Optional[int] = use_cache __lowerCAmelCase : Optional[Any] = encoder_layers __lowerCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase : Union[str, Any] = router_z_loss_coef __lowerCAmelCase : Optional[Any] = router_aux_loss_coef __lowerCAmelCase : int = decoder_sparse_step __lowerCAmelCase : str = encoder_sparse_step __lowerCAmelCase : Tuple = num_experts __lowerCAmelCase : Dict = expert_capacity __lowerCAmelCase : Union[str, Any] = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowerCAmelCase : Union[str, Any] = router_dtype __lowerCAmelCase : Any = router_ignore_padding_tokens __lowerCAmelCase : str = batch_prioritized_routing __lowerCAmelCase : Tuple = second_expert_policy __lowerCAmelCase : List[str] = normalize_router_prob_before_dropping __lowerCAmelCase : Dict = moe_eval_capacity_token_fraction __lowerCAmelCase : Union[str, Any] = moe_token_dropout __lowerCAmelCase : List[Any] = output_router_logits super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
182
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Any ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. lowerCAmelCase__ : List[str] = [[1, 2, 4], [1, 2, 3, 4]] lowerCAmelCase__ : Optional[int] = DisjunctiveConstraint(lowercase_ ) self.assertTrue(isinstance(dc.token_ids ,lowercase_ ) ) with self.assertRaises(lowercase_ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowercase_ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self : Tuple ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). lowerCAmelCase__ : List[str] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowercase_ ): DisjunctiveConstraint(lowercase_ ) # fails here def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : str = [[1, 2, 3], [1, 2, 4]] lowerCAmelCase__ : Optional[int] = DisjunctiveConstraint(lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = dc.update(1 ) lowerCAmelCase__ : int = stepped is True and completed is False and reset is False self.assertTrue(lowercase_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = dc.update(2 ) lowerCAmelCase__ : Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowercase_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = dc.update(3 ) lowerCAmelCase__ : Any = stepped is True and completed is True and reset is False self.assertTrue(lowercase_ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ : Optional[int] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowerCAmelCase__ : List[Any] = DisjunctiveConstraint(lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Any = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Any = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Dict = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
106
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = { "BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json", "BridgeTower/bridgetower-base-itm-mlm": ( "https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json" ), } class _snake_case ( lowercase_ ): lowerCAmelCase_ : Dict = "bridgetower_vision_model" def __init__( self , a__=768 , a__=12 , a__=3 , a__=16 , a__=288 , a__=1 , a__=1e-05 , a__=False , a__=True , a__=False , **a__ , ) -> int: '''simple docstring''' super().__init__(**a__ ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_channels snake_case_ = patch_size snake_case_ = image_size snake_case_ = initializer_factor snake_case_ = layer_norm_eps snake_case_ = stop_gradient snake_case_ = share_layernorm snake_case_ = remove_last_layer @classmethod def lowerCAmelCase__ ( cls , a__ , **a__ ) -> "PretrainedConfig": '''simple docstring''' snake_case_ , snake_case_ = cls.get_config_dict(a__ , **a__ ) if config_dict.get("model_type" ) == "bridgetower": snake_case_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a__ , **a__ ) class _snake_case ( lowercase_ ): lowerCAmelCase_ : Any = "bridgetower_text_model" def __init__( self , a__=50_265 , a__=768 , a__=12 , a__=12 , a__=1 , a__=3_072 , a__="gelu" , a__=0.1 , a__=0.1 , a__=514 , a__=1 , a__=1e-05 , a__=1 , a__=0 , a__=2 , a__="absolute" , a__=True , **a__ , ) -> Optional[int]: '''simple docstring''' super().__init__(**a__ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = initializer_factor snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = layer_norm_eps snake_case_ = position_embedding_type snake_case_ = use_cache snake_case_ = pad_token_id snake_case_ = bos_token_id snake_case_ = eos_token_id @classmethod def lowerCAmelCase__ ( cls , a__ , **a__ ) -> "PretrainedConfig": '''simple docstring''' snake_case_ , snake_case_ = cls.get_config_dict(a__ , **a__ ) if config_dict.get("model_type" ) == "bridgetower": snake_case_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a__ , **a__ ) class _snake_case ( lowercase_ ): lowerCAmelCase_ : Union[str, Any] = "bridgetower" def __init__( self , a__=True , a__="gelu" , a__=768 , a__=1 , a__=1e-05 , a__=False , a__="add" , a__=12 , a__=6 , a__=False , a__=False , a__=None , a__=None , **a__ , ) -> int: '''simple docstring''' snake_case_ = kwargs.pop("text_config_dict" , a__ ) snake_case_ = kwargs.pop("vision_config_dict" , a__ ) super().__init__(**a__ ) snake_case_ = share_cross_modal_transformer_layers snake_case_ = hidden_act snake_case_ = hidden_size snake_case_ = initializer_factor snake_case_ = layer_norm_eps snake_case_ = share_link_tower_layers snake_case_ = link_tower_type snake_case_ = num_attention_heads snake_case_ = num_hidden_layers snake_case_ = tie_word_embeddings snake_case_ = init_layernorm_from_vision_encoder if text_config is None: snake_case_ = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: snake_case_ = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) snake_case_ = BridgeTowerTextConfig(**a__ ) snake_case_ = BridgeTowerVisionConfig(**a__ ) @classmethod def lowerCAmelCase__ ( cls , a__ , a__ , **a__ ) -> List[Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a__ ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.text_config.to_dict() snake_case_ = self.vision_config.to_dict() snake_case_ = self.__class__.model_type return output
85
0
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def lowercase__ ( __snake_case : Dict , __snake_case : Tuple , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = WavaVecaForSequenceClassification.from_pretrained(__snake_case , config=__snake_case ) UpperCAmelCase_ : Optional[Any] = downstream_dict['projector.weight'] UpperCAmelCase_ : List[Any] = downstream_dict['projector.bias'] UpperCAmelCase_ : Tuple = downstream_dict['model.post_net.linear.weight'] UpperCAmelCase_ : List[str] = downstream_dict['model.post_net.linear.bias'] return model def lowercase__ ( __snake_case : Dict , __snake_case : str , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : int = WavaVecaForAudioFrameClassification.from_pretrained(__snake_case , config=__snake_case ) UpperCAmelCase_ : List[str] = downstream_dict['model.linear.weight'] UpperCAmelCase_ : Union[str, Any] = downstream_dict['model.linear.bias'] return model def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : List[str] = WavaVecaForXVector.from_pretrained(__snake_case , config=__snake_case ) UpperCAmelCase_ : List[Any] = downstream_dict['connector.weight'] UpperCAmelCase_ : List[str] = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): UpperCAmelCase_ : int = downstream_dict[ F"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] UpperCAmelCase_ : str = downstream_dict[F"model.framelevel_feature_extractor.module.{i}.kernel.bias"] UpperCAmelCase_ : str = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] UpperCAmelCase_ : int = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] UpperCAmelCase_ : List[Any] = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] UpperCAmelCase_ : int = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] UpperCAmelCase_ : List[Any] = downstream_dict['objective.W'] return model @torch.no_grad() def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = torch.load(__snake_case , map_location='cpu' ) UpperCAmelCase_ : Dict = checkpoint['Downstream'] UpperCAmelCase_ : Any = WavaVecaConfig.from_pretrained(__snake_case ) UpperCAmelCase_ : int = WavaVecaFeatureExtractor.from_pretrained( __snake_case , return_attention_mask=__snake_case , do_normalize=__snake_case ) UpperCAmelCase_ : Optional[Any] = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): UpperCAmelCase_ : Union[str, Any] = convert_classification(__snake_case , __snake_case , __snake_case ) elif arch.endswith('ForAudioFrameClassification' ): UpperCAmelCase_ : str = convert_diarization(__snake_case , __snake_case , __snake_case ) elif arch.endswith('ForXVector' ): UpperCAmelCase_ : Optional[Any] = convert_xvector(__snake_case , __snake_case , __snake_case ) else: raise NotImplementedError(F"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: UpperCAmelCase_ : Dict = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(__snake_case ) hf_model.save_pretrained(__snake_case ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') __UpperCAmelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
366
def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Tuple = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = 0, 0, 0 UpperCAmelCase_ : Union[str, Any] = ugly_nums[ia] * 2 UpperCAmelCase_ : Tuple = ugly_nums[ia] * 3 UpperCAmelCase_ : Union[str, Any] = ugly_nums[ia] * 5 for _ in range(1 , __snake_case ): UpperCAmelCase_ : Tuple = min(__snake_case , __snake_case , __snake_case ) ugly_nums.append(__snake_case ) if next_num == next_a: ia += 1 UpperCAmelCase_ : Union[str, Any] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase_ : Any = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase_ : List[str] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F'{ugly_numbers(200) = }')
145
0
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : Tuple ) -> Dict: """simple docstring""" __magic_name__ = 'laion/clap-htsat-unfused' __magic_name__ = tempfile.mkdtemp() def _lowercase ( self : Union[str, Any] , **UpperCamelCase__ : str ) -> int: """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint , **_A ) def _lowercase ( self : List[str] , **UpperCamelCase__ : List[str] ) -> List[str]: """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint , **_A ) def _lowercase ( self : Tuple ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowercase ( self : Dict ) -> Optional[int]: """simple docstring""" __magic_name__ = self.get_tokenizer() __magic_name__ = self.get_feature_extractor() __magic_name__ = ClapProcessor(tokenizer=_A , feature_extractor=_A ) processor.save_pretrained(self.tmpdirname ) __magic_name__ = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" __magic_name__ = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ = self.get_feature_extractor(do_normalize=_A , padding_value=1.0 ) __magic_name__ = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) def _lowercase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = self.get_feature_extractor() __magic_name__ = self.get_tokenizer() __magic_name__ = ClapProcessor(tokenizer=_A , feature_extractor=_A ) __magic_name__ = floats_list((3, 1000) ) __magic_name__ = feature_extractor(_A , return_tensors="""np""" ) __magic_name__ = processor(audios=_A , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowercase ( self : Dict ) -> str: """simple docstring""" __magic_name__ = self.get_feature_extractor() __magic_name__ = self.get_tokenizer() __magic_name__ = ClapProcessor(tokenizer=_A , feature_extractor=_A ) __magic_name__ = 'This is a test string' __magic_name__ = processor(text=_A ) __magic_name__ = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self : int ) -> int: """simple docstring""" __magic_name__ = self.get_feature_extractor() __magic_name__ = self.get_tokenizer() __magic_name__ = ClapProcessor(tokenizer=_A , feature_extractor=_A ) __magic_name__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ = processor.batch_decode(_A ) __magic_name__ = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A ) def _lowercase ( self : Any ) -> Any: """simple docstring""" __magic_name__ = self.get_feature_extractor() __magic_name__ = self.get_tokenizer() __magic_name__ = ClapProcessor(tokenizer=_A , feature_extractor=_A ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
88
from math import pi def SCREAMING_SNAKE_CASE__ ( __a , __a ): return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
327
0
def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> int: '''simple docstring''' return int(input_a == input_a == 0 ) def __magic_name__ ( ) -> None: '''simple docstring''' print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(F"| 0 | 0 | {nor_gate(0, 0 )} |" ) print(F"| 0 | 1 | {nor_gate(0, 1 )} |" ) print(F"| 1 | 0 | {nor_gate(1, 0 )} |" ) print(F"| 1 | 1 | {nor_gate(1, 1 )} |" ) if __name__ == "__main__": import doctest doctest.testmod() main()
352
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> int: '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: snake_case_ = _modexpt(__UpperCAmelCase, exponent // 2, __UpperCAmelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__UpperCAmelCase, exponent - 1, __UpperCAmelCase )) % modulo_value def __magic_name__ ( __UpperCAmelCase = 1777, __UpperCAmelCase = 1855, __UpperCAmelCase = 8 ) -> int: '''simple docstring''' snake_case_ = base for _ in range(1, __UpperCAmelCase ): snake_case_ = _modexpt(__UpperCAmelCase, __UpperCAmelCase, 10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
72
0
import pytest _A = "__dummy_dataset1__" _A = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowerCamelCase__ ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowerCamelCase__ ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowerCamelCase__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): """simple docstring""" lowerCAmelCase_ = dataset_loading_script_name lowerCAmelCase_ = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__lowerCAmelCase ) lowerCAmelCase_ = script_dir / F"""{script_name}.py""" with open(__lowerCAmelCase , "w" ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase )
231
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def lowerCamelCase__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : str=False ): """simple docstring""" lowerCAmelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" lowerCAmelCase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def lowerCamelCase__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ = "" else: lowerCAmelCase_ = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCAmelCase_ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ = in_proj_bias[: config.hidden_size] lowerCAmelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): """simple docstring""" lowerCAmelCase_ = dct.pop(__lowerCAmelCase ) lowerCAmelCase_ = val def lowerCamelCase__ ( ): """simple docstring""" lowerCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = DeiTConfig() # all deit models have fine-tuned heads lowerCAmelCase_ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size lowerCAmelCase_ = 1000 lowerCAmelCase_ = "huggingface/label-files" lowerCAmelCase_ = "imagenet-1k-id2label.json" lowerCAmelCase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) , "r" ) ) lowerCAmelCase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} lowerCAmelCase_ = int(deit_name[-6:-4] ) lowerCAmelCase_ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): lowerCAmelCase_ = 192 lowerCAmelCase_ = 768 lowerCAmelCase_ = 12 lowerCAmelCase_ = 3 elif deit_name[9:].startswith("small" ): lowerCAmelCase_ = 384 lowerCAmelCase_ = 1536 lowerCAmelCase_ = 12 lowerCAmelCase_ = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): lowerCAmelCase_ = 1024 lowerCAmelCase_ = 4096 lowerCAmelCase_ = 24 lowerCAmelCase_ = 16 # load original model from timm lowerCAmelCase_ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ = timm_model.state_dict() lowerCAmelCase_ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model lowerCAmelCase_ = DeiTForImageClassificationWithTeacher(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor lowerCAmelCase_ = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 lowerCAmelCase_ = DeiTImageProcessor(size=__lowerCAmelCase , crop_size=config.image_size ) lowerCAmelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCAmelCase_ = encoding["pixel_values"] lowerCAmelCase_ = model(__lowerCAmelCase ) lowerCAmelCase_ = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _A = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
231
1
import os def UpperCamelCase__ ( lowerCAmelCase = "matrix.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(lowerCAmelCase ) , lowerCAmelCase ) ) as in_file: _lowerCAmelCase = in_file.read() _lowerCAmelCase = [[int(lowerCAmelCase ) for cell in row.split(""",""" )] for row in data.strip().splitlines()] _lowerCAmelCase = [[0 for cell in row] for row in grid] _lowerCAmelCase = len(grid[0] ) _lowerCAmelCase = [[0 for i in range(lowerCAmelCase )] for j in range(lowerCAmelCase )] _lowerCAmelCase = grid[0][0] for i in range(1 , lowerCAmelCase ): _lowerCAmelCase = grid[0][i] + dp[0][i - 1] for i in range(1 , lowerCAmelCase ): _lowerCAmelCase = grid[i][0] + dp[i - 1][0] for i in range(1 , lowerCAmelCase ): for j in range(1 , lowerCAmelCase ): _lowerCAmelCase = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"""{solution() = }""")
355
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] _lowerCAmelCase = { """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } _lowerCAmelCase = f"{src_lang}-{tgt_lang}" _lowerCAmelCase = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) _lowerCAmelCase = os.path.join(lowerCAmelCase , """README.md""" ) print(f"Generating {path}" ) with open(lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(lowerCAmelCase ) # make sure we are under the root of the project A__ : Optional[int] =Path(__file__).resolve().parent.parent.parent A__ : Union[str, Any] =repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A__ , A__ , A__ : Optional[Any] =model_name.split('''-''') A__ : List[str] =model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
220
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['YolosFeatureExtractor'] UpperCAmelCase_ = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def A ( _lowercase ): if "model" in orig_key: SCREAMING_SNAKE_CASE : int = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: SCREAMING_SNAKE_CASE : str = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: SCREAMING_SNAKE_CASE : Tuple = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: SCREAMING_SNAKE_CASE : int = orig_key.split('''.''' )[0].split('''_''' )[-1] SCREAMING_SNAKE_CASE : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: SCREAMING_SNAKE_CASE : Any = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: SCREAMING_SNAKE_CASE : str = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: SCREAMING_SNAKE_CASE : Any = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: SCREAMING_SNAKE_CASE : Dict = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: SCREAMING_SNAKE_CASE : str = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: SCREAMING_SNAKE_CASE : List[str] = '''yoso.''' + orig_key return orig_key def A ( _lowercase , _lowercase ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Union[str, Any] = orig_state_dict.pop(_lowercase ) if ("pooler" in key) or ("sen_class" in key): continue else: SCREAMING_SNAKE_CASE : Union[str, Any] = val SCREAMING_SNAKE_CASE : List[str] = orig_state_dict['''cls.predictions.decoder.bias'''] SCREAMING_SNAKE_CASE : Dict = torch.arange(_lowercase ).expand((1, -1) ) + 2 return orig_state_dict def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Tuple = torch.load(_lowercase , map_location='''cpu''' )['''model_state_dict'''] SCREAMING_SNAKE_CASE : List[Any] = YosoConfig.from_json_file(_lowercase ) SCREAMING_SNAKE_CASE : str = YosoForMaskedLM(_lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = convert_checkpoint_helper(config.max_position_embeddings , _lowercase ) print(model.load_state_dict(_lowercase ) ) model.eval() model.save_pretrained(_lowercase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
182
0
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase = logging.get_logger(__name__) # General docstring lowerCAmelCase = '''RegNetConfig''' # Base docstring lowerCAmelCase = '''facebook/regnet-y-040''' lowerCAmelCase = [1, 1_0_8_8, 7, 7] # Image classification docstring lowerCAmelCase = '''facebook/regnet-y-040''' lowerCAmelCase = '''tabby, tabby cat''' lowerCAmelCase = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class A ( tf.keras.layers.Layer ): def __init__(self , lowerCAmelCase , lowerCAmelCase = 3 , lowerCAmelCase = 1 , lowerCAmelCase = 1 , lowerCAmelCase = "relu" , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __lowercase= tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __lowercase= tf.keras.layers.ConvaD( filters=lowerCAmelCase , kernel_size=lowerCAmelCase , strides=lowerCAmelCase , padding='VALID' , groups=lowerCAmelCase , use_bias=lowerCAmelCase , name='convolution' , ) __lowercase= tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) __lowercase= ACTaFN[activation] if activation is not None else tf.identity def _A (self , lowerCAmelCase ): __lowercase= self.convolution(self.padding(lowerCAmelCase ) ) __lowercase= self.normalization(lowerCAmelCase ) __lowercase= self.activation(lowerCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__(self , lowerCAmelCase , **lowerCAmelCase ): super().__init__(**lowerCAmelCase ) __lowercase= config.num_channels __lowercase= TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def _A (self , lowerCAmelCase ): __lowercase= shape_list(lowerCAmelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __lowercase= tf.transpose(lowerCAmelCase , perm=(0, 2, 3, 1) ) __lowercase= self.embedder(lowerCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__(self , lowerCAmelCase , lowerCAmelCase = 2 , **lowerCAmelCase ): super().__init__(**lowerCAmelCase ) __lowercase= tf.keras.layers.ConvaD( filters=lowerCAmelCase , kernel_size=1 , strides=lowerCAmelCase , use_bias=lowerCAmelCase , name='convolution' ) __lowercase= tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) def _A (self , lowerCAmelCase , lowerCAmelCase = False ): return self.normalization(self.convolution(lowerCAmelCase ) , training=lowerCAmelCase ) class A ( tf.keras.layers.Layer ): def __init__(self , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ): super().__init__(**lowerCAmelCase ) __lowercase= tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCAmelCase , name='pooler' ) __lowercase= [ tf.keras.layers.ConvaD(filters=lowerCAmelCase , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=lowerCAmelCase , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def _A (self , lowerCAmelCase ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __lowercase= self.pooler(lowerCAmelCase ) for layer_module in self.attention: __lowercase= layer_module(lowerCAmelCase ) __lowercase= hidden_state * pooled return hidden_state class A ( tf.keras.layers.Layer ): def __init__(self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1 , **lowerCAmelCase ): super().__init__(**lowerCAmelCase ) __lowercase= in_channels != out_channels or stride != 1 __lowercase= max(1 , out_channels // config.groups_width ) __lowercase= ( TFRegNetShortCut(lowerCAmelCase , stride=lowerCAmelCase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __lowercase= [ TFRegNetConvLayer(lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase , name='layer.2' ), ] __lowercase= ACTaFN[config.hidden_act] def _A (self , lowerCAmelCase ): __lowercase= hidden_state for layer_module in self.layers: __lowercase= layer_module(lowerCAmelCase ) __lowercase= self.shortcut(lowerCAmelCase ) hidden_state += residual __lowercase= self.activation(lowerCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__(self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1 , **lowerCAmelCase ): super().__init__(**lowerCAmelCase ) __lowercase= in_channels != out_channels or stride != 1 __lowercase= max(1 , out_channels // config.groups_width ) __lowercase= ( TFRegNetShortCut(lowerCAmelCase , stride=lowerCAmelCase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) __lowercase= [ TFRegNetConvLayer(lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase , name='layer.3' ), ] __lowercase= ACTaFN[config.hidden_act] def _A (self , lowerCAmelCase ): __lowercase= hidden_state for layer_module in self.layers: __lowercase= layer_module(lowerCAmelCase ) __lowercase= self.shortcut(lowerCAmelCase ) hidden_state += residual __lowercase= self.activation(lowerCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__(self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 2 , lowerCAmelCase = 2 , **lowerCAmelCase ): super().__init__(**lowerCAmelCase ) __lowercase= TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer __lowercase= [ # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , name='layers.0' ), *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , name=f'layers.{i+1}' ) for i in range(depth - 1 )], ] def _A (self , lowerCAmelCase ): for layer_module in self.layers: __lowercase= layer_module(lowerCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__(self , lowerCAmelCase , **lowerCAmelCase ): super().__init__(**lowerCAmelCase ) __lowercase= [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) __lowercase= zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCAmelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase , name=f'stages.{i+1}' ) ) def _A (self , lowerCAmelCase , lowerCAmelCase = False , lowerCAmelCase = True ): __lowercase= () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowercase= hidden_states + (hidden_state,) __lowercase= stage_module(lowerCAmelCase ) if output_hidden_states: __lowercase= hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase ) @keras_serializable class A ( tf.keras.layers.Layer ): UpperCamelCase_ : Union[str, Any] =RegNetConfig def __init__(self , lowerCAmelCase , **lowerCAmelCase ): super().__init__(**lowerCAmelCase ) __lowercase= config __lowercase= TFRegNetEmbeddings(lowerCAmelCase , name='embedder' ) __lowercase= TFRegNetEncoder(lowerCAmelCase , name='encoder' ) __lowercase= tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCAmelCase , name='pooler' ) @unpack_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = False , ): __lowercase= ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase= return_dict if return_dict is not None else self.config.use_return_dict __lowercase= self.embedder(lowerCAmelCase , training=lowerCAmelCase ) __lowercase= self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase , training=lowerCAmelCase ) __lowercase= encoder_outputs[0] __lowercase= self.pooler(lowerCAmelCase ) # Change to NCHW output format have uniformity in the modules __lowercase= tf.transpose(lowerCAmelCase , perm=(0, 3, 1, 2) ) __lowercase= tf.transpose(lowerCAmelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __lowercase= tuple([tf.transpose(lowerCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class A ( A_ ): UpperCamelCase_ : Optional[Any] =RegNetConfig UpperCamelCase_ : Optional[int] ='''regnet''' UpperCamelCase_ : Union[str, Any] ='''pixel_values''' @property def _A (self ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} lowerCAmelCase = R''' Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. ''' lowerCAmelCase = R''' Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , A_ , ) class A ( A_ ): def __init__(self , lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ): super().__init__(lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ) __lowercase= TFRegNetMainLayer(lowerCAmelCase , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase=False , ): __lowercase= ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase= return_dict if return_dict is not None else self.config.use_return_dict __lowercase= self.regnet( pixel_values=lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase , training=lowerCAmelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , A_ , ) class A ( A_ , A_ ): def __init__(self , lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ): super().__init__(lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ) __lowercase= config.num_labels __lowercase= TFRegNetMainLayer(lowerCAmelCase , name='regnet' ) # classification head __lowercase= [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _A (self , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase=False , ): __lowercase= ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase= return_dict if return_dict is not None else self.config.use_return_dict __lowercase= self.regnet( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase , training=lowerCAmelCase ) __lowercase= outputs.pooler_output if return_dict else outputs[1] __lowercase= self.classifier[0](lowerCAmelCase ) __lowercase= self.classifier[1](lowerCAmelCase ) __lowercase= None if labels is None else self.hf_compute_loss(labels=lowerCAmelCase , logits=lowerCAmelCase ) if not return_dict: __lowercase= (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states )
363
import math from datetime import datetime, timedelta def _lowerCamelCase( lowercase__ ) -> datetime: '''simple docstring''' __lowercase= year % 1_9 __lowercase= year % 4 __lowercase= year % 7 __lowercase= math.floor(year / 1_0_0 ) __lowercase= math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) __lowercase= leap_day_inhibits / 4 __lowercase= ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 __lowercase= (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __lowercase= (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon __lowercase= ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(lowercase__ , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(lowercase__ , 4 , 1_8 ) else: return datetime(lowercase__ , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): lowerCAmelCase = '''will be''' if year > datetime.now().year else '''was''' print(F'Easter in {year} {tense} {gauss_easter(year)}')
304
0
def lowerCamelCase__ ( A__ : int ): '''simple docstring''' if not isinstance(a_ , a_ ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) __lowerCamelCase = 0 __lowerCamelCase = str(a_ ) while len(a_ ) != 1: __lowerCamelCase = [int(a_ ) for i in num_string] __lowerCamelCase = 1 for i in range(0 , len(a_ ) ): total *= numbers[i] __lowerCamelCase = str(a_ ) steps += 1 return steps def lowerCamelCase__ ( A__ : int ): '''simple docstring''' if not isinstance(a_ , a_ ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) __lowerCamelCase = 0 __lowerCamelCase = str(a_ ) while len(a_ ) != 1: __lowerCamelCase = [int(a_ ) for i in num_string] __lowerCamelCase = 0 for i in range(0 , len(a_ ) ): total += numbers[i] __lowerCamelCase = str(a_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
12
'''simple docstring''' import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class A__ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = hf_hub_download( repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) _UpperCAmelCase : int = VideoClassificationPipeline(model=lowerCAmelCase__ , image_processor=lowerCAmelCase__ , top_k=2 ) _UpperCAmelCase : int = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ) -> int: """simple docstring""" for example in examples: _UpperCAmelCase : List[str] = video_classifier(lowerCAmelCase__ ) self.assertEqual( lowerCAmelCase__ , [ {"score": ANY(lowerCAmelCase__ ), "label": ANY(lowerCAmelCase__ )}, {"score": ANY(lowerCAmelCase__ ), "label": ANY(lowerCAmelCase__ )}, ] , ) @require_torch def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : List[Any] = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" _UpperCAmelCase : Optional[int] = VideoMAEFeatureExtractor( size={"shortest_edge": 1_0} , crop_size={"height": 1_0, "width": 1_0} ) _UpperCAmelCase : List[str] = pipeline( "video-classification" , model=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , frame_sampling_rate=4 ) _UpperCAmelCase : Tuple = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) _UpperCAmelCase : Tuple = video_classifier(lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}] , ) _UpperCAmelCase : Any = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], ] , ) @require_tf def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass
145
0
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker __lowerCamelCase : Optional[Any] = '''CompVis/stable-diffusion-v1-1''' __lowerCamelCase : int = '''CompVis/stable-diffusion-v1-2''' __lowerCamelCase : List[str] = '''CompVis/stable-diffusion-v1-3''' __lowerCamelCase : List[Any] = '''CompVis/stable-diffusion-v1-4''' class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : Optional[Any] , __A : AutoencoderKL , __A : CLIPTextModel , __A : CLIPTokenizer , __A : UNetaDConditionModel , __A : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __A : StableDiffusionSafetyChecker , __A : CLIPImageProcessor , __A : bool = True , ): super()._init_() snake_case__ : List[str] = StableDiffusionPipeline.from_pretrained(__a ) snake_case__ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(__a ) snake_case__ : Dict = StableDiffusionPipeline.from_pretrained(__a ) snake_case__ : Optional[Any] = StableDiffusionPipeline( vae=__a , text_encoder=__a , tokenizer=__a , unet=__a , scheduler=__a , safety_checker=__a , feature_extractor=__a , requires_safety_checker=__a , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def _lowercase ( self : Optional[int] ): return {k: getattr(self , __a ) for k in self.config.keys() if not k.startswith("_" )} def _lowercase ( self : Tuple , __A : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory snake_case__ : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a ) def _lowercase ( self : List[str] ): self.enable_attention_slicing(__a ) @torch.no_grad() def _lowercase ( self : Union[str, Any] , __A : Union[str, List[str]] , __A : int = 5_1_2 , __A : int = 5_1_2 , __A : int = 5_0 , __A : float = 7.5 , __A : Optional[Union[str, List[str]]] = None , __A : Optional[int] = 1 , __A : float = 0.0 , __A : Optional[torch.Generator] = None , __A : Optional[torch.FloatTensor] = None , __A : Optional[str] = "pil" , __A : bool = True , __A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __A : int = 1 , **__A : Dict , ): return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def _lowercase ( self : Optional[int] , __A : Union[str, List[str]] , __A : int = 5_1_2 , __A : int = 5_1_2 , __A : int = 5_0 , __A : float = 7.5 , __A : Optional[Union[str, List[str]]] = None , __A : Optional[int] = 1 , __A : float = 0.0 , __A : Optional[torch.Generator] = None , __A : Optional[torch.FloatTensor] = None , __A : Optional[str] = "pil" , __A : bool = True , __A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __A : int = 1 , **__A : Any , ): return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def _lowercase ( self : str , __A : Union[str, List[str]] , __A : int = 5_1_2 , __A : int = 5_1_2 , __A : int = 5_0 , __A : float = 7.5 , __A : Optional[Union[str, List[str]]] = None , __A : Optional[int] = 1 , __A : float = 0.0 , __A : Optional[torch.Generator] = None , __A : Optional[torch.FloatTensor] = None , __A : Optional[str] = "pil" , __A : bool = True , __A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __A : int = 1 , **__A : int , ): return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def _lowercase ( self : List[str] , __A : Union[str, List[str]] , __A : int = 5_1_2 , __A : int = 5_1_2 , __A : int = 5_0 , __A : float = 7.5 , __A : Optional[Union[str, List[str]]] = None , __A : Optional[int] = 1 , __A : float = 0.0 , __A : Optional[torch.Generator] = None , __A : Optional[torch.FloatTensor] = None , __A : Optional[str] = "pil" , __A : bool = True , __A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __A : int = 1 , **__A : Optional[int] , ): return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def _lowercase ( self : List[Any] , __A : Union[str, List[str]] , __A : int = 5_1_2 , __A : int = 5_1_2 , __A : int = 5_0 , __A : float = 7.5 , __A : Optional[Union[str, List[str]]] = None , __A : Optional[int] = 1 , __A : float = 0.0 , __A : Optional[torch.Generator] = None , __A : Optional[torch.FloatTensor] = None , __A : Optional[str] = "pil" , __A : bool = True , __A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __A : int = 1 , **__A : int , ): snake_case__ : Tuple = 'cuda' if torch.cuda.is_available() else 'cpu' self.to(__a ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 snake_case__ : str = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get first result from Stable Diffusion Checkpoint v1.2 snake_case__ : Optional[Any] = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get first result from Stable Diffusion Checkpoint v1.3 snake_case__ : List[str] = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get first result from Stable Diffusion Checkpoint v1.4 snake_case__ : Union[str, Any] = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
350
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = StableDiffusionInstructPixaPixPipeline a_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : List[str] ): torch.manual_seed(0 ) snake_case__ : Any = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) snake_case__ : int = PNDMScheduler(skip_prk_steps=__A ) torch.manual_seed(0 ) snake_case__ : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case__ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) snake_case__ : Union[str, Any] = CLIPTextModel(__A ) snake_case__ : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) snake_case__ : str = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _lowercase ( self : List[Any] , __A : int , __A : Any=0 ): snake_case__ : Optional[int] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__A ) ).to(__A ) snake_case__ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ : Union[str, Any] = Image.fromarray(np.uinta(__A ) ).convert("RGB" ) if str(__A ).startswith("mps" ): snake_case__ : List[Any] = torch.manual_seed(__A ) else: snake_case__ : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) snake_case__ : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "image_guidance_scale": 1, "output_type": "numpy", } return inputs def _lowercase ( self : int ): snake_case__ : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ : int = self.get_dummy_components() snake_case__ : List[Any] = StableDiffusionInstructPixaPixPipeline(**__A ) snake_case__ : List[Any] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : Tuple = self.get_dummy_inputs(__A ) snake_case__ : List[str] = sd_pipe(**__A ).images snake_case__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case__ : List[Any] = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self : Union[str, Any] ): snake_case__ : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ : List[Any] = self.get_dummy_components() snake_case__ : List[Any] = StableDiffusionInstructPixaPixPipeline(**__A ) snake_case__ : str = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : str = self.get_dummy_inputs(__A ) snake_case__ : List[Any] = "french fries" snake_case__ : str = sd_pipe(**__A , negative_prompt=__A ) snake_case__ : Any = output.images snake_case__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case__ : Union[str, Any] = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self : Optional[int] ): snake_case__ : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ : List[Any] = self.get_dummy_components() snake_case__ : str = StableDiffusionInstructPixaPixPipeline(**__A ) snake_case__ : List[str] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : Any = self.get_dummy_inputs(__A ) snake_case__ : Tuple = [inputs["prompt"]] * 2 snake_case__ : Any = np.array(inputs["image"] ).astype(np.floataa ) / 2_5_5.0 snake_case__ : List[str] = torch.from_numpy(__A ).unsqueeze(0 ).to(__A ) snake_case__ : Union[str, Any] = image / 2 + 0.5 snake_case__ : str = image.permute(0 , 3 , 1 , 2 ) snake_case__ : int = image.repeat(2 , 1 , 1 , 1 ) snake_case__ : str = sd_pipe(**__A ).images snake_case__ : Any = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) snake_case__ : int = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ : int = self.get_dummy_components() snake_case__ : Dict = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" ) snake_case__ : Tuple = StableDiffusionInstructPixaPixPipeline(**__A ) snake_case__ : str = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : str = self.get_dummy_inputs(__A ) snake_case__ : Optional[Any] = sd_pipe(**__A ).images snake_case__ : Dict = image[0, -3:, -3:, -1] snake_case__ : Union[str, Any] = [round(__A , 4 ) for x in image_slice.flatten().tolist()] print(",".join([str(__A ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) snake_case__ : str = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self : List[str] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _lowercase ( self : List[Any] ): snake_case__ : Tuple = self.get_dummy_components() snake_case__ : Tuple = StableDiffusionInstructPixaPixPipeline(**__A ) snake_case__ : int = VaeImageProcessor(do_resize=__A , do_normalize=__A ) snake_case__ : Any = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) snake_case__ : Dict = pipe(**self.get_dummy_inputs_by_type(__A , input_image_type="pt" ) )[0] snake_case__ : int = components["vae"] snake_case__ : Union[str, Any] = self.get_dummy_inputs_by_type(__A , input_image_type="pt" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): snake_case__ : Optional[int] = vae.encode(inputs[image_param] ).latent_dist.mode() snake_case__ : str = pipe(**__A )[0] snake_case__ : Dict = np.abs(out - out_latents_inputs ).max() self.assertLess(__A , 1e-4 , "passing latents as image input generate different result from passing image" ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : str , __A : Dict=0 ): snake_case__ : Optional[int] = torch.manual_seed(__A ) snake_case__ : Tuple = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" ) snake_case__ : Optional[Any] = { "prompt": "turn him into a cyborg", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "image_guidance_scale": 1.0, "output_type": "numpy", } return inputs def _lowercase ( self : int ): snake_case__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() snake_case__ : Union[str, Any] = self.get_inputs() snake_case__ : Union[str, Any] = pipe(**__A ).images snake_case__ : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : Any = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowercase ( self : str ): snake_case__ : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=__A ) snake_case__ : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() snake_case__ : List[str] = self.get_inputs() snake_case__ : Any = pipe(**__A ).images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : Optional[Any] = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowercase ( self : Dict ): snake_case__ : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=__A ) snake_case__ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() snake_case__ : int = self.get_inputs() snake_case__ : Union[str, Any] = pipe(**__A ).images snake_case__ : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : Union[str, Any] = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowercase ( self : List[Any] ): snake_case__ : Optional[Any] = 0 def callback_fn(__A : int , __A : int , __A : torch.FloatTensor ) -> None: snake_case__ : Union[str, Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case__ : Optional[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) snake_case__ : int = latents[0, -3:, -3:, -1] snake_case__ : Optional[int] = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: snake_case__ : int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) snake_case__ : Any = latents[0, -3:, -3:, -1] snake_case__ : Dict = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 snake_case__ : Any = False snake_case__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=__A , torch_dtype=torch.floataa ) snake_case__ : int = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() snake_case__ : Optional[Any] = self.get_inputs() pipe(**__A , callback=__A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _lowercase ( self : List[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=__A , torch_dtype=torch.floataa ) snake_case__ : Tuple = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case__ : Dict = self.get_inputs() snake_case__ : List[Any] = pipe(**__A ) snake_case__ : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def _lowercase ( self : Tuple ): snake_case__ : int = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 snake_case__ : Union[str, Any] = inputs["image"].resize((5_0_4, 5_0_4) ) snake_case__ : Optional[Any] = "timbrooks/instruct-pix2pix" snake_case__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( __A , safety_checker=__A , ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() snake_case__ : Union[str, Any] = pipe(**__A ) snake_case__ : Tuple = output.images[0] snake_case__ : List[Any] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) snake_case__ : int = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
286
0
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" if not (isinstance(A_ , A_ ) and isinstance(A_ , A_ )): raise ValueError('''longest_common_substring() takes two strings for inputs''' ) A__ = len(A_ ) A__ = len(A_ ) A__ = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] A__ = 0 A__ = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: A__ = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: A__ = i A__ = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
14
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __snake_case : def __init__( self : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any=2 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Optional[Any]=1_0 , __lowerCAmelCase : List[str]=3 , __lowerCAmelCase : int=3_2 * 4 , __lowerCAmelCase : Dict=3_2 * 6 , __lowerCAmelCase : Any=4 , __lowerCAmelCase : List[str]=3_2 , ): """simple docstring""" _lowerCamelCase : List[str] = parent _lowerCamelCase : str = batch_size _lowerCamelCase : Dict = is_training _lowerCamelCase : str = use_auxiliary_loss _lowerCamelCase : Any = num_queries _lowerCamelCase : List[Any] = num_channels _lowerCamelCase : int = min_size _lowerCamelCase : Any = max_size _lowerCamelCase : int = num_labels _lowerCamelCase : List[str] = mask_feature_size def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __lowerCAmelCase ) _lowerCamelCase : List[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__lowerCAmelCase ) > 0.5 ).float() _lowerCamelCase : Optional[int] = (torch.rand((self.batch_size, self.num_labels) , device=__lowerCAmelCase ) > 0.5).long() _lowerCamelCase : Dict = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_2_8 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = self.prepare_config_and_inputs() _lowerCamelCase : List[str] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : List[str] = output.encoder_hidden_states _lowerCamelCase : Tuple = output.pixel_decoder_hidden_states _lowerCamelCase : Dict = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__lowerCAmelCase ) , config.decoder_config.decoder_layers ) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=False ): """simple docstring""" with torch.no_grad(): _lowerCamelCase : Optional[int] = MaskFormerModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Tuple = model(pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase ) _lowerCamelCase : List[str] = model(__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : str = MaskFormerForInstanceSegmentation(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() def comm_check_on_output(__lowerCAmelCase : Dict ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _lowerCamelCase : str = model(pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ) comm_check_on_output(__lowerCAmelCase ) _lowerCamelCase : List[str] = model( pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ) comm_check_on_output(__lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : Dict = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () snake_case__ : Any = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) snake_case__ : List[str] = False snake_case__ : List[str] = False snake_case__ : Optional[int] = False snake_case__ : Dict = False def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Optional[int] = MaskFormerModelTester(self ) _lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__lowerCAmelCase , **__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__lowerCAmelCase ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : str = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Dict = [*signature.parameters.keys()] _lowerCamelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" for model_name in ["facebook/maskformer-swin-small-coco"]: _lowerCamelCase : Union[str, Any] = MaskFormerModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : List[Any] = (self.model_tester.min_size,) * 2 _lowerCamelCase : Union[str, Any] = { '''pixel_values''': torch.randn((2, 3, *size) , device=__lowerCAmelCase ), '''mask_labels''': torch.randn((2, 1_0, *size) , device=__lowerCAmelCase ), '''class_labels''': torch.zeros(2 , 1_0 , device=__lowerCAmelCase ).long(), } _lowerCamelCase : int = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model(**__lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__lowerCAmelCase , **__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ).to(__lowerCAmelCase ) _lowerCamelCase : List[str] = model(**__lowerCAmelCase , output_attentions=__lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _lowerCamelCase : Union[str, Any] = self.all_model_classes[1] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() _lowerCamelCase : Any = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() _lowerCamelCase : List[Any] = model(__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ).loss loss.backward() def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : int = self.all_model_classes[1] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() _lowerCamelCase : List[str] = True _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _lowerCamelCase : Tuple = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _lowerCamelCase : List[str] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _lowerCamelCase : Optional[int] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCAmelCase__ = 1E-4 def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __snake_case ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : str = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(__lowerCAmelCase ) _lowerCamelCase : Any = self.default_image_processor _lowerCamelCase : List[Any] = prepare_img() _lowerCamelCase : Any = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) _lowerCamelCase : Any = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__lowerCAmelCase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _lowerCamelCase : int = model(**__lowerCAmelCase ) _lowerCamelCase : str = torch.tensor( [[-0.04_82, 0.92_28, 0.49_51], [-0.25_47, 0.80_17, 0.85_27], [-0.00_69, 0.33_85, -0.00_89]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.tensor( [[-0.84_22, -0.84_34, -0.97_18], [-1.01_44, -0.55_65, -0.41_95], [-1.00_38, -0.44_84, -0.19_61]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = torch.tensor( [[0.28_52, -0.01_59, 0.97_35], [0.62_54, 0.18_58, 0.85_29], [-0.06_80, -0.41_16, 1.84_13]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Optional[int] = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(__lowerCAmelCase ) .eval() ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : str = prepare_img() _lowerCamelCase : int = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) _lowerCamelCase : str = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__lowerCAmelCase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**__lowerCAmelCase ) # masks_queries_logits _lowerCamelCase : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _lowerCamelCase : List[str] = [ [-1.3_73_71_24, -1.7_72_49_37, -1.9_36_42_33], [-1.5_97_72_81, -1.9_86_79_39, -2.1_52_36_95], [-1.5_79_53_98, -1.9_26_98_32, -2.09_39_42], ] _lowerCamelCase : Any = torch.tensor(__lowerCAmelCase ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) # class_queries_logits _lowerCamelCase : List[Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _lowerCamelCase : str = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Any = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(__lowerCAmelCase ) .eval() ) _lowerCamelCase : Tuple = self.default_image_processor _lowerCamelCase : Tuple = prepare_img() _lowerCamelCase : Optional[Any] = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) _lowerCamelCase : List[Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__lowerCAmelCase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(**__lowerCAmelCase ) # masks_queries_logits _lowerCamelCase : List[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _lowerCamelCase : int = [[-0.90_46, -2.63_66, -4.60_62], [-3.41_79, -5.78_90, -8.80_57], [-4.91_79, -7.65_60, -10.77_11]] _lowerCamelCase : List[Any] = torch.tensor(__lowerCAmelCase ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) # class_queries_logits _lowerCamelCase : Dict = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _lowerCamelCase : Any = torch.tensor( [[4.71_88, -3.25_85, -2.88_57], [6.68_71, -2.91_81, -1.24_87], [7.24_49, -2.27_64, -2.18_74]] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : str = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(__lowerCAmelCase ) .eval() ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : List[str] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors='''pt''' , ) _lowerCamelCase : Union[str, Any] = inputs['''pixel_values'''].to(__lowerCAmelCase ) _lowerCamelCase : Dict = [el.to(__lowerCAmelCase ) for el in inputs['''mask_labels''']] _lowerCamelCase : Optional[Any] = [el.to(__lowerCAmelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): _lowerCamelCase : Tuple = model(**__lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
72
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> int: a = [1] a , a , a = 0, 0, 0 a = ugly_nums[ia] * 2 a = ugly_nums[ia] * 3 a = ugly_nums[ia] * 5 for _ in range(1 , __UpperCamelCase): a = min(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase) ugly_nums.append(__UpperCamelCase) if next_num == next_a: ia += 1 a = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 a = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 a = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F'{ugly_numbers(200) = }')
363
lowercase__ : str = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowercase__ : Any = [{"type": "code", "content": INSTALL_CONTENT}] lowercase__ : Any = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
180
0
def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__=False ) -> int: '''simple docstring''' if isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ): __lowercase= len(set_a.intersection(__snake_case ) ) if alternative_union: __lowercase= len(__snake_case ) + len(__snake_case ) else: __lowercase= len(set_a.union(__snake_case ) ) return intersection / union if isinstance(__snake_case , (list, tuple) ) and isinstance(__snake_case , (list, tuple) ): __lowercase= [element for element in set_a if element in set_b] if alternative_union: __lowercase= len(__snake_case ) + len(__snake_case ) return len(__snake_case ) / union else: __lowercase= set_a + [element for element in set_b if element not in set_a] return len(__snake_case ) / len(__snake_case ) return len(__snake_case ) / len(__snake_case ) return None if __name__ == "__main__": lowerCAmelCase = {'a', 'b', 'c', 'd', 'e'} lowerCAmelCase = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
295
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : int = 4_00_00_00 ): '''simple docstring''' lowercase = [] lowercase , lowercase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__snake_case ) lowercase , lowercase = b, a + b return sum(__snake_case ) if __name__ == "__main__": print(F'''{solution() = }''')
220
0
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase : Any =version.parse(importlib_metadata.version('''nltk''')) if NLTK_VERSION >= version.Version('''3.6.4'''): from nltk import word_tokenize lowerCamelCase : Union[str, Any] ='''\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } ''' lowerCamelCase : List[str] ='''\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. ''' lowerCamelCase : List[str] =''' Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: \'meteor\': meteor score. Examples: >>> meteor = datasets.load_metric(\'meteor\') >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"] >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results["meteor"], 4)) 0.6944 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a ( datasets.Metric ): def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple=0.9 , SCREAMING_SNAKE_CASE : str=3 , SCREAMING_SNAKE_CASE : Tuple=0.5 ): '''simple docstring''' if NLTK_VERSION >= version.Version("3.6.5" ): UpperCamelCase__ : Dict = [ meteor_score.single_meteor_score( word_tokenize(SCREAMING_SNAKE_CASE ) , word_tokenize(SCREAMING_SNAKE_CASE ) , alpha=SCREAMING_SNAKE_CASE , beta=SCREAMING_SNAKE_CASE , gamma=SCREAMING_SNAKE_CASE ) for ref, pred in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ] else: UpperCamelCase__ : Optional[int] = [ meteor_score.single_meteor_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , alpha=SCREAMING_SNAKE_CASE , beta=SCREAMING_SNAKE_CASE , gamma=SCREAMING_SNAKE_CASE ) for ref, pred in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ] return {"meteor": np.mean(SCREAMING_SNAKE_CASE )}
354
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), f'The input value of [n={number}] is not an integer' if number == 1: return 2 elif number < 1: UpperCamelCase__ : List[Any] = f'The input value of [n={number}] has to be > 0' raise ValueError(__lowerCAmelCase ) else: UpperCamelCase__ : Optional[Any] = sylvester(number - 1 ) UpperCamelCase__ : str = num - 1 UpperCamelCase__ : int = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
196
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__: Optional[Any] = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__: Dict = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys a__: str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
193
'''simple docstring''' import random class snake_case__ : @staticmethod def A ( _A : str ) -> tuple[list[int], list[int]]: UpperCAmelCase_ : Dict = [ord(_A ) for i in text] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [] for i in plain: UpperCAmelCase_ : int = random.randint(1 , 3_00 ) UpperCAmelCase_ : str = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def A ( _A : list[int] , _A : list[int] ) -> str: UpperCAmelCase_ : Dict = [] for i in range(len(_A ) ): UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
304
0
def __lowercase ( lowerCamelCase : list[list[int]] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : list[int] ): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def __lowercase ( lowerCamelCase : list[list[int]] , lowerCamelCase : list[int] , lowerCamelCase : int ): # Base Case if curr_ind == len(lowerCamelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(lowerCamelCase ) ): if valid_connection(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # Insert current vertex into path as next transition UpperCamelCase_ : Tuple = next_ver # Validate created path if util_hamilton_cycle(lowerCamelCase , lowerCamelCase , curr_ind + 1 ): return True # Backtrack UpperCamelCase_ : int = -1 return False def __lowercase ( lowerCamelCase : list[list[int]] , lowerCamelCase : int = 0 ): UpperCamelCase_ : List[str] = [-1] * (len(lowerCamelCase ) + 1) # initialize start and end of path with starting index UpperCamelCase_ : int = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(lowerCamelCase , lowerCamelCase , 1 ) else []
50
import baseaa def __lowercase ( lowerCamelCase : str ): return baseaa.baaencode(string.encode('utf-8' ) ) def __lowercase ( lowerCamelCase : bytes ): return baseaa.baadecode(lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": a_ = 'Hello World!' a_ = baseaa_encode(test) print(encoded) a_ = baseaa_decode(encoded) print(decoded)
50
1
"""simple docstring""" from __future__ import annotations from math import gcd def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase = 2 , _UpperCAmelCase = 1 , _UpperCAmelCase = 3 , ): """simple docstring""" if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int: return (pow(_UpperCAmelCase , 2 ) + step) % modulus for _ in range(_UpperCAmelCase ): # These track the position within the cycle detection logic. A_ : List[Any] = seed A_ : Any = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. A_ : Union[str, Any] = rand_fn(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) A_ : Tuple = rand_fn(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) A_ : List[str] = rand_fn(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. A_ : Any = gcd(hare - tortoise , _UpperCAmelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. A_ : Any = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowerCamelCase_ : int = argparse.ArgumentParser() parser.add_argument( 'num', type=int, help='The value to find a divisor of', ) parser.add_argument( '--attempts', type=int, default=3, help='The number of attempts before giving up', ) lowerCamelCase_ : Optional[int] = parser.parse_args() lowerCamelCase_ : List[str] = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"{args.num} is probably prime") else: lowerCamelCase_ : List[str] = args.num // divisor print(F"{args.num} = {divisor} * {quotient}")
286
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self , snake_case_ = 7_6_8 , ): """simple docstring""" super().__init__() A_ : Optional[int] = nn.Parameter(torch.zeros(1 , snake_case_ ) ) A_ : Optional[int] = nn.Parameter(torch.ones(1 , snake_case_ ) ) def lowerCamelCase_ ( self , snake_case_ = None , snake_case_ = None , ): """simple docstring""" A_ : str = nn.Parameter(self.mean.to(snake_case_ ).to(snake_case_ ) ) A_ : Optional[int] = nn.Parameter(self.std.to(snake_case_ ).to(snake_case_ ) ) return self def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : Tuple = (embeds - self.mean) * 1.0 / self.std return embeds def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : List[str] = (embeds * self.std) + self.mean return embeds
286
1
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 0 __lowerCAmelCase = len(_UpperCamelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __lowerCAmelCase = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(_UpperCamelCase ): return None __lowerCAmelCase = sorted_collection[point] if current_item == item: return point else: if point < left: __lowerCAmelCase = left __lowerCAmelCase = point elif point > right: __lowerCAmelCase = right __lowerCAmelCase = point else: if item < current_item: __lowerCAmelCase = point - 1 else: __lowerCAmelCase = point + 1 return None def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __lowerCAmelCase = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(_UpperCamelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) elif point > right: return interpolation_search_by_recursion(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , point - 1 ) else: return interpolation_search_by_recursion( _UpperCamelCase , _UpperCamelCase , point + 1 , _UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if collection != sorted(_UpperCamelCase ): raise ValueError("Collection must be ascending sorted" ) return True if __name__ == "__main__": import sys A : Any = 0 if debug == 1: A : int = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") A : Union[str, Any] = 6_7 A : Tuple = interpolation_search(collection, target) if result is not None: print(f'''{target} found at positions: {result}''') else: print("Not found")
364
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if is_torch_version("<" , "2.0.0" ) or not hasattr(_UpperCamelCase , "_dynamo" ): return False return isinstance(_UpperCamelCase , torch._dynamo.eval_frame.OptimizedModule ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase = True ): '''simple docstring''' __lowerCAmelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __lowerCAmelCase = is_compiled_module(_UpperCamelCase ) if is_compiled: __lowerCAmelCase = model __lowerCAmelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = model.module if not keep_fpaa_wrapper: __lowerCAmelCase = getattr(_UpperCamelCase , "forward" ) __lowerCAmelCase = model.__dict__.pop("_original_forward" , _UpperCamelCase ) if original_forward is not None: while hasattr(_UpperCamelCase , "__wrapped__" ): __lowerCAmelCase = forward.__wrapped__ if forward == original_forward: break __lowerCAmelCase = forward if getattr(_UpperCamelCase , "_converted_to_transformer_engine" , _UpperCamelCase ): convert_model(_UpperCamelCase , to_transformer_engine=_UpperCamelCase ) if is_compiled: __lowerCAmelCase = model __lowerCAmelCase = compiled_model return model def _lowerCamelCase ( ): '''simple docstring''' PartialState().wait_for_everyone() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(_UpperCamelCase , _UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(_UpperCamelCase , _UpperCamelCase ) @contextmanager def _lowerCamelCase ( **_UpperCamelCase ): '''simple docstring''' for key, value in kwargs.items(): __lowerCAmelCase = str(_UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if not hasattr(_UpperCamelCase , "__qualname__" ) and not hasattr(_UpperCamelCase , "__name__" ): __lowerCAmelCase = getattr(_UpperCamelCase , "__class__" , _UpperCamelCase ) if hasattr(_UpperCamelCase , "__qualname__" ): return obj.__qualname__ if hasattr(_UpperCamelCase , "__name__" ): return obj.__name__ return str(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' for key, value in source.items(): if isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = destination.setdefault(_UpperCamelCase , {} ) merge_dicts(_UpperCamelCase , _UpperCamelCase ) else: __lowerCAmelCase = value return destination def _lowerCamelCase ( _UpperCamelCase = None ): '''simple docstring''' if port is None: __lowerCAmelCase = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
259
0
"""simple docstring""" import baseaa def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return baseaa.aaaencode(string.encode("""utf-8""" ) ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : bytes ): '''simple docstring''' return baseaa.aaadecode(snake_case__ ).decode("""utf-8""" ) if __name__ == "__main__": import doctest doctest.testmod()
46
import random from typing import Any def snake_case ( snake_case__ :list) -> list[Any]: for _ in range(len(snake_case__)): _A = random.randint(0 , len(snake_case__) - 1) _A = random.randint(0 , len(snake_case__) - 1) _A , _A = data[b], data[a] return data if __name__ == "__main__": _SCREAMING_SNAKE_CASE = [0, 1, 2, 3, 4, 5, 6, 7] _SCREAMING_SNAKE_CASE = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
180
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ :Any = abspath(join(dirname(dirname(__file__)), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def lowerCAmelCase__ ( a__: Optional[Any] ) -> List[Any]: '''simple docstring''' from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(a__ ) def lowerCAmelCase__ ( a__: Dict ) -> str: '''simple docstring''' from diffusers.utils.testing_utils import pytest_terminal_summary_main _UpperCAmelCase = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(a__ , id=a__ )
352
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __a : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=9 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.002 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = encoder_seq_length _UpperCAmelCase = decoder_seq_length # For common tests _UpperCAmelCase = self.decoder_seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_attention_mask _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = d_ff _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = dropout_rate _UpperCAmelCase = initializer_factor _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = decoder_start_token_id _UpperCAmelCase = None _UpperCAmelCase = decoder_layers def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return TaConfig.from_pretrained('google/umt5-base' ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> List[str]: """simple docstring""" if attention_mask is None: _UpperCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_SCREAMING_SNAKE_CASE ) if decoder_head_mask is None: _UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_SCREAMING_SNAKE_CASE ) if cross_attn_head_mask is None: _UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_SCREAMING_SNAKE_CASE ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = self.get_config() _UpperCAmelCase = config.num_attention_heads _UpperCAmelCase = self.prepare_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return config, input_dict def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" _UpperCAmelCase = UMTaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model( input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = result.last_hidden_state _UpperCAmelCase = result.past_key_values _UpperCAmelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_SCREAMING_SNAKE_CASE ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = UMTaModel(config=_SCREAMING_SNAKE_CASE ).get_decoder().to(_SCREAMING_SNAKE_CASE ).eval() # first forward pass _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) + 1 ) _UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE )['last_hidden_state'] _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE )['last_hidden_state'] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" _UpperCAmelCase = UMTaModel(config=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ).half().eval() _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE )['last_hidden_state'] self.parent.assertFalse(torch.isnan(_SCREAMING_SNAKE_CASE ).any().item() ) @require_torch class __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _a : Union[str, Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _a : List[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () _a : Tuple = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) _a : List[str] = True _a : List[Any] = False _a : Tuple = False _a : List[Any] = True _a : str = True # The small UMT5 model needs higher percentages for CPU/MP tests _a : Tuple = [0.8, 0.9] def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = UMTaModel(config_and_inputs[0] ).to(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _SCREAMING_SNAKE_CASE , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=_SCREAMING_SNAKE_CASE , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = config_and_inputs[0] _UpperCAmelCase = UMTaForConditionalGeneration(_SCREAMING_SNAKE_CASE ).eval() model.to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ), } for attn_name, (name, mask) in zip(_SCREAMING_SNAKE_CASE , head_masking.items() ): _UpperCAmelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=_SCREAMING_SNAKE_CASE , return_dict_in_generate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # We check the state of decoder_attentions and cross_attentions just from the last step _UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def UpperCAmelCase__ ( self ) -> int: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class __a ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=_SCREAMING_SNAKE_CASE , legacy=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors='pt' , padding=_SCREAMING_SNAKE_CASE ).input_ids # fmt: off _UpperCAmelCase = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model.generate(input_ids.to(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] _UpperCAmelCase = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
185
0
import argparse import os import re import packaging.version lowercase__ :Dict = "examples/" lowercase__ :List[Any] = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } lowercase__ :List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } lowercase__ :str = "README.md" def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase = f.read() lowercase = REPLACE_PATTERNS[pattern] lowercase = replace.replace('''VERSION''' , lowerCAmelCase__ ) lowercase = re_pattern.sub(lowerCAmelCase__ , lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' for folder, directories, fnames in os.walk(lowerCAmelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ , pattern='''examples''' ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not patch: update_version_in_examples(lowerCAmelCase__ ) def UpperCamelCase ( ): '''simple docstring''' lowercase = '🤗 Transformers currently provides the following architectures' lowercase = '1. Want to contribute a new model?' with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase = f.readlines() # Find the start of the list. lowercase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowercase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): lowercase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lowerCAmelCase__ ) def UpperCamelCase ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: lowercase = f.read() lowercase = REPLACE_PATTERNS['init'][0].search(lowerCAmelCase__ ).groups()[0] return packaging.version.parse(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__=False ): '''simple docstring''' lowercase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: lowercase = default_version.base_version elif patch: lowercase = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: lowercase = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. lowercase = input(f'Which version are you releasing? [{default_version}]' ) if len(lowerCAmelCase__ ) == 0: lowercase = default_version print(f'Updating version to {version}.' ) global_version_update(lowerCAmelCase__ , patch=lowerCAmelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def UpperCamelCase ( ): '''simple docstring''' lowercase = get_version() lowercase = f'{current_version.major}.{current_version.minor + 1}.0.dev0' lowercase = current_version.base_version # Check with the user we got that right. lowercase = input(f'Which version are we developing now? [{dev_version}]' ) if len(lowerCAmelCase__ ) == 0: lowercase = dev_version print(f'Updating version to {version}.' ) global_version_update(lowerCAmelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": lowercase__ :int = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") lowercase__ :Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
101
import unittest from knapsack import knapsack as k class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: List[Any] = 0 lowercase__: List[Any] = [0] lowercase__: str = [0] lowercase__: Tuple = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 0 ) lowercase__: Optional[Any] = [60] lowercase__: Dict = [10] lowercase__: str = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Union[str, Any] = 3 lowercase__: List[str] = [1, 2, 3] lowercase__: Union[str, Any] = [3, 2, 1] lowercase__: Union[str, Any] = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 5 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Optional[Any] = 50 lowercase__: str = [60, 100, 120] lowercase__: Any = [10, 20, 30] lowercase__: List[Any] = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 220 ) if __name__ == "__main__": unittest.main()
196
0
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = args.pruning_method _SCREAMING_SNAKE_CASE : Tuple = args.threshold _SCREAMING_SNAKE_CASE : str = args.model_name_or_path.rstrip("/" ) _SCREAMING_SNAKE_CASE : Tuple = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) _SCREAMING_SNAKE_CASE : Optional[int] = torch.load(os.path.join(_lowercase, "pytorch_model.bin" ) ) _SCREAMING_SNAKE_CASE : Tuple = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _SCREAMING_SNAKE_CASE : Optional[int] = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: _SCREAMING_SNAKE_CASE : int = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: _SCREAMING_SNAKE_CASE : Union[str, Any] = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": _SCREAMING_SNAKE_CASE : Union[str, Any] = MagnitudeBinarizer.apply(inputs=_lowercase, threshold=_lowercase ) _SCREAMING_SNAKE_CASE : List[Any] = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue _SCREAMING_SNAKE_CASE : str = name[:-6] _SCREAMING_SNAKE_CASE : Dict = model[f"""{prefix_}mask_scores"""] _SCREAMING_SNAKE_CASE : Tuple = TopKBinarizer.apply(_lowercase, _lowercase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _SCREAMING_SNAKE_CASE : int = name[:-6] _SCREAMING_SNAKE_CASE : List[Any] = model[f"""{prefix_}mask_scores"""] _SCREAMING_SNAKE_CASE : Union[str, Any] = ThresholdBinarizer.apply(_lowercase, _lowercase, _lowercase ) _SCREAMING_SNAKE_CASE : int = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue _SCREAMING_SNAKE_CASE : str = name[:-6] _SCREAMING_SNAKE_CASE : Tuple = model[f"""{prefix_}mask_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = -0.1, 1.1 _SCREAMING_SNAKE_CASE : Any = torch.sigmoid(_lowercase ) _SCREAMING_SNAKE_CASE : Optional[int] = s * (r - l) + l _SCREAMING_SNAKE_CASE : Tuple = s_bar.clamp(min=0.0, max=1.0 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: _SCREAMING_SNAKE_CASE : List[Any] = os.path.join( os.path.dirname(_lowercase ), f"""bertarized_{os.path.basename(_lowercase )}""" ) if not os.path.isdir(_lowercase ): shutil.copytree(_lowercase, _lowercase ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(_lowercase, os.path.join(_lowercase, "pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) UpperCamelCase__ =parser.parse_args() main(args)
359
from timeit import timeit def lowerCamelCase__ (__lowerCamelCase ): if number < 0: raise ValueError("the value of input must not be negative" ) _SCREAMING_SNAKE_CASE : str = 0 while number: number &= number - 1 result += 1 return result def lowerCamelCase__ (__lowerCamelCase ): if number < 0: raise ValueError("the value of input must not be negative" ) _SCREAMING_SNAKE_CASE : str = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def lowerCamelCase__ (): def do_benchmark(__lowerCamelCase ) -> None: _SCREAMING_SNAKE_CASE : Tuple = "import __main__ as z" print(f"""Benchmark when {number = }:""" ) print(f"""{get_set_bits_count_using_modulo_operator(__lowerCamelCase ) = }""" ) _SCREAMING_SNAKE_CASE : str = timeit("z.get_set_bits_count_using_modulo_operator(25)", setup=__lowerCamelCase ) print(f"""timeit() runs in {timing} seconds""" ) print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(__lowerCamelCase ) = }""" ) _SCREAMING_SNAKE_CASE : int = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)", setup=__lowerCamelCase, ) print(f"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
325
0
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> int: lowerCamelCase__ : Union[str, Any] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowerCamelCase__ : List[Any] = n - k # Calculate C(n,k) for i in range(_UpperCAmelCase ): result *= n - i result //= i + 1 return result def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: return binomial_coefficient(2 * node_count , _UpperCAmelCase ) // (node_count + 1) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: if n < 0: raise ValueError('factorial() not defined for negative values' ) lowerCamelCase__ : Dict = 1 for i in range(1 , n + 1 ): result *= i return result def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: return catalan_number(_UpperCAmelCase ) * factorial(_UpperCAmelCase ) if __name__ == "__main__": _UpperCAmelCase : Dict = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( F"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ F"""binary trees and {catalan_number(node_count)} binary search trees.""" )
50
from itertools import count def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 50 ) -> int: lowerCamelCase__ : Optional[Any] = [1] * min_block_length for n in count(_UpperCAmelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCAmelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"""{solution() = }""")
50
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A( lowerCamelCase_ ): '''simple docstring''' UpperCamelCase = ["""image_processor""", """tokenizer"""] UpperCamelCase = """CLIPImageProcessor""" UpperCamelCase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : int , A_ : Tuple=None , A_ : List[Any]=None , **A_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) lowerCamelCase_ = kwargs.pop('feature_extractor' ) lowerCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : Any , A_ : List[Any]=None , A_ : List[Any]=None , A_ : Tuple=None , **A_ : Tuple ) -> Dict: """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase_ = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: lowerCamelCase_ = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def a__ ( self : List[str] , *A_ : int , **A_ : Optional[Any] ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : str , *A_ : List[str] , **A_ : List[str] ) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.tokenizer.model_input_names lowerCamelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def a__ ( self : Tuple ) -> int: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def a__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
367
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCamelCase : Optional[Any] = False lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Any = "ybelkada/fonts" def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ 'Pix2StructImageProcessor. Please upgrade torch.' ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ): '''simple docstring''' requires_backends(lowercase , ['torch'] ) _check_torch_version() lowerCamelCase_ = image_tensor.unsqueeze(0 ) lowerCamelCase_ = torch.nn.functional.unfold(lowercase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowerCamelCase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , lowercase , lowercase , -1 ) lowerCamelCase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : int = 36 , lowercase : str = "black" , lowercase : str = "white" , lowercase : int = 5 , lowercase : int = 5 , lowercase : int = 5 , lowercase : int = 5 , lowercase : Optional[bytes] = None , lowercase : Optional[str] = None , ): '''simple docstring''' requires_backends(lowercase , 'vision' ) # Add new lines so that each line is no more than 80 characters. lowerCamelCase_ = textwrap.TextWrapper(width=80 ) lowerCamelCase_ = wrapper.wrap(text=lowercase ) lowerCamelCase_ = '\n'.join(lowercase ) if font_bytes is not None and font_path is None: lowerCamelCase_ = io.BytesIO(lowercase ) elif font_path is not None: lowerCamelCase_ = font_path else: lowerCamelCase_ = hf_hub_download(lowercase , 'Arial.TTF' ) lowerCamelCase_ = ImageFont.truetype(lowercase , encoding='UTF-8' , size=lowercase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowerCamelCase_ = ImageDraw.Draw(Image.new('RGB' , (1, 1) , lowercase ) ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = temp_draw.textbbox((0, 0) , lowercase , lowercase ) # Create the actual image with a bit of padding around the text. lowerCamelCase_ = text_width + left_padding + right_padding lowerCamelCase_ = text_height + top_padding + bottom_padding lowerCamelCase_ = Image.new('RGB' , (image_width, image_height) , lowercase ) lowerCamelCase_ = ImageDraw.Draw(lowercase ) draw.text(xy=(left_padding, top_padding) , text=lowercase , fill=lowercase , font=lowercase ) return image def _SCREAMING_SNAKE_CASE ( lowercase : np.ndarray , lowercase : str , **lowercase : List[Any] ): '''simple docstring''' requires_backends(lowercase , 'vision' ) # Convert to PIL image if necessary lowerCamelCase_ = to_pil_image(lowercase ) lowerCamelCase_ = render_text(lowercase , **lowercase ) lowerCamelCase_ = max(header_image.width , image.width ) lowerCamelCase_ = int(image.height * (new_width / image.width) ) lowerCamelCase_ = int(header_image.height * (new_width / header_image.width) ) lowerCamelCase_ = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowerCamelCase_ = to_numpy_array(lowercase ) if infer_channel_dimension_format(lowercase ) == ChannelDimension.LAST: lowerCamelCase_ = to_channel_dimension_format(lowercase , ChannelDimension.LAST ) return new_image class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''flattened_patches'''] def __init__( self : Dict , A_ : bool = True , A_ : bool = True , A_ : Dict[str, int] = None , A_ : int = 2048 , A_ : bool = False , **A_ : str , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = patch_size if patch_size is not None else {'height': 16, 'width': 16} lowerCamelCase_ = do_normalize lowerCamelCase_ = do_convert_rgb lowerCamelCase_ = max_patches lowerCamelCase_ = is_vqa def a__ ( self : Union[str, Any] , A_ : np.ndarray , A_ : int , A_ : dict , **A_ : Any ) -> np.ndarray: """simple docstring""" requires_backends(self.extract_flattened_patches , 'torch' ) _check_torch_version() # convert to torch lowerCamelCase_ = to_channel_dimension_format(A_ , ChannelDimension.FIRST ) lowerCamelCase_ = torch.from_numpy(A_ ) lowerCamelCase_ , lowerCamelCase_ = patch_size['height'], patch_size['width'] lowerCamelCase_ , lowerCamelCase_ = get_image_size(A_ ) # maximize scale s.t. lowerCamelCase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowerCamelCase_ = max(min(math.floor(scale * image_height / patch_height ) , A_ ) , 1 ) lowerCamelCase_ = max(min(math.floor(scale * image_width / patch_width ) , A_ ) , 1 ) lowerCamelCase_ = max(num_feasible_rows * patch_height , 1 ) lowerCamelCase_ = max(num_feasible_cols * patch_width , 1 ) lowerCamelCase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode='bilinear' , align_corners=A_ , antialias=A_ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowerCamelCase_ = torch_extract_patches(A_ , A_ , A_ ) lowerCamelCase_ = patches.shape lowerCamelCase_ = patches_shape[1] lowerCamelCase_ = patches_shape[2] lowerCamelCase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowerCamelCase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowerCamelCase_ = torch.arange(A_ ).reshape([rows, 1] ).repeat(1 , A_ ).reshape([rows * columns, 1] ) lowerCamelCase_ = torch.arange(A_ ).reshape([1, columns] ).repeat(A_ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowerCamelCase_ = row_ids.to(torch.floataa ) lowerCamelCase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowerCamelCase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowerCamelCase_ = torch.nn.functional.pad(A_ , [0, 0, 0, max_patches - (rows * columns)] ).float() lowerCamelCase_ = to_numpy_array(A_ ) return result def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str ) -> np.ndarray: """simple docstring""" if image.dtype == np.uinta: lowerCamelCase_ = image.astype(np.floataa ) # take mean across the whole `image` lowerCamelCase_ = np.mean(A_ ) lowerCamelCase_ = np.std(A_ ) lowerCamelCase_ = max(A_ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(A_ , mean=A_ , std=A_ , **A_ ) def a__ ( self : Optional[Any] , A_ : ImageInput , A_ : Optional[str] = None , A_ : bool = None , A_ : Optional[bool] = None , A_ : Optional[int] = None , A_ : Optional[Dict[str, int]] = None , A_ : Optional[Union[str, TensorType]] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : Optional[int] , ) -> ImageInput: """simple docstring""" lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCamelCase_ = patch_size if patch_size is not None else self.patch_size lowerCamelCase_ = max_patches if max_patches is not None else self.max_patches lowerCamelCase_ = self.is_vqa if kwargs.get('data_format' , A_ ) is not None: raise ValueError('data_format is not an accepted input as the outputs are ' ) lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCamelCase_ = [convert_to_rgb(A_ ) for image in images] # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.' ) lowerCamelCase_ = kwargs.pop('font_bytes' , A_ ) lowerCamelCase_ = kwargs.pop('font_path' , A_ ) if isinstance(A_ , A_ ): lowerCamelCase_ = [header_text] * len(A_ ) lowerCamelCase_ = [ render_header(A_ , header_text[i] , font_bytes=A_ , font_path=A_ ) for i, image in enumerate(A_ ) ] if do_normalize: lowerCamelCase_ = [self.normalize(image=A_ ) for image in images] # convert to torch tensor and permute lowerCamelCase_ = [ self.extract_flattened_patches(image=A_ , max_patches=A_ , patch_size=A_ ) for image in images ] # create attention mask in numpy lowerCamelCase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowerCamelCase_ = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks} , tensor_type=A_ ) return encoded_outputs
208
0
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowerCAmelCase: Optional[Any] = 5_0_0_0_0_0 lowerCAmelCase , lowerCAmelCase: List[Any] = os.path.split(__file__) lowerCAmelCase: int = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def lowerCamelCase__ ( _A , **_A ): a : str = dataset.map(**SCREAMING_SNAKE_CASE__ ) @get_duration def lowerCamelCase__ ( _A , **_A ): a : List[str] = dataset.filter(**SCREAMING_SNAKE_CASE__ ) def lowerCamelCase__ ( ): a : str = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: a : Dict = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) a : int = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE__ , 'dataset.arrow' ) , SCREAMING_SNAKE_CASE__ , num_examples=SCREAMING_SNAKE_CASE__ ) a : Optional[int] = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=SCREAMING_SNAKE_CASE__ ) def tokenize(_A ): return tokenizer(examples['text'] ) a : List[Any] = map(SCREAMING_SNAKE_CASE__ ) a : Union[str, Any] = map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) a : Optional[int] = map(SCREAMING_SNAKE_CASE__ , function=lambda _A : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='numpy' ): a : Optional[int] = map(SCREAMING_SNAKE_CASE__ , function=lambda _A : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='pandas' ): a : str = map(SCREAMING_SNAKE_CASE__ , function=lambda _A : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='torch' , columns='numbers' ): a : Optional[int] = map(SCREAMING_SNAKE_CASE__ , function=lambda _A : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): a : Union[str, Any] = map(SCREAMING_SNAKE_CASE__ , function=lambda _A : None , batched=SCREAMING_SNAKE_CASE__ ) a : int = map(SCREAMING_SNAKE_CASE__ , function=SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) a : Union[str, Any] = filter(SCREAMING_SNAKE_CASE__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
297
from math import factorial __snake_case = {str(digit): factorial(digit) for digit in range(10)} def _A ( SCREAMING_SNAKE_CASE__ : int ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(SCREAMING_SNAKE_CASE__ ) ) def _A ( SCREAMING_SNAKE_CASE__ : int = 60 , SCREAMING_SNAKE_CASE__ : int = 1000000 ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length UpperCamelCase :Any = 0 # the cached sizes of the previous chains UpperCamelCase :dict[int, int] = {} for start_chain_element in range(1 , SCREAMING_SNAKE_CASE__ ): # The temporary set will contain the elements of the chain UpperCamelCase :List[Any] = set() UpperCamelCase :Any = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. UpperCamelCase :Optional[Any] = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(SCREAMING_SNAKE_CASE__ ) chain_set_length += 1 UpperCamelCase :List[Any] = digit_factorial_sum(SCREAMING_SNAKE_CASE__ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] UpperCamelCase :Any = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
259
0
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCAmelCase : List[str] = Lock() def __lowerCamelCase ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[str] ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowerCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCamelCase = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCamelCase = min(lowerCamelCase__ , lowerCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowerCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCamelCase = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCamelCase = max(lowerCamelCase__ , lowerCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ : List[Any] ): '''simple docstring''' lowerCamelCase = [] lowerCamelCase = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCamelCase = Pipe() lowerCamelCase = Pipe() process_array_.append( Process( target=lowerCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowerCamelCase = temp_rs lowerCamelCase = temp_rr for i in range(1 , len(lowerCamelCase__ ) - 1 ): lowerCamelCase = Pipe() lowerCamelCase = Pipe() process_array_.append( Process( target=lowerCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowerCamelCase = temp_rs lowerCamelCase = temp_rr process_array_.append( Process( target=lowerCamelCase__ , args=( len(lowerCamelCase__ ) - 1, arr[len(lowerCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowerCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowerCamelCase__ ) ): lowerCamelCase = result_pipe[p][0].recv() process_array_[p].join() return arr def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = list(range(10 , 0 , -1 ) ) print("""Initial List""" ) print(*lowerCamelCase__ ) lowerCamelCase = odd_even_transposition(lowerCamelCase__ ) print("""Sorted List\n""" ) print(*lowerCamelCase__ ) if __name__ == "__main__": main()
357
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : List[Any] = { "BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Any = "altclip_text_model" def __init__( self , A=25_00_02 , A=10_24 , A=24 , A=16 , A=40_96 , A="gelu" , A=0.1 , A=0.1 , A=5_14 , A=1 , A=0.02 , A=0.02 , A=1e-0_5 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=7_68 , **A , ) -> int: '''simple docstring''' super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = hidden_act lowerCamelCase = intermediate_size lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = type_vocab_size lowerCamelCase = initializer_range lowerCamelCase = initializer_factor lowerCamelCase = layer_norm_eps lowerCamelCase = position_embedding_type lowerCamelCase = use_cache lowerCamelCase = project_dim class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Dict = "altclip_vision_model" def __init__( self , A=7_68 , A=30_72 , A=5_12 , A=12 , A=12 , A=3 , A=2_24 , A=32 , A="quick_gelu" , A=1e-5 , A=0.0 , A=0.02 , A=1.0 , **A , ) -> Dict: '''simple docstring''' super().__init__(**A ) lowerCamelCase = hidden_size lowerCamelCase = intermediate_size lowerCamelCase = projection_dim lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = num_channels lowerCamelCase = patch_size lowerCamelCase = image_size lowerCamelCase = initializer_range lowerCamelCase = initializer_factor lowerCamelCase = attention_dropout lowerCamelCase = layer_norm_eps lowerCamelCase = hidden_act @classmethod def __A ( cls , A , **A ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(A ) lowerCamelCase , lowerCamelCase = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": lowerCamelCase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Optional[Any] = "altclip" UpperCamelCase : Optional[Any] = True def __init__( self , A=None , A=None , A=7_68 , A=2.6592 , **A ) -> Dict: '''simple docstring''' lowerCamelCase = kwargs.pop("""text_config_dict""" , A ) lowerCamelCase = kwargs.pop("""vision_config_dict""" , A ) super().__init__(**A ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: lowerCamelCase = {} # This is the complete result when using `text_config_dict`. lowerCamelCase = AltCLIPTextConfig(**A ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: lowerCamelCase = ( F'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' F'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: lowerCamelCase = ( F'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' F'value `text_config["{key}"]` will be overriden.' ) logger.warning(A ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: lowerCamelCase = {} # This is the complete result when using `vision_config_dict`. lowerCamelCase = AltCLIPVisionConfig(**A ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: lowerCamelCase = { str(A ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: lowerCamelCase = ( F'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' F'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: lowerCamelCase = ( F'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' F'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(A ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: lowerCamelCase = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: lowerCamelCase = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) lowerCamelCase = AltCLIPTextConfig(**A ) lowerCamelCase = AltCLIPVisionConfig(**A ) lowerCamelCase = projection_dim lowerCamelCase = logit_scale_init_value lowerCamelCase = 1.0 @classmethod def __A ( cls , A , A , **A ) -> Dict: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = copy.deepcopy(self.__dict__ ) lowerCamelCase = self.text_config.to_dict() lowerCamelCase = self.vision_config.to_dict() lowerCamelCase = self.__class__.model_type return output
66
0
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" ,[ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(UpperCAmelCase_ ,i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 ,4 ), range(4 ,7 ), range(7 ,10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 ,1 ), range(1 ,2 ), range(2 ,3 )]), ] ,) def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = _distribute_shards(**UpperCAmelCase_ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" ,[ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] ,) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = _split_gen_kwargs(UpperCAmelCase_ ,UpperCAmelCase_ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" ,[ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] ,) def _lowercase ( __A ,__A ): '''simple docstring''' if expected is RuntimeError: with pytest.raises(UpperCAmelCase_ ): _number_of_shards_in_gen_kwargs(UpperCAmelCase_ ) else: __UpperCamelCase = _number_of_shards_in_gen_kwargs(UpperCAmelCase_ ) assert out == expected
349
'''simple docstring''' A__ : Optional[int] = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/""" def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __lowerCamelCase : Dict = F'a bytes-like object is required, not \'{data.__class__.__name__}\'' raise TypeError(UpperCAmelCase_ ) __lowerCamelCase : Optional[int] = ''.join(bin(UpperCAmelCase_ )[2:].zfill(8 ) for byte in data ) __lowerCamelCase : Any = len(UpperCAmelCase_ ) % 6 != 0 if padding_needed: # The padding that will be added later __lowerCamelCase : int = B'=' * ((6 - len(UpperCAmelCase_ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(UpperCAmelCase_ ) % 6) else: __lowerCamelCase : str = B'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(UpperCAmelCase_ ) , 6 ) ).encode() + padding ) def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __lowerCamelCase : Dict = ( 'argument should be a bytes-like object or ASCII string, ' F'not \'{encoded_data.__class__.__name__}\'' ) raise TypeError(UpperCAmelCase_ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): try: __lowerCamelCase : int = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) __lowerCamelCase : Union[str, Any] = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(UpperCAmelCase_ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __lowerCamelCase : Any = encoded_data[:-padding] __lowerCamelCase : Optional[Any] = ''.join( bin(B64_CHARSET.index(UpperCAmelCase_ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __lowerCamelCase : Any = ''.join( bin(B64_CHARSET.index(UpperCAmelCase_ ) )[2:].zfill(6 ) for char in encoded_data ) __lowerCamelCase : str = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(UpperCAmelCase_ ) , 8 ) ] return bytes(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
185
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : str = logging.get_logger(__name__) __A : List[str] = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class __UpperCamelCase ( _A ): SCREAMING_SNAKE_CASE = "bert" def __init__(self : Optional[int] , __SCREAMING_SNAKE_CASE : str=3_0_5_2_2 , __SCREAMING_SNAKE_CASE : Dict=7_6_8 , __SCREAMING_SNAKE_CASE : Any=1_2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_2 , __SCREAMING_SNAKE_CASE : Optional[int]=3_0_7_2 , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=5_1_2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Optional[int]=0.0_2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1E-12 , __SCREAMING_SNAKE_CASE : List[Any]=0 , __SCREAMING_SNAKE_CASE : List[str]="absolute" , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Any=None , **__SCREAMING_SNAKE_CASE : Tuple , ): super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = position_embedding_type A = use_cache A = classifier_dropout class __UpperCamelCase ( _A ): @property def SCREAMING_SNAKE_CASE__ (self : int): if self.task == "multiple-choice": A = {0: "batch", 1: "choice", 2: "sequence"} else: A = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ])
57
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : Union[str, Any] = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __UpperCamelCase ( _A ): SCREAMING_SNAKE_CASE = "speech_to_text_2" SCREAMING_SNAKE_CASE = ["past_key_values"] SCREAMING_SNAKE_CASE = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__(self : Any , __SCREAMING_SNAKE_CASE : List[str]=1_0_0_0_0 , __SCREAMING_SNAKE_CASE : Dict=6 , __SCREAMING_SNAKE_CASE : Dict=2_0_4_8 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : int=0.0 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[Any]="relu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=2_5_6 , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.0 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : Tuple=0.0_2 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Any=1 , __SCREAMING_SNAKE_CASE : List[str]=0 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : int=1_0_2_4 , **__SCREAMING_SNAKE_CASE : str , ): A = vocab_size A = d_model A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = decoder_layerdrop A = use_cache A = decoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True A = max_target_positions super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
57
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) class a__ ( UpperCAmelCase__ ): lowerCamelCase : Dict ="timm_backbone" def __init__( self : Optional[int] , a : int=None , a : Dict=3 , a : Any=True , a : List[str]=True , a : Optional[Any]=None , **a : Optional[int] , ): """simple docstring""" super().__init__(**a ) __lowerCamelCase = backbone __lowerCamelCase = num_channels __lowerCamelCase = features_only __lowerCamelCase = use_pretrained_backbone __lowerCamelCase = True __lowerCamelCase = out_indices if out_indices is not None else (-1,)
67
from math import isqrt, loga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]: __lowercase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = False return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800800 , SCREAMING_SNAKE_CASE : int = 800800 ) -> int: __lowercase = degree * loga(SCREAMING_SNAKE_CASE ) __lowercase = int(SCREAMING_SNAKE_CASE ) __lowercase = calculate_prime_numbers(SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = len(SCREAMING_SNAKE_CASE ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'''{solution() = }''')
325
0
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple: assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> str: __lowerCAmelCase = tmp_path / """cache""" __lowerCAmelCase = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_text_dataset(lowercase , lowercase ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> str: __lowerCAmelCase = tmp_path / """cache""" __lowerCAmelCase = {"""text""": """string"""} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_text_dataset(lowercase , lowercase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> int: __lowerCAmelCase = tmp_path / """cache""" __lowerCAmelCase = {"""text""": """string"""} __lowerCAmelCase = TextDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_text_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Dict: if issubclass(lowercase , lowercase ): __lowerCAmelCase = text_path elif issubclass(lowercase , lowercase ): __lowerCAmelCase = [text_path] __lowerCAmelCase = tmp_path / """cache""" __lowerCAmelCase = {"""text""": """string"""} __lowerCAmelCase = TextDatasetReader(lowercase , cache_dir=lowercase ).read() _check_text_dataset(lowercase , lowercase ) def _lowerCAmelCase ( lowercase , lowercase , lowercase=("train",) ) -> str: assert isinstance(lowercase , lowercase ) for split in splits: __lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Optional[int]: __lowerCAmelCase = tmp_path / """cache""" __lowerCAmelCase = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader({"""train""": text_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_text_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Any: __lowerCAmelCase = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __lowerCAmelCase = {"""text""": """string"""} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader({"""train""": text_path} , features=lowercase , cache_dir=lowercase ).read() _check_text_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Optional[int]: if split: __lowerCAmelCase = {split: text_path} else: __lowerCAmelCase = """train""" __lowerCAmelCase = {"""train""": text_path, """test""": text_path} __lowerCAmelCase = tmp_path / """cache""" __lowerCAmelCase = {"""text""": """string"""} __lowerCAmelCase = TextDatasetReader(lowercase , cache_dir=lowercase ).read() _check_text_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
358
'''simple docstring''' import numpy as np from transformers import Pipeline def _lowerCAmelCase ( lowercase ) -> List[str]: __lowerCAmelCase = np.max(lowercase , axis=-1 , keepdims=lowercase ) __lowerCAmelCase = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowercase ) class _UpperCAmelCase ( lowerCAmelCase_ ): def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = {} if "second_text" in kwargs: __lowerCAmelCase = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' return self.tokenizer(__SCREAMING_SNAKE_CASE,text_pair=__SCREAMING_SNAKE_CASE,return_tensors=self.framework ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.model(**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = model_outputs.logits[0].numpy() __lowerCAmelCase = softmax(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.argmax(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.model.config.idalabel[best_class] __lowerCAmelCase = probabilities[best_class].item() __lowerCAmelCase = logits.tolist() return {"label": label, "score": score, "logits": logits}
46
0
'''simple docstring''' from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration a : Dict = HfArgumentParser(InitializationArguments) a : Union[str, Any] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization a : int = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks a : str = { 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) a : int = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config a : Tuple = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
56
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def a_ ( *_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase=True ,_lowerCAmelCase=2 ) -> List[str]: from .. import __version__ __lowerCamelCase : Any = take_from __lowerCamelCase : Optional[int] = () if not isinstance(args[0] ,_lowerCAmelCase ): __lowerCamelCase : Optional[Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(_lowerCAmelCase ).base_version ) >= version.parse(_lowerCAmelCase ): raise ValueError( F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'' F' version {__version__} is >= {version_name}' ) __lowerCamelCase : Union[str, Any] = None if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(_lowerCAmelCase ),) __lowerCamelCase : Optional[Any] = F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.' elif hasattr(_lowerCAmelCase ,_lowerCAmelCase ): values += (getattr(_lowerCAmelCase ,_lowerCAmelCase ),) __lowerCamelCase : List[str] = F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.' elif deprecated_kwargs is None: __lowerCamelCase : Optional[Any] = F'`{attribute}` is deprecated and will be removed in version {version_name}.' if warning is not None: __lowerCamelCase : Optional[int] = warning + ' ' if standard_warn else '' warnings.warn(warning + message ,_lowerCAmelCase ,stacklevel=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) and len(_lowerCAmelCase ) > 0: __lowerCamelCase : Optional[Any] = inspect.getouterframes(inspect.currentframe() )[1] __lowerCamelCase : List[str] = call_frame.filename __lowerCamelCase : int = call_frame.lineno __lowerCamelCase : Union[str, Any] = call_frame.function __lowerCamelCase ,__lowerCamelCase : Union[str, Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' ) if len(_lowerCAmelCase ) == 0: return elif len(_lowerCAmelCase ) == 1: return values[0] return values
208
0
import os def SCREAMING_SNAKE_CASE_ ( __A : Tuple = "input.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(lowerCamelCase_ ) , lowerCamelCase_ ) ) as input_file: a_ : List[Any] = [ [int(lowerCamelCase_ ) for element in line.split(',' )] for line in input_file.readlines() ] a_ : Tuple = len(lowerCamelCase_ ) a_ : Any = len(matrix[0] ) a_ : Any = [[-1 for _ in range(lowerCamelCase_ )] for _ in range(lowerCamelCase_ )] for i in range(lowerCamelCase_ ): a_ : Any = matrix[i][0] for j in range(1 , lowerCamelCase_ ): for i in range(lowerCamelCase_ ): a_ : int = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , lowerCamelCase_ ): a_ : Dict = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): a_ : Union[str, Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'{solution() = }')
368
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase_ : str = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE_ ( __A : Dict , __A : List[str] ) -> Tuple: """simple docstring""" if os.path.exists(__A ): if os.path.exists(os.path.join(__A , 'config.json' ) ) and os.path.isfile( os.path.join(__A , 'config.json' ) ): os.remove(os.path.join(__A , 'config.json' ) ) if os.path.exists(os.path.join(__A , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__A , 'pytorch_model.bin' ) ): os.remove(os.path.join(__A , 'pytorch_model.bin' ) ) else: os.makedirs(__A ) model.save_pretrained(__A ) def SCREAMING_SNAKE_CASE_ ( __A : str , __A : Dict=False ) -> Any: """simple docstring""" a_ : Optional[Any] = 2 if unlogit: a_ : List[str] = torch.pow(__A , __A ) a_ : Tuple = p * torch.log(__A ) a_ : Union[str, Any] = 0 return -plogp.sum(dim=-1 ) def SCREAMING_SNAKE_CASE_ ( __A : Any ) -> Tuple: """simple docstring""" logger.info('lv, h >\t' + '\t'.join(F"""{x + 1}""" for x in range(len(__A ) ) ) ) for row in range(len(__A ) ): if tensor.dtype != torch.long: logger.info(F"""layer {row + 1}:\t""" + '\t'.join(F"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(F"""layer {row + 1}:\t""" + '\t'.join(F"""{x:d}""" for x in tensor[row].cpu().data ) ) def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : Dict , __A : Union[str, Any] , __A : List[str]=True , __A : str=True , __A : int=None , __A : List[str]=False ) -> List[Any]: """simple docstring""" a_ , a_ : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads a_ : Tuple = torch.zeros(__A , __A ).to(args.device ) a_ : Optional[int] = torch.zeros(__A , __A ).to(args.device ) if head_mask is None: a_ : Tuple = torch.ones(__A , __A ).to(args.device ) head_mask.requires_grad_(requires_grad=__A ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: a_ : List[str] = None a_ : Optional[Any] = 0.0 a_ : Optional[int] = 0.0 for step, inputs in enumerate(tqdm(__A , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): a_ : Any = tuple(t.to(args.device ) for t in inputs ) ((a_) , ) : Dict = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) a_ : Tuple = model(__A , labels=__A , head_mask=__A ) # (loss), lm_logits, presents, (all hidden_states), (attentions) a_ , a_ , a_ : Optional[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A ): a_ : List[str] = entropy(attn.detach() , __A ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: a_ : int = 2 a_ : Dict = torch.pow(torch.pow(__A , __A ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-2_0 if not args.dont_normalize_global_importance: a_ : Dict = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__A ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__A ) logger.info('Head ranked by importance scores' ) a_ : Optional[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) a_ : Tuple = torch.arange( head_importance.numel() , device=args.device ) a_ : Optional[Any] = head_ranks.view_as(__A ) print_ad_tensor(__A ) return attn_entropy, head_importance, total_loss def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] , __A : List[Any] , __A : str ) -> Union[str, Any]: """simple docstring""" a_ , a_ , a_ : Any = compute_heads_importance(__A , __A , __A , compute_entropy=__A ) a_ : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __A , original_score * args.masking_threshold ) a_ : List[Any] = torch.ones_like(__A ) a_ : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) a_ : List[Any] = original_score while current_score >= original_score * args.masking_threshold: a_ : Union[str, Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads a_ : str = float('Inf' ) a_ : Any = head_importance.view(-1 ).sort()[1] if len(__A ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads a_ : Any = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) a_ : Optional[Any] = new_head_mask.view(-1 ) a_ : Optional[int] = 0.0 a_ : List[str] = new_head_mask.view_as(__A ) a_ : Dict = new_head_mask.clone().detach() print_ad_tensor(__A ) # Compute metric and head importance again a_ , a_ , a_ : int = compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A ) a_ : Optional[int] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__A ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : int , __A : Union[str, Any] , __A : Optional[Any] ) -> Optional[Any]: """simple docstring""" a_ : Dict = datetime.now() a_ , a_ , a_ : Union[str, Any] = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A ) a_ : Union[str, Any] = 1 / loss a_ : List[Any] = datetime.now() - before_time a_ : str = sum(p.numel() for p in model.parameters() ) a_ : Any = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A ) ) } for k, v in heads_to_prune.items(): if isinstance(__A , __A ): a_ : List[str] = [ v, ] assert sum(len(__A ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__A ) a_ : str = sum(p.numel() for p in model.parameters() ) a_ : Union[str, Any] = datetime.now() a_ , a_ , a_ : int = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) a_ : int = 1 / loss a_ : str = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __A , __A , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __A , __A ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__A , args.output_dir ) def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: """simple docstring""" a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__A , type=__A , required=__A , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__A , type=__A , required=__A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__A , type=__A , required=__A , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__A , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__A , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__A , type=__A , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__A , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__A , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__A , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__A , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__A , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__A , help='Batch size.' ) parser.add_argument('--seed' , type=__A , default=42 ) parser.add_argument('--local_rank' , type=__A , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__A , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__A , default='' , help='Can be used for distant debugging.' ) a_ : List[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: a_ : str = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) a_ : List[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) a_ : Any = torch.device('cuda' , args.local_rank ) a_ : Union[str, Any] = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) a_ : Union[str, Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: a_ : List[Any] = nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A ) elif args.n_gpu > 1: a_ : Optional[int] = nn.DataParallel(__A ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A ) torch.save(__A , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __A ) # Prepare dataset a_ : Optional[Any] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) a_ : Tuple = (torch.from_numpy(__A ),) a_ : Optional[int] = TensorDataset(*__A ) a_ : Any = RandomSampler(__A ) a_ : str = DataLoader(__A , sampler=__A , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: a_ : Optional[Any] = mask_heads(__A , __A , __A ) prune_heads(__A , __A , __A , __A ) if __name__ == "__main__": main()
120
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Dict ) -> str: if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) _a : Union[str, Any] =str(bin(_lowercase ) ) binary_number += "0" * shift_amount return binary_number def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : List[Any] ) -> Optional[int]: if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) _a : Optional[int] =str(bin(_lowercase ) )[2:] if shift_amount >= len(_lowercase ): return "0b0" _a : Optional[int] =binary_number[: len(_lowercase ) - shift_amount] return "0b" + shifted_binary_number def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Any ,_UpperCAmelCase : Optional[Any] ) -> Dict: if number >= 0: # Get binary representation of positive number _a : Any ="""0""" + str(bin(_lowercase ) ).strip("""-""" )[2:] else: # Get binary (2's complement) representation of negative number _a : Dict =len(bin(_lowercase )[3:] ) # Find 2's complement of number _a : Optional[int] =bin(abs(_lowercase ) - (1 << binary_number_length) )[3:] _a : Any =( """1""" + """0""" * (binary_number_length - len(_lowercase )) + binary_number ) if shift_amount >= len(_lowercase ): return "0b" + binary_number[0] * len(_lowercase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(_lowercase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
276
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase : '''simple docstring''' def __init__( self: Optional[int] , snake_case: Any , snake_case: Optional[Any]=13 , snake_case: Tuple=32 , snake_case: Optional[int]=2 , snake_case: Tuple=3 , snake_case: Tuple=16 , snake_case: Optional[Any]=[1, 2, 1] , snake_case: Optional[int]=[2, 2, 4] , snake_case: Optional[int]=2 , snake_case: int=2.0 , snake_case: Union[str, Any]=True , snake_case: List[str]=0.0 , snake_case: List[Any]=0.0 , snake_case: Optional[Any]=0.1 , snake_case: List[Any]="gelu" , snake_case: Optional[int]=False , snake_case: Union[str, Any]=True , snake_case: Union[str, Any]=0.0_2 , snake_case: Optional[int]=1E-5 , snake_case: Optional[Any]=True , snake_case: List[Any]=None , snake_case: List[Any]=True , snake_case: Optional[Any]=10 , snake_case: str=8 , ) -> Tuple: snake_case_ :Dict = parent snake_case_ :Any = batch_size snake_case_ :List[Any] = image_size snake_case_ :List[Any] = patch_size snake_case_ :int = num_channels snake_case_ :Tuple = embed_dim snake_case_ :str = depths snake_case_ :str = num_heads snake_case_ :Optional[int] = window_size snake_case_ :Tuple = mlp_ratio snake_case_ :Any = qkv_bias snake_case_ :List[Any] = hidden_dropout_prob snake_case_ :Optional[Any] = attention_probs_dropout_prob snake_case_ :Union[str, Any] = drop_path_rate snake_case_ :Any = hidden_act snake_case_ :Optional[Any] = use_absolute_embeddings snake_case_ :Union[str, Any] = patch_norm snake_case_ :Dict = layer_norm_eps snake_case_ :str = initializer_range snake_case_ :Tuple = is_training snake_case_ :Tuple = scope snake_case_ :Union[str, Any] = use_labels snake_case_ :Optional[Any] = type_sequence_label_size snake_case_ :Dict = encoder_stride def lowerCAmelCase_ ( self: int ) -> int: snake_case_ :List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ :Any = None if self.use_labels: snake_case_ :str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ :int = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCAmelCase_ ( self: str , snake_case: Optional[int] , snake_case: Dict , snake_case: str ) -> List[Any]: snake_case_ :Union[str, Any] = SwinvaModel(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ :Optional[int] = model(snake_case ) snake_case_ :Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case_ :int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase_ ( self: int , snake_case: List[str] , snake_case: Tuple , snake_case: int ) -> Any: snake_case_ :Dict = SwinvaForMaskedImageModeling(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ :Tuple = model(snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case_ :List[Any] = 1 snake_case_ :int = SwinvaForMaskedImageModeling(snake_case ) model.to(snake_case ) model.eval() snake_case_ :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ :int = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self: List[Any] , snake_case: Any , snake_case: List[str] , snake_case: Union[str, Any] ) -> Tuple: snake_case_ :int = self.type_sequence_label_size snake_case_ :List[Any] = SwinvaForImageClassification(snake_case ) model.to(snake_case ) model.eval() snake_case_ :Dict = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self: int ) -> str: snake_case_ :Any = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_ :List[str] = config_and_inputs snake_case_ :List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _A : Any = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) _A : List[Any] = False _A : List[str] = False _A : Tuple = False _A : List[str] = False def lowerCAmelCase_ ( self: Dict ) -> List[Any]: snake_case_ :Optional[int] = SwinvaModelTester(self ) snake_case_ :List[str] = ConfigTester(self , config_class=snake_case , embed_dim=37 ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase_ ( self: Union[str, Any] ) -> Tuple: snake_case_ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> str: pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def lowerCAmelCase_ ( self: int ) -> Dict: pass def lowerCAmelCase_ ( self: List[str] ) -> Union[str, Any]: snake_case_, snake_case_ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ :Optional[int] = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ :List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def lowerCAmelCase_ ( self: Dict ) -> Optional[int]: snake_case_, snake_case_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ :Optional[int] = model_class(snake_case ) snake_case_ :List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ :int = [*signature.parameters.keys()] snake_case_ :List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCAmelCase_ ( self: List[str] ) -> Optional[Any]: snake_case_, snake_case_ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ :List[str] = True for model_class in self.all_model_classes: snake_case_ :List[Any] = True snake_case_ :Any = False snake_case_ :Optional[int] = True snake_case_ :Tuple = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): snake_case_ :Any = model(**self._prepare_for_class(snake_case , snake_case ) ) snake_case_ :str = outputs.attentions snake_case_ :Dict = len(self.model_tester.depths ) self.assertEqual(len(snake_case ) , snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case_ :Union[str, Any] = True snake_case_ :Tuple = config.window_size**2 snake_case_ :Any = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): snake_case_ :Union[str, Any] = model(**self._prepare_for_class(snake_case , snake_case ) ) snake_case_ :int = outputs.attentions self.assertEqual(len(snake_case ) , snake_case ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) snake_case_ :Any = len(snake_case ) # Check attention is always last and order is fine snake_case_ :int = True snake_case_ :Dict = True snake_case_ :Optional[int] = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): snake_case_ :Dict = model(**self._prepare_for_class(snake_case , snake_case ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): snake_case_ :Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states snake_case_ :int = 2 self.assertEqual(out_len + added_hidden_states , len(snake_case ) ) snake_case_ :str = outputs.attentions self.assertEqual(len(snake_case ) , snake_case ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def lowerCAmelCase_ ( self: int , snake_case: Dict , snake_case: Dict , snake_case: Optional[Any] , snake_case: Dict ) -> List[str]: snake_case_ :Dict = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): snake_case_ :Optional[int] = model(**self._prepare_for_class(snake_case , snake_case ) ) snake_case_ :str = outputs.hidden_states snake_case_ :List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(snake_case ) , snake_case ) # Swinv2 has a different seq_length snake_case_ :List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case_ :Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) snake_case_ :str = outputs.reshaped_hidden_states self.assertEqual(len(snake_case ) , snake_case ) snake_case_, snake_case_, snake_case_, snake_case_ :Any = reshaped_hidden_states[0].shape snake_case_ :int = ( reshaped_hidden_states[0].view(snake_case , snake_case , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCAmelCase_ ( self: Any ) -> Any: snake_case_, snake_case_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: snake_case_ :Union[str, Any] = True self.check_hidden_states_output(snake_case , snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ :List[str] = True self.check_hidden_states_output(snake_case , snake_case , snake_case , snake_case ) def lowerCAmelCase_ ( self: Tuple ) -> Any: snake_case_, snake_case_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ :Optional[int] = 3 snake_case_ :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case_ :str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case_ :Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case_ :int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: snake_case_ :str = True self.check_hidden_states_output(snake_case , snake_case , snake_case , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ :Tuple = True self.check_hidden_states_output(snake_case , snake_case , snake_case , (padded_height, padded_width) ) def lowerCAmelCase_ ( self: Any ) -> Tuple: snake_case_ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case ) def lowerCAmelCase_ ( self: Optional[int] ) -> Dict: snake_case_ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @slow def lowerCAmelCase_ ( self: List[Any] ) -> Dict: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ :List[str] = SwinvaModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def lowerCAmelCase_ ( self: Optional[int] ) -> List[Any]: snake_case_, snake_case_ :str = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ :Optional[int] = _config_zero_init(snake_case ) for model_class in self.all_model_classes: snake_case_ :Tuple = model_class(config=snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self: Optional[int] ) -> List[Any]: return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self: List[str] ) -> List[str]: snake_case_ :Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( snake_case ) snake_case_ :str = self.default_image_processor snake_case_ :List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) snake_case_ :str = image_processor(images=snake_case , return_tensors="""pt""" ).to(snake_case ) # forward pass with torch.no_grad(): snake_case_ :Tuple = model(**snake_case ) # verify the logits snake_case_ :Dict = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case ) snake_case_ :int = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
66
0
"""simple docstring""" lowercase__ : Any = { '''Pillow''': '''Pillow<10.0.0''', '''accelerate''': '''accelerate>=0.20.3''', '''av''': '''av==9.2.0''', '''beautifulsoup4''': '''beautifulsoup4''', '''black''': '''black~=23.1''', '''codecarbon''': '''codecarbon==1.2.0''', '''cookiecutter''': '''cookiecutter==1.7.3''', '''dataclasses''': '''dataclasses''', '''datasets''': '''datasets!=2.5.0''', '''decord''': '''decord==0.6.0''', '''deepspeed''': '''deepspeed>=0.9.3''', '''diffusers''': '''diffusers''', '''dill''': '''dill<0.3.5''', '''evaluate''': '''evaluate>=0.2.0''', '''fairscale''': '''fairscale>0.3''', '''faiss-cpu''': '''faiss-cpu''', '''fastapi''': '''fastapi''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1,<=0.7.0''', '''ftfy''': '''ftfy''', '''fugashi''': '''fugashi>=1.0''', '''GitPython''': '''GitPython<3.1.19''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.14.1,<1.0''', '''importlib_metadata''': '''importlib_metadata''', '''ipadic''': '''ipadic>=1.0.0,<2.0''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2,<=0.4.13''', '''jaxlib''': '''jaxlib>=0.1.65,<=0.4.13''', '''jieba''': '''jieba''', '''kenlm''': '''kenlm''', '''keras-nlp''': '''keras-nlp>=0.3.1''', '''librosa''': '''librosa''', '''nltk''': '''nltk''', '''natten''': '''natten>=0.14.6''', '''numpy''': '''numpy>=1.17''', '''onnxconverter-common''': '''onnxconverter-common''', '''onnxruntime-tools''': '''onnxruntime-tools>=1.4.2''', '''onnxruntime''': '''onnxruntime>=1.4.0''', '''opencv-python''': '''opencv-python''', '''optuna''': '''optuna''', '''optax''': '''optax>=0.0.8,<=0.1.4''', '''packaging''': '''packaging>=20.0''', '''parameterized''': '''parameterized''', '''phonemizer''': '''phonemizer''', '''protobuf''': '''protobuf''', '''psutil''': '''psutil''', '''pyyaml''': '''pyyaml>=5.1''', '''pydantic''': '''pydantic<2''', '''pytest''': '''pytest>=7.2.0''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''python''': '''python>=3.8.0''', '''ray[tune]''': '''ray[tune]''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''rhoknp''': '''rhoknp>=1.1.0,<1.3.1''', '''rjieba''': '''rjieba''', '''rouge-score''': '''rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1''', '''ruff''': '''ruff>=0.0.241,<=0.0.259''', '''sacrebleu''': '''sacrebleu>=1.4.12,<2.0.0''', '''sacremoses''': '''sacremoses''', '''safetensors''': '''safetensors>=0.3.1''', '''sagemaker''': '''sagemaker>=2.31.0''', '''scikit-learn''': '''scikit-learn''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''sigopt''': '''sigopt''', '''starlette''': '''starlette''', '''sudachipy''': '''sudachipy>=0.6.6''', '''sudachidict_core''': '''sudachidict_core>=20220729''', '''tensorflow-cpu''': '''tensorflow-cpu>=2.6,<2.14''', '''tensorflow''': '''tensorflow>=2.6,<2.14''', '''tensorflow-text''': '''tensorflow-text<2.14''', '''tf2onnx''': '''tf2onnx''', '''timeout-decorator''': '''timeout-decorator''', '''timm''': '''timm''', '''tokenizers''': '''tokenizers>=0.11.1,!=0.11.3,<0.14''', '''torch''': '''torch>=1.9,!=1.12.0''', '''torchaudio''': '''torchaudio''', '''torchvision''': '''torchvision''', '''pyctcdecode''': '''pyctcdecode>=0.4.0''', '''tqdm''': '''tqdm>=4.27''', '''unidic''': '''unidic>=1.0.2''', '''unidic_lite''': '''unidic_lite>=1.0.7''', '''urllib3''': '''urllib3<2.0.0''', '''uvicorn''': '''uvicorn''', }
352
"""simple docstring""" import os def __lowercase ( _a ): snake_case_ : Tuple = len(grid[0] ) snake_case_ : Optional[int] = len(_a ) snake_case_ : Union[str, Any] = 0 snake_case_ : Union[str, Any] = 0 snake_case_ : List[Any] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_a ): for j in range(n_rows - 3 ): snake_case_ : Union[str, Any] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] snake_case_ : int = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: snake_case_ : Dict = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: snake_case_ : List[Any] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) snake_case_ : List[str] = max( _a , _a , _a , _a ) if max_product > largest: snake_case_ : str = max_product return largest def __lowercase ( ): snake_case_ : Tuple = [] with open(os.path.dirname(_a ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) snake_case_ : List[str] = [[int(_a ) for i in grid[j]] for j in range(len(_a ) )] return largest_product(_a ) if __name__ == "__main__": print(solution())
155
0
"""simple docstring""" # Imports import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self , __a=None , __a=None , __a=None , __a=None , __a=None ): self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a ) def snake_case ( self , __a=None , __a=None , __a=None , __a=None , __a=None ): if red is not None: __lowerCAmelCase = red if green is not None: __lowerCAmelCase = green if blue is not None: __lowerCAmelCase = blue if red_edge is not None: __lowerCAmelCase = red_edge if nir is not None: __lowerCAmelCase = nir return True def snake_case ( self , __a="" , __a=None , __a=None , __a=None , __a=None , __a=None ): self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a ) __lowerCAmelCase = { "ARVI2": self.arvaa, "CCCI": self.ccci, "CVI": self.cvi, "GLI": self.gli, "NDVI": self.ndvi, "BNDVI": self.bndvi, "redEdgeNDVI": self.red_edge_ndvi, "GNDVI": self.gndvi, "GBNDVI": self.gbndvi, "GRNDVI": self.grndvi, "RBNDVI": self.rbndvi, "PNDVI": self.pndvi, "ATSAVI": self.atsavi, "BWDRVI": self.bwdrvi, "CIgreen": self.ci_green, "CIrededge": self.ci_rededge, "CI": self.ci, "CTVI": self.ctvi, "GDVI": self.gdvi, "EVI": self.evi, "GEMI": self.gemi, "GOSAVI": self.gosavi, "GSAVI": self.gsavi, "Hue": self.hue, "IVI": self.ivi, "IPVI": self.ipvi, "I": self.i, "RVI": self.rvi, "MRVI": self.mrvi, "MSAVI": self.m_savi, "NormG": self.norm_g, "NormNIR": self.norm_nir, "NormR": self.norm_r, "NGRDI": self.ngrdi, "RI": self.ri, "S": self.s, "IF": self._if, "DVI": self.dvi, "TVI": self.tvi, "NDRE": self.ndre, } try: return funcs[index]() except KeyError: print("Index not in the list!" ) return False def snake_case ( self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def snake_case ( self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def snake_case ( self ): return self.nir * (self.red / (self.green**2)) def snake_case ( self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def snake_case ( self ): return (self.nir - self.red) / (self.nir + self.red) def snake_case ( self ): return (self.nir - self.blue) / (self.nir + self.blue) def snake_case ( self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def snake_case ( self ): return (self.nir - self.green) / (self.nir + self.green) def snake_case ( self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def snake_case ( self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def snake_case ( self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def snake_case ( self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def snake_case ( self , __a=0.0_8 , __a=1.2_2 , __a=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def snake_case ( self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def snake_case ( self ): return (self.nir / self.green) - 1 def snake_case ( self ): return (self.nir / self.redEdge) - 1 def snake_case ( self ): return (self.red - self.blue) / self.red def snake_case ( self ): __lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def snake_case ( self ): return self.nir - self.green def snake_case ( self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def snake_case ( self ): __lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def snake_case ( self , __a=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def snake_case ( self , __a=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def snake_case ( self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def snake_case ( self , __a=None , __a=None ): return (self.nir - b) / (a * self.red) def snake_case ( self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def snake_case ( self ): return (self.red + self.green + self.blue) / 3_0.5 def snake_case ( self ): return self.nir / self.red def snake_case ( self ): return (self.rvi() - 1) / (self.rvi() + 1) def snake_case ( self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def snake_case ( self ): return self.green / (self.nir + self.red + self.green) def snake_case ( self ): return self.nir / (self.nir + self.red + self.green) def snake_case ( self ): return self.red / (self.nir + self.red + self.green) def snake_case ( self ): return (self.green - self.red) / (self.green + self.red) def snake_case ( self ): return (self.red - self.green) / (self.red + self.green) def snake_case ( self ): __lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def snake_case ( self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def snake_case ( self ): return self.nir / self.red def snake_case ( self ): return (self.ndvi() + 0.5) ** (1 / 2) def snake_case ( self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
57
"""simple docstring""" import numpy # List of input, output pairs A : Any = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) A : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) A : Union[str, Any] = [2, 4, 1, 5] A : int = len(train_data) A : Dict = 0.009 def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase="train" ): '''simple docstring''' return calculate_hypothesis_value(_UpperCamelCase , _UpperCamelCase ) - output( _UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 0 for i in range(len(_UpperCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=m ): '''simple docstring''' __lowerCAmelCase = 0 for i in range(_UpperCamelCase ): if index == -1: summation_value += _error(_UpperCamelCase ) else: summation_value += _error(_UpperCamelCase ) * train_data[i][0][index] return summation_value def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = summation_of_cost_derivative(_UpperCamelCase , _UpperCamelCase ) / m return cost_derivative_value def _lowerCamelCase ( ): '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output __lowerCAmelCase = 0.00_00_02 __lowerCAmelCase = 0 __lowerCAmelCase = 0 while True: j += 1 __lowerCAmelCase = [0, 0, 0, 0] for i in range(0 , len(_UpperCamelCase ) ): __lowerCAmelCase = get_cost_derivative(i - 1 ) __lowerCAmelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _UpperCamelCase , _UpperCamelCase , atol=_UpperCamelCase , rtol=_UpperCamelCase , ): break __lowerCAmelCase = temp_parameter_vector print(("Number of iterations:", j) ) def _lowerCamelCase ( ): '''simple docstring''' for i in range(len(_UpperCamelCase ) ): print(("Actual output value:", output(_UpperCamelCase , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(_UpperCamelCase , "test" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
57
1
from __future__ import annotations from fractions import Fraction def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = [] lowercase__ = 11 lowercase__ = int("1" + "0" * digit_len ) for num in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 lowercase__ = 10 return solutions def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = 2 ): lowercase__ = 1.0 for fraction in fraction_list(SCREAMING_SNAKE_CASE_ ): lowercase__ = Fraction(SCREAMING_SNAKE_CASE_ ) result *= frac.denominator / frac.numerator return int(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(solution())
224
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) lowercase_ = 2_9979_2458 # Symbols lowercase_ , lowercase_ , lowercase_ , lowercase_ = symbols("""ct x y z""") def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): if velocity > c: raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("Speed must be greater than or equal to 1!" ) return velocity / c def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return 1 / sqrt(1 - beta(SCREAMING_SNAKE_CASE_ ) ** 2 ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return np.array( [ [gamma(SCREAMING_SNAKE_CASE_ ), -gamma(SCREAMING_SNAKE_CASE_ ) * beta(SCREAMING_SNAKE_CASE_ ), 0, 0], [-gamma(SCREAMING_SNAKE_CASE_ ) * beta(SCREAMING_SNAKE_CASE_ ), gamma(SCREAMING_SNAKE_CASE_ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): # Ensure event is not empty if event is None: lowercase__ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(SCREAMING_SNAKE_CASE_ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: lowercase_ = transform(2997_9245) print("""Example of four vector: """) print(F'ct\' = {four_vector[0]}') print(F'x\' = {four_vector[1]}') print(F'y\' = {four_vector[2]}') print(F'z\' = {four_vector[3]}') # Substitute symbols with numerical values lowercase_ = {ct: c, x: 1, y: 1, z: 1} lowercase_ = [four_vector[i].subs(sub_dict) for i in range(4)] print(F'\n{numerical_vector}')
224
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class _a ( _UpperCAmelCase ): '''simple docstring''' A : str = '''speech_to_text_2''' A : List[str] = ['''past_key_values'''] A : Optional[Any] = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self, A=10_000, A=6, A=2_048, A=4, A=0.0, A=True, A="relu", A=256, A=0.1, A=0.0, A=0.0, A=0.02, A=2, A=True, A=1, A=0, A=2, A=1_024, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Tuple = d_model SCREAMING_SNAKE_CASE : int = decoder_ffn_dim SCREAMING_SNAKE_CASE : Optional[Any] = decoder_layers SCREAMING_SNAKE_CASE : str = decoder_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = dropout SCREAMING_SNAKE_CASE : Optional[Any] = attention_dropout SCREAMING_SNAKE_CASE : Optional[Any] = activation_dropout SCREAMING_SNAKE_CASE : Any = activation_function SCREAMING_SNAKE_CASE : List[str] = init_std SCREAMING_SNAKE_CASE : Any = decoder_layerdrop SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layers SCREAMING_SNAKE_CASE : int = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : Any = max_target_positions super().__init__( pad_token_id=A, bos_token_id=A, eos_token_id=A, decoder_start_token_id=A, **A, )
251
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests SCREAMING_SNAKE_CASE__ = open # noqa: we just need to have a builtin inside this module to test it properly
46
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__:Tuple = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Any = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Dict = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:int = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__:Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
268
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _lowerCamelCase( a ): __a = torch.exp(a ) __a = torch.sum(a , dim=1 ) # sum of exp(x_i) __a = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(a ) - B / A class snake_case__ ( nn.Module ): def __init__( self , lowerCamelCase ): super().__init__() __a = config.output_attentions __a = config.output_hidden_states __a = nn.ModuleList([BertLayer(lowerCamelCase ) for _ in range(config.num_hidden_layers )] ) __a = nn.ModuleList([BertHighway(lowerCamelCase ) for _ in range(config.num_hidden_layers )] ) __a = [-1 for _ in range(config.num_hidden_layers )] def a__ ( self , lowerCamelCase ): if (type(lowerCamelCase ) is float) or (type(lowerCamelCase ) is int): for i in range(len(self.early_exit_entropy ) ): __a = x else: __a = x def a__ ( self , lowerCamelCase ): __a = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def a__ ( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ): __a = () __a = () __a = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __a = all_hidden_states + (hidden_states,) __a = layer_module( lowerCamelCase , lowerCamelCase , head_mask[i] , lowerCamelCase , lowerCamelCase ) __a = layer_outputs[0] if self.output_attentions: __a = all_attentions + (layer_outputs[1],) __a = (hidden_states,) if self.output_hidden_states: __a = current_outputs + (all_hidden_states,) if self.output_attentions: __a = current_outputs + (all_attentions,) __a = self.highway[i](lowerCamelCase ) # logits, pooled_output if not self.training: __a = highway_exit[0] __a = entropy(lowerCamelCase ) __a = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __a = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __a = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(lowerCamelCase , i + 1 ) else: __a = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __a = all_hidden_states + (hidden_states,) __a = (hidden_states,) if self.output_hidden_states: __a = outputs + (all_hidden_states,) if self.output_attentions: __a = outputs + (all_attentions,) __a = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """, snake_case_, ) class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase ): super().__init__(lowerCamelCase ) __a = config __a = BertEmbeddings(lowerCamelCase ) __a = DeeBertEncoder(lowerCamelCase ) __a = BertPooler(lowerCamelCase ) self.init_weights() def a__ ( self ): self.encoder.init_highway_pooler(self.pooler ) def a__ ( self ): return self.embeddings.word_embeddings def a__ ( self , lowerCamelCase ): __a = value def a__ ( self , lowerCamelCase ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(lowerCamelCase ) @add_start_docstrings_to_model_forward(lowerCamelCase ) def a__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __a = input_ids.size() elif inputs_embeds is not None: __a = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __a = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __a = torch.ones(lowerCamelCase , device=lowerCamelCase ) if encoder_attention_mask is None: __a = torch.ones(lowerCamelCase , device=lowerCamelCase ) if token_type_ids is None: __a = torch.zeros(lowerCamelCase , dtype=torch.long , device=lowerCamelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __a = self.get_extended_attention_mask(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __a = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __a = encoder_attention_mask[:, None, None, :] __a = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __a = (1.0 - encoder_extended_attention_mask) * -1_0000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __a = self.get_head_mask(lowerCamelCase , self.config.num_hidden_layers ) __a = self.embeddings( input_ids=lowerCamelCase , position_ids=lowerCamelCase , token_type_ids=lowerCamelCase , inputs_embeds=lowerCamelCase ) __a = self.encoder( lowerCamelCase , attention_mask=lowerCamelCase , head_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , ) __a = encoder_outputs[0] __a = self.pooler(lowerCamelCase ) __a = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase , lowerCamelCase ): __a = message __a = exit_layer # start from 1! class snake_case__ ( nn.Module ): def __init__( self , lowerCamelCase ): super().__init__() __a = BertPooler(lowerCamelCase ) __a = nn.Dropout(config.hidden_dropout_prob ) __a = nn.Linear(config.hidden_size , config.num_labels ) def a__ ( self , lowerCamelCase ): # Pooler __a = encoder_outputs[0] __a = self.pooler(lowerCamelCase ) # "return" pooler_output # BertModel __a = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __a = bmodel_output[1] __a = self.dropout(lowerCamelCase ) __a = self.classifier(lowerCamelCase ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """, snake_case_, ) class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase ): super().__init__(lowerCamelCase ) __a = config.num_labels __a = config.num_hidden_layers __a = DeeBertModel(lowerCamelCase ) __a = nn.Dropout(config.hidden_dropout_prob ) __a = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCamelCase ) def a__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=-1 , lowerCamelCase=False , ): __a = self.num_layers try: __a = self.bert( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , position_ids=lowerCamelCase , head_mask=lowerCamelCase , inputs_embeds=lowerCamelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __a = outputs[1] __a = self.dropout(lowerCamelCase ) __a = self.classifier(lowerCamelCase ) __a = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __a = e.message __a = e.exit_layer __a = outputs[0] if not self.training: __a = entropy(lowerCamelCase ) __a = [] __a = [] if labels is not None: if self.num_labels == 1: # We are doing regression __a = MSELoss() __a = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __a = CrossEntropyLoss() __a = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __a = [] for highway_exit in outputs[-1]: __a = highway_exit[0] if not self.training: highway_logits_all.append(lowerCamelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __a = MSELoss() __a = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __a = CrossEntropyLoss() __a = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowerCamelCase ) if train_highway: __a = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __a = (loss,) + outputs if not self.training: __a = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __a = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
268
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase_ : List[str] = { """configuration_chinese_clip""": [ """CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ChineseCLIPConfig""", """ChineseCLIPOnnxConfig""", """ChineseCLIPTextConfig""", """ChineseCLIPVisionConfig""", ], """processing_chinese_clip""": ["""ChineseCLIPProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = ["""ChineseCLIPFeatureExtractor"""] lowerCamelCase_ : List[Any] = ["""ChineseCLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ChineseCLIPModel""", """ChineseCLIPPreTrainedModel""", """ChineseCLIPTextModel""", """ChineseCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys lowerCamelCase_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
81
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = ['image_processor', 'tokenizer'] lowercase = 'AutoImageProcessor' lowercase = 'AutoTokenizer' def __init__( self : int , lowerCamelCase : List[str]=None , lowerCamelCase : Union[str, Any]=None , **lowerCamelCase : str ) -> Tuple: lowerCAmelCase_ : str = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCamelCase , ) lowerCAmelCase_ : Tuple = kwargs.pop("""feature_extractor""" ) lowerCAmelCase_ : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : Optional[int] = self.image_processor lowerCAmelCase_ : Any = False def __call__( self : List[Any] , *lowerCamelCase : str , **lowerCamelCase : Tuple ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCamelCase , **lowerCamelCase ) lowerCAmelCase_ : Any = kwargs.pop("""images""" , lowerCamelCase ) lowerCAmelCase_ : Dict = kwargs.pop("""text""" , lowerCamelCase ) if len(lowerCamelCase ) > 0: lowerCAmelCase_ : str = args[0] lowerCAmelCase_ : Dict = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: lowerCAmelCase_ : Any = self.image_processor(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) if text is not None: lowerCAmelCase_ : str = self.tokenizer(lowerCamelCase , **lowerCamelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCAmelCase_ : Dict = encodings["""input_ids"""] return inputs def __lowercase ( self : str , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Union[str, Any] ) -> List[str]: return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def __lowercase ( self : List[Any] , *lowerCamelCase : Any , **lowerCamelCase : Union[str, Any] ) -> List[str]: return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @contextmanager def __lowercase ( self : str ) -> Union[str, Any]: warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : Optional[Any] = self.tokenizer yield lowerCAmelCase_ : List[Any] = self.image_processor lowerCAmelCase_ : List[str] = False def __lowercase ( self : Dict , lowerCamelCase : List[str] , lowerCamelCase : str=False , lowerCamelCase : List[Any]=None ) -> Optional[int]: if added_vocab is None: lowerCAmelCase_ : str = self.tokenizer.get_added_vocab() lowerCAmelCase_ : Union[str, Any] = {} while tokens: lowerCAmelCase_ : Dict = re.search(R"""<s_(.*?)>""" , lowerCamelCase , re.IGNORECASE ) if start_token is None: break lowerCAmelCase_ : Tuple = start_token.group(1 ) lowerCAmelCase_ : Tuple = re.search(RF'</s_{key}>' , lowerCamelCase , re.IGNORECASE ) lowerCAmelCase_ : Tuple = start_token.group() if end_token is None: lowerCAmelCase_ : str = tokens.replace(lowerCamelCase , """""" ) else: lowerCAmelCase_ : List[str] = end_token.group() lowerCAmelCase_ : Dict = re.escape(lowerCamelCase ) lowerCAmelCase_ : int = re.escape(lowerCamelCase ) lowerCAmelCase_ : Dict = re.search(F'{start_token_escaped}(.*?){end_token_escaped}' , lowerCamelCase , re.IGNORECASE ) if content is not None: lowerCAmelCase_ : str = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCAmelCase_ : str = self.tokenajson(lowerCamelCase , is_inner_value=lowerCamelCase , added_vocab=lowerCamelCase ) if value: if len(lowerCamelCase ) == 1: lowerCAmelCase_ : List[Any] = value[0] lowerCAmelCase_ : Optional[Any] = value else: # leaf nodes lowerCAmelCase_ : List[str] = [] for leaf in content.split(R"""<sep/>""" ): lowerCAmelCase_ : Union[str, Any] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCAmelCase_ : Any = leaf[1:-2] # for categorical special tokens output[key].append(lowerCamelCase ) if len(output[key] ) == 1: lowerCAmelCase_ : Optional[Any] = output[key][0] lowerCAmelCase_ : List[Any] = tokens[tokens.find(lowerCamelCase ) + len(lowerCamelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=lowerCamelCase , added_vocab=lowerCamelCase ) if len(lowerCamelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def __lowercase ( self : Dict ) -> int: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCamelCase , ) return self.image_processor_class @property def __lowercase ( self : Dict ) -> Optional[Any]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCamelCase , ) return self.image_processor
120
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = tempfile.mkdtemp() UpperCamelCase__ :Union[str, Any] = BlipImageProcessor() UpperCamelCase__ :List[Any] = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) UpperCamelCase__ :int = BlipaProcessor(UpperCamelCase_ , UpperCamelCase_ ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ).tokenizer def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ).image_processor def lowerCAmelCase__ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase__ :Any = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ :List[str] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCamelCase__ :str = self.get_image_processor(do_normalize=UpperCamelCase_ , padding_value=1.0 ) UpperCamelCase__ :List[Any] = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.get_image_processor() UpperCamelCase__ :Any = self.get_tokenizer() UpperCamelCase__ :str = BlipaProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :Tuple = self.prepare_image_inputs() UpperCamelCase__ :Dict = image_processor(UpperCamelCase_ , return_tensors='''np''' ) UpperCamelCase__ :Optional[Any] = processor(images=UpperCamelCase_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = self.get_image_processor() UpperCamelCase__ :Union[str, Any] = self.get_tokenizer() UpperCamelCase__ :Dict = BlipaProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :str = '''lower newer''' UpperCamelCase__ :Dict = processor(text=UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = tokenizer(UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = self.get_image_processor() UpperCamelCase__ :Optional[Any] = self.get_tokenizer() UpperCamelCase__ :Optional[int] = BlipaProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :str = '''lower newer''' UpperCamelCase__ :Optional[Any] = self.prepare_image_inputs() UpperCamelCase__ :Any = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = self.get_image_processor() UpperCamelCase__ :str = self.get_tokenizer() UpperCamelCase__ :Dict = BlipaProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ :Tuple = processor.batch_decode(UpperCamelCase_ ) UpperCamelCase__ :List[Any] = tokenizer.batch_decode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.get_image_processor() UpperCamelCase__ :List[Any] = self.get_tokenizer() UpperCamelCase__ :List[str] = BlipaProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :str = '''lower newer''' UpperCamelCase__ :Optional[Any] = self.prepare_image_inputs() UpperCamelCase__ :List[Any] = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
357
'''simple docstring''' import argparse from collections import defaultdict import yaml __snake_case = '''docs/source/en/_toctree.yml''' def a ( __a ) -> int: '''simple docstring''' UpperCamelCase__ :int = defaultdict(__a ) UpperCamelCase__ :int = [] UpperCamelCase__ :int = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(__a ) UpperCamelCase__ :Union[str, Any] = new_doc_list UpperCamelCase__ :Tuple = [key for key, value in counts.items() if value > 1] UpperCamelCase__ :Union[str, Any] = [] for duplicate_key in duplicates: UpperCamelCase__ :Dict = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) UpperCamelCase__ :Union[str, Any] = sorted(__a , key=lambda __a : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__a ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(__a ) # Sort return overview_doc def a ( __a=False ) -> Any: '''simple docstring''' with open(__a , encoding='''utf-8''' ) as f: UpperCamelCase__ :Any = yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase__ :str = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase__ :str = content[api_idx]['''sections'''] # Then to the model doc UpperCamelCase__ :Optional[Any] = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 UpperCamelCase__ :List[Any] = api_doc[scheduler_idx]['''sections'''] UpperCamelCase__ :Union[str, Any] = clean_doc_toc(__a ) UpperCamelCase__ :List[Any] = False if new_scheduler_doc != scheduler_doc: UpperCamelCase__ :Optional[int] = True if overwrite: UpperCamelCase__ :Dict = new_scheduler_doc if diff: if overwrite: UpperCamelCase__ :Any = api_doc with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def a ( __a=False ) -> Optional[Any]: '''simple docstring''' with open(__a , encoding='''utf-8''' ) as f: UpperCamelCase__ :str = yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase__ :Optional[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase__ :Any = content[api_idx]['''sections'''] # Then to the model doc UpperCamelCase__ :str = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 UpperCamelCase__ :Any = False UpperCamelCase__ :Union[str, Any] = api_doc[pipeline_idx]['''sections'''] UpperCamelCase__ :Tuple = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: UpperCamelCase__ :Dict = pipeline_doc['''section'''] UpperCamelCase__ :Optional[Any] = clean_doc_toc(__a ) if overwrite: UpperCamelCase__ :Optional[int] = new_sub_pipeline_doc new_pipeline_docs.append(__a ) # sort overall pipeline doc UpperCamelCase__ :Optional[Any] = clean_doc_toc(__a ) if new_pipeline_docs != pipeline_docs: UpperCamelCase__ :int = True if overwrite: UpperCamelCase__ :Union[str, Any] = new_pipeline_docs if diff: if overwrite: UpperCamelCase__ :Dict = api_doc with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __snake_case = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
219
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def lowercase_ ( _lowerCamelCase : Union[dict, list, tuple, torch.Tensor]): lowercase__ : Optional[Any] = [] if isinstance(_lowerCamelCase , _lowerCamelCase): for v in tree.values(): shapes.extend(_fetch_dims(_lowerCamelCase)) elif isinstance(_lowerCamelCase , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(_lowerCamelCase)) elif isinstance(_lowerCamelCase , torch.Tensor): shapes.append(tree.shape) else: raise ValueError("Not supported") return shapes @torch.jit.ignore def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple[int, ...]): lowercase__ : Union[str, Any] = [] for d in reversed(_lowerCamelCase): idx.append(flat_idx % d) lowercase__ : Union[str, Any] = flat_idx // d return tuple(reversed(_lowerCamelCase)) @torch.jit.ignore def lowercase_ ( _lowerCamelCase : Sequence[int] , _lowerCamelCase : Sequence[int] , _lowerCamelCase : Sequence[int] , _lowerCamelCase : Optional[Sequence[bool]] = None , _lowerCamelCase : Optional[Sequence[bool]] = None , ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(_lowerCamelCase : List[bool]) -> None: lowercase__ : List[Any] = True for i in range(len(_lowerCamelCase)): lowercase__ : Dict = -1 * (i + 1) l[reversed_idx] &= tally lowercase__ : Optional[int] = l[reversed_idx] if start_edges is None: lowercase__ : int = [s == 0 for s in start] reduce_edge_list(_lowerCamelCase) if end_edges is None: lowercase__ : Optional[Any] = [e == (d - 1) for e, d in zip(_lowerCamelCase , _lowerCamelCase)] reduce_edge_list(_lowerCamelCase) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(_lowerCamelCase) == 0: return [()] elif len(_lowerCamelCase) == 1: return [(slice(start[0] , end[0] + 1),)] lowercase__ : List[Tuple[slice, ...]] = [] lowercase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(_lowerCamelCase , _lowerCamelCase): if s == e: path_list.append(slice(_lowerCamelCase , s + 1)) else: break lowercase__ : Tuple[slice, ...] = tuple(_lowerCamelCase) lowercase__ : Any = len(_lowerCamelCase) # start == end, and we're done if divergence_idx == len(_lowerCamelCase): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None lowercase__ : Optional[Any] = start[divergence_idx] return tuple( path + (slice(_lowerCamelCase , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None lowercase__ : str = end[divergence_idx] return tuple( path + (slice(_lowerCamelCase , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) lowercase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def lowercase_ ( _lowerCamelCase : torch.Tensor , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int): lowercase__ : List[Any] = t.shape[:no_batch_dims] lowercase__ : List[Any] = list(_flat_idx_to_idx(_lowerCamelCase , _lowerCamelCase)) # _get_minimal_slice_set is inclusive lowercase__ : List[Any] = list(_flat_idx_to_idx(flat_end - 1 , _lowerCamelCase)) # Get an ordered list of slices to perform lowercase__ : Dict = _get_minimal_slice_set( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) lowercase__ : Tuple = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def lowercase_ ( _lowerCamelCase : Callable , _lowerCamelCase : Dict[str, Any] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : bool = False , _lowerCamelCase : Any = None , _lowerCamelCase : bool = False , ): if not (len(_lowerCamelCase) > 0): raise ValueError("Must provide at least one input") lowercase__ : Tuple = [shape[:no_batch_dims] for shape in _fetch_dims(_lowerCamelCase)] lowercase__ : Optional[Any] = tuple([max(_lowerCamelCase) for s in zip(*_lowerCamelCase)]) def _prep_inputs(_lowerCamelCase : torch.Tensor) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: lowercase__ : List[str] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) lowercase__ : Union[str, Any] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: lowercase__ : int = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t lowercase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , _lowerCamelCase) lowercase__ : Optional[int] = None if _out is not None: lowercase__ : Union[str, Any] = tensor_tree_map(lambda _lowerCamelCase: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) lowercase__ : List[str] = 1 for d in orig_batch_dims: flat_batch_dim *= d lowercase__ : Optional[Any] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(_lowerCamelCase : torch.Tensor) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t lowercase__ : Optional[int] = 0 lowercase__ : Dict = prepped_outputs for _ in range(_lowerCamelCase): # Chunk the input if not low_mem: lowercase__ : int = _select_chunk else: lowercase__ : Any = partial( _chunk_slice , flat_start=_lowerCamelCase , flat_end=min(_lowerCamelCase , i + chunk_size) , no_batch_dims=len(_lowerCamelCase) , ) lowercase__ : Dict[str, Any] = tensor_tree_map(_lowerCamelCase , _lowerCamelCase) # Run the layer on the chunk lowercase__ : Optional[int] = layer(**_lowerCamelCase) # Allocate space for the output if out is None: lowercase__ : Optional[int] = tensor_tree_map(lambda _lowerCamelCase: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , _lowerCamelCase) # Put the chunk in its pre-allocated space if isinstance(_lowerCamelCase , _lowerCamelCase): def assign(_lowerCamelCase : dict , _lowerCamelCase : dict) -> None: for k, v in da.items(): if isinstance(_lowerCamelCase , _lowerCamelCase): assign(_lowerCamelCase , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: lowercase__ : Tuple = da[k] assign(_lowerCamelCase , _lowerCamelCase) elif isinstance(_lowerCamelCase , _lowerCamelCase): for xa, xa in zip(_lowerCamelCase , _lowerCamelCase): if _add_into_out: xa[i : i + chunk_size] += xa else: lowercase__ : str = xa elif isinstance(_lowerCamelCase , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: lowercase__ : Dict = output_chunk else: raise ValueError("Not supported") i += chunk_size lowercase__ : List[str] = tensor_tree_map(lambda _lowerCamelCase: t.view(orig_batch_dims + t.shape[1:]) , _lowerCamelCase) return out class snake_case_ : def __init__( self : Optional[Any] , lowercase_ : int = 5_12 , ) -> List[Any]: lowercase__ : str = max_chunk_size lowercase__ : Optional[int] = None lowercase__ : Optional[tuple] = None def __UpperCamelCase ( self : Tuple , lowercase_ : Callable , lowercase_ : tuple , lowercase_ : int ) -> int: logging.info("Tuning chunk size..." ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size lowercase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] lowercase__ : Dict = [c for c in candidates if c > min_chunk_size] lowercase__ : Dict = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(lowercase_ : int ) -> bool: try: with torch.no_grad(): fn(*lowercase_ , chunk_size=lowercase_ ) return True except RuntimeError: return False lowercase__ : Dict = 0 lowercase__ : Any = len(lowercase_ ) - 1 while i > min_viable_chunk_size_index: lowercase__ : Any = test_chunk_size(candidates[i] ) if not viable: lowercase__ : Union[str, Any] = (min_viable_chunk_size_index + i) // 2 else: lowercase__ : int = i lowercase__ : Union[str, Any] = (i + len(lowercase_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : int , lowercase_ : Iterable , lowercase_ : Iterable ) -> bool: lowercase__ : Optional[Any] = True for aa, aa in zip(lowercase_ , lowercase_ ): assert type(lowercase_ ) == type(lowercase_ ) if isinstance(lowercase_ , (list, tuple) ): consistent &= self._compare_arg_caches(lowercase_ , lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): lowercase__ : Any = [v for _, v in sorted(aa.items() , key=lambda lowercase_ : x[0] )] lowercase__ : Optional[Any] = [v for _, v in sorted(aa.items() , key=lambda lowercase_ : x[0] )] consistent &= self._compare_arg_caches(lowercase_ , lowercase_ ) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[str] , lowercase_ : Callable , lowercase_ : tuple , lowercase_ : int , ) -> int: lowercase__ : Tuple = True lowercase__ : tuple = tree_map(lambda lowercase_ : a.shape if isinstance(lowercase_ , torch.Tensor ) else a , lowercase_ , lowercase_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(lowercase_ ) lowercase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , lowercase_ ) else: # Otherwise, we can reuse the precomputed value lowercase__ : Union[str, Any] = False if not consistent: lowercase__ : Optional[int] = self._determine_favorable_chunk_size( lowercase_ , lowercase_ , lowercase_ , ) lowercase__ : Dict = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
87
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( _a , unittest.TestCase ): _a = CLIPTokenizer _a = CLIPTokenizerFast _a = True _a = {} _a = False def __lowercase ( self : Tuple ): super().setUp() # fmt: off lowerCAmelCase = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowerCAmelCase = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) lowerCAmelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] lowerCAmelCase = {"""unk_token""": """<unk>"""} lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase ) ) def __lowercase ( self : Optional[Any] , **lowerCAmelCase : str ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def __lowercase ( self : Any , **lowerCAmelCase : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def __lowercase ( self : Optional[Any] , lowerCAmelCase : Dict ): lowerCAmelCase = """lower newer""" lowerCAmelCase = """lower newer""" return input_text, output_text def __lowercase ( self : int ): lowerCAmelCase = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase = """lower newer""" lowerCAmelCase = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = tokens + [tokenizer.unk_token] lowerCAmelCase = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , lowerCAmelCase ) @require_ftfy def __lowercase ( self : Union[str, Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) lowerCAmelCase = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" lowerCAmelCase = tokenizer_s.tokenize(lowerCAmelCase ) lowerCAmelCase = tokenizer_r.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowerCAmelCase = """xa\u0303y""" + """ """ + """x\xe3y""" lowerCAmelCase = tokenizer_s.tokenize(lowerCAmelCase ) lowerCAmelCase = tokenizer_r.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # Test that the tokenization is identical on unicode of space type lowerCAmelCase = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowerCAmelCase = tokenizer_s.tokenize(lowerCAmelCase ) lowerCAmelCase = tokenizer_r.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # Test that the tokenization is identical on unicode of line break type lowerCAmelCase = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowerCAmelCase = tokenizer_s.tokenize(lowerCAmelCase ) lowerCAmelCase = tokenizer_r.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def __lowercase ( self : Any ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase = f'''{text_of_1_token} {text_of_1_token}''' lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase , use_fast=lowerCAmelCase , ) lowerCAmelCase = tokenizer_r(lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase ) + 1, len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )) , ) lowerCAmelCase = f''' {text}''' lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase , use_fast=lowerCAmelCase , ) lowerCAmelCase = tokenizer_r(lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase ) + 1, 1 + len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )) , ) def __lowercase ( self : Dict ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCAmelCase ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def __lowercase ( self : Optional[int] ): super().test_tokenization_python_rust_equals() def __lowercase ( self : Optional[int] ): # CLIP always lower cases letters pass
155
0
"""simple docstring""" def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> float: '''simple docstring''' if digit_amount > 0: return round(number - int(_UpperCAmelCase ) , _UpperCAmelCase ) return number - int(_UpperCAmelCase ) if __name__ == "__main__": print(decimal_isolate(1.5_3, 0)) print(decimal_isolate(3_5.3_4_5, 1)) print(decimal_isolate(3_5.3_4_5, 2)) print(decimal_isolate(3_5.3_4_5, 3)) print(decimal_isolate(-1_4.7_8_9, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-1_4.1_2_3, 1)) print(decimal_isolate(-1_4.1_2_3, 2)) print(decimal_isolate(-1_4.1_2_3, 3))
53
"""simple docstring""" import unittest from transformers import DonutProcessor _UpperCamelCase: Any = 'naver-clova-ix/donut-base' class a__ ( unittest.TestCase ): def lowercase ( self : Optional[Any] ) -> Tuple: lowercase : Any = DonutProcessor.from_pretrained(lowerCAmelCase ) def lowercase ( self : Dict ) -> Union[str, Any]: lowercase : Tuple = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } lowercase : Tuple = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) lowercase : Any = self.processor.tokenajson(lowerCAmelCase ) self.assertDictEqual(lowerCAmelCase, lowerCAmelCase )
53
1
"""simple docstring""" from __future__ import annotations def UpperCamelCase_ ( lowerCAmelCase__ : list ) -> list: """simple docstring""" if len(lowerCAmelCase__ ) == 0: return [] lowerCAmelCase_ ,lowerCAmelCase_ : int = min(lowerCAmelCase__ ), max(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = int(max_value - min_value ) + 1 lowerCAmelCase_ : list[list] = [[] for _ in range(lowerCAmelCase__ )] for i in my_list: buckets[int(i - min_value )].append(lowerCAmelCase__ ) return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
224
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Dict = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( lowercase_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = XLMRobertaTokenizer _SCREAMING_SNAKE_CASE = XLMRobertaTokenizerFast _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True def SCREAMING_SNAKE_CASE__ ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ : Any = XLMRobertaTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : Any = '<pad>' lowerCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1_0_0_2 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_2 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : int = XLMRobertaTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCAmelCase_ : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCAmelCase_ : Any = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCAmelCase_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def SCREAMING_SNAKE_CASE__ ( self : int ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase_ : List[str] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = tempfile.mkdtemp() lowerCAmelCase_ : int = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCAmelCase_ : Optional[Any] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCAmelCase_ : int = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase_ : str = tempfile.mkdtemp() lowerCAmelCase_ : List[str] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCAmelCase_ : str = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase_ : int = tempfile.mkdtemp() lowerCAmelCase_ : Optional[Any] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase_ : List[str] = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @cached_property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def SCREAMING_SNAKE_CASE__ ( self : int ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(SCREAMING_SNAKE_CASE_ , f.name ) lowerCAmelCase_ : Tuple = XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = pickle.dumps(SCREAMING_SNAKE_CASE_ ) pickle.loads(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): if not self.test_rust_tokenizer: return lowerCAmelCase_ : Union[str, Any] = self.get_tokenizer() lowerCAmelCase_ : Dict = self.get_rust_tokenizer() lowerCAmelCase_ : Tuple = 'I was born in 92000, and this is falsé.' lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = self.get_rust_tokenizer() lowerCAmelCase_ : Any = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): lowerCAmelCase_ : Any = 'Hello World!' lowerCAmelCase_ : Union[str, Any] = [0, 3_5_3_7_8, 6_6_6_1, 3_8, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : Tuple = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCAmelCase_ : int = [ 0, 3_2_9_3, 8_3, 1_0, 4_5_5_2, 4_9_8_9, 7_9_8_6, 6_7_8, 1_0, 5_9_1_5, 1_1_1, 1_7_9_4_5_9, 1_2_4_8_5_0, 4, 6_0_4_4, 2_3_7, 1_2, 6, 5, 6, 4, 6_7_8_0, 7_0_5, 1_5, 1_3_8_8, 4_4, 3_7_8, 1_0_1_1_4, 7_1_1, 1_5_2, 2_0, 6, 5, 2_2_3_7_6, 6_4_2, 1_2_2_1, 1_5_1_9_0, 3_4_1_5_3, 4_5_0, 5_6_0_8, 9_5_9, 1_1_1_9, 5_7_7_0_2, 1_3_6, 1_8_6, 4_7, 1_0_9_8, 2_9_3_6_7, 4_7, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_0_4_4, 2_3_7, 6_2_8_4, 5_0_9_0_1, 5_2_8, 3_1, 9_0, 3_4, 9_2_7, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ): # fmt: off lowerCAmelCase_ : List[str] = {'input_ids': [[0, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [0, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
224
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer __lowerCamelCase : List[str] = ["""bert-base-uncased""", """bert-base-cased"""] __lowerCamelCase : Any = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class A__ ( tf.keras.Model ): def __init__( self , A_ ): '''simple docstring''' super().__init__() UpperCamelCase : Optional[int] = tokenizer UpperCamelCase : Dict = AutoConfig.from_pretrained(A_ ) UpperCamelCase : List[str] = TFAutoModel.from_config(A_ ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Tuple = self.tokenizer(A_ ) UpperCamelCase : List[Any] = self.bert(**A_ ) return out["pooler_output"] @require_tf @require_tensorflow_text class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' super().setUp() UpperCamelCase : List[Any] = [ BertTokenizer.from_pretrained(A_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCamelCase : List[Any] = [TFBertTokenizer.from_pretrained(A_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(A_ , use_fast_bert_tokenizer=A_ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCamelCase : Dict = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] UpperCamelCase : int = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def __UpperCamelCase( self ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase : Dict = tokenizer(A_ , return_tensors="tf" , padding="longest" ) UpperCamelCase : List[Any] = tf_tokenizer(A_ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def __UpperCamelCase( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCamelCase : Optional[Any] = tf_tokenizer(self.paired_sentences ) UpperCamelCase : Any = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def __UpperCamelCase( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCamelCase : Any = tf.function(A_ ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase : int = tf.constant(A_ ) UpperCamelCase : Any = compiled_tokenizer(A_ ) UpperCamelCase : int = tf_tokenizer(A_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def __UpperCamelCase( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCamelCase : Union[str, Any] = ModelToSave(tokenizer=A_ ) UpperCamelCase : Union[str, Any] = tf.convert_to_tensor(self.test_sentences ) UpperCamelCase : Optional[Any] = model(A_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCamelCase : Optional[int] = Path(A_ ) / "saved.model" model.save(A_ ) UpperCamelCase : List[Any] = tf.keras.models.load_model(A_ ) UpperCamelCase : Union[str, Any] = loaded_model(A_ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
362
def A_ ( _lowerCAmelCase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCamelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCamelCase : Union[str, Any] = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowerCAmelCase ) == 26 def A_ ( _lowerCAmelCase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCamelCase : List[Any] = [False] * 26 for char in input_str: if char.islower(): UpperCamelCase : Tuple = True elif char.isupper(): UpperCamelCase : str = True return all(_lowerCAmelCase ) def A_ ( _lowerCAmelCase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def A_ ( ) -> None: from timeit import timeit UpperCamelCase : Tuple = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=_lowerCAmelCase ) ) print(timeit("is_pangram_faster()" , setup=_lowerCAmelCase ) ) print(timeit("is_pangram_fastest()" , setup=_lowerCAmelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
140
0
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.17.0.dev0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') lowerCamelCase_ = logging.getLogger(__name__) @dataclass class UpperCamelCase_ : __magic_name__ = field( default='''tab_fact''' , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) __magic_name__ = field( default='''tab_fact''' , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} , ) __magic_name__ = field( default=10_24 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __magic_name__ = field( default=__A , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) __magic_name__ = field( default=__A , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) __magic_name__ = field( default=__A , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __magic_name__ = field( default=__A , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __magic_name__ = field( default=__A , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) __magic_name__ = field( default=__A , metadata={'''help''': '''A csv or a json file containing the training data.'''} ) __magic_name__ = field( default=__A , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) __magic_name__ = field(default=__A , metadata={'''help''': '''A csv or a json file containing the test data.'''} ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task, a training/validation file or a dataset name." ) else: UpperCAmelCase_ : Union[str, Any] = self.train_file.split("." )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." UpperCAmelCase_ : Any = self.validation_file.split("." )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class UpperCamelCase_ : __magic_name__ = field( default=__A , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __magic_name__ = field( default=__A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __magic_name__ = field( default=__A , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __magic_name__ = field( default=__A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __magic_name__ = field( default=__A , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) __magic_name__ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __magic_name__ = field( default=__A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,handlers=[logging.StreamHandler(sys.stdout )] ,) UpperCAmelCase_ : Optional[int] = training_args.get_process_log_level() logger.setLevel(A__ ) datasets.utils.logging.set_verbosity(A__ ) transformers.utils.logging.set_verbosity(A__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCAmelCase_ : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase_ : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. UpperCAmelCase_ : str = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. UpperCAmelCase_ : str = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: UpperCAmelCase_ : int = data_args.train_file.split("." )[-1] UpperCAmelCase_ : Tuple = data_args.test_file.split("." )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." UpperCAmelCase_ : Optional[Any] = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`." ) for key in data_files.keys(): logger.info(F"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith(".csv" ): # Loading a dataset from local csv files UpperCAmelCase_ : Tuple = load_dataset("csv" ,data_files=A__ ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files UpperCAmelCase_ : Dict = load_dataset("json" ,data_files=A__ ,cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels UpperCAmelCase_ : Optional[int] = raw_datasets["train"].features["label"].names UpperCAmelCase_ : int = len(A__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=A__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # load tapex tokenizer UpperCAmelCase_ : List[str] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=A__ ,) UpperCAmelCase_ : Union[str, Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool(".ckpt" in model_args.model_name_or_path ) ,config=A__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Padding strategy if data_args.pad_to_max_length: UpperCAmelCase_ : Union[str, Any] = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch UpperCAmelCase_ : Optional[Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. UpperCAmelCase_ : List[Any] = {"Refused": 0, "Entailed": 1} UpperCAmelCase_ : Optional[Any] = {0: "Refused", 1: "Entailed"} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) UpperCAmelCase_ : Tuple = min(data_args.max_seq_length ,tokenizer.model_max_length ) def preprocess_tabfact_function(A__ ): # Tokenize the texts def _convert_table_text_to_pandas(A__ ): UpperCAmelCase_ : List[str] = [_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )] UpperCAmelCase_ : Optional[Any] = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] ) return _table_pd UpperCAmelCase_ : str = examples["statement"] UpperCAmelCase_ : int = list(map(_convert_table_text_to_pandas ,examples["table_text"] ) ) UpperCAmelCase_ : List[str] = tokenizer(A__ ,A__ ,padding=A__ ,max_length=A__ ,truncation=A__ ) UpperCAmelCase_ : Any = examples["label"] return result with training_args.main_process_first(desc="dataset map pre-processing" ): UpperCAmelCase_ : Union[str, Any] = raw_datasets.map( A__ ,batched=A__ ,load_from_cache_file=not data_args.overwrite_cache ,desc="Running tokenizer on dataset" ,) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) UpperCAmelCase_ : Tuple = raw_datasets["train"] if data_args.max_train_samples is not None: UpperCAmelCase_ : Any = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) UpperCAmelCase_ : Optional[int] = raw_datasets["validation"] if data_args.max_eval_samples is not None: UpperCAmelCase_ : Tuple = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_predict requires a test dataset" ) UpperCAmelCase_ : int = raw_datasets["test"] if data_args.max_predict_samples is not None: UpperCAmelCase_ : List[Any] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(A__ ) ) ,3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(A__ ): UpperCAmelCase_ : Dict = p.predictions[0] if isinstance(p.predictions ,A__ ) else p.predictions UpperCAmelCase_ : Tuple = np.argmax(A__ ,axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: UpperCAmelCase_ : Optional[Any] = default_data_collator elif training_args.fpaa: UpperCAmelCase_ : int = DataCollatorWithPadding(A__ ,pad_to_multiple_of=8 ) else: UpperCAmelCase_ : str = None # Initialize our Trainer UpperCAmelCase_ : List[Any] = Trainer( model=A__ ,args=A__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=A__ ,tokenizer=A__ ,data_collator=A__ ,) # Training if training_args.do_train: UpperCAmelCase_ : Optional[int] = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase_ : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase_ : Tuple = last_checkpoint UpperCAmelCase_ : Tuple = trainer.train(resume_from_checkpoint=A__ ) UpperCAmelCase_ : str = train_result.metrics UpperCAmelCase_ : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(A__ ) ) UpperCAmelCase_ : Optional[Any] = min(A__ ,len(A__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" ,A__ ) trainer.save_metrics("train" ,A__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCAmelCase_ : Union[str, Any] = trainer.evaluate(eval_dataset=A__ ) UpperCAmelCase_ : Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(A__ ) UpperCAmelCase_ : Dict = min(A__ ,len(A__ ) ) trainer.log_metrics("eval" ,A__ ) trainer.save_metrics("eval" ,A__ ) if training_args.do_predict: logger.info("*** Predict ***" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. UpperCAmelCase_ : Any = predict_dataset.remove_columns("label" ) UpperCAmelCase_ : Union[str, Any] = trainer.predict(A__ ,metric_key_prefix="predict" ).predictions UpperCAmelCase_ : Union[str, Any] = np.argmax(A__ ,axis=1 ) UpperCAmelCase_ : Tuple = os.path.join(training_args.output_dir ,"predict_results_tabfact.txt" ) if trainer.is_world_process_zero(): with open(A__ ,"w" ) as writer: logger.info("***** Predict Results *****" ) writer.write("index\tprediction\n" ) for index, item in enumerate(A__ ): UpperCAmelCase_ : Optional[int] = label_list[item] writer.write(F"""{index}\t{item}\n""" ) UpperCAmelCase_ : List[Any] = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: trainer.push_to_hub(**A__ ) else: trainer.create_model_card(**A__ ) def snake_case ( A__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
268
"""simple docstring""" from torch import nn def snake_case ( A__ ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"""Unsupported activation function: {act_fn}""" )
268
1
"""simple docstring""" import os import numpy import onnx def UpperCAmelCase ( a_, a_ ): '''simple docstring''' lowerCamelCase : int = a.name lowerCamelCase : Any = b.name lowerCamelCase : Optional[Any] = '' lowerCamelCase : List[str] = '' lowerCamelCase : int = a == b lowerCamelCase : Tuple = name_a lowerCamelCase : Tuple = name_b return res def UpperCAmelCase ( a_, a_, a_ ): '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(a_, a_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g, a_, a_ ) _graph_replace_input_with(node_proto.attribute[1].g, a_, a_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g, a_, a_ ) def UpperCAmelCase ( a_, a_, a_ ): '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(a_, a_, a_ ) def UpperCAmelCase ( a_, a_, a_ ): '''simple docstring''' lowerCamelCase : Union[str, Any] = list(model.graph.initializer ) lowerCamelCase : str = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowerCamelCase : str = inits[i].name lowerCamelCase : List[Any] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph, a_, a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : Dict = os.path.dirname(a_ ) lowerCamelCase : Dict = os.path.basename(a_ ) lowerCamelCase : Any = onnx.load(os.path.join(a_, a_ ) ) lowerCamelCase : Dict = list(model.graph.initializer ) lowerCamelCase : Tuple = set() lowerCamelCase : Union[str, Any] = {} lowerCamelCase : int = [] lowerCamelCase : List[str] = 0 for i in range(len(a_ ) ): if i in dup_set: continue for j in range(i + 1, len(a_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i], inits[j] ): dup_set.add(a_ ) dup_set.add(a_ ) lowerCamelCase : Union[str, Any] = inits[j].data_type lowerCamelCase : List[Any] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ', a_ ) total_reduced_size += mem_size lowerCamelCase : Tuple = inits[i].name lowerCamelCase : Optional[Any] = inits[j].name if name_i in dup_map: dup_map[name_i].append(a_ ) else: lowerCamelCase : Dict = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ', total_reduced_size / 1024 / 1024 / 1024, 'GB' ) lowerCamelCase : Tuple = sorted(a_ ) _remove_dup_initializers_from_model(a_, a_, a_ ) lowerCamelCase : int = 'optimized_' + model_file_name lowerCamelCase : Dict = os.path.join(a_, a_ ) onnx.save(a_, a_ ) return new_model
369
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) class _lowercase ( __UpperCAmelCase ): lowercase_ = 'encoder-decoder' lowercase_ = True def __init__( self , **UpperCAmelCase_ ) -> str: super().__init__(**UpperCAmelCase_ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowerCamelCase : List[Any] = kwargs.pop('encoder' ) lowerCamelCase : Optional[int] = encoder_config.pop('model_type' ) lowerCamelCase : str = kwargs.pop('decoder' ) lowerCamelCase : Dict = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig lowerCamelCase : int = AutoConfig.for_model(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase : List[str] = AutoConfig.for_model(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase : List[str] = True @classmethod def _UpperCamelCase ( cls , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) -> PretrainedConfig: logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) lowerCamelCase : str = True lowerCamelCase : Optional[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) lowerCamelCase : Union[str, Any] = self.encoder.to_dict() lowerCamelCase : List[Any] = self.decoder.to_dict() lowerCamelCase : Tuple = self.__class__.model_type return output
205
0
import socket def A ( ): SCREAMING_SNAKE_CASE : Tuple = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) SCREAMING_SNAKE_CASE : str = socket.gethostname() SCREAMING_SNAKE_CASE : Tuple = 12_312 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: SCREAMING_SNAKE_CASE : List[Any] = sock.recv(1_024 ) if not data: break out_file.write(__UpperCamelCase ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
182
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() __lowerCamelCase : Dict = logging.get_logger(__name__) __lowerCamelCase : Dict = '''Hello, World!''' __lowerCamelCase : Optional[Any] = '''en_XX''' def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : bool ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = Path("""data_bin""" ) SCREAMING_SNAKE_CASE__ = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__UpperCamelCase ).parent ) , checkpoint_file=Path(__UpperCamelCase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(__UpperCamelCase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(__UpperCamelCase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = xmod.model.encoder.sentence_encoder SCREAMING_SNAKE_CASE__ = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: SCREAMING_SNAKE_CASE__ = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , __UpperCamelCase ) SCREAMING_SNAKE_CASE__ = XmodForSequenceClassification(__UpperCamelCase ) if classification_head else XmodForMaskedLM(__UpperCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.embed_tokens.weight SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.embed_positions.weight SCREAMING_SNAKE_CASE__ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.layernorm_embedding.weight SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer SCREAMING_SNAKE_CASE__ = model.roberta.encoder.layer[i] SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.layers[i] # self attention SCREAMING_SNAKE_CASE__ = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.q_proj.weight SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.q_proj.bias SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.k_proj.weight SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.k_proj.bias SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.v_proj.weight SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.v_proj.bias # self-attention output SCREAMING_SNAKE_CASE__ = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.out_proj.weight SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.out_proj.bias SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn_layer_norm.weight SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn_layer_norm.bias # intermediate SCREAMING_SNAKE_CASE__ = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) SCREAMING_SNAKE_CASE__ = xmod_layer.fca.weight SCREAMING_SNAKE_CASE__ = xmod_layer.fca.bias # output SCREAMING_SNAKE_CASE__ = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) SCREAMING_SNAKE_CASE__ = xmod_layer.fca.weight SCREAMING_SNAKE_CASE__ = xmod_layer.fca.bias SCREAMING_SNAKE_CASE__ = xmod_layer.final_layer_norm.weight SCREAMING_SNAKE_CASE__ = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: SCREAMING_SNAKE_CASE__ = xmod_layer.adapter_layer_norm.weight SCREAMING_SNAKE_CASE__ = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): SCREAMING_SNAKE_CASE__ = bert_output.adapter_modules[lang_code] SCREAMING_SNAKE_CASE__ = xmod_layer.adapter_modules[lang_code] SCREAMING_SNAKE_CASE__ = from_adapter.fca.weight SCREAMING_SNAKE_CASE__ = from_adapter.fca.bias SCREAMING_SNAKE_CASE__ = from_adapter.fca.weight SCREAMING_SNAKE_CASE__ = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.layer_norm.weight SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.layer_norm.bias if classification_head: SCREAMING_SNAKE_CASE__ = xmod.model.classification_heads["""mnli"""].dense.weight SCREAMING_SNAKE_CASE__ = xmod.model.classification_heads["""mnli"""].dense.bias SCREAMING_SNAKE_CASE__ = xmod.model.classification_heads["""mnli"""].out_proj.weight SCREAMING_SNAKE_CASE__ = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head SCREAMING_SNAKE_CASE__ = xmod.model.encoder.lm_head.dense.weight SCREAMING_SNAKE_CASE__ = xmod.model.encoder.lm_head.dense.bias SCREAMING_SNAKE_CASE__ = xmod.model.encoder.lm_head.layer_norm.weight SCREAMING_SNAKE_CASE__ = xmod.model.encoder.lm_head.layer_norm.bias SCREAMING_SNAKE_CASE__ = xmod.model.encoder.lm_head.weight SCREAMING_SNAKE_CASE__ = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. SCREAMING_SNAKE_CASE__ = xmod.encode(__UpperCamelCase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = model(__UpperCamelCase )[0] if classification_head: SCREAMING_SNAKE_CASE__ = xmod.model.classification_heads["""mnli"""](xmod.extract_features(__UpperCamelCase ) ) else: SCREAMING_SNAKE_CASE__ = xmod.model(__UpperCamelCase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) SCREAMING_SNAKE_CASE__ = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 SCREAMING_SNAKE_CASE__ = torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(__UpperCamelCase ).mkdir(parents=__UpperCamelCase , exist_ok=__UpperCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowerCamelCase : str = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
219
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging SCREAMING_SNAKE_CASE_: Optional[Any] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[Any] ={ '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class __A ( lowerCamelCase_ ): a__ : int = '''blenderbot-small''' a__ : str = ['''past_key_values'''] a__ : int = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__(self : Any , __a : Union[str, Any]=50265 , __a : Optional[int]=512 , __a : Optional[Any]=8 , __a : Tuple=2048 , __a : Union[str, Any]=16 , __a : Union[str, Any]=8 , __a : int=2048 , __a : Optional[int]=16 , __a : List[Any]=0.0 , __a : List[str]=0.0 , __a : Optional[Any]=True , __a : Dict=True , __a : int="gelu" , __a : Optional[int]=512 , __a : str=0.1 , __a : int=0.0 , __a : str=0.0 , __a : Any=0.02 , __a : int=1 , __a : List[Any]=False , __a : List[str]=0 , __a : List[Any]=1 , __a : List[Any]=2 , __a : Dict=2 , **__a : Optional[int] , ): UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = d_model UpperCAmelCase_ = encoder_ffn_dim UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = encoder_attention_heads UpperCAmelCase_ = decoder_ffn_dim UpperCAmelCase_ = decoder_layers UpperCAmelCase_ = decoder_attention_heads UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = activation_function UpperCAmelCase_ = init_std UpperCAmelCase_ = encoder_layerdrop UpperCAmelCase_ = decoder_layerdrop UpperCAmelCase_ = use_cache UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) class __A ( lowerCamelCase_ ): @property def _lowercase (self : Optional[int] ): if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCAmelCase_ = {0: "batch"} UpperCAmelCase_ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "decoder_sequence"} UpperCAmelCase_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__snake_case , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCAmelCase_ , UpperCAmelCase_ = self.num_layers for i in range(__snake_case ): UpperCAmelCase_ = {0: "batch", 2: "past_sequence + sequence"} UpperCAmelCase_ = {0: "batch", 2: "past_sequence + sequence"} else: UpperCAmelCase_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def _lowercase (self : Dict ): if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase_ = super().outputs else: UpperCAmelCase_ = super(__snake_case , self ).outputs if self.use_past: UpperCAmelCase_ , UpperCAmelCase_ = self.num_layers for i in range(__snake_case ): UpperCAmelCase_ = {0: "batch", 2: "past_sequence + sequence"} UpperCAmelCase_ = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _lowercase (self : List[Any] , __a : PreTrainedTokenizer , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ): UpperCAmelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Generate decoder inputs UpperCAmelCase_ = seq_length if not self.use_past else 1 UpperCAmelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) UpperCAmelCase_ = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase_ = dict(**__snake_case , **__snake_case ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCAmelCase_ , UpperCAmelCase_ = common_inputs["input_ids"].shape UpperCAmelCase_ = common_inputs["decoder_input_ids"].shape[1] UpperCAmelCase_ , UpperCAmelCase_ = self.num_attention_heads UpperCAmelCase_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase_ = decoder_seq_length + 3 UpperCAmelCase_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase_ = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__snake_case , __snake_case )] , dim=1 ) UpperCAmelCase_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase_ , UpperCAmelCase_ = self.num_layers UpperCAmelCase_ = min(__snake_case , __snake_case ) UpperCAmelCase_ = max(__snake_case , __snake_case ) - min_num_layers UpperCAmelCase_ = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__snake_case ): common_inputs["past_key_values"].append( ( torch.zeros(__snake_case ), torch.zeros(__snake_case ), torch.zeros(__snake_case ), torch.zeros(__snake_case ), ) ) # TODO: test this. UpperCAmelCase_ = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__snake_case , __snake_case ): common_inputs["past_key_values"].append((torch.zeros(__snake_case ), torch.zeros(__snake_case )) ) return common_inputs def _lowercase (self : Dict , __a : PreTrainedTokenizer , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ): UpperCAmelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCAmelCase_ , UpperCAmelCase_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCAmelCase_ = seqlen + 2 UpperCAmelCase_ , UpperCAmelCase_ = self.num_layers UpperCAmelCase_ , UpperCAmelCase_ = self.num_attention_heads UpperCAmelCase_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase_ = common_inputs["attention_mask"].dtype UpperCAmelCase_ = torch.cat( [common_inputs["attention_mask"], torch.ones(__snake_case , __snake_case , dtype=__snake_case )] , dim=1 ) UpperCAmelCase_ = [ (torch.zeros(__snake_case ), torch.zeros(__snake_case )) for _ in range(__snake_case ) ] return common_inputs def _lowercase (self : List[Any] , __a : PreTrainedTokenizer , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ = compute_effective_axis_dimension( __snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ = tokenizer.num_special_tokens_to_add(__snake_case ) UpperCAmelCase_ = compute_effective_axis_dimension( __snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__snake_case ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase_ = dict(tokenizer(__snake_case , return_tensors=__snake_case ) ) return common_inputs def _lowercase (self : str , __a : PreTrainedTokenizer , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) elif self.task == "causal-lm": UpperCAmelCase_ = self._generate_dummy_inputs_for_causal_lm( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) else: UpperCAmelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) return common_inputs def _lowercase (self : List[str] , __a : Union[str, Any] , __a : List[str] , __a : List[str] , __a : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase_ = super()._flatten_past_key_values_(__snake_case , __snake_case , __snake_case , __snake_case ) else: UpperCAmelCase_ = super(__snake_case , self )._flatten_past_key_values_( __snake_case , __snake_case , __snake_case , __snake_case )
370
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): a__ : Any = ["""pixel_values"""] def __init__(self : Any , __a : bool = True , __a : Optional[Dict[str, int]] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : Dict[str, int] = None , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : Dict , ): super().__init__(**__a ) UpperCAmelCase_ = size if size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(__a ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(__a , default_to_square=__a , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = do_rescale UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = size UpperCAmelCase_ = resample UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _lowercase (self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ): UpperCAmelCase_ = get_size_dict(__a ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(__a , size=size["shortest_edge"] , default_to_square=__a ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def _lowercase (self : List[Any] , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : int , ): UpperCAmelCase_ = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def _lowercase (self : str , __a : np.ndarray , __a : float , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] ): return rescale(__a , scale=__a , data_format=__a , **__a ) def _lowercase (self : Any , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Dict , ): return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def _lowercase (self : Dict , __a : ImageInput , __a : Optional[bool] = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : Optional[bool] = None , __a : Optional[float] = None , __a : Optional[bool] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__a : Dict , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(__a , param_name="crop_size" , default_to_square=__a ) UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(__a ) if not is_batched(__a ): UpperCAmelCase_ = [images] if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(__a ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: UpperCAmelCase_ = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(__a , __a ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=__a , tensor_type=__a )
106
0